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Abstract
We investigate the effects of dichotomous noise added to a classical harmonic oscillator in the formof
stochastic time-dependent gain and loss states, whose durations are sampled from two distinct
exponential waiting time distributions. Despite the stochasticity, stability criteria can be formulated
when averaging overmany realizations in the asymptotic time limit and serve to determine the
boundary line in parameter space that separates regions of growing amplitudes from those of decaying
ones. Furthermore, the concept of  symmetry remains applicable for such a stochastic oscillator
andwe use it to distinguish between an underdamped symmetric phase and an overdamped
asymmetric phase. In the former case, the limit of stability ismarked by the same average duration for
the gain and loss states, while in the the latter case, a higher duration of the loss state is necessary to
keep the system stable. The overdamped phase has an ordered structure imposing a position-velocity
ratio locking and is viewed as a phase transition from the underdamped phase, which instead displays
a broad andmore disordered, but nevertheless,  symmetric structure.We also address the short
time limit and the dynamics of themoments of the position and the velocity with the aimof revealing
the extremely rich dynamics offered by this apparently quite simplemechanical system. The notions
established so farmay be extended and applied in the stabilization of light propagation in
metamaterials and opticalfibres with randomly distributed regions of asymmetric active and passive
media.

1. Introduction

Given that physical systems are in general not conservative but rather tend to dissipate energy, some external
forces are always necessary in order to reactivate their dynamics. There existmany systems, such as the simple
pendulum, amotor engine or electric circuit that undergo transitions between states inwhich energy is gained
and dissipated. If the gain is tunable enough in order to compensate the loss, then the resulting device simulates
perfectly a conservative system and thus preserves the time reversal symmetry  but formany reasons,mostly
technical (regulation or automatism), the compensation is not always perfect so that the loss and gain have to be
treated separately.

However, even an imperfect control of the energy balance can result in extraordinary new properties.
Indeed, let us consider a system that switches between two possible states, one inwhich energy is gained and the
otherwhere energy is lost. It is clear that such a systembreaks the time reversal invariance  and looses its nice
property of energy conservation.What ismore obvious is that it is not invariant under the operation  which
consists in a swap between the loss and gain states. Yet, in order to preserve some symmetry, one idea is to
combine the two operations and impose on the non-conservative system aweaker requirement of invariance
under the  transformation.
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Works involving  symmetry have been initiated in the context of quantummechanics using non
HermitianHamiltonians [1] inwhich  refers to the parity operator, which reverses the position. The
investigation of a generic class of  symmetricHamiltonians has shown that their energy spectrum remains
real below a critical point but becomes imaginary beyond it,manifesting a transition to new ‘exotic’ quantum
states. Subsequentworks [1–4]have led to a reformulation of the use of these concepts in the framework of a
non-Hermitianmodel involving only two quantum states for which the parity operator corresponds to the swap
operation between the two states.

Since these seminal works [1, 2, 5–7], this new field has emerged in other contexts such as classical optics and
electrical circuits in order to better understand the interplay between active and passive transmission, but also in
tight binding systems [8–10]. In optical fibers, the simultaneous use of active and passive components displays
very interesting properties such as transient wave amplification in an array of coupledwaveguides with an
arbitrary space distribution of gain and loss [11]. Furthermore, there are experiments which demonstrated that
 symmetricmaterials can exhibit power oscillations, non-reciprocal light propagation and tailored energy
flow [6, 7, 12]. In addition, the existence of giant amplifications is predicted,meaning that a passivemediummay
be helpful to enhance the gain effect of an activemedium [13]. Similar problemswere studied in another
experiment with a pair of coupled oscillators in the formof an LRC circuit [12]. Instead of considering a single
oscillator that switches between gain and loss states, the authors of [12] examined an electronic dimermade of
two coupled oscillators, onewith gain and the other with loss. The experiment succeeds in displaying all the
phenomena encountered in systemswith generalized  -symmetries.

In order to understand the basics of a  -symmetric gain and loss process, a very simple one-dimensional
harmonic oscillator was considered. The prototypemodel consisted of two separate states of frictional and gain
forces linearly proportional to the velocity that alternate periodically in time [14]. Thismodel contains only the
oscillator frequency, the damping coefficient and the alternating period as parameters. Quite remarkably, it
provides a complete analysis with a phase diagram that distinguishes the stable from the unstable regimes
according to the parameter values.

However, as the dynamicsmight be even less controllable in the presence of randomness, a natural question
arises on how it affects, or rather breaks the  -symmetries. In this paper, we investigate how an effective 
symmetry persists in the presence of dichotomous noise introduced by replacing thefixed time periodswith
random intervals in the simple genericmodel developed in [14].More precisely, the oscillator switches
randomly in time between a damping state inwhich energy is dissipated or lost and an anti-damping state in
which energy is accumulated or gained. This oscillator can represent one electromagneticmode in a cavity that is
amplified randomly in order to compensate the losses.

Earlier studies exist on the effects of randomdamping on the stability of harmonic oscillators [15, 16]. The
stabilities of the first twomoments of the oscillator position and velocity have been analyzed, but only for
uncorrelatedGaussian and colored noise and not for dichotomous noise. In this context, we alsomention the
work on the  symmetric coupler in [17]withGaussianwhite noise, where amplification occurs despite the
perfect balance of gain and loss. In contrast to these previousworks, besides determining themoments, we are
also able to characterize in the asymptotic limit the exact nature of the probability distribution generated by the
randomnoise and thus predict the oscillator energy distribution. Furthermore, we also introduce an alternative
notion of stability based on the energy logarithmof the systemwhichwemotivate through the properties of the
probability density function of the state of the system. In addition to the  symmetric states, we also found
regimes inwhich this symmetry is broken even though the average durations for the loss and gain states were
equal. This observation confirms the known statement that energy amplification occurs evenwhen the system is
predominantly dissipative over time [11, 17] and can be formally established using amathematical framework
based on themaster equation. Finally, we succeed in pointing out the analogywith phase transitions in
thermodynamics, in which beyond a certain critical value, the stochastic oscillator breaks its  symmetry
towards an ordered phase.

This paper is organized as follows. In section 2, we formulate the stochastic oscillator problem in terms of the
master equation and define an asymptotic stability criterion. In section 3, we present the results for both
simulations and analytics and showhow they can be related to a phase transition. Section 4 concerns amore
restricted stability criterion involving the position and velocity averages.We discuss the short time behaviour
and stability involving higher ordermoments of the velocity in the limit of zero frequency oscillation in section 5
before endingwith the conclusion in section 6.
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2. Stochastic harmonic oscillator

2.1. General consideration
Weconsider a simple harmonic oscillator that randomly switches between a damping and anti-damping phase.
The equation ofmotion of such an oscillatorwith natural angular frequencyω has the form

q w+ + =( ) ˙ ( )x t x x¨ 2 0, 12

with a time-dependent damping coefficient q ( )t that can take only two constant values, either g+ or g- , i.e.
q ( )t is a piece-wise constant function in the formof dichotomous noise (seefigure 1). In the former case, the
oscillator undergoes damping and therefore loses energy (loss state)while in the latter case it gains energy (gain
state).We introduce stochasticity through the damping coefficient so that the system fluctuates between the gain
(g) and loss (l) phaseswith residence times τ. For the gain or loss phase the residence time is sampled from a
distinct exponential distribution of the form / /t t t-- ( )expg l g l

1 . The two phases are therefore characterized by
well defined average residence times, tg in the case of gain and tl in the case of loss.

2.2.Master equation
In order to deal with the stochastic system, we begin by examining the time evolution of ( )p x v t, , , the
probability tofind the oscillator in position xwith velocity = ˙v x at time t. To this endwewrite down themaster
equation of such a system, keeping inmind that the oscillator can also be in any of the two states g or l. Therefore,
we have the following systemof coupled partial differential equations:

w g t t¶ + ¶ - ¶  ¶ = -[ ] ( ) ( ( )) ( ( ) ( ) ) ( )v x p x v t vp x v t p x v t p x v t, , 2 , , , , , , , 2t x v g l v g l g g l l
2 

such that ò ò=
-¥

¥

-¥

¥
( ) ( )P t x v p x v td d , ,g l g l is the probability for the oscillator to be in the gain/loss state at

time t. Furthermore, the probability is conserved so that + =( ) ( )P t P t 1g l . Thefirst termon the left-hand-side
of (2) is the deterministic Liouville term, while the second one is the gain/loss term that arises from the non-
conservative nature of equation (1). The termon the right-hand-side describes the stochastic switching rate of
the oscillator between the gain and loss phases.

In as such, onewould have to solve the coupled pair of equations in (2) for ( )p x v t, ,g and ( )p x v t, ,l in order

to completely characterize the stochastic system.However, such a task is extremely heavy and unnecessary for
our purpose. Asmentioned in the introduction, we are interested in the stability of the stochastic oscillator and a
reliable criterion for it. Afirst simplification arises by noticing that the action-angle variables

w j w= + =( ) ( ) ( )J v x x v
1

2
and arctan , 32 2 2

aremore suitable for handling themaster equation. These polar-type coordinates lead to a separation of variables
in themaster equation in (2) (see appendix A.5 for details). In the optics terminology, J andj correspond
respectively to the amplitude and phasewhile x and v correspond to the quadrature components.

Subsequent Laplace andMellin transforms allowus to eliminate the time and J derivatives in the resulting
master equation. Indeed, these transformations defined respectively as

ò ò= =
¥

-
¥ˆ ( ) ( ) ˆ ( ) ( ) ( )f s f t t f k J f J Je d and d . 4st k

0 0

Figure 1. Left: the time dependence of the damping function q ( )t .When q g= the oscillator undergoes damping (loss) andwhen
q g= - , the oscillator undergoes anti-damping (gain). The amount of time spent in the gain/loss state before switching is tg l . Right:
change of variables.
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simplify themaster equation into:

j
w g j g j j

j

t

j

t
j+ = - +( ) ˆ ( )

ˆ ( ) ˆ ( )
ˆ ( )

( )

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟s k p k s

p k s p k s
p k t

d

d
sin 2 4 cos , ,

, , , ,
, , ,

5

g l
g l

g

g l

l
g l

2
0  

where j( )p J t, ,g l 0 with t0=0 is the starting distribution (initial condition), whichwe assume to be a delta
function. Still however, the last form cannot be solved analytically exactly. Nevertheless, essential information
can be derived about the asymptotic time limit of the solution (see appendices A.1 andA.2). For large times, we
deduce indeed that the variable Jln follows a normal distribution by showing that anymoment of the cumulant
expansion of Jln scales linearly with time (see appendix A.3). As a consequence, the average value á ñJln depends

linearly on time and the relative square root variance has the scaling dá ñ á ñ J J tln ln 12 so that
asymptotically Jln becomes a deterministic variable (see appendix A.4). On the other hand, the anglej remains
generally distributed over a broad value range. The numerical simulations of the evolution of an ensemble of
stochastic oscillators confirm these theoretical results:figure 2 shows the linear time dependence for the average
aroundwhich the square root variance remains small in comparison; figure 3 shows the histogramof the
distribution of Jln , which converges to aGaussian in the asymptotic time limit.

2.3. The stability criterion
In order to assess the stability of the dynamics of the stochastic oscillator, we can use the following results

established in appendix A.4. If the asymptoticmarginal distribution òj j= ¥
¥

( ) ( )P p J t Jlim , , dg l t g l0
exists, then the asymptotic constant η associated to the linear evolution of the firstmoment is given by:

ò

ò
h

g j j j j

j j j
= á ñ =

-

+

p

p

p

p¥

-

-

( )
( ( ) ( ))

( ( ) ( ))
( )

t
J t

P P

P P
lim

d

d
ln

4 cos d

d
, 6

t

g l

g l

2

2 2

2

2

This real-valued constant is the basis of the stability criterion that we shall employ in the next section. A positive
η corresponds to a diverging firstmoment of Jln implying that the system is unstablewhile a negative η
corresponds to a stable system. In order to apply the stability criterion defined in (6), we need to determine

j( )Pg and j( )Pl asymptotically.

3. Stability results of the stochastic oscillator in the asymptotic limit

3.1. Simulated results comparedwith the theory
Weused numerical simulations of the evolution of an ensemble of stochastic oscillators fromwhichwe extract
the asymptotic firstmoment of ( )J tln and thus determine η. The results are plotted infigure 4. The green area

Figure 2.Time evolution of the average of ( )J tln together with its dispersion. In this particular example w = 1, g = 0.9, t = 5g and
t = 1l . The average is taken over an ensemble of 104 oscillators, eachwith the initial condition =( ) ( )x v, 1, 10 0 at t=0. The positive
slope of ( )J tln for those particular parameter values implies that the system is unstable in the asymptotic limit. The dashed black line,
whose slopewas obtained from (6), corresponds to the theoretical result.
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corresponds to negative values of the slope of the ensemble average of Jln while the red corresponds to positive
ones. For g w< , the two regions are separated by the line of symmetry t t=g l. This result corresponds towhat
onemight expect-if the amount of time spent in the gain state is on average longer than in the loss state, then the
average value of the energy diverges over time.On the other hand, if the systemon average spendsmore time in a
loss state, then its average energy decays to zero over time.What comes as a surprise is that when g w> the
system energy can diverge evenwhen t t>l g . In order to see this better it is worth theoretically studying the
dependence of η in terms of γ.

In the limit of large tg and tl, we calculate explicitly the formula (6) using the expressions for j( )Pg l derived
in appendices A.5 andA.6 to obtain the simple analytic forms:

h
g g w

g w g g w
=

<

+ - >

t t

t t

t t

t t

-

+

-

+( )( )
( )

⎧
⎨⎪

⎩⎪
2 ,

2 1 , .
7

2

g l

g l

g l

g l

From (7), a necessary condition for stability is that t t<g l, independent of the values ofω and γ. Furthermore
for g w< , the asymptotic expression is in good agreementwith the simulation results, whereby the oscillator is
at the edge of stability for t t=g l. Asymptotically, the energy logarithm Jln can be considered as a deterministic
quantity, which does not decay nor divergewhen there is a perfect balance between gain and loss, when t t=g l.
On the other hand, when g w> a gain-loss balance (t t=g l) does not induce stability in the system.On the
contrary, the system can remain active with a growing or constant energy evenwhen the loss states dominate
over the gain states, i.e. when t t>l g . This is illustrated by the green curve infigure 5; there is a value of γ above
which the system’s energy diverges nomatter how large tl becomes compared to tg .

3.2. The effective transition to a broken  symmetry phase
Wecanmore precisely formalize what was said above by investigating further the systemby analyzing the
symmetry properties of the probability density functions pg and pl.We define the space reflection, or parity
operator  as the exchange between the gain and loss probability densities ofj. In other words,  has the effect
of swapping g and l so thatwe have the exchange «P Pg l. A similar definition is encountered in [2, 3]where for
simplicity the real space is represented by a two-valued position (let us say±1) and the parity operation
represent the exchange between+1 and−1. This redefined operation has been used as a swap operation between
two quantum states and subsequently for the swap between the gain and loss states in [14].We can also include
the time-reversal operation  , where  -t t ,  -v v and x x so thatj j - . If we apply both
operations at the same time, the distributions j( )Pl and j( )Pg remain invariant so that the  symmetry is
fulfilled.

The ensemble of stochastic oscillators is effectively  -symmetric in the so-called underdamped regime
when g w< and under the condition that t t=g l, although neither the stochastic equation (1)nor themaster
equation (2) obey such a symmetry. Indeed, the phase probability densities j( )Pg and j( )Pl obtained by

Figure 3.Probability distribution of ( )J tln for t t=g l. The different curves show the evolution of the probability distribution over
different times t. For all the examples shown in thefigure, w = 1, g = 0.5 and t = 10g l . Thewhite dashed line is theGaussian fit to
the simulation result in blue. The fit parameters correspond toμ= 9.1 for the average andσ= 38.8 for the standard deviation . An
ensemble of 108 oscillators was used to create both distributions, each oscillator having the initial condition =( ) ( )x v, 1, 10 0 at t=0.
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simulation and represented in thefirst graph of figure 6 have amirror symmetrywith respect to the origin
(j j - ). For comparison, the analytic expression for j( )Pg l is obtained by solving themaster equation in (2)
in the large time limit (numerical integration and asymptotic expression in the large tg l limit in appendix A.6).

However, this symmetry is only effective if we compare values of Jln up to its square root variance given that
Jln keeps diffusing normally. But if we compare the square root variance relatively to any non trivial average of
Jln , it shrinks to zero in the large time limit. Therefore these considerations have only a strict sense in the

asymptotic limit viewed here as the analog of the thermodynamic limit where the concept of a large particle
number of a thermodynamic system is replaced by one of large time, andwhere the so-called normal quantities
are the average and the variance of Jln that both scale linearly with time (see appendices A.3 andA.4).

Themirror symmetry of j( )Pg l ismaintained only for g w< . Once this condition is no longer satisfied, the
distribution ofj initially broadly distributed in the symmetric case condenses by forming two delta-like peaks. It
is in this sense that the systembecomes deterministic once γ is greater thanω. At the same time, however, the
mirror symmetry of the probability densities is broken as can be seen in the second graph offigure 6 leading to a

Figure 4. Stability of the stochastic oscillator. Thefigure shows the stability analysis done using numerical simulations according to the
criterion defined in (6). The green color indicates the stable region, where the average of Jln is negative and the red color indicates the
unstable region, where it is positive.Panels A andB: in this case g w< . It can be seen that the line of symmetry t t=g l separates the
stable region from the unstable.Panel C: this is the critical case where w g= . Since the system is not in the asymptotic regime, the
symmetry line t t=g l does not separate the two regions perfectly.PanelD: an example of the case where g w> . It shows that the
symmetry line t t=g l is well below the line that separates the two regions. Consequently there exist cases where tg is well below tl

and yet the system is still unstable. The inset shows that for small values of tg and tl symmetry is regained, as discussed at the end of
A.6. In all four cases an ensemble of 1000 oscillators that evolved up to t=300were used, each oscillator having the initial condition

=( ) ( )x v, 1, 10 0 at t=0.
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 -symmetry violation. In the limit of large tg and tl we are able to calculate a simple expression that
determines the valuesjg l at which the two peaks in j( )Pg l occur (see appendix A.6 for details):

j w
g
w

g
w

= =  - - ( )⎜ ⎟⎛
⎝

⎞
⎠

x

v
tan 1 . 8g l

g l

g l

2

The new ‘phase’ obtained is ordered in the sense that it corresponds to a ratio locking of the velocity over the
positionwith different fixed values for the gain state and the loss state. This resultmay also been obtainedmore
intuitively by noticing that for g w the oscillator is dampedwith no oscillations. It corresponds to the
overdamped regime as opposed to the underdamped regimewhere oscillations persist.We can indeed solve (1)
using the ansatz = l( ) ( )x t xe 0t andfind that l g g w=   -2 2 is real only in the overdamped regime.
Hence, in the large time limit only one eigenvalue is dominant and therefore using w w l=( ) ( )x t v t for the
dominant eigenvalue, we recover (8) accordingly. Such a relation could not have been used in the underdamped
regime since the phase of oscillationswould have randomized the trajectories.

We interpret this observation as a phase transition from a disordered state to an ordered statewith symmetry
breaking in analogy towhat happens in phase transition phenomena in thermodynamics. It can therefore be
concluded that the  -symmetry breaking occurs at the point of critical damping (g w= ). In analogy to the
Isingmodel [18], we start from a symmetric state with no ordering above a critical point, the broad angle
distribution in our case (or the spin distribution in themagnet), and go towards a broken symmetry statewith a
well defined order with two possible opposite angle values e.g. ratio locking (or awell defined value of spin).

We end this section by adding that the symmetry breaking established in the limit of large tl g, is essentially
valid also in the intermediate regime, despite a little bias (t t>l g) for γ aroundω shown in panel C offigure 4
and in the inset offigure 5. The symmetry is totally restored, however, in the limit of small tl g, whatever the value
of γ as can been seen from the inset infigure 4.

4. Stability of thefirstmoments

4.1.Dynamic equations for the position and velocity average
The stability criterion obtained in the previous section does notmean that all physical quantities of interest are
stable. This statement can be illustrated by considering the evolution of thefirstmoments of pg and pl. The fact
that Jln is stable does not necessarilymean that averages involving position and speed average are stable. Indeed,
if j( )f is a function to average, from the Feymann-Gibbs inequality, we deduce:

a j a já ñ á ña( ) ( ( )) ( )f J J fln ln exp 9

On the contrary, the stability of position and velocity averages implies stability of Jln . Therefore, there exist
additional requirements that enhance the stability of the stochastic oscillators, adding to the richness of their
dynamics.

Figure 5. Stability analysis of the stochastic oscillator as a function of g . The colored circles correspond to values of the stability
parameter η in the large t t,l g limit, determined numerically from simulations.Red: predominant gainwhere t = 100g and t = 50l .
Blue: balanced state where t t= = 50g l .Green: predominant loss where t = 50g and t = 100l . Theblack curves correspond to the
theoretical result displayed in (7). The inset shows the dependence of η on γ in the intermediate t t,g l limit. The blue curve is the
result of a simulationwith t t= = 5l g . In this limit, symmetry is broken even for g w< . In all simulations an ensemble of 105

oscillators evolving up to t=300were used, each oscillator having the initial condition =( ) ( )x v, 1, 10 0 at t=0.
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Bymultiplying both equations in (2) by x and v and integrating over the entire space and all the velocities, we
obtain a systemof coupled first order differential equations:

t t

w g
t t

t t

w g
t t

á ñ = á ñ -
á ñ

+
á ñ

á ñ = - á ñ - á ñ -
á ñ
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á ñ = á ñ +
á ñ

-
á ñ

á ñ = - á ñ + á ñ +
á ñ

-
á ñ
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x x
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where

ò ò ò òá ñ = á ñ =
-¥

¥

-¥

¥

-¥

¥

-¥

¥
( ) ( ) ( )x x v x p x v t v x v v p x v td d , , and d d , , . 11g l g l g l g l

Figure 6.The distribution of the phases j( )Pg and j( )Pl .Top: the system exhibitsmirror symmetry and dispersed phases in the case
where g w< and t t=g L. In this example g = 0.5, w = 1 and t = 20g l . An ensemble of 106 oscillators was allowed to evolve up to
t=1500. The black curve corresponds to the numerical solution of the analytical result in (A.31).Bottom: the symmetry is broken
when g w> and the phases become localized.When γ becomes larger thanω a transition occurs from adisordered to an ordered
phasewith a velocity-position ratio locking. In this example g = 0.5, w = 1.5 and t = 10g l . An ensemble of 106 oscillators was
allowed to evolve up to t=300, each oscillator having the initial condition =( ) ( )x v, 1, 10 0 at t=0.
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The linear dynamical systemdescribed here is of the form =˙ ·z M z and therefore an asymptotically stable
condition is verifiedwhen all of the real parts of the roots of the characteristic polynomial associatedwith M are
negative. It is straightforward to determine the four eigenvalues whichwe shall denote asl l l l l= ( ), , ,1 2 3 4

(see appendix B for details). Consequently the stability is also asymptotic in time.
In away similar towhatwas presented in the previous sections, the dynamical system governing the first

moments can be separated into two regimes, namely, the case where g w< and g w> .We proceed by
examining the stability conditions for such a system andwithout loss of generality we assume that w = 1.We
show that in this case also, depending on the value of γ, it is possible to have a situation inwhich the average
quantities we studied diverge even though the system, on average, spendsmore time in the loss state than in the
gain state. In contrast to the results obtained regarding the stability of Jln in the previous section, the average
values in (10)diverge when t t=l g since there exists at least one eigenvalue that is positive for any combination
of the other parameters (see appendix B for details).

4.2. Underdamped case: g w<
In this case, all four eigenvalues li are complex and they come in conjugate pairs (see appendix B). The real parts
of two of them are equal, l l=Re Re1 2, and negative for all combinations of t( g , t )l while the real parts of the
other two, which are also equal ( l l=Re Re3 4), can be either positive or negative. Since the imaginary parts of all
four eigenvalues are always non-zero, all the solutions of the system (10) are oscillatory, whether they decay or
grow, for any value of tl and tg . For afixed γwenumerically determine the regions in the t t-l g parameter
space forwhich every eigenvalue of the systemhas a negative real part. This corresponds to the stable region and
is indicated in green in panels A andB offigure 7.Moreover, the relation l g t= -t¥lim 1i gl

for i=3, 4
derived using B.2 imposes the critical value t g=* 1g beyondwhich stability is never attained nomatter how
large the value of tl is.

4.3.Overdamped case: g w
Once the stochastic oscillator is overdamped,more of the eigenvalues can attain positive real parts, rendering the
dynamicsmore elaborate. In particular, in contrast to the underdamped case, lRe 2 can also be positive,
depending on the values of tg and tl. Nevertheless, the stability does not differ qualitatively from the
underdamped case. The boundary that separates the stable from the unstable region continues to shift towards
lower values of tg when γ increases further. Another interesting property deduced from the eigenvalues is that in
the overdamped case there exist oscillatory solutions to (10) in contrast to the simple damped harmonic
oscillator that ismonotonically damped under those conditions. These oscillations occurwhen at least one of the
eigenvalues has a non-zero imaginary part. This is the case for values of t t( ),l g for which

l l l l+ + + ¹∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣Im Im Im Im 01 2 3 4 . These results are presented in panels C andDof figure 7where,
although themonotonicmotion is predominant in the overdamped case, there persists a region in the t t-g l

plane forwhich the solutions are oscillatory.

5. Full time analysis at zero frequency

Until now,we have analyzed the asymptotic behavior of the oscillator in the large time limit and also thefirst
moment of the position and the velocity. For the sake of completeness, it remains in principle to discuss about
the short and intermediate time regimes and the stability of the higher ordermoments. A full analysis is beyond
the scope of this paper butwe can address the particular case of w = 0, so that the problem reduces to the
simpler dynamical equation inwhich the position coordinate is eliminated:

g= 
( ) ( ) ( )v t

t
v t

d

d
2 12

This dynamical equation describes the evolution of awave function that is amplified or undergoes loss randomly.
A similar studywhere the frequency randomly takes two possible values has been shownuseful in the context of
superconducting qubits [19]. This type ofmodel has already been used to determine the first passage time at
which, for instance, the speed exceeds a critical value [20–23]. The interest here is to illustrate how the exact
solution complements the results obtained so far.

We start from the initial condition: d= = -( ) ( )p v t p v v, 0g l g l 0 and solve this equation using the variable

change: g= ( ) ( )r v vln 20 (see appendix C). The short time analysis differs from the asymptotic analysis
because the distribution is not normal anymore. If we start with awell defined speed v0 and study its subsequent
evolution for short time ( tt g l ), we obtain the spread of the velocity distribution but confinedwithin a cone:
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d
t t

= - - + -+( ) ( ) ( ) ( )
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥p v t

v
p r t

t p
t r, 0

1
1

2
1 , 13g l g l

g l

l g

l g

2 2

where +( )x1 is theHeaviside function. The short time behavior is characterized by a propagation of a delta
distribution along this cone insidewhich the probability densities develop. In the opposite case for large time
( tt g l ), wefind a normal distribution for the variable rwith average and variance:

t t
t t

g s d
g t t

t t
=

-

+
= =

+
( ) ( ) ( ) ( )

( )
( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

v t

v
t t

v t

v
tln 2 , ln

2 8
14

g l

g l

l g

g l0

2 2

0

2 2 2

3

Thus, the stability of the average is satisfied for t tl g in contrast to the previous statements in (7), which always
predict instability. The apparent contradiction is resolved by remembering that according to (9) the stability of r
does not imply the stability of anymoment of the velocity and/or anymoment of the position. Indeed for the n th

moment, we determine the followingmore restrictive stability criterion:

Figure 7. Stability analysis for the evolution of thefirstmoments. The stable regions in parameter space for which all four eigenvalues
have negative real parts are colored greenwhile the unstable regions are in red. Each panel in thefigurewasmade by evaluating directly
the real parts of the eigenvalues in (B.2) belonging to the dynamical system (10). In all cases w = 1 and each oscillator waswith the
initial condition =( ) ( )x v, 1, 10 0 at t=0. In the underdamped regime, the comparison betweenpanels A andB show a stable region
that decreases with growing γ.Panels C andD show two examples of the overdamped regime for different values of γ. The dark green
and dark red colors denote the set of values t t( ),g l for which the solutions of the dynamical system are oscillatory (in the
underdamped regime, all solutions are oscillatory). In this case also, both the stable and oscillatory regions diminish in sizewith
increasing γ.
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t t
gt t
-

( )n
2

15
l g

g l

Therefore, there always exists an order n abovewhich the stability criterion is not satisfied in accordancewith the
variance in (14), which always increases. However, if we restrict to the v variable only without the position x then
the simplified systembecomes effectively always  symmetric when t t=l g .

6. Conclusions and perspectives

Wehave studied the dynamic evolution of stochastic oscillators subject to dichotomous noisemade of
alternating gain and loss states random in time andwe have unveiled an intimate connection of this non
conservative systemwith  symmetry.We established a useful criterion thatfixes the boundary line between a
stable regimewith a likely decaying amplitude and an unstable regimewith a likely growing one. Although the
oscillator evolution becomesmore stochastic with time, it is nevertheless possible to effectively define the useful
concept of  symmetry in the asymptotic time limit. In otherwords, despite the breaking of time reversal
invariance due to noise, the oscillator can still remain resilient so as to preserve at least the  symmetry.
Application of this invariance property allows to distinguish between different regimes or phases: (a) an
underdamped regime (orweakly damping-amplifying oscillator ) for which the boundary lines between stable
and unstable regions satisfy this symmetry; (b) an overdamped regime (or strongly damping-amplifying
oscillator) for which this boundary line becomes asymmetric.We interpret these results in analogy to
thermodynamics as a phase transition froma symmetric disordered state consisting of a broad distribution to an
ordered state with a restricted distribution imposing a ratio locking of the position over the velocity separately for
both the gain and loss states.

To complete the panorama, we also examined the time evolution of the position and velocity averages of the
oscillator.We showed that the stability of the oscillator does not necessarily imply bounded dynamics of these
averages. It appears indeed that the stability diagrams aremore elaborate, illustrating themuch richer structure
of this apparently very simple system. For instance, despite the absence of oscillations in the deterministic case,
in the overdamped regime the presence of a randomgain can re-stimulate them.Higher ordermoment analysis
togetherwith a study of the short and intermediate time limits confirm this broad range of different regimeswith
different physics such as the cone-like propagation of the velocity distribution.

The formalism developed here in the particular case of a stochastic oscillator is quite general andmay be
applied to other situationswhere dichotomous noise is present such as the stabilization of light propagation in
metamaterials and opticalfibres with random regions of asymmetric active and passivemedia [7].
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AppendixA. Asymptotic solution of themaster equation

A.1. Dominant eigenvalue
After reducing themaster equation (2) to a pair of coupled ordinary differential equations bymeans of integral
transforms, wewrite themaster equation (5) under amatrix formwith j( )p J t, ,g l 0 as the initial distribution:

j= - +· ˆ ˆ ˆ ( ) ( ) p sp p k t, , , A.10

where

t

t

g j
g j

= + =
-

-
+

-
( )( ) ( )

( )

( )
  





⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥⎥k k

1

1

4 cos 0

0 4 cos
A.2

g l

g l

0 1
0

0

2

2

inwhich

j
w g j

t
= +( ) ( )( )

d

d
sin 2

1
. A.3g l

g l

0 
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andwhere

j
j

j
= =ˆ

ˆ

ˆ
ˆ ( )

ˆ ( )
ˆ ( )

( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟p

p

p
p k t

p k t

p k t
, ,

, ,

, ,
. A.4

g

l

g

l

0
0

0

Note that because of the inversion symmetry  -x x and  -v v, the stochastic oscillator is invariant under
the transformationj j p + . Therefore, we can restrict the angle to the intervalj p pÎ -] ]2, 2 .Writing
the solution jˆ ( )p k s, , as a linear combination of the eigenfunctions jˆ ( )p k,i ofwith eigenvalue-si we
obtain

åj j=ˆ ( ) ( ) ˆ ( ) ( )p k s c s p k, , , . A.5
i

i i

In that case, themaster equation becomes

å j j+ =( ) ( ) ˆ ( ) ˆ ( ) ( )s s c s p k p k t, , , . A.6
i

i i i 0

Multiplying from the left with the eigenfunction j˜ ( )†p k,j
of the adjoint problemwith eigenvalue sj and using

the bi-orthogonality property

ò j = ¹
p

p

-
˜ · ˆ ( )†p p i jd 0 , A.7
i j

2

2

we obtain

ò

ò

j j j

j j j
=

+
=

+
p

p
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s s p k p k

A k

s s

, , , d
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. A.8j

j

j j j

j

j

2

2
0

2

2

Taking the inverse Laplace transform,we arrive at

= -( ) [ ] ( ) ( )c t s t A kexp . A.9j j j

Therefore, the inverse Laplace transformof (A.5) gives

åj j= -ˆ ( ) [ ] ( ) ˆ ( ) ( )p k t s t A k p k, , exp , . A.10
i

j j i

In the asymptotic time limit where  ¥t , assuming that s0 is the dominant eigenvalue in the sense that the real
component sRe 0 has the lowest value among all eigenvalues, we simplify the dynamics into:

j j ¥ = -ˆ ( ) [ ] ( ) ˆ ( ) ( )p k t s t A k p k, , exp , . A.110 0 0

A.2. Perturbation theory
Weprogress further using the perturbation expansion applied to the eigenvalue problem:

= + = -· ˆ ( ) · ˆ ˆ ( )( ) ( )  p k p s p A.12i i i i
0 1

where =ˆ ( ˆ ˆ )p p pi i g i l
T

, , is a spinor andwhere thematrix operator is the sumof the principle part ( ) 0 and a

perturbation part ( ) 1 whosematrix elements can be deduced directly from (A.2). In order to solve the
eigenvalue problem for the operator (A.2), we expand the i th eigenvalue, si, of the operator in powers of the
perturbation parameter k so that

= + + + ¼! ( )( ) ( ) ( )s s ks k s 2 . A.13i i i i
0 1 2 2

In the leading order, ( )si
0 is equal to the eigenvalue of the unperturbed operator ( ) 0 while, in thefirst order, we

find using (A.7) thefirst correction:
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where =ˆ ( ˆ ˆ )( ) ( ) ( )p p pi i g i l
T0

,
0

,
0 is the solution to the unperturbed eigenvalue problem ( ( )i th eigenvector) that involves

only ( ) 0 . Since the operator is not self-adjoint, wemust use ˜( )pi
0 , which is the solution to the zeroth order

adjoint problemdefined by
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where the adjoint operator has the form

w g j
j t

= - +( ) ( )† ( ) sin 2
d

d

1
. A.16g l

g l

0 

It is easily verified that in the unperturbed case, the adjoint problemhas the trivial solution =˜ ( )( )p 1 1 T
0

0 with

the eigenvalue =( )s 00
0 . This trivial eigenvalue is themost dominant because an eigenvaluewith a real positive

valuewould lead to a probability that is not conserved in time. In fact, this eigenvalue is precisely associated to
the probability conservation. Therefore, up tofirst order in k, the dominant solution of the eigenvalue problem
(A.14) is rewritten using (A.2)more simply as:

ò

ò

g j j j j

j j j
= + = -
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+

p

p

p

p
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0
1 2

2 2

2

2

A.3. Evolution of the centralmoments of Jln
We start with theMellin transform shown in (4) andwrite it down as a characteristic function of the total
probability for the variable Jln :

ò

ò ò

j j j

j j j

= +

= +

p

p

p

p
-

-

¥

( ) ˆ ( ) ˆ ( )
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J g l

k J
g l

ln
2

2

2

2

0

ln

If wewrite down the exponential as a power series and integrate overj, we obtain an expressionwith the
moment generating function of Jln on the right-hand-side:

å= á ñ
=

¥

( )
!

( ) ( ) ( )M k t
k

n
J t, ln . A.19J

n

n
n

ln
0

Therefore, in order to obtain the evolution in time of the nth centralmoment of Jln , we take the nth derivative of
the logarithmof themoment-generating function above (i.e. derive the cumulant generating function)with
respect to k [24],

á - á ñ ñ =
=

( ) ( ) ( )J J
k

M k tln ln
d

d
ln , . A.20n

n

n
k

J
0

ln

According to perturbation theory, we can expand the dominant eigenvalue s0 in powers of k. By substituting this
expansion into theMellin-transformed probability distribution obtained in the asymptotic time limit in
equation (A.11)we obtain:

ò j j j
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0, 0,

Finally, for the nth centralmoment with respect to the quantity Jln , we identify simply in the asymptotic time
limit:

á - á ñ ñ =¥ -( ) ( )( )J J t s tln ln . A.22n n
0

where ( )s n
0 is the n th expansion coefficient in k of the eigenvalue = å =

¥ !( )s s k nn
n n

0 0 0 . Note that the asymptotic
result does not depend anymore on the initial condition through ( )A k0 .

A.4. Stability criterion
As alreadymentioned in appendix A.2, themaster equation can be treated as a perturbed eigenvalue problem
with k as the perturbation parameter and s as the eigenvalue to be determined. Given that the dominant
eigenvalue for the unperturbed problem is =( )s 00

0 (see appendix A.1), so that = ( )s ks0 0
1 up tofirst order, we can

substitute the time derivative of the firstmoment in (A.22) into (A.17) to obtain finally the stability criterion
defined in section 2.3:
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2

The linear growth of thefirst two centralmomentsmeans that the relative square root variance or the square root
variance-to-mean ratio shrinks to zero asymptotically, i.e.,
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ln

ln

1
0, A.240

2

0
1

provided á ñ ¹Jln 0. This result leads us to conclude that Jln is in general a well defined statistical variable
following a normal distribution and can be viewed as a deterministic one in the asymptotic sense (see figure 2).
Strictly speaking, only the case á ñ =Jln 0 has to be considered non deterministic but distributedwithin the
interval of the square root variance.

A.5. Solution to the unperturbed eigenvalue problem
Setting = =s k 0 in (5), we notice that the functions:

w g fº + - -( ˆ ˆ ) ( )( ˆ ˆ ) ( )X p p p psin 2 A.25g l g l1

and

g f wº - + + -( )( ˆ ˆ ) ( ˆ ˆ ) ( )X p p p psin 2 . A.26g l g l2

satisfy amuch simpler systemof linearfirst order differential equations:
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, A.271 2
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Thefirst equation, forX1, is trivial with a constant solution. The second equation, forX2, can be solved exactly
with the formal solution:
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The arbitrary constant of integrationC is determined from the condition of a periodic solution, i.e.
j j p= +( ) ( )X X2 2 so that wefind:
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Reversing the relations (A.25) and (A.26) in terms of p̂g and p̂l and inserting the results into (A.23), we obtain a
simpler expression for the stability criterion:
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A.6. Large tl, tg limit
Wecan simplify further and solve (A.23) in some particular but relevant cases. In the large tl, tg limit, but
keeping the ratio t tl g constant, the asymptotic solution developed in appendix A.5 can be integrated exactly.
We have the two cases:

(1)Underdamped case: g w
In this limit the exponential terms inside (A.29) and (A.30) reduce to unity and the solution simplifies to a

constant:
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2

where the last line results from integration overj¢. Inserting this result into (A.31), we obtain after integration
the stability criterion:
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After some straightforward algebra, wefind the angle probability distribution:
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We immediately see that these expressions are  symmetric when t t=l g . Normalizing these expressions to
unity, we fix the constant to

w g
p t t

=
-
+( )

( )X
2

. A.35
g l

1

2 2

(2)Overdamped case: g w
In this caseX2 is also a constant except at the singularitiesj0, which are the zeroes of w g j=  ( )sin 2 0 .

Some of these singularities are dominant in the sense that their weights aremuch greater than than those of the
others. Let us focus our analysis on the intervalj p pÎ -] ]2, 2 . In order to determine their importance, we
notice that around these singularities, themaster equation in (5) decouples so that we canmake the
approximation:

w g j
j

g j t j+( ) ˆ ( ) ( )
⎡
⎣⎢

⎤
⎦⎥psin 2

d

d
2 cos 2 1 0, A.36g l g l  

Wecan expand this equation locally around the singularityj0 to obtainmore simply:

g j j j
j

t j- + +( ) ˆ ( ) ( )
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥p2 cos 2

d

d
1 1 0, A.37g l g l0 0 

The solution is then

j j j~ - g j t- -ˆ ( ) ∣ ∣ ( )( ( ) )p A.38g l 0
1 2 cos 2 g l0

1

so that the dominant singularities appear for the highest negative power fixed by the condition: j >( )cos 2 00 .
After a little algebra, we find that these singularities impose the ratio locking condition:

j w
g
w

g
w

= =  - - ( )⎜ ⎟⎛
⎝

⎞
⎠

x

v
tan 1 . A.39g l

g l

g l

2

Thereforewe deduce for the probability distribution:
t

t t
d j j

t
t t

d j j=
+

- =
+

-ˆ ( ) ˆ ( ) ( )p pand . A.40g
g

g l
g l

l

g l
l

The relative weight between the two probabilities is determined by noticing that the total probabilities for the
gain and loss states should satisfy t t=¥( ) ( )P t P t t

g l g l. Contrary to the underdamped case, these
probability expressions are not  symmetric, nomatter the parameter values chosen. Inserting these last
results into (A.23), wefind after integration

h g
t t
t t

w g=
-

+
+ - ( ) ( )

⎛
⎝⎜

⎞
⎠⎟2 1 . A.41

g l

g l

2

Note that a similar reasoning can be done in the small tl, tg limit keeping the ratio t tl g constant. In that case,
wewould recover (A.33) provided tg is not too far from tl.

Appendix B. Eigenvalues for thefirstmoment

The eigenvalues of the systemof equations in (10) is calculated directly from thematrix

t t

w t g t
t t

t w t g

=

-

- - -
-

- - +

( )

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
M

1 1 1 0

1 2 0 1

1 0 1 1

0 1 1 2

B.1

l g

l g

l g

l g

2

2
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whose four eigenvalues are given by the expression

l
t t t t

t t
= -

+  
= ( )

A B
i

4

2
1, 2, 3, 4, B.2i

g l g l

g l

where

t t t gt t gt t g w

t g w t gt t g w t t g g t w gw t

= + - + + + -

= - + + - - + + -

( ) ( ( ))

( ) ( ) ( ) ( )

A

B

2 1 2 1 4 8 4

2 2 2 2 .

l g l l g l l

l g g l g l l l

2 2 2 2 2

2 2 2 2 2 2 2 3 2 2

In the symmetric case, where t t t= =l g , the system is never stable since there exists at least one eigenvalue that
is positive for any combinations of γ and τ. Precisely,

l
t g g g t t

t
=

- + + - + - -( ) ( )
( )

1 1 2 1 2 1
. B.34

2 2 2 2 4 2

If we assume that l a b= + i4 andmake the substitution g g t t a b- - = ¢ + ¢( )1 i2 2 4 2 , then by solving
forα, it is straightforward to show that l >Re 04 for every positive γ and τ. Note that γ and τ are real so that a¢
and b¢ cannot be non-zero at the same time.

AppendixC. Exact solution for w = 0

The probability equations associated to (12) are:

g
t t

¶  ¶ = -( ) ( )
( ) ( )

( )
⎛
⎝⎜

⎞
⎠⎟v p v t

p v t p v t
2 ,

, ,
. C.1t v g l

g

g

e

l



We start with the initial condition: d= = -( ) ( )p v t p v v, 0g l g l 0 and use the variable change:
g= ( ) ( )r v vln 20 .Wemake also the transformation

t
t t t

y= -
+

-
-( ) ( ) ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟p v t

v

r t t r
r t,

1
exp

2 2
, . C.2g l

g l

l g g l
g l

1 4

The new function solves the 1+1Dirac equationwith complexmass t t=m i l g :

y y t t¶  ¶ =( ) ( ) ( ) ( )r t r t, , . C.3t r g l g l g l

Using the Laplace and Fourier transforms:

ò òy y=
¥

-¥

¥
- -( ) ( ) ( )k s t re r t, d d , , C.4g l

st kr
g l

0

i

we solve (C.3) to obtain the solution

ò òy
p p

t t
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´
+

+ -

d

d

t

t t t

t

t

-¥

+¥

-¥

¥
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r t
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s k p
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,
d

2 i

d

2
exp i

i

1
, C.5

g l

p

g l

g l

i

i

1 4 1 4

2 2

g l

l g

l g

g l

l g

g l


where δ has to be chosen such as to leave the poles on the left in the complex plane. Note the dispersion relation
w t t= =  -s ki 1 g l

2 of the relativistic particle with negativemass. After calculationwe obtain for the

probability:

t t

t t t

= -
+

-
-

´ ¶ + -
-+

( )

( ) ( )

⎛
⎝⎜

⎞
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p
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t r I
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,
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2
1 , C.6
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l g l g

2 2
0
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

wherewe define themodified Bessel function p= å =¥
=

¥( ) ( )
( !)

I x x x xexp 2n
x

n0 0 2

n

n

2

2 2 . Quite generally, we

find a distribution confined inside the light cone = r t . In the short time limit, we recover (13). In the
asymptotic limit of large time t r wefind instead a log-normal distribution
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t
t t ps

g s ¥ =
+

- -( )
( )

[ ( ) ( ( )) ( )] ( )p v t
t v

r r t t,
1

2
exp 2 2 C.7g l

g l

g l

2
0

2 2

wherewe recover the average trajectory g= á ñ( ) ( )r v vln 20 0 and the variance, both given by (14). The large
time solution allows us to conclude that the increase of the velocity logarithmoccurs on average for t t>g l and
decrease in the contrary case. On the other hand, the stochastic aspect induces always a normal diffusion of this
quantity with a relative variance that scales like t1 . Again let us note that the asymptotic limit is independent
of the chosenweight pg l at t=0 and depends only on the initial speed. Finally, we derive also the useful
asymptotic characteristic function:

t t
a a

t t t t
á ñ =¥ + + - - - -a ( )

⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠
⎟⎟e t t

ln
1 1

4 4
1 1 1 1

2
. C.8r

g l g l g l

2

2

It confirms that the distribution is log-normal for large times since all cumulants scale linearly with t. In the
particular case where a g= n2 , we deduce the n-moment average á ñvn fromwhichwe recover the stability
criterion (15).
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