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Abstract

We investigate the effects of dichotomous noise added to a classical harmonic oscillator in the form of
stochastic time-dependent gain and loss states, whose durations are sampled from two distinct
exponential waiting time distributions. Despite the stochasticity, stability criteria can be formulated
when averaging over many realizations in the asymptotic time limit and serve to determine the
boundary line in parameter space that separates regions of growing amplitudes from those of decaying
ones. Furthermore, the concept of P7 symmetry remains applicable for such a stochastic oscillator
and we use it to distinguish between an underdamped symmetric phase and an overdamped
asymmetric phase. In the former case, the limit of stability is marked by the same average duration for
the gain and loss states, while in the the latter case, a higher duration of the loss state is necessary to
keep the system stable. The overdamped phase has an ordered structure imposing a position-velocity
ratio locking and is viewed as a phase transition from the underdamped phase, which instead displays
abroad and more disordered, but nevertheless, P7 symmetric structure. We also address the short
time limit and the dynamics of the moments of the position and the velocity with the aim of revealing
the extremely rich dynamics offered by this apparently quite simple mechanical system. The notions
established so far may be extended and applied in the stabilization of light propagation in
metamaterials and optical fibres with randomly distributed regions of asymmetric active and passive
media.

1. Introduction

Given that physical systems are in general not conservative but rather tend to dissipate energy, some external
forces are always necessary in order to reactivate their dynamics. There exist many systems, such as the simple
pendulum, a motor engine or electric circuit that undergo transitions between states in which energy is gained
and dissipated. If the gain is tunable enough in order to compensate the loss, then the resulting device simulates
perfectly a conservative system and thus preserves the time reversal symmetry 7 but for many reasons, mostly
technical (regulation or automatism), the compensation is not always perfect so that the loss and gain have to be
treated separately.

However, even an imperfect control of the energy balance can result in extraordinary new properties.
Indeed, let us consider a system that switches between two possible states, one in which energy is gained and the
other where energy is lost. It is clear that such a system breaks the time reversal invariance 7 and looses its nice
property of energy conservation. What is more obvious is that it is not invariant under the operation P which
consists in a swap between the loss and gain states. Yet, in order to preserve some symmetry, one idea is to
combine the two operations and impose on the non-conservative system a weaker requirement of invariance
under the P7 transformation.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Works involving P7 symmetry have been initiated in the context of quantum mechanics using non
Hermitian Hamiltonians [1] in which P refers to the parity operator, which reverses the position. The
investigation of a generic class of P7” symmetric Hamiltonians has shown that their energy spectrum remains
real below a critical point but becomes imaginary beyond it, manifesting a transition to new ‘exotic’ quantum
states. Subsequent works [1—4] have led to a reformulation of the use of these concepts in the framework of a
non-Hermitian model involving only two quantum states for which the parity operator corresponds to the swap
operation between the two states.

Since these seminal works [1, 2, 5-7], this new field has emerged in other contexts such as classical optics and
electrical circuits in order to better understand the interplay between active and passive transmission, but also in
tight binding systems [8—10]. In optical fibers, the simultaneous use of active and passive components displays
very interesting properties such as transient wave amplification in an array of coupled waveguides with an
arbitrary space distribution of gain and loss [11]. Furthermore, there are experiments which demonstrated that
PT symmetric materials can exhibit power oscillations, non-reciprocal light propagation and tailored energy
flow [6, 7, 12]. In addition, the existence of giant amplifications is predicted, meaning that a passive medium may
be helpful to enhance the gain effect of an active medium [13]. Similar problems were studied in another
experiment with a pair of coupled oscillators in the form of an LRC circuit [12]. Instead of considering a single
oscillator that switches between gain and loss states, the authors of [ 12] examined an electronic dimer made of
two coupled oscillators, one with gain and the other with loss. The experiment succeeds in displaying all the
phenomena encountered in systems with generalized P7 -symmetries.

In order to understand the basics of a P7 -symmetric gain and loss process, a very simple one-dimensional
harmonic oscillator was considered. The prototype model consisted of two separate states of frictional and gain
forces linearly proportional to the velocity that alternate periodically in time [14]. This model contains only the
oscillator frequency, the damping coefficient and the alternating period as parameters. Quite remarkably, it
provides a complete analysis with a phase diagram that distinguishes the stable from the unstable regimes
according to the parameter values.

However, as the dynamics might be even less controllable in the presence of randomness, a natural question
arises on how it affects, or rather breaks the P7 -symmetries. In this paper, we investigate how an effective P7°
symmetry persists in the presence of dichotomous noise introduced by replacing the fixed time periods with
random intervals in the simple generic model developed in [14]. More precisely, the oscillator switches
randomly in time between a damping state in which energy is dissipated or lost and an anti-damping state in
which energy is accumulated or gained. This oscillator can represent one electromagnetic mode in a cavity that is
amplified randomly in order to compensate the losses.

Earlier studies exist on the effects of random damping on the stability of harmonic oscillators [15, 16]. The
stabilities of the first two moments of the oscillator position and velocity have been analyzed, but only for
uncorrelated Gaussian and colored noise and not for dichotomous noise. In this context, we also mention the
work on the P7 symmetric coupler in [17] with Gaussian white noise, where amplification occurs despite the
perfect balance of gain and loss. In contrast to these previous works, besides determining the moments, we are
also able to characterize in the asymptotic limit the exact nature of the probability distribution generated by the
random noise and thus predict the oscillator energy distribution. Furthermore, we also introduce an alternative
notion of stability based on the energy logarithm of the system which we motivate through the properties of the
probability density function of the state of the system. In addition to the P7” symmetric states, we also found
regimes in which this symmetry is broken even though the average durations for the loss and gain states were
equal. This observation confirms the known statement that energy amplification occurs even when the system is
predominantly dissipative over time [11, 17] and can be formally established using a mathematical framework
based on the master equation. Finally, we succeed in pointing out the analogy with phase transitions in
thermodynamics, in which beyond a certain critical value, the stochastic oscillator breaks its P7 symmetry
towards an ordered phase.

This paper is organized as follows. In section 2, we formulate the stochastic oscillator problem in terms of the
master equation and define an asymptotic stability criterion. In section 3, we present the results for both
simulations and analytics and show how they can be related to a phase transition. Section 4 concerns a more
restricted stability criterion involving the position and velocity averages. We discuss the short time behaviour
and stability involving higher order moments of the velocity in the limit of zero frequency oscillation in section 5
before ending with the conclusion in section 6.
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Figure 1. Left: the time dependence of the damping function 6 (¢). When 6 = + the oscillator undergoes damping (loss) and when
0 = —, the oscillator undergoes anti-damping (gain). The amount of time spent in the gain/loss state before switching is 7, ;. Right:
change of variables.

2. Stochastic harmonic oscillator

2.1. General consideration
We consider a simple harmonic oscillator that randomly switches between a damping and anti-damping phase.
The equation of motion of such an oscillator with natural angular frequency w has the form

F4+20)% + wx =0, (1)

with a time-dependent damping coefficient 0 (¢) that can take only two constant values, either + or —~, i.e.

0 (t) is a piece-wise constant function in the form of dichotomous noise (see figure 1). In the former case, the
oscillator undergoes damping and therefore loses energy (loss state) while in the latter case it gains energy (gain
state). We introduce stochasticity through the damping coefficient so that the system fluctuates between the gain
(9) and loss (I) phases with residence times 7. For the gain or loss phase the residence time is sampled from a
distinct exponential distribution of the form 7, J1€xp(—7 /7). The two phases are therefore characterized by
well defined average residence times, 7, in the case of gain and 7; in the case of loss.

2.2. Master equation

In order to deal with the stochastic system, we begin by examining the time evolution of p (x, v, t), the
probability to find the oscillator in position x with velocity v = x at time ¢. To this end we write down the master
equation of such a system, keeping in mind that the oscillator can also be in any of the two states g or I. Therefore,
we have the following system of coupled partial differential equations:

[0 + vy — wx0ylp, ;i (x, v, 1) £ 270,(vp, ,; (x, v, 1)) = F(p, (x, v, 1) /7y — py(x, v, 1)/ ), )

such that B, (¢) = f_ O; f_ o:c dx dv p,, (x, v, 1) is the probability for the oscillator to be in the gain /loss state at
time t. Furthermore, the probability is conserved so that P, () + P;(t) = 1. The first term on the left-hand-side
of (2) is the deterministic Liouville term, while the second one is the gain/loss term that arises from the non-
conservative nature of equation (1). The term on the right-hand-side describes the stochastic switching rate of
the oscillator between the gain and loss phases.

In as such, one would have to solve the coupled pair of equations in (2) for B, (x, v, t)and p,(x, v, t)in order
to completely characterize the stochastic system. However, such a task is extremely heavy and unnecessary for
our purpose. As mentioned in the introduction, we are interested in the stability of the stochastic oscillator and a
reliable criterion for it. A first simplification arises by noticing that the action-angle variables

] = %(v2 + w?x?) and ¢ = arctan(wx/v), 3)

are more suitable for handling the master equation. These polar-type coordinates lead to a separation of variables
in the master equation in (2) (see appendix A.5 for details). In the optics terminology, ] and ¢ correspond
respectively to the amplitude and phase while x and v correspond to the quadrature components.

Subsequent Laplace and Mellin transforms allow us to eliminate the time and J derivatives in the resulting
master equation. Indeed, these transformations defined respectively as

Fs) = fo Yoy de and Fk) = fo T 4. (4)
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Figure 2. Time evolution of the average of In J (¢) together with its dispersion. In this particular example w = 1, v = 0.9, 7, = 5and
71 = 1. The average is taken over an ensemble of 10* oscillators, each with the initial condition (xo, v9) = (1, 1) att = 0. The positive
slope of In J (¢) for those particular parameter values implies that the system is unstable in the asymptotic limit. The dashed black line,
whose slope was obtained from (6), corresponds to the theoretical result.

simplify the master equation into:

ﬁg/l(k) ®> 5) . ﬁg/l(k’ ©> S)

T T

d ) A A
[E(w F vsin2¢p) + s F 4vk cos? @]pgﬂ(k, 0, 8) = ;[ + pg/l(k, ©, t),

(€))

where Besi U, @, to) with t,=01is the starting distribution (initial condition), which we assume to be a delta
function. Still however, the last form cannot be solved analytically exactly. Nevertheless, essential information
can be derived about the asymptotic time limit of the solution (see appendices A.1 and A.2). For large times, we
deduce indeed that the variable In J follows a normal distribution by showing that any moment of the cumulant
expansion of In J scales linearly with time (see appendix A.3). As a consequence, the average value (In J) depends
linearly on time and the relative square root variance has the scaling /(62 In J) / (InJ) =1 / Jtsothat
asymptotically In ] becomes a deterministic variable (see appendix A.4). On the other hand, the angle ¢ remains
generally distributed over a broad value range. The numerical simulations of the evolution of an ensemble of
stochastic oscillators confirm these theoretical results: figure 2 shows the linear time dependence for the average
around which the square root variance remains small in comparison; figure 3 shows the histogram of the
distribution of In J, which converges to a Gaussian in the asymptotic time limit.

2.3. The stability criterion

In order to assess the stability of the dynamics of the stochastic oscillator, we can use the following results
established in appendix A.4. If the asymptotic marginal distribution Py /; () = lim,_ j; > ByiUs o5 1) dJ
exists, then the asymptotic constant ) associated to the linear evolution of the first moment is given by:

tim < () (1) L eoste (B(o) = Piody ©)
7= lim — (In = p ’
oo dt Lr//zz (P, () + Pi(p))dp

This real-valued constant is the basis of the stability criterion that we shall employ in the next section. A positive
7 corresponds to a diverging first moment of In J implying that the system is unstable while a negative n
corresponds to a stable system. In order to apply the stability criterion defined in (6), we need to determine

P, (¢) and P, () asymptotically.

3. Stability results of the stochastic oscillator in the asymptotic limit

3.1. Simulated results compared with the theory
We used numerical simulations of the evolution of an ensemble of stochastic oscillators from which we extract
the asymptotic first moment of In J (¢) and thus determine 7. The results are plotted in figure 4. The green area

4
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Figure 3. Probability distribution of In J (¢) for 7, = 7. The different curves show the evolution of the probability distribution over
different times ¢. For all the examples shown in the figure, w = 1, v = 0.5and 7,/; = 10. The white dashed line is the Gaussian fit to
the simulation result in blue. The fit parameters correspond to 1t = 9.1 for the average and o = 38.8 for the standard deviation . An
ensemble of 10® oscillators was used to create both distributions, each oscillator having the initial condition (x, vo) = (1, 1) att = 0.

corresponds to negative values of the slope of the ensemble average of In J while the red corresponds to positive
ones. For v < w, the two regions are separated by the line of symmetry 7, = 7. This result corresponds to what
one might expect-if the amount of time spent in the gain state is on average longer than in the loss state, then the
average value of the energy diverges over time. On the other hand, if the system on average spends more time in a
loss state, then its average energy decays to zero over time. What comes as a surprise is that when v > w the
system energy can diverge even when 7; > 7,. In order to see this better it is worth theoretically studying the
dependence of n7in terms of .

In the limit of large 7, and 7, we calculate explicitly the formula (6) using the expressions for B,/ (¢) derived
in appendices A.5 and A.6 to obtain the simple analytic forms:

Tg— T

< w

bl
Te+ T

. 7
27(% + 1= (w/’Y)Z), v > w.
Tg Tl

/]7:

From (7), a necessary condition for stability is that 7, < 7, independent of the values of wand ~y. Furthermore
for v < w, the asymptotic expression is in good agreement with the simulation results, whereby the oscillator is
atthe edge of stability for 7, = 7. Asymptotically, the energylogarithm In J can be considered as a deterministic
quantity, which does not decay nor diverge when there is a perfect balance between gain and loss, when 7, = 7.
On the other hand, when v > w a gain-loss balance (7, = 7;) does not induce stability in the system. On the
contrary, the system can remain active with a growing or constant energy even when the loss states dominate
over the gain states, i.e. when 71 > 7. This s illustrated by the green curve in figure 5; there is a value of yabove
which the system’s energy diverges no matter how large 7 becomes compared to 7,.

3.2. The effective transition to a broken P7 symmetry phase
We can more precisely formalize what was said above by investigating further the system by analyzing the
symmetry properties of the probability density functions p, and p;. We define the space reflection, or parity
operator P as the exchange between the gain and loss probability densities of (. In other words, P has the effect
of swapping gand I so that we have the exchange P, < Pj. A similar definition is encountered in [2, 3]Jwhere for
simplicity the real space is represented by a two-valued position (let us say £1) and the parity operation
represent the exchange between 41 and —1. This redefined operation has been used as a swap operation between
two quantum states and subsequently for the swap between the gain and loss states in [14]. We can also include
the time-reversal operation 7, where t — —t, v — —vand x — x so that ¢ — —. If we apply both
operations at the same time, the distributions P; () and F, (¢) remain invariant so that the P7” symmetry is
fulfilled.

The ensemble of stochastic oscillators is effectively P7 -symmetric in the so-called underdamped regime
when 7 < wand under the condition that 7, = 7, although neither the stochastic equation (1) nor the master
equation (2) obey such a symmetry. Indeed, the phase probability densities P, () and P;(¢) obtained by

5
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Figure 4. Stability of the stochastic oscillator. The figure shows the stability analysis done using numerical simulations according to the
criterion defined in (6). The green color indicates the stable region, where the average of In J is negative and the red color indicates the
unstable region, where it is positive. Panels A and B: in this case 7 < w. It can be seen that the line of symmetry 7, = 7; separates the
stable region from the unstable. Panel C: this is the critical case where w = . Since the system is not in the asymptotic regime, the
symmetry line 7, = 7; does not separate the two regions perfectly. Panel D: an example of the case where v > w. It shows that the
symmetry line 7, = 7; is well below the line that separates the two regions. Consequently there exist cases where 7, is well below 7
and yet the system is still unstable. The inset shows that for small values of 7, and 7; symmetry is regained, as discussed at the end of
A.6.Inall four cases an ensemble of 1000 oscillators that evolved up to t = 300 were used, each oscillator having the initial condition
(xg, v) = (1, 1)att = 0.

simulation and represented in the first graph of figure 6 have a mirror symmetry with respect to the origin
(¢ — —¢). For comparison, the analytic expression for P,/ (¢) is obtained by solving the master equation in (2)
in the large time limit (numerical integration and asymptotic expression in the large 7, /; limit in appendix A.6).

However, this symmetry is only effective if we compare values of In J up to its square root variance given that
In J keeps diffusing normally. But if we compare the square root variance relatively to any non trivial average of
In J, it shrinks to zero in the large time limit. Therefore these considerations have only a strict sense in the
asymptotic limit viewed here as the analog of the thermodynamic limit where the concept of a large particle
number of a thermodynamic system is replaced by one of large time, and where the so-called normal quantities
are the average and the variance of In J that both scale linearly with time (see appendices A.3 and A.4).

The mirror symmetry of B, /; () is maintained only for v < w. Once this condition is no longer satisfied, the
distribution of  initially broadly distributed in the symmetric case condenses by forming two delta-like peaks. It
is in this sense that the system becomes deterministic once yis greater than w. At the same time, however, the
mirror symmetry of the probability densities is broken as can be seen in the second graph of figure 6 leading to a

6
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Figure 5. Stability analysis of the stochastic oscillator as a function of . The colored circles correspond to values of the stability
parameter 7)in the large 7, 7, limit, determined numerically from simulations. Red: predominant gain where 7, = 100 and 7; = 50.
Blue: balanced state where 7, = 7; = 50. Green: predominant loss where 7, = 50 and 7; = 100. The black curves correspond to the
theoretical result displayed in (7). The inset shows the dependence of 7 on yin the intermediate 7y, 7; limit. The blue curve s the
result of asimulation with 7, = 7, = 5.In this limit, symmetry is broken even for 7 < w. Inall simulations an ensemble of 10°
oscillators evolving up to t = 300 were used, each oscillator having the initial condition (x, vy) = (1, 1)att = 0.

PT -symmetry violation. In the limit of large 7, and 7; we are able to calculate a simple expression that
determines the values Gy at which the two peaks in P, /; () occur (see appendix A.6 for details):

x 2
tang,, = w2l =+ — (l) 1. (8)
Vg/l w w

The new ‘phase’ obtained is ordered in the sense that it corresponds to a ratio locking of the velocity over the
position with different fixed values for the gain state and the loss state. This result may also been obtained more
intuitively by noticing that for v > w the oscillator is damped with no oscillations. It corresponds to the
overdamped regime as opposed to the underdamped regime where oscillations persist. We can indeed solve (1)
using the ansatz x (t) = e™x(0) and find that A\ = 4+ 4 /> — w? isreal onlyin the overdamped regime.
Hence, in the large time limit only one eigenvalue is dominant and therefore using wx (¢) /v (f) = w/ A for the
dominant eigenvalue, we recover (8) accordingly. Such a relation could not have been used in the underdamped
regime since the phase of oscillations would have randomized the trajectories.

We interpret this observation as a phase transition from a disordered state to an ordered state with symmetry
breaking in analogy to what happens in phase transition phenomena in thermodynamics. It can therefore be
concluded that the P7 -symmetry breaking occurs at the point of critical damping (y = w). In analogy to the
Ising model [ 18], we start from a symmetric state with no ordering above a critical point, the broad angle
distribution in our case (or the spin distribution in the magnet), and go towards a broken symmetry state with a
well defined order with two possible opposite angle values e.g. ratio locking (or a well defined value of spin).

We end this section by adding that the symmetry breaking established in the limit of large 7 ¢ is essentially
valid also in the intermediate regime, despite a little bias (1, > 7,) for yaround w shown in panel C of figure 4
and in the inset of figure 5. The symmetry is totally restored, however, in the limit of small 7, whatever the value
of yas can been seen from the inset in figure 4.

4. Stability of the first moments

4.1. Dynamic equations for the position and velocity average

The stability criterion obtained in the previous section does not mean that all physical quantities of interest are
stable. This statement can be illustrated by considering the evolution of the first moments of p;and p;. The fact
that In J is stable does not necessarily mean that averages involving position and speed average are stable. Indeed,
if f (¢) isa function to average, from the Feymann-Gibbs inequality, we deduce:

(aof (©)In]) < In{J*exp(af (¢))) ©)

On the contrary, the stability of position and velocity averages implies stability of In . Therefore, there exist
additional requirements that enhance the stability of the stochastic oscillators, adding to the richness of their
dynamics.
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Figure 6. The distribution of the phases P, (¢) and P;(¢). Top: the system exhibits mirror symmetry and dispersed phases in the case
where 7 < wand 7, = 7;.In thisexample ¥ = 0.5, w = 1and 7,,; = 20. An ensemble of 10° oscillators was allowed to evolve up to
t = 1500. The black curve corresponds to the numerical solution of the analytical result in (A.31). Bottom: the symmetry is broken
when v > w and the phases become localized. When y becomes larger than wa transition occurs from a disordered to an ordered
phase with a velocity-position ratio locking. In this example v = 0.5, w = 1.5and 7,,; = 10. An ensemble of 10° oscillators was
allowed to evolve up to t = 300, each oscillator having the initial condition (x,, v) = (1, 1) att = 0.

By multiplying both equations in (2) by x and v and integrating over the entire space and all the velocities, we
obtain a system of coupled first order differential equations:

where

(X)g/1 = jioo dxjioo dv x p, (6, v, 1) and  (v)e/ = foo dxjioo dv v p, (%, v, 1).

Slan=toy - 2y Q
SOh= =l =2y = 2+ _>
=+ £ —>
0= =+ 0+ L

(10)

an
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Thelinear dynamical system described here is of the form Z = M - z and therefore an asymptotically stable
condition is verified when all of the real parts of the roots of the characteristic polynomial associated with M are
negative. Itis straightforward to determine the four eigenvalues which we shall denote as A = (A, Ay, A3, Ag)
(see appendix B for details). Consequently the stability is also asymptotic in time.

In a way similar to what was presented in the previous sections, the dynamical system governing the first
moments can be separated into two regimes, namely, the case where v < wand v > w. We proceed by
examining the stability conditions for such a system and without loss of generality we assume that w = 1. We
show that in this case also, depending on the value of v, it is possible to have a situation in which the average
quantities we studied diverge even though the system, on average, spends more time in the loss state than in the
gain state. In contrast to the results obtained regarding the stability of In J in the previous section, the average
valuesin (10) diverge when 7; = 7, since there exists at least one eigenvalue that is positive for any combination
of the other parameters (see appendix B for details).

4.2. Underdamped case: 7 < w

In this case, all four eigenvalues \; are complex and they come in conjugate pairs (see appendix B). The real parts
of two of them are equal, Re\; = Re),, and negative for all combinations of (7, 77) while the real parts of the
other two, which are also equal (ReA; = Re),), can be either positive or negative. Since the imaginary parts of all
four eigenvalues are always non-zero, all the solutions of the system (10) are oscillatory, whether they decay or
grow, for any value of 7; and 7. For a fixed ywe numerically determine the regions in the 77 — 7, parameter
space for which every eigenvalue of the system has a negative real part. This corresponds to the stable region and
isindicated in green in panels A and B of figure 7. Moreover, the relation lim,,_,, o A; = v — 1/ Tpfori = 3,4
derived using B.2 imposes the critical value Tz,‘ = 1/ beyond which stability is never attained no matter how
large the value of 77 is.

4.3. Overdamped case: v > w

Once the stochastic oscillator is overdamped, more of the eigenvalues can attain positive real parts, rendering the
dynamics more elaborate. In particular, in contrast to the underdamped case, Re), can also be positive,
depending on the values of 7, and 7;. Nevertheless, the stability does not differ qualitatively from the
underdamped case. The boundary that separates the stable from the unstable region continues to shift towards
lower values of 7, when «yincreases further. Another interesting property deduced from the eigenvalues is that in
the overdamped case there exist oscillatory solutions to (10) in contrast to the simple damped harmonic
oscillator that is monotonically damped under those conditions. These oscillations occur when at least one of the
eigenvalues has a non-zero imaginary part. This is the case for values of (7, 7,) for which

[ImX| + [ImAy| + [ImA;] + |ImAy| = 0. These results are presented in panels Cand D of figure 7 where,
although the monotonic motion is predominant in the overdamped case, there persists aregion in the 7, — 7
plane for which the solutions are oscillatory.

5. Full time analysis at zero frequency

Until now, we have analyzed the asymptotic behavior of the oscillator in the large time limit and also the first
moment of the position and the velocity. For the sake of completeness, it remains in principle to discuss about
the short and intermediate time regimes and the stability of the higher order moments. A full analysis is beyond
the scope of this paper but we can address the particular case of w = 0, so that the problem reduces to the
simpler dynamical equation in which the position coordinate is eliminated:

m = £2vw(t) (12)
dt

This dynamical equation describes the evolution of a wave function that is amplified or undergoes loss randomly.

A similar study where the frequency randomly takes two possible values has been shown useful in the context of

superconducting qubits [19]. This type of model has already been used to determine the first passage time at

which, for instance, the speed exceeds a critical value [20-23]. The interest here is to illustrate how the exact

solution complements the results obtained so far.

We start from the initial condition: Bt (v, t=0) = Bei 6 (v — vp) and solve this equation using the variable
change: r = In(v/v)/(27) (see appendix C). The short time analysis differs from the asymptotic analysis
because the distribution is not normal anymore. If we start with a well defined speed v, and study its subsequent
evolution for short time (t < 7,,1), we obtain the spread of the velocity distribution but confined within a cone:

9
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Figure 7. Stability analysis for the evolution of the first moments. The stable regions in parameter space for which all four eigenvalues
have negative real parts are colored green while the unstable regions are in red. Each panel in the figure was made by evaluating directly
the real parts of the eigenvalues in (B.2) belonging to the dynamical system (10). In all cases w = 1and each oscillator was with the
initial condition (x, vo) = (1, 1) at¢ = 0.In the underdamped regime, the comparison between panels A and B show a stable region
that decreases with growing ~y. Panels C and D show two examples of the overdamped regime for different values of . The dark green
and dark red colors denote the set of values (7,, 7;) for which the solutions of the dynamical system are oscillatory (in the
underdamped regime, all solutions are oscillatory). In this case also, both the stable and oscillatory regions diminish in size with
increasing .

1 t Pisg
, >~ 0) = — S(r— 1 — + (@2 — r?) |, 13
Pep1 (v ) , D10 (r )( Tg/z] e ( r?) (13)

where 17 (x) is the Heaviside function. The short time behavior is characterized by a propagation of a delta
distribution along this cone inside which the probability densities develop. In the opposite case for large time
(t > 74/1), we find a normal distribution for the variable r with average and variance:

_ 27)2877 72
<ln(V(t))> =T o2 = <521n(””)> COR U (14)
Vo o+ 7 ) (7—g‘|’7'l)3

Thus, the stability of the average is satisfied for 77 > 7, in contrast to the previous statements in (7), which always
predict instability. The apparent contradiction is resolved by remembering that according to (9) the stability of r
does not imply the stability of any moment of the velocity and/or any moment of the position. Indeed for the n""
moment, we determine the following more restrictive stability criterion:

10
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n— 7-g
ns —— 15)
29T,
Therefore, there always exists an order n above which the stability criterion is not satisfied in accordance with the
variance in (14), which always increases. However, if we restrict to the v variable only without the position x then
the simplified system becomes effectively always P7 symmetric when 7 = 7.

6. Conclusions and perspectives

We have studied the dynamic evolution of stochastic oscillators subject to dichotomous noise made of
alternating gain and loss states random in time and we have unveiled an intimate connection of this non
conservative system with P7 symmetry. We established a useful criterion that fixes the boundary line between a
stable regime with a likely decaying amplitude and an unstable regime with a likely growing one. Although the
oscillator evolution becomes more stochastic with time, it is nevertheless possible to effectively define the useful
concept of P7 symmetry in the asymptotic time limit. In other words, despite the breaking of time reversal
invariance due to noise, the oscillator can still remain resilient so as to preserve at least the P7” symmetry.
Application of this invariance property allows to distinguish between different regimes or phases: (a) an
underdamped regime (or weakly damping-amplifying oscillator ) for which the boundary lines between stable
and unstable regions satisfy this symmetry; (b) an overdamped regime (or strongly damping-amplifying
oscillator) for which this boundary line becomes asymmetric. We interpret these results in analogy to
thermodynamics as a phase transition from a symmetric disordered state consisting of a broad distribution to an
ordered state with a restricted distribution imposing a ratio locking of the position over the velocity separately for
both the gain and loss states.

To complete the panorama, we also examined the time evolution of the position and velocity averages of the
oscillator. We showed that the stability of the oscillator does not necessarily imply bounded dynamics of these
averages. [tappears indeed that the stability diagrams are more elaborate, illustrating the much richer structure
of this apparently very simple system. For instance, despite the absence of oscillations in the deterministic case,
in the overdamped regime the presence of a random gain can re-stimulate them. Higher order moment analysis
together with a study of the short and intermediate time limits confirm this broad range of different regimes with
different physics such as the cone-like propagation of the velocity distribution.

The formalism developed here in the particular case of a stochastic oscillator is quite general and may be
applied to other situations where dichotomous noise is present such as the stabilization of light propagation in
metamaterials and optical fibres with random regions of asymmetric active and passive media [7].
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Appendix A. Asymptotic solution of the master equation

A.1.Dominant eigenvalue
After reducing the master equation (2) to a pair of coupled ordinary differential equations by means of integral
transforms, we write the master equation (5) under a matrix form with Bei (J, ¢, to) as the initial distribution:

M - ]3 = 7513 + ﬁ(ka P> tO): (AI)
where
LY —1/7 —4 cos? 0
M= MO £ kMO = g + k (A.2)
—~1/7, LO 0 4 cos?
in which
£0 = 4 o ysin2g) + —— A3
o/l = F ysin2yp) + . (A.3)
dyp Tg/I
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and where
. A . b, (k, @, to)
p=1" Pk, o, t) =% “I (A.4)
Pl Pl(k> ®> tO)

Note that because of the inversion symmetry x — —xand v — —v, the stochastic oscillator is invariant under
the transformation ¢ — ¢ + 7. Therefore, we can restrict the angle to the interval ¢ € ]—7/2, 7/2]. Writing
the solution p (k, ¢, s)asalinear combination of the eigenfunctions p; (k, ¢) of M with eigenvalue —s; we
obtain

bk 0.9 = e ©p ko). (A5)

In that case, the master equation becomes

Z(S + sci(9)p; (ks @) = pk, @, to). (A.6)

Multiplying from the left with the eigenfunction ﬁj (k, ) ofthe adjoint problem with eigenvalue s;and using
the bi-orthogonality property
/2 R . .
f Bl b de = i j, (A7)
—7/2
we obtain
/2 ~t A
L7 Bk @) - plk, @, 1) dp A (k)
w/25] i
ci(s) = 7 - = - (A.8)
G+ [ B K@) k) de ST

Taking the inverse Laplace transform, we arrive at
cj(t) = exp[—s;t]A; (k). (A.9)
Therefore, the inverse Laplace transform of (A.5) gives

Pk, p, 1) = Zexp[—sjt]Aj (k) p; (k, ). (A.10)

In the asymptotic time limit where t — 00, assuming that s is the dominant eigenvalue in the sense that the real
component Re s has the lowest value among all eigenvalues, we simplify the dynamics into:

Pk, o, t — 00) = exp[—sot]A¢(k)p, (k, ). (A.11)
A.2. Perturbation theory
We progress further using the perturbation expansion applied to the eigenvalue problem:
M- p = MO+ kMD) - p; = —sip, (A.12)

where p, = (p; g bil )T isa spinor and where the matrix operator M is the sum of the principle part M and a
perturbation part M whose matrix elements can be deduced directly from (A.2). In order to solve the
eigenvalue problem for the operator (A.2), we expand the i " eigenvalue, s;, of the operator M in powers of the
perturbation parameter k so that

si=sO + ks + kP20 + L. (A.13)
In the leading order, s’ is equal to the eigenvalue of the unperturbed operator M while, in the first order, we
find using (A.7) the first correction:
/2 . A
f PO MmO pi(0> do
SO

—n/2ti

/2 ~t ~
f p (O p,‘(O)dSD

—m/2ti

(A.14)

where ﬁl.(o) = (f)ifg) @f‘l)) )T is the solution to the unperturbed eigenvalue problem (i*? eigenvector) that involves

only M©. Since the operator is not self-adjoint, we must use ﬁi(o), which is the solution to the zeroth order
adjoint problem defined by

~(0)
Pig

5(0)
P

O

{ X (A.15)

TO) 5©
MO .ﬁ(O) _ [ﬁg 1/Tg] . pz,g
1

~(0
“1/n Li© pi(,l)
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where the adjoint operator has the form

. d 1
‘CZ’%) = —(w Fysin2¢)— + —. (A.16)
dop Te/l

Itis easily verified that in the unperturbed case, the adjoint problem has the trivial solution 15(;0) = (1 DT with

the eigenvalue s{” = 0. This trivial eigenvalue is the most dominant because an eigenvalue with a real positive
value would lead to a probability that is not conserved in time. In fact, this eigenvalue is precisely associated to
the probability conservation. Therefore, up to first order in k, the dominant solution of the eigenvalue problem
(A.14)is rewritten using (A.2) more simply as:

/2 ~ A

L 4y cos? ¢ (5, (0, 9, 0) — p;(0, p, 0))dep
() M _ /2

so =Sy + ksg' = —k /2 . A )

Lﬂ/Z (Pg(O’ Sa) 0) + p[(0> 90’ 0))d90

(A.17)

A.3. Evolution of the central moments of In |
We start with the Mellin transform shown in (4) and write it down as a characteristic function of the total
probability for the variable In J:

/2 R R
Mio k0= [ Btk 000+ Btk 1) d

/2 00
ol I R D R AR (A.18)
-
If we write down the exponential as a power series and integrate over ¢, we obtain an expression with the
moment generating function of In J on the right-hand-side:

o0

My (k, t) = Zk—’:<(ln])”>(t). (A.19)

n=01"
Therefore, in order to obtain the evolution in time of the nth central moment of In J, we take the n'® derivative of
the logarithm of the moment-generating function above (i.e. derive the cumulant generating function) with
respect to k [24],
dn
dk"

(In] = {InJ))") = In My, (k, t). (A.20)

k=0

According to perturbation theory, we can expand the dominant eigenvalue s, in powers of k. By substituting this
expansion into the Mellin-transformed probability distribution obtained in the asymptotic time limit in
equation (A.11) we obtain:

In Mk, ) F 2% — 5Ot — kst — k25t/2!0 — ..+ InAg(k)
/2 R .
+In ( f_ ﬂ/zpo,g (k, @) + Py (ks @) dsﬁ)- (A.21)

Finally, for the nth central moment with respect to the quantity In J, we identify simply in the asymptotic time
limit:

((n] — (InJ))m) 7200 _ gimy, (A.22)

where s{" is the " expansion coefficient in k of the eigenvalue sy = 3°°°  s{k"/n!. Note that the asymptotic
result does not depend anymore on the initial condition through Ag (k).

A 4. Stability criterion

As already mentioned in appendix A.2, the master equation can be treated as a perturbed eigenvalue problem
with k as the perturbation parameter and s as the eigenvalue to be determined. Given that the dominant
eigenvalue for the unperturbed problem s s{”’ = 0 (see appendix A.1), so that sy = ks§" up to first order, we can
substitute the time derivative of the first moment in (A.22) into (A.17) to obtain finally the stability criterion
defined in section 2.3:

/2 N S
J 7 4 o8¢ (0, 9, 0) = (0, 0, 0)dy

I - (A.23)
Lﬂ/z (Pg(0> ®> 0) + pl(0> ©> 0))d<p

Sy 120 - s =

The linear growth of the first two central moments means that the relative square root variance or the square root
variance-to-mean ratio shrinks to zero asymptotically, i.e.,

13
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VVarllnJ] ¢ oo V567 1

— — 0, A.24
(in7) RORNE (20

provided (In]) = 0. This resultleads us to conclude that In J is in general a well defined statistical variable
following a normal distribution and can be viewed as a deterministic one in the asymptotic sense (see figure 2).
Strictly speaking, only the case (In J) = 0 has to be considered non deterministic but distributed within the
interval of the square root variance.

A.5. Solution to the unperturbed eigenvalue problem
Setting s = k = 0in (5), we notice that the functions:

Xi=w(@, +p) — vsinQ)(p, — b (A.25)
and
X, = —7sinQ¢) (B, + ) + w(B, — By- (A.26)

satisfy a much simpler system of linear first order differential equations:

X =0 and % + A ()X = —A_(9) Xy, (A.27)
de de
where,
T(w 4+ vysin2p) £+ 7,(w — 7y sin2p)
Au(p) = LET IR 2 T - VIR (A.28)

Tem(w? — 2 sin?(2¢))

The first equation, for X, is trivial with a constant solution. The second equation, for X5, can be solved exactly
with the formal solution:

i / ! id ! API 1! ! A
X5 () =exp| — B A (pHdy -f_l —A_(©) X exp ] A ()dy" |dp

2

.
+ Cexp[— ﬁ i A+(g0’)d<p’], (A.29)

The arbitrary constant of integration Cis determined from the condition of a periodic solution, i.e.
X, (p) = X5 (¢ + 7)so that we find:

[P —A ()X exp [ J iA+(<p”)ds0”]d<p’

C =

- (A.30)
exp[ 1A 1A+<so’>dso/] —1

Reversing the relations (A.25) and (A.26) in terms of f?g and p, and inserting the results into (A.23), we obtain a
simpler expression for the stability criterion:
w22 2 A2n29 -1
i<ln](t)> f—2.00 4%}»[77/2 cos’p(W* — 77sin"29)" X () dg
dr Xim(w? — 437172 + ijr_//zz sin 2 (w? — y%sin?20) "' X3 () do

(A.31)

A.6.Large 7, 7, limit
We can simplify further and solve (A.23) in some particular but relevant cases. In the large 7, 7, limit, but
keeping the ratio 7;/7, constant, the asymptotic solution developed in appendix A.5 can be integrated exactly.
We have the two cases:

(1) Underdamped case: v < w

In this limit the exponential terms inside (A.29) and (A.30) reduce to unity and the solution simplifies to a
constant:

[P A (ehxde

-3 Tg T

X(p) =C=——= = . (A.32)
[P AHde' Tt T

where the last line results from integration over ¢’. Inserting this result into (A.31), we obtain after integration
the stability criterion:
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Tg —
n =2y . (A.33)
Te+ T
After some straightforward algebra, we find the angle probability distribution:
X
PO TP T s
£ w—sinQe)y w + sin(2p)y

We immediately see that these expressions are P7” symmetric when 7 = 7,. Normalizing these expressions to

unity, we fix the constant to
[0 — 42

Xi=—-— (A.35)
! 27 (1, + )

(2) Overdamped case: v > w

In this case X is also a constant except at the singularities ¢, which are the zeroes of w = £y sin(2¢,).
Some of these singularities are dominant in the sense that their weights are much greater than than those of the
others. Let us focus our analysis on the interval ¢ € ] — 7/2, 7/2]. In order to determine their importance, we
notice that around these singularities, the master equation in (5) decouples so that we can make the
approximation:

. d R
[(w F 7 sin Zcp)@ F 2ycos2p + l/Tg/l]Pg/z(@) ~ 0, (A.36)
We can expand this equation locally around the singularity ¢, to obtain more simply:
d A
[:FZ'y cos Zgoo[(gp - gpo)@ + 1) + 1/Tg/l]Pg/l(s0) ~ 0, (A37)
The solution is then
B (@) ~ I — g1 Fv s (A.38)

so that the dominant singularities appear for the highest negative power fixed by the condition: £cos(2¢,) > 0.
After alittle algebra, we find that these singularities impose the ratio locking condition:

x 2
tan g, ,; = wi/l = j:l — (1) — 1. (A.39)
Ves1 w w

Therefore we deduce for the probability distribution:

Tg i

A

pg:

6(p— ) and p = 6(p — @ (A.40)

Tg+ 7 et T

The relative weight between the two probabilities is determined by noticing that the total probabilities for the
gain and loss states should satisfy B, (¢) / Pi(t) t—200 7,/ 7. Contrary to the underdamped case, these
probability expressions are not P7° symmetric, no matter the parameter values chosen. Inserting these last
results into (A.23), we find after integration

Te— T
n=2y]= +J1 = (w/M*| (A.41)
Ty + 7

Note that a similar reasoning can be done in the small 7, 7, limit keeping the ratio 7 / Tg constant. In that case,
we would recover (A.33) provided 7 is not too far from 7.

Appendix B. Eigenvalues for the first moment

The eigenvalues of the system of equations in (10) is calculated directly from the matrix

—-1/7 1 1/7q 0
—w? —1/7—2 0 1/7,
M— /T Y /g (B.1)
1/7 0 —1/7g 1
0 /7 —w? 1)1y + 2y
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whose four eigenvalues are given by the expression

Te+mE AL 47'g77\/§

A= i=1,2,3,4, (B.2)
27,

where

A=7t+21,m(1 — 29m) + 721 + 4ym + TE (87 — 4w?))
B=11(y* — ) + (1 + 29m)* (V2 — w?) = 27,m(y* + 2970 + w? — 29w ).

In the symmetric case, where 77 = 7, = 7, the system is never stable since there exists at least one eigenvalue that
is positive for any combinations of 7yand 7. Precisely,

[ I e P T ey P

Ay = (B.3)

T

If we assume that A, = o + i3 and make the substitution \/'yz v? = D7t = 72 = o/ + if/, thenbysolving
for o, it is straightforward to show that Re\y > 0 for every positive yand 7. Note that yand 7 are real so that o/
and (3’ cannot be non-zero at the same time.

Appendix C. Exact solution for w = 0

The probability equations associated to (12) are:

p,(v, 1) v, 1)
(@) % 290,)p, (v, 1) = HF( (AR AA (C.1)
Tg 7
We start with the initial condition: Py v, t=0) = By ;0 (v — vp) and use the variable change:
r = In(v/vy)/(2v). We make also the transformation
T 4 1 —+ t t
I r —r
pg/l(v, t) = [g—/) —exp(— — —]wg/l(r, t). (C.2)
T/g % 274 27

The new function solves the 1 + 1 Dirac equation with complex mass m = i INLITE
@ % 8y (ry 1) = Ui, 1)) T (C3)

Using the Laplace and Fourier transforms:
Yoni(k, 5) = fo de [ dre sty ), (C.4)

we solve (C.3) to obtain the solution

6400 ds © dr

Yeyi(r, t) = f — . exp (st + ikr)

i6b—oo 27l J -0
1/4 1/4
Tt} P i) (e
X (Tl/g) T ¢ lk)(Tg/l) B
2+ k- l/m

where 6 has to be chosen such as to leave the poles on the left in the complex plane. Note the dispersion relation
w=is=+ Jk* -1 / [T of the relativistic particle with negative mass. After calculation we obtain for the
probability:

, (C.5)

(v t)—lex r+t t—r
g/t v P 27, 27
by t? — r?
% | Py Orer + =22 |17 = ) , (C.6)
27/g TiTg
where we define the modified Bessel function Iy (x) = Y02, (nf;;" X =200 exp (x)/~/ 2mx. Quite generally, we

find a distribution confined inside the light cone r = =+¢. In the short time limit, we recover (13). In the
asymptotic limit of large time ¢ >> r we find instead a log-normal distribution
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Tg/1
Tg T N2mo(t)v

where we recover the average trajectory ry = (In(v/vy))/(2y) and the variance, both given by (14). The large
time solution allows us to conclude that the increase of the velocity logarithm occurs on average for 7, > 77and
decrease in the contrary case. On the other hand, the stochastic aspect induces always a normal diffusion of this
quantity with a relative variance that scales like 1 /+/f. Again let us note that the asymptotic limit is independent
of the chosen weight pyatt =0 and depends only on the initial speed. Finally, we derive also the useful
asymptotic characteristic function:

Peyi(vs t — 00) = exp[—(27)*(r — n(1))*/20%(1)] (C.7)

2
1 1 1 1 1 1

ln<e‘”>t_£oo — 4+ —| +40?—da|l———-| - = - = L (C.8)
Ty T Tg T Tg 7|2

It confirms that the distribution is log-normal for large times since all cumulants scale linearly with ¢. In the
particular case where o = 2-yn, we deduce the n-moment average (v") from which we recover the stability
criterion (15).
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