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2016





Preface

I wrote this doctoral thesis during my time as research assistant at the Chair of Timber Struc-

tures of the Institute of Structural Engineering (IBK) at ETH Zurich. Inspired by the elevated

mechanical properties of beech wood, Prof. Andrea Frangi had the idea to create a very simple

laminated veneer lumber (LVL)-concrete composite slab made of a thin LVL plate and a con-

crete layer, connected by means of notches. During this research project, we developed a design

model for these composite members to ensure a ductile and predictable failure mechanism. This

objective was fulfilled, and the model was validated by means of laboratory tests. The most

challenging aspect was the modelling of the interaction between materials with completely dif-

ferent mechanical properties, including LVL, concrete and steel reinforcement. An important

part of the work was the study of the load-carrying mechanism of notched connections, which

is characterised by a complex stress state that may lead to brittle failure. This research allowed

us to improve the knowledge about several structural problems with notched connections.

The Swiss National Science Foundation SNSF (NRP 66) and Climate-KIC are gratefully

acknowledged for financing and supporting the project.

I would like to thank Prof. Andrea Frangi for giving me the opportunity to conduct this

research work. He gave me the freedom to choose an approach to conduct the research, was

always happy to discuss critical issues and gave very good suggestions. Constant motivation,

belief, trust, support and understanding shown by him have made this work possible. I would

also like to thank the co-examiners, Prof. Walter Kaufmann, Prof. Jan van de Kuilen and Dr.
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Abstract

This thesis focuses on the structural behaviour of timber-concrete composite slabs made of beech

laminated veneer lumber (LVL) with notched connections. A timber-concrete composite member

consists of a timber part in the tensile zone, a concrete layer in the compression zone, and a

connection between the timber and the concrete. These slabs are usually made of spruce wood,

and several connection systems have been developed (e.g. screws and notches). These composite

members are interesting systems because they are able to offer several structural, economic and

ecological advantages compared to traditional reinforced concrete slabs and timber slabs. Beech

LVL is an efficient structural material because it is able to combine the high strength and

stiffness of beech wood with the consistency of the mechanical properties of LVL. Moreover,

in Europe, beech wood is available in large quantities. The composite slabs studied in this

thesis have spans between 5 and 8 m and were developed at ETH Zurich in the framework of

a project about innovative uses of beech LVL. In general, if the load-carrying capacity of the

notched connection is governed by a compressive failure of the timber, ductility can be achieved.

Thus, the design goal is to make sure that yielding of the notches governs the global structural

behaviour. This is accomplished through the development and use of a clear and reliable model.

At present, several structural aspects of notched connections are still unclear, and the benefit

of notch yielding for improved global slab ductility is almost unknown.

This thesis presents both theoretical and experimental investigations. The theoretical stud-

ies include development of analytical models to predict the failures of notched timber-concrete

connections, and to analyse the structural behaviour of timber-concrete composite members

with a ductile connection. The models were able to predict the structural behaviour of several

specimens tested during this work with good accuracy, and can be used as a basis to design

timber-concrete composite members made of beech LVL.

This work shows that the use of LVL materials, instead of solid wood or glued laminated

timber, markedly improves the predictability of the timber behaviour, and a ductile notch design

becomes feasible. Notch yielding causes an increase of the curvature of the cross section, which

improves global ductility of the composite member. However, the ductility of the slab predicted

by the analytical model can be reached only if the composite member is provided with end-to-end

vertical reinforcement, which holds the LVL and concrete together and keeps the concrete cracks

closed. The composite member should be designed so that, after connection yielding, concrete

crushing occurs in the upper part of the composite member. Thanks to this design approach,

the load-carrying capacity of the composite member is governed by a series of ductile failures. In

general, the deformations of the composite member are limited by the rotation capacity of the

LVL part. Thus, to maximise ductility, the parts of the composite member should be designed

so that a tensile-bending failure of LVL occurs as late as possible.

In conclusion, this thesis offers a straightforward method to analyse the structural behaviour

of a timber-concrete composite member with a notched connection, and demonstrates that, if

a ductile design approach is applied, beech LVL, as the tensile part, ensures a good structural

performance and a predictable failure behaviour.
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Riassunto

Questa tesi riguarda il comportamento strutturale di solette composite legno-calcestruzzo real-

izzate con multistrato impiallacciato di faggio (LVL), con connessione ad intaglio. Le solette

composite legno-calcestruzzo sono costituite da un elemento in legno sotto trazione, che può

fungere da cassero a perdere, da uno strato di calcestruzzo sotto compressione, e da una con-

nessione legno-calcestruzzo. Queste strutture sono solitamente realizzate in abete, ed esistono

diversi tipi di connessione (ad esempio viti e intagli). Il legno-calcestruzzo può rappresentare

un’alternativa interessante alle solette in legno e in calcestruzzo armato, in quanto offre van-

taggi di tipo economico, ecologico e strutturale. L’LVL di faggio è un materiale molto efficace dal

punto di vista strutturale poiché combina le elevate resistenze e rigidità del faggio con la bassa

varianza delle proprietà meccaniche tipica delle configurazioni LVL. Inoltre, in Europa, il faggio

è una specie vegetale presente in quantità molto abbondanti. Le solette composite sviluppate in

questo lavoro sono pensate per campate tra 5 e 8 m, e sono state ideate al Politecnico Federale

di Zurigo (ETHZ) in seno ad uno studio sugli usi innovativi del faggio. In generale, se il com-

portamento dell’intaglio è governato da una rottura compressiva del legno, si ottiene duttilità,

un’importante ed apprezzata caratteristica strutturale. L’idea di base è di fare in modo che le

deformazioni plastiche degli intagli governino il comportamento globale della soletta ottenendo

cos̀ı una struttura duttile. Lo sviluppo di questa soletta composita richiede modelli chiari e af-

fidabili per prevederne il comportamento strutturale. Diversi problemi statici delle connessioni

a intaglio non sono ancora stati risolti con sufficiente chiarezza, e l’influsso della plastificazione

degli intagli sul comportamento dell’intera struttura è pressoché sconosciuto.

Questa struttura composita è stata studiata sia sul fronte teorico sia su quello sperimentale.

Gli studi teorici comprendono una serie di modelli analitici per la previsione delle rotture della

connessione a intaglio, e un modello per quantificare il comportamento statico di strutture

composite legno-calcestruzzo con connessione duttile. I risultati di una serie di test al taglio e

alla flessione sono stati paragonati alle previsioni effettuate con i modelli analitici, convalidando

gli studi teorici.

Questo lavoro dimostra che l’uso dell’LVL al posto del legno massiccio e del legno lamellare

incollato migliora l’affidabilità delle previsioni delle rotture del legno, rendendo possibile un

dimensionamento duttile basato sulla rottura compressiva del legno. La plastificazione degli

intagli genera un aumento della curvatura delle componenti della sezione che si traduce in una

deformazione plastica della soletta. Dagli studi condotti nell’ambito di questa tesi risulta che

la duttilità può svilupparsi solo se la soletta è munita di rinforzi verticali in grado di impedire

un’apertura della fuga tra le due parti e di tenere chiuse le crepe del calcestruzzo. La struttura

composita dovrebbe essere dimensionata affinché la plastificazione degli intagli sia seguita da

una rottura compressiva del calcestruzzo nella zona superiore della sezione, anch’essa dotata

di duttilità. In questo modo la resistenza della soletta è determinata da una serie di rotture

duttili. Tuttavia le deformazioni plastiche della soletta sono limitate dalla capacità di rotazione

del legno. Per massimizzare la duttilità si consiglia quindi di progettare la struttura in modo

che una rottura fragile del legno dovuta alla combinazione trazione-flessione avvenga il più tardi

possibile.
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In conclusione questa tesi offre un modello chiaro per l’analisi del comportamento strut-

turale di solette composite legno-calcestruzzo con connessione a intaglio, e dimostra che, seguendo

un metodo di dimensionamento duttile, l’uso dell’LVL di faggio assicura un comportamento

strutturale ottimale.
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Zusammenfassung

Die vorliegende Dissertation konzentriert sich auf das Tragverhalten von Holz-Beton Verbund-

decken aus Buchenfurnierschichtholz (LVL) mit Kerbenverbindung. Holz-Beton Verbundstruk-

turen bestehen aus einem Holzelement in der Zugzone, einer Betonschicht in der Druckzone

und einer Schubverbindung zwischen Holz und Beton. Solche Verbundbauteile bestehen in der

Regel aus Fichtenholz, und verschiedene Verbindungssysteme wurden entwickelt (zum Beispiel

Schrauben und Kerben). Holz-Beton-Verbunddecken repräsentieren attraktive Systeme, weil

sie verschiedene strukturelle, ökonomische und ökologische Vorteile im Vergleich zu konven-

tionelle Stahlbetondecken und reine Holzdecken bieten können. Buchenfurnierschichtholz ist

ein leistungsfähiger Baustoff, weil er die hohe Festigkeit und Steifigkeit des Buchenholzes mit

der geringen Variabilität der mechanischen Eigenschaften des Furnierschichtholzes kombiniert.

Darüber hinaus ist in Europa Buchenholz in grossen Mengen verfügbar. Die Verbunddecken, die

in dieser Arbeit untersucht wurden, haben eine Spannweite zwischen 5 und 8 m und wurden an

der ETH Zürich im Rahmen eines Forschungsprojektes über innovative Nutzungen von Buchen-

furnierschichtholz entwickelt. Im Allgemeinen, wenn die massgebende Versagensart der Kerbe

ein Druckversagen des Holzes ist, entstehen plastische Druckverformungen und es stellt sich ein

duktiles Tragverhalten der Kerbenverbindung ein. Das Grundkonzept der in dieser Arbeit ent-

wickelten Verbunddecke ist sicherzustellen, dass das Druckversagen des Furnierschichtholzes in

den Kerben massgebend ist, und die Verbunddecke sich duktil verhält, was eine sehr wichtige

Anforderung ist. Um diese Verbunddecken zu bemessen, sind klare und zuverlässige Modelle

notwendig. Des Weiteren sind einige statische Aspekte der Kerbenverbindung noch unklar und

der Einfluss plastischer Verformungen in den Kerben auf die globale Duktilität der Verbunddecke

ist fast unbekannt.

Diese Arbeit enthält theoretische und experimentelle Untersuchungen. Die theoretische

Studien umfassen analytische Modelle, mit denen die Versagensarten von Holz-Beton Kerben-

verbindungen vorausgesagt werden können, sowie Modelle, die das Tragverhalten von Holz-Beton

Verbundstrukturen mit duktiler Schubverbindung beschreiben. Die entwickelten Modelle wurden

mit Laborversuchen validiert, und bilden die Basis zur Erarbeitung von Bemessungsverfahren

für Holz-Beton Vebunddecken aus Buchenfurnierschichtholz.

Diese Arbeit zeigt, dass die Verwendung von Furnierschichtholz anstelle von Vollholz oder

Brettschichtholz die Berechenbarkeit des Tragverhaltens der Holzkomponente deutlich verbessert,

und eine duktile Bemessung der Kerbe somit sinnvoll wird. Die Auswirkung plastischer Druck-

verformungen des Furnierschichtholzes in den Kerben verursacht eine Zunahme der Krümmung

der Querschnittsteile der Verbunddecke. Dadurch wird Duktilität erzeugt. Es wurde aber

beobachtet, dass die mit dem Modell vorausgesagte Duktilität nur erreicht werden kann, wenn

vertikale Verstärkungen eingebaut werden, die Holz und Beton zusammenhalten und die Ver-

grösserung der Schubrisse im Beton vermeiden. Die Verbunddecke sollte so dimensioniert wer-

den, dass, nachdem die Fliessgrenze der Kerben erreicht wird, die Betondruckzone zu stauchen

beginnt. Somit besteht der Bruchmechanismus der Decke aus einer Serie von duktilen Versagen,

und die Decke versagt nach grossen Verformungen. Im Allgemeinen werden die Verformungen des

Verbundbauteils durch die Rotationsfähigkeit des Holzquerschnittes begrenzt. Um die Duktilität



zu maximieren, sollten die Teile der Verbunddecke so bemessen werden, dass ein kombinierter

Biegezugbruch des Holzes so spät wie möglich auftritt.

Diese Dissertation stellt ein klares und nachvollziehbares analytisches Modell zur Verfügung,

um das Tragverhalten von Holz-Beton Verbunddecken mit Kerbenverbindung zu beschreiben,

und zeigt, dass, wenn ein duktiler Bemessungsansatz angewendet wird, der Einsatz von Buchen-

furnierschichtholz als Zugelement ein berechenbares und duktiles Tragverhalten der Verbund-

decke gewährleistet.
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Chapter 1

Introduction

1.1 Motivation

This thesis focuses on the development of timber-concrete composite slabs made of beech wood.

Typically, a timber-concrete composite slab consists of a timber part in the tensile zone, a

concrete layer in the compression zone, and a connection between the timber and concrete.

These slabs are usually made of spruce wood (e.g. glulam beams), and since the nature of the

timber-concrete connection determines the structural behaviour of the composite member, many

connection systems have been developed (e.g. screws, dowels and notches). Composite timber-

concrete systems offer several advantages over traditional timber floors, including increased

strength and stiffness under gravity load, improved sound insulation, and higher fire resistance.

Furthermore, timber-concrete composite slabs save time and materials in the fabrication process

because the timber part acts as both the formwork and the tensile load-carrying component.

However, a conventional reinforced concrete slab allows for more flexibility with regard to the

geometrical shape of the slab.

Nowadays, in Europe, beech wood is available in large quantities but is typically used for

non-structural applications. Currently, ETH Zurich is involved in a large, long-term research

project focused on sustainable, innovative and reliable timber structures that use beech lami-

nated veneer lumber (LVL). This thesis explores beech LVL for timber-concrete composite slabs.

Beech LVL is advantageous due to its elevated and highly consistent mechanical properties and

its improved form stability. Thus, the structural performance of the timber part of the composite

member is improved.

The composite slab studied in this thesis has a simple and slender layout and consists

of a beech LVL plate which acts as both the formwork and the tensile reinforcement and a

concrete layer (Fig. 1.1). The total thickness of the composite slabs considered is about 200

mm. Notching is used to make the connection: the timber and concrete are connected with 15

mm deep notches cut in the LVL plate, which transfer the shear forces by means of compressive

contact of the two materials at the edges of the notches. The composite slabs developed in this

thesis carry the load only in one direction; consequently, the veneers of the beech LVL plate

are oriented mostly in the longitudinal direction of the slab, and the composite member should

1
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be linearly supported (for instance by a beam or a wall). This system can be used for slabs

in office and residential buildings with spans between 5 and 8 m. Such slabs usually carry a

permanent load of about 2 kN/m2 and a live load of 2-3 kN/m2 [1]. The composite slabs should

be as stiff as possible at the service level, ductile at the ultimate limit state, and must have

sufficient load-carrying capacity. Furthermore, vibration, sound insulation and fire resistance

requirements should be fulfilled. In design of timber-concrete composite members, the long term

effects on materials and connections should be considered. Also, the variation of the mechanical

properties of timber and concrete should be taken into account.

This thesis concentrates on the failure mechanism of one-span composite members. To

design timber-concrete composite slabs made of beech LVL with notched connections, a model

to understand and calculate the structural behaviour is necessary. Whereas the elastic flexural

behaviour of a timber-concrete composite cross-section during the elastic state is well-known

and can be quantified with several calculation models (e.g. n- and γ-method), the load-carrying

mechanisms of the notched connection are markedly more complex. A notched timber-concrete

connection implies several multi-axial stress states in timber and concrete, which can generate

different failure modes. The load-carrying mechanisms of the notches should be studied to

prevent brittle failures (e.g. tensile and shear failures of the concrete part or shearing-off failures

of the timber part), and a design procedure should be developed that guarantees a global ductile

failure of the slab. According to previous research (e.g. [2]), a notch can fail in a ductile way

if a compressive failure of timber is governing. The properties of LVL-based materials help in

pursuing this objective. Whereas the high variability of the mechanical properties of solid wood

and glued laminated timber makes the prediction of timber failures difficult, the consistency

of the mechanical properties of LVL materials allows for predicting timber failures with higher

certainty. This makes it possible to design the composite member so that a determinate timber

failure is governing. Furthermore, a simplified model must be developed to determine whatever

a composite member with a notched connection needs vertical steel reinforcement (e.g. screws)

and which forces the reinforcement should be able to carry.

q

concrete

xy

z

yx
z

timber
notch

Longitudinal section Cross section

q

grain direction

Figure 1.1: Timber-concrete composite slab with a notched connection
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1.2 Objectives

The purpose of this thesis is to study the structural behaviour of a timber-concrete composite

slab made of a beech LVL plate connected to a top layer of concrete by means of a notched

connection. The following objectives are pursued:

� Understanding the load-carrying mechanisms of notched timber-concrete connections and

developing simplified models to quantify the influence of geometric and material parame-

ters on the failures.

� Investigating the possibility to design the composite member so that a ductile failure is

governing, and developing a simplified model to describe the structural behaviour of a

timber-concrete composite member after yielding of the connection.

� Clarifying whatever timber-concrete composite members with a notched connection need

steel reinforcement and quantifying what load the reinforcement should be able to carry.

� Performing laboratory connection shear tests on timber-concrete composite members with

notched connection made of beech LVL to analyse the notch behaviour.

� Performing full-scale bending tests to determine the structural behaviour of timber-concrete

composite members made of beech LVL, and comparing the test results to calculations per-

formed with the models developed.

1.3 Limitations

Since this thesis represents a first step to assess the failure mechanisms of the composite mem-

bers, the serviceability and long-term behaviour analyses are not studied in detail. The influence

of the variation of the mechanical properties of timber and concrete on the structural behaviour

is not considered. All model calculations are performed using mean values of the mechanical

properties from design codes and approvals (e.g. [3]). Furthermore, the dynamic behaviour, the

fire resistance and the sound insulation properties are not discussed. The composite members

studied in this thesis are simple beams, and the structural behaviour of a continuous beam is

not addressed. The analytical models used to describe the structural behaviour of the composite

members after connection yielding were developed with regard to connections designed propor-

tional to the shear force generated by a uniformly distributed vertical load. The other cases

are only discussed qualitatively. The causes of the gap opening phenomena observed in some

experiments are discussed mostly in a qualitative way.

1.4 Overview of the thesis

The general structure of the thesis is illustrated in Fig. 1.2. Following the introduction, Chapter

2 discusses the current models that are available to estimate the structural behaviour of timber-

concrete composite members, the existing theories to predict the failures of timber and concrete
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with regard to notched connections, and the state-of-the-art in experimental investigations of

timber-concrete composite members with notched connections.

At first, Chapter 3 illustrates an analytical model to describe the structural behaviour of a

timber-concrete composite member with a ductile connection, which is an extension of the model

developed by Frangi and Fontana [2], combined with the theories of ductile analysis of reinforced

concrete members according to Marti [4], [5]. Then, a simplified method to understand the load-

carrying mechanism of notched connections is presented, and several analytical models to study

the different failure modes of the notches are discussed. This chapter also deals with the necessity

of vertical reinforcement in timber-concrete composite members with notched connections, and

presents a simplified model to design the reinforcement. Finally, the analytical models presented

are applied to practical cases to perform a parametric study to understand the influence of several

geometric and material parameters on the structural behaviour.

The experimental investigations are summarized in Chapter 4, beginning with the first

preliminary bending test conducted at the beginning of this research project to examine the

feasibility of the concept. Then, the connection shear tests are presented. Notches as timber-

concrete connection systems are tested with a setup which reproduces the boundary conditions

of the notch close to the support. The test results are compared to the estimates made with the

analytical models. Finally, this chapter presents a series of bending tests performed to validate

the analytical models of Chapter 3. A complete description of all experiments performed during

this thesis can be found in a test report [6].

Chapters 5 and 6 include the most important conclusions and an outlook for further research

on the subject.
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Figure 1.2: Overview of the thesis
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Chapter 2

State of the art

2.1 Introduction

This thesis focuses on timber-concrete composite members made of beech laminated veneer

lumber (LVL). Section 2.2 presents the most important mechanical properties and advantages

of beech LVL. Then, Section 2.3 summarises the state-of-the-art in modelling of timber-concrete

composite members. Since the connections are created by means of notches, different stress

configurations are to be expected in the timber and concrete. Therefore, to be able to develop a

model for the structural behaviour of the composite member, an in-depth study of the structural

behaviour and the failure modelling of these two materials is needed. Section 2.4 explains the

existing approaches to model failure of timber, and Section 2.5 presents several approaches

to model the load-carrying behaviour of concrete. Finally, Section 2.7 summarises the most

important outcomes of several previous experimental and numerical studies on notched timber-

concrete connections.

2.2 Beech laminated veneer lumber

The higher strength and stiffness properties of beech wood (Fagus sylvatica L.), as compared

to most softwood species, are well known [7], [8]. In Europe, beech wood is available in large

quantities, but it is typically used for firewood or for non-structural applications (e.g. furni-

ture) [9],[10]. Beech LVL offers improved consistency of mechanical properties and dimensional

stability for structural elements [11]. The specimens tested in this research project were con-

structed using beech LVL produced by the company Pollmeier (Creuzburg, Germany), which

made remarkable progress in the production of beech LVL structural elements [12], [13]. This

structural material was tested by Van de Kuilen and Knorz at TU Munich [14], [15] and obtained

a European Technical Approval [3]. Tab. 2.1 shows several mechanical properties of beech LVL

significant for this research work, and Fig. 2.1 represents the corresponding veneer orientations.
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Table 2.1: Mechanical properties of beech laminated veneer lumber (LVL) according to Fig. 2.1,

determined by Van de Kuilen and Knorz [14],[15] in preparation of a European Technical Approval [3].

These mechanical properties were obtained with a moisture content of 8.1 % (mean value), and the mean

value of the density was 730 kg/m3.

Configuration Property Mean value Characteristic

value (5th

percentile)

Coefficient of

variation

[N/mm2] [N/mm2] [%]

With 22− 27 %

cross layers

Tensile strength

parallel to the grain

ft,0 58.5 43.3 15.5

Bending strength

parallel to the grain

fm,0 77.9 66.8 7.9

Compressive strength

parallel to the grain

fc,0 45.7 37.5 10.4

Modulus of elasticity

parallel to the grain

E 13800 12500 4.5

Shear modulus

parallel to the grain

G 433 376 7.4

Compressive strength

perpendicular to the

grain

fc,90 13.6 10 14.3

Rolling shear strength

of the cross layer

fR,v 3.66 3.3 3.0

Without cross

layers

Shear strength

parallel to the grain

fv 10.7 9 9.2

Shear modulus

parallel to the grain

G 853 763 5.9

Tensile strength (load

parallel to glue layers)

ft,90 1.97 1.62 10.3
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cross layer
longitudinal layer

glue layer

grain direction of the
structural element

f t,0 f t,0
f c,0 f c,0
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f m,0 f R,v

f R,v

f v,0

f v,0

f t,90

f t,90glue layer

grain direction
of the veneers

Figure 2.1: Mechanical properties of beech laminated veneer lumber (LVL)

2.3 Models for timber-concrete composite structures

2.3.1 Behaviour of the composite members in elastic conditions

Typically, timber-concrete composite slabs consist of a timber part in the tensile zone, a concrete

part in the compression zone, and a connection between the timber and concrete to ensure

composite action [16]–[18]. As a consequence of loading perpendicular to the plane q, the two

parts of the composite member are subjected to axial forces N , bending moments Mi and shear

forces Vi, which depend on the geometry and the mechanical properties of the parts and the

connection (Fig. 2.2). At the interface between the two parts, theoretical horizontal shear forces

t and vertical forces r occur, which are carried by the connection.

M + dMM
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+
-
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e
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V + dV

V
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timber
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x
z
yx

z
y

e1
zs

q

dx

q

dx

x
z
y

M1

V1

N

V1 + dV1

M1 + dM1

N + dN

t

r

M2 M2 + dM 2
t

r

V2 V2 + dV 2

N
N + dN

Figure 2.2: Composite member

Since the connection is subjected to shear stresses, its flexibility generates a horizontal

relative displacement between the two parts which markedly influences the structural behaviour

of the composite structure. A perfectly rigid shear connection would prevent horizontal slip
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between the two materials. Such a system would be fully composite. However, almost all shear

connection systems are flexible, at least to some extent. Therefore, a certain amount of relative

slip between the two materials will occur. As a result, only partial composite action can be

achieved, and any structural analysis of such a system requires consideration of the slip between

the subcomponents.

In addition, when the elastic connection is flexible, the difference between the bending

stiffness of the two parts of the composite member may cause differential deflections which

result in uplift between the two elements [19].

Adekola [19] presented a theory of interaction, which accounts for both slip and uplift

effects. The parameter ks describes the shear connection modulus and kt describes the uplift

modulus. This theory differentiates between positive uplift (i.e. the tendency to have a gap

opening, which causes tension in the connection) and negative uplift, which causes pressure at

the interface and induces friction. For the zones with positive uplift, Adekola [19] derived the

following differential equation:

∂2N

∂x2
− κ2 · ks ·N (x)− ks

kt
·
[
h2
2 · E1I1 − h1

2 · E2I2

E1I1 + E2I2

]
· ∂

2r

∂x2
= − ks · e

E1I1 + E2I2
·M (x) (2.1)

where:

κ2 =
1

E1A1
+

1

E2A2
+

e2

E1I1 + E2I2
(2.2)

Several simplified calculation methods for timber-concrete composite members (e.g. the

n-method described in Section 2.3.2) are based on the assumption that no gap opening occurs.

This assumption is valid if the composite member is provided with vertical reinforcement which

prevents gap opening. The differential equation for composite members, derived by neglecting

uplift and vertical stresses, is the following:

∂2N

∂x2
− κ2 · ks ·N (x) = − ks · e

E1I1 + E2I2
·M (x) (2.3)

As discussed by Frangi and Fontana [2], Stüssi [20], [21] was the first to derive the differential

equation for the partial composite action. Analytical solutions to the differential equation for

simply supported beams with constant slip stiffnesses, subjected to different load cases, are

described by many authors (e.g. [22], [23], [24]).

As discussed by Frangi [25], another possibility to calculate the forces acting in timber-

concrete composites are truss models. For instance Vierendeel-frame models with elastic can-

tilevers and truss models with elastic diagonals can be used.

2.3.2 Simplified models of the elastic behaviour

To calculate the stresses and the strains acting on the composite member in elastic conditions,

simplified models were developed (Fig. 2.3). These models are based on the following assump-

tions: the two parts of the composite member bend with the same curvature, the distribution
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of the axial strains ε is linear, and the behaviour of the materials is linear-elastic. When the

connection is assumed to be fully rigid, the n-method can be used. Since a fully rigid connection

is very difficult to achieve with timber, simplified models were developed to take into account the

flexibility of the connection (e.g. the γ-method). The factor γ estimates the effect of the flexi-

bility of the connection on the cross-section values. The n-method corresponds to the γ-method

with γ = 1. As shown in Fig. 2.3, the shear deformations of the connection in x-direction cause

a slip in the distribution of σ and ε at the level of the interface.
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Figure 2.3: Axial stresses and strains acting on the composite member.

Rigid connection (n-method)

The n-method is a simplified model to determine the cross-sectional stresses σ and strains ε of a

composite member with fully rigid connection (Fig. 2.3). The most important formulas of this

method are presented, for instance, by Richter et al. [26].

The n-values take into account the different moduli of elasticity of the parts of the composite

member and are defined as follows:

ni =
Ei
E

(2.4)

The z-coordinate value of the elastic centroid of the composite cross-section (which corresponds

to the zero strain layer) is:

zs =

∑
niAizsi∑
niAi

(2.5)

The effective moment of inertia is:

I =
∑

niIi +
∑

niAie
2
i (2.6)

The effective cross section is:

A =
∑

niAi (2.7)

The static moment for the calculation of the shear stress acting at the interface is:
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Si,i+1 = niAiei (2.8)

The axial stress at point j in part i of the composite member due to the bending moment M is:

σj = Eiεj =
M

EI
ejEi =

M

I
ejni (2.9)

The theoretical elastic shear stress at the interface between parts i and i+ 1 is:

τi,i+1 =
V Si,i+1

Ibint
(2.10)

Flexible connection (γ-method)

For design purposes, a method for mechanically jointed beams, based on the differential equation

for the partial composite action, is widely used. The simplified design method, called γ-method,

is closely related to Möhler's model [27] and was developed for simply supported beams with

constant slip stiffnesses, subjected to loads that produce sinusoidally varying bending moments.

For this case, the differential equation of the partial composite action has a simple analytical

solution [2]. The γ-method can be expressed as a modification of the n-method, and it takes

connection flexibility into account by means of a reduction of the members niAie
2
i in the calcu-

lation of the bending stiffness. The most important formulas of this method are presented, for

instance, by Richter et al. [26].

The γ-factor takes into account the geometry of the parts of the composite member, the

shear stiffness of the connection ks, the elasticity of the parts, the span l, and the distance

between the connections s. For timber-concrete composite slabs, Blass et al. [28] formulated the

γ-factor depending on the position of the centroid of the composite cross-section. If the timber

part is thick and the concrete is thin and completely subjected to compression, the centroid is

typically located in the timber. In this case, the γ-factors are:

γ1 =
1

1 + π2E1A1s
l2ks

(2.11)

γ2 = 1 (2.12)

If the timber-concrete composite member is made of a thin timber plate and a thick concrete

plate, the centroid is usually located in the concrete, and it can be assumed that the concrete

area below the centroid cracks and does not carry tensile stresses. In this case, the γ-factors

are:

γ1 = 1 (2.13)

γ2 =
1

1 + π2E2A2s
l2ks

(2.14)

The position of the centroid of the composite cross-section can be calculated as follows:
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zs =

∑
γiniAizsi
γiniAi

(2.15)

The effective moment of inertia of the composite cross-section is:

I =
∑

niIi +
∑

γiniAie
2
i (2.16)

The axial stress acting at the edge (top or bottom) of part i is:

σi,t/b =
M

EI

(
γiei ±

hi
2

)
Ei (2.17)

The theoretic elastic shear stress at the interface between parts i and i+ 1 is:

τi,i+1 =
V γiEiAiei
EIbint

(2.18)

2.3.3 Timber-concrete connection systems

Figure 2.4 shows the typical behaviour of a timber-concrete connection. For simplified design

purposes, the shear behaviour of the connection is described with three parameters: stiffness

(Kser), strength (Tu) and ductility (D) [2].

In the elastic range, a high shear connection stiffness is important to increase the bending

stiffness of the composite member. The Swiss Standard SIA 265 [29] defines the stiffness at the

service level as:

Kser =
0.4 · Tu

u (0.4 · Tu)
(2.19)

The connection stiffness Ku at the ultimate limit state can be estimated as follows [25]:

Ku =
2

3
Kser (2.20)

In the Swiss code SIA 265 [29], the ductility of the connection is defined as:

D =
uu
uy

(2.21)

As shear connections markedly affect the behaviour of timber-concrete composite struc-

tures, several research projects have focused on developing and testing particular connection

systems (e.g. [30]–[37]). As a result, many different connection systems with steel fasteners

(e.g. screws, dowels and nail plates) and notches cut from the timber parts of the composite

members have been explored. Fig. 2.5 illustrates several current timber-concrete connection

systems. Dias [38] studied the mechanical behaviour of several timber-concrete connections by

means of analytical models, finite element models and laboratory tests.

As discussed by Yeoh et al. [18], notches cut in the timber beam and reinforced with a

mechanical fastener are often classified as the best type of connection system with respect to

stiffness and load-carrying capacity. However, the advantage of mechanical fasteners (e.g. screws

and nail plates) is that they do not require cutting the timber. On the other hand, they are less
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efficient in strength and stiffness than a notched connection [18]. Connection systems made of

metal plates and dowels typically achieve a ductile failure, thanks to the yielding of the steel.

u

T

uy uu
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T y
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Figure 2.4: Stiffness, load-carrying capacity and ductility of timber-concrete connections [29],[25]
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Figure 2.5: Examples of timber-concrete connections: (a) static system; (b) glued connection; (c) screws

[39]; (d) glued-in steel rods [39]; (e) steel punched metal plates [28], [39]; (f) glued-in steel mesh [40]; (g)

Notches cut in the timber part; (h) Notches cut in the timber part combined with mechanical fasteners

[25]
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2.3.4 Influence of the connection behaviour on the structural behaviour of

the composite member

In a timber-concrete composite member, the timber-concrete connection influences the structural

behaviour. In elastic conditions, the influence of the connection on the degree of composite

action, the stiffness and the strength can be estimated with the γ-factor, as described in Section

2.3.2. In contrast, the influence of a connection, subjected to plastic deformations, on the

structural behaviour of the composite member is more difficult to predict.

Ductile connection systems are advantageous because they are able to increase the load-

carrying capacity and the ultimate deformation capacity of timber-concrete composite slabs [41].

On the other hand, the ductile behaviour of the connections does not necessarily mean that the

behaviour of the composite slabs is ductile. As assessed by Ceccotti [39], if the connections are

over-designed, linear elastic behaviour of the beam with brittle failure will be observed.

In general, in timber-concrete composite slabs, a ductile failure is more difficult to achieve

than in reinforced concrete or steel-concrete composite slabs. This is due to the fact that,

contrary to steel, the timber part fails in a brittle way when subjected to tension and bending.

In timber-concrete composites, a ductile failure occurs if the connection is ductile, the ductile

connection failure is governing, and the geometry and the material properties allow for plastic

deformations.

Van der Linden [42] observed ductile behaviour of timber-concrete composite beams sub-

jected to bending, in a research programme which analysed several types of timber-concrete

connection systems (e.e. screws, nailplates and notches provided with reinforcement bars). The

composite beams showed ductile behaviour before total collapse occurred. This behaviour was

caused by plastic deformations of the connectors. The test results were compared with predic-

tions made using three different approaches: an elastic analytical model, a frozen shear force

approximation and finite elements calculations. The frozen shear force approximation is a cal-

culation model which is used to determine the failure load of a timber-concrete composite beam

once the first connectors have reached plasticity [42].

Frangi and Fontana [2] developed an elasto-plastic model for timber-concrete composite

beams with ductile connections. The basic idea of this model has several commonalities with

the frozen shear force approximation, presented by Van der Linden [42]. The model of Frangi

and Fontana [2] considers the behaviour of the connections by assuming of a rigid, perfectly

plastic load-slip relationship. This assumption is justified, for instance, in the case of notched

connections with glued steel dowels because they usually show a very high slip stiffness at service

load levels and large plastic deformations at failure. Because perfectly plastic behaviour of the

connectors is assumed, full yielding of the interlayer is considered. In this way, the maximal

shear force, which can be transferred between the two parts of the composite member, may be

calculated from the shear resistance of the connection TR and the number m of the connections

between the support and the critical cross-section as:

N = m · TR (2.22)

Consequently, the tensile stress in the timber cross section is calculated as:
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σ2 =
m · TR
A2

(2.23)

The bending stress σ2,m and σ2 can be carried by the timber cross-section simultaneously. σ2,m

is calculated from the linear elastic condition for timber subjected to combined bending and

tension action:

σ2
ft,0,2

+
σ2,m
fm,0,2

≤ 1 (2.24)

The load-carrying capacity of the composite member after connection yielding is calculated using

the stresses obtained with Eq. 2.23 and Eq. 2.24 [2].

The results of a series of bending tests of timber-concrete composite slabs made of glu-

lam beams with notches and glued steel dowels showed that the elasto-plastic model presented

by Frangi and Fontana gives a better prediction of the failure loads than the γ-method after

plasticity has occurred [2]. Howewer, the model of Frangi and Fontana [2] does not predict the

ultimate deflection after connection yielding.

Dias et al. [41] performed numerical simulations to assess the potential increase of the

load-carrying capacity and the ultimate deformations of timber-concrete composite slabs due to

the use of ductile connections. Furthermore, the maximum spacing for each type of connection,

which is needed to maximise the load-carrying capacity and the ultimate deformation capacity,

was identified by means of numerical simulations [41].

2.3.5 Gap opening

The opening of the gap between the tensile and the compressive parts, also known as uplift, is

an important issue in composite structures. This phenomenon is difficult to quantify because it

can be due to different reasons and is subjected to second-order phenomena.

Chapman [43] studied this phenomenon with steel-concrete composite structures. He dis-

cussed several possible causes, including the following:

� Due to the different geometry and material properties, the shear deflection of the lower

part can greater than the shear deflection of the upper part. In this case, the two parts

have a tendency to separate [43].

� In a composite structure made of two parts, each element is loaded eccentrically with

respect to its own centroid by shear forces at the interface. Thus, there is a tendency for

the elements to adopt different curvatures [43].

By solvin Eq. 2.1, Adekola [19] showed that differential deflections of the two parts can

induce a tendency to uplift.
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2.4 Models for the behaviour of the timber part

In a timber-concrete composite slab with a notched connection (Fig. 2.6(a)), depending on the

zone, the timber part may be subjected to uniaxial or multi-axial stresses caused by tension,

bending, compression or shear. Therefore, to predict the timber failures, the interaction between

the different stresses must be studied and quantified. However, it is difficult to find failure criteria

for timber because timber is orthotropic and not a homogeneous material. The first problem is

that the mechanical properties of timber depend on the orientation as well as on the direction

of loading; therefore, the development of failure criteria is challenging [44]. The second problem

is described by Smith et al. [45]. Although several types of timber failures are classified as

brittle by civil engineers, in reality, they are governed by complex mechanisms which cannot be

explained with elastic strength theory or linear elastic fracture mechanics.

Sections 2.4.1 and 2.4.2 describe two different approaches for predicting the failure of a

timber structural member:

� phenomenological strength criteria

� fracture mechanics

Sections 2.4.3, 2.4.4, and 2.4.5 summarise the state-of-the-art for predicting timber failures,

which typically occur in timber-concrete composite slabs with notched connections:

� compressive failure in the notch (Fig. 2.6(b))

� shearing-off failure close to the notch (Fig. 2.6(c))

� combined tensile-bending failure (Fig. 2.6(d)).

2.4.1 Phenomenological strength criteria

A failure criterion is introduced to predict the failure of a structural timber member. If the stress

in one direction is dominant, the stresses in the other directions can be neglected [44]. However,

structural elements subjected to multi-axial stress states require the introduction of failure

criteria to consider this effect. These multi-axial failure criteria are represented by mathematical

expressions describing a strength surface [44]. Kasal and Leichti [44] presented and discussed

the state-of-the-art multi-axial phenomenological strength criteria for wood members. Theses

strength criteria are called phenomenological because they apply to the phenomenon of failure,

but cannot explain the failure mechanism itself [44].

The simplest criterion in strength theory is the maximum stress criterion [46]. The failure

occurs when the stress in one direction σx exceeds the strength X of the material in that same

direction:

σx
X
≥ 1 (2.25)
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Figure 2.6: Examples of timber failures which typically occur in a timber-concrete composite member

with notched connection: (a) static system; (b) compressive failure in the notch; (c) shearing-off failure;

(d) combined tensile-bending failure

Another type of failure criteria is based on the strain energy. According to the van Mises-

Hencky distorsion energy theory [47], a ductile solid yields if the energy of distortion reaches a

critical value. In other words, failure is induced by the distortional energy, which is calculated

by subtracting the hydrostatic strain energy from the total strain energy. Hill [48] extended the

theory of von Mises-Hencky and developed a failure criterion under the assumption that when

plastic deformation occurs, the material tends to become anisotropic [44]. In the von Mises-

Hencky's theory, a hydrostatic pressure is assumed not to change the shape of a solid [44], and

thus, the material is assumed to resist any hydrostatic pressure. However, as discussed by Kasal

and Leichti [44], several experimental investigations proved that this assumption is not valid for

wood.

Norris [49] proposed one of the first strength criteria for orthotropic materials. This failure

criterion is based on van Mises-Hencky's distortion energy hypothesis, and for a two-dimensional

stress state (Fig. 2.7), can be written as follows [44]:

(σx
X

)2
− σxσy
XY

+
(σy
Y

)2
+
(τxy
S

)2
= 1 (2.26)

This failure criterion does not take into account the different compressive and tensile strengths

of timber. In addition, Norris's criterion becomes too conservative for normal and shear stress

combinations [44].

Hoffman [50] proposed an empirical expression for orthotropic brittle materials, where ten-

sile and compressive strengths are assumed to be different [44]. The proposed failure criterion

was developed using features of the van Mises-Schleicher isotropic yield condition and Hill's

orthotropic yield condition [50]. The agreement with fibre-reinforced composite material exper-
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imental data was good. Nevertheless, Hoffman found evidence that, despite formal similarities,

yield conditions and brittle-fracture conditions pertain to unrelated physical phenomena [50].

The Hoffman failure criterion in a general state of plane stresses (Fig. 2.7) can be written as

follows: (
1

Xt
− 1

Xc

)
· σx +

(
1

Yt
− 1

Yc

)
· σy +

σ2x
XtXc

+
σ2y
YtYc

− σxσy
XcXt

+
τ2xy
S2

= 1 (2.27)

As discussed by Kasal and Leichti [44], the main problem is a lack of constraints on the coeffi-

cients.

Tsai and Wu [51] presented a model of strength for anisotropic materials. This model was

developed to estimate the load-carrying capacity of filamentary composites with an operationally

simple criterion [51]. However, as discussed by Tsai and Wu [51], strength is an ambiguous term,

and the fracture of a composite material is a complex mechanism. Thus, such an operationally

simple criterion can be useful to estimate failures in engineering and for materials characterisa-

tion, but cannot possibly explain the mechanism of fracture [51]. Some authors denominated

this approach the Tensor Polynomial theory [52]. The model of Tsai and Wu was developed

from a scalar function of two strength tensors. The basic assumption of this strength criterion

is that there exists a failure surface in the stress-space in the following scalar form [51]:

f(σk) = Fiσi + Fijσiσj = 1 (2.28)

were i, j, k = 1,2,...6; and Fi and Fij are strength tensors of the second and fourth rank,

respectively [51].

In a general state of plane stresses, according to Fig. 2.7, the Tensor Polynomial failure

criterion of Eq. 2.28 can be written as follows:

F1σx + F2σy + F11σ
2
x + 2F12σxσy + F22σ

2
y + F66τ

2
xy = 1 (2.29)

where the coefficients are defined as follows:

F1 =
1

Xt
− 1

Xc
(2.30)
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F2 =
1

Yt
− 1

Yc
(2.31)

F11 =
1

XcXt
(2.32)

F22 =
1

YcYt
(2.33)

F66 =
1

S2
(2.34)

The coefficient F12 in Eq. 2.29 is an interaction term, and its calculation is challenging.

As discussed by Kasal and Leichti [44], there is no agreement about the appropriate method to

determine F12. Narayanaswami and Adelman [52] proposed to set F12 to zero and showed by

means of experimental analyses and numerical simulations that, with this approach, the failure

of practical filamentary composite materials under general biaxial loading can be predicted

with sufficient accuracy for engineering applications. Thus, Narayanaswami and Adelman [52]

recommended to set F12 to zero as a preferred alternative to an experimental determination of

F12. The reason is that the strength envelope of the Tensor Polynomial theory is closed if the

following inequality is respected:

F11F22 − F 2
12 > 0 (2.35)

Therefore, F12 must lie between −√F11F22 and
√
F11F22 . Narayanaswami and Adelman [52]

proposed that, if a value for F12 within this range does not introduce an unacceptable error,

experiments are not necessary to determine F12, and the most convenient value for F12 in this

range is zero.

Since the two boundaries of F12 depend on F11 and F22 and, in other words, on the strengths

of the materials, the consequences of neglecting F12 can be analytically estimated. Figure 2.8(a)

illustrates the state of biaxial stress for beech LVL without shear. In Fig. 2.8(b), the Tensor

Polynomial model (Eq. 2.29) is applied to a beech LVL element, loaded according to Fig.

2.8(a). The two boundaries of the interaction term F12, as well as the no-interaction case, are

considered, and are compared to the failure criterion of Hoffman (Eq. 2.27). For beech LVL,

stressed according to Fig. 2.8(a), the interaction term has a particularly relevant influence

if the member is subjected to compression perpendicular to the glue layers. The envelope of

the Tensor Polynomial model without the interaction term is very similar to the curve of the

Hoffman model, and is located between the two boundaries of Eq. 2.29.

With regard to the interaction term, the two approaches show an important difference.

In the Tensor Polynomial model, the two boundaries of the interaction term of Eq. 2.29 are

governed by the product F11F22, which depends on the strength in both x- and y-directions. In

contrast, in the model of Hoffman, the coefficient which multiplies σxσy depends only on the

strengths in the x-direction.



2.4. Models for the behaviour of the timber part 21

It can be concluded that for beech LVL with biaxial loading, according to 2.8(a), the Tensor

Polynomial model without the interaction term F12 should be applied carefully. Depending on

the stress configuration, neglecting the interaction term can introduce relevant errors.tensorc
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Figure 2.8: Failure criteria for biaxial loading of beech LVL: (a) stress configuration and material

parameters from Tab. 2.1; (b) comparison between the Tensor Polynomial model (Eq. 2.29) and the

Hoffman model (Eq. 2.27)

With regard to a timber member subjected to a shear stress τxy, combined with a vertical

stress perpendicular the shear plane σy, the Tensor Polynomial model of Eq. 2.29 can be applied

without the interaction term F12 because σx is assumed to be zero. Therefore, in this case, a

prediction of the failure using this criterion can be done with more certainty. Furthermore, with

these stress conditions, the Tensor Polynomial model formula (Eq. 2.29) matches the Hoffman

model (Eq. 2.27).

The Swiss Code SIA 265 [29] presents a criterion based on an elliptic interaction between

the shear stress τ and the stress perpendicular to the shear plane σ90:

(
fc,90 + σ90
fc,90 + ft,90

)2

+

(
τ

fv

)2
[

1−
(

fc,90
fc,90 + ft,90

)2
]

= 1 (2.36)

Eq. 2.36 is valid for −fc,90 ≤ σ90 ≤ ft,90. As discussed by Jockwer [46], the benchmarking of

Eq 2.36 with experimental data by Steiger and Gehri [53] shows a good representation of the

interaction behaviour, especially with regard to the high variation observed in the experiments.

Figure 2.9 illustrates the influence of the vertical stress perpendicular to the glue layers

of beech LVL on the shear strength estimated using the Tensor Polynomial model (Eq. 2.29),

the Hoffman model (Eq. 2.27) and the formula suggested by the Swiss Code (Eq. 2.36). The

mechanical properties of the timber member and the stress configuration are shown in Fig.

2.9(a). As presented in Fig. 2.9(b), if the timber member is subjected to tension perpendic-

ular to the glue layers (σy > 0), the Tensor Polynomial model and Eq. 2.36 give the same

result. In contrast, if compression perpendicular to the glue layers occurs, the envelope of the
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Tensor Polynomial model reaches a peak and then decreases. According to Eq. 2.36, the shear

strength should increase until the compressive strength is reached. The difference between the

two methods becomes more significant with increasing compression perpendicular to the glue

layers. However, it must be noted that the formula suggested by the Swiss Code (Eq. 2.36) has

only been verified in the part of Fig. 2.9(b) where the plotted curve is solid.tensort
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Figure 2.9: Failure criteria for the combination of shear and axial stress perpendicular to the glue

layers: (a) stress configuration and material parameters from Tab. 2.1; (b) comparison between the

failure criteria

In conclusion, the phenomenological strength criteria presented in this section help to

understand the influence of multi-axial stresses on a failure. Since the failure criterion of Hoffman

and the Tensor Polynomial model take into account the orthotropy of materials, it is possible

to apply these criteria to estimate timber failures. However, the interpretation of the results

can become challenging because such operationally simple criteria cannot explain the complex

mechanisms of timber failures. In timber engineering, to analyse the outcomes of a failure

prediction performed by means of these criteria, the stress situation should be simplified and the

physical mechanisms of the failure should always be taken into account. Furthermore, depending

on the timber material and the stress configuration, the influence of interaction terms can make

the interpretation difficult.

2.4.2 Fracture mechanics

Another approach to study the failure of wood is the fracture mechanics theory [45]. Linear

elastic fracture mechanics (LEFM) assumes that the material is linear or very nearly linear

elastic right until fracture [45]. According to this theory, fracture occurs when the condition

for crack propagation is satisfied. This condition is written in terms of a critical strain energy

release rate, often called fracture energy. Since the theory of the strain energy release rate is

often not practical for large systems, the concept of stress intensity factors has been introduced

[45].
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As discussed by Smith et al. [45], LEFM is appropriate for materials such as glass and cast

iron. According to LEFM, all available strain energy goes into propagation of a crack. However,

in nearly all materials, there are several other micro-structural mechanisms that are capable

of dissipating strain energy (toughening mechanisms). Some examples of these toughening

mechanisms are: micro-cracking around the main crack, crack bridging, or plastic deformation

at a crack tip (2.10(a)). To describe such materials, the nonlinear fracture mechanics theory

was developed. Wood is a typical example of material in which the toughening mechanisms play

an important role in the fracture process [45].
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Figure 2.10: Non-linear fracture mechanics: (a) possible toughening mechanisms [45]; (b) quasi-brittle

behaviour of wood in tension perpendicular to the grain [45]

Because of this deviation from the LEFM, Smith et al. [45] characterised wood as quasi-

brittle material, and discussed the application of the nonlinear fracture mechanics to predict its

behaviour. A quasi-brittle material is susceptible to some of the same types of failures as the

brittle materials, but the behaviour is less dramatic. Fig. 2.10(b) shows a qualitative illustration

of the quasi-brittle behaviour of wood subjected to tension perpendicular to the grain, according

to Smith et al. [45]. However, it must be kept in mind that strain softening is not a material

property, but depends on the entire system (including the test rig). As a timber member

is loaded, small cracks begin to grow from microscopic imperfections. As these micro-cracks

accumulate, the stiffness of the material decreases and the load-deformation curve becomes

less steep (pre-peak non-linearity). As the peak is reached, a critical crack, accompanied by a

fracture process zone, can occur. Because of the toughening mechanisms, energy is dissipated

gradually, and strain softening occurs [45]. Nevertheless, the nature of energy dissipation in the

fracture process zone in wood is still being discussed [54].

In conclusion, the fracture mechanics theory can be helpful to understand fracture processes

of timber members and to interpret experimental results, which deviate from the outcomes of

elastic calculations.
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2.4.3 Compressive failure parallel to the grain

If timber and concrete are connected by means of notches, the horizontal forces, which ensure

the composite action, are transferred from the concrete to the timber by compressive contact

in the notch. This means that the timber part of the composite member is locally subjected to

compression parallel to the grain. It is a well-known fact that a compressive failure of timber

parallel to the grain can be classified as ductile. Thus, one possible way to achieve ductile

behaviour of the composite structure is to design the slab so that a compressive failure in the

timber parallel to the grain is governing.

Grosse [55] described the physical mechanisms which govern all types of wood failures. The

compressive behaviour of timber parallel to the grain is highly complex. The failure mechanism

is governed by buckling of fibres and formation of a kink band. After high axial strains, the

material is subjected to hardening due to the fact that the hollows in the fibre tubes tend to

close [55].

Estimate of ultimte strength

Frangi [25] and Michelfelder [33] used simple design formulas to determine the failure load, which

did not account for multiaxial stresses. The failure load is obtained by multiplying the surface

by the strength:

TR = fc,0 · bN · tN (2.37)

Schönborn [56] showed evidence of the problem of multi-axial stresses, which act close to

inclined notch edges of timber-concrete composites. He proposed using failure criteria, and

discussed the differences between the theories of Tsai and Wu, Hankinson, Norris and Ellund.

Then, he decided to treat the situation as a compression problem with stresses acting at an

angle to the grain using the approach given in the German Standard DIN 1052 [57]. The

strength in the fibre direction was corrected using a correction factor, which depends on the

compressive strengths parallel and perpendicular to the grain, the shear strength, and the angle

of the stress due to the fibre direction. Schönborn [56] developed a design equation by adjusting

this correction factor to fit the calculated values to his experimental results.

2.4.4 Shearing-off failure

In several experimental analyses of timber-concrete composite structures with notched connec-

tions, horizontal shearing-off failures of timber close to the notch were observed (e.g. [33]). In

general, this failure is brittle and must be prevented. The first step to predict this type of failure

using the strength theory is to determine the shear stress distribution.

The elastic shear stress distribution can be estimated using analytical models derived for

composite problems. Marti [5] provided an analytical solution to several composite problems

using the differential equations of the axial deformations of the members. Through use of similar

analytical models, Kaiser [58] estimated the elastic shear stress and strain distributions due to

pull out tests of a carbon fibre material glued to timber. These elastic calculations typically
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showed non-linear distributions of the shear stress with peaks corresponding to the points where

the loads were introduced. Fig. 2.11 shows a qualitative distribution of the elastic shear stress

τel along the shear plane of a notched connection.
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Figure 2.11: Shear stress distribution in timber close to the notch, according to Colling [59]

By means of numerical simulations, Michelfelder [33] verified the studies of Stephan [60]

about the elastic shear stress distribution in timber notches. She found that the elastic shear

stress distribution has a peak close to the notch edge, where the load is introduced, and that,

from a determinate length of the timber next to the notch lN , the shear stress distribution

remains constant. Stephan [60] set a limit length, 8tN , as a function of the notch depth, and

Michelfelder [33] verified this theory by means of numerical simulations. She also found that

the elastic shear stress distribution is influenced by the notch depth: the deeper the notch, the

lower the shear stress.

With regard to shear stress, a notched connection is similar to a step joint. For engineering

applications, to prevent a horizontal shear failure of timber in a step joint, a rectangular shear

stress distribution formula was developed [61]. Colling [59] explained, as also shown by Stephan

[60] and Michelfelder [33], that the shear stress is distributed over a maximal effective length of

about 8tN . For the prediction of the shear failure, Colling [59] suggested to distribute the notch

force rectangularly over the length 8tN , even though the elastic shear stress distribution shows

a peak close to the load transfer point (Fig. 2.11). The failure load is defined as:

TR = 8 · tN · bN · fv (2.38)

In the literature, it is difficult to find experimental research which shows measurements of

the shear stresses and strains close to the shear failure surface of timber. Kaiser [58] performed

pull-out tests on carbon-fiber-reinforced polymers glued to spruce wood with a 2-component

epoxy glue, and measured the distribution of the shear stresses in the glue layer. One important

outcome was that the structural behaviour of the connection showed a non-linear phase before

the failure. For moderate loads, the shear stress distribution along the shear plane showed a

peak close to the load introduction point. Then, the peak decreased and the shear stress tended

to redistribute over the available length. In this case, the shear stress distribution at failure was
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markedly different from the elastic distribution. This is an example of stress redistributions over

the shear plane, even though the materials used are not ductile.

Another important issue is that a shearing-off failure can be facilitated or prevented by

stresses perpendicular to the shear plane. These stresses occur because of the equilibrium of

the timber member (Fig. 2.12). Heimeshoff and Köhler [62] analysed several timber-timber

notched connections and developed a mechanical model to estimate the stresses perpendicular

to the shear plane, generated by the eccentricity between the notch force and the shear surface.

Steurer [63] presented a similar model and concluded that tensile stresses perpendicular to the

shear plane facilitate a shear failure, whereas compression perpendicular to the shear plane

increases the shear strength. Steurer [63] idealised this issue, as shown in Fig. 2.12, and

suggested estimating the elastic stresses perpendicular to the shear plane σ90 as a function of

the shear force T , the notch length lN , and notch depth tN as follows:

σ90 ≈
Mecc

Wnotch
(2.39)

Here, the eccentricity moment is:

Mecc = T · tN
2

(2.40)

and the section modulus of the shear plane of the notch is:

Wnotch =
bN l

2
N

6
(2.41)steurer1
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Figure 2.12: Stresses perpendicular to the shear plane of a notched connection according to Steurer [63]:

(a) stresses generated by the eccentricity between the notch force and the shear plane; (b) compression

perpendicular to the shear plane.

Also, Michelfelder [33] showed evidence resulting from numerical simulations that tensile

stresses perpendicular to the shear plane act in the notch, which facilitate a shear failure. She

also took into account the positive influence of the vertical compression in the notch close to the

support.

Through a series of experiments, Michelfelder [33] found that an increase of the notch depth

causes a local increase of the shear strength of the timber. She stated that this happens because

an increase of the notch depth causes a decrease of the eccentricity. However, this hypothesis
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does not agree with the mechanical models presented by Heimeshoff and Köhler [62] and Steurer

[63]. According to these models, the tension in the shear plane is due to the eccentricity of the

horizontal load and hence, is directly proportional to the notch depth.

Estimate of ultimate strength in timber-concrete composite structures

Frangi [25] assumed a shear stress distribution over the full length of the timber before the notch

lN , and calculated the shear resistance with the following equation:

TR = fv · bN · lN (2.42)

Michelfelder [33] reduced the value of the shear strength of timber using a reduction factor

and distributed the shear stress along the entire length of the timber before the notch. She did

not differentiate between the notch close to the support and the other notches. By means of

numerical simulations, she showed that the tensile stresses perpendicular to the shear plane can

be neglected. Michelfelder [33] compared the results of the formula with the shear failure loads

measured during shear tests and observed that the formula underestimated the shear strengths.

Schönborn [56] adopted the formula of Fonrobert [61], presented in Eq. 2.38, but suggested

that the length of the timber before the notch should be at least lN,min = 12 · tN . The reason

is that, even though the notch was designed according to Eq. 2.38, a horizontal shear failure of

the timber occurred during some bending tests. This design approach did not take into account

the tension and compression perpendicular to the shear plane.

2.4.5 Combined tensile-bending failure

In the timber layer of a timber-concrete composite member, tensile and bending stresses occur.

Both tensile and bending failures of timber structures can be classified as brittle phenomena.

However, a bending failure is more complex than a tensile failure because is partially governed

by plastic mechanisms.

As shown in Fig. 2.13(a), in elastic conditions, the zero-stress layer of a timber member

subjected to bending does not correspond to the centroid of the cross-section because the mod-

ulus of elasticity of timber in compression is smaller than that in tension. In contrast to the

tensile failure of timber parallel to the grain, the compressive failure parallel to the grain is

ductile. Furthermore, the compressive strength parallel to the grain is smaller than the ten-

sile strength. Consequently, the bending failure mechanism begins when the compressive stress

on top edge of the cross-section reaches the compressive strength. Then, the timber begins to

develop plastic deformations in the compressive zone, and the compressive stress distribution

becomes non-linear. The curvature of the cross section increases until the tensile stress on bot-

tom edge of the cross section exceeds the tensile strength, and then a tensile crack propagates

[63].

In practice, it is usually assumed that the tensile and compressive moduli of elasticity are

identical and the cross-section remains plane. The difference between the tensile and compressive
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strengths is neglected, and a virtual bending strength fm is assumed (2.13(a)). The value of the

bending strength fm can be determined by means of laboratory tests [63].

As illustrated in Fig. 2.13(b), the timber layer of a timber-concrete composite member,

subjected to positive bending moment, is usually subjected to a trapezoidal axial stress σx.

This stress consists of a tensile component σt,0 and a bending component σm,y. Thus, two stress

states act simultaneously on the timber layer. To estimate the strength of a member subjected

to tension and bending, the Swiss Standard SIA 265 [29] recommends the following criterion:

σt,0
ft,0

+
σm,y
fm,y

+
σm,z
fm,z

≤ 1 (2.43)

The load-carrying capacity of the timber part of a timber-concrete composite member is usually

verified using this method [2].
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Figure 2.13: (a) bending stress in a timber cross section according to Steurer [63]; (b) division of the

axial stress in the timber layer of a timber-concrete composite member

2.5 Models for the behaviour of the concrete part

In a timber-concrete composite member, the concrete part can be subjected to compression,

shear and tension. Furthermore, the stress must be transferred from the concrete part, subjected

to compression, to the timber part, subjected to tension. Therefore, shear and tensile stresses

occur at the interface between the timber and the concrete. If no vertical steel reinforcement is

included, the tensile and shear stresses are carried by the concrete. In contrast, if the structure

is provided with vertical steel reinforcement, the steel carries vertical tension and the concrete

carries compressive stresses after concrete cracking.

Depending on the geometry and the connection system, the load-carrying behaviour of

timber-concrete composites can have similarities to the behaviour of conventional reinforced

concrete structures (Fig. 2.14). However, the most important difference is that, in the reinforced

concrete member, the force is usually transferred in a continuous way along the reinforcing bar,
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whereas in the timber-concrete composite member with a notched connection, the load transfer

occurs locally through the notch borders.
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Figure 2.14: Comparison of the load-carrying mechanism in (a) a timber-concrete composite member

with a notched connection and (b) a reinforced concrete member

Section 2.5.1 illustrates the existing analytical models which can be used to describe the

failure of concrete in the compression zone of a structural member subjected to bending. Section

2.5.2 presents the failure criterion of Mohr-Coulomb, which can be used to predict the strength

of a concrete member without steel reinforcement. In Section 2.5.3, the existing models for the

shear resistance in structural concrete members are discussed. If the concrete does not contain

vertical shear reinforcement, the shear stresses are carried by means of complex mechanisms

which are challenging to model, and the shear strength is governed by the mechanical proper-

ties of concrete, the position of the cracks, and their widths. In contrast, a more favourable

load-carrying mechanism is achieved if concrete contains vertical shear reinforcement. Finally,

Section 2.5.4 presents the formulas which were developed for notches in timber-concrete com-

posite members.

2.5.1 Behaviour of concrete in the compression zone

The upper part of a timber-concrete composite member subjected to bending is compressed. If

the critical bending moment is achieved, the concrete may fail. The existing literature about

this topic is related to the modelling of reinforced concrete structures.

The behaviour of concrete subjected to compression is influenced by several factors. First,

plasticity can develop. According to Bachmann [64] and Kenel [65], commonly used analytical

simplifications for the behaviour of concrete in the compression zone of a member subjected

to bending assume that the relationship between the axial stress and strain is non-linear, as

qualitatively illustrated in Fig. 2.15(a). The ultimate strain is represented by εc,u. The equations

which govern the behaviour are given in [65].
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According to the Swiss Code SIA 262 [66], when concrete reaches the compressive strength

at the top of the cross-section, the stresses redistribute within the compression zone, and the

strain can increase until εc,u ≈ 0.003 (Fig. 2.15(b)). At this moment, the stress distribution is

non-linear and can be approximated by means of a rectangle with a height of 0.85 · x [66].

Ductile behaviour of steel and concrete determine whether ductility is achieved in reinforced

concrete structures [67].
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Figure 2.15: Model for the behaviour of the compression zone in reinforced concrete members subjected

to bending; (a) qualitative illustration of the simplified stress-strain behaviour [64], [65]; (b) idealised

stress-strain diagrams of the cross-section [66]

2.5.2 Mohr-Coulomb failure criterion

According to Marti [5], the failure criterion of Mohr-Coulomb can be used to describe the

behaviour of concrete and is defined as:

Y = 0 = |τ |+ σ · tan (ϕ)− c (2.44)

According to Fig. 2.16(a), the yielding limits of a concrete member subjected to un-axial loading

are:

fc =
2 · c · cos (ϕ)

1− sin (ϕ)
= 2 · c · tan

(π
4

+
ϕ

2

)
(2.45)

ft =
2 · c · cos (ϕ)

1 + sin (ϕ)
= 2 · c · tan

(π
4
− ϕ

2

)
(2.46)

The values of fc and ϕ are determined experimentally. For any concrete type, the angle of the

internal friction has a constant value of tan(ϕ) = 3/4. Thus, the cohesion becomes c = fc/4.

This model predicts the behaviour of concrete subjected to compression in an accurate way.

However, the value of the tensile strength of the concrete ft is too high, and thus, unrealistic.

Therefore, for materials with low tensile strengths like concrete, the modified Mohr-Coulomb

failure criterion of Fig. 2.16(b) was developed [5]. This modification results from the condition

that the tensile stress must be smaller than the tensile strength of concrete:

σ ≤ fct (2.47)

and:
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fct <
2 · c · cos (ϕ)

1 + sin (ϕ)
(2.48)

The resulting modification of the failure criterion is expressed with a circle BAC with diameter:

�BAC = fc −
2 · sin (ϕ) · fct

1− sin (ϕ)
(2.49)

and the equation of the yielding line is:

τ = −3

4
· σ +

fc
4

(2.50)

And the equation of the circle BAC is:

(
σ +

fc
2
− sin (ϕ) · fct

1− sin (ϕ)
− fct

)2

+ τ2 =

(
fc
2
− sin (ϕ) · fct

1− sin (ϕ)

)2

(2.51)
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Figure 2.16: (a) Mohr-Coulomb failure criterion and (b) modified Mohr-Coulomb failure criterion

applied to concrete according to Marti [5]

2.5.3 Models for carrying shear in concrete

In general, in a timber-concrete composite structure with a notched connection, depending on

the geometry, some amount of shear has to be transferred through the concrete part. The limit

case is a composite slab with a thin LVL plate and a thick concrete layer, where the timber part

can be idealized as a tensile reinforcement. In this case, the LVL plate is mostly subjected to

tension and the concrete carries almost the entire vertical shear, similar to a reinforced concrete

member.

The shear transfer in concrete was studied in the context of the structural analysis of

reinforced concrete. As discussed by Muttoni and Ruiz [68], several well-established theories

based on equilibrium considerations (stress fields and truss models) can be applied when shear
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reinforcement is provided. Although a significant effort has been made, currently there is no

agreement about the modelling of members without shear reinforcement [68].

Structures without shear reinforcement

The failure modes of reinforced concrete structures without shear reinforcement were experimen-

tally studied by Leonhardt and Walther [69] and Muttoni and Thürlimann [70]. It was observed

that, in members without shear reinforcement, the flexural strength predicted by the theory of

plasticity cannot be achieved because of the propagation of shear cracks in concrete [68].

Several authors (e.g. Fenwick and Pauley [71], Muttoni and Schwartz [72] and Muttoni and

Ruiz [68]) analysed and modelled the various shear-carrying mechanisms in reinforced concrete

structures without vertical shear reinforcement. After bending cracks develop, the load-carrying

mechanism begins to change [72]. Cantilever action is a possible mechanism, which can occur.

This mechanism was already recognized by Kani [73], who assessed that, due to the transverse

cracks, the tension zone is divided into separate concrete elements. These can be visualized as

cantilever beams fixed in the upper compression zone [72]. As explained by Zilch and Zehetmaier

[74], these cantilever models are based on a strongly idealized crack geometry. Fig 2.17 shows

an example of cantilever model in which the vertical shear force is carried by the compression

zone (Vcc), by the aggregate-interlock action (Vcr) and by the dowel action from the longitudinal

reinforcing bars (Vd). The cantilever is subjected to bending action, which can cause propagation

of a horizontal shear crack [74].
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a Einzellasten - Sprengwerkwirkung

b Gleichlast - Bogenwirkung

Abbildung 7.8a,b Sprengwerk-Zugband-Modell bei Einzellas-
ten bzw. Bogen-Zugband-Modell bei Gleichstreckenlasten im
Vergleich mit dem Rissbild nach dem Versagen (Rissbilder aus
Leonhardt u. Walther 1962)

(Abb. 7.8). Wegen der günstigen Abtragung der
Lasten über Druckkräfte wird bei diesen Modellen die
Tragfähigkeit durch den Biegewiderstand in Feldmitte
begrenzt.

Die Umlagerung der inneren Kräfte hin zu einem
Sprengwerk bzw. einem Bogen setzt allerdings die un-
beschränkte Verformbarkeit der Werkstoffe, d. h. plas-
tisches Verhalten voraus. Da letztere insbesondere für
Beton nicht gegeben ist, können sich Sprengwerk bzw.
Bogen als Lösung der Plastizitätstheorie nicht in jedem
Fall einstellen (Muttoni 1990, 2003). Beispiel hier-
für sind die in Abb. 7.8 für zwei Balken aus Leon-
hardt u. Walther (1962) mit ähnlicher Schubschlank-
heit dargestellten Rissbilder. In beiden Fällen durch-
trennt ein Biegeschubriss die theoretischeDruckstrebe;
zudem zeigen Versuchsergebnisse, dass die Spannung
der Biegezugbewehrung nicht wie bei einem Zugband
konstant ist, sondern zum Auflager hin abnimmt. Le-
diglich bei gedrungenen Balken kann die unmittelbare
Abtragung der Lasten in das Auflager über ein Spreng-
werk realisiert werden (vgl. Balken 2© aus Abb. 7.6).
Bei größeren Schubschlankheiten müssen neben der
Sprengwerk- bzw. Bogenwirkung zusätzliche Tragme-
chanismen aktiviert werden.

7.3.2.2 Zahnmodell

Ausgehend von einer stark idealisierten Rissgeome-
trie werden für die Beschreibung des Tragverhaltens
eines Trägers ohne Querkraftbewehrung für den Bal-
kenabschnitt zwischen Lasteinleitung und ungerisse-
nem Auflagerbereich sog. Kamm- oder Zahnmodelle
gewählt (u. a. Kani 1964, 1966; Fenwick u. Paulay
1968; Jungwirth 1970; Taylor 1974; Hamadi u. Re-
gan 1980; Reineck 1990). Der Betonzahn ist da-
bei das durch Biegeschubrisse begrenzte und mit der
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Druckzone kontinuierlich verbundene Betonelement,
das den Abbau der Bewehrungszugkräfte ermöglicht
und die Verbindung zwischen Druck- und Zuggurt her-
stellt (Abb. 7.9). Die Querkraft wird dabei durch fol-
gende Traganteile abgetragen:

Vcc Querkraftanteil der Biegedruckzone
Vcr Querkraftanteil aus der Rissverzahnung
Vd Querkraftanteil aus der Dübelwirkung der

Längsbewehrung.

Der Anteil der einzelnen Mechanismen an der Quer-
krafttragwirkung hängt vom Verformungszustand des
Balkens, d. h. der Verformung der Betonzähne gegen-
einander ab und ist daher mit der Belastung veränder-
lich. Eine Kopplung der einzelnen Tragmechanismen
muss daher über Verträglichkeitsbedingungen der Ver-
formungen erfolgen.

Querkrafttraganteil der Druckzone

Die über die Druckzone abgetragene Querkraft stellt
einen wesentlichen Anteil der gesamten Querkraft-
tragwirkung. Wird in der Druckzone eine lineare
Druckspannungsverteilung unterstellt, lässt sich die
Druckzonenhöhe eines einfach bewehrten Recht-
eckquerschnitts für N D 0 aus der Lösung einer
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Figure 2.17: Example of cantilever model according to Zilch and Zehetmaier [74]: (a) cantilever model;

(b) single cantilever

The mechanisms which can cause the propagation of the critical shear crack can be classified

as cantilever action, aggregate interlock action, and dowel action (Fig. 2.18(b)-(d)) [68]. These

shear-carrying mechanisms cause tensile stresses in the concrete near the crack tip and close to

the reinforcement (Fig. 2.18(e)). If these stresses reach the tensile strength of concrete, a shear

crack can propagate and cancel the three previous mechanisms (Fig. 2.18(f)). Nevertheless, the

propagation of the critical shear crack does not necessarily cause the failure of the structure

because an arching action may be developed to carry the shear. According to Muttoni and Ruiz
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[68], the arching action (and thus the shear strength of the member) is governed by the location

of the critical shear crack, its width, and the aggregate size. Muttoni and Ruiz [68] proposed an

analytical expression to evaluate the shear strength of a member as a function of the previous

parameters. Based on this theory, the current Swiss Standard formula for structures without

shear reinforcement was developed [66]. This theory shows a good agreement with experimental

results.

(a)
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DEVELOPMENT OF CRITICAL SHEAR CRACK
The development of the critical shear crack, whose role

was discussed in the previous section, can be explained with
the help of Fig. 5. Considering the flexural cracking pattern
(Fig. 5(a)), various shear-carrying mechanisms may be
developed by a beam,7,12 namely, cantilever action (Fig. 5(b)),
aggregate-interlock (Fig. 5(c)), and dowel action (Fig. 5(d)).
These shear-carrying mechanisms induce tensile stresses in
concrete (Fig. 5(e)) near the crack tip (Zone A) and at the
level of the reinforcement (Zone B). Once the tensile
strength of the concrete in Zones A and B is reached, the
existing flexural cracks progress in a diagonal direction
(Zone A) or new ones are created (Zone B). As a consequence,
the capacity of the previous shear-carrying mechanisms is
reduced or even cancelled.

The development of the critical shear crack, however, does
not necessarily imply the collapse of the member. A new
shear-carrying mechanism, the arching action, may be
developed by the beam. Figure 6 shows two possibilities for
developing the arching action. The first one is the development
of an elbow-shaped strut12 that deviates the compression
strut to avoid the cracks. The development of an elbow-

shaped strut strongly depends on the actual crack pattern and
is limited by the tensile strength of the member (cracks may
appear close to the point of introduction of the load as shown
in Fig. 6(a)).

The second physical mechanism that allows the development
of the arching action is the direct strut that develops thanks to
the aggregate interlock in the critical shear crack (Fig. 6(b)).
If the center of rotation is located at the tip of the crack
(which is a rather reasonable assumption as confirmed by
some experimental measurements12,19), an opening of the
crack induces a transverse sliding between its lips (refer to
Fig. 7). Thus, aggregate interlock is activated and a strut (with
a limited strength) can develop through the critical crack.
The aggregate interlock depends on the crack geometry,

Fig. 5—Development of actual cracking pattern: (a) initial
flexural cracks; (b) cantilever action; (c) aggregate-interlock
action; (d) dowel action; (e) tensile stresses due to (b-d);
and (f) final crack pattern.

Fig. 6—Load-carrying mechanisms after development of
critical shear crack: (a) elbow-shaped strut; (b) straight strut
(enabled by aggregate interlock); and (c) combined response.

Fig. 7—Aggregate interlock after development of critical
shear crack: (a) actual crack pattern; (b) center of rotation
(CR) assuming two rigid bodies; and (c) normal (Δu) and
tangential (Δv) relative displacements between lips of crack.

Fig. 4—Influence of a/d on shear strength: (a) Tests B2, B4, B6, and BP10/1 by Leonhardt
and Walther,16 cracking pattern and theoretical strut position; and (b) Kani’s valley,
comparing actual strength with failure load according to theory of plasticity.
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level of the reinforcement (Zone B). Once the tensile
strength of the concrete in Zones A and B is reached, the
existing flexural cracks progress in a diagonal direction
(Zone A) or new ones are created (Zone B). As a consequence,
the capacity of the previous shear-carrying mechanisms is
reduced or even cancelled.

The development of the critical shear crack, however, does
not necessarily imply the collapse of the member. A new
shear-carrying mechanism, the arching action, may be
developed by the beam. Figure 6 shows two possibilities for
developing the arching action. The first one is the development
of an elbow-shaped strut12 that deviates the compression
strut to avoid the cracks. The development of an elbow-

shaped strut strongly depends on the actual crack pattern and
is limited by the tensile strength of the member (cracks may
appear close to the point of introduction of the load as shown
in Fig. 6(a)).

The second physical mechanism that allows the development
of the arching action is the direct strut that develops thanks to
the aggregate interlock in the critical shear crack (Fig. 6(b)).
If the center of rotation is located at the tip of the crack
(which is a rather reasonable assumption as confirmed by
some experimental measurements12,19), an opening of the
crack induces a transverse sliding between its lips (refer to
Fig. 7). Thus, aggregate interlock is activated and a strut (with
a limited strength) can develop through the critical crack.
The aggregate interlock depends on the crack geometry,

Fig. 5—Development of actual cracking pattern: (a) initial
flexural cracks; (b) cantilever action; (c) aggregate-interlock
action; (d) dowel action; (e) tensile stresses due to (b-d);
and (f) final crack pattern.

Fig. 6—Load-carrying mechanisms after development of
critical shear crack: (a) elbow-shaped strut; (b) straight strut
(enabled by aggregate interlock); and (c) combined response.

Fig. 7—Aggregate interlock after development of critical
shear crack: (a) actual crack pattern; (b) center of rotation
(CR) assuming two rigid bodies; and (c) normal (Δu) and
tangential (Δv) relative displacements between lips of crack.

Fig. 4—Influence of a/d on shear strength: (a) Tests B2, B4, B6, and BP10/1 by Leonhardt
and Walther,16 cracking pattern and theoretical strut position; and (b) Kani’s valley,
comparing actual strength with failure load according to theory of plasticity.

(e) (f)

Figure 2.18: Development of the critical shear crack according to Muttoni and Ruiz [68]: (a) initial

flexural cracks; (b) cantilever action; (c) aggregate-interlock action; (d) dowel action; (e) tensile stresses

due to (b)-(d)); and (f) final crack pattern;

The load-carrying capacity of the concrete part of a timber-concrete composite member

with a notched connection without shear reinforcement could also be analysed by means of the

theories of plain concrete, as presented by Nielsen and Hoang [75].

Structures with shear reinforcement

The addition of vertical shear reinforcement to reinforced concrete members shows markedly

improved behaviour because the vertical shear reinforcement carries vertical tension after the

development of flexural-shear cracks. The load-carrying behaviour can be modelled with stress

fields and truss models in which the shear reinforcement is represented by tension struts, ac-

cording to Muttoni et al. [76], Marti [77] and Kaufmann [78]. The use of vertical reinforcement

increases the shear strength of a structure considerably.

2.5.4 Estimate of ultimate strength in timber-concrete composite structures

Frangi [2] predicted the shear failure of the concrete along the notch by assuming a constant

shear stress distribution over the entire notch length:

TR = τR,c · bN · lN (2.52)

In numerical simulations, Michelfelder [33] observed that tensile concrete stresses occur

close to the notch edge, and suggested that reinforcement of the notch provides a solution to the
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risk of concrete failures (2.19(a)). She modelled the load-carrying behaviour with a truss model

(2.19(b)) and defined three possible failures:

� compressive failure in the concrete notch (point 3 in Fig. 2.19(b))

� compressive failure in the strut (point 4 in Fig. 2.19(b))

� tensile failure in the tie (point 5 in Fig. 2.19(b))
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Auf Grundlage der in Abschnitt 2.1.4 vorgestellten numerischen Modelle zur Versuchsnach-
rechnung soll gezeigt werden, warum bei den Versuchen mit Normalbeton keine Schädigung 
des Betons auftrat. Es werden dabei nur die Versuchsreihen berücksichtigt, deren Lastver-
formungskurven eine ausreichende Genauigkeit zwischen Versuch und numerischer Be-
rechnung aufweisen (vgl. Abschnitt 2.1.4.3, Bild 2.29 bis Bild 2.39). Dies sind im Einzelnen: 
KSV2, KSV4, KSV5, KSV7, KSV10 und KSV11.  
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(a) Zugstrebe im mechanischen Modell (b) Zugspannung im numerischen Modell 

Bild 2.70: Zugkraft im Beton 

Bild 2.70 (b) zeigt die Querzugspannung des Betons im Schnitt durch den maßgebenden 
Knoten N (Bild 2.70 (a)).  

Es bleibt zu klären, welcher absolute Wert dabei für die auftretende Zugspannung angesetzt 
werden muss und über welche effektive Länge diese verteilt werden darf. Sowohl [Eibl und 
Ivanyi 1976] als auch [Reineck 1989] erläutern, dass die Zugfestigkeit des Beton stark vom 
Dehnungsgradienten und von der Größe der Zugzone abhängig ist. So erhöht sich die Zug-
festigkeit mit dem Anstieg des Dehnungsgradienten. Die Bruchwahrscheinlichkeit im zentri-
schen Versuch ist wegen der äußerlich gleichen Dehnungsverteilung größer als im exzentri-
schen Versuch, da hierbei nur ein kleiner Bereich die höchste Dehnung erhält.  

Die maximale Zugspannung ist durch den Spannungskörper bestimmt und es kann auf eine 
repräsentative Volumeneinheit (RVE) geschlossen werden, die sich als Mindestbetonvolu-
men definiert, bei dem der Beton als homogenes Kontinuum definiert werden kann. Bei nicht 
konstanter Spannungsverteilung ist damit der Mittelwert über die repräsentative Volumen-
einheit und nicht die größte Randspannung maßgebend (vgl. [Reineck 1989]). Die Größe der 
RVE hängt dabei von der inneren Struktur des Betons ab. Bis zu einem Größtkorn von Dk = 
16mm, wie dies bei den verwendeten Betonen der experimentellen Untersuchungen ver-
wendet wurde, ergibt sich die Höhe der RVE zu c=4 zu c = 4Dk = 64 mm. Wie die numeri-
schen Untersuchungen an den Scherkörpern zeigen, ist die Zugzone im untersuchten Be-
reich immer kleiner als 64mm, d.h. es kann über die gesamte Breite der Zugzone gemittelt 
werden (vgl. Bild 2.70) 

Durch numerische Analyse verschiedener Kerventiefen ergibt sich damit in Abhängigkeit von 
der Tiefe die Höhe der Zugzone im unbewehrten Zustand von: 
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Diese Höhe x kann für den Nachweis der Betonzugspannung gemäß Stabwerkmodell ange-
setzt werden.  
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Fig 1 Setup and failure modes of the short-term shear tests 
 
2.2 Model for calculation of the design resistance of grooves  

To visualise these failure mode and to allow for an estimation of the ultimate strength, [6] 
developed a strut and tie model especially for the concrete element (Fig 2), following a FE 
evaluation of the elastic study. Equations (1) to (5) give design loads for determining the resistance 
of the groove. For detailed information see [6]. 
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Fig 2 Points of verifications 

Design timber shear resistance (1), see Fig 2 a): 

vhlbkv,fredk
M

modk

H,1Rd,N  (1)

Design resistance of compression of the timber of the groove (2), see Fig 2 a): 

ktbkc,0,f
M

modk
H,2Rd,N  (2)

incl. kmod Modification factor according to [1] or [2] 
 M Partial safety factor according to [1] or [2] 
 fc,0,k  Compressive strength parallel to grain according to [1] or [2] 
 fv,k Shearing strength of the timber according to [1] or [2] 
 kred Reduction factor of the shearing strength [6] 
 tK Depth of the groove 
 b Relating width (normally b=1m) 

 

timber 

concrete 

(b)

Figure 2.19: Model to predict the concrete failures in a timber-concrete composite slab with a notched

connection according to Michelfelder [33]: (a) tensile stresses in concrete calculated with numerical sim-

ulations (b) truss model for the notch design;

To calculate the notch force which causes a tensile failure of concrete, Michelfelder [33]

derived the depth x of the tie represented in Fig. 2.19(a) with numerical simulations. The

resistance of the diagonal compressive strut was calculated by considering the notch depth

and the angle between the diagonal strut and the vertical axis, which was assumed to be 60◦.

However, this assumption has not been verified.

Schönborn [56] developed design formulas under the assumption that, in the concrete mem-

ber, a console failure or a horizontal shear failure may occur (Fig. 2.20). Schönborn [56] pointed

out the problem of tensile stresses near the notch edge as a cause of the console failure. He

wrote the tensile strength as a function of the compressive strength, used a formula developed

by Zapfe [79] for steel-concrete composite members with concrete dowels, and used a correction

factor to achieve a satisfying fit with the experimental results. The final expression to calculate

the force which causes a console-failure of concrete was:

TR = fmodel · f2/3c,cube · t · b ·
l

180
(2.53)

Schönborn [56] assessed that the critical section for a horizontal shear failure in concrete

corresponds to the surface delimited by the length and the width of the notch. For the prediction

of the horizontal shear failure in concrete he assumed a constant distribution of the shear stress

and used correction factors derived from experimental data.



2.6. Modelling of the influence of mechanical fasteners on notched
connections 35

(a) (b)

Figure 2.20: Failures of concrete in a notched connection according to Schönborn [56]: (a) console

failure of concrete; (b) horizontal shear failure of concrete

2.6 Modelling of the influence of mechanical fasteners on notched

connections

Mechanical fasteners, such as screws and dowels fixed in the timber part of a timber-concrete

composite member, are able to carry shear as well as tensile forces, and consequently are able

to interact with the notches and to participate in the load-carrying mechanism.

Depending on the stiffness of a dowel and on the way it is fixed, the dowel carries a certain

amount of horizontal shear. Furthermore, such a dowel, loaded perpendicular to its axis, can

fail in a ductile way due to an embedment failure of the timber or a bending failure of the dowel.

Frangi [25] developed an analytical model to estimate the amount of shear carried by a dowel

in the case of combination notch-dowels. According to the theory of plasticity, he assessed that,

if the behaviour of the notch without dowel is governed by a ductile compressive failure of the

timber, the total shear failure load of the system is equal to the sum of the ductile failure load

of the notch TR,2C and the dowels TR,dowels,Ni:

TR = TR,2C + TR,dowels,Ni (2.54)

Frangi [25] calculated the ductile failure load of the dowel using the theory of Johansen [80].

He assumed that the dowel is fixed in the concrete, can bend in the timber, and is subjected to

forces parallel to the interface between the timber and the concrete. He defined three different

ductile failure modes of the dowel depending on the slenderness. For small slenderness, the

dowel remains stiff and the failure load is governed by the embedment failure of timber. A

higher slenderness implies an increase of the number of plastic hinges in the dowel and a higher

failure load.

A mechanical fastener can also be activated in tension. If it is fixed perpendicular to the

interface, it is able to carry vertical tensile forces. Several authors (e.g. Zöllig [81]) suggested in-

stalling vertical screws in timber-concrete composite members to carry the vertical tensile forces.

A truss model can be used to design the reinforcement. The benefit of this reinforcement is that

it helps to prevent gap opening and concrete failures. However, as discussed by Michelfelder [33],

there is no agreement about the most appropriate method to determine whether such fasteners

are necessary and how to design them.
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2.7 Experimental analyses of timber-concrete composite struc-

tures with notched connections

This section summarises several experimental studies about the structural behaviour of timber-

concrete composite members with notched connections. These studies are usually characterised

by shear tests on the notched connections and bending tests on the composite members.

The performance of a notched connection is usually tested by means of a shear test. As

explained by Steurer [63], an important issue regarding the investigation of the shear behaviour

of a structural member is that a shear test, in addition to the shear stress, induces stresses

perpendicular to the shear plane, generated by the eccentricity or by a reaction force (Fig. 2.12).

Furthermore, Steurer [63] noted that the elastic shear stress distribution is influenced by the

configuration of the external loads (Fig. 2.21). Thus, the experimental results are influenced by

these phenomena [63]. Schönborn [56] summarised several possible setups to perform connection

shear tests and emphasised the fact that each setup implies different stress distributions acting

on the specimen.steurer3
m

max

m

max

ss

Figure 2.21: Influence of the load configuration on the elastic shear stress distribution according to

Steurer [63]

Blass et al. [28] tested timber-concrete composite elements, each made of a 27-mm-thick

Norway spruce LVL plate and a 70-mm-thick concrete layer, connected by 15-mm-deep round

notches with a diameter of 115 mm. The concrete was reinforced with steel mat Q131 (steel bars

with a diameter of 5 mm, spaced at a distance of 150 mm, in both directions). Seven different

types of specimens with this notched connection were tested in shear to study the influence of the

cross layers in the LVL plate, the reinforcement in the concrete notch, and a plastic film between

the two materials. The first type of specimens had only longitudinal veneers and no plastic film.

The borders of the timber plates of these specimen bent during concrete hardening and exhibited

two different failure modes. The first tests showed a compressive failure in timber because the

compressive strength of timber was negatively influenced by humidity, whereas the later tests

showed a shear failure in concrete because the timber plate was less humid and the timber

strength increased. In contrast, the specimens with 20% cross layers did not show significant

timber deformations after concrete hardening. In the remaining tests, a plastic film was set

between the timber and the concrete, and the influence of the reinforcement of the concrete

notch was studied. Notches without brackets in the concrete failed in a brittle way due to the

shear in the concrete. In contrast, notches with brackets in the concrete exhibited a ductile

compressive failure in the timber, even though the timber plate was completely protected from
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humidity. Blass et al. [28] also tested notches in glued laminated timber made of Norway spruce

with steel dowels. These specimens showed a ductile behaviour. The timber part exhibited a

local compressive failure and the dowel reached the plastic bending resistance. Furthermore,

some specimens were tested with long-term loads and climate changes, and the time-dependent

increase of the deformations was measured [28].

After that, Blass et al. [28] tested several specimens with notched connections in bending.

The specimens, made of glued laminated timber beams with steel dowels in the notches, failed

due to a splitting failure of the timber close to the dowels, or due to a horizontal shear failure

of the timber near the notch closest to the support. The specimens made of spruce LVL plates

with brackets in the notches failed due to exceeding the bending strength of the timber close to

the notches. In these zones, the effective timber cross-section was reduced because of the notch.

This experimental series also included long-term analyses with climate changes. Finally, Blass

et al. [28] discussed the difficulty of predicting the long-term behaviours of timber-concrete

composite structures because of the different creep behaviour of the two materials.

(a)

 

(b)

Figure 2.22: Shear tests on timber-concrete composite specimens with notched connections performed

by Frangi [25]: (a) horizontal load as a function of the horizontal relative displacement between the

timber and the concrete ; (b) typical failure mode of a notched connection with a glued steel dowel

Frangi [25] performed a series of push-out tests with timber-concrete composite beams

made of spruce timber. Each shear connection consisted of 20 mm deep and 150 mm long

notches reinforced with glued steel dowels, and the length of the timber before the notch was

250 mm. The connections tested showed very high slip stiffnesses under service loads and large

plastic deformations under failure loads, caused by local compressive failures of the timber near

the notches and plastic deformations of the steel dowels (Fig. 2.22). The specimens without

steel dowels showed smaller load-carrying capacities and shorter plastic deformations because

the concrete plates tended to slide out of the notches [25].

Frangi [25] implemented the notched connections tests in timber-concrete composite beams,

which were tested in four-point-bending. These tests showed ductile connection failures with

plastic deformations of the notches and the dowels (Fig. 2.23(a)). This type of ductile connec-
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tion failure caused a non-linearity in the load-deflection behaviour of the composite slab (Fig.

2.23(b)). The load could be increased until total collapse finally occurred, due to failure of

the timber beams subjected to combined bending and tension. Frangi and Fontana [2] were

able to predict this failure load using the model described in Section 2.3.4. Furthermore, an

extensive theoretical and experimental research study was conducted about the fire behaviour

of timber-concrete composite slabs [25].

 

(a)

 

(b)

Figure 2.23: Bending tests on timber-concrete composite beams with notched connections and glued

steel dowels [25]: (a) relationship between the horizontal relative displacement and the vertical load; (b)

relationship between the deflection at mid-span and the vertical load

Michelfelder [33] conducted an extensive experimental and numerical investigation using

notches as the shear connections for timber-concrete composite slabs made of Norway spruce

glued laminated timber. First, a series of shear tests was performed. These tests dealt with

the influence of the notch inclination, the length of timber in front of the notch, the notch

depth, the mechanical properties of the timber and the concrete, and the use of screws. In these

experiments, four failure modes were observed: horizontal shearing-off failures in the timber,

sliding of the concrete out of the notch, compressive failure of the concrete, and tensile failure

of the concrete (Fig. 2.24). From the experimental results, the following conclusions were made

[33]:

� A variation of the notch inclination from 90◦ to 45◦ had no positive influence on the

structural behaviour of the notched connection.

� An increase of the timber length near the notch, as well as an increase of the notch depth,

increased the shearing-off failure load of the timber.

� The screws used did not influence the failure load of the notch in a relevant way.



2.7. Experimental analyses of timber-concrete composite structures with
notched connections 39

� Long-term shear tests, sustaining 30 % of the failure load (the failure load was determined

from short-term shear tests), showed a creep effect. It was found that the use of screws

tended to reduce the time-dependent deformations.

Since it was not possible to perform a statistical analysis of the test results, Michelfelder

[33] derived design formulas to quantify the load-carrying capacity of notched connections from

the outcomes of numerical simulations.

Michelfelder [33] tested the structural behaviour of timber-concrete composite elements

with notched connections made of glued laminated timber in four-point-bending. The notches

were 20 mm deep and contained screws. Two of the three specimens were tested with the loads

located at distances from the supports of about one third of the span. The behaviour of these

specimens was governed by a bending-tensile failure of the timber. The third specimen was

loaded to reduce the bending moment, and a horizontal shear failure of the timber close to the

notch was observed. During these tests, the load carried by the screws was measured by means

of strain gauges. However, the results did not evaluate the influence of the screws. During the

first two experiments, an uplift of the concrete of at most 1 mm was observed [33].

Michelfelder [33] conducted numerical simulations of the timber-concrete composite struc-

tures with notched connections and screws fixed into the notches. The outcomes of the sim-

ulations showed that about 80% of the shear force is carried by means of the compressive

contact between the timber and the concrete, and the remaining 20% is carried by the screws.

Michelfelder simulated composite slabs without screws too, and observed no gap opening occur-

ring in the case with the screws or in the case without the screws. Therefore, she concluded that

the screws are not necessary to prevent the gap opening. During the numerical simulations, she

observed that tensile stresses in concrete occur close to the notch edges. Therefore, by means

of the simulations, she optimised the geometry of the notches to minimise these tensile stresses

and she derived construction rules [33].
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Birgit Michelfelder, Trag- und Verformungsverhalten von Kerven bei Brettstapel-Beton-Verbunddecken 

senkrecht zur Kervenflanke umgelenkt. Zur Erhaltung des Gleichgewichts entstand dabei ei-
ne Horizontalkraft, die durch die Schrauben aufgenommen werden musste. Da die Horizon-
talkomponente jedoch größer war als der Ausziehwiderstand der Schraube, wurde diese aus 
dem Holz gezogen, was letztlich zu einem Öffnen der Fuge führte. Bei der Verwendung ei-
nes Betons geringerer Festigkeit versagte der Beton im Bereich des Vorholzes durch Über-
schreitung der Druckfestigkeit. Auch bildete sich auf Höhe der Unterkante Kerve in der Be-
tonplatte durch Überschreitung der Betonzugfestigkeit ein Riss, der auf eine infolge der Last-
exzentrizität auftretende Zugbeanspruchung hinwies. 

  

Holzversagen 
(Abscheren) 

Verbundversagen 
(Abrutschen) 

  Betonversagen 
       (Druckversagen)            (Zugversagen) 

Bild 2.7: Versagensarten Kurzzeit-Scherversuche 

Um die Versagensarten genauer zu erläutern, soll im Folgenden auf den Zusammenhang 
zwischen Last-Verformungsverhalten und Versagensart eingegangen werden. Dazu wird ei-
ne für das jeweilige Versagen charakteristische Last-Verformungskurve dargestellt. Die Kur-
ven ergeben sich aus der Mittelung aller Wegaufnehmer und der zugehörigen Pressenkraft. 
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Bild 2.8: Charakteristische Last-Verformungskurve 
bei Abscherversagen (KSV9-2) 

Bild 2.8 zeigt exemplarisch die Last-
Verformungskurve des Versuchskörpers 
KSV9-2 bis zum Versuchsabbruch. Nach 
Überwinden eines Anfangsschlupfes wies 
der Versuchskörper ein linear-elastisches 
Last-Verformungsverhalten auf und ver-
sagte nach Erreichen der Traglast infolge 
Abscheren der einzelnen Lamellen des 
Vorholzes spröde. Dieser Verlauf ist cha-
rakteristisch für die durch Abscheren 
versagenden Versuchskörper und ist un-
abhängig vom Vorhandensein, sowie der 
Art und Anordnung der Schrauben.  
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(d)

Figure 2.24: Failure modes observed in short-term shear tests conducted by Michelfelder [33]: (a)

shearing-off failure of timber; (b) sliding out of concrete; (c) compressive failure of concrete; (d) tensile

failure of concrete
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Schönborn [56] conducted a research study on timber-concrete composite slabs with notched

connections, which gave important information about the influence of the connection on the

structural behaviour of the composite member.

First, a series of short-term shear tests was performed. The timber part of the composite

member consisted of glued laminated timber made of Norway spruce, and the interface between

the two materials was covered with a PE-film. Several geometric parameters, including the

length and the depth of the notch, the influence of the concrete quality and the effect of the

screws were studied. Fig. 2.25 summarises the failure modes observed. The compressive failure

of timber parallel to the grain occurred in several specimens and implied plastic deformations.

During the shear tests, no relationship between the shear stiffness and the presence of screws was

found. From the experimental results, Schönborn [56] created the design equations for notched

connections provided in Sections 2.4 and 2.5.
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Belastung zunächst einem linearen Verlauf. Erst bei Belas-
tungen, die weit über dem Wert liegen, der in Biegeträgern
im Grenzzustand der Tragfähigkeit auftritt, werden Abwei-
chungen vom linearen Verlauf, verursacht durch unter-
schiedliche Materialqualitäten und Entwurfsparameter,
sichtbar. Bei noch höherer Belastung verzweigen sich die
Verformungspfade je nach Bruchart. Insgesamt sind vier
unterschiedliche Bruchbilder festzustellen:
– Druckversagen des Holzes: Hohe Druckspannungen an

der Kervenflanke führen zur Stauchung des Holzes,
wobei die Verformungen duktil sind. Angestrebt wird
daher, diesen Versagensmechanismus zu erreichen
(Bild 3).

– Abscheren des Vorholzes: Durch Spannungskonzentra-
tionen kann es im Druckbereich hinter der Kerve zu ei-
nem Abscheren des Holzes kommen. Maßgebend hier-
für sind die Breite der Krafteinleitung sowie die Tiefe
des Einschnittes im Holz. Dieses Versagen trat, wie sich
gezeigt hat, nur bei zu kurzen Vorholzlängen auf und
kann durch konstruktive Maßnahmen ausgeschlossen
werden. Es muss aber dennoch bei der Bemessung be-
rücksichtigt werden, da es sich um ein sprödes Versagen
handelt (Bild 4).
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Fig. 2. Experimental loading of test specimen

Bild 3. Druckversagen des Holzes 
Fig. 3. Failure of timber (compression)

Bild 4. Abscheren Vorholz 
Fig. 4. Failure of timber (shear off)

Bild 5. Konsolversagen Beton 
Fig. 5. Failure of concrete (lateral traction)
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Fig. 6. Failure of concrete (shear)
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Figure 2.25: Failure modes observed in short-term shear tests conducted by Schönborn [56]: (a) com-

pressive failure of timber; (b) shear failure of timber; (c) consol failure of concrete; (d) shear failure of

concrete

After the shear tests, Schönborn [56] conducted a series of four-point bending tests. He

designed the notches in a way so that a ductile compressive failure in the timber parallel to the

grain was governing and brittle connection failures were prevented. The length, the width and

the depth of the specimens were kept constant. The notch length and the number of notches

between the support and the load were varied (either four or five notches). Furthermore, some

specimens were reinforced with screws. It was observed that the screws did not influence the

bending stiffness but reduced the gap opening. In general, the results showed that the specimens

could be divided into two groups [56]:

� In the specimens with five notches between the support and the load, a bending-tensile

failure in timber occurred.

� In the specimens with four notches between support and load, plastic deformations in the

interface were measured, which can be explained by a compressive failure of the timber.

Then, a combined bending-tensile failure in the timber part occurred. Schönborn [56]

assessed that this increase in relative displacement at the interface implied a decrease in

bending stiffness of the specimen.

Kuhlmann and Aldi [82] performed a series of experimental investigations about notched

connections without additional steel fasteners and presented a numerical model, based on finite
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elements, to simulate the experimental results. All experimental investigations were performed

using a symmetric push-out test, but there were several differences in the mechanical properties

and the geometry. The test results exhibited different failure modes and a large scatter in the

values of the load-carrying capacity and of the slip modulus. The variability of the mechanical

properties was simulated with the Monte Carlo method, and the results of the FE simulation were

in the range of the experimental data. In this paper, it was concluded that more experimental

investigations are needed, with identical test conditions, to gain reliable values for the strength

and stiffness of the notched connection [82].

2.8 Conclusion

The literature examined in this chapter represents a sound basis to develop a reliable design

model for LVL-concrete composite members made of European beech wood with notched con-

nections.

Published experimental studies revealed two important advantages of notched timber-

concrete connections: high stiffness at service level, and the possibility of achieving a ductile

compressive failure of timber. However, some aspects related to the shear-carrying mechanism,

the estimation of the shear strength of the concrete part, the gap opening and the need for

vertical reinforcement are still unclear. This thesis shall:

� develop models to understand the load-carrying mechanism in timber-concrete notched

connections

� develop models to predict notch failure with the objective of reaching a ductile compressive

failure in LVL in the notch

� quantify the influence of vertical reinforcement on the shear-carrying mechanism and the

gap opening

According to published research (e.g. [2], [41], [42]), connection ductility (e.g. plastic timber

deformations in the notch) has a positive influence on the structural behaviour of a composite

member, thus enabling a ductile failure mode, provided that the structural element is suitably

designed. The local plastic deformation of the timber in the notch may reach values larger than

10 mm [2], which may have a large influence on the global structural behaviour of the composite

member. However, in contrast to the behaviour under elastic conditions, little research exists

that addresses the estimate of the influence of connection ductility on the structural behaviour

of the composite member. The current models for ductile design of reinforced concrete cross

sections [66] and the models for timber-concrete composite members presented by Frangi and

Fontana [2] shall be the basis to develop a model to quantify the impact of notch yielding on

the structural behaviour of the composite member.

So far, research about beech LVL found elevated and consistent mechanical properties,

which can represent an important advantage in design. The strength and stiffness of beech LVL

[12] are higher than those of spruce LVL [83]. This is due to the properties of European beech
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wood. The consistency of the mechanical properties, which is indicated by the coefficients of

variation shown in Tab. 2.1, is enabled by the homogenisation obtained by the LVL configu-

ration. A decrease in the variability of the mechanical properties helps to increase the safety

margin between the compressive failure of timber in the notch and the undesired brittle failures.

Thus, in this case, LVL materials have advantages over solid timber and glued laminated timber.



Chapter 3

Model

3.1 Introduction

The purpose of the analytical models presented in this chapter is to describe the structural

behaviour of a timber-concrete composite slab made of a beech laminated veneer lumber (LVL)

plate connected to a concrete layer by means of notches. Several theories presented in this

chapter can be applied to notched connections in general or to other types of timber-concrete

composite members. This chapter deals with:

� analytical strain-based models for the estimation of the structural behaviour of timber-

concrete composite members with a ductile timber-concrete composite connection (Section

3.2)

� analytical models to describe the behaviour of notched timber-concrete connections (Sec-

tion 3.3)

� parametric studies focused on timber-concrete composite slabs made of beech LVL (Section

3.4)

Fig. 3.1 and Tab. 3.1 provide an overview of the possible failure modes of a timber-concrete

composite slab made of a beech LVL plate with a notched connection. Since the notches ensure

the composite action, the LVL part is subjected to tension and bending, and the concrete part

to compression and bending. Subsequently, the notches carry forces parallel to the interface.

These connection forces are transferred from the concrete to the LVL by means of compressive

contact in the notches. The only two ductile failure modes which can occur in such a composite

slab are a compressive failure of the LVL in the contact area of the notch (2C) or a compressive

failure in the upper part of the concrete layer (1C,c).

In the model calculations, the mechanical properties used to predict the structural be-

haviour of the composite member are mean values derived from codes and approvals. Any

variation of the mechanical properties and the long term effects are neglected. However, both

of these effects should be assessed in future studies in order to create a design model.
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Figure 3.1: Overview of the failure modes of a timber-concrete composite slab made of a beech LVL

plate with a notched connection devoid of vertical reinforcement

3.2 Timber-concrete composite members with ductile connec-

tions

3.2.1 Introduction

As shown in Fig. 3.2, the structural behaviour of a timber-concrete composite member is

strongly influenced by the connection design. In general, a timber-concrete composite member

can behave in three different ways depending on the design strategy:

� If the connection is over-designed, the composite member should fail in the cross-section,

due, for instance, to a combined tensile-bending failure of the timber. As a consequence,

the structural behaviour of the slab is elastic-brittle.

� If a brittle connection failure is governing, the composite member consequently fails in a

brittle way.

� If a ductile connection failure is governing, the stiffness of the composite member decreases

after yielding of the connection. Thus, the failure of the composite structure occurs after

large deformations and the structural behaviour shows ductility. Sections 3.2.4 and 3.2.5

deal with the modelling of this mechanism. The ductile connection failure can be, for

instance, a ductile compressive failure in the timber inside a notch or a ductile failure of

a steel fastener.
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Table 3.1: Failure modes of a timber-concrete composite slab made of a beech LVL plate with a notched

connection devoid of vertical reinforcement

Material Failure Location Failure

type

Failure load

Concrete

(1)

1C,n compressive failure contact area AN of the

notch Ni

depends on

the configu-

ration

qR,1C,n,Ni

1C,c exceedance of the

compressive strength

fc,1

top of the concrete

cross section (z = 0)

ductile qR,1C,c

1C,u exceedance of the

ultimate compressive

strain εu,1 after 1C,c

top of the concrete

cross section (z = 0)

ductile qR,1C,u

1S horizontal shear failure close to the notch Ni

(z = h1)

brittle qR,1S,Ni

1F flexural-shear failure close to the notch Ni

(z = x)

brittle qR,1F,Ni

1V vertical shear failure close to the notch Ni,

in the compression zone

brittle qR,1V,Ni

Timber

(2)

2BT combined

tensile-bending failure

timber cross section brittle qR,2BT

2V shear failure timber cross section brittle qR,2V

2R rolling shear failure cross layer brittle qR,2R

2C compressive failure

parallel to the grain

contact area AN of the

notch Ni

ductile qR,2C,Ni

2S shearing-off failure close to the notch Ni

(z = h1 + tN )

brittle qR,2S,Ni
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Figure 3.4: Model of the structural behaviour of timber-concrete composite members with ductile

connections: (a) assumed structural behaviour of the timber-concrete connections; (b) assumed behaviour

of concrete subjected to compression; (c) Moment-curvature behaviour of the composite member

The following model was developed to predict the structural behaviour of timber-concrete

composite members with ductile connections subjected to uniformly distributed vertical loads

(Fig. 3.3). As summarised in Fig. 3.4 and Tab. 3.2 , the analytical model presented in this

section simplifies the structural behaviour of timber-concrete composite members with ductile

connections using four states, similar to the models for reinforced concrete structures [84], [67].

The model presented was developed based on stress-strain relationships and on simple equi-

librium models. First, the entire structure is assumed to be elastic and the concrete does not

contain cracks (state I). Then, when the critical tensile stress in the concrete is reached, cracks

occur, and the composite member enters state II. Since, the composite structure is assumed to

be elastic during the first two states, the calculation method for composite members described in
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Section 2.3.2 is used (γ-method) [26], [28]. Yielding of the connections indicates the beginning of

the ductile behaviour, described by states III and IV. Ductility is due to the connection yielding

and the ductile compression behaviour of concrete. The behaviour during states III and IV is

idealised by means of an analogy to the reinforced concrete theories developed by Marti [4], [84]

and implemented in the Swiss Code SIA 262 [66], combined with the model proposed by Frangi

and Fontana [2].

Table 3.2: Structural behaviour of a timber-concrete composite member with a ductile connection

State Connection Concrete Calculation method Limit

I elastic uncracked/

elastic

γ-method [26],[28] concrete cracking (cr.)

II elastic cracked/

elastic

γ-method [26],[28] connection yielding (y.)

III plastic cracked/

elastic

analogy to reinforced

concrete according to

Marti et al. [84] and

SIA 262 [66]

compressive strength of the

concrete at the top of the

cross-section (1C,c)

IV plastic cracked/

plastic

analogy to reinforced

concrete according to

Marti et al. [84] and

SIA 262 [66] + model of

Frangi and Fontana [2]

ultimate failure (u.): com-

bined bending-tensile failure

in the timber or achievement

of the maximum compressive

strain of the concrete on the

top of the cross section

The analytical model described in this section is based on the following assumptions:

� The timber part of the composite member is not subjected to initial stresses due to place-

ment of the concrete.

� The structure is subjected to a uniformly distributed vertical load.

� The assumptions for application of the γ-method in elastic conditions, illustrated in Section

2.3.2, are valid.

� The timber-concrete connections carry horizontal forces exclusively.

� The governing failure is a ductile connection failure because the composite member is

designed so that all other failures do not occur.

� The connection behaviour is elastic-ideal plastic and can be simplified as shown in Fig.

3.4(a).

� The connections are designed proportional to the shear forces generated by a uniformly

distributed vertical load. Thus, they yield simultaneously.
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� The ultimate deformation capacities of the connections are sufficiently elevated and do not

govern the structural behaviour.

� Yielding of the connections does not introduce secondary effects which compromise the

structural behaviour of the composite member.

� Concrete subjected to compression exhibits ductile behaviour (Fig. 3.4(b)).

� No gap opening occurs. Thus, the timber and concrete bend with the same deflection and

the same curvature.

� The distribution of the axial strains is linear in each part of the cross-section, and any

plane sections remain plane.

� The shear deformations in the cross-section are neglected.

3.2.2 State I: connection elastic, concrete uncracked and elastic

In this state, the concrete part of the composite member is not yet cracked and so is able to

carry tensile stresses. Fig. 3.5 illustrates the geometry and the axial stresses and strains of the

composite member during state I. If the connections are not completely rigid, the diagram of

the strains shows a gap at the interface due to the shear deformations of the connections. Since

the model assumes that the concrete and timber do not separate vertically, the two parts of the

cross-section exhibit the same curvature. To calculate the cross-sectional values, the stresses

and the deformations, the γ-method is used according to Section 2.3.2. The limit of this phase

is determined by cracking of the concrete.
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Figure 3.5: End of state I (concrete cracking): geometry, axial strains ε and axial stresses σ

Since the reference modulus of elasticity is that of timber, the different moduli of elasticity

of timber E2 and concrete E1 are taken into account with the following factors:

n1 =
E1

E2
(3.1)
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n2 =
E2

E2
= 1 (3.2)

Because of the dimensions of the slab elements assumed in this research project, the model is

presented for the case where the zero-strain layer is located in the concrete. Thus, the γ-factors

of the concrete and timber can be calculated with the following formulas:

γ1 = 1 (3.3)

γ2 =
1

1 + π2E2A2s
l2K

(3.4)

Since, during state I, the concrete section is not cracked, the entire concrete depth h1 is taken

into account. The areas and the moments of inertia correspond to:

A1,I = b1h1,I = b1h1 (3.5)

A2 = b2h2 (3.6)

I1,I =
b1h

3
1,I

12
(3.7)

I2 =
b2h

3
2

12
(3.8)

The distances between the top of the composite cross-section (z = 0) and the centroids of the

two parts of the composite member can be determined as follows:

zs,1,I =
h1,I

2
(3.9)

zs,2 = h1 +
h2
2

(3.10)

The centroid of the composite cross section (zero-strain layer) can be calculated as follows:

xI =

∑2
i=1 γiniAi,Izs,i,I∑2
i=1 γiniAi,I

(3.11)

The distances between the centroid of the composite cross-section xI and the centroids of the

timber and the concrete part zs,1,I and zs,2,I correspond to:

e1,I = zs,1,I − xI (3.12)

e2,I = zs,2 − xI (3.13)

The moment of inertia of the composite cross section can be calculated as follows:
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II =

2∑
i=1

niIi +

2∑
i=1

γiniAie
2
i,I (3.14)

The effective static moment for the calculation of the theoretic elastic shear stress acting in the

interface between the timber and concrete is:

S12,I = n1γ1A1,Ie1,I = n2γ2A2e2,I (3.15)

The effective bending stiffness of the composite cross section is:

EII = E2II (3.16)

The section modulus of the concrete border close to the interface (z = h1) can be determined

as follows:

W1,b,I =
II

γ1e1,I + h1
2

(3.17)

Since the maximum tensile stress in the concrete occurs at the border close to the interface

(z = h1), the bending moment which generates cracking of the concrete and the associated

curvature of the cross section can be calculated as follows:

Mcr =
ft,1W1,b,I

n1
(3.18)

χcr =
Mcr

EII
(3.19)

The axial strains which occur when the concrete part of the composite member cracks can be

calculated according to Eq. 2.17 as follows:

ε1,t = χcr
(
γ1e1,I −

h1,I
2

)
(3.20)

ε1,b = χcr
(
γ1e1,I +

h1,I
2

)
(3.21)

ε2,t = χcr
(
γ2e2,I −

h2
2

)
(3.22)

ε2 = χcrγ2e2,I (3.23)

ε2,b = χcr
(
γ2e2,I +

h2
2

)
(3.24)

The axial stresses are obtained with Hooke's law as follows:

σ1 = ε1E1 (3.25)
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σ2 = ε2E2 (3.26)

In the case of a single-span beam with a uniformly distributed vertical load, the cracking

load qcr can be calculated from Mcr, and the deflection at mid-span at cracking level wcr can

be estimated as follows:

wcr(l/2) ≈ 5

384
· χcr · l2 · 8 (3.27)

3.2.3 State II: connection elastic, concrete cracked and elastic

During the second state, the concrete is cracked and the behaviour of the composite member is

elastic. Fig. 3.6 illustrates the geometry, the axial stresses and strains of the composite cross

section during state II. The limit of this state corresponds to yielding of the connections.
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Figure 3.6: End of state II (connection yielding): geometry, axial strains ε and axial stresses σ

During this phase, the concrete part of the composite member is cracked and it is assumed

that it does not carry tensile stresses. Therefore, the effective concrete surface has to be reduced

depending on the crack depth hcr as follows:

h1,II = h1 − hcr (3.28)

A1,II = b1h1,II (3.29)

zs,1,II =
h1,II

2
(3.30)

I1,II =
b1h

3
1,II

12
(3.31)

Since the concrete part does not carry tensile stresses, it is assumed that the depth of the effective

concrete cross-section h1,II corresponds to the zero-strain layer xII (centroid of the composite

member). The effective concrete depth h1,II can be calculated using the following condition:
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xII = h1,II (3.32)

where xII is the centroid of composite member during state II:

xII =

∑2
i=1 γiniAi,IIzs,i,II∑2

i=1 γiniAi,II
(3.33)

Using the effective concrete dimensions of state II, the cross-sectional values e1,II , e2,II , III and

EIII can be calculated with the same procedure used for state I (Section 3.2.2).

State II ends due to yielding of the connections, and this point determines the end of the

elastic behaviour. As illustrated in Fig. 3.7, the sum of the shear forces TNi transferred by

the connections between the support and the point of maximal bending moment is equal to the

resulting axial force N in the point of maximal bending moment. When the connections yield,

this condition can be written as follows:

σ2,y =

∑
Ty,Ni
A2

(3.34)

Forces in longitudinal direction in timber Axial stresses
in timberT Ni

N
 2,t

 2

 2,b

 2
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+ +
-+=

tension bending

+

h2

l/2
Mmax

Figure 3.7: State II, equilibrium in the timber part of the composite member

The bending moment and the cross-section curvature corresponding to yielding of the connec-

tions can be calculated as follows:

My = MR,2C = σ2,y ·
W2,II

n2
=

∑
Ty,Ni
A2

· W2,II

n2
(3.35)

χy =
My

EIII
(3.36)

Where W2,II is the section modulus corresponding to the centroid of the timber cross section:

W2,II =
III

γ2e2,II
(3.37)

The strains which occur when the connections yield can be calculated according to Eq. 2.17 as

follows:

ε1,t = χy
(
γ1e1,II −

h1,II
2

)
(3.38)

ε1,b = χy
(
γ1e1,II +

h1,II
2

)
(3.39)
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ε2,t = χy
(
γ2e2,II −

h2
2

)
(3.40)

ε2 = χyγ2e2,II (3.41)

ε2,b = χy
(
γ2e2,II +

h2
2

)
(3.42)

The stresses are obtained with Hooke's law as follows:

σ1,t = ε1,tE1 (3.43)

σ1,b = 0 (3.44)

σ2,t = ε2,tE2 (3.45)

σ2 = ε2E2 = σ2,y (3.46)

σ2,b = ε2,bE2 (3.47)

In the case of a single-span beam with a uniformly distributed vertical load, the yielding

load qy can be calculated from My. Under the assumption that the composite cross section is

cracked over the entire span, the deflection at mid-span at yielding level wy can be estimated as

follows:

wy(l/2) ≈ 5

384
· χy · l2 · 8 (3.48)

Failures in state II

Since the purpose of the design is to achieve a ductile connection failure, the connections should

be able to yield, and all other failures of the composite member which can occur during state II

should be prevented. In other words, the bending moment corresponding to connection yielding

My must be smaller than the bending moments which cause the other possible failures, such as:

� combined tensile-bending failure of the timber part (2BT)

� shear/ rolling shear failure of the timber part (2V/ 2R)

� compressive failure of the concrete on the cross section top (1C,c)

� shear failures in the concrete

� brittle connection failures (which depend on the connection system)
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A combined tensile-bending failure of the composite cross section (2BT) does not depend

from the connection type and can be predicted using the interaction formula contained in the

Swiss Standard SIA 265 [29] according to Section 2.4.5:

σ2
ft,0,2

+
σ2,m
fm,2

≤ 1 (3.49)

The tensile stress in the centroid of the timber is calculated using Eq. 3.37 as follows:

σ2 =
M

W2,II
· n2 (3.50)

According to Fig. 3.7, the bending stress in the timber is:

σ2,m = σ2,b − σ2 =
M

W2,b,II
· n2 −

M

W2,II
· n2 (3.51)

where W2,b,II is the section modulus corresponding to the bottom edge of the timber cross-

section:

W2,b,II =
III

γ2e2,II + h2
2

(3.52)

The bending moment which causes the combined tensile-bending failure of the timber part

can be derived from Equations 3.50 to 3.49:

MR,2BT =
1

1
W2,II

· n2
ft,0,2

+
(

1
W2,b,II

− 1
W2,II

)
· n2
fm,0,2

(3.53)

Reaching the compressive strength of the concrete fc,1 at the top of the cross section does

not imply a brittle failure. This condition should preferably occur after the connections begin to

yield. The section modulus corresponding to the top edge of the concrete part of the composite

member can be written as follows:

W1,t,II =
III

γ1 · e1,II − h1,II
(3.54)

The bending moment which causes the stress level of fc,1 at the top of the cross section during

state II is:

MR,1C,c =
f1,c ·W1,t,II

n1
(3.55)

A shear failure in the timber cross-section is also independent from the connection type

and can be predicted by calculating the elastic shear stress in the critical point. The failure

occurs, when the elastic shear stress reaches the shear strength:

τ = fv,2 (3.56)

For instance, the elastic shear stress in the centroid of the timber part of the composite member

can be determined as follows:
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τ =
V S2,II
b2III

=
V · γ2 · n2 · h22 · b2 ·

(
e2,II + h2

4

)
b2III

(3.57)

In the case of an LVL plate, the cross layers usually represent the weak point in shear transfer.

Therefore, the shear stress should be calculated in the position of the cross layers and compared

to the rolling shear strength of the material fR,v,2.

Several other failure modes, like for instance shear failures in the concrete, depend on the

connection system, and will be treated in Section 3.3.

3.2.4 State III: connection plastic, concrete cracked and elastic

The transition from state II to state III is due to the fact that the connections begin to develop

plastic deformations parallel to the interface. Since the connections yield and are modelled

without hardening (Fig. 3.4), the load which is transferred between the timber and the concrete

during states III and IV is constant and corresponds to the sum of the yielding forces Ty,Ni of

the connections between the support and the point of maximum bending moment according to

Frangi and Fontana [2]. Thus, according to Fig. 3.7, the tensile stress in the centroid of the

timber cross-section during states III and IV is constant and can be calculated as follows:

σ2 = σ2,y =

∑
Ty,Ni
A2

(3.58)

Connection yielding can be modelled as an increase of the horizontal relative displacement

at the interface. This implies an increase of the curvatures of the two parts of the composite

member by constant tensile strain in the centroid of the timber. State III is characterised by

ideal plastic connection behaviour and elastic behaviour of the timber and concrete. Since the

timber and concrete are elastic, the stress distributions are linear. The composite member should

be designed so that the state III ends due to exceedance of the compressive strength of concrete

at the top of the composite cross-section (Fig. 3.8). This allows to develop ductility because

the concrete is able to increase its compressive strain under stresses equal to the compressive

strength fc,1.

The depth of the compression zone at the end of state III can be calculated from the equilibrium

condition in longitudinal direction:

xIII =
2 · σ2,y ·A2

fc,1 · b
=

2 ·∑Ty,Ni
fc,1 · b

(3.59)

The curvature of the cross-section which occurs when the compressive strength of the concrete

is reached can be calculated as follows:

χ1C,c =
ε1,t
xIII

=
fc,1

E1 · xIII
(3.60)

Until the end of state III, no brittle failure of the timber should occur. Therefore, it must

be checked that the curvature which causes a combined tensile-bending failure of the timber

cross-section is not exceeded. Otherwise, the system will collapse abruptly after small plastic
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Figure 3.8: End of state III (fc,1 at the cross section top is reached): geometry, axial strains ε and axial

stresses σ

deformations. The allowed curvature can be calculated according to Frangi and Fontana [2]

from Eq. 3.49 as follows:

σ2
ft,0,2

+
σ2,m
fm,2

≤ 1 (3.61)

σ2,y
ft,0,2

+
χ1C,c · (h2/2) · E2

fm,2
≤ 1 (3.62)

χ1C,c ≤
2 · fm,2
h2 · E2

·
(

1− σ2,y
ft,0,2

)
(3.63)

The bending moment MR,1C,c corresponding to χ1C,c can be calculated as follows:

MR,1C,c =
∑

TNi ·
(
h1 −

xIII
3

+
h2
2

)
+
b2h

2
2

6
· χ1C,c ·

h2
2
· E2 (3.64)

From the curvature χ1C,c, the zero strain layer xIII and the compressive strength of the concrete

fc,1, the axial strains of the composite member at the end of state III can be calculated as follows:

ε1,t = −χ1C,c · xIII (3.65)

ε1,b = χ1C,c

(
h1 − xIII

)
(3.66)

ε2,t = ε2,y − χ1C,c ·
h2
2

= χyγ2e2,II − χ1C,c ·
h2
2

(3.67)

ε2 = ε2,y = χyγ2e2,II (3.68)

ε2,b = ε2,y + χ1C,c ·
h2
2

= χyγ2e2,II + χ1C,c ·
h2
2

(3.69)
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The concrete part of the composite member is still elastic. Therefore, the stresses are obtained

with Hooke's law as follows:

σ1,t = −f1,c (3.70)

σ1,b = 0 (3.71)

σ2,t = ε2,tE2 (3.72)

σ2 = ε2E2 = σ2,y (3.73)

σ2,b = ε2,bE2 (3.74)

3.2.5 State IV: connection plastic, concrete cracked and plastic

During state IV, the connections yield (Eq. 3.58 is valid), and the compression zone of the

concrete develops plastic deformations and redistributes the stresses. Thus, the curvature of the

cross-section continues to increase until the ultimate failure. The ultimate failure can be due

to exceedance of the ultimate compressive strain of the concrete εu,1 or to a combined tensile-

bending failure of the timber part. The mechanism can be clarified with an analogy to the

ductile failure of reinforced concrete cross sections subjected to bending according to Marti [4],

Marti et al. [84], Bachmann [85], Kenel [65], Kaufmann [67] and SIA 262 [66] (Fig. 3.9).
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Figure 3.9: State IV, analogy with reinforced concrete cross-section

In a reinforced concrete member subjected to bending, if a sufficient amount of steel is

provided, the failure is usually governed by yielding of the steel reinforcing bars [84], [85]. If the

concrete member is cracked and the steel reinforcement is yielding, the structural behaviour can

be modelled under the assumption of ductile behaviour of the reinforcement and the compressed
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Figure 3.10: Difference between yielding of a steel reinforcing bar in a reinforced concrete member and

plastic deformations of a shear connection of a timber-concrete composite member (e.g. notches)

concrete. This causes an increase of the curvature of the cross section. As stated in Section 2.5.1,

due to the ductile failure of compressed concrete, the compressive stresses tend to redistribute

across the compression depth x [65]. In the calculations, the compressive stresses in the concrete

at the ultimate limit state are often assumed to be uniformly distributed over a depth of 0.85x

[66]. The ultimate failure of the reinforced concrete member should be determined by exceedance

of the ultimate compressive strain εu,1 of the concrete at the top of the cross section while steel

is yielding [65], [67], [84]. The associated strain is usually assumed to be εu,1 ≈ 0.003 [66]. This

failure is ductile and is marked by crack formation [67].

The plastic deformations of timber-concrete connections by constant tensile stress in the

timber σ2,y activate mechanisms, which are similar to yielding of steel reinforcing bars due to

constant tensile stress fs (Fig. 3.9). Nevertheless, yielding of a steel reinforcing bar in the

concrete and yielding of a timber-concrete shear connection are physically different (Fig. 3.10).

Firstly, the plastic deformation of a steel reinforcing bar is due to an increment of its length [84],

whereas yielding of timber-concrete shear connections is localised in plastic zones corresponding

to the connections. In other words, in a timber-concrete composite member, the tensile part

remains elastic, and the interface yields. In contrast, in a reinforced concrete member, the tensile

reinforcement loses elasticity and yields. Depending on the connection type, the fact that the

plastic zones are local may cause problems with crack propagation in the concrete. Secondly,

in a timber-concrete composite member, the combination of tension and bending in the timber

usually represents an important issue when the cross section curvature increases. A steel bar of

a reinforced concrete structure is not subjected to this problem.

Fig. 3.11 illustrates the geometry of the effective timber-concrete composite cross-section

and the qualitative distribution of the axial stresses and strains during state IV. The position of

the zero strain layer xIV can be estimated under the assumption that the compressive stress in

the concrete is equal to the compressive strength [65], and is uniformly distributed over a depth

of 0.85 · xIV :
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Figure 3.11: State IV: ultimate limit state

∑
Fx = 0 (3.75)

xIV =
σ2A2

0.85fc,1b1
=

∑
Ty,Ni

0.85fc,1b1
(3.76)

If the ultimate shear deformation capacity of the connections does not govern the structural

behaviour and the connection yielding does not cause secondary effects, the ultimate failure of

the composite cross-section can be caused by a combined tensile-bending failure of the timber

(2BT) or a compressive failure of the concrete (1C,u).

The curvature of the cross-section which causes a combined tensile-bending failure in the

timber part of the composite member can be calculated according to Frangi and Fontana [2] as

shown in Section 3.2.4:

χu,2 =
2ε2,m,u
h2

=
2

h2
·
fm,0,2

(
1− σ2,y

ft,0,2

)
E2

(3.77)

The increase of the curvature of the cross-section during state IV can also cause a compressive

failure of the concrete at top of the composite cross-section. This occurs if the maximum

compressive strain εu,1 is achieved [65], and the failure criterion can be written as follows:

χu,1 =
εu,1
xIV

(3.78)

The ultimate curvature can be determined as follows:

χu = min {χu,1;χu,2} (3.79)

For the design of the composite member, it must be taken into account that a brittle failure

of the timber part should occur as late as possible. If the end of state IV is determined by

a combined tensile-bending failure of the timber, the composite member will fail abruptly. In

contrast, if exceedance of the maximum compressive strain of the concrete εu,1 is governing, the
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ultimate failure process is similar to that of reinforced concrete structures, which is ductile and

announced by cracking [67]. Nevertheless, a further increase of the curvature of the cross section

after exceedance of εu,1 can cause a combined tensile-bending failure of the timber part.

On the basis of the ultimate curvature χu, the zero strain layer xIV and the tensile strain

of timber ε2 = ε2,y, the axial strains of the composite member at the ultimate limit state can

be calculated as follows:

ε1,t = −χuxIV (3.80)

ε1,b = χu
(
h1 − xIV

)
(3.81)

ε2,t = ε2,y − χu ·
h2
2

= χyγ2e2,II − χu ·
h2
2

(3.82)

ε2 = ε2,y = χyγ2e2,II (3.83)

ε2,t = ε2,y + χu ·
h2
2

= χyγ2e2,II + χu ·
h2
2

(3.84)

The axial stresses between the top of the composite cross section and the depth z = 0.85xIV are

assumed to be equal to the compressive strength of the concrete, and the remaining concrete

cross-section is assumed to be free of tension:

σ1,t = −fc,1 (3.85)

σ1,b = 0 (3.86)

Except for the plastic zones in the notches, the timber part of the composite member is elastic,

and the axial stresses of the timber cross section can be obtained with the Hooke's law as follows:

σ2,t = ε2,tE2 (3.87)

σ2 = σ2,y (3.88)

σ2,b = ε2,bE2 (3.89)

Since the timber is elastic, the increase of the curvature causes an increase of the stresses and

strains in the timber, which implies an increase of the bending moment acting on the slab. The

bending stress acting on the timber is:

σ2,m,u = χu ·
h2
2
· E2 (3.90)
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Also the change of the depth of the compression zone in concrete causes a variation of the

bending moment due to the composite action. The resisting moment of the composite member

at the ultimate state can be estimated as follows:

Mu = σ2A2

(
h1 −

0.85xIV
2

+
h2
2

)
+ σ2,m,u ·

h22b2
6

(3.91)

3.2.6 Estimation of the deflections during states III and IV

The deflections during state III and state IV are more difficult to estimate than in the other

states because the length of the zone where plastic deformations of the cross-section occur is

unknown. An upper boundary of the deflection at mid-span can be obtained by considering the

composite member as a continuum and inserting χu in Eq. 3.57.

However, in several research studies on ductility of reinforced concrete beams subjected

to bending, it was observed that the ductile behaviour of the steel and concrete induces the

formation of plastic hinges, which have a limited extension [65]. The deflection due to rotation

of the hinge can be estimated under the assumption that the hinge provokes a rigid body rotation

of the remaining parts of the structure [65]. According to Bachmann [85], the length of the plastic

zone is an uncertain parameter, and can exceed two times the height of the beam.
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upl,3 upl,3 upl,4
upl,5

 III +IV

lpl

zone with plastic
deformations of concrete

N3
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qu
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wIIIl

l/2 l/2

wIV

 IV /2
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 IV /2

plastic zone

wIV

Figure 3.12: Estimation of the deflection of a timber-concrete composite member with notches designed

proportional to the shear during state IV

The deflection of a timber-concrete composite member with a ductile connection during

states III and IV can be estimated taking the models of reinforced concrete as an example.

The following simplified model refers to a timber-concrete composite member with notched

connections designed proportional to the distribution of shear stresses, so that all notches yield

simultaneously (Fig. 3.12). Whereas ductility of a reinforced concrete beam is generated by

plastic extensions of the longitudinal steel bars of concrete, in the timber-concrete composite

member, ductility develops thanks to plastic longitudinal deformations of the notches (states III

and IV). It can be interpreted that the moving away of the contact points is nearly equivalent

to the plastic extension of a longitudinal steel reinforcing bar.
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Since the width of the notches is designed proportional to the shear force distribution due

to a vertical distributed load, the contact areas of all notches are subjected to the same stress:

σ1 ≈ σ2 ≈ σ3 ≈ σ4 ≈ σ5 ≈ σ6 (3.92)

This means that, in theory, all notches yield simultaneously and develop the same plastic defor-

mation:

upl,1 ≈ upl,2 ≈ upl,3 ≈ upl,4 ≈ upl,5 ≈ upl,6 (3.93)

To simplify, the external concrete parts displace like rigid bodies in respect to the timber

part of the composite member (Fig. 3.12). This means that, in theory, the zone where the

curvatures of the parts of the cross-section increase due to the interface slip during states III

and IV is located between the two central notches. However, this theory is a strong simplification

of the real behaviour, and the effective length of the plastic zone lpl is difficult to estimate.

When an assumption for lpl is made, it is possible to estimate deformations. According to

Bachmann [64], the rotation performed by the composite cross section in the plastic zone during

states III and IV can be estimated as follows:

θIII ≈
fc,1
E1
− ε1,t,y
xIII

· lpl (3.94)

θIV ≈
χu · xIV − fc,1

E1

xIV
· lpl (3.95)

According to Fig. 3.12, the deflection increments during states III and IV can be estimated as

follows:

∆wIII ≈
l

2
· tan

(
θIII

2

)
(3.96)

∆wIV ≈
l

2
· tan

(
θIV
2

)
(3.97)

The deflection of the composite member when the concrete reaches the compressive strength

fc,1 (end of state III) can be calculated as follows:

w1C,c ≈ wy + ∆wIII (3.98)

The deflection of the composite member at ultimate limit state (end of state IV) can be calculated

as follows:

w1C,u ≈ wy + ∆wIII + ∆wIV (3.99)
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3.3 Structural behaviour of the notched connection

3.3.1 Introduction

This section illustrates several analytical models to estimate the structural behaviour of a

notched timber-concrete connection. A series of parametric studies focused on a timber-concrete

composite slab made of a beech LVL plate allow understanding the influence of the geometric

and material parameters on the structural performance of the notch. These theoretical studies

help to choose a notch layout for an optimal structural behaviour of the composite slab, with

regard to the fact that brittle failures should be prevented.

3.3.2 Load-carrying behaviour

This section presents a simplified model based on equilibrium to visualise and understand the

load-carrying mechanism of a timber-concrete composite member with a notched connection. If

the geometry and the material properties are known, the elastic stresses acting on the composite

cross-section σx and τxz due to a bending moment M and a shear force V can be quantified

using the simplified analytical methods described in Section 2.3.2. To visualise the entire load-

carrying mechanism of the composite member, truss models can be used. However, the use of

truss models is correct only if tensile reinforcements are provided in the location of the tension

ties. Also the load-carrying mechanism in the timber part of the composite member can be

understood by means of a truss model; however, in this case, a truss model is correct provided

that load-carrying capacity of the timber is not achieved.

Four-point bending

Fig. 3.13 represents the load-carrying mechanism of a timber-concrete composite member sub-

jected to four-point bending with vertical forces F . The parameter h is the total thickness of

the composite member, h1 is the thickness of the concrete and h2 the thickness of the timber.

The following calculations are valid if the connections and the cross-sections are elastic (state

II), and the centroid of the composite member xII is located in the concrete (xII < h1). It is

assumed that the concrete part of the composite member is cracked below the centroid xII . As

illustrated in Fig. 3.13(a), the vertical forces F generate elastic axial stresses σx in both parts

of the composite member.

The resulting compression axial force in the concrete and tension force in the timber at a

distance a from the support are named N , correspond to the integral of the axial stresses σx

over the effective cross sections, and act in the centroids of the axial stress distributions:

N = −b ·
∫ xII

0
σ1(z)dx = b ·

∫ h

h1

σ2(z)dz (3.100)

The axial stress at the top of the concrete cross-section at a distance a from the support is:

σ1,t = ε1,t · E1 =
F · a
EIII

·
(
γ1e1,II −

xII
2

)
· E1 (3.101)



3.3. Structural behaviour of the notched connection 65

where:

e1,II = −xII
2

(3.102)

The equation of the axial stress which occurs in the effective area of the concrete cross section

can be written as follows:

σ1(z) = σ1,t ·
(

1− z

xII

)
(3.103)

The axial stress in the concrete integrated over the effective concrete depth corresponds to the

resulting axial force N :

−N = b ·
∫ xII

0
σ1(z)dz = −F · a · n1γ1b

2III
· x2II (3.104)

It can be assumed that the notches between the support and the point x = a carry the integral

of the theoretic elastic shear stress τ12,xz which occurs on bottom edge of the effective concrete

cross-section and on top edge of the timber cross-section:

∑
TNi = b ·

∫ a

0
τ12,xz(x)dx (3.105)

The theoretic elastic shear stress τ12,xz can be calculated referring to the concrete part of the

composite member as follows:

τ12,xz(x) =
V (x)S12,II

bIII
= V (x) · γ1n1e1,IIA1,II

bIII
= V (x) · γ1n1x

2
II

2III
(3.106)

Alternatively, the theoretic elastic shear stress at the interface can be calculated with the timber

cross-section. The result will be the same, because the static moments are equal:

τ12,xz(x) =
V (x)S12,II

bIII
= V (x) · γ2n2e2,IIA2,II

bIII
(3.107)

where:

e2,II = h1 +
h2
2
− xII (3.108)

The integral of τ12,xz(x) over the length a is:

∑
TNi = b ·

∫ a

0
τ12,xz(x)dx = F · a · n1γ1b

2III
· x2II (3.109)

Eq. 3.104 and Eq. 3.109 show that the integral of the shear stress due to F acting on

top edge of the timber cross-section and on bottom edge of the effective concrete cross-section

between x = 0 and x = a corresponds to the integral of the axial stresses of the concrete crosss-

section due to F in the point x = a. Under the assumption that the notches carry the integral

of τ12,xz(x), it can be interpreted that the sum of the notch forces between x = 0 and x = a is

equal to the axial forces at x = a:

N =
∑

TNi (3.110)
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The external load F causes vertical shear forces in both parts of the composite member.

Since the axial force N has to be transferred from the centroid of the axial stress distributions

to the notches, vertical internal forces must ensure the equilibrium of the two components. As

described in Fig. 3.13(b), if the system is visualised as a truss model, diagonal and vertical

struts occur.

Taking the concrete part as an example, since the axial compressive stress is triangularly

distributed, the resulting axial compression force in the concrete N acts at a depth of z = xII/3,

where xII is the position of the centroid of the composite member in the elastic-cracked state.

The distance in z-direction between the notch force TNi and the resulting axial compression

force in the concrete N can be calculated as follows:

h∗1 =
tN
2

+ h1 −
xII
3

(3.111)

Concerning the concrete part of the composite member of Fig. 3.13(b), by considering the

equilibrium requirements in the contact point between the timber and concrete in the notch Ni,

the following equations can be written:

∑
Fx = 0⇒ Di ·

s√
s2 + (h∗1)

2
= TNi (3.112)

∑
Fy = 0⇒ Di ·

h∗1√
s2 + (h∗1)

2
= Ti (3.113)

In the concrete, the vertical component of the diagonal strut Di, which is equal to the vertical

force Ti, corresponds to the shear force V1. The vertical struts Ti are subjected to tension. As

illustrated in Fig. 3.13(b), the load-carrying mechanism of the timber part can be simplified

with a similar model.

Distributed load

The load-carrying mechanism in the case of a distributed load is governed by the same principle

that governs the four-point bending. Fig 3.14 illustrates the load-carrying mechanism of a

timber-concrete composite slab subjected to a distributed load. In contrast to the four-point

bending configuration, the vertical load q is distributed over the entire span. The vertical shear

force is divided in two parts and is carried by both parts of the composite member. Basically,

the equilibrium in the contact points between the timber and concrete is analogue to the case of

four-point bending. However, the diagonal and the vertical components are in equilibrium with

the vertical loads resulting from q. Fig. 3.14(a) illustrates the forces acting on the composite

member between the left support and the mid-span (which is the point where no shear force

occurs). Fig. 3.14(b) shows a sector of the composite member between the left support and

x = a, where a bending moment M(a) and a shear force V (a) are acting.
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Figure 3.13: Simplified load-carrying mechanism of a timber-concrete composite member with a notched

connection subjected to four-point bending: (a) forces acting on the middle sector; (b) forces acting on

the left sector
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3.3.3 Calculation of the notch force

To investigate the structural behaviour of the notches, the forces acting on the notches must

be calculated. This section presents a simplified model based on Eq. 3.105 to estimate the

horizontal forces TNi to be carried by the notches. This method is based on the calculation of

the theoretic elastic shear stress at the interface of the composite member, takes into account

the flexibility of the connections, and is valid for every geometry of the parts (Fig. 3.15).

In this calculation, the theoretic shear stress τ12(x) is assumed to be distributed over the

interface. Since, in the case of a notched connection, the horizontal shear stresses are locally

transferred through the notch edges, the notch force TNi can be estimated by integrating the

theoretic shear stress τ12 over the length s. For most of the notches shown in Fig. 3.15, this

length s can be assumed to be equal to the distance between two load transfer points:

s = 2 · lN (3.114)
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Figure 3.15: Calculation of the forces acting on the notches TNi by integrating the theoretical elastic

shear stress at the interface between the timber and concrete

The theoretical elastic shear stress at the interface close to the notch Ni can be calculated on

the basis of the shear force VNi and the elastic cross-sectional values by means of Eq. 3.106. If

concrete is cracked, the elastic shear stress close to the notch Ni is:

τ12,Ni =
VNiS12,II
bIII

(3.115)
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where III is the moment of inertia of the composite cross-section obtained according to Section

3.2.3, and S12,II is the effective static moment calculated at the depth of the interface:

S12,II = γiniei,IIAi,II (3.116)

Based on the theoretical elastic shear stress distribution, the notch forces can be estimated as

follows:

TNi = b · s ·
τNi + τN(i+1)

2
(3.117)

For instance, the force TN1 acting on notch N1 of Fig. 3.15 due to a distributed force q per

surface unit is:

TN1 = b · (2lN + lA) · τN1 + τN2

2
= q · b · 2lN + lA

2
· (leff − lA − 2lN ) · γ2n2e2,IIA2,II

III
(3.118)

The force TN2 acting on notch N2 of Fig. 3.15 is:

TN2 = b · 2lN ·
τN2 + τN3

2
= q · b · lN · (leff − 2lA − 6lN ) · γ2n2e2,IIA2,II

III
(3.119)

The force TN3 acting on notch N3 of Fig. 3.15 is:

TN3 = b · 2lN ·
τN3 + τN4

2
= q · b · lN · (leff − 2lA − 10lN ) · γ2n2e2,IIA2,II

III
(3.120)

The force TN4 acting on notch N4 of Fig. 3.15 is:

TN4 = b · 2lN ·
τN4 + τN5

2
= q · b · lN · (leff − 2lA − 14lN ) · γ2n2e2,IIA2,II

III
(3.121)

The force TN5 acting on notch N5 of Fig. 3.15 is:

TN5 = q · b · 1

2
·
(
leff
2
− lA − 8lN

)2

· γ2n2e2,IIA2,II

III
(3.122)

3.3.4 Concepts for designing the notch width

According to Section 3.1, to achieve a ductile behaviour of the slab, the notches should be

designed so that a compressive failure of the timber parallel to the grain is governing. In this

section, two possible approaches to choose the width of the notches are discussed relating to

the case of a uniformly distributed load, which generally corresponds to the common design

situation assumed in practice:

� constant notch width

� notch width proportional to the shear stresses generated by a uniformly distributed load
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The notch force TNi generates a contact pressure between the timber and the concrete part,

which can be calculated as a function of the width bNi and the depth tNi of the notch Ni:

σ2x,Ni =
TNi

bNi · tNi
(3.123)

As shown in Fig. 3.16, if the slab is subjected to a uniformly distributed vertical load q

and the notch width bi is linearly proportional to the shear force V , all notches get the same

contact pressure σ2x,Ni because the notch forces TNi are linearly proportional to V too:

σ2x,N1 ≈ σ2x,N2 ≈ σ2x,N3 ≈ σ2x,N4 ≈ σ2x,N5 (3.124)

Consequently, all notches will exceed the compressive strength of the timber at the same level

of q. In this case, the model of Section 3.2 can be directly applied to predict the structural

behaviour of the composite slab.
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Figure 3.16: Qualitative structural behaviour of a composite slab with notch width proportional to the

shear stresses generated by a uniformly distributed vertical load

As illustrated in Fig. 3.17, if the notch width is constant and the vertical load is uniformly

distributed, when the compressive failure of the notch close to the support occurs, the other

notches are still elastic because their contact areas are subjected to smaller compressive stresses

parallel to the grain:

σ2x,N1 > σ2x,N2 > σ2x,N3 > σ2x,N4 > σ2x,N5 (3.125)

In theory, this probably implies a hardening in the M − χ behaviour of the structure. In

this case, when all notches reach the ductile failure, the timber part is subjected to a higher

tensile stress than in the case of the notch width proportional to the shear force. In general, a

hardening of the M − χ behaviour implies a higher risk that a premature brittle failure occurs

(for instance a tensile-bending failure of the timber). Furthermore, the layout with the notch

width proportional to the shear force, in contrast to the layout with constant notch width, allows

saving timber material in the central area of the slab where the bending moment is elevated and
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Figure 3.17: Qualitative structural behaviour of a composite slab with constant notch width subjected

to a uniformly distributed vertical load

a sufficient active timber area is needed to prevent brittle failures of the timber and to ensure

sufficient bending stiffness.

Another possibility to achieve the ductile notch failures at the same load level is to increase

the notch distance inversely proportional to the shear force. The disadvantage of this solution

is that each notch is cut over the same width. This causes a relevant reduction of the effective

timber thickness in the areas with elevated bending moments and, thus, an increase of the risk

of a brittle tensile-bending failure of the timber and a reduction of the bending stiffness, in

particular for thin timber plates.

The following investigations are based on slab elements with a notch width proportional to

shear force distribution.

3.3.5 Compressive failure of the timber

As illustrated in Section 2.4.3, the compressive failure of the timber parallel to the grain is a

complex mechanism consisting of different states. For the following analyses, the behaviour of

the timber subjected to compression parallel to the grain is assumed to be elastic-ideal plastic.

Fig. 3.18 shows a simplified model to estimate the stresses acting on the notches. The critical

element is located close to the edge of the notch and is subjected to a horizontal compressive

stress parallel to the grain σ2x,Ni and to a vertical tensile stress perpendicular to the grain

σ2z,Ni. To simplify the failure prediction, it is assumed that the element considered is not

subjected to shear. Although, in reality, stress peaks and non-linearities can occur, to simplify

the calculation, the stress distributions represented in Fig. 3.18 are assumed to be linear.

The compressive stress parallel to the grain corresponds to the notch force distributed over

the contact area between the timber and concrete. It is assumed to be constant and can be

estimated as follows:

σ2x,Ni =
−TNi
bNi · tNi

(3.126)
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Figure 3.18: Simplified model for the compressive failure in the timber parallel to the grain

In addition to the compressive stress parallel to the grain, as stated by Steurer [63] in Section

2.4.4, in all notches, a vertical stress σ2z,Ni occurs because of the distance between the point of

action of the notch force TNi and the position of the critical element. The tensile stress in this

point can be estimated as follows:

σ2z,Ni =
3tNi · TNi
bNi · l2Ni

(3.127)

Close to the support, this stress has to be added to the vertical compressive stresses coming

from the concrete compression diagonal strut. The mechanism is described in Fig. 2.12(b). It

has to be noticed that, in practice, this effect is difficult to evaluate because it depends on the

support dimensions. Under the assumption that the vertical compressive stresses are distributed

over the entire width of the slab element, the following stress perpendicular to the grain results:

σ2z,Ni =
3tNi · TNi
bNi · l2Ni

− TNi · h∗1
2b · lNi

(3.128)

If the compressive stress in x-direction σ2x,Ni predominates over the vertical stress σ2z,Ni,

the bi-axial stress state can be neglected, and the load which causes a compressive failure of the

timber parallel to the grain can be estimated as follows:

T ∗R,2C,Ni = fc,0,2 · bNi · tNi (3.129)

However, if the vertical stress is relevant, since the critical element is subjected to a bi-axial

stress state, a multi-axial strength criterion according to Section 2.4.1 should be used. In this

case, the Tensor Polynomial theory [51] is used to predict the compressive failure of the timber

parallel to the grain by taking into consideration the stress σ2z,Ni perpendicular to the grain.

As explained in Eq. 2.29, for the notch Ni, the general formula of the failure function FF,2C,Ni

for a bi-axial stress state without shear stress is:

FF,2C,Ni = F1σx + F2σz + F11σ
2
x + 2F12σxσz + F22σ

2
z = 1 (3.130)
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where σx = σ2x,Ni and σz = σ2z,Ni according to Fig. 3.18.

The force TR,2C,Ni with which the compressive failure of timber occurs can be estimated with

the following inequality condition:

FF,2C,Ni ≥ 1 (3.131)

For a beech LVL plate with mechanical properties according to Fig. 3.19(a), the coefficients can

be calculated as follows:

F1 =
1

ft,0,2
− 1

fc,0,2
= −4.79

mm2

kN
(3.132)

F2 =
1

ft,90,2
− 1

fc,90,2
= 434.1

mm2

kN
(3.133)

F11 =
1

fc,0,2 · ft,0,2
= 370

mm4

kN2 (3.134)

F22 =
1

fc,90,2 · ft,90,2
= 37320

mm4

kN2 (3.135)

As explained in Section 2.4.1, there is no agreement about the determination of the interaction

term F12. However, as assessed by Narayanaswami and Adelman [52], it is possible to determine

the two boundaries, in which F12 must lie:

F12 = ±
√
F11 · F22 = ±3716

mm4

kN2 (3.136)
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Figure 3.19: Parametric study on the compressive failure of beech LVL parallel to the grain: (a)

geometry and material properties; (b) failure criterion according to the Tensor Polynomial model and

influence of the interaction term F12 (as already shown in Fig. 2.8(b))

Figs. 3.19, 3.20 and 3.21 illustrate a parametric study concerning a timber-concrete com-

posite member made of a beech LVL plate with a notched connection, in which the width of the
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notches is proportional to the shear force generated by a uniformly distributed vertical load. The

purpose of this study is to investigate the influence of a variation in length lN and in depth tN

of the notch on the force TR,2C,Ni which causes a compressive failure of the LVL parallel to the

grain, and to evaluate the difference between a failure prediction by considering the multi-axial

stress state (Eq. 3.130) or by neglecting it (Eq. 3.129). The geometry and the relevant material

properties used in the calculations are illustrated in Fig. 3.19(a).

Fig. 3.19(b) shows the theoretical interaction between the stresses parallel and perpendic-

ular to the grain according to Eq. 3.130. The analysis is performed according to Section 2.4.1.

It can be seen that the influence of F12 depends on the stress situation, and in some cases can be

critical. The combinations of σ2x,Ni and σ2z,Ni which cause the compressive failure of the LVL

parallel to the grain (in x-direction) are outside of the envelopes. In general, until a determinate

level, a vertical pressure perpendicular to the grain (σz < 0) increases σx. In contrast, a tension

perpendicular to the grain (σz > 0) causes a significant decrease of σx.

Fig. 3.20(a) illustrates the influence of the notch length lN on the failure force TR,2C,Ni

of the notch close to the support (N1) and the second notch (N2) calculated according to

Eq. 3.130 for a notch depth of tN = 15 mm, and compares the results with the failure load

T ∗R,2C,Ni calculated neglecting the vertical stress (Eq. 3.129). All other notches (except notch

N1) are subjected to similar conditions as notch N2. As shown in Fig. 3.20(a), in notch N2, an

increase of lN causes a decrease of σ2z,N2 according to Eq. 3.127; thus, TR,2C,N2 increases in an

asymptotic way and tends to become equal to T ∗R,2C,N2. In the notch close to the support (N1),

under the assumptions made in this model, the compression perpendicular to the grain stresses

compensate the tension perpendicular to the grain stresses according to Eq. 3.128 and the

curve shows just a small influence of the resulting compression stresses for notches shorter than

200 mm. Furthemore, with increasing notch length, the ratio between TR,2C,N1 and TR,2C,N2

decreases. It can be seen that, for this stress situation, the interaction term F12 slightly shifts

the curves, and the curve calculated with F12 = 0 lies between the two boundaries.

Fig. 3.20(b) shows the influence of the notch depth tN on the notch failure force TR,2C,Ni

calculated according to Eq. 3.130 in the case of a notch length of 250 mm. The results of

TR,2C,Ni are compared to the load T ∗R,2C,Ni calculated without the influence of the vertical

stresses according to Eq. 3.129, which are directly proportional to the notch depth. The notch

depth influences TR,2C,Ni as follows:

� An increase of tN implies a decrease of the compressive stress σ2x,Ni according to Eq.

3.126, which causes an increase of the failure load TR,2C,Ni.

� An increase of tN causes an increase of the tension perpendicular to the grain stresses

σ2z,Ni according to Eq. 3.127 due to the increasing eccentricity. This implies a non-

linearity in the curve of TR,2C,N2. However, in the practical range of tN , TR,2C,Ni increases

with increasing depth.

� An increase of tN implies an increase of the ratio between TR,2C,N1 and TR,2C,N2

As shown in Fig. 3.20(b), in the notch close to the support N1, the influence of the

vertical compression stresses predominates. This slightly increases the failure load TR,2C,N1 in
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comparison to T ∗R,2C,N1. In the notch N2, the sum of all effects tends to decrease TR,2C,N2 in

comparison to T ∗R,2C,N2.
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Figure 3.20: Parametric study of the compressive failure of beech LVL parallel to the grain: (a) influence

of the notch length on the failure load; (b) influence of the notch depth on the failure load

Fig. 3.21 illustrates the relationship between the vertical load q acting on the slab element

and the failure function FF,2C,Ni obtained from Eq. 3.130 with F12 = 0. The load q is calculated

from the notch forces TNi according to Section 3.3.3. According to the Tensor Polynomial

theory, the load qR,2C,Ni, which causes the compressive failure of the LVL parallel to the grain,

corresponds to the intersection between the failure function FF,2C,Ni and the horizontal line

FF,2C,Ni = 1. The load q∗R,2C does not take the influence of vertical stresses into account and is

derived from T ∗R,2C,Ni (Eq. 3.129). Also these diagrams show that, if the notches are shorter and

deeper, the effects of the stresses perpendicular to the grain increase. This can be assessed by

observing the difference between qR,2C,N2 and q∗R,2C . Furthermore, if the stresses perpendicular

to the grain are not taken into account, the vertical load q∗R,2C , which causes a compressive failure

of the LVL parallel to the grain, increases with decreasing notch length. This dependency is

explained in Section 3.3.3.

In summary, for the development of timber-concrete composite slabs made of beech LVL

with a notched connection, the following conclusions concerning the modelling of the compressive

failure of the LVL can be drawn :

� The model and the strength criterion illustrated are strongly simplified. They help under-

standing the influence of several parameters on the failure force. Nevertheless, a compres-

sive failure of the LVL is complicated by a multitude of complex mechanisms, which are

difficult to quantify.

� If the notches are too short, the problem could be that the notch over the support is not

able to yield when the other notches are yielding.
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Figure 3.21: Parametric study of the compressive failure of beech LVL parallel to the grain: (a)

relationship between vertical load q and failure function FF,2C,Ni for a notch length lN = 250 mm; (b)

relationship between vertical load q and failure function FF,2C,Ni for a notch length lN = 150 mm

� If the notches are too deep, it becomes more difficult to reach the ductile compressive failure

in the LVL because TR,2C,Ni increases and maybe other failure modes become governing.

� In the cases studied, neglecting of the interaction term F12 does not introduce substantial

changes in the failure prediction.

� From the parametric study results that, if the notches are 250 mm long and 15 mm deep,

the difference between qR,2C,Ni and q∗R,2C , as well as the difference between the behaviour

of the notches N1 and N2, is limited.

� Since compressive failure of LVL parallel to the grain is ductile, a small underestimation of

the failure load does not imply dramatic consequences like in the case of a brittle failure.

� It has to been taken into account that the estimation of the vertical load q from the notch

forces TNi contains several uncertainties, which sum up to the model simplifications in

failure prediction.

3.3.6 Shearing-off failure of the timber

In practice, a shearing-off failure of the timber close to a notch can be characterised as a brittle

failure, and, in the design of timber-concrete composite members, should be prevented. As

explained in Section 2.4.4, the estimation of the shear stress distribution in the shear plane of

the timber is very difficult.

In this work, the following approach was adopted:

� During the elastic state, the elastic shear stress distribution can be studied using the theory

of the composite problems formulated for instance by Marti [5].
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� At failure, based on theoretical studies, it is assumed that stress peaks are reduced (Fig.

3.27).

Analytical model for the elastic shear stress distribution

The elastic distribution of the horizontal relative displacement δ and the shear stress τ in the

shear plane of the timber close to the notch are estimated using a similar approach to the

composite problems solved by Marti [5] and Kaiser [58]. Similar to the approach presented by

Kaiser [58] for pulling-out of carbon fibres glued to timber, the timber close to the notch is

divided into three areas (Fig. 3.22(a)):

� An upper part with a depth of hsup and a cross-section area of Asup = b · hsup, which is

subjected to compression and becomes shorter due to TNi.

� A lower part with a depth of hinf and a cross-section area of Ainf = b · hinf , which is

subjected to tension and becomes longer due to TNi.

� A middle part with a depth of hs which connects the upper and the lower part, and is

subjected to shearing.

It has to be noticed that the assumption that the shear deformations are concentrated in the

middle part with a depth of hs is a strong simplification of reality.
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Figure 3.22: Estimation of the elastic shear stress distribution: (a) model for the calculation of the

relative displacement and the shear stress; (b) model to calculate the shear stiffness of the shear zone

The problem illustrated in Fig. 3.22(a) is solved in analogy to the situation of two beams

connected as treated by Marti [5]. As a consequence of the condition of equilibrium in x-

direction, Nsup = −Ninf . The horizontal relative displacement between the upper and the lower

part is defined as follows:

δ(x) = usup(x)− uinf (x) (3.137)
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The shear force per length unit dNsup/dx = −dNinf/dx is assumed to be proportional to the

horizontal relative displacement δ(x):

p(x) = k · δ(x) =
dNsup

dx
= −dNinf

dx
(3.138)

The shear stress is:

τ =
p(x)

b
(3.139)

The axial deformations of the upper and the lower part are governed by the following equations

[5]:

Nsup = EsupAsup ·
dusup
dx

(3.140)

Ninf = EinfAinf ·
duinf
dx

(3.141)

Eq. 3.137 inserted in Eq. 3.138:

k(usup − uinf ) =
dNsup

dx
(3.142)

k(usup − uinf ) = −dNinf

dx
(3.143)

By differentiating Eq. 3.140 and Eq. 3.141, and inserting in Eq. 3.142 and Eq. 3.143, the

following system of homogeneous differential equations of II. Order is obtained:

dNsup

dx
= EsupAsup

d2usup
dx2

= k(usup − uinf ) = kδ (3.144)

dNinf

dx
= EinfAinf

d2uinf
dx2

= −k(usup − uinf ) = −kδ (3.145)

The horizontal relative displacement is governed by the following differential equation. Eq. 3.137

combined with Eq. 3.140 and Eq. 3.141 can be written as follows:

dδ(x)

dx
=
dusup
dx

− duinf
dx

=
Nsup

EsupAsup
− Ninf

EinfAinf
(3.146)

As shown by Marti [5], Eq. 3.146 differentiated and combined with Eq. 3.138 becomes:

d2δ(x)

dx2
− δ(x)k

( 1

EsupAsup
+

1

EinfAinf

)
= 0 (3.147)

The solution can be written as follows:

δ(x) = C1e
λx + C2e

−λx (3.148)

Where:

λ =

√
k

EA
(3.149)
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1

EA
=

1

EsupAsup
+

1

EinfAinf
(3.150)

To determine the coefficients of the differential equation, the following boundary conditions are

used according to Fig. 3.22(a):

Nsup(x = 0) = −TNi (3.151)

Ninf (x = 0) = TNi (3.152)

Nsup(x = lN ) = 0 (3.153)

Ninf (x = lN ) = 0 (3.154)

The coefficients are:

C1 =
TNi · 1

EA

λeλ·2lN − λ (3.155)

C2 =
TNi · 1

EA

λ− λe−λ·2lN (3.156)

The shear stiffness k of the middle zone can be estimated according to Fig. 3.22(b). If it can

be assumed that the timber is homogeneous and does not contain cross layers, the transverse

displacement of the middle zone ∆x can be written as follows:

∆x =
τ

G0
· hs =

p

b ·G0
hs (3.157)

The shear stiffness k can be calculated by inserting Eq. 3.157 in Eq. 3.138:

k =
p

∆x
=
b ·G0

hs
(3.158)

If the timber member contains a cross layer with a thickness of hs,R in the middle of the shear

zone, under the assumption that GR = 0.1G0, the transverse displacement of the middle zone

∆x can be written as follows::

∆x = 2∆x0 + ∆xR = 2 · p · hs,0
b ·G0

+
p · hs,R
b ·GR

(3.159)

The shear stiffness k can be calculated by inserting Eq. 3.159 in Eq. 3.138:

k =
p

∆x
=

b ·G0

2hs,0 + 10hs,R
(3.160)

Figs. 3.23 - 3.26 illustrate a parametric study concerning a 15 mm deep notch of a timber-

concrete composite slab made of a 40 mm thick beech LVL plate. The middle shear zone is

assumed to be 10 mm deep. The geometric and material parameters assumed for the calculations

are summarised in Fig. 3.23. Basically, two different veneer configurations were treated (Fig.
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Figure 3.23: Parametric study on the elastic shear stress distribution in beech LVL: (a) geometry and

material parameters; (b) veneer configurations

3.23(b) ): a beech LVL plate with or without a cross layer in the middle of the shear zone hs.

This influences the parameter k according to Eq. 3.158 and Eq. 3.160 .

Fig. 3.24 illustrates the distribution of the horizontal relative displacement δ calculated

according to Eq. 3.148 for four notch lengths used in practice between 150 and 300 mm. The

curves denote a non-linear distribution of δ with a peak close to the notch edge where the

load TNi is introduced (x = 0). A decrease in the parameter k causes an increase in relative

displacement due to lower stiffness of the system. For both parameters k, in the cases studied,

the value of the peak is not significantly influenced by a variation of the notch length.
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Figure 3.24: Parametric study of the elastic distribution of the horizontal relative displacement in beech

LVL: (a) without cross layer; (b) with cross layer
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Fig. 3.25 illustrates the elastic shear stress distribution calculated according to Eq. 3.148,

Eq. 3.138 and Eq. 3.139 for four notch lengths used in practice between 150 and 300 mm. In

a similar way to the relative displacement δ, the curves of the elastic shear stress τ denote a

non-linear distribution with a peak close to the notch edge where the load TNi is introduced.

However, in this case, a decrease in the parameter k causes a decrease in the shear stress peak

due to lower stiffness. If k decreases, the peak decreases, and the shear stress is distributed over

a longer effective length (3.25(b)). Also in the case of τ , for both parameters k, the value of the

peak is not significantly influenced by a variation of the notch length.
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Figure 3.25: Parametric study of the elastic shear stress distribution in beech LVL: (a) without cross

layer; (b) with cross layer

Fig. 3.26 shows the peak values of the shear stress τ and the horizontal relative displacement

δ in the case of a notch subjected to a force of T = 100 kN as a function of the notch length lN .

The peaks of τ and δ decrease in a non-linear way and follow an asymptotic behaviour. From

a determinate value of the notch length lN , the peaks of δ and τ remain constant. This limit

length increases with decreasing stiffness parameter k. The higher the parameter k, the smaller

δ(x = 0), the higher τ(x = 0), and the faster the decrease in δ(x = 0) and τ(x = 0).

It must be reminded that this model, which divides the timber in three sectors, is strongly

simplified. The stiffness parameter k has a relevant influence on τ and δ, but is very difficult to

quantify because the thickness of the middle part subjected to shear hs in unknown and must

be assumed. In general, a thicker shear zone hs and a weaker timber cause a smaller value of k.

Concerning the development of timber-concrete composite slabs made of beech LVL plates,

the following conclusions can be made:

� This study is valid for the estimation of a completely elastic behaviour, in other words,

for low load levels.

� Although the model is a rough simplification of the reality, it allows to understand the

mechanism of elastic shear-carrying in a timber notch.
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� Regarding the notches of timber-concrete composite members made of beech LVL plates

with dimensions similar to the cases studied, a variation of the notch length lN between

the values considered (150-300 mm) does not influence the peak of the elastic horizontal

relative displacement in a significant way because the notch lengths considered are located

in the asymptotic part of Fig. 3.26(a). Therefore, according to this model, the part of

the notch shear stiffness at service level due to the LVL deformations is not significantly

influenced by the notch length.

� For the notches made of beech LVL analysed, the part of the LVL which carries most

of the elastic shear stress corresponds only to the first part of the notch length lN (Fig.

3.25). This result agrees with previous investigations cited in Section 2.4.4. The fact that

the peak of τ decreases asymptotically agrees with the numerical simulations conducted

by Michelfelder [33]. However, since the value of hs is very difficult to quantify, an exact

comparison of the results is challenging.
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Figure 3.26: Influence of the notch length on the peak values of the relative displacement and the shear

stress: (a) relationship between the notch length lN and the peak of the horizontal relative displacement

δ(x = 0); (b) relationship between the notch length lN and the shear stress peak τ(x = 0)

Model for the failure prediction

The mechanism of a shearing-off failure in timber is very difficult to model because timber can

be classified as a semi-brittle material and a series of micro structural mechanisms are capable of

dissipating strain energy [45]. Because of the complexity of the micro-structure of wood, these

mechanisms are difficult to quantify.

In Fig. 2.10(b), Smith at al. [45] idealised the behaviour of timber subjected to tension

perpendicular to the grain by means of an elastic phase, a pre-peak non-linearity, and a strain

softening. This implies that probably also a shearing-off failure in the timber close to the notch

is governed by similar principles (Fig 3.27). When the elastic shear stress peak at x = 0 reaches
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a value which is enough to initiate a fracture of the material, the timber part of the composite

member does not fail in a brittle way, but probably begins a softening process close to x = 0

and the shear stress in the other zones increases. This means that, at failure level, the shear

stress distribution probably differs from the elastic distribution.
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Figure 3.27: Qualitative stress redistribution during the shearing-off failure of the timber

Since the mechanisms, which are capable of dissipating strain energy, depend on the mi-

croscopic structure and imperfections of wood, the shear stress redistributions at failure level is

very difficult to quantify. Therefore, for the following calculations, it is assumed that, at failure,

the shear stress redistributes rectangularly over the length 8 · tN [59]. This rule is widely used in

practice and was described in Section 2.4.4. Furthermore, Colling [59] suggested that the notch

length must be at least equal to 8 · tN . Nevertheless, it has to be taken into account that this

stress distribution, although it is suitable for engineering applications, is a rough simplification

of reality.

Fig. 3.28 illustrates the model adopted to study the shearing-off failure of the timber close

to the notch caused by the introduction of the force TNi. It is assumed that the shear stress is

transferred over a shear area located at a depth of z = tN . Furthermore, it is assumed that,

along the shear area, no axial stresses in x-direction occur. The critical element is located in

the shear area at a depth of tN , close to the notch edge. This element is subjected to a shear

stress τ2,Ni and to a vertical stress perpendicular to the grain σ2z,Ni.

According to the approach by Colling [59], the shear stress is assumed to be constant over the

length 8tN and is estimated as follows:

τ2,Ni =
TNi

bNi · 8tNi
(3.161)

The vertical stress σ2z,Ni is due to the distance in z-direction between the point of action of the

notch force TNi and the shear plane and can be calculated according to Eq. 3.127. The influence

of the vertical stresses close to the support can be quantified with Eq. 3.128.

If the vertical stress perpendicular to the shear surface σ2z,Ni is neglected, the notch force,

which causes a shear failure of the timber, can be calculated as follows:
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Figure 3.28: Model for the prediction of the shearing-off failure of the timber close to the notch

T ∗R,2S,Ni = fv,2 · bNi · 8 · tN (3.162)

If the stress perpendicular to the shear area must be taken into account, the problem can be

investigated using the Tensor Polynomial theory (Eq. 2.29) [51] explained in Section 2.4.1. Since

it is assumed that no axial stress in x-direction occurs close to the shear area, the interaction

term F12 is not needed, and the failure function can be written as follows:

FF,2S,Ni =

(
1

ft,90,2
− 1

fc,90,2

)
· σ2z,Ni +

1

ft,90,2fc,90,2
· σ22z,Ni +

1

f2v,2
· τ22,Ni = 1 (3.163)

The force TR,2S,Ni, when a shearing-off failure of the timber occurs close to the notch Ni, can

be estimated using the following inequality condition:

FF,2C,Ni ≥ 1 (3.164)

Figs. 3.29 - 3.31 summarise a parametric study on the application of the Tensor Polynomial

model (Eq. 3.163) to predict a shearing-off failure of the timber close to the notch. The

calculations refer to a timber-concrete composite slab made of a beech LVL plate, in which the

width of the notches is proportional to the shear force generated by a uniformly distributed

vertical load. This parametric study concentrates on the influence of the notch length lN and

depth tN on the failure load of the notch. The material and geometric parameters are shown in

Fig. 3.29(a).

Fig. 3.29(b) illustrates the theoretical interaction between the shear stress τ2 and the ver-

tical stress perpendicular to the grain σ2z according to the Tensor Polynomial theory expressed

in Eq. 3.163. The stress combinations, which cause a failure, are located above the envelope of

the failure criterion. A compressive stress perpendicular to the shear plane (σz < 0) increases

the shear strength until a determinate level, whereas a tensile stress perpendicular to the shear

plane (σz > 0) facilitates the shear failure.
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Figure 3.29: Parametric study on the prediction of the shearing-off failure of the beech LVL plate

close to the notch: (a) geometry and material properties; (b) envelope of the Tensor Polynomial theory

according to Eq. 3.163

Fig. 3.30 refers to the prediction of the shearing-off failure of the second notch from the

support (N2) by means of the Tensor Polynomial model (Eq. 3.163) and the simplified formula

of Eq. 3.162. The notch N2 is subjected to shear and tension perpendicular to the shear area

according to Fig. 3.28, and the same principles govern the behaviour of all other notches except

for the notch close to the support (N1), which has the positive influence of the compression

stresses coming from the load introduction in the support.

As shown in Fig. 3.30(a), an increase of the notch length lN causes a non-linear increase

of the failure load TR,2S,Ni with asymptotic behaviour. The reason is that an increasing length

provokes a decrease of the vertical tensile stress according to Eq. 3.127, whereas, according to

the model of Fig. 3.28, the area of distribution of the shear stress depends only on the notch

depth tN . Therefore, from a determinate notch length forward, the vertical tensile stress does

not play a significant role, and the outcome of Eq. 3.163 gets closer to Eq. 3.162.

As illustrated in Fig. 3.30(b), an increase in depth tN has two opposing consequences on

the failure load calculated according to the Tensor Polynomial theory:

� According to Eq. 3.161, the area of the shear plane where the notch force is distributed

increases, and the shear stress decreases. Thus, the failure load TR,2S,N2 tends to increase.

� From a determinate value of tN , the tensile stresses generated by the eccentricity between

the shear plane and the action point of the notch force become relevant and cause a

decrease in failure load TR,2S,N2 according to Eq. 3.127.

As a result, with increasing notch depth tN , the curve of the failure load TR,2S,Ni calculated

according to the Tensor Polynomial theory (Eq. 3.163) tends to shift from the failure load

T ∗R,2S,Ni obtained by neglecting the vertical stress (Fig. 3.30(b)).
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Figure 3.30: Parametric study on the prediction of the shearing-off failure in beech LVL: (a) influence

of the notch length lN on the failure force of the second notch TR,2S,N2 calculated according to Eq. 3.163,

and comparison with T ∗
R,2S,N2 calculated without the influence of σ2z,N2 according to Eq. 3.162; (b)

influence of the notch depth tN on the failure force of the second notch TR,2S,N2 calculated according

to Eq. 3.163, and comparison with T ∗
R,2S,N2 calculated without the influence of σ2z,N2 according to Eq.

3.162

Fig. 3.31 shows the relationship between the vertical load q acting on the slab and the

value of the failure function FF,2S,Ni according to Eq. 3.163. The vertical load q is calculated

according to Section 3.3.3 from TNi. The load qR,2S,Ni, which causes the shear failure of the

LVL, corresponds to the intersection between the failure function FF,2S,Ni and the horizontal

line FF,2C,Ni = 1. These diagrams also show the shear failure load q∗R,2S calculated without the

influence of the vertical stress according to Eq. 3.162. Fig. 3.31(a) refers to a notch length of

250 mm and Fig. 3.31(b) to a notch length of 160 mm. In both cases, the failure function is

calculated for a notch depth of 15 and 20 mm.

For notch N2 (and basically for all notches except for the notch close to the support), an

increase of lN implies two opposing consequences:

� According to Section 3.3.3, the notch gets a higher force TNi. Therefore, the load q which

causes the failure tends to decrease.

� On the other hand, as shown in Fig. 3.30(a), an increase of lN has a positive influence on

the shearing-off failure and contributes to increase TNi and q.

As shown in Fig. 3.31, according to the model of Fig. 3.28, in the notch close to the

support (N1), the vertical pressure compensates the tensile stresses due to the eccentricity, and

the prediction made with the Tensor Polynomial theory corresponds approximately to the load

q∗R,2S calculated without the vertical stress according to Eq. 3.162. However, for the other

notches of the composite member, the failure load qR,2S,Ni is considerably smaller than q∗R,2S ,

and this tendency increases with decreasing notch length.
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Figure 3.31: Relationship between the vertical load acting on the slab and the failure function of Eq.

3.163, and comparison with the failure loads obtained without considering the vertical stress: (a) notch

length lN = 250 mm; (b) notch length lN = 160 mm

For the development of a timber-concrete composite slab made of a beech LVL plate with

a notched connection, the following conclusions regarding the shearing-off failure can be drawn:

� The model and the strength criterion presented help to understand the influence of several

parameters, but contain rough idealisations of reality. The uniform shear stress distribu-

tion over a length of 8tN is a rough idealisation. Furthermore, the assumption of linear

distribution of the stress perpendicular to the shear area over the entire length lN is a

simplification. Non-linearities and stress peaks may occur.

� The influence of tensile stresses perpendicular to the shear plane should be taken into

account as it is accounted for in Eq. 3.163.

� The shorter and deeper the notches, the higher the influence of the tensile stress perpen-

dicular to the shear plane generated by the eccentricity.

� For design purposes, since the shearing-off failure of LVL should be prevented, the positive

influence of the vertical pressure on the behaviour of the notch close to the support (N1)

should be neglected.

3.3.7 Failures of the timber cross-section

In a timber-concrete composite member, the timber cross section is subjected to axial tension,

bending and shear (Section 3.2.3). For engineering applications, the following two failure modes

are considered:

� combined tensile-bending failure of the cross-section

� shear failure of the cross-section
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The equations to predict these failures are presented in Section 3.2.3. To design a LVL-concrete

composite member with ductile notched connection, these failure modes should be prevented.

In contrast to other connection systems, notches imply a local weakening of the timber cross-

section, because they are cut out from the timber part. Thus, the cross section of the timber is

locally reduced. A load-carrying capacity analysis of the timber cross-section should take into

account this effect.

For design purposes, a simple and conservative approach to take into account this problem

is to neglect the height of the timber corresponding to the notch depth (Fig. 3.32). In this way,

the stress calculation is performed using a reduced cross-section of the timber part.

effective timber part

 x

xy
z

h2

tN

notch

h2
,e

ff

x y
z notch

Cross-section Longitudinal section

effective timber part

Figure 3.32: Simplified model to take into account the influence of notches in the load-carrying capacity

analysis of the timber cross-section

3.3.8 Concrete failures close to the notch

Combination of shear and tension

In timber-concrete composite slabs with notched connections, the transfer of the shear forces

in the concrete represents a critical point, in particular, if the notches are located in a zone

where the concrete part is cracked. To develop a ductile timber-concrete composite slab, shear

and flexural-shear failures of the concrete should be prevented because they are brittle. One of

the main discussion points is if it is possible to design timber-concrete composite members with

notched connections without vertical reinforcement in the concrete. To answer this question, a

model to study the shear transfer in the concrete without vertical reinforcement is necessary.

As explained in Section 2.5.3, the development of a reliable model for the transfer of

shear and tensile stresses in a concrete member without vertical reinforcement is considerably

more difficult than in the case of a member with vertical reinforcement. The difference can be

summarised as follows:

� If the concrete member is provided with a vertical shear reinforcement, the load-carrying

mechanism can be modelled by means of a truss model: the reinforcement is subjected to

tension, and the concrete to compression.

� If the structure lacks of vertical reinforcement, the shear and the tensile stresses are carried

by the concrete, and the failure is governed by the crack layout, the tensile strength and

the aggregate interlock of concrete. The tensile strength of concrete and the aggregate



90 Chapter 3. Model

interlock of cracks are subject to a high variability and the crack layout is difficult to

predict. Thus, failure is challenging to predict.

The purpose of this section is to develop a simplified model to study the shear and flexural-

shear failures in the concrete part of a timber-concrete composite slab with a notched connection

lacking of vertical reinforcement, to understand its limits, and to judge its suitability for design.

This model is based on the cantilever models (e.g. [73]) and does not take into account crack

friction (i.e. diverges from the current state-of-art in reinforced concrete where accounting for

shear on crack face has become common in members without shear reinforcement). Fig. 3.33

shows a sector of the concrete part separated from the timber part. The forces transferred in

the notches are represented with TNi and the model assumes that the flexural-shear cracks are

located close to the force transfer points of the notches. This crack configuration is based on

experimental observations and, in the model, the cracks are assumed to grow with an angle of

about 45◦ (Sections 4.2 and 4.4). The crack depth hcr is calculated according to Eq. 3.28. The

concrete layer is modelled with a series of cantilevers delimited by the flexural-shear cracks, fixed

in the compression zone, and subjected to the notch forces TNi.

As shown in Fig. 3.33, each cantilever can be separated and the forces necessary for the

equilibrium can be calculated. Then, the critical planes can be determined. In this case, they

are indicated with the abbreviations 1V, 1S and 1F. The planes 1S and 1F are subjected to shear

stresses τ1x parallel to the plane and axial stresses σ1z perpendicular to the plane generated by

the eccentricity of the notch force TNi. In contrast, on the plane 1V, vertical shear stresses τ1z

and compressive axial stresses σx act. The shear stresses are assumed to be constant over the

entire shear plane and the axial stresses due to the eccentricity of TNi are assumed to be linearly

distributed over the plane.

In each plane, there exists a point, where the combination of axial and shear stress is critical.

The identification of the critical points is shown is Figs. 3.34 and 3.35. In these critical points,

the stress interaction is analysed using the modified Mohr-Coulomb failure criterion according

to Marti [5] described in Section 2.5.2.

The equation of the line which describes the interaction between shear and compression is:

τ = −3

4
σ +

fc,1
4

(3.165)

The equation of the circle which refers to the interaction between shear and tension can be

written as follows:

(
σ +

fc,1
2
− sin(ϕ)ft,1

1− sin(ϕ)
− ft,1

)2

+ τ2 =

(
fc,1
2
− sin(ϕ)ft,1

1− sin(ϕ)

)2

(3.166)

Where ϕ is the angle of the internal friction, fc,1 is the compressive strength of concrete, and

ft,1 the tensile strength of concrete.
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Figure 3.33: Cantilever model to describe the structural behaviour of the concrete part of a timber-

concrete composite slab with a notched connection lacking of vertical reinforcement

As shown in Fig. 3.34, the failure in plane 1S can be simplified to a combination of shear

and tensile stresses. The critical point for this stress combination is the notch edge close to

the introduction of TNi because the tensile stress in this point is maximal. The failure load

is estimated using Eq. 3.166. This failure does not depend on the layout of the flexural-shear

cracks. Nevertheless, the distribution of the stresses over the entire notch length is a rough

assumption.

The shear stress in the plane 1S can be estimated as follows:

τ = τ1x =
TNi

bNih1S
(3.167)
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The tensile stress in the critical point of the plane 1S is due to the eccentricity of TNi in respect

of the plane 1S and can be estimated as follows:

σ = σ1z =
3TNitN
bNih21S

(3.168)

By inserting Eq. 3.167 and Eq. 3.168 in Eq. 3.166, it is possible to estimate the notch force

TR,1S,Ni which causes failure along plane 1S.
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Figure 3.34: Concrete failure 1S

The failure along the plane 1F can be idealised as a sudden propagation of an existing

flexural-shear crack due to a combination between shear and tensile stress according to Fig.

3.35. As summarised in Section 2.5.3, this mechanism was observed in reinforced concrete slabs

without vertical reinforcement [68]. This failure is difficult to predict because it depends on the

position and the length of the cracks.

The width of the effective area of the plane 1F can be estimated by means of two limits. If there

is no load expansion in y-direction, the effective width of the plane 1F is:

b1F,inf = bNi (3.169)

Under the assumption of a load expansion of 45◦, the effective width of the plane 1F is:

b1F,sup = bNi + 2hcr (3.170)

Since it was observed that the cracks grow approximately in a diagonal way (Sections 4.2 and

4.4), the flexural-shear cracks are assumed to be inclined by 45◦. The effective height of the

plane 1F is simplified as follows:

h1F = 2lN − hcr (3.171)
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The shear stress acting on the plane 1F can be estimated as follows:

τ = τ1x =
TNi

b1Fh1F
(3.172)

The tensile stress in the critical point of the plane 1F can be estimated as follows:

σ = σ1z =
6TNi

(
hcr + tN

2

)
b1Fh21F

(3.173)

The critical point of the plane 1F is subjected to a combination of shear and tension. Thus,

by inserting Eq. 3.172 and Eq. 3.173 in Eq. 3.166, it is possible to estimate the notch force

TR,1F,Ni which causes failure along the plane 1F.
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Figure 3.35: Concrete failure 1F

The model for vertical shear failure along the plane 1V is described in Fig. 3.36. In

this zone, there is a combination of shear and compression stresses. Since, according to the

Mohr-Coulomb failure criterion, the axial compression stresses have a positive influence on

the shear failures, the worst case is represented by the areas close to the supports, where the

compression stresses in the concrete are minimal. Therefore, in the following calculations, the

axial compression stresses in the concrete are neglected.

According to Fig. 3.36, if the notch is subjected to a horizontal force TNi, the vertical shear

force in the concrete V1z,Ni, which ensures equilibrium, can be written as follows:

V1z,Ni = TNi ·
h∗1
2lN

(3.174)

where h∗1 is the distance between the action points of the notch force TNi and the horizontal

concrete compression forces Ci and Ci+1. For state II, this parameter can be calculated as

follows:
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h∗1 = h1 −
1

3
xII +

tN
2

(3.175)

The effective width of the plane 1V can be estimated by means of two limits:

b1V,inf = b1F,inf = bNi (3.176)

b1V,sup = b1F,sup = bNi + 2hcr (3.177)

The shear stress acting in the plane 1V is:

τ1z =
V1z

h1V b1V
(3.178)

Since the concrete compression is neglected, the failure load can be estimated using the following

equation:

τ1z =
fc
4

(3.179)
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Figure 3.36: Concrete failure 1V

Figures 3.37 and 3.38 illustrate the influence of a variation of the geometric parameters of

the composite member on the failure modes 1S, 1F and 1V predicted according to the model.

The calculations are performed for the second notch (N2) of a timber-concrete composite slab

made of a beech LVL plate and a concrete C50/60 according to the Swiss Standard SIA 262

[66] (Fig. 3.37(a)). The reason for the choice of such a high quality concrete is that the

behaviour of the LVL-concrete composite members developed in this thesis should be governed

by compressive failure of the LVL in the notch. Since the LVL and concrete are subjected to

the same compressive stress in the notch edge, the compressive strength of the concrete must be
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higher than the compressive strength of the beech LVL (Tab. 2.1). The thickness of the timber

and concrete are varied, but the total thickness of the slab is constant and amounts to 200 mm.

Fig. 3.37(b) illustrates the influence of the notch depth tN on the failure loads TNi of

a composite member made of beech LVL with a timber thickness of 40 mm and a concrete

thickness of 160 mm.

� The most sensible failure is the combined shear-tensile failure along the plane 1S because

tN/2 is the lever which generates tension due to the eccentricity of TNi.

� The concrete failures 1F and 1V are just slightly influenced because tN , in the cases

studied, represents only a small part of the lever.

Fig. 3.38 describes the influence of the notch length lN on the concrete failure loads TNi of

a composite slab made of beech LVL predicted with the model. Two cases are investigated: a

timber thickness of 40 mm (Fig. 3.38(a)) and a timber thickness of 80 mm (Fig. 3.38(b)). From

this parametric study, it results that the notch length influences the failures 1S, 1F and 1V in

a marked way:

� The failure load TR,1S,Ni increases with increasing notch length lN because the distri-

bution of the shear and tensile stresses depends on this dimension (Eq. 3.167 and Eq.

3.168). Furthermore, this failure load does not depend from the thickness of the timber

and concrete.

� The upper and the lower limit of the failure load TR,1F,Ni increase in a non-linear way

with increasing notch length lN because this dimension influences the distribution of the

shear and tensile stresses. Furthermore, if the timber thickness increases and the concrete

thickness decreases, the failure load TR,1F,Ni increases. The reason is that the concrete

thickness determines the lever which causes the tensile stress in the critical point of the

plane 1F. It has to be noticed that, for most of the notch lengths studied, this failure

happens with the smallest failure loads.

� The upper and the lower limit of the failure load TR,1V,Ni increase in a non-linear way

with increasing notch length lN because the vertical shear force V1z,Ni generated by TNi is

inversely proportional to lN . The member with a timber thickness of 80 mm shows higher

shear failure loads in plane 1V because the parameter h∗1 decreases and hence, V1z,Ni

decreases too. The failures in the plane 1V are calculated by neglecting the concrete com-

pression stresses. Nevertheless, these failures show very high failure loads in comparison

to the other failures of the concrete.

In conclusion, the models presented are appropriate to understand the causes of the failures

of the concrete, and the influence of several geometric and material parameters. However, the

design of the notches of a timber-concrete composite member without vertical reinforcement

based on these models is critical because of three reasons.

The first reason is the nature of the models. Although the models presented allow un-

derstanding the stress state of the concrete layer, they contain several factors, which are very
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Figure 3.37: Parametric study on the prediction of shear and flexural-shear failures in the concrete: (a)

parameters; (b) influence of the notch depth tN

difficult to predict, in particular if the notched connection is located in a zone where the con-

crete is cracked. Although, during several experiments, the cracks were concentrated close to

the notch edges (Sections 4.2 and 4.4), it is possible that, in reality, the cracks grow in a differ-

ent way, or that internal stresses, which are very difficult to predict, cause modifications of the

crack layout as well as the growth of new cracks. Therefore, since the cantilever model assumes

a determinate crack layout, its application will imply significant uncertainties. Furthermore,

there is probably a limited length for the distribution of σ1z and τ1x on the planes 1S and 1F,

which is very difficult to quantify and is not taken into account by the model. In the model, h1S

and h1F correspond to the maximum length available. Since these parameters govern section

modules, their variation implies significant deviations in prediction. In addition, if the notch is

very long (for instance lN = 400 mm), probably, during the loading of the slab, also additional

cracks between two notches might occur.

The second reason is that, in a timber-concrete composite member with a notched con-

nection, the cracks are usually concentrated in the notch edges and, consequently, they tend to

be wide. This implies the risk that there is no interlocking action which can contribute to the

load-carrying mechanism. Thus, the shear resistance of the concrete part is based only on the

tensile and shear strength of concrete, and a design without reinforcement becomes critical.

The third reason is that, if unexpected factors cause a shear or a flexural-shear failure,

the slab fails in a brittle way and the consequences are dramatic. This may happen because of

unexpected additional cracks or because of a load configuration which does not correspond to

the model assumptions, like for instance an isolated concentrated force. This possibility makes

a design without vertical reinforcement critical.

Therefore, although, according to the model, the notches of a timber-concrete composite

member can be theoretically designed to prevent shear or flexural-shear failures in the concrete,

it is recommended to provide vertical reinforcement. If the vertical reinforcement is designed to
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Figure 3.38: Parametric study on the prediction of shear and flexural-shear failures in the concrete: (a)

influence of the notch length lN in the case of a timber thickness of 40 mm and a concrete thickness of

160 mm ; (b) influence of the notch length lN in the case of a timber thickness of 80 mm and a concrete

thickness of 120 mm

carry the vertical tension which occurs in the concrete, the system is able to activate a ductile

load-carrying mechanism, and unexpected brittle failures are prevented.

Compressive failure

In a timber-concrete composite member with a notched connection, the transfer of the longi-

tudinal forces necessary for composite action generates compressive stresses in the notch edges

where the forces are transferred. Thus, both the timber and concrete are subjected to local

compressive stresses close to the notch edges. If the compressive concrete stress exceeds the

strength, failure of the concrete part of the composite member may occur.

The compressive stress state in the concrete depends on the geometric properties of the

composite member and the vertical reinforcement installed. Fig. 3.39(a) shows the compressive

stresses close to the notch edge acting on the concrete part of a composite member provided

with vertical steel reinforcement as an example. If a composite member is provided with vertical

steel reinforcement, the internal forces can be modelled by means of a truss model according

to Section 3.3.2. The vertical reinforcement carries the vertical tension forces, and the concrete

part is subjected to compression. The compressive force in the upper part of the concrete cross-

section is transferred to the notch edge by means of a diagonal compressive strut Ci, which can

be simplified as a concrete zone subjected to uniaxial stress. Fig. 3.39(a) represents a simplified

stress field of a zone of the concrete layer close to the notch edge drawn according to Muttoni

et al. [76]. As shown in Fig. 3.39(a), close to the notch edge, there is a concrete zone subjected

to biaxial stress (node).

With regard to the compressive failure of the concrete, the critical zone is the smallest

cross section area of the diagonal compressive strut, which usually corresponds to the interface
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between the node and the diagonal strut. The situation of the node is more favourable because

the restraint of transverse strain due to biaxial stress increases the compressive strength and

the ductility of the concrete [76]. The failure criterion for the critical cross section area of the

diagonal strut can be formulated as follows:

σi =
Ci

tN
cos(α) · bN

=
Ci · cos(α)

tN · bN
=

TNi
tN · bN

≤ fc (3.180)

The compressive failure of the diagonal strut is characterised by the formation of cracks

parallel to the stress direction, which generates small plastic compressive strains followed by a

softening process (Fig. 3.39(b)) [76]. The ductility of the compressive failure of such a diagonal

compressive strut is much smaller than the plastic compressive deformations of LVL which occur

in the notches (which can exceed 10 mm (Section 4.4)). Thus, since the LVL and concrete are

subjected to the same contact pressure close to the notch edge, compressive failure of the concrete

must be prevented by choosing a concrete with a compressive strength which is higher than the

compressive strength of the LVL parallel to the grain.
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Figure 3.39: (a) Compressive stress acting in the concrete close to the notch edge of a composite

member with vertical reinforcement; (b) stress-strain relationship of a concrete member subjected to

uniaxial compression [76]

3.3.9 Secondary effects during notch yielding (states III and IV)

If a timber-concrete composite member with a notched connection is designed so that a com-

pressive failure of the timber in the contact areas of the notches is governing, secondary effects

due to local plastic deformations of the timber can compromise the structural behaviour and

the ductility of the system during the plastic phase.

Firstly, since the concrete is more rigid than the timber and is brittle when subjected to

tension, it is not able to follow the compressive plastic deformations of the timber part. If two

notches close to each other develop slightly different plastic deformations, the existing concrete
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cracks tend to open and to become longer. This crack propagation can cause problems with the

shear transfer in the concrete and cause it to fail. This failure determined the end of several

experiments (Section 4.4). Fig. 3.40 illustrates a timber-concrete composite member where

notch N3 develops a larger plastic deformation than notch N4. The consequence is that the

existing flexural-shear crack, close to the edge of notch N4, grows. The problem of the different

plastic deformations of the notches is difficult to predict because it can be influenced by several

factors. These include the position of the compression zone, the crack height, and the load

position, which, in reality, can deviate from the distributed load assumed in the model.
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Figure 3.40: Enlargement of the existing cracks due to plastic compressive deformations of the timber

Secondly, during yielding of the notches, a vertical opening of the gap between the timber

and concrete may occur and compromise composite action (Fig. 3.41). This was observed

during the plastic phases of composite members with notched connections, tested in bending

with uniformly distributed vertical loads (e.g. Section 4.4). This gap opening is difficult to

quantify and to predict, but is likely caused by a combination of the following phenomena:

� The compressive failure of the timber in the notch in the longitudinal direction causes a

volume expansion of the timber in vertical direction, which pushes the concrete part of

the composite member out of the notch (Fig. 3.41(a)).

� The notch edge subjected to compression yields, and hence, the concrete may slide out

of the notch (Fig. 3.41(b)). This phenomenon was observed by Frangi and Fontana [2]
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during shear tests on notches. The plastic deformation capacity of the notches without

mechanical fasteners was limited by the sliding out of the concrete.

� The crack opening, described previously, causes a sort of hinge in the concrete part of the

composite member. Therefore, the concrete tends to bend in an angled way, whereas the

timber part bends in a parabolic way (Fig. 3.41(c)).

� During state IV, a plastic zone develops, in which rotation of the cross-section occurs

(Fig. 3.41(d)). Due to the yielding of the interface, the compressive strain of the concrete

increases until a value of about εu,1 ≈ 0.003. According to Section 3.2.5, the behaviour can

be simplified by assuming that the plastic zone behaves like a hinge, and the other zones

of the slab tend to rotate like rigid bodies. Therefore, if the two parts of the composite

member are not connected vertically, the gap tends to open. The reason is that the timber

part is a continuum and tends to bend following a parabola.

u
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vertical timber deformation

(a)
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u

(b)

gap opening enlarged flexural-shear cracks

(c)

III +IV
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Figure 3.41: Causes of gap opening during plastic deformation of the notches (states III and IV); (a)

vertical extension of the timber due to a longitudinal compressive failure; (b) sliding out of the concrete

part due to deformations of the contact area; (d) enlargement of flexural-shear cracks; (c) local rotation

of the plastic zone

These secondary effects, which occur during yielding of the notches, represent a problem

because they may compromise the structural behaviour of the composite member. Since notch

yielding is characterised by large deformations under large loads, these secondary phenomena

are very unstable and difficult to predict. One solution is to provide end-to-end vertical rein-

forcement to:

� transfer the vertical tension in the concrete even if the cracks occur due to notch yielding

and to keep these cracks closed

� prevent gap opening after compressive failure of the timber
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Further details of this reinforcement are illustrated in Sections 3.3.10 and 3.3.11.
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3.3.10 Vertical reinforcement to carry the vertical tension in the concrete

The vertical reinforcement has to be designed to carry the vertical tension which occurs in the

concrete part of the composite member. When the vertical reinforcement becomes active, the

load-carrying mechanism in the concrete acts as a truss. This section presents a simple method

to design such reinforcement.

The first issue is the position of the vertical reinforcement. Fig. 3.43(a) shows a composite

member with notched connections cut free between the support and the mid-span. As illustrated

in Section 3.3.2, the notches carry the longitudinal forces TNi to ensure composite action. As

explained in Section 3.3.8, a notch subjected to a force TNi can be modelled as a cantilever fixed

in the compression zone (Fig. 3.43(a)). Therefore, the impact of vertical steel reinforcement on

the notch can be compared to the effect of longitudinal tensile reinforcement in a console.

Figs. 3.43(b), 3.43(c) and 3.43(d) show a qualitative representation of the influence of a

vertical steel reinforcing bar on the structural behaviour of a concrete notch located between the

left support and the mid-span of a composite member, subjected to a positive bending moment.

The stresses represented are greatly simplified and are derived from theoretic considerations.

Fig. 3.43(b) represents the elastic stresses and strains in z- direction due to the notch force

TNi when the concrete is elastic and uncracked in x-direction. It can be seen that the maximal

elastic tensile stress occurs close to the left edge of the notch. As in all reinforced concrete

structures, the tensile reinforcement must be placed where the tensile stresses are maximal, so

that the reinforcement is ready to carry the tensile stresses after the concrete begins to crack.

Furthermore, the lever which generates the resisting moment is maximal here. Fig. 3.43(c) shows

the elastic-cracked state, in which only the vertical steel reinforcement carries the tension, and

the tensile stress in the steel is smaller than the yielding limit. The plastic state is shown

in 3.43(d): the steel reinforcement yields and the stresses in the concrete redistribute. Thus,

vertical reinforcement should be placed where the tensile stresses in the concrete are maximal.

If the reinforcement is installed in a different position, the crack has to open more before the

reinforcement carries tension.

To be able to carry tensile stresses, the reinforcement must be anchored in the compression

zone (3.42(b)). Furthermore, between the reinforcement and the notch border, a minimum

spacing, which depends on the maximum aggregate size, must be respected, according to Fig.

3.42(d).

When the position of the vertical reinforcement is determined, the composite member can

be cut free, and truss models can be drawn according to Section 3.3.2, as shown in Fig. 3.42(a).

As explained in Section 3.3.2, the vertical tensile force in the concrete Ti, carried by the vertical

reinforcement close to notch Ni, corresponds to the vertical shear force in the concrete (V1) close

to this notch and to the vertical component of the compression diagonal Di. The simplest way

to calculate the tensile forces of the reinforcement is to determine the notch forces TNi according

to Section 3.3.3 by integrating the elastic shear stresses at the interface. As shown in Section

3.3.2, since a horizontal force TNi is transferred in notch Ni, the tensile force in the concrete Ti

can be calculated by considering the equilibrium of the node of the truss model close to notch

Ni as follows:
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Figure 3.43: Stresses and strains in the concrete and in the vertical reiforcement due to the horizontal

shear force TNi: (a) timber-concrete composite member with notched connections cut free between the

left support and the mid-span; (b) elastic uncracked state; (c) elastic cracked state; (d) plastic state

∑
Fy = 0⇒ Ti = TNi ·

h∗1
s

(3.181)

where s is the distance between two points where the notch force TNi is introduced and h∗1 is the

distance between TNi and the resulting compression in the concrete, calculated in Eq. 3.111.

The steel area, which is needed to carry the vertical tension Ti due to TNi, can be calculated

as:

As,T,Ni =
Ti
fs

=
TNi · h∗
s · fs

(3.182)

where fs is the tensile strength of the reinforcement.

The critical cross-section of the diagonal compression strut is located close to the notch

edge and can be estimated with the notch depth. Therefore, the problem can be reduced to the

failure 1C,n, explained in Section 3.3.8.

In the case of a timber-concrete composite member with common notch dimensions at the

ultimate limit state, the presence of a vertical reinforcing bar in z-direction generates a direct
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bracing like in a short console (Fig. 3.42(b)). However, if the compressive diagonal strut were to

be long and have a small angle to the tensile reinforcement, the load-carrying capacity would be

compromised by concrete cracks. For practical dimensions, this is not the case. This means that,

if a timber-concrete composite member with a notched connection is provided with a sufficient

area of vertical steel As,T,Ni, shear failures (1S and 1V) and flexural-shear failures in the concrete

(1F) are unlikely to occur.

Fig. 3.42(c) shows a detailed qualitative representation of the load transfer in a notch

with a screw fixed in the timber under the assumption that the screw does not transfer shear

(the dowel action is neglected). In this case, the timber can be idealised as the lower head of

the screw. The horizontal component of the diagonal concrete strut corresponds to TNi and is

transferred to the timber part through the notch edge. In contrast, the vertical component of

the diagonal strut pushes the timber plate vertically. This vertical component is transferred to

the screw through the screw thread. The screw transfers the vertical component to the concrete

by means of the pressure of the head. Therefore, all timber stresses generated by the screw

are locally in equilibrium. However, the screw and the thickness of the timber part should be

designed to prevent a pull-out failure perpendicular to the grain. Furthermore, in reality, the

screws represented in Fig. 3.42(c) carry a part of the horizontal shear stresses, which occur

between the two layers.

If this reinforcement is provided by means of screws, the load is transferred from the

concrete to each screw by means of compressive contact in the head. Since the fresh concrete

is subjected to gravity, it is possible that a small gap exists below the head of each screw.

Therefore, in this case, the screw becomes active only after the concrete makes a determinate

deformation, and it can happen that the screw begins to carry the tensile force only after cracks

occur (Fig. 3.42(e)).

Even though, in the ductile LVL-concrete composite members developed in this thesis,

vertical steel reinforcement (e.g. screws) is recommended, it makes no sense to use this type

of reinforcement as a shear connector. The shear flow between the two parts of the composite

member should be carried by the notches, and the reinforcement should carry the vertical forces.

The first reason is that screws as shear connectors are markedly less stiff than notches [18]. The

consequence is an increase of the deformations of the composite member at the service level.

The second reason is that the ultimate shear deformation capacity of nails and screws, installed

as timber-concrete shear connections [86], is smaller than the maximum plastic deformation

of the timber subjected to compression in the notches [2], [87]. Therefore, the plastic shear

deformations of nails and screws will contribute to the ductility of the composite member in a

less effective way than notches.

Reinforced concrete structures should be provided with a minimum amount of reinforce-

ment. The most important reason is to prevent brittle failure as soon as the concrete cracks.

When a crack occurs, the reinforcement must not yield. Otherwise, since the reinforcement would

be in plastic conditions, it would not be able to carry the necessary tensile forces, and hence, a

brittle failure would occur. For conventional reinforced concrete structures subjected to bend-

ing, analytical models to assess the minimum longitudinal reinforcement are well-established [88].
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For vertical shear reinforcement, due to the higher complexity of the shear-carrying mechanism,

semi-empirical equations are used (e.g. [74]).

For timber-concrete notched connections with vertical steel reinforcement, the same prin-

ciple should be valid. In this section, a simplified analytical model to understand the most

important factors, which influence the minimum vertical reinforcement, is presented. The hor-

izontal cracks are assumed to open when the tensile stress exceeds the tensile strength of the

concrete, according to the cantilever model shown in Fig 3.35.

Since, until the end of the elastic uncracked state, the tensile force carried by the steel

is not relevant in comparison to the tensile force carried by the concrete, the influence of the

reinforcement is neglected. Hence, the notch force TN,cr, which causes concrete cracking, can be

estimated according to Fig 3.35 as follows:

TN,cr ≈
b1F · h21F · ft,1

6 · (hcr + tN/2)
(3.183)

The horizontal notch force TN,y, which occurs when the concrete is cracked and the vertical

reinforcement yields, can be estimated according to Eq. 3.182 as follows:

TN,y ≈ Asfy ·
s

h∗
(3.184)

To prevent brittle failure, the following condition should be valid:

TN,y ≥ TN,cr (3.185)

By inserting Eq. 3.183 and Eq. 3.184 in Eq. 3.185, the minimal amount of vertical reinforcement

close to notch i can be calculated as follows:

As,min ≈
h∗ · b1F · h21F

6 · s · (hcr + tN/2)
· ft,1
fs

(3.186)

This approach could be the starting point to develop a reliable criterion. However, some

significant simplifications are made. First of all, the crack position and the effective part of the

concrete which carries the stresses are unknown and must be assumed. Secondly, the interaction

between the tensile and the shear stresses in the concrete is neglected. In reality, as previously

described by means of the Mohr-Coulomb failure criterion, shear stresses acting in the critical

zone facilitate crack opening. However, a calculation neglecting the shear leads to a safe design

of the minimum reinforcement.

In conclusion, this section provides a simple method to decide the position and the amount

of reinforcement. The approach presented is based on theoretic considerations and analogies to

the current models available to design reinforced concrete members [76]. However, to validate

the models presented, further theoretic and experimental analyses are needed.

3.3.11 Vertical reinforcement to prevent gap opening

The amount of vertical reinforcement necessary to prevent gap opening can be estimated based

on the maximum deflection wu, which the composite slab should theoretically reach. It is
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assumed that, at mid-span, there is an enlarged crack, and, consequently, the concrete layer

deforms in an angled way, whereas the timber plate bends as a parabola (Fig. 3.44). The reason

for this conservative assumption is that it is very difficult to estimate the length of the sector in

which the gap opens.
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z

y
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l/4 l/4
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wu
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M y
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wwu

bending line of
concrete
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q(vu)
E2I2

timber

concrete

timber

Figure 3.44: Model to deign vertical reinforcement to prevent gap opening

The angle of the concrete deformation is:

α1,u = arctan(
wu
l/2

) (3.187)

Since it is assumed that the timber part of the composite member bends as a parabola, the

angled deformation of the concrete part causes a gap opening which can be idealised as the

projection vu of the difference between the deflection of the timber w2,u and the concrete w1,u

at x = l/4:

vu = (w2,u − w1,u) · cos(α1,u) =

(
3

4
· wu −

1

2
wu

)
· cos(α1,u) (3.188)

Since the bending stiffness of the concrete part is usually greater than that of the timber part,

an upper bound for the required force can be determined by applying a vertically distributed

force q(vu) on the timber part, which deforms it by vu. If it is assumed that the timber plate

has a hinge at the support and is rigidly fixed at mid span (Fig. 3.44), q(vu) can be estimated

as follows:

q(vu) = vu ·
369

2
· E2I2

(l/2)4
(3.189)

Finally, the steel reinforcement which is necessary to prevent the gap opening of the slab element

can be estimated as follows:

As,v =
q(vu) · l
fs

(3.190)
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3.3.12 Design strategies to achieve ductility

As a conclusion of the analytical models presented in this chapter, this section illustrates a

design procedure to achieve ductility in a timber-concrete composite member with a notched

connection.

A timber-concrete composite member with a notched connection shows a ductile behaviour

if a compressive failure of the timber inside the notch is governing. This means that the ultimate

load in plastic conditions qu, calculated according to the model presented in Section 3.2.5, must

be smaller than the loads corresponding to all the unwanted failure modes of the composite

member. To achieve this, it makes sense to use LVL materials instead of solid wood or glued

laminated timber, so that the failures of the timber part can be predicted with sufficient accuracy.

According to Fig. 3.45(a), the failures of a timber-concrete composite member with a notched

connection made of LVL should be designed to occur in the following order:

� Initially, the entire structure is elastic, and the concrete does not exhibit cracks. Then,

when the critical tensile stress of the concrete is reached, which mainly depends on the geo-

metrical properties of the cross-section, cracks occur. The corresponding bending moment

is named Mcr. This occurrence mainly depends .

� Afterwards, yielding of the notches should occur. This means that the bending moment

MR,2C , which causes a compressive failure of the LVL, should be the smallest of all fail-

ure moments of the composite member (My = MR,2C = min {MR,i}). After that, the

curvature of the cross-section begins to increase.

� Then, the compressive strength of the concrete fc,1 should be reached at the top of the

cross-section, making the end of the elastic behaviour of concrete (M1C,c). After that,

both the notches and the compression zone of concrete behave in a ductile way.

� The ultimate failure of the composite cross-section should be governed by the ultimate

compressive strain of concrete (εu,1 ≈ 0.003) on the top edge of the concrete cross-section

(Mu = M1C,u). This should cause a delamination of the concrete followed by a load

decrease and a further increase of the curvature.

� Eventually, the increase of the curvature after the concrete failure causes a combined

bending-tensile failure of the LVL cross-section (2BT). The ductility of this composite

system is limited by the rotation capacity of the LVL.

As illustrated in Section 3.3.9, a sufficient amount of vertical end-to-end reinforcement must

be provided to ensure ductility. The slab should contain As,v to prevent gap opening plus As,T,Ni

to carry the vertical tension in the concrete. It is important to note that the model calculates

qy and qu without taking into account a hardening of the notch during the compressive failure

of the LVL (2C). In reality, during compressive tests, a hardening of the LVL can be observed.

Thus, the load-carrying capacity of the vertical reinforcement must have a reserve in comparison

to the load qu calculated by the model. It is suggested to calculate the forces Ti from the notch
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Figure 3.45: (a) Design strategies to achieve ductility; (b) restraint due to vertical reinforcement

forces TNi = f(βh · qu) where βh is a factor, which takes into account the hardening phenomena

during the compressive failure (Fig. 3.45(a)).

Thirdly, it must be ensured that the vertical reinforcement allows the plastic deformations

of the LVL:

� This means that the horizontal shear forces TNi must be carried mostly by the notches,

and the vertical reinforcement should carry the vertical forces almost exclusively. Thus,

the vertical reinforcement must be as soft as possible if subjected to shear parallel to the

interface. This aspect can be quantified with the theory of Johansen [80], as shown by

Frangi [25]. For instance, screws should be as slender as possible.

� Since a compressive failure of the LVL part of the composite member implies significant

horizontal relative displacements at the interface, the end-to-end vertical reinforcement

must be able to follow these deformations without failing due to shear. A high slenderness

of the screws would contribute to fulfil this requirement. However, as shown by Timmer-

mann and Meierhofer [86], the ultimate deformation capacity of screws and nails (0.3−1.4

mm) is markedly smaller than the expected compressive plastic deformations of the LVL

in the notches, which reach more than 10 mm (Fig. 4.31). This means that the vertical

reinforcement should be provided with additional elements, which allow the development

of high relative displacements between the two parts of the composite member.

� The compressive failure of the LVL parallel to the grain implies a volume expansion in

the vertical direction. As illustrated in Fig 3.45(b), if a vertical reinforcement prevents

gap opening during yielding of the LVL, a restraint σ2z,Ni can develop. This causes a

hardening in the notch behaviour which has to be added to the hardening which usually

occurs during a compressive failure of the LVL. Thus, if the vertical reinforcement is too

stiff under tension or is pre-stressed, ductility can be compromised.
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3.3.13 Gap opening during state II

In many cases, in particular during four-point bending tests, a gap opening was already observed

during the elastic states (I and II) (e.g. [33], [89]). Gap opening may directly cause collapse of

the composite member, or facilitate other failure modes. For instance, in the timber part of a

timber-concrete composite member with a notched connection, if the gap opens, the eccentricity

between the notch force and the notch bottom increases, and thus, the tensile stresses in the

timber perpendicular to the grain increase. As a consequence, a shearing-off failure is facilitated.

However, this phenomenon is difficult to treat and there is no agreement about its causes.

As illustrated in Section 2.3.5, the existing studies assess several reasons for gap opening in a

composite system, such as differential bending deflections of the parts [19], different deflections

due to shear [43], and eccentricity between the interface and the centroids of the parts [43].

However, these phenomena are difficult to predict because they depend on the connection type,

the geometry and the material properties. In reality, a combination of these effects probably

occurs.

This section focuses on the uplift due to the eccentricity between the centroids of the mem-

bers and the interface, which was qualitatively explained by Chapman [43]. This phenomenon

is difficult to quantify, because it strongly depends on the boundary conditions, but can be un-

derstood with the simplified model presented in this section. Fig 3.46 shows a timber-concrete

composite member with a notched connection subjected to four-point bending as an example. In

this composite member, there are no connections which are able to carry vertical tensile stresses

in the interface. The shear forces T are transferred through the notches and are in equilibrium

with the axial forces N . The eccentricity in z-direction h∗i between the interface and the action

points of the axial forces causes bending of the parts of the composite member. The simplified

model illustrated in Fig 3.46 only considers the forces in x-direction acting in the zones subjected

to shear. To simplify the calculations, it is roughly assumed that the considered part of the slab

is simply supported.
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Figure 3.46: Simplified model to understand the gap opening during state II
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The distances in z-direction between T and N cause bending moments in the parts of the

composite member. Since the eccentricities h∗i are different, the moments Mi are different:

Mi = T · h∗i (3.191)

These moments Mi due to the eccentricity cause bending moments and curvatures in the parts

of the composite member. For the simplified situation of Fig. 3.46, the bending deformations of

the members can be calculated with the equation of kinematics according to Fig. 3.47.

As shown in Fig. 3.47, the maximum vertical displacement δi due to Mi, which takes place

at a distance of 3/4 · a from the supports, is calculated as:

δi =

∫
M · Mi

EiIi
dx =

115 ·Mia
3

1152 · EiIi
(3.192)

Since the two parts of the composite member are subjected to different bending moments and

have different geometrical and mechanical properties, they tend to exhibit different deformations

δi, which can cause a gap opening. These phenomena take place mainly in the zones of the

slab where connection forces are transferred. For instance, in the case of a composite member

subjected to four-point bending, the gap opening due to these deformations will occur between

the supports and the load.

The form of the bending line and the values of the displacements of the parts of the

composite member due to the eccentricity significantly depend on the boundary conditions, the

number of connections and the distance between the connections. Therefore, it can be concluded

that this phenomenon exists, but it is very difficult to quantify. A pragmatic solution is to install

vertical reinforcement which connects the two layers of the composite member.
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Figure 3.47: Static system for the equation of kinetics to find the deformations δi due to the eccentricity

between the action point of the axial force and the interface

3.4 Parametric study

In this section, the structural behaviour of several timber-concrete composite slabs with notched

connections is predicted applying the analytical models of Sections 3.2 and 3.3. The influence of

several parameters like the thickness of the parts of the composite member, the LVL properties,

the concrete properties and the span is studied.
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3.4.1 Materials and geometry

The timber-concrete composite members studied in this section are made of beech LVL and

spruce LVL, have a width of 530 mm, and a total thickness of 200 mm. The length of the slab

elements is 6 or 8 m, the notch width is proportional to the shear force generated by a uniformly

distributed vertical load, and the thickness of the LVL part is varied between 40 and 100 mm.

Four LVL plates are considered: 40 mm, 60 mm, 80 mm, and 100 mm thickness. Tables 3.3 and

3.4 summarise the mechanical properties assumed for LVL, concrete and vertical reinforcement.

It is assumed that the properties of the beech LVL plates considered in the parametric

study (Fig. 3.48(b)) correspond to the mean values of the material with cross layers developed

by the company Pollmeier (Fig. 3.48(a)) tested by van de Kuilen and Knorz [14], [15] described

in Section 2.2 (Tab. 2.1). In reality, there are slight differences in amount and position of cross

layers. All LVL plates of the parametric study (Fig. 3.48(b)) contain two cross layers in the

third position from outside to ensure form stability. Furthermore, in contrast to the approved

configuration (Fig. 3.48(a)), the LVL plates of the parametric study never contain cross layers

in the zones with high shear stresses just below the notch bottom. In this way, a shearing-off

failure of the LVL close to the notch can be predicted using the shear strength parallel to the

grain, which is significantly higher than the rolling shear strength of the cross layer (Section

3.3.6). Because of the higher thickness, the 80 mm and the 100 mm thick LVL plates contain

a third cross layer. This cross layer is placed as far as possible from the notch bottom, i.e. at

mid height. This cross layer is taken into account in the prediction of shear failure of the LVL

cross-section.
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Figure 3.48: (a) Veneer configurations related to the mechanical properties determined by Van de Kuilen

and Knorz [14], [15] in preparation of the European Technical Approval [3]; (b) veneer configuration of

the LVL plates considered in the parametric study
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The mean values of spruce LVL are obtained with a rough estimation. The characteristic

values of LVL made of spruce Kerto Q [83] are multiplied by the ratios between the mean values

and the characteristic values of the beech LVL tested by Van de Kuilen and Knorz [14], [15].

The concrete of Tab. 3.4 has elevated mechanical properties because a compressive failure

of the LVL in the contact area should occur before the compressive failure of the concrete

(fc,0,2 < fc,1).

From own tests (Section 4.3), it is assumed that the behaviour of the LVL subjected to

compression parallel to the grain is linear-elastic until fc,0,2 and then ideal plastic without

hardening. Based on the shear tests presented in Section 4.3, it is assumed that the shear

stiffness of the notched connections is about 200 kN/mm.

In this parametric study, the variation of the mechanical properties is not studied. However,

although the considered beech LVL is more homogeneous than solid timber or glued laminated

timber, the mechanical properties are subjected to variations (according to Tab. 2.1). In design

of the composite members, the influence of such variations should be taken into account. In this

way, it can be ensured that the structural behaviour of the LVL plate is governed by compressive

failure of the LVL.

Table 3.3: Parametric study on the structural behaviour of timber-concrete composite slabs with notched

connection: mean values of the mechanical properties of LVL with cross layers in [N/mm2]

Beech LVL Spruce LVL

Modulus of elasticity E0,2 13800 10500

Compressive strength parallel to the grain fc,0,2 45.7 32.9

Tensile strength parallel to the grain ft,0,2 58.5 36.5

Compressive strength perpendicular to the grain fc,90,2 13.6 2.72

Tensile strength perpendicular to the grain ft,90,2 1.97 0.98

Bending strength parallel to the grain fm,0,2 77.9 42.12

Shear strength parallel to the grain fv,2 10.7 5.7

Rolling shear strength fRv,2 3.6 1.67

Table 3.4: Parametric study on the structural behaviour of timber-concrete composite slabs with notched

connection: mechanical properties of concrete (mean values of C50/60 according to the Swiss Standard

SIA 262 [66]), and assumed yield strength of the vertical reinforcement

Modulus of elasticity of uncracked concrete E1 38800 N/mm2

Compressive strength of concrete fc,1 58 N/mm2

Tensile strength of concrete ft,1 4.1 N/mm2

Maximum compressive strain of concrete εu,1 0.003

Angle of friction of concrete ϕ 36.9 ◦

Yield strength of vertical reinforcement (class

10.9)

fs 1000 N/mm2
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3.4.2 Structural behaviour of the notch

As shown in Section 3.3, the notch failures depend on the notch geometry, the thickness of the

LVL and concrete and the material properties. Fig. 3.49 illustrates a parametric study on the

structural behaviour of the second notch N2 of a composite slab made of a beech LVL plate

without vertical reinforcement. Two 200 mm thick composite slabs are studied: in the first case,

the beech LVL plate is 40 mm thick, and in the second case its thickness is 80 mm. The two most

significant parameters are varied: the notch length lN and the notch depth tN (Fig. 3.49(a)).

The failure modes considered are illustrated in Fig. 3.49(a), and the failure loads are calculated

according to Section 3.3. It must be reminded that, if vertical reinforcement is provided, only

failures of type 2C, 2S and 1C,n can occur.

The most important diagram is shown in Fig. 3.49(b), because a brittle shearing-off failure

of the LVL (2S) must absolutely happen at a higher load level than a compressive failure of

LVL parallel to the grain (2C). Fig. 3.49(b) shows that, for both notch depths studied (15 and

20 mm), this is the case. Furthermore, the difference between the failure loads increases with

increasing notch length. If a shearing-off failure of the LVL was governing, the LVL part of the

composite member would not be able to induce a ductile failure of the composite system.

Figs. 3.49(c) to (f) compare all theoretical failure loads of the second notch (N2) calculated

according to the models presented in Section 3.3:

� The compressive failure of the LVL is governing for most of the cases studied.

� The safety margin between the compressive failure of the LVL parallel to the grain and

the other notch failures theoretically increases with increasing notch length.

� A change of the notch depth from 15 mm to 20 mm increases the LVL failure loads, but

does not introduce substantial changes.

� An increase of the LVL thickness and a decrease of the concrete thickness improve only

the situation with regard to the concrete failures.

� The flexural-shear failures of the concrete are the most critical brittle failures, and are

markedly sensible to the length of the notch. However, flexural-shear failures can be

prevented using vertical reinforcement.

In conclusion, this part of the parametric study demonstrated that notches as connection

system for timber-concrete composite members made of beech LVL can be designed so that their

structural behaviour is governed by a ductile compressive failure of the LVL.
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Figure 3.49: Parametric study on the notch failures ((...) = prevented by vertical reinforcement):

(a) parameters and possible failure modes; (b) comparison between shearing-off failure in LVL (2S) and

compressive failure in LVL parallel to the grain (2C); (c) h1 = 160 mm, h2 = 40 mm, tN = 15 mm; (d)

h1 = 120 mm, h2 = 80 mm, tN = 15 mm; (e) h1 = 160 mm, h2 = 40 mm, tN = 20 mm; (f) h1 = 120

mm, h2 = 80 mm, tN = 20 mm
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3.4.3 Structural behaviour of the composite member

This section deals with the influence of the concrete thickness h1, the LVL thickness h2, the

notch length lN , the span l and the LVL type on the structural behaviour of a timber-concrete

composite slab, calculated applying the model presented in Sections 3.2 and 3.3. Fig. 3.50

summarises the failure modes of an LVL-concrete composite slab with a notched connection. It

must be reminded that the failure modes 1S, 1F and 1V, as well as the secondary effects during

states III and IV, are prevented if vertical reinforcement is provided.
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Figure 3.50: Failure modes of a LVL-concrete composite slab with a notched connection

Span of 6 m and notch length of 250 mm

In this section, the analytical models presented in Section 3.2 are applied to study the influence of

several parameters on the behaviour of a 6 m long composite member with a notched connection.

In all slab elements considered, the notches are 250 mm long and 15 mm deep, and their width

is proportional to the shear force generated by a uniformly distributed vertical load. As shown

in Tab. 3.5, four composite members made of beech LVL and two composite members made of

spruce LVL are analysed. The thickness of the LVL is varied between 40 and 100 mm, whereas

the total thickness of the composite slab has a constant value of 200 mm.

Table 3.5: Parametric study on the structural behaviour of 6 m long LVL-concrete composite slabs

with notched connections (l = 5.66 m, b = 530 mm, h1 + h2 = 200 mm, lN = 250 mm, tN = 15 mm):

geometry of the composite members

Timber Concrete h1 [mm] h2 [mm] Number of

cross layers

l [m]

Beech LVL C50/60 160 40 2 5.66

140 60 2 5.66

120 80 3 5.66

100 100 3 5.66

Spruce LVL C50/60 160 40 2 5.66

120 80 3 5.66
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Table 3.6: Parametric study on the structural behaviour of LVL-concrete composite slabs with notched

connections (l = 5.66 m, b = 530 mm, h1 + h2 = 200 mm, lN = 250 mm, tN = 15 mm): results

Timber Beech

LVL

Spruce

LVL

Concrete C50/60 C50/60

h1 [mm] 160.0 140.0 120.0 100.0 160.0 120.0

h2 [mm] 40.0 60.0 80.0 100.0 40.0 80.0

n1 [-] 2.81 2.81 2.81 2.81 3.70 3.70

n2 [-] 1.00 1.00 1.00 1.00 1.00 1.00

γ1 [-] 1.00 1.00 1.00 1.00 1.00 1.00

γ2 [-] 0.82 0.75 0.70 0.65 0.86 0.75

Governing failure [-] 2C 2C 2C 2C 2C 2C

Ultimate failure [-] 1C 1C 2BT 2BT 2BT 2BT

xI [mm] 86.8 80.3 74.1 68.7 85.5 71.9

xII [mm] 54.2 59.6 62.2 63.2 49.3 57.6

xIII [mm] 44.2 44.2 44.2 44.2 31.8 31.8

xIV [mm] 26.0 26.0 26.0 26 18.7 18.7

Mcr [kNm] 13.4 13.8 15.6 20.8 12.6 13.5

My [kNm] 110.8 104.3 99.8 97.6 80.5 72.2

MR,1C,c [kNm] 113.5 109.8 109.2 112.4 84.2 84.2

Mu [kNm] 119.1 123.1 133.1 148.1 84.1 90.6

qy [kN/m2] 52.2 49.2 47.0 46.0 37.9 34.0

qu [kN/m2] 56.2 58.0 62.7 69.8 40.6 42.7

χcr · 10−3 [1/m] 1.44 1.77 2.31 3.37 1.42 2.20

χy · 10−2 [1/m] 2.25 1.86 1.71 1.65 1.96 1.43

χ1C,c · 10−2 [1/m] 3.39 3.39 3.39 3.39 4.70

χu · 10−2 [1/m] 11.55 11.55 10.30 8.82 7.39 6.86

wy [mm] 75.0 62.1 56.9 55.2 63.6 46.4

EII · 1012 [Nmm2] 9.29 7.80 6.77 6.16 8.85 6.14

EIII · 1012 [Nmm2] 4.93 5.61 5.85 5.90 4.11 5.05

χu/χy [-] 5.16 6.21 6.01 5.33 3.95 4.96

Mu/My [-] 1.07 1.18 1.33 1.52 1.07 1.26

The most important outcomes of the analytical calculations are illustrated in Tab. 3.6. Fig.

3.51 summarises the results of a composite member made of beech LVL with a timber thickness

of 40 mm and a concrete thickness of 160 mm as an example, including the moment-curvature

behaviour (M -χ), the estimated load-deflection behaviour (q-w), and the distributions of the

axial stresses and strains across the height. Fig. 3.52 shows the results in the case of a thickness

of the beech plate of 80 mm instead of 40 mm. Fig. 3.53(a) compares the axial strains of the

four composite cross-sections made of beech LVL, plotted in the instant, in which the notches

begin to yield. Fig. 3.53(b) compares the axial strains of the four composite members made of
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beech LVL at the ultimate limit state. Fig. 3.53(c) compares the moment-curvature behaviours

of the four slab elements made of beech LVL. Fig. 3.53(d) shows the influence of the use of

spruce instead of beech for a timber thickness of 40 mm and 80 mm.

In the M -χ-diagrams included in Figs. 3.51(b) and 3.52(b), the predicted failures are

represented with horizontal lines. The failures, which are prevented by means of vertical re-

inforcement, are represented with dashed lines. As explained in Section 3.3.9, to ensure the

development of ductility, vertical end-to-end reinforcement should be provided. Thus, the fail-

ures 1S, 1F and 1V do not occur and can be neglected.

Cracking of the concrete (cr), yielding of the notches (y), and exceedance of the compressive

strength of the concrete (1C,c) occur in the same order in all six composite members studied

(Fig. 3.51(b), Fig. 3.52(b), Fig. 3.53(c) and Fig. 3.53(d)). First, the concrete subjected to

tension cracks; second, the notches begin to yield, and then the compressive strength of the

concrete is reached at the top of the cross-section. This means that the compressive failure

of the LVL parallel to the grain (2C) governs the structural behaviour and generates ductility.

However, as described in Tab. 3.6, the theoretic ultimate limit of the composite member depends

on the LVL thickness. In the case of an LVL thickness of 40 and 60 mm, the ultimate limit is

determined by the exceedance of the maximum compressive strain of the concrete εu,1 at the

top of the composite cross-section (1C,u), whereas the specimens with an LVL thickness of 80

mm and 100 mm fail due to a combined tensile-bending failure of the LVL (2BT) before εu,1

can be reached. Thus, according to this parametric study, a thinner LVL plate has a greater

rotation capacity and postpones a brittle tensile-bending failure of the LVL.

The M -χ-behaviour is related to the axial deformations of a cross-section at mid-span, and

can be analytically estimated with a certain degree of accuracy. In contrast, the deflections

which occur after yielding, are more difficult to predict and imply uncertainty. The plastic

amounts of the deflections shown in Fig. 3.51(c) and Fig. 3.52(c) are calculated according to

the simplified model of Section 3.2.6, and depend on the assumed length lpl of the plastic zone.

The longer the plastic zone, the higher the deflection.

By observing Figures 3.51 to 3.53, it can be seen that the ratio between the thickness of

the LVL and concrete influences the failure loads and the structural behaviour of the composite

member in a marked way. In general, the thicker the LVL part in comparison to the concrete

part of the composite member:

� the marked the hardening in the moment-curvature behaviour

� the smaller the theoretic maximum curvature

� the higher the tendency to reach a combined tensile-bending failure in the LVL before the

maximum compressive strain of the concrete is reached

� the higher the theoretical shear- and flexural-shear failure loads of the concrete

� the higher the tendency to a small increase of the bending stiffness of the composite slab

during state II.
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The diagrams of the distributions of the axial strains ε and stresses σ of the composite

member across the height included in Figs. 3.51 to 3.53 suggest the following remarks:

� Since the analytical model assumes that no gap opening occurs between the LVL and

concrete, the two parts are assumed to exhibit the same curvature and the planes of the

axial strains of the LVL and concrete are consequently parallel.

� The planes of the axial stresses of the LVL and concrete are not parallel because the two

parts have different moduli of elasticity.

� The step between the LVL and concrete in the distribution of axial stresses and strains

during the elastic states is due to connection flexibility, which is taken into account in

the model by means of the γ-factor. If the connection was fully rigid, there would be

theoretically no step.

� Between yielding of the connection (y) and the estimated ultimate failure of the system

(u), the increase of the axial strain at the interface is due to the plastic compressive

deformations of the LVL in the notches.

� For a determinate composite cross-section, it can be seen that, from the yield point (y) to

the ultimate failure (u), the axial strain and stress of the centroid of the LVL is constant.

The reason for is that, in the model, the behaviour of the connections is assumed to be

elastic-ideal plastic.

� As illustrated in Fig. 3.53(a), the axial stress in the centroid of the LVL cross section at

yielding σy,1 is different in each composite member, although the notches are always the

same. This is due to the fact that the LVL area changes, influencing the axial stress.
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Fig. 3.53(d) illustrates a comparison between composite members with notched connections

made of beech LVL and spruce LVL. Basically, if beech LVL is substituted with spruce LVL, the

mechanical properties of the timber part decrease. By observing Fig. 3.53(d), following remarks

can be made:

� Since all strengths of the LVL decrease, the curves of the structural behaviour of the

composite members made of spruce LVL are similar to those of beech LVL but show

smaller failure loads and smaller ultimate deformations (Fig. 3.53(d)).

� With the assumed mechanical properties of spruce LVL and a concrete C50/60, the ten-

dency to get a ultimate tensile-bending failure of the LVL part of the composite member

increases. Indeed, the theoretical ultimate failure of the composite slab with LVL thick-

ness 40 mm and concrete thickness 160 mm becomes a tensile-bending failure of the LVL

instead of a compressive failure of the concrete on top edge of the slab.

� From the analytical calculations it results that, during the elastic states, the influence of

the wood species on the deformations of the composite members is small. This is due to the

fact that the difference between the stiffness of beech LVL and spruce LVL is less marked

than the difference between the strengths. Nevertheless, it has to be noticed that, since

no data are available, it is assumed that notches cut in a spruce LVL plate have the same

connection stiffness as those in beech LVL. This assumption is not verified. Blass et al.

[28] calculated the shear stiffness of notched connections in spruce LVL-concrete composite

members. However, the composite specimens tested had round notches, steel reinforcement

in the notches, and were made of a different concrete. Thus, these experimental results

were not considered for the parametric study included in this section.

� Furthermore, since the mechanical properties of spruce LVL are inferior to those of beech

LVL, a concrete with a smaller strength than C50/60 can be used. However, the com-

pressive strength of the concrete should be bigger than the compressive strength of spruce

LVL parallel to the grain. The reason for is that the structural behaviour of the composite

member should be governed by a compressive failure of the LVL in the notches.

Span of 6 m and notch length of 150 mm

The parametric studies of the previous section were related to a notch length of 250 mm. A

reduction of the notch length lN from 250 mm to 150 mm, under the condition that the notch

spacing equals twice the notch length, has two consequences:

� As explained in Section 3.3, the smaller lN , the more relevant the influence of the stresses

perpendicular to the interface on the failure loads of the notch.

� As shown in Section 3.3.3, the notch force TNi depends on the notch length lN . A higher

number of notches between the point of maximum bending moment and the support

implies smaller notch forces. For instance, the load qR,2C,N2, which is needed to cause

a compressive failure in the LVL, is higher with a notch length of 150 mm than with a



120 Chapter 3. Model

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

6 m

lN lNlN

bN
ix

y
z

b 
=

 5
30

 m
m

lN = 250 mm

h1
h2 tN

h1 = 160 mm
h2 = 40 mm
tN = 15 mm

hc
r

x

z
y

Position of the
cross layers

5
5

40

x
z
y

qx
z

y

x
y

z

beech LVL

b 
=

 5
30

 m
m

[mm]

1.bN1  = 330 mm; bN2  = 260 mm; bN3 =  200 mm; bN4 = 130 mm; bN5 = 70 mm

(a)

0 0.025 0.05 0.075 0.1 0.125
0

100

200

300

400

500

1C,u (u)1C,c2C (y)

cr

2BT

2R1

2S
1C,c1C,n

(1S)

(1F,sup)

(1F,inf)

(1V,inf)

h
1
 = 160 mm, h

2
 = 40 mm

χ [1/m]

M
 [

kN
m

]

(b)

0 50 100 150 200 250
0

15

30

45

60

75

h
1
 = 160 mm, h

2
 = 40 mm

w [mm]

q 
[k

N
/m

2 ]

 

 

l
pl

 = 300 mm

l
pl

 = 600 mm

l
pl

 = 900 mm

l
pl

 = 1200 mm

l
pl

 = 1500 mm

l
pl

 = 1800 mm

(c)

−8 −4 0 4 8 12 16

x 10
−3

0

40

80

120

160

200

h
1
 = 160 mm, h

2
 = 40 mm

ε [−]

z 
[m

m
]

 

 

ε
cr

ε
y

ε
1C,c

ε
u

(d)

−75 −50 −25 0 25 50 75

0

40

80

120

160

200

h
1
 = 160 mm, h

2
 = 40 mm

σ [N/mm2]

z 
[m

m
]

 

 

σ
cr

σ
y

σ
1C,c

σ
u

(e)

Figure 3.51: Parametric study about the structural behaviour of timber-concrete composite slabs made

of beech LVL (l = 5.66 m, b = 530 mm, h1 = 160 mm, h2 = 40 mm, lN = 250 mm, tN = 15 mm): (a)

geometry; (b) moment-curvature behaviour and failure modes; (c) load-deflection behaviour; (d) axial

strains ; (e) axial stresses
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Figure 3.52: Parametric study about the structural behaviour of timber-concrete composite slabs made

of beech LVL (l = 5.66 m, b = 530 mm, h1 = 120 mm, h2 = 80 mm, lN = 250 mm, tN = 15 mm): (a)

geometry; (b) moment-curvature behaviour and failure modes; (c) load-deflection behaviour; (d) axial

strains ; (e) axial stresses
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Figure 3.53: Parametric study about the structural behaviour of LVL-concrete composite slabs with

a notched connection (l = 5.66 m, b = 530 mm, lN = 250 mm, tN = 15 mm): (a) comparison of the

axial strains at yielding εy; (b) comparison of the axial strains at ultimate failure εu; (c) comparison of

the moment-curvature behaviour; (d) comparison between composite members made of beech LVL and

spruce LVL
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notch length of 250 mm, if the notch depth is constant. Therefore, the shorter the notches,

the higher the tendency that a brittle failure mode governs the structural behaviour of

the composite member. This aspect represents the most important problem caused by a

reduction of the notch length.

Fig. 3.54 shows the structural behaviour of a 6 m long timber-concrete composite slab made

of beech LVL with 18 150 mm long notches. The structural behaviour of the composite member

is not governed by a compressive failure of the LVL in the notch (2C). First, the compressive

strength of the concrete fc,1 is reached at the top of the cross-section at a bending moment of

MR,1C,c = 136 kNm. Starting from this point, the stresses in the compression zone should begin

to redistribute. The following failure predicted is a combined tensile-bending failure of the LVL

cross-section which should occur at a bending moment of MR,2BT = 177 kNm. In contrast to the

exceedance of fc,1, the combined tensile-bending failure of the LVL implies a sudden collapse of

the structure. A compressive failure of the LVL would theoretically occur at a bending moment

of MR,2C = 187 kNm. Therefore, this notch layout does not allow reaching a ductile failure of

the composite member. This case study shows the importance of a sufficient notch length.
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Figure 3.54: Parametric study about the structural behaviour of timber-concrete composite slabs made

of beech LVL with notch length lN = 150 mm and notch depth tN = 15 mm (l = 5.66 m, b = 530 mm,

h1 = 160 mm, h2 = 40 mm): (a) geometry; (b) moment-curvature behaviour and failure modes; (b)

load-deflection behaviour
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Span of 8 m and notch length of 250 mm

Fig. 3.55 illustrates the structural behaviour of a timber-concrete composite slab made of beech

LVL with a length of 8 m instead of 6 m. As shown in Fig. 3.55(a), the concrete layer is 160

mm thick, the beech LVL plate 40 mm thick and the 250 mm long and 15 mm deep notches are

designed proportional to the shear generated by a uniformly distributed vertical load.

As illustrated in Figs. 3.55(d) and 3.55(e), at the ultimate limit state, the 8 m long

composite slab shows a higher strain and stress in the centroid of the LVL cross-section in

comparison to the 6 m long slab. This is due to the fact that the 8 m long slab contains

more notches. Under the assumption that the compressive failure of the LVL in the notch is

ideal-plastic, the axial stress in the centroid of the LVL at yielding and at the ultimate state is

calculated as follows:

σ2,u = σ2,y =

∑
Ty,Ni
A2

(3.193)

If the number of notches increases and the cross section area of the LVL A2 is constant, the

stress in the centroid of the LVL σ2,y increases. Therefore, when the notches yield, the LVL part

of the 8 m long slab is subjected to a higher tensile stress than the 6 m long slab.

Fig. 3.55(b) shows the moment-curvature behaviour of the 8 m long slab compared to the

6 m long slab:

� In the 8 m long slab, in contrast to the 6 m long slab, exceedance of the compressive

strength of the concrete occurs at approximately the same load level as the compressive

failure of the LVL in the notches (MR,2BT ≈MR,1C,c ≈ 140 kNm).

� To achieve yielding of the notches in the 8 m long slab, a higher bending moment My is

needed. The reason is that in the 8 m long slab there are more notches, and hence, in the

centroid of the LVL, higher axial stresses occur.

� Due to this higher axial tensile stress in the LVL at yielding level σ2,y, a smaller bending

deformation is necessary to reach a tensile-bending failure of the LVL. Thus, the 8 m long

slab fails due to a tensile-bending failure of the LVL instead of a concrete failure, and its

ultimate curvature χu is smaller than the ultimate curvature of a 6 m long slab.

Fig. 3.55(c) shows the moment-curvature behaviour of the 8 m long slab represented with

all failure loads calculated by means of the analytical model. Since the moment-curvature curve

of the 8 m long slab lies under the lines of the brittle failures, according to the model, an

elastic-plastic behaviour should occur. Nevertheless, the yielding moment My and the moment

corresponding to the tensile-bending failure of the LVL during state II (MR,2BT ) are closer than

in the case of a length of 6 m (Fig. 3.51(c)). Since the model contains simplifications and the

material shows a variability in properties, this can represent a problem in the case of a span

longer than 6 m. A solution could be to reduce the width of the notches or to increase the LVL

thickness.
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The deflections of the composite member strongly depend on the span. Since the thickness

of the LVL and concrete are the same in both composite slabs studied, a composite member

with a span of 8 m exhibits higher deflections than one with a span of 6 m subjected to the same

vertical load. Furthermore, because of the longer span, the yielding load qy of the 8 m long slab

is smaller then in the case of a 6 m long slab.
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Figure 3.55: Parametric study about the structural behaviour of timber-concrete composite slabs made

of beech LVL (l = 7.66 m, b = 530 mm, h1 = 160 mm, h2 = 40 mm, lN = 250 mm, tN = 15 mm):

(a) geometry; (b) moment-curvature behaviour; (c) moment-curvature behaviour and failure modes; (d)

axial strains at ultimate limit state εu; (e) axial stresses at ultimate limit state σu

This section presented a comparison between two spans with constant thickness of the

layers. In practice, the 8 m long slab will be designed with a higher thickness of the LVL
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and concrete layers to fulfil the deformation requirements suggested by the design codes. This

influences the structural behaviour of the composite member.

3.4.4 Vertical reinforcement

This section deals with the estimation of the amount of vertical reinforcement with a yield

strength of fs = 1000 N/mm2, which is necessary to ensure that the composite member is able

to achieve the theoretical ultimate failure load qu and the ultimate deflection wu. The model

assumes that this reinforcement carries exclusively vertical forces. The following calculations deal

only with the necessary steel area and not with the flexibility requirements of the reinforcement

presented in Section 3.3.12. Fig. 3.56 shows the location of the steel reinforcements, which

is chosen as shown in Section 3.3.10. The vertical reinforcement should be end-to-end, and is

divided in two groups:

� reinforcement to carry the vertical tension in the concrete (As,T,Ni), which is located close

to the action point of the horizontal notch force TNi due, in this case, to qu, and is estimated

according to Section 3.3.10

� reinforcement to prevent the gap opening (As,v), which is distributed over the entire span,

and is designed under the assumption that the composite member reaches a maximum

deflection at mid-span of wu ≈ 300 mm according to Section 3.3.11
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Figure 3.56: Vertical reinforcements

The total amount of vertical steel reinforcement in the composite member shown in Fig. 3.56

can be quantified as follows:

As =
∑

As,T,Ni +As,v = 2
5∑
i=1

As,T,Ni +As,v (3.194)

To estimate the magnitude of the vertical reinforcement necessary, an equivalent number of

vertical bars with diameter �bars = 6 mm is calculated from As as follows:

nbars =
4 ·As
�2
bars · π

(3.195)

The results of the calculation are shown in Tab. 3.7, and Fig. 3.57 illustrates the influence

of the LVL thickness by a constant total thickness of 200 mm on the necessary steel surface.

Concerning the estimated necessary amount of end-to-end vertical reinforcements in a

timber-concrete member with notched connection, following conclusions can be drawn:
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Table 3.7: Amount of vertical reinforcement to achieve qu and wu ≈ 300 mm in a timber-concrete

composite member with a notched connection made of LVL (l = 6 m, b = 530 mm, lN = 250 mm,

tN = 15 mm)

Beech Spruce

C50/60 C50/60

h1 [mm] 160 140 120 100 160 120

h2 [mm] 40 60 80 100 40 80

Vertical tension

h∗1 [mm] 149.4 127.6 106.8 86.4 151.1 108.3

qu [kN/m2] 56.2 58 62.7 69.8 39.6 41.8

TN2 [kN] 182.5 199.9 225.9 257.3 127.4 150.0

T2 [kN] 54.5 51.0 48.2 44.5 38.5 32.5

As,T,N2 [mm2] 54.5 51.0 48.2 44.5 38.5 32.5

TN3 [kN] 136.9 149.9 169.4 192.9 95.5 112.5

T3 [kN] 40.9 38.3 36.2 33.4 28.9 24.4

As,T,N3 [mm2] 40.9 38.3 36.2 33.4 28.9 24.4

TN4 [kN] 91.2 100.0 112.9 128.6 63.7 75.0

T4 [kN] 27.3 25.5 24.1 22.2 19.2 16.2

As,T,N4 [mm2] 27.3 25.5 24.1 22.2 19.2 16.2

TN5 [kN] 45.8 50.2 56.8 64.6 32.0 37.7

T5 [kN] 13.7 12.8 12.1 11.2 9.7 8.2

As,T,N5 [mm2] 13.7 12.8 12.1 11.2 9.7 8.2∑
As,T,Ni [mm2] 272.8 255.3 241.3 222.5 192.5 162.5

Gap opening

wu [mm] 300 300 300 300 300 300

w1,u [mm] 150 150 150 150 150 150

w2,u [mm] 225 225 225 225 225 225

α1,u [rad] 0.106 0.106 0.106 0.106 0.106 0.106

vu [mm] 74.58 74.58 74.58 74.58 74.58 74.58

q(vu) [kN/m] 8.37 28.24 66.95 130.76 8.37 66.95

As,v [mm2] 47.4 159.9 378.9 740.1 47.4 378.9

Total

As 320.2 415.2 620.2 962.6 239.9 541.4

nbars�6 [-] 12 15 22 34 9 20
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Figure 3.57: Amount of vertical reinforcements to achieve qu and wu ≈ 300 mm in a timber-concrete

composite member with notched connection made of beech LVL (l = 6 m, b = 530 mm, lN = 250 mm,

tN = 15 mm)

� In general, the amount of vertical reinforcements to carry the vertical tension in the con-

crete and to prevent gap opening in a 6 m long and 0.53 m wide composite slab is contained.

For the considered slabs made of beech LVL, the necessary number of vertical bars with a

diameter of 6 mm and a tensile strength of fs = 1000 N/mm2 is between 12 and 34.

� Regarding the reinforcement to carry the vertical tension in the concrete As,min,T,Ni, the

vertical components Ti decrease with decreasing concrete thickness. Therefore, the neces-

sary steel amount decreases.

� Regarding the reinforcement to prevent gap opening As,v,min, a thicker timber plate implies

higher stiffness and hence, a higher load to bend it. Thus, according to the simplified model

presented in Section 3.3.11, the necessary number of vertical reinforcement bars increases.

� Since spruce implies lower failure load and is less stiff, the amount of necessary reinforce-

ment bars is smaller.

3.4.5 Remarks for the design

This section investigates if composite slabs made of beech and spruce LVL with notched connec-

tions, designed according to the analytical model developed in Sections 3.2 and 3.3, are able to

achieve the requirements of structural safety and serviceability at design level. Fig. 3.58 shows

the prediction of the load-deflection behaviour of the composite member calculated using the

mechanical properties of beech and spruce LVL at design level. The thickness of the LVL is 40

mm, the concrete thickness is 160 mm, and the slab length is either 6 or 8 m. The deflections are

calculated under initial conditions (t = 0), and considering long-term effects (t =∞). According

to the Swiss Standard SIA 265 [29], the long-term effects can be estimated with a reduction of

the modulus of elasticity depending on the creep factor ϕ:
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E∞ =
E0

1 + ϕ
(3.196)

It is assumed that the creep factor of the LVL is ϕ2 = 0.8. The long term effects on the elasticity

of concrete are calculated using Eq. 3.196 as well and assuming a creep factor of ϕ1 = 2.1.

In this analysis, it is assumed that the composite members are strengthened with vertical

reinforcement bars. This ensures the development of ductility.

In Fig. 3.58 the design loads for ultimate limit state analysis (qd,ULS) and for the control of

appearance (qd,app) according to the Swiss Standard SIA 260 [90] are shown as well. The limit

deflection for the control of appearance corresponds to l/300 and is represented with a vertical

line [90]. For a characteristic value of self-weight of gk = 4.3 kN/m2, and under the assumption

of a permanent load of qAk = 2.33 kN/m2 and a live load of qNk = 3 kN/m2 at characteristic

level, the design loads are calculated as follows:

qd,ULS = γG · (gk + qAk) + γQ · qNk = 13.5kN/m2 (3.197)

qd,app = gk + qAk + ψ2 · qNk = 7.5kN/m2 (3.198)

In the case of a length of 6 m (Fig. 3.58(a)), the following conclusions can be drawn:

� The structural safety of the composite member is fulfilled with both LVL materials.

� Both LVL materials allow a ductile design.

� The composite slab made of beech LVL has a higher reserve in load-carrying capacity.

� At service level, the deflection of the composite slab made of beech LVL calculated by

taking into account long-term effects (t = ∞) coincides approximately with the limit

deflection of l/300, and the deflection of the composite slab made of spruce LVL is slightly

higher.

Concerning a slab length of 8 m (Fig. 3.58(b)), it can be concluded that:

� Only the composite slab made of beech LVL achieves the requirements for the structural

safety. The composite slab made of spruce LVL shows insufficient load-carrying capacity

at design level.

� The slab made of beech LVL shows ductility at failure, whereas the slab made of spruce

LVL is governed by a brittle failure (combined bending-tensile failure of the LVL).

� Nevertheless, with a length of 8 m, the design of the composite member is governed by

the deflections at service level. Therefore, to fulfil the serviceability requirements (e.g.

aesthetics), the thickness must be increased, and hence, the load-carrying capacity of the

composite member will be considerably improved.
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Figure 3.58: Design of timber-concrete composite slabs made of beech LVL and spruce LVL (b = 530

mm, h1 = 160 mm, h2 = 40 mm, lN = 250 mm, tN = 15 mm): (a) l = 5.66 m ; (b) l = 7.66 m

3.4.6 Conclusions from the parametric study

This parametric study dealt with the influence of several material and geometrical properties on

the structural behaviour of LVL-concrete composite members with notched connections. In all

composite memberss the notches were designed proportional to the shear force generated by a

uniformly distributed vertical load. The calculations were performed according to the analytical

models developed in Sections 3.2 and 3.3. The following conclusions can be drawn:

� The notch length and depth influence the failure modes and the failure load. They must be

chosen so that a compressive failure of the LVL is governing and the load-carrying capacity

is sufficient. In the cases studied, a length of 250 mm and a depth of 15 mm ensure a

satisfying structural behaviour. A reduction of the notch length increases the tendency

that brittle failures become governing.

� If a compressive failure of the LVL is governing, the composite cross section exhibits high

theoretical ultimate curvatures.

� The nature of the ultimate failure of the composite member depends on several factors

such as material properties and geometry. Some of the cases studied are governed by

the exceedance of the maximum compressive strain of the concrete. Otherwise, a tensile-

bending failure of the LVL occurs.

� The amount of vertical reinforcement bars to ensure the theoretical ultimate deformations

results to be moderate and increases with increasing LVL thickness.

� The use of LVL materials is important to ensure consistency in mechanical properties of

the timber component of the composite slab.
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� The wood species influences the structural behaviour. If spruce instead of beech is used, all

timber failure loads decrease. The advantage is that it is possible to reduce the concrete

quality. On the other hand, the stiffness, the load-carrying capacity and the ultimate

deformations are lower.

The choice of the thickness of the LVL in respect to the concrete is a compromise between

many requirements. An increase of the LVL thickness in comparison to the concrete implies:

� slightly smaller deflections

� higher hardening after the compressive failure of the LVL, but smaller theoretical ductility

� more favourable loading of the concrete, and so a smaller tendency to flexural-shear failures

� higher need in vertical reinforcement to ensure ductility

� better suitability for anchoring of the screws

� less propping during construction

� reduction of the self-weight

� higher fire resistance

� more vulnerable for vibration

In conclusion, this parametric study demonstrates that the analytical model allows to

determine the phases of the structural behaviour of a LVL-concrete composite member with a

notched connection in a simple and clear way. Furthermore, this study shows that, depending on

the geometry and the mechanical properties of the parts of the composite member, the theoretic

requirements for ductile behaviour summarised in Section 3.3.12 can be fulfilled.

3.5 Conclusion

The presented analytical models are suitable to analyse the structural behaviour of timber-

concrete composite members with notched connections. These models are efficient and clear,

and allow studying the influence of the most significant geometrical and material parameters.

Based on these theories, a design procedure to achieve ductility in timber-concrete composite

members made of LVL with notched connections was developed. The structural aspects of

the composite member which are most critical to model are the shear resistance of the plain

concrete and the secondary effects, which may occur during connection yielding. These problems

are influenced by several factors which are difficult to quantify, but can be solved by designing

vertical reinforcement.

When a timber-concrete composite member made of LVL with a ductile notched connection

is designed, the position of the cross layers should be taken into account. The cross layers

decrease the resistance against shearing-off failure of the LVL in front of the notch and shear
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failure of the LVL cross section. The parametric studies presented in this section were performed

for LVL plates without cross layers in the critical zones. If it is possible, cross layers should not

be placed in zones subjected to high shear stresses.



Chapter 4

Experimental investigations

4.1 Introduction

In this research study, three series of experiments were performed. In the beginning, a series

of timber-concrete composite members made of beech LVL with different notched connections

were tested in bending, to evaluate the potential of this innovative concept (Section 4.2). At

that time, the analytical model described in Chapter 3 did not yet exist. Then, a series of shear

tests allowed observing several failure modes of notched timber-concrete connections, among

which the compressive failure of the timber (Section 4.3). Finally, the ductile design procedure

summarised in Section 3.3.12 was validated with a series of bending tests presented in Section

4.4. A test report [6] includes additional details on the test procedures and a complete evaluation

of the test results.

4.2 Preliminary bending tests

4.2.1 Introduction

At the beginning of this research project, to evaluate feasibility and the structural potential of

timber-concrete composite slabs made of beech LVL with notched connections, a series of four-

point bending tests was performed in the laboratory of the Institute of Structural Engineering

(IBK) at ETH Zurich. These experiments represented the first study on the use of beech wood

in timber-concrete composite slabs and gave significant initial information about the structural

behaviour of this type of slabs [89], [91], [87].

4.2.2 Materials and methods

As illustrated in Fig. 4.2, four 15 mm deep notch types were tested to study the influence of

the notch geometry on the load-displacement behaviour and the load-carrying capacity of the

composite slabs. The specimens tested were 6 m long, 600 mm wide and 160 mm deep. Each

beech LVL plate was 40 mm deep with a 120 mm thick concrete layer.

The beech LVL plates were produced by the company Pollmeier, which is making important

progress in the production of LVL made of European beech wood [12]. The plates used in these
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experiments were made of 13 veneers, each with a thickness of about 3 mm (10 veneers in

longitudinal direction and 3 veneers in the cross direction to ensure the dimensional stability)

(Fig. 4.2). As shown in Fig. 4.1, the plates used in this experiments were slightly different than

those contained in the European Technical Approval [3], but the number of longitudinal layers

was the same. However, it was assumed that they had the same mechanical properties of the

material tested by Van de Kuilen and Knorz [14], [15] in preparation of the approval (Tab. 2.1).

40 cross layers

(a)
40 cross layers

(b)

Figure 4.1: (a) standard veneer configuration of the beech LVL produced by the company Pollmeier;

(b) veneer configuration of the LVL plates used in the preliminary bending tests

The concrete tested belonged to the strength class C50/60 according to the Swiss Standard

SIA 262 [66], and exhibited the mechanical properties summarised in Tab. 4.1. The concrete

layer contained a shrinkage reduction admixture and a steel mesh to prevent shrinkage cracks.

According to the models presented in Section 3.2, this mesh does not carry relevant forces. Fig.

4.3 illustrates the test setup and the most important measurements carried out in the four-point

bending tests. This test setup included two hydraulic cylinders, two load distribution steel

profiles (HEB 200), and two supports in a distance of 5.76 m.

Table 4.1: Preliminary bending tests: mechanical properties of concrete

Elasticity modulus Cylinder strength Splitting tensile

strength

E1 [N/mm2] fc,1 [N/mm2] ft,1 [N/mm2]

Number of specimens 3 3 4

Mean value 37698 50.90 3.10

standard deviation 258 0.76 0.3

4.2.3 Test results

From the beginning of the tests, the lower part of the concrete cracked. Between the supports and

the hydraulic cylinders, flexural-shear cracks grew starting from the load introduction points of

the notches. In contrast, between the two hydraulic cylinders, bending cracks dominated. Tab.

4.2 summarises the failure loads and the failure modes of the specimens.

In the two experiments with rectangular notches, distinct brittle failure modes were ob-

served. The first specimen (1A) failed due to a combined bending and tensile failure in the
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Table 4.2: Preliminary bending tests: test results (* = the specimen was tested with a modified setup

to prevent gap opening)

Specimen Notch

geometry

Failure mode Failure

load

Equivalent distributed

load

Fu [kN] qu ≈ g + 2Fu/(bl)

[kN/m2]

1A Rectangular

notches

Combined bending-tensile failure

in LVL plate (brittle)

55 34

1B Rectangular

notches

Shear failure in concrete cross

section (brittle)

50 31

2A 2 waves Horizontal shear failure in con-

crete along the waves (brittle)

31 21

2B 2 waves * Horizontal shear failure in con-

crete along the waves (brittle)

47 29

3A 1 wave Horizontal shearing-off failure in

timber close to the support (brit-

tle)

47 29

3B 1 wave Horizontal shearing-off failure in

timber close to the support (brit-

tle)

47 29

4A 1 wave Horizontal shearing-off failure in

timber close to the support (brit-

tle)

40 26

4B 1 wave * Horizontal shearing-off failure in

timber close to the support (brit-

tle)

49 30
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Figure 4.2: Preliminary bending tests: specimens

beech LVL plate at a force of 55 kN per jack. The failure occurred under the notch next to

the left cylinder, at a distance of about 2 m from the support (Fig. 4.4, left). In contrast, in

the second specimen (1B), a flexural-shear failure occurred in the concrete between the fixed

support and the left HEB profile at a force of 50 kN per jack. This failure occurred suddenly

and was characterised by the propagation of an existing flexural-shear crack (Fig. 4.4, right).

In the specimens with notched waves, two different brittle failure modes were observed

(Fig. 4.5). In the specimens with double notched wave, a horizontal shear failure in the concrete

occurred along the waves. In contrast, the specimens with a single notched wave exhibited a

combined failure mode. First, a horizontal shearing-off failure occurred in the timber plate close

to the fixed support. The failure occurred rapidly, and led to an abrupt and large opening of the

gap between timber and concrete. After that, a failure in the concrete between the support and

the cylinder occurred, as a consequence of the loss of bond between the timber and concrete.

At the end of the test, the LVL plate was still intact, apart from the shearing-off failure close

to the support, with no observable bending or tensile failures in the LVL.

Fig. 4.6 compares the structural behaviour of a specimen with rectangular notches to

the one with notched waves. Fig. 4.6(a) shows the measured, horizontal relative displacement

between the beech LVL plate and the concrete at the supports, as a function of the load applied

per cylinder. After each load cycle, a residual plastic deformation can be seen. Further, it can be

observed that the connection system with the rectangular notches is stiffer than the connection

system with a single notched wave. Fig. 4.6(b) illustrates the measured deflection at mid-span
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Figure 4.3: Preliminary bending tests: test setup
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Figure 4.4: Preliminary bending tests: failure modes of the specimens with rectangular notches

as a function of the load applied per cylinder in a specimen with rectangular notches and in

one with single notched wave. The specimen with rectangular notches shows slightly smaller

deflections.

A phenomenon, which was observed during all tests, was a tendency to vertical gap opening

between the timber and concrete starting from the first load levels. This gap opening occured

between the hydraulic cylinders and the supports, whereas the area at mid span between the two

cylinders did not show this tendency. Fig. 4.7(a) shows the vertical gap opening v measured

between the fixed support and the left cylinder of specimen 3B as a function of the vertical

load. The gap opening increased in a roughly linear way with increasing cylinder load, and the

unloading-reloading cycles denoted a residual part. Fig. 4.7(b) shows a picture of specimen

3B at a load level of 30 kN per cylinder. The gap opening between the right cylinder and the

support is clearly visible.
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Figure 4.5: Preliminary bending tests: failure modes of the specimens with notched waves
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Figure 4.6: Results of the preliminary bending tests: (a) horizontal relative displacement; (b) deflection

at mid-span

Two specimens with notched waves (2B and 4B) were tested with a modified test setup

to investigate the influence of gap opening [91]. Six external reinforcements made of two steel

profiles and two rods each were installed to prevent gap opening. Each reinforcement was

provided with a load cell to measure the force which was necessary to keep the gap closed.

It was found out that the vertical gap opening compromised the structural behaviour of these

specimens. If the gap opening was prevented, the load-carrying capacity and the stiffness of

the specimen increased, but the failure mode of the notched connection remained basically the

same.

4.2.4 Comparison with the analytical model

First of all, it must be reminded that this test series had been performed before the model of

Chapter 3 was developed. In the comparison of the test results with the analytical model, only

the specimens with rectangular notches (1A and 1B) are considered. Since all notches were cut

over the entire width of the specimens, it is assumed that the effective timber depth is 25 mm

between the supports and the cylinders, and 40 mm between the two cylinders.

The elastic deflections are predicted according to Section 3.2 under the assumption that

the concrete layer is cracked over the entire span. From the results of the shear tests described in

Section 4.3, a connection stiffness of 650 kN/mm is assumed, which gives a γ-factor of round 0.95.

Fig. 4.8(b) shows that the predicted elastic deflections are slightly smaller than the measured

values.

The expected failure loads of the composite slabs represented in Fig. 4.8(a) are calculated

according to the analytical model presented in Sections 3.2 and 3.3. First, the compressive

strength of the concrete should be reached on top of the cross-section (1C,c). However, this

could not be observed. The consequence would be a redistribution of the axial stresses within

the compression zone by increasing strain. Afterwards, a combined bending-tensile failure in
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Figure 4.7: Gap opening in specimen 3B: (a) relationship between the cylinder load and the gap opening

; (b) gap opening at a load level of 30 kN

the timber (2BT) should occur at F = 48 kN per cylinder. This prediction corresponds ap-

proximately to the behaviour of specimen 1A, which failed due to a combination of tension and

bending at a cylinder force of F = 55 kN. In specimen 1B, a flexural-shear failure in concrete

occurred, although this failure was predicted at a cylinder load of about 100 kN. This shows

evidence that the aspect of the model with the highest uncertainty is the structural behaviour

of the unreinforced concrete member in the cracked zone, as assessed in Section 3.3.8.

The main reason for this discrepancy is that, as explained in Section 3.3.8, there are several

factors which cannot be taken into account by the cantilever model used to predict the flexural-

shear failure. The effective height of the cantilever h1F,eff may be smaller than the value

assumed by the model (h1F,eff < h1F = 2lN − hcr). Since this parameter governs the section

modulus for the calculation of the tensile stress σ1z, it has a big influence on the flexural-shear

failure load TR,1F,Ni calculated with the modified Mohr-Coulomb failure criterion (Fig. 4.9(a)).

Fig. 4.9(b) shows the influence of h1F,eff on the cylinder load F1F which causes a flexural-shear

failure. An increase h1F,eff from 200 to 300 mm duplicates the failure load. Another problem

of the cantilever model is that it assumes an idealised crack geometry. The crack depth hcr may

be locally greater than assumed, thus causing an increase of the lever which causes the tensile

stresses in the concrete, or reducing h1F . This experimental result shows the difficulty to model

a cracked concrete section. However, to perform a complete evaluation of the problem, it would

be necessary to carry out more experiments.

According to the analytical model, the other types of failure (e.g. shearing-off failure of

the timber or compressive failure of the timber parallel to the grain) should occur at higher load

levels than the maximum loads reached in the tests. During the experiments, these failures were

not observed.
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Figure 4.8: Preliminary bending test of the specimens with rectangular notches: (a) failure modes

calculated with the model; (b) comparison between test results and prediction

4.2.5 Discussion

Since these bending tests were performed at the beginning of the research project, the specimens

were not designed according to the models of Sections 3.2 and 3.3. Indeed, brittle failures gov-

erned the tests and the structural behaviour was not optimal. Nevertheless, several conclusions

can be drawn.

The first important outcome was that the bending tests demonstrated adequate load-

carrying capacity of five of the six slabs assuming typical loads for office buildings (permanent

load of 2.5 kN/m2 and live load of 3 kN/m2). The measured failure loads were higher than the

design loads by factors of 2-3.

In all of the experiments, brittle failure was observed: bending and tensile failures in the

timber, shear failures in the concrete, and shearing-off failures in the timber. This is an aspect of

the structure that must be improved, because a brittle failure is not wanted. These experiments

evidenced that, if the notch is located in a cracked concrete zone, the crack configuration can

cause important structural problems like for instance flexural-shear failures which compromise

the structural behaviour and are difficult to predict.

The first main difference between the connection systems tested is that the specimens with

rectangular notches failed in the cross-section, whereas those with notched waves failed in the

area of the waves and, as consequence, carried less load. Horizontal shearing-off failure in the

wave could be caused by insufficient amplitude, thus causing excessive stress concentration.

All the notched connections tested were stiff, with rectangular notches being stiffer than the

notched waves. The horizontal slip measured in the specimens with notched waves was higher

than in those with rectangular notches. One possible reason for are the dimensions of the area for

the force transfer. In the specimens with rectangular notches, the force is transferred along the

full width of the specimen (600 mm), while in the wave notch specimens, the force is concentrated
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Figure 4.9: Preliminary bending test of the specimens with rectangular notches: (a) model for the

prediction of flexural-shear failures; (b) relationship between the effective height of the failure plane 1F

and the vertical cylinder load which causes a flexural-shear failure in the concrete

in limited zones smaller than 600 mm. Consequently, the specimens with rectangular notches

showed a stiffer load-deflection behaviour because of the higher connection stiffness.

The causes of the gap opening observed between the supports and the loads are difficult

to identify. Since this phenomenon occurred in the sectors where shear forces were transferred

between the two parts of the composite member, a reason is probably the eccentricity between

the action point of the axial forces and the interface. As explained in Section 3.3.13, this can

generate different curvatures of the parts, causing gap opening during elastic behaviour. In

the contact areas of the notches, the contact forces mobilise friction between the timber and

concrete, which opposes to gap opening. However, as assessed in Section 3.3.13, these phenomena

are difficult to quantify.

An aspect with potential of improvement is the configuration of the cross layers of the beech

LVL plate. The cross layer at mid-height of the LVL plate coincides approximately with the

bottom of the notches and thus lowers the resistance against shearing-off failure of the timber

close to the notch.

Although the specimens with rectangular notches showed the best results, the exploitation

of beech LVL was not optimal, because all notches were cut over the full width of the specimens.

This means that, in the area with the maximal bending moment, the effective depth of the timber

cross-section was 25 mm instead of 40 mm. Consequently, the resistance against a combined

bending-tensile failure of the timber markedly decreased. This makes it more difficult to achieve

a ductile failure.

In conclusion, these preliminary experiments showed that timber-concrete composite slabs

made of beech LVL have a significant potential and put in evidence several issues of the notched

connections. The results helped to develop models and constituted a starting point for the

following research steps.
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4.3 Connection shear tests

4.3.1 Introduction

The structural behaviour of notched connections for timber-concrete composite slabs made of

beech LVL was studied with a series of shear tests. The influence of different notch geometries

and material properties was investigated, and the test results allowed an evaluation of the load-

carrying capacity and an estimation of the stiffness and the ductility of the connections tested.

Furthermore, the test results were compared to the analytical models presented in Section 3.3.

4.3.2 Materials and methods

Test concept

The test-setup depicted in Fig. 4.10 was chosen because it simulated the forces acting on

the notch close to the support of a timber-concrete composite member with positive bending

moment. Because of equilibrium conditions, a shear test to study the behaviour of the other

notches would be much more difficult to develop. Therefore, the test setup shown in Fig. 4.10

was not able to reproduce all aspects of the structural behaviour of the remaining notches

between the support and the mid-span. First, the other notches do not face the influence of

vertical compression due to the force transfer to the support. Secondly, in the notch close to

the support, the load is transferred from the concrete to the timber in a direct way with a

compression strut, whereas, in the other notches, tensile and shear stresses occur as shown in

Section 3.3.8.

In the test concept shown in Fig. 4.10, in contrast to many current test methods, the timber

part is pulled. Also in reality, the timber part of a composite slab with positive bending moment

is subjected to tension. As discussed by Gehri [92], in the case of shear tests on connections,

the fact that the load is introduced by pushing or by pulling the members influences the results.

Similar issues were discussed by Steurer [63] (Section 2.7).

F
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Timber board

Steel plate

Steel profile (fixed support)
Steel profile
(fixed support)

x
z
y

LVDT
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F

Figure 4.10: Connection shear tests: test concept
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Test setup

The test setup described in Fig. 4.10 consisted of a tensile testing machine, which clamped and

pulled the beech LVL plate, and a steel construction which carried the reaction forces necessary

to ensure equilibrium of the system. The measurement setup was composed of six sensors: four

linear voltage displacement transducers (LVDTs) to measure the relative displacements between

the timber and concrete (Fig. 4.10) and two load cells to detect the vertical reaction force in the

support Fv. The horizontal load F was directly measured by a load cell in the tensile testing

machine.

Specimens

In the course of the experiments, the structural behaviour of 28 timber-concrete composite

specimens with notched connections was investigated. Fig. 4.11 illustrates the geometry of the

specimens and the configuration of the veneers in the beech LVL plates. In this experimental

series, the beech LVL plates produced by the company Pollmeier were equal to those used in

the preliminary bending tests (Section 4.2). The LVL material was not tested because it was

assumed that the mechanical properties corresponded to those tested by Van de Kuilen and

Knorz [14], [15] and summarised in Tab. 2.1. The differences between the approved material

and the material used in these experiments are discussed in Section 4.2.

Tab. 4.3 illustrates an overview of the characteristics of the specimens tested, and Tab.

4.4 shows the mechanical properties of the concrete.

Top view
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Figure 4.11: Connection shear tests: specimens

The specimens were 530 mm wide and were made of beech LVL plates with a thickness of

40 mm (Fig. 4.11). A 160 mm thick concrete layer was poured on the beech LVL plates. The

connection between the timber and concrete was realised with 15 mm deep rectangular notches

cut into the beech LVL plate. As shown in Tab. 4.3, two groups of timber-concrete composite

specimens were tested: specimens with long notches (L) and specimens with short notches (S).

In the specimens with long notches, the length of the concrete notch, the length of the timber

over the support and the concrete length behind the notch were 200 mm each. As a result, the
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Table 4.3: Connection shear tests: specimens

Specimen Notch length

lN [mm]

Notch width

bN

Notch edge in-

clination

Concrete

L3.1 200 530 no Concrete C50/60 + steel mat

L3.2 200 530 yes Concrete C50/60 + steel mat

L3.1.f 200 530 no Steel fibre reinforced concrete

C35/45

L3.4 200 330 no Concrete C50/60 + steel mat

S3.1 100 530 no Concrete C50/60 + steel mat

S3.2 100 530 yes Concrete C50/60 + steel mat

S3.3 100 530 yes Concrete C50/60 + steel mat

S3.1.f 100 530 no Steel fibre reinforced concrete

C35/45

S3.4 100 330 no Concrete C50/60 + steel mat

concrete layer poured on the timber had a total length of 600 mm. In the specimens with short

notches, the length of the concrete notches, the length of the timber over the support and the

concrete length behind the notch were 100 mm, and, consequently, the total concrete length was

300 mm.

The reference specimens of both groups (L3.1 and S 3.1) had a 530 mm wide notch with

vertical edges (the notch edges were perpendicular to the horizontal surface of the beech LVL

plate) and were made of a concrete C50/60 according to the Swiss Standard SIA 262 [66]. As

done in the push-out tests on timber-concrete composite elements made of spruce LVL performed

by Blass et al. [28], a thin reinforcing steel mat (diameter 6 mm and spacing 150 mm) was used

to prevent unfavourable consequences of concrete shrinkage. Furthermore, the concrete C50/60

contained a liquid admixture to reduce drying shrinkage. For each group of specimens, the

influence of several parameters was investigated. First, different inclinations of the notch edges

were tested. In addition to the notches with vertical edges, the structural behaviour of notches

with inclined edges was investigated. In these specimens (L3.2, S3.2 and S3.3), the edges were

inclined by about 70◦ in positive and negative directions (Fig. 4.11). Secondly, the influence of

the notch width was studied. Two specimens per group were constructed with beech LVL plates

with 330 mm wide notches, instead of 550 mm (L3.4 and S3.4). In a third step, the variation in

concrete mixture was investigated. In contrast to the specimens made of concrete C50/60 with

reinforcing steel mat, two specimens per group were made of a steel fiber reinforced concrete

C35/45 without reinforcing bars.

4.3.3 Test results

In this experimental series, three different failure modes were observed:

� a brittle shearing-off failure in the timber, which occurred mostly in the middle cross layer

located close to the bottom of the notch (Fig. 4.12(a))
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Table 4.4: Connection shear tests: concrete properties

Property Concrete C50/60 Steel fibre reinforced

concrete C35/45

Modulus of elasticity E1 [N/mm2] 36800 32900

Cylinder strength fc,1 [N/mm2] 44.4 47.5

Splitting tensile strength ft,1 [N/mm2] 3.3 3.7

Density [kg/m3] 2439 2389

Steel fibres content [kg/m3] 0 25

Diameter of the reinforcing bars [mm] 6 -

Spacing of the reinforcing bars [mm] 150 -

Maximum aggregate diameter [mm] 16 16

Additives Shrinkage reducing

admixture

-

� a ductile compressive failure of the timber (Fig. 4.12(b))

� a brittle concrete failure (Fig. 4.12(c))

After the experiments, it was observed that some specimens showed a diagonal crack in the

concrete irrespective of their failure mode (Fig. 4.12(d)). Some tests were interrupted when a

horizontal load of 400 kN was reached because this load was critical for the test-setup.

Tab. 4.5 summarises the failure modes of all specimens, the maximum loads Fu, and the

shear stiffness of the notch at service level Kser obtained from the horizontal relative displace-

ment measured between the timber and concrete as described in Section 2.3.3.

The relationship between the load F and the horizontal relative displacement u between

the timber and concrete is illustrated in Figs. 4.13 and 4.14. In general, before the failure, if

the diagram is enlarged, the curves are not completely elastic but denote a non-linearity, which

causes a decrease in stiffness. This effect can be observed by comparing, for instance, Fig.

4.13(a) with Fig. 4.13(b), and Fig. 4.14(a) with Fig. 4.14(b). In Fig. 4.13(d), and Fig. 4.14(d),

it can be seen that the stiffness of the specimens with reduced notch width is smaller. The

diagrams of some specimens show a plateau. It is important to note that this plateau is related

to a ductile failure only in the case of the specimens which failed due to a compressive failure

in the timber (e.g. L3.1.f.1). In the other specimens, the plateau developed in less seconds and

was related to the formation of cracks or to the initiation of brittle failures. For instance, in the

case of the specimens with diagonal cracks (Fig. 4.12(d)), the plateau coincided with the crack

opening process. As shown in Fig. 4.13(d), the plastic phase of specimens L3.4.1 and L3.4.2

denoted a slight hardening. In specimen L3.4.2, the hardening induced a shearing-off failure of

the timber after the plastic deformation.
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4.3.4 Comparison with the analytical model

In this section, the failure loads measured during the tests are compared to the estimation cal-

culated with the analytical model for the structural behaviour of notched connections presented

in Section 3.3. However, since the tests reproduce the notches over the supports, some particu-

larities have to be taken into account. The horizontal component of the diagonal compression

strut goes through the notch into the timber part of the composite member and the vertical

component is transferred to the support. The load has many possibilities to be transferred, and,

in reality, follows the most direct and efficient way. Since the concrete part does not contain

reinforcing bars, the exact load-carrying mechanism is difficult to determine. Fig. 4.15 shows

two possible load-carrying mechanisms in the concrete. It can be seen that, depending on the

mechanism, tension occurs in the concrete. Furthermore, in the notch close to the support, the

stress configuration in the concrete is different than in the other notches. Indeed, the remaining

notches can be modelled like a series of cantilevers fixed in the compression zone, and are sub-

jected to tension and shear stresses. Therefore, several issues of concrete notches could not be

investigated in this test series.

In order to predict the type of failure according to the analytical models described in Section

3.3, some simplifications must be done. Fig. 4.16 illustrates the simplified models assumed to

calculate the failure loads. It is assumed that three failure modes can occur: a shearing-off

failure in the timber (2S), a compressive failure in the timber (2C) and a compressive failure in

the concrete (1C,n). Tab 4.6 summarises the methods used to determine the critical stresses and

the applied failure criteria. The theoretical failure loads of the specimens tested are calculated

using the concrete properties listed in Tab. 4.4 and the timber properties listed in Tab. 2.1.

For the prediction of the concrete failure (1C,n), it is assumed that the force is concentrated

in a diagonal strut. To predict the failure load, the compressive stress is calculated in the smallest

section of the strut which corresponds to the projection of the notch edge, and a uni-axial

strength criterion is applied.

Failure in the timber is predicted by considering the timber part as a plain stress state and

by calculating the interaction between the stresses σz, σx and τ , generated by F and Fv, using

the Tensor Polynomial theory. To achieve a rough estimation of the failure load, the Tensor

Polynomial theory is applied with the interaction term F12 set to zero as shown in Section 2.4.1.

The main difficulty in predicting the timber failures 2C and 2S is the quantification of

the vertical stress σz. As explained in Sections 3.3.5 and 3.3.6, this stress results from the

superposition of the stresses due to the eccentricity of F in respect of the shear plane and

the vertical compressive stresses due to the transfer of Fv to the support. Whereas the first

component can be analytically estimated (Eq. 3.127), the distribution of the vertical compressive

stress is unknown. For the following calculations, it is assumed that the vertical compressive

stress is uniformly distributed over the notch length and the notch width (Tab. 4.6). With this

assumption, the resulting vertical stress σz is always a compressive stress.

To predict the shearing-off failure (2S) according to the analytical models set up in Section

3.3.6, a critical shear plane must be identified. Since, as shown in Fig. 4.11, a cross layer is

located slightly below the bottom of the notch, it is assumed that this layer corresponds to
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Table 4.5: Results of the connection shear tests: shear stiffness Kser, maximum load Fu, and failure

Specimen Kser

[kN/mm]

Fu

[kN]

Cause of interruption of test Failure type

L3.1.1 690 386 Rolling shearing-off failure of the middle

cross layer (2S)

Brittle

L3.1.2 617 400 The test was interrupted. After that, a di-

agonal crack in the concrete was observed.

[-]

L3.2.1 756 400 The test was interrupted. After that, a di-

agonal crack in the concrete was observed.

[-]

L3.2.2 835 393 Compressive failure in timber (2C) Ductile

L3.1.f.1 797 388 ” ”

L3.1.f.2 747 356 ” ”

L3.4.1 220 311 Compressive failure in the timber (2C).

After that, the concrete layer slid out of

the notch

Ductile deformation,

then sliding out

L3.4.2 200 310 Compressive failure in the timber (2C).

Then, shearing-off failure of the timber

Ductile deformation,

then brittle failure

S3.1.1 569 295 Rolling shearing-off failure of the middle

cross layer (2S)

Brittle

S3.1.2 1010 366 ” ”

S3.2.1 999 348 Shearing-off failure of the timber (2S)

(90% rolling shear failure, 10% shear fail-

ure parallel to the grain)

”

S3.2.2 1213 385 Rolling shearing-off failure of the middle

cross layer (2S)

”

S3.3.1 1403 397 The test was interrupted. The specimen

did not show damages.

[-]

S3.3.2 821 341 Rolling shearing-off failure of the middle

cross layer (2S)

Brittle

S3.1.f.1 928 382 Shearing-off failure of the timber (2S)

(50% rolling shear failure, 50% shear fail-

ure parallel to the grain)

”

S3.1.f.2 591 355 Shearing-off failure of the timber (2S)

(90% rolling shear failure, 10% shear fail-

ure parallel to the grain)

”

S3.4.1 159 318 Shearing-off failure of the timber (2S) ”

S3.4.2 213 319 Brittle concrete failure ”
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Figure 4.12: Connection shear tests: (a) shearing-off failure of the timber (2S); (b) compressive failure

of the timber (2C); (c) concrete failure; (d) diagonal crack in the concrete
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Figure 4.13: Results of the shear tests on the specimens with long notches (L): (a) specimens with

bN = 530 mm and notch edges perpendicuar to the interface; (b) magnification of (a); (c) specimens with

bN = 530 mm and inclined notch edges; (d) specimens with reduced notch width (bN = 330 mm) and

notch edges perpendicular to the interface
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Figure 4.14: Results of the shear tests of the specimens with short notches (S): (a) specimens with

bN = 530 mm and notch edges perpendicuar to the interface; (b) magnification of (a); (c) specimens with

bN = 530 mm and inclined notch edges; (d) specimens with reduced notch width (bN = 330 mm) and

notch edges perpendicular to the interface



4.3. Connection shear tests 151

Fv

F

Fv

Fv

F

Fv
FF

F

Figure 4.15: Connection shear tests: possible load-carrying mechanisms in the concrete part of the

composite member

Forces

F

Fv

F

Fv

diagonal strutFv

F

Fv

F

1

1

F

F

Compressive failure of the timber

2C
 x

 z

 z
 x

F

F2C*

 x  x

F

F

Shear failure of the timber
2S

 z

 z

F

F
2S*

Failure of the concrete
 x  x









1C,nx
z
y

x
z
y x

z
y

lN

tN

Figure 4.16: Connection shear tests: model to predict different types of failure

the shear failure surface. Therefore, the failure criterion obtained from the Tensor Polynomial

theory (Eq. 3.163) is applied by taking into account the rolling shear strength of beech LVL

fRv,2.

As illustrated in Tab. 4.6, since the distribution of the shear stress over 8tN used in the

analytical model is a rough estimation, a failure force F2S,sup is calculated assuming that the

shear stress is distributed over the entire notch length lN .

In the case of the specimens with reduced notch width, it is assumed that the notch sides

contribute to the shear resistance of the specimen. The amount of shear force carried by the

notch sides is estimated as follows:

F2s,sides = 2 · fv,2 · lN · tN (4.1)

As discussed in Sections 3.3.5 and 3.3.6, the influence of the stress perpendicular to the

interface σz on the failure types 2S and 2C depends on the notch geometry, and in some cases

can be neglected. In the comparison, the failure loads of the timber are also predicted without

taking into account the vertical stresses. The resulting failure loads are named 2C* and 2S*.
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The comparison between experimental results and predicted failure loads shows, in some

cases, a good agreement, and, in other cases, several discrepancies (Fig. 4.17). The reason for

lies mostly in the simplifications assumed in the models.

Regarding the timber failures, the main simplifications in the models are the distribution of

the vertical pressure caused by the transfer of Fv to the supports, and the rectangular shear stress

distribution. Also the linear distribution of the vertical tension generated by the eccentricity is

strongly idealised. Furthermore, the amount of horizontal load transferred from the concrete to

the timber by means of friction is difficult to quantify, and in the analytical calculations was

neglected.

Nevertheless, by considering multi-axial stress states by means of the Tensor Polynomial

theory, prediction accuracy is improved. Furthermore, this approach shows evidence of several

differences between the specimens with long and short notches:

� In the specimens with long notches (L), the estimated vertical compressive stress is very

small. Therefore, the consideration of the multi-axial stress state does not change the

prediction significantly. The differences between 2S* and 2S, and between 2C* and 2C are

small.

� In contrast, in the specimens with short notches (S), the consideration of the multi-axial

stresses by means of the Tensor Polynomial theory markedly increases the predicted failure

loads. In these specimens, since the area bN x lN is smaller and the ratio Fv/Fh is higher,

the vertical stresses are higher than in the specimens with long notch. Therefore, if the

vertical stress is taken into account, F2C is significantly higher than F ∗2C . This could

explain the fact that, in the specimens with short notches, a compressive failure of the

timber did not occur.

The model used to predict the compressive concrete failure in the notch (1C,n) is strongly

simplified. Probably, in reality, the stresses in the concrete distribute in a different way than

via the single compression strut of Fig. 4.15. A brittle concrete failure was observed only in one

specimen with short notches (S3.4.2). As shown in Fig. 4.17, the model underestimated this

failure load. In contrast, as shown in Fig. 4.17, the measured curves of all specimens except

S3.4.1 and S3.4.2 slightly exceed the predicted failure force of concrete.

The diagonal crack observed in some specimens after the test (Fig. 4.12(d)) could be caused

by tension in the concrete layer generated by the transfer of the force to the support as shown

in Fig. 4.15.

4.3.5 Discussion

This analysis concentrated on the last notch close to the support. Although several conclusions

are valid for every notch, it has to be taken into account that this test was not able to reproduce

the structural behaviour of the remaining notches between the support and the mid-span, which

do not benefit from the positive influence of vertical compression and have to carry a combination

of shear and tension stresses in the concrete.
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Table 4.6: Connection shear tests: stresses and failure criteria used to predict the failures

Type of failure Stresses in the

critical point

Failure criterion

Shearing-off

failure in the

timber

2S τ = F
bN ·8tN Tensor

Polynomial

theory

Eq. 3.163

σz = 3tNF
bN l

2
N
− Fv

bN lN

2S,sup τ = F
bN ·lN Tensor

Polynomial

theory

Eq. 3.163

σz = 3tNF
bN l

2
N
− Fv

bN lN

2S∗ τ = F
bN ·8tN τ = fRv,2

Compressive

failure in the

timber

2C σx = F
bN tN

Tensor

Polynomial

theory

Eq. 3.130

σz = 3tNF
bN l

2
N
− Fv

bN lN

2C∗ σx = F
bN tN

σx = fc,0,2

Compressive

failure in the

concrete

1C,n σx = F
bN tN

σx = fc,1
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Figure 4.17: Connection shear tests: comparison between test results and analytical model



4.3. Connection shear tests 155

Non-linearity of the curves

Irrespective of the failure mode, all F -u curves denoted a non-linearity, which increased with

increasing load. This progressive loss of shear stiffness could be a possible sign of stress redis-

tributions in the timber and concrete.

Notch length

The notch length was set to 100 or 200 mm. The load which caused a rolling shear failure in the

timber (2S) was not significantly different between long (200 mm) and short (100 mm) notches.

In other words, the shear failure load of the timber was not directly proportional to the length

of the timber next to the notch. There are several factors which probably contributed to this

result.

� Firstly, this could be caused by the fact that there is a limit for the effective shear length.

The model takes this into account by setting a maximal effective length of 8tN .

� Secondly, the vertical reaction measured in the tests with short notches was about three

times higher than in the tests with long notches. Consequently, the specimens with short

notches probably benefited from the positive effect of the vertical compressive stresses in

the timber.

These factors were taken into account in the analytical model. However, because of several

unknown aspects and assumptions, the prediction shows some discrepancies in comparison to

the results.

Ductile compressive failures in the timber (2C) were observed only in specimens with long

notches. For instance, specimen L3.4.1 (long notch with reduced width) failed in a ductile way

due to a compressive failure in the timber at a horizontal load of 225 kN. In contrast, S3.4.1

(short notch with reduced width) exhibited a brittle shear failure in the timber at a horizontal

load of 318 kN. A possible explanation is the influence of the vertical compressive stresses on

the compressive failure in the timber. Since this compressive stress was significantly higher in

the specimens with short notches, the compressive failure in the timber could not occur at the

same load level as in the long notches. The calculation model takes this effect into account by

superposition of the acting stresses according to the Tensor Polynomial theory.

At least, the test results showed that the long and short notches had about the same

stiffness. As a consequence of these results, the notches with a length of 200 mm showed a

better structural performance than the 100 mm long notches.

Steel fibres

The influence of steel fibres in the concrete instead of a steel mesh was studied experimentally

with specimens L3.1.f.1, L3.1.f.2, S3.1.f.1 and S3.1.f.2. In comparison to the specimens with a

concrete C50/60 and a steel mesh, no specimens with steel fibres exhibited concrete cracks at

the end of the test. In contrast, the stiffness was in the same range as it was with the specimens

with concrete C50/60 and steel mesh.
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Notch inclination

The push-out tests performed did not allow evaluating the influence of the notch edge inclination

on the load-displacement behaviour.

Notch width

In four specimens, the notch was cut with a reduced width (lN = 330 mm). If the notch length

was 200 mm, these specimens always showed a ductile compressive failure in the timber parallel

to the grain with maximum plastic deformations of about 8 mm. A reduction of the notch width

increased the concentration of the contact force between the timber and concrete, and allowed

mobilizing the resistance of three shear planes instead of one. On the other hand, this reduction

of the width caused an increase of the measured relative displacements between the timber and

concrete.

Cross layers

In this test series, the veneer configuration was not varied. The beech LVL plates tested were

made of 10 longitudinal veneers and 3 cross layers. This configuration was critical, because the

cross layer at mid height of the cross section of the beech LVL plate coincided with the critical

shear plane of the notch. This means that the shear strength in this plane corresponded to the

rolling shear strength of a beech veneer, which is less than half of the shear strength parallel to

the grain. If a beech LVL plate without the middle cross layer was used, shear failures in the

timber would occur at higher load levels. However, at least two other cross layers must be there

to ensure the dimensional stability of the plates.

Load-carrying capacity and stiffness

The load-carrying capacity of the notched connections tested satisfied the requirements for the

design of slabs for office or residential buildings. The maximum loads carried by the specimens

were between 310 kN and 400 kN in case of specimens with long notches, and between 295 kN

and 397 kN for specimens with short notches. The estimated design horizontal load in the notch

close to the support for a 6 m long and 0.53 m wide slab is between about 50 and 100 kN.

The stiffness of the specimens was calculated by considering the measured relative displace-

ment at 40% of the failure load. For the specimens with long notches, the connection stiffness

was between 617 and 835 kN/mm if the notch was cut over the entire width of the specimen

(bN = 530 mm), and between 195 and 216 kN/mm if the notch had a reduced width (bN =

330 mm). For the specimens with short notches, the connection stiffness was between 569 and

1403 kN/mm if the notch was cut over the entire width of the specimen, and between 159 and

213 kN/mm if the notch had a reduced width. The corresponding γ-factors calculated for the

elastic-cracked state of the composite member according to Section 3.2.3 were between 0.8 and

1 and were located in the asymptotic part of the mathematical relationship between K and γ.

This means that the notched connections tested are able to ensure an almost full composite

action in the elastic phase. However, it has to be taken into account that the clamping of the
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beech plate by the tensile testing machine always caused small torsions of the specimens. This

fact, added to the small inaccuracies by fixing the sensors, contributed to create variations of

the resulting stiffness.

4.3.6 Conclusions

In conclusion, this test series showed that, depending on the design, notches as connection

system for timber-concrete composite members made of beech LVL are able to fulfil the three

most important requirements on connections mentioned in Section 2.3.3: load-carrying capacity,

stiffness and ductility. The latter property is achieved by means of a ductile compressive failure

of the timber parallel to the grain. This means that ductility comes from the timber part itself

and not from additional mechanical fasteners.

4.4 Bending tests with distributed load

4.4.1 Introduction

A series of bending tests with distributed load was performed in the laboratory of the Institute

of Structural Engineering (IBK) at ETH Zurich. The timber-concrete composite members with

notched connection were made of beech LVL and the notch geometry was designed according to

the analytical models described in Chapter 3. The purpose of the design was that a ductile failure

(compressive failure of the timber in the notch) should govern the structural behaviour of the

composite member. The most important examined parameter was the vertical reinforcement,

and the test results were analysed and compared to the results of calculations applying the

analytical models.

4.4.2 Materials and methods

In this experimental series, 11 composite specimens with 15 mm deep notches were tested. The

layout of the specimens is illustrated in Figs. 4.19 and 4.20. Tables 4.7 and 4.9 summarise the

construction details. The specimens were 6 m long, 530 mm wide and 200 mm deep. Each beech

LVL plate was 40 mm deep with a 160 mm thick concrete layer. The notch dimensions were

chosen according to Chapter 3 so that a compressive failure in the timber should govern the

structural behaviour.

The beech LVL plates were produced by the company Pollmeier. In contrast to 40 mm

thick LVL plates tested by Van de Kuilen and Knorz [14], [15] and considered by the European

Technical Approval [3], the longitudinal layers were 12 instead of 10 (Fig. 4.18). In contrast,

the number of cross layers was the same. Totally, the plate consisted of 14 veneers instead of 12.

In contrast to the preliminary bending tests and the shear tests, to prevent rolling shearing-off

failures, the beech LVL plates in this test series did not contain a cross layer in the middle. The

higher number of longitudinal veneers influences the tensile, the compressive and the bending

strength parallel to the grain. However, in the model calculations, this impact was neglected,

and the values found by Van de Kuilen and Knorz [14], [15] were assumed (Tab. 2.1).
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7.1 and 7.2 8.2
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Figure 4.18: (a) Standard veneer configuration of the beech LVL produced by the company Pollmeier;

(b) veneer configuration of the LVL plates used in the bending tests

The concrete that was tested had the strength class C50/60 according to the Swiss Standard

SIA 262 [66], a maximum aggregate diameter of 16 mm, and contained a liquid admixture to

reduce the impact of drying shrinkage and a steel mesh to prevent shrinkage cracks. According

to the models presented in Section 3.2, this mesh does not carry relevant forces. The mechanical

properties of the concrete tested are summarised in Tab. 4.8.

Table 4.7: Bending tests with distributed load: fixed dimensions [mm]

Specimen length 6000

Span l 5660

Notch length lN 250

Specimen width b 530

Notch depth tN 15

Timber thickness h2 40

Concrete thickness h1 160

Diameter of the shrinkage reinforcement 6

Spacing of the shrinkage reinforcement 150

Specimen 1 had notches with a constant width, whereas in all other specimens the notch

width was designed proportional to the shear force generated by a uniformly distributed vertical

load according to Section 3.3.4 (Fig. 4.19). The reference specimen was specimen 2.1, which had

notches proportional to the shear force distribution and no vertical reinforcement. Specimen 3

was identical to specimen 2.1 but had inclined notch edges.

As shown in Fig. 4.19, Fig. 4.20 and Tab. 4.9, several types of vertical reinforcement were

tested.

Firstly, the effect of vertical reinforcement within the concrete layer such as the distance

baskets made of reinforcing steel fixed in specimen 4 and the punching steel dowels installed in

specimen 5 was examined. Secondly, the influence of end-to-end reinforcement (with or without

tolerance) which connected the timber and concrete vertically (specimens 2.2, 6, 7.1, 7.2 and

8.2) was studied.

The steel rods of specimen 6 had no tolerance. The reason is that they were fixed in the

LVL plate before pouring the concrete. Specimen 2.2 was produced in the same way as specimen
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Table 4.8: Bending tests: concrete properties

Modulus of elas-

ticity

Cylinder

strength

Splitting tensile

strength

Specimens 1 to 6

Number of specimens [-] 3 3 4

Mean value [N/mm2] 38800 52.6 3.4

Standard deviation [N/mm2] 500 5.1 0.4

Specimens 7.1 to 8.2

Number of specimens [-] 3 4 4

Mean value [N/mm2] 37011 56.9 3.4

Standard deviation [N/mm2] 229 0.65 0.62

2.1, but, before the test, round holes with a diameter of 16 mm were drilled. Then, in each hole,

a 10.9 steel rod with a diameter of 6 mm designed according to Sections 3.3.10 and 3.3.11 was

inserted to prevent concrete crack opening and gap opening. These rods had a tolerance in

respect to horizontal relative displacements between the timber and concrete and should help to

fulfil the model requirements discussed in Section 3.3.12. Before the test, the nuts of the rods of

specimen 2.2 were turned by hand until they stopped moving. Then, they were turned by 360◦

using a fork wrench.

Specimens 7.1 to 8.2 (Fig. 4.20) were based on the same concept as specimen 2.2, but

were produced subsequently. The reinforcement of these specimens was designed to fulfil the

model requirements described in Section 3.3.12 as good as possible. It is unthinkable to use this

reinforcement in practice. Since the behaviour of specimen 2.2 was governed by a failure of the

rods caused by too small dimensions of the holes, specimens 7.1, 7.2, and 8.2 were produced

with longer holes which were realised with wedges fixed before concreting. The rods were of

strength class 8.8 and 10.9 depending on the position. Since the holes were 80 mm long, high

plastic horizontal relative displacements could develop without causing a failure of the rods.

The washers of the rods were placed on lubricated steel plates to prevent that the rods carried

forces parallel to the interface between the timber and concrete. Furthermore, as shown in Fig.

4.20, 5-mm-thick polystyrene elements were fixed on the timber plates close to the notches to

minimise hardening effects due to the vertical reinforcement discussed in Section 3.3.12, which

are difficult to quantify. Since the model assumes that the connection is elastic and ideal-plastic,

this measure allows a better comparison between the model and the test results. The difference

between specimens 7 and 8 was that the beech LVL plates of specimens 7.1 and 7.2 were identical

to specimens 1 to 6, whereas the LVL plate of specimen 8.2 came from another production series

and showed a small difference in the veneer configuration (Fig. 4.20). The cross layers were

slightly closer to the mid height, but were not below the notch bottom. This means that the

shear stresses occurring due to shear transfer through the notch are not carried by cross layers.

A variation of the position of the cross layers by constant number of veneers influences the
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bending strength of the plate. However, this impact is neglected, and it is assumed that all

plates have the mechanical properties determined by Van de Kuilen and Knorz [14], [15].

Before the tests, the rods of specimens 7.1, 7.2 and 8.2 were fixed with the procedure used

with specimen 2.2.

Fig. 4.21 illustrates the test setup and the most important measurement points. The test

setup should reproduce a distributed load. This included four hydraulic cylinders, four load

distribution steel profiles (HEB 140) oriented in longitudinal direction, and eight steel plates

which transferred the load from the steel profiles HEB 140 to the specimen. The supports

were in a distance of 5.66 m. The vertical deflections were measured at mid-span (w2) and at

quarter-span (w1 and w3). The horizontal relative displacement between timber and concrete

was measured close to each notch by means of LVDTs (u1 to u10). The cylinder load was

calculated from the measured oil pressure.

Table 4.9: Bending tests with distributed load: description of the specimens

Specimen Notch width Vertical

reinforcement

reinforcement type Tolerance

1 Constant [-] [-] [-]

2.1 Proportional to

shear force

[-] [-] [-]

2.2 ” 24 rods with � = 6

mm, strength class

10.9

End-to-end Yes

3 ” [-] [-] [-]

4 ” 120 steel bars with

� = 5 mm built in

distance baskets

Internal concrete

reinforcement

No

5 ” 21 punching dowels

diameter � = 14

mm

Internal concrete

reinforcement

No

6 ” 30 steel rods � = 20

mm, strength class

4.5

End-to-end No

7.1, 7.2,

and 8.2

” 24 rods with � = 6

mm and strength

class 8.8, and 16

rods with � = 6 mm

and strength class

10.9

End-to-end Yes
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4.4.3 Test results

Tab. 4.10 summarises the failure loads (including self-weight) and the failure modes of the

specimens, and Fig. 4.22 illustrates the relationships between the vertical loads applied during

the tests and the vertical deflections at mid-span. In Fig. 4.22, the specimens are regrouped

depending on the type of vertical reinforcement. The uniformly distributed load q represented

in Fig. 4.22 is calculated as the sum of the cylinder loads applied during the test divided by the

surface of the specimen:

q =

∑4
i=1 Fcyl,i
l · b (4.2)

The load qu is the maximum load reached during the test. The value q∗u includes the self

weight of the specimen and represents the effective load-carrying capacity.

In general, as predicted by means of the analytical model, all specimens except specimen 6

reached the compressive failure in the timber (2C). This failure mode is the primary objective of

the design strategy presented in Section 3.3.12. Nevertheless, although the compressive failure

in the timber was governing, only specimens 2.2, 7.1, 7.2 and 8.2 showed a satisfying ductile

behaviour. As exposed in Tab. 4.10, the problem of specimens 2.1, 3, 4 and 5 was that, after the

compressive timber failure, the gap between the timber and concrete opened, and the existing

concrete cracks enlarged. these two phenomena compromised the structural behaviour. As

shown in Fig. 4.22(d), end-to-end vertical reinforcement with tolerance solved this problem.

Specimens 2.2, 7.1, 7.2 and 8.2 showed an elastic and a plastic phase, and the plastic amount

of the deflection was more than 100 mm. The ductility of specimen 2.2 was limited by a failure

of the rods due to the dimensions of the holes, whereas specimens 7.1, 7.2 and 8.2 failed due to

a compressive failure in the concrete on top of the cross-section followed by a tensile-bending

failure of the timber. Fig. 4.22 shows that the bending stiffness of the specimens tested lied in

the same range.

Specimen 1: constant notches without vertical reinforcement

As shown in Fig. 4.22(a), the load-deflection behaviour of specimen 1 was marked by an elas-

tic phase, a short plastic phase with load oscillations, and a ultimate brittle failure. During

the elastic state, several flexural-shear cracks appeared close to the load transfer points of the

notches. These cracks were stable and did not propagate. Then, a ductile compressive failure

of the timber parallel to the grain occurred mainly in the notches close to the supports (N1

and N10). As shown in Fig. 4.23(a) and 4.23(b), the notches N1 and N10 were subjected to

great plastic deformations, whereas the notches N2 and N9 showed comparatively small plastic

deformations. The notches N7 and N8 did not exhibit plastic deformations. As illustrated in

Fig. 4.23(c), because of the difference between the horizontal relative displacement of N10 and

N9 and between N1 and N2, the flexural-shear cracks close to N9 and N2 enlarged. After that,

a brittle tensile-bending failure of the timber occurred between N9 and N10 (Fig. 4.23(c)).
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Table 4.10: Test results

Specimen Maximal

load q∗u
[kN/m2]

Governing failure mode Behaviour after failure Ultimate failure

1 54.7 Compressive failure of

the LVL in the notches

close to the supports

Plastic deformations of

the notches close to the

supports; crack opening

in concrete

Brittle tensile-bending

failure of the LVL close

to notch N9

2.1 46.3 Compressive failure of

the LVL in most of the

notches

Limited plastic

deformations

Gap opening; crack

opening in the concrete

2.2 72 ” Elevated plastic

deformations with

hardening

Failure of the rods

3 54.9 ” Limited plastic

deformations

Gap opening; crack

opening in the

concrete; brittle failure

in the concrete

4 45.5 ” ” Gap opening

5 56.5 ” ” Gap opening; crack

opening in the

concrete; brittle

concrete failure

6 88.2 Brittle tensile-bending

failure of the LVL

[-] [-]

7.1 63.9 Compressive failure of

the LVL in most of the

notches

Elevated plastic

deformations with

hardening

Compressive failure of

the concrete

(cross-section);

bending-tensile failure

of the LVL

7.2 64.3 ” ” ”

8.2 62.8 ” ” ”
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Figure 4.22: Relationship between the vertical load and the deflection at mid-span measured during

the bending tests: (a) composite members without vertical reinforcement (specimens 1, 2.1 and 3) ; (b)

composite members with internal vertical reinforcement in concrete (specimens 4 and 5); (c) composite

member with end-to-end vertical reinforcement without tolerance (specimen 6); (d) composite members

with end-to-end vertical reinforcement with tolerance (specimens 2.2, 7.1, 7.2 and 8.2)
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Figure 4.23: Specimen 1: (a) horizontal relative displacements measured between the fixed support

and the mid-span; (b) horizontal relative displacements measured between the mid-span and the sliding

support; (c) failure mode

Specimens 2.1 and 3: progressive notches without vertical reinforcement

As shown in Fig. 4.22(a), the load-deflection behaviour of specimen 2.1 was marked by an elastic

phase and a short plastic plateau followed by a fast decrease of the load. During the elastic state,

bending cracks at mid-span and flexural-shear cracks close to the notches appeared, and no gap

opening was observed. Then, a ductile timber compressive failure occurred in most of the notches

as measured in Fig. 4.24(a) and Fig. 4.24(b). In several notches, the plastic deformations of the

timber were possible to observe after the separation of the two parts of the composite member as

shown in Fig. 4.24(c). The measured horizontal relative displacements described in Fig. 4.24(a)

and Fig. 4.24(b) denote some differences between the plastic deformations of the notches. For

instance, N8, N9 and N10 deformed more than N7. This phenomenon probably caused the

enlargement of the flexural-shear crack close to N7 shown in Fig. 4.24(d) . Furthermore, during

the plastic phase, the gap between timber and concrete opened between the enlarged cracks and

the supports. This coincided with the beginning of the load decrease.
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Figure 4.24: Specimen 2.1: (a) horizontal relative displacements measured between the fixed support

and the mid-span; (b) horizontal relative displacements measured between the mid-span and the sliding

support; (c) compressive failure of timber in notches N7 to N10; (d) crack opening and gap opening

occurred during yielding of the notches

Specimen 3 was the same as specimen 2.1, but the notches were cut with inclined edges

according to Fig. 4.19. The structural behaviour of specimen 3 was similar to specimen 2.1.

Despite the compressive failure of the timber was reached in most of the notches, crack and gap

opening governed the structural behaviour, and the final plastic deformations were small. The

enlarged crack close to N7 caused a brittle concrete failure. In this test, it was not possible to

evaluate the influence of the inclined edges.
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Specimens 4 and 5: progressive notches with vertical reinforcement in concrete

The internal concrete reinforcement tested during this experimental series did not improve the

structural behaviour in a relevant way. During the experiments 4 and 5, in opposition to the

experiments 2.1 and 3, no flexural-shear cracks in the concrete were observed. However, the

structural behaviour was similar to the composite members without reinforcement (specimens

2.1 and 3). The structural behaviour of specimen 4 was governed by gap opening between the

left support and notch N5, which occurred after compressive failure of the notches. In specimen

5, after the compressive timber failure, the gap opened between the left support and the notch

N4, and the bending crack close to N4 enlarged. The ultimate failure of specimen 5 was a

brittle failure in the concrete close to this crack. Fig. 4.25 illustrates the relationship between

the load and the horizontal relative displacement measured between the timber and concrete in

specimens 5.
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Figure 4.25: Specimen 5: relationship between the horizontal relative displacement and the load: (a)

measurement points between the fixed support and the mid-span; (b) measurement points between the

mid-span and the sliding support

Specimen 6: progressive notches with end-to-end reinforcement without tolerance

Specimen 6 was reinforced by means of thick end-to-end rods without tolerance. As shown in

Fig. 4.22(c), the bending stiffness of specimen 6 was in the same range as it was with the other

specimens tested, and the load-displacement curve was almost linear-elastic until the brittle

tensile-bending failure. The measurement of the horizontal relative displacement between the

timber and concrete shown in Figs. 4.26(a) and 4.26(c) does not give evidence to relevant

plastic deformations in the notches. However, the magnifications shown in Figs. 4.26(b) and

4.26(d) exhibit a slight non-linearity of the connection behaviour: the connection stiffness tends

to decrease with increasing load.
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Figure 4.26: Specimen 6: relationship between the horizontal relative displacement and the load:

(a) measurement points between the fixed support and the mid-span; (b) magnification of (a) ; (c)

measurement points between the mid-span and the sliding support; (d) magnification of (c)

Specimen 2.2: progressive notches with end-to-end reinforcement with limited tol-

erance

Specimen 2.2 contained end-to-end steel rods with tolerance. The rods had a diameter of 6 mm

and were inserted in round holes with a diameter of 16 mm. As shown in Fig. 4.22(d), the

elastic phase of specimen 2.2 was similar to the one of the specimens shown in Figs. 4.22(a) and

(b), but a higher ductility was achieved.

As illustrated in Fig. 4.29, the structural behaviour of specimen 2.2 was governed by

compressive failure of the timber, and the ductility was limited by the rods. During notch

yielding, the load-deflection behaviour described in Fig. 4.29(b) showed a relevant ductility

and a hardening. As shown in Fig. 4.27, all notches provided with sensors, except N6, yielded

causing relevant plastic deformations. Fig. 4.29(c) illustrates the compressive failure of the

timber visible after the experiment. It can be seen that in some notches the damage is more
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evident than in others. Furthermore, up to failure, no gap opening was observed. During the

test, several flexural-shear cracks grew starting from the load-transfer points of the notches,

but did not enlarge thanks to the rods (Fig. 4.28). In contrast, at mid-span, bending cracks

predominated.

The specimen failed due to a brittle failure of the rods between the left support and notch

N3, as shown in Fig. 4.29(d). This caused a sudden opening of the interface between the fixed

support and notch N3, and a concrete failure close to notch N3. The failure of the rods was

located close to the interface between the timber and concrete. This suggests that the rods

were at limit stop because of the elevated plastic relative displacement between the timber and

concrete.

Specimens 7.1, 7.2, 8.2: progressive notches with end-to-end reinforcement with

elevated tolerance

In contrast to specimen 2.2, in specimens 7.1, 7.2 and 8.2, the holes were 12.5 mm wide and 80

mm long to prevent the failure of the rods observed in specimen 2.2. Furthermore, the specimens

were provided with polystyrene elements to prevent hardening due to the compressive failure of

the timber. As summarised in Fig. 4.22(d), specimens 7.1, 7.2 and 8.2 showed large ductility

similar to specimen 2.2, but slightly smaller failure loads. In contrast to specimen 2.2, thanks to

longer holes, the structural behaviour was not governed by failure of the rods. Thus, the entire

failure mechanism could be investigated.

The structural behaviour of specimens 7.1, 7.2 and 8.2 was governed by a compressive

failure of the LVL in the notches. Fig. 4.30 illustrates the failure process of specimen 8.2 as

an example. Ductility of the composite member was induced by yielding of the notches (Fig.

4.30(c)), and was limited by the development of a compressive failure of the concrete at the top

of the cross-section (Fig. 4.30 (d)), followed by a bending-tensile failure of the LVL (Fig. 4.30

(e)).

These three experiments were characterised by large plastic deformations in most of the

notches. After a linear-elastic phase, the sensors, which measured the horizontal relative dis-

placements close to the interface, detected significant plastic deformations at loads of 45 − 50

kN/m2 (Fig. 4.31). Fig. 4.30(c) illustrates the plastic deformations of two notches of specimen

8.2 after the end of the test. The compressive failure of the LVL in the notches was marked by

a compressive deformation in longitudinal direction and an expansion in vertical direction. As

illustrated in Section 4.4.2, before pouring the concrete, polystyrene elements were fixed to the

top edge of the LVL part of the composite member (Fig. 4.33(a)). After the specimens were

opened, it was observed that the polystyrene was compressed where the LVL had expanded in

volume vertically (Figs. 4.33(b) and 4.33(c)).

However, a compressive failure of the LVL did not occur in all notches exactly at the same

time. In general, the notches close to the supports began to yield first. As shown in Fig. 4.31,

most of the notches showed large plastic deformations. The notches with the smallest plastic

deformations were N5 and N6. Furthermore, during the experiments, it was observed that the

plastic notch deformations on the left and on the right sides of the specimens always showed some
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differences. This can be seen in Fig. 4.32(e), where the difference between the horizontal relative

displacements measured near the two notches close the left and the right supports (u1 and u10) is

plotted as a function of the deflection at mid-span. During the elastic phase, u1 and u10 showed

more or less the same displacements. As soon as the notches yielded, differences between u1 and

u10 arose. Then, the differences decreased progressively, and increased again before the ultimate

failure. The reason for this difference in plastic notch deformation is discussed in Section 4.4.4.

As soon as the curves of the horizontal relative displacements, illustrated in Fig. 4.31,

began to become flat, the vertical deflections began to increase, causing the marked non-linearity

shown in Fig. 4.30(b). The load-deflection behaviour measured during yielding of the notches

was characterized by four phases. First, the deflection showed a short plateau. Then, the load

slowly increased with increasing deflection. After that, the deflection continued to increase, but

the load reached a maximum and remained constant for awhile. Finally, the load decreased due

to a compressive failure of the concrete at the top of the cross-section, which always occurred

close to the holes where the rods were fixed (4.30 (d)). The concrete failure induced a progressive

delamination, which was accompanied by creaking. In the three composite members tested, the

failure of the concrete never occurred in the same place. In specimen 7.1, this failure was

observed close to notch N7, in specimen 7.2 close to N3, and in specimen 8.2 next to N8. Since

the hydraulic pump was regulated by hand, it was possible to observe the velocity of the failures.

The ductile failure of the composite members tested can be described as a slow process. From

the compressive failure of the LVL to the ultimate failure, a total time of 20 − 35 min was

needed. Yielding of the LVL subjected to compression was particularly slow. Then, as soon as

the concrete began to fail due to compression, the velocity of the plastic deformation increased.

The development of the concrete cracks, observed in specimens 7.2, 7.2 and 8.2, was similar

to specimen 2.2. Between the notches N5 and N6, the concrete cracks were generally perpen-

dicular to the interface. In contrast, between the fixed support and N5 and between N6 and

the sliding support, flexural-shear cracks occurred and remained closed and stable, thanks to

the rods (Fig. 4.33(d)). After the LVL plate was separated from the concrete, it was possible

to see a plan view of the flexural-shear cracks. All cracks started close to the areas where the

shear forces were transferred from the timber to the concrete, and propagated more or less in a

diagonal way in the direction of the mid-span (Fig. 4.33(e)).

The compressive failure of the concrete always developed in a small sector (Fig. 4.30 (d)).

Starting from the moment in which this failure occurred, the bending line of the composite

member was no longer parabolic, but tended to follow an angular form, which depended on the

position of the concrete failure. This tendency was detected in all specimens tested. As shown

in Figs. 4.32(a) and 4.32(b), immediately before the ultimate load limit, the bending lines were

asymmetric and showed higher deflections close to the points where the concrete failed. Fig.

4.32(c) shows a picture of specimen 7.2 a short time before the end of the test as an example.

Fig. 4.32(d) illustrates the relationship between the asymmetry of the bending line, calculated

by means of the difference between the deflections at quarter-spans w1 and w3, and the deflection

at mid-span. At the end of the elastic behaviour, the sensors w1 and w3 showed nearly the same

value. After the notches began to yield, the curves represented in Fig. 4.32(d) followed a similar
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trend, as can be seen in Fig. 4.32(e). Then, as soon as the concrete failed, the difference between

w1 and w3 increased markedly.

The ultimate failure of the composite member was determined by a brittle tensile-bending

failure of the timber cross-section, which always occurred before the compressive failure of the

concrete (e.g. Fig. 4.30(e)). This failure was marked by timber creaking and local constriction

of the timber cross-section, and occurred suddenly.
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Figure 4.27: Specimen 2.2: relationship between the horizontal relative displacement and the load: (a)

measurement points between the fixed support and the mid-span; (b) measurement points between the

mid-span and the sliding support
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Figure 4.28: Specimen 2.2: concrete cracks after the end of the test
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Figure 4.29: Specimen 2.2: (a) failure process; (b) relationship between the vertical load and the

deflection at mid-span; (c) compressive failure of the timber in the notches between the fixed support

and the mid-span (N1 to N5); (d) Failure of the rods (2.), gap opening (3.) and concrete failure (4.)
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Figure 4.31: Specimens 7.1, 7.2 and 8.2: relationship between the horizontal relative displacement

between the LVL and the concrete detected according to Fig. 4.21 and the load: (a) and (b) specimen

7.1; (c) and (d) specimen 7.2; (e) and (f) specimen 8.2
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Figure 4.32: (a) Vertical deflections of specimen 7.1; (b) vertical deflections of specimen 7.2; (c) defor-

mation of specimen 7.2 a short time before the ultimate failure; (d) difference between the deflections at

quarter-spans w1 and w3 as a function of the vertical deflection at mid-span w2; (e) difference between

the horizontal relative displacements measured close to the supports as a function of the deflection at the

mid-span
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Figure 4.33: (a) Polystyrene elements fixed to the LVL part before concreting; (b) compressive failure

of the LVL in notch N2 of specimen 7.1; (c) the polystyrene element close to notch N2 of specimen 7.1

was compressed by the timber, which expanded in the vertical direction due to a compressive failure in

the longitudinal direction; (d) flexural-shear cracks between the fixed support and notch N5 of specimen

8.2 photographed at the end of the test; (e) bottom view of the flexural-shear cracks of specimen 8.2

photographed after the concrete part was separated from the timber part
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4.4.4 Comparison with the analytical model

This section presents a comparison between the structural behaviour estimated by means of the

analytical model described in Chapter 3 and the results of the tests on specimens 7.1, 7.2 and

8.2. The reason for the choice of these specimens is that the length of the holes and the presence

of the polystyrene elements allowed observation of the entire structural behaviour. The failures

modes and the failure loads were predicted according to Chapter 3 using the mean values of the

mechanical properties reported in Tab. 2.1 and Tab. 4.8. Fig. 4.34(a) summarises the failure

modes considered by the model. The steel rods were designed according to Sections 3.3.10 and

3.3.11 to carry approximately double the predicted ultimate load. Thus, they were able to

prevent concrete crack opening and gap opening during the tests with high reliability.

As previously assessed, there were small differences between the plastic deformations of the

notches. According to the model, if the load is uniformly distributed, all notches should yield si-

multaneously and should develop approximately the same deformation. During the experiments,

the load was not perfectly evenly distributed but was introduced at eight points. Furthermore,

the crack pattern influences the load-carrying mechanism. The crack patterns observed during

the tests were not always the same.

In Figs. 4.34(b) and 4.34(c), the structural behaviour of specimens 7.1, 7.2 and 8.2 is

plotted and compared to the prediction made with the analytical model according to Section

3.2. In Figs. 4.34(b) and 4.34(c), the load starts from the self-weight of the specimens, and the

deflection measured is added to the expected deflection due to self-weight.

According to Figs. 4.34(b) and 4.34(c), during the elastic state, until about half of the

yielding load, the predicted deflections correspond to the measurements. With increasing load,

the deflections measured show a slight decrease of the bending stiffness and tend away from the

prediction.

In general, the succession of the failures, the loads and the deformations correspond to the

prediction. The failure mode which determined the end of the elastic behaviour and the begin-

ning of connection yielding was the compressive failure of the LVL predicted by the model (2C).

The three composite members yielded at about the same load level, and the measured yielding

load corresponded to the prediction. A reason for this correspondence is that the variability of

the compressive strength of beech LVL is small. Then, starting from the yielding point, although

the LVL parts were provided with the polystyrene elements mentioned previously, the experi-

ments showed a slightly larger hardening phase than the model. The principal reason for this

discrepancy is that the model assumes an ideal-plastic behaviour of the LVL under compression.

In reality, as observed during the shear tests described in Section 4.3, the compressive failure of

the LVL generates hardening by nature. This phenomenon must be taken into account when the

results of the bending tests are compared to the model calculations. Since the notch width was

proportional to the shear forces generated by a uniformly distributed vertical load, the notches

yielded at approximately the same load level as simplified by the model. Small differences in

the behaviour of the notches, or the fact that not all notches yielded exactly at the same time,

can be explained by the fact that the load was not perfectly evenly distributed like in theory,

and that the crack depth was not constant over the length of the specimens.
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Figure 4.34: Comparison between the analytical model presented in Chapter 3 and the structural

behaviour of specimens 7.1, 7.2 and 8.2: (a) failure modes considered by the analytical model; (b)

comparison between the test results and the prediction made under the assumption of a localised plastic

zone with a length of 750 mm; (c) comparison between the test results and the prediction made under

the assumption of a localised plastic zone with a length of 1500 mm

According to the model, after the compressive failure of the LVL, the compressive strength

of the concrete should be reached at the top of the cross-section (1C,c). Starting from this point,

the compressive zone should begin to redistribute the stresses and to deform in a plastic way.

However, during the tests, it was not possible to determine the specific moment in which the

compressive strength of concrete was reached.

In the model, it is assumed that the zone of the composite member, where the cross-section

develops plastic rotations, should be at mid-span and should have a length of at most the distance

between the notches N5 and N6. According to the model, the rotation of the cross-section in

the plastic zone should cause a failure of the compression zone of the concrete (1C,u), which

is calculated with the assumption that the ultimate compressive strain of the concrete is about

εu,1 ≈ 0.003. Then, the load should decrease and the deformation should continue.
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As predicted by the model, the load began to decrease at the same time as local delamina-

tion of the concrete part on top edge of the cross-section occurred. This means that the concrete

part locally reached the maximum compressive strain. However, during the tests, the exact di-

mensions of the plastic zones could not be determined. The difference with the model is that,

during the experiments, the compressive failures of the concrete never occurred at mid-span,

but always close to the holes where the rods were fixed. The reason for this difference is that the

model does not take the holes into account. Close to the holes, the cross-section is weakened,

and so failure is more likely to occur there. Furthermore, the place where the compressive failure

of the concrete occurred was different in each specimen. It was observed that, during the plastic

phase, the bending line was no longer parabolic, but the specimens tended to bend in an angled

way. This tendency confirms the fact that a plastic zone exists where the rotation concentrates.

According to the model, a further increase of the curvature of the cross-section after the

beginning of the compressive failure of the concrete should cause a combined tensile-bending

failure of the LVL part of the composite member. The reason is that, with constant tensile stress

at the centroid of the LVL cross-section, the curvature which causes a tensile-bending failure

of the LVL (Eq. 3.77) is not much larger than the curvature corresponding to the concrete

compressive failure (Eq. 3.78):

χ2u

χ1u
=

2 · fm,2
h2 · E2

·
(

1− σ2,y
ft,0,2

)
· xIV

0.003
= 1.13 (4.3)

During the tests, starting from the delamination of the compressive zone, the deflection

continued to increase, and the load slowly decreased. After that, as predicted by the model,

a combined tensile-bending failure of the LVL occurred below the concrete delamination. The

differences between the maximum vertical deflections reached by the specimens is probably due

to the fact that the plastic zone never developed at the same place.

The fact that the model for the prediction of the deflection increment due to rotation of the

plastic zone is strongly simplified is the reason for the discrepancies between the predicted and

the measured ultimate deflections. First, the dimensions of the plastic zones were determined

with simplified assumptions. Second, the position of the ductile compressive failure of the con-

crete was never at mid-span, as assumed in the model. Furthermore, the model assumes that all

notches yield at the same time and develop the same plastic deformations. The measured hori-

zontal relative displacements indicated that the notches close to the supports developed larger

plastic deformations. This influences the length of the zone where the cross-section experiences

plastic rotations, causing differences with the model predictions. However, as shown in Figs.

4.34(b) and 4.34(c), if realistic dimensions of the plastic zone are assumed, the prediction lies

approximately in the range of the experimental results.

One important requirement for the rods was that they should carry only vertical forces.

Therefore, as shown in Fig. 4.20, the washers of the rods were placed on lubricated steel

plates. Nevertheless, it is difficult to say if the rods effectively did not carry forces parallel

to the interface. Most likely, since the horizontal LVDTs at the interface began to measure

plastic deformations at approximately the predicted load level, the rods did not carry relevant

horizontal forces.
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Finally, the bottom view of the concrete part of the composite member, reported in Fig.

4.33, shows that the cracks initiated close to the notch edges. This agrees with the theory

adopted in Section 3.3.10 for the design of the vertical reinforcement.

Since the reinforcement was designed according to the models described in Sections 3.3.10

and 3.3.11 with a high margin of safety, these bending tests did not allow for testing the load-

carrying capacity of the reinforcement. Therefore, it was not possible to provide a complete

validation of these models.

4.4.5 Discussion

This test series included several types of notches and vertical reinforcement. Specimens 7.1,

7.2 and 8.2 validated the analytical model for ductile and reliable design of timber-concrete

composite members with notched connections, presented in Chapter 3.

The tests with progressive notches and without vertical reinforcement (specimens 2.1 and

3) showed that reaching ductile failure of the timber was not a problem, and, until this failure

occurred, no gap opening and no other types of failure were observed. The difficulty was to

achieve a relevant ductility after this failure. As theoretically explained in Section 3.3.9, during

yielding of the notches, the interaction between the two materials causes notable problems. It

was observed that a combination of enlargement of the existing concrete cracks and gap opening

governed the load-displacement behaviour. As a consequence, although most of the notches

reached a ductile compressive failure of the timber, only some of these notches developed relevant

plastic deformations. In these cases, then the load decreased, and brittle failures of the concrete

could occur. By observing the tests, it can be concluded that these phenomena are probably

related. Furthermore, these mechanisms are unstable and difficult to predict. Thus, if no vertical

reinforcement is designed, it is not possible to obtain a satisfying ductile behaviour. During

these tests, no flexural-shear failure of the concrete part of the composite member occurred.

Nevertheless, as explained in Section 3.3, it is critical to design notched connections without

tensile reinforcement because of several factors which are difficult to quantify.

In contrast to specimen 2.1, the notches of specimen 1 were of constant width. As assessed

in Section 3.3.4, since the composite member was subjected to a uniformly distributed vertical

load, the compressive stress in the contact area between the LVL and the concrete was different

in every notch. The notch close to the support should be subjected to the highest vertical

compressive stresses, and the notch close to the mid-span to the smallest. Indeed, in specimen

1, the notches close to the supports developed larger plastic deformations than the other notches,

and, consequently, the existing cracks enlarged. This crack enlargement probably interrupted

the stress transfer through the concrete part of the composite member, and the vertical reactions

were transferred to the timber part, causing the tensile-bending failure observed.

Specimens 4 and 5 showed that internal vertical reinforcement in the concrete does not

improve the structural behaviour in a satisfying way. This means that it is necessary to prevent

gap opening by using end-to-end reinforcement.

Specimen 6 is an example of end-to-end reinforcement designed in the wrong way. Since

this reinforcement was too stiff, it carried a relevant amount of the horizontal shear forces.
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Furthermore, the ductile load-carrying capacity of the rods, which could be activated, was too

high. When the notches began to yield, the shear forces were redistributed to the rods, which

had a significant reserve in load-carrying capacity. Furthermore, the rods introduced vertical

internal forces which caused hardening of the notches. Therefore, this specimen failed due to a

combination of tension and bending in the timber at mid-span. The slight non-linearity of the

horizontal relative displacement shown in Fig. 4.26 has several possible explanations. A possible

cause is an exceedance of the compressive strength of the timber and a consequent redistribution

of the horizontal shear forces to the rods. Another cause of this non-linear connection behaviour

could be that plastic hinges developed in the rods.

Specimen 2.2 showed that end-to-end reinforcement, designed according to Sections 3.3.10

and 3.3.11, is able to prevent the problems that occurred in specimens 2.1, 3, 4, 5 and 6.

Almost all of the notches yielded, causing large plastic deformations. The rods with tolerance

in specimen 2.2 carried the vertical tensile stresses in the concrete, prevented opening of the

flexural-shear cracks, prevented gap opening, and allowed yielding of the notches. However,

the tolerance of the holes was too small and the rods failed, probably due to a combination of

tension and shear forces.

In contrast to specimen 2.2, specimens 7.1, 7.2 and 8.2 were constructed with longer holes

to prevent failure of the rods, and were provided with polystyrene elements to reduce hardening

in the timber compressive behaviour. The outcome was positive because these tests allowed for

documentation of the entire structural behaviour of the composite members and for validation

of the analytical model presented in Section 3.2. These specimens achieved very good structural

behaviour with large ductility because a tensile-bending failure of the timber occurred very

late. The governing failure mode was a ductile compressive failure of the timber, followed

by a compressive failure of the concrete, which can also be classified as ductile. Only the

third failure mode, which determined the end of the test, was a brittle bending-tensile failure

of the timber. This ultimate failure represents the limit in the load-carrying capacity of the

composite members studied. Indeed, in contrast to conventional reinforced concrete structures,

the rotational capacity of the timber part limits the rotation of the cross-section in the plastic

zone. Nevertheless, since the system failure was preceded by 10 compressive failures of the

LVL material, with consistent mechanical properties, followed by a compressive failure of the

concrete, a highly predictable structural system was able to develop. Indeed, after large plastic

deformations, the maximum load reached during the tests was about the same in all specimens.

Although the amount of vertical reinforcement in specimens 7.1, 7.2 and 8.2 was small

in comparison to that in conventional reinforced concrete members, the rods fulfilled the re-

quirements for minimal reinforcement. This can be concluded because the flexural-shear cracks

remained closed. Otherwise, the cracks would have propagated and brittle failure would have

occurred. As illustrated in Section 3.3.10, before the reinforcement activates, the vertical ten-

sion is carried by the concrete by means of cantilever action. Then, as soon as flexural-shear

cracks occur, the vertical tension is carried by the reinforcement, and a bracing mechanism

(truss model) develops.
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The fact that the yielding load and the failure load, determined for specimen 2.2, were

higher than those for specimens 7.1, 7.2 and 8.2 suggests that the polystyrene elements, which

were fixed to the timber plate, likely reduced the hardening phenomena. As shown in Fig.

4.33(e), the timber part of the composite member was able to expand in vertical direction after

reaching the compressive strength. Thus, restraints caused by the vertical reinforcement were

likely reduced. This modification to the specimens allowed for better verification of the analytical

model, which assumes that the connection yielding is ideal plastic.

In conclusion, the tests 7.1, 7.2 and 8.2 demonstrated that the design approach and con-

struction of the slab, presented in Section 3.3.12, ensures a ductile behaviour of the timber-

concrete composite slabs made of beech LVL with notched connections. The use of notches as

shear connections has two basic advantages. On one hand, the stiffness of the notch in elastic

conditions minimises the deformations at service level. On the other hand, the notch is able to

fail in a ductile way, resulting in good ductility at the failure level. Thus, the ductility of the

composite member is generated by the timber, and the steel reinforcement should carry only

vertical forces. In parallel, the reinforcement should allow plastic deformations in the timber. In

tests 7.1 to 8.2, this requirement was achieved by fixing the rods in long holes. Furthermore, the

composite member should be designed so that the maximum compressive strain of the concrete

is reached before a combined tensile-bending failure of the timber occurs.

Specimens 2.2, 7.1, 7.2 and 8.2 were designed in a special way to validate the analytical

model and to observe the failure mechanism as clearly as possible. Therefore, they are not yet

suitable to be employed in practice. Indeed, it does not make sense to construct slabs, provided

with such reinforcement. The next step will be to develop an economic and easily attachable

reinforcement, which is able to achieve the structural requirements mentioned above.

4.5 Conclusion

The experimental analyses performed demonstrated that notches cut in beech LVL allow for a

ductile compressive failure of the timber, and that a ductile failure mode together with a ductile

design procedure is essential to achieve predictable behaviour of the composite member. This

can be confirmed by comparing the first bending tests with the last series of tests. The specimens

in the first bending test series were not designed according to the models presented in Chapter

3, and thus, showed several brittle failure modes. In contrast, several composite members tested

in the last series were designed according to the models developed. Consequently, they exhibited

a ductile and consistent behaviour and validated the analytical model.
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Chapter 5

Conclusions

This thesis studied the structural behaviour of timber-concrete composite members made of

beech LVL with notched connections. The research included theoretical and experimental anal-

yses and was focused on the possibility to achieve a ductile failure mechanisms of the composite

members.

In this work, a series of analytical models to describe the structural behaviour of notched

timber-concrete connections were developed. During shear and bending tests, several failure

modes of the notches were observed. Regarding the notches, the following conclusions can be

drawn:

� Notched connections induce tensile and shear stresses in the timber and concrete. The

stress configuration in the concrete can become particularly critical and difficult to predict.

In this thesis, the behaviour of the unreinforced concrete layer was idealised by means

of a console model. However, several parameters, such as the crack pattern, the stress

distributions, the influence of internal stresses and the impact of timber deformations in

the notches are challenging to estimate, and can cause significant deviations from reality.

Therefore, to prevent a brittle failure of the concrete, it is necessary to provide the concrete

part of the composite member with vertical reinforcement.

� A structural advantage of using notches to make the timber-concrete connection is the

high stiffness at the service level.

� With an appropriate design, the structural behaviour of the notch can be governed by

a compressive failure of the timber, which is ductile and thus desirable. The use of LVL

materials instead of solid wood or glued laminated timber markedly improves the prediction

accuracy of ductile compression failures of the timber parallel to the grain. Thus, a ductile

notch design becomes feasible.

A timber-concrete composite member with a notched connection, subjected to bending,

achieves ductility if the governing failure mode is yielding of the timber-concrete connection. In

this thesis, an analytical model to describe the structural behaviour of timber-concrete composite

members with ductile notched connections was developed and validated by means of bending

185
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tests on timber-concrete composite members with notched connections made of beech LVL.

Although this model focuses on notched connections, parts of it can be applied to study other

ductile connection types. From this model, a ductile design method for LVL-concrete composite

members with notched connections was derived (Fig. 5.1). Regarding the structural behaviour

of timber-concrete composite members made of LVL with notched connections, subjected to

bending, the following conclusions can be formulated:

� If the composite member is not provided with end-to-end vertical reinforcement, as soon as

the notches yield, concrete crack enlargement and gap opening compromise the structural

behaviour, and no ductility can be achieved.

� The ductility predicted by the analytical model can be reached if the composite member

is provided with end-to-end vertical reinforcement. This reinforcement should hold the

LVL and the concrete together, keep the concrete cracks closed, and carry vertical ten-

sion stresses within the concrete. Furthermore, it should allow for plastic longitudinal

deformations of the LVL.

� Due to yielding of the notches, the curvature of the cross-section increases. The composite

member should be designed so that the failure develops further into a ductile compressive

failure of the concrete in the upper part of the composite member. If this is the case, the

composite member will exhibit a consistent and highly-predictable structural performance

because the system failure will be composed of several ductile failures of the LVL in the

notches and a ductile compressive failure of the concrete.

� In general, the plastic deformations of the composite member are limited by the rotational

capacity of the LVL part. If the bending stress becomes critical, its combination with the

tension stresses causes a brittle failure of the LVL. This failure should occur as late as

possible.

In conclusion, in this thesis, a clear analytical model to understand the structural behaviour

of timber-concrete composite members with notched connections was developed. This model also

supports for a ductile design of the composite member. Furthermore, this work showed that

the use of beech LVL plates as the tensile reinforcement of the timber-concrete composite mem-

bers ensures a ductile and highly-predictable structural behaviour, provided that the composite

members are suitably designed.
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Chapter 6

Outlook

In this thesis, all experiments were performed with 40 mm thick beech LVL plates. However, the

parametric studies show that a moderate increase of the LVL thickness does not compromise

the structural behaviour of the composite member. An increase of the thickness of the LVL

plate may be advantageous to meet other requirements for the slab, such as fire resistance and

an improved construction process. The optimal thicknesses of the LVL and the concrete will be

the result of a compromise between all requirements for the slab.

The last bending tests validated the analytical model for ductile design because the vertical

reinforcement reached the theoretical requirements as closely as possible. The ductile composite

members were provided with end-to-end reinforcement, placed in long holes. The washers of

the rods could glide on the steel plates, placed at the borders of each hole. Thus, in theory, the

reinforcement carried only vertical forces and was not able to prevent the plastic deformations of

the LVL (Fig. 6.1(a)). The evaluation of the test results concluded that this special layout of the

reinforcement prevented dowel action, and thus, the reinforcement behaved as desired. However,

in practice, such a connection system is not possible because it needs a series of holes in the

structure. Therefore, a new reinforcement system should be developed, meeting the following

requirements:

� it carries the vertical tension stresses which develop within the concrete

� it prevents enlargement of flexural-shear cracks in the concrete

� it carries the tensile force, which is necessary to hold the LVL and the concrete together

vertically and hence, it prevents gap opening between the LVL and the concrete

� it allows for plastic LVL deformations in the notches although the reinforcement is sub-

jected to tension forces

Slabs in office and residential buildings are often designed as continuous beams to improve

several aspects, among which is the reduction of the vertical deformations. Reinforced con-

crete and steel-concrete composite continuous beams exhibit ductility and redistribute bending

moments away from the internal supports, when the cross-sections are able to generate plastic

189



190 Chapter 6. Outlook

upl

rod

nut
washersplate

(a)

qy

x
z

y

qu

x
z

y

M -
pl

M+
pl

M+
pl

M -
pl

M+
pl M+

pl

≥ +
y ≥ +

y
> -

y

< +
y

< +
y= -

y

(b)

Figure 6.1: (a) End-to-end reinforcement fixed in the specimens which validated the analytical model;

(b) ductile behaviour of a two-span beam

hinges which have sufficient rotation capacity (Fig. 6.1(b)). In this case, a ductile design ap-

proach can be applied. Since the composite member developed in this thesis is able to carry

exclusively positive bending moments, it must be installed as a single-span beam. A continuous

beam can be realised if longitudinal reinforcing bars are installed over the internal supports to

carry the tension due to negative bending moments. If the governing failure mode is the forma-

tion of plastic hinges over the internal supports, initiated by plastic extensions of the reinforcing

bars, the bending moments can be redistributed away from the internal supports, until yielding

of the notches and ductile failure of the compression zone are achieved. Further theoretical and

experimental investigations are needed to achieve this progression of failure modes.

The choice of the configuration of the veneers allows for developing a composite slab which

carries the vertical load in two directions. This is one additional possibility to optimise the

structure. However, due to the presence of cross layers, several types of timber failures, e.g. the

shearing-off failure, become more critical. Furthermore, a system to connect the LVL plates is

necessary. Thus, detailed studies about this issue should be conducted.

In general, most of the model elements presented in Chapter 3 were validated by means of

experiments. However, the model contains some assumptions based on theoretic considerations,

which could not be completely validated:

� The estimation of the maximum plastic deflection of a composite member subjected to

bending is based on the assumption of a plastic length (Section 3.2.6). This theory allows

for a simple calculation of the range of the expected values. Further research is needed to

predict deflection in a more accurate way.

� The models used to design the vertical reinforcement are based on truss models and simple

equilibrium considerations. They enabled designing the specimens for the bending tests
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so that the reinforcement did not fail (Sections 3.3.10 and 3.3.11). However, these models

need additional theoretical and experimental studies to be completely verified.

� In the bending tests with the vertical reinforcement designed according to the analytical

model, the reinforcement carried the vertical tension after opening of the concrete cracks.

This means that the amount of reinforcement was sufficient to prevent brittle concrete

failure. However, a reliable method to determine the minimum amount of vertical rein-

forcement should be developed.

� To prevent a shearing-off failure of the timber close to the notch, simplified stress distri-

butions were assumed, and the influence of the most important parameters was studied

(Section 3.3.6). In the bending tests performed, this failure never occurred. Nevertheless,

this failure mechanism should be studied in further detail.

� As discussed in Sections 3.3.9 and 3.3.13, the gap opening in timber-concrete composite

members with a notched connection is a complex problem, and may compromise the load-

carrying mechanism of the composite member. Gap opening in elastic conditions can

result from, for instance, different bending deflections of the layers, different deflections

due to shear and eccentricity between the interface and the centroid of the effective area

of the cross-sections. Plastic compressive timber deformations in the notches, compressive

deformations of the concrete at the top of the cross-section and concrete cracks may worsen

this problem. In this thesis, the gap opening was studied with simplified models, which

represent a starting point to improve the knowledge about this problem.

Some issues related to the composite members developed in this thesis can be studied in

greater detail and form the basis for further research:

� In the model to describe the structural behaviour of timber-concrete composite members

with ductile connections (3.2), it is assumed that all connections yield simultaneously and

are elastic-ideal plastic. The model can be extended to the general case.

� The shearing-off failure of the timber in front of the notch is brittle and implies a sudden

collapse of the composite member. To prevent this failure, a reliable design model is

needed. In this thesis, a widely used equation for the design of step joints, which assumes

a rectangular shear stress distribution, is applied (2.38). This method could be justified

by means of fracture mechanics theory. However, since this failure is brittle and must be

prevented, further research is needed to study the real stress distributions and the failure

mechanism. It would be useful to measure the shear strains in the timber in experiments.

� In this thesis, the structural behaviour of the notched connection was studied by means of

analytical models to calculate the stresses and by means of failure criteria to estimate the

failure loads (e.g. Mohr-Coulomb [5], Tsai and Wu [51]). An in-depth study on notches

from the point of view of fracture mechanics would be useful.
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� The moisture transfer between the concrete and the beech LVL was not studied in detail.

After the test specimens were concreted (Chapter 4), it was observed that the LVL plates

did not exhibit relevant deformations due to the moisture change. This is most likely

prevented by the cross layers. Blass et al. [28] produced LVL-concrete composite specimens

without cross layers and observed that the LVL plates bent during concrete hardening.

After the experiments performed in the frame of this thesis, the composite specimens were

opened, and it was observed that the first 1-2 veneers showed delamination (i.e. cracks in

the longitudinal direction). In contrast, the other veneers did not exhibit cracks or colour

changes, probably because they were protected from moisture by the glue layers. Due to

the importance of this topic in practice, it should be studied in greater detail.

� The influence of the load duration and of the concrete shrinkage on the structural behaviour

of LVL-concrete composite members with notched connections has yet to be studied.

� All experiments were performed with composite members made of European beech LVL,

produced by the company Pollmeier [12] and concrete C50/60 [66]. The compressive

strength of the concrete is determined following the assumption that a compressive fail-

ure of the LVL in the area of the notch edges should govern the structural behaviour.

LVL products made of other wood species should also be usable. If the LVL layer has a

smaller compressive strength parallel to the grain than beech LVL, concrete with a smaller

compressive strength than C50/60 should be used.

� The parametric studies and the predictions of the test results were performed with mean

values of the mechanical properties of the LVL and concrete, and the influence of the

variation of the mechanical properties on the structural behaviour of the composite member

was not studied. In order to develop a reliable design method for LVL-concrete composite

members with notched connections, the influence of material property variation should be

quantified.

� The failure criteria of Hoffman [50] and Tsai and Wu [51] were applied to the LVL because

a failure function, which could take into account different stresses and strengths, was

needed. However, in this thesis, these criteria were not studied in greater detail. It would

be useful to examine the applicability of such criteria to wood and wood-based materials in

depth. Some authors (e.g. [44]) already discussed several issues related to the application

of phenomenological failure criteria to wood.

� This thesis focused on the failure process of the composite member. Several additional

aspects, such as fire resistance, vibrations and sound insulation have yet to be studied.
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Abbreviations

1 Concrete

1C,c Exceedance of the compressive strength of concrete fc,1 on top of the cross

section

1C,n Compressive failure of concrete in the contact area AN of the notch

1C,u Exceedance of the maximum compressive strain of concrete εu,1 on top of the

cross section

1F Flexural-shear failure of concrete

1S Horizontal shear failure of concrete close to the notch at a depth of z = h1

1V Vertical shear failure of concrete

2 Timber

2BT Combined tensile-bending failure of timber

2C Compressive failure of timber in the contact area AN of the notch

2R Rolling shear failure of timber

2S Horizontal shearing-off failure of timber close to the notch, at a depth of z =

h1 + tN

2S∗ Horizontal shearing-off failure of timber close to the notch, at a depth of z =

h1 + tN , calculated by taking into account the entire length of timber before the

notch

2V Shear failure of timber

1F,inf Lower bound of the failure 1F, calculated with b1F,inf

1F,sup Upper bound of the failure 1F, calculated with b1F,sup

1V,inf Lower bound of the failure 1V, calculated with b1V,inf

1V,sup Upper bound of the failure 1V, calculated with b1V,sup

eff Effective
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int Interface

L Long notch

LEFM Linear elastic fracture mechanics

LVDT Linear voltage displacement transducer

LVL Laminated veneer lumber

S Short notch

T Tensile failure of the vertical reinforcement

Upper-case roman letters

A... Effective surface of the composite cross section

Ai,... Cross section area of part i of the composite member

Ainf Cross section area of the lower sector of the timber part, used to estimate the

elastic shear stress distribution

AN Contact area of the notch

As,min Minimal cross section area of the vertical steel reinforcement

As,T,Ni Cross section area of the vertical steel reinforcement which is necessary to carry

the vertical tensile force Ti close to the notch Ni calculated by means of a truss

model

As,v Cross section area of the vertical steel reinforcement which is necessary to pre-

vent gap opening at ultimate limit state

Asup Cross section area of the upper sector of the timber part, used to estimate the

elastic shear stress distribution

As Total cross section area of the vertical steel reinforcement

Ci Coefficient

Ci Compression force in concrete

D Connection ductility index

Di Diagonal of a truss model

E0 Modulus of elasticity without long term effects

E∞ Modulus of elasticity with long term effects

Ei,... Modulus of elasticity of part i of the composite member

Einf Modulus of elasticity of the lower sector of timber

Esup Modulus of elasticity of the upper sector of timber

EI... Bending stiffness
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F External force

F2S,sides Amount of shear force carried by the notch sides

Fcyl,i Load of the hydraulic cylinder i

FF,... Failure function calculated with the Tensor Polynomial theory

Fij Coefficient of the failure criterion according to the Tensor Polynomial theory

Fi Coefficient of the failure criterion according to the Tensor Polynomial theory

Fu External force which causes a failure

Fv External vertical force

Fx Force in x-direction

Fy Force in y-direction

G0,... Shear modulus of timber parallel to the grain

Gi Shear modulus of part i of the composite member

GR,... Shear modulus of timber perpendicular to the grain (rolling shear)

I... Effective moment of inertia of the composite cross section

Ii Moment of inertia of part i of the composite member

Kser Shear stiffness of a timber-concrete connection at service level

M... Bending moment

M1F Moment in y-direction due to the distance in z-direction between TNi and plane

1F

M1S Moment in y-direction due to the distance between TNi and plane 1S

Mecc Eccentricity moment acting in a timber notch

Mi Bending moment in part i of the composite member

M+
pl Positive plastic resisting moment of a cross section

M−pl Negative plastic resisting moment of a cross section

MR,... Bending moment which causes a failure

N Axial force

Ninf (x) Axial force in the lower sector of timber

Nsup(x) Axial force in the upper sector of timber

S Shear strength

Si,i+1,... Effective static moment for the calculation of the theoretic elastic shear stress

in the interface between the parts i and i+ 1 of the composite member

T Connection shear force
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Ti Tension tie in a truss model

TNi Horizontal shear force introduced in the notch Ni

TR,...,Ni Failure load of notch Ni

TR,... Failure load of a timber-concrete connection

T ∗R,2C,Ni Force which causes a compressive failure of timber in notch Ni, calculated ne-

glecting the stresses in z-direction

T ∗R,2S,Ni Force which causes a shearing-off failure of timber close to notch Ni, calculated

neglecting the stresses in z-direction

TR,dowels,Ni Force parallel to the interface carried by the mechanical fasteners fixed close to

notch Ni

Ty,Ni Yielding shear force of notch Ni

V Shear force

Vi Shear force in part i of the composite member

VNi Shear force acting on the composite cross section close to notch Ni

VR,... Shear force which causes a failure

Wi,b... Section modulus at the bottom of part i of the composite member

Wi,t... Section modulus at the top of part i of the composite member

Wi... Section modulus at the centroid of part i of the composite member

Wnotch Minimal section modulus of the shear plane of a timber notch

X Strength in x-direction

Xc Compressive strength in x-direction

Xt Tensile strength in x-direction

Y Strength in y-direction

Y Yielding function (Mohr-Coulomb failure criterion)

Yc Compressive strength in y-direction

Yt Tensile strength in y-direction

Lower-case roman letters

a Distance in the axial direction of the slab

b1F,inf Lower bound of the effective width of plane 1F (in y-direction)

b1F,sup Upper bound of the effective width of plane 1F (in y-direction)

b1S Width of plane 1S (in y direction)
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b1V,inf Lower bound of the effective width of plane 1V (in y-direction)

b1V,sup Upper bound of the effective width of plane 1V (in y-direction)

bi,... Width of part i of the composite member

bint Width of the interface

bNi Width of notch Ni

c Cohesion (parameter of the Mohr-Coulomb failure criterion)

e Distance between the centroids of the parts of the composite member

ei,... Distance between the centroid of the composite member and the centroid of part

i

fc,0,... Compressive strength of timber parallel to the grain

fc,90,... Compressive strength of timber perpendicular to the grain

fc,cube Cube compressive strength of concrete

fc,i Compressive strength of part i of the composite member

fct Tensile strength of concrete

fm,0,... Bending strength of timber parallel to the grain

fmodel Correction factor

fR,v,... Rolling shear strength of timber

fs Tensile strength of steel reinforcement

ft,0,... Tensile strength of timber parallel to the grain

ft,90,... Tensile strength of timber perpendicular to the grain

ft,i Tensile strength of part i of the composite member

fv,0,... Shear strength of timber parallel to the grain

g Self-weight

gk Characteristic value of self-weight

h Total depth of the composite member

h1F,eff Effective height of plane 1F (in x-direction)

h1F Height of plane 1F (in x-direction)

h1S Height of plane 1S (in x-direction)

h1V Height of plane 1V (in z-direction)

hcr Concrete crack depth in z-direction

hi,... Height of part i of the composite member
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hinf Thickness of the lower sector of the timber part, used to estimate the elastic

shear stress distribution

h∗i Distance in z-direction between the action point of the axial force N acting on

the part i of the composite member and the connection force TNi

hs,0 Sector of hs loaded parallel to the grain

hs,R Sector of hs loaded perpendicular to the grain

hsup Thickness of the upper sector of the timber part, used to estimate the elastic

shear stress distribution

hs Thickness of the timber sector subjected to shear close to the notch, used to

estimate the elastic shear stress distribution

k... Shear stiffness

ks Connection modulus

kt Uplift modulus

l Length/span

lA Distance between the support and the timber-concrete connection next to it

leff Distance between the supports of a single-span beam

lNi Length of notch Ni

lpl Length of the plastic zone

m Number of connections

nbars�6 Number of vertical reinforcement bars with a diameter of 6 mm

nbars Number of vertical reinforcement bars

ni Ratio between the modulus of elasticity of part i and the reference modulus of

elasticity of the composite member

p(x) Shear force in timber per length unit, caused by the load transfer in the notched

connection

q(vu) Uniformly distributed force which is necessary to close the gap at ultimate limit

state

q... Vertical distributed load

qAk Characteristic value of the permanent load

qd,est Design value of the uniformly distributed load for the control of the aesthetics

qd,ULS Design value of the uniformly distributed load for the ultimate limit state anal-

ysis

qi Vertical uniformly distributed load acting on part i of the composite member
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qNk Characteristic value of the live load

qR,... Vertical uniformly distributed load which causes a failure

q∗R,2C Vertical uniformly distributed load which causes a compressive failure of timber

in notch Ni, calculated neglecting the stresses in z-direction

q∗R,2S Vertical uniformly distributed load which causes a shearing-off failure of timber,

calculated neglecting the stresses in z-direction

r Stress perpendicular to the interface between two parts of a composite structure

s Distance between two connections

t Horizontal shear force per length unit acting in the interface of a composite

member

tNi Depth of notch Ni

tN Depth of all notches

u Horizontal relative displacement at the interface between the components of a

composite member

uinf (x) Displacement of the lower sector of timber

ui Horizontal relative displacement between timber and concrete close to notch Ni

upl,i Plastic deformation of notch Ni

usup(x) Displacement of the upper sector of timber

v Gap opening

vu Gap opening at ultimate limit state

w... Deflection

w1,u Vertical deflection of the concrete part at quarter-span at ultimate limit state

w1 Vertical deflection measured at quarter-span

w2,u Vertical deflection of the timber part at quarter-span at ultimate limit state

w2 Vertical deflection measured at mid-span

w3 Vertical deflection measured at quarter-span

x Coordinate of the cross section (in longitudinal direction)

x... Neutral axis depth

y Coordinate of the cross section (in direction of the cross section width)

z Coordinate of the cross section (in direction of the cross section height)

zs,... z-coordinate of the centroid of the composite member

zsi,... z-coordinate of the centroid of part i of the composite member
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ui Horizontal relative displacement measured close to the notch Ni

uL Horizontal relative displacement between timber and concrete measured close

to the left support

uR Horizontal relative displacement between timber and concrete measured close

to the right support

Upper-case greek letters

∆lpl,i Plastic deformation of a reinforcing bar of a reinforced concrete member

∆M Moment increase from the connection yielding (y) to the ultimate failure (u)

∆wIII Increment of the vertical deflection at mid-span during state III

∆wIV Increment of the vertical deflection at mid-span during state IV

∆x Transverse displacement in x-direction

∆x0 Transverse displacement in x-direction due to shear parallel to the grain

∆xR Transverse displacement in x-direction due to rolling shear

Lower-case greek letters

α Angle

α1,u Angle of the concrete deformation at ultimate limit state

β Angle

βh Factor to take the hardening into account

χ... Cross section curvature

χu,1 Cross section curvature, when the compressive strain on top of the concrete part

reaches εu,1

χu,2 Cross section curvature, when a combined tensile-bending failure (2BT) occurs

in the timber part

δ(x) Internal shear deformation in timber

γ Angle of the shear strain

γ0 Angle of the shear strain due to shear stress parallel to the grain

γG Load factor for permanent action

γi γ-factor of part i of the composite member

γQ Load factor for variable action

γR Angle of the shear strain due to shear stress perpendicular to the grain
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ψ2 Reduction factor for quasi-permanent value of variable action

σ Axial stress

σ2x,Ni Compressive contact stress between timber and concrete in x-direction in the

notch Ni

σ2z,Ni Stress in z-direction in timber close to the notch Ni

σ90 Stress perpendicular to the grain

σi,... Axial stress in part i of the composite member

σi,m... Bending stress in part i of the composite member

σi,t/b Axial stress on top/bottom of part i of the composite member

σi,u Axial stress in the centroid of part i at ultimate limit state

σi,y Tensile stress in the centroid of part i when the connections are yielding

σiz Axial stress in part i of the composite member in z-direction

σi(z) Axial stress in part i as a function of the depth

σj Axial stress in point j

σm,y Bending stress due to a moment around the y-axis

σt,0 Tensile stress parallel to the grain

σx Stress in x-direction

σy Stress in y-direction

τ Shear stress

τ1,x Shear stress in concrete in x-direction close to the notch

τ1,z Shear stress in concrete in z-direction close to the notch

τ12,Ni Theoretic elastic shear stress in the interface between timber and concrete close

to notch Ni

τ2,Ni Horizontal shear stress in timber close to notch Ni

τi,i+1 Shear stress in the interface between parts i and i+ 1 of the composite member

τR,c Shear strength of concrete

τxy Shear stress in the x-y-plane

θ... Rotation angle

ε Strain

εcu Maximum compressive deformation of concrete

εi,... Axial strain in the centroid of part i of the composite member

εi,b,... Axial strain at the bottom of part i of the composite member
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εi,m,... Bending strain in part i of the composite member

εi,t,... Axial strain at the top of part i of the composite member

εu,1 Maximum compressive deformation of concrete

ϕ Angle of internal friction (Mohr-Coulomb failure criterion)

ϕ Creep factor

Indexes

b Bottom

cr Cracking

I State I: connection elastic; concrete uncracked and elastic

II State II: connection elastic; concrete cracked and elastic

III State III: connection plastic; concrete cracked and elastic

IV State IV: connection plastic; concrete cracked and plastic

m Bending

Ni Connection i/ notch i

t Top

u Ultimate limit state

y Yielding

Other symbols

↽⇀ Grain direction in timber

� Diameter

�bars Diameter of the vertical reinforcement
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[22] B. Heimeshoff, “Nachweis der Tragsicherheit und Gebrauchstauglichkeit von Einfeldträgern,
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