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Rapidly  evolving  RNA  viruses  prevail  within  a host  as  a  collection  of closely  related  variants,  referred
to as viral  quasispecies.  Advances  in  high-throughput  sequencing  (HTS)  technologies  have  facilitated
the  assessment  of  the  genetic  diversity  of such  virus  populations  at an unprecedented  level  of  detail.
However,  analysis  of  HTS  data  from  virus  populations  is  challenging  due  to  short,  error-prone  reads.  In
order  to account  for uncertainties  originating  from  these  limitations,  several  computational  and  statistical
methods  have  been  developed  for studying  the  genetic  heterogeneity  of  virus population.  Here,  we  review
methods  for the analysis  of HTS  reads,  including  approaches  to  local  diversity  estimation  and  global
iral quasispecies
enetic diversity
aplotype reconstruction
ext-generation sequencing

haplotype  reconstruction.  Challenges  posed  by aligning  reads,  as  well  as  the  impact  of  reference  biases
on  diversity  estimates  are  also  discussed.  In addition,  we address  some  of the  experimental  approaches
designed  to improve  the  biological  signal-to-noise  ratio.  In  the  future,  computational  methods  for  the
analysis  of heterogeneous  virus  populations  are  likely  to  continue  being  complemented  by  technological
developments.

© 2016  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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. Introduction

The evolutionary dynamics of RNA viruses, such as the human
mmunodeficiency virus (HIV), the hepatitis C virus (HCV), or
nfluenza virus, is characterized by high mutation rates, short gen-
ration times and large population sizes (Duffy et al., 2008). Under
hese conditions, a collection of non-identical but related genetic
ariants is able to co-exist within the host. This ensemble of vari-
nts has been referred to as a viral quasispecies (Domingo et al.,
005; Lauring and Andino, 2010). The term quasispecies was  first
sed by Eigen and Schuster (1977), in the context of their work on
olecular evolution (Eigen and Schuster, 1978, 1978). The quasis-

ecies model was introduced by means of a theoretical framework
sing chemical kinetics to describe the mutation and selection pro-
esses governing the evolution of self-replicating macromolecules.
n virology, the quasispecies model has been adopted to describe
he evolutionary dynamics of RNA viruses at the population level
Nowak, 1992; Domingo and Holland, 1997).

Mutation and selection are one of the driving forces of evolution
n RNA viruses. Largely due to the lack of proof-reading capability
f the RNA polymerases (i.e., RNA-dependent RNA polymerase and
NA-dependent DNA polymerase or reverse transcriptase), RNA
iruses exhibit high mutation rates (Duffy et al., 2008). For instance,
he mutation rate of HIV-1 is on the order of 10−5 substitutions
er position per generation (Duffy et al., 2008; Mansky and Temin,
995). As a consequence of these high mutation rates, new viral
trains are produced in every replication cycle by means of point
utations, insertions and deletions. Another common source of

ariability in RNA viruses is recombination. A recombination event
an take place when at least two different viral strains infect the
ame cell, giving rise to a new strain which is a mosaic of its pro-
enitors. On the other hand, selective pressures act upon the virus
opulation as a whole, shaping the distribution of viral strains. For

nstance, in response to changing environments, the virus popu-
ation quickly adapts by selecting preexisting strains with higher
tness (Bonhoeffer and Nowak, 1997). As a result, one or few viral
trains dominate, surrounded by a large cloud of low-frequency
ariants.

The heterogeneous mixture of viral strains appears to confer
umerous advantages to the virus population, including the ability
o escape from the host’s immune response (Nowak et al., 1991;
uroda et al., 2010; Woo  and Reifman, 2012; Borucki et al., 2013),
nd the development of resistance to vaccines (Gaschen et al., 2002)
nd antiviral drugs (Johnson et al., 2008). Furthermore, the exist-
nce of different viral strains has significant implications for viral
athogenesis, virulence, persistence and disease progression, and

ikely contributes to tissue tropism (Vignuzzi et al., 2006; Tsibris
t al., 2009; Rozera et al., 2014). The robust adaptability featured
y RNA viruses, which is related to their genetic heterogeneity is,
hus, of clinical relevance. In fact, many of the infectious diseases
hich have jeopardized and still are a threat to public health are

aused by RNA viruses, including HIV, HCV, Influenza virus, Ebola
irus and Zika virus.

Before the establishment of HTS technologies, Sanger sequenc-
ng was the method of choice for analyzing virus samples. Even
oday, it remains the gold standard for many clinical applications.
owever, bulk sequencing only allows for determining the con-

ensus sequence of the virus population. The consensus sequence
s an aggregate of all variants within the population. Conse-
uently, it is dominated by highly abundant strains and cannot
e used to assess the linkage of mutations in individual variants
Wirden et al., 2005; Zagordi et al., 2010). Further experimen-

al improvements, including isolation of individual viral strains
hrough cloning (Domingo, 2015) or limiting dilutions (Palmer
t al., 2005), allow to acquire a better, yet small, sample of the vari-
nts within the virus population. This is because these protocols are
esearch 239 (2017) 17–32

labor- and time-intensive and, thus, scalability remains a limiting
factor.

The sensitivity and scalability issues are progressively being
overcome by a set of newer technologies, which allow to pro-
duce massive volumes of genomic data in a relatively short time
by parallelization of the sequencing reactions. These technologies
are collectively referred to as high-throughput sequencing (HTS),
massively parallel sequencing (MPS), next-generation sequencing
(NGS) or ultra-deep sequencing (UDS). HTS technologies allow
an in-depth characterization of the genetic diversity in hetero-
geneous virus populations by directly sequencing many of the
viral strains. Furthermore, provided that the sequencing cover-
age is sufficiently high, it is possible to detect mutations present
in less abundant strains, whereas consensus Sanger sequencing
has a 20% detection threshold. However, low-frequency muta-
tions are particularly relevant in the context of drug resistance,
since they may  facilitate viral adaptation leading to treatment fail-
ure (Metzner et al., 2009; Gianella and Richman, 2010; Avidor
et al., 2013; Vandenhende et al., 2014). Therefore, studying
the genetic diversity of the virus population as a whole is
more informative than focusing solely on the dominant viral
strains.

HTS technologies have the potential to provide a representa-
tive sample of the virus population. However, many HTS platforms
generate large amounts of sequencing reads with short read lengths
and relatively high error rates. These factors, in conjunction with
errors associated with sample preparation (e.g., RNA extraction,
reverse transcription and PCR amplification biases), pose compu-
tational and statistical challenges for inferring intra-host genetic
diversity from HTS reads (Beerenwinkel et al., 2012; McElroy
et al., 2014). For instance, many single-nucleotide variants (SNVs)
are present at low frequencies and are therefore difficult to dis-
tinguish from technical errors. In addition, reconstructing the
population structure from sequencing reads is challenging because
the number of underlying viral strains is unknown, some of them
exist at low relative abundances, and the diversity among strains
can be low (i.e., some variants within the population exhibit a
small genetic distance). From the technical perspective, reconstruc-
tion of full-length haplotypes is challenging because sequencing
reads are typically shorter than the viral genome and do not
cover the genome or the genetic region of interest uniformly.
To this end, recent advances in single-molecule sequencing seem
promising, as platforms commercialized by Pacific Biosciences
and Oxford Nanopore offer very long reads (>10 kb). However,
higher error-rates and lower throughput compared to prede-
cessor HTS platforms still limit applicability of single-molecule
sequencers.

Nevertheless, HTS technologies have already proven useful in
different fields related to virology, including virus discovery (Cheval
et al., 2011), characterization of virus biodiversity found in differ-
ent environments (also known as virome profiling) (Hurwitz and
Sullivan, 2013), estimation of fitness landscapes of viral populations
(Seifert et al., 2015), characterization of intra-host virus diversity
and population dynamics (Kuroda et al., 2010).

This review is structured as follows. First, we  address experi-
mental protocols which have been recently designed to overcome
limitations associated with short and error-prone reads (Sec-
tion 2). These sequencing protocols and accompanying data
analysis pipelines have enabled correction of technical errors, as
well as reconstruction of viral haplotypes. Next, acknowledging
that alignment of sequencing reads is in most cases a prereq-
uisite for subsequent analyses, strategies for read alignment are

briefly discussed in Section 3, as well as remaining challenges.
Lastly, we  describe computational methods developed for studying
the genetic diversity of virus populations from HTS reads (Sec-
tion 4).
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. Experimental protocols for improved error correction
nd viral diversity estimation

A basic workflow for viral sequencing projects includes sam-
le preparation, choice of sequencing platform, quality assurance,
ead alignment and identification of genetic variants. The sensitiv-
ty of computational methods for variant detection can be improved
y identifying and correcting errors introduced during upstream

ibrary preparation and sequencing steps. Although, several error-
orrection algorithms have been designed to improve data quality
Zagordi et al., 2010; Skums et al., 2012), this issue has been also
ddressed from an experimental design perspective.

One of the first and to date most popular method to remove
he overwhelming majority of errors introduced by the PCR step
nvolves the use of short random k-mers for tagging sequences.
hese k-mers – in virology more commonly known as primerIDs –
re produced as part of the oligonucleotide production step. Dur-
ng the reverse transcription, these specialized primers are used
nstead of standard RT primers. All produced off-spring molecules

ill have the same unique tag, which can be employed after
equencing to collapse all reads with the same tag into one consen-
us sequence (Kinde et al., 2011; Jabara et al., 2011). In this way,
ost errors are removed via majority voting. The primerID proto-

ol can also be used to estimate the error rate of the PCR branching
rocess, by making a first-order approximation for the number of
rrors introduced in early cycles (Seifert et al., 2016). If the number
f collisions is controlled for, then the primerID protocol possesses
he ability to detect failures in the preparative steps, which is crucial
or asserting the correctness in clinical diagnostics.

The primerID protocol can however not remove errors
ntroduced in the ligation step of the PCR or during reverse tran-
cription (Seifert et al., 2016). The latter is because templates are
nly redundantly resampled in the PCR step. In addition, it is
nown, that laboratory reverse transcriptase (RT) enzymes have
igher error rates than common PCR enzymes employed (Seifert
t al., 2016). Thus, in turn, most of the errors stem from RT substitut-
ons. The novel circle sequencing (CirSeq) protocol can correct
rrors in the early phase of the protocol by redundantly incorpo-
ating the template onto the DNA template multiple times. This
eat is achieved by circularizing the RNA and reverse transcribing
t multiple times. PCR mutations can be removed by majority vote,

hereas RT mutations can be removed by majority between tan-
em copies on the same template (Lou et al., 2013). The CirSeq
rotocol makes the fidelity trade-off by drastically decreasing the
ealistic fragment size for increased sensitivity. Lastly, both the
tandard primerID protocol and CirSeq allow for studying viruses
nly on an amplicon level. While amplicon-based sequencing is
elevant for drug resistance loci, it becomes cumbersome and labo-
ious at best to perform whole-genome sequencing in this fashion.
n extension of primerIDs to variable-length genomic regions also

nvolves circularizing of the RNA. Instead of transcribing the cir-
ularized template multiple times like CirSeq does, the protocol
arcode-directed Assembly for Extra-long Sequences (BAsE-Seq)
andomly fragments the circularized DNA, leading to templates
ith varying lengths (Hong et al., 2014). These variable length tem-
lates allow for improved haplotype phasing. Using the BAsE-Seq
rotocol and data analysis pipeline, it has been possible to recon-
truct viral haplotypes of 3 kb in length (Hong et al., 2014).

Finally, while all the protocols provide an attractive path for
rror correction or phasing of haplotypes beyond local scope, they
till do have practical drawbacks. CirSeq and BAsE-Seq both include

 circularization, a biochemical step that is kinetically unfavorable

nd hence inefficient. This in turn will require high input tem-
late concentrations, which might be problematic in settings with

ow viral loads, as in HIV clinical diagnostics (Acevedo and Andino,
014).
esearch 239 (2017) 17–32 19

3. Alignment of sequencing reads

A fundamental analysis step in inferring viral diversity from
sequence data is read alignment. Sequencing reads can be either
mapped to their likely genomic region of origin or assembled de
novo. The former strategy, dubbed reference-based mapping, is the
most widespread choice, although de novo assembly of sequencing
reads into a consensus sequence has gained increasing interest in
recent years (Yang et al., 2013; Mangul et al., 2014; Jayasundara
et al., 2015; Malhotra et al., 2016).

3.1. Reference-based mapping

Mapping sequencing reads onto a reference genome relies
on the existence of such reference sequence. In fact, reference
sequences have been established for many viruses of clinical rel-
evance. However, aligning sequencing reads against a reference
sequence may  introduce biases (Archer et al., 2010). Assume, e.g.,
that the virus population contains both, strains which closely
resemble the reference sequence, as well as strains which diverge
strongly from the reference. The former will be more likely to
align successfully against the reference than the latter. Typically,
poor-quality alignments are ignored in subsequent analyses. Thus,
distantly related sub-populations tend to be underrepresented
while estimating viral diversity. A common practice to overcome
this issue is to first align the reads to an existing reference genome
and then generate a consensus sequence using a position-wise
majority vote. Subsequently, reads are aligned to the new consen-
sus sequence (Astrovskaya et al., 2011; Hong et al., 2014). Thereby,
it is expected that reads that were not originally mapped, may then
be mapped to the consensus sequence. In principle, the process of
generating a consensus from mapped reads and realignment can
be iteratively repeated until there is no gain in the percentage of
mapped reads.

Another challenge in mapping sequencing reads arises from a
technical viewpoint. Nowadays, HTS technologies offer sequenc-
ing of several million reads in a single experiment. Due to
the large volumes of sequencing reads, traditional algorithms
for sequence alignment, such as the Needleman–Wunsch and
Smith–Waterman algorithms, are computationally very costly. The
time complexity for each alignment depends on the product of
the length of the reference sequence multiplied by the length of
the read. Over the past years, and in order to keep pace with
the sequencing throughput, a wide variety of read mappers has
been developed. Read mappers rely on different indexing strate-
gies improving upon the quadratic time complexity of traditional
algorithms.

Based on indexing techniques implemented by the different
read mappers, they can be grouped into two categories (Li and
Homer, 2010): algorithms based on (i) hash tables or (ii) pre-
fix/suffix trees. Among software packages belonging to the former
group, Stampy (Lunter and Goodson, 2011) and MOSAIK (Lee
et al., 2014) have been employed for mapping sequencing reads
from mixed samples of virus populations (Mangul et al., 2014;
Astrovskaya et al., 2011; Pandit and de Boer, 2014; Cuevas et al.,
2015; Zanini et al., 2015). The latter category includes algorithms
such as BWA  (Li and Durbin, 2009), BWA-SW (Li and Durbin,
2010), Bowtie (Langmead et al., 2009) and Bowtie2 (Langmead and
Salzberg, 2012) which employ the Ferragina–Manzini (FM) index
(Ferragina and Manzini, 92127) based on the Burrows–Wheeler
transform (Burrows and Wheeler, 1994). Several review articles
and benchmark studies have been published and may prove useful

to guide selection of an adequate tool for a given application (Bao
et al., 2011; Fonseca et al., 2012; Caboche et al., 2014).

Run time is a critical aspect, especially when dealing with
large eukaryotic genomes, such as the human genome. In theory,
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Fig. 1. Placement of gaps in homopolymeric regions. In this hypothetical alignment,
four  reads are aligned against a window of the reference sequence (black) consist-
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Fig. 2. Available software for assessing viral genetic diversity. Different methods are
grouped according to their scope, i.e., SNV calling and local or global reconstruction,

tances longer than the read length (cf. Fig. 2).
ng  of 20 nt. The deletion observed in most of the reads is likely to correspond to
olymerase slippage errors. However, since the deletion appears to be abundant, it

s  likely to be picked up as a true variant.

owtie (Langmead et al., 2009) and BWA  (Li and Durbin, 2009),
.g., align reads in time linear to sequence length, because the
ata structure of the index only requires querying the read. In
ractice, and in order to provide efficient solutions for aligning
eads, most mappers complement indexing strategies with differ-
nt heuristics. Nowadays, it is possible to map  about 1 gigabases
e.g., 10 million 100 bp reads) per CPU-hour (Langmead et al., 2009;
angmead and Salzberg, 2012). Processing reads from smaller
iral genomes can appear as a simpler problem. However, this
s only partially true due to a comparatively higher variability
f viral genomes. Particularly, heuristics employed to improve
un times oftentimes imply a reduction in sensitivity and accu-
acy. For highly variable viral genomes, inaccurate alignments
ay  result in alignment biases and a non-negligible loss of data,
hich are propagated into subsequent analysis steps (Archer et al.,

010).
Placement of gaps is yet another challenge in sequence align-

ent. The most parsimonious alignment, i.e., the alignment with
he fewest gaps, is not necessarily the most consistent with the
tructure of a virus population. There is evidence that supports
oth frameshift mutations and longer deletions as sources of
enetic variation in virus populations (Berthet et al., 1997; Audsley
t al., 2010; Guglietta et al., 2010; Reguera et al., 2011; Park
t al., 2014). On the other hand, insertions and deletions are not
lways true sources of variability. The primary source of errors
f some sequencing platforms, such as Roche 454, Ion Torrent
Life Technologies) and Pacific Biosciences platforms, are inser-
ions and deletions (collectively referred to as indels) (Loman et al.,
012). However, most read aligners have deficiencies in dealing
ith indels. Some tools do not support gapped alignments, such

s Bowtie (Langmead et al., 2009), and others restrict the num-
er of gaps that are allowed per alignment, such as SOAP (Li
t al., 2008) and BWA  (Li and Durbin, 2009). More importantly,
ead aligners supporting gapped alignments tend to place indels
n homopolymeric regions either at the beginning or the end of
uch regions, which leads to calling spurious variants (Fig. 1). To
vercome these limitations, a multiple sequence alignment (MSA)
pproach using statistical models, such as profile hidden Markov
odels (profile-HMM) (Mount, 2009; Yoon, 2009), could provide

 better solution to the read alignment problem. This is because,
eatures shared among related sequences are captured through
osition-specific scores. If there exist evidence in the population
f, e.g., a deletion in a given location, opening a gap in the align-
ent is allowed with higher probability at this site compared

o other positions. Alignment of protein families is an exam-
le of a successful application employing profile-HMMs (Eddy,
003).

.2. De novo assembly
As mentioned earlier, reference biases can be induced by
he alignment of the sequencing reads to a reference sequence
hat highly diverges from the sampled population. In order to
and their ability to use information from paired-end reads.

circumvent reference biases, a consensus sequence can be assem-
bled de novo. Moreover, for virus discovery applications, de novo
assembly of sequencing reads into a consensus sequences is the
only choice.

The core concept in de novo assembly is to merge overlapping
reads into longer stretches of DNA, called contigs, and then merge
contigs into scaffolds in order to reconstruct a full-length genome.
Genetic heterogeneity of virus populations renders the de novo
assembly of the reference viral genome more challenging compared
to haploid or diploid organisms. However, virus genomes are rela-
tively shorter and generally do not exhibit large repetitive elements
compared to, e.g., the human genome.

Several de novo assemblers have been tailored to mixed viral
samples (Warren et al., 2007; Henn et al., 2012; Yang et al., 2012;
Hunt et al., 2015). Among them, the software VICUNA (Yang et al.,
2012) constructs consensus sequences of viral genomes by includ-
ing more heuristics and curating the created reference sequencing
using a number of techniques. It creates contigs on the basis of de
Bruijn graphs, employing multiple sequence alignments of target
genomes to further improve the quality of the contigs. Due to the
very small size of the contigs in comparison to large eukaryotic
genomes, VICUNA can afford to validate and extend the contigs
to possibly full-size genome scales, by filtering likely contaminant
reads and improving single base calls using the base pileups from
the data.

4. Inference of viral diversity

On the basis of research objectives, genetic diversity of
virus populations can be studied at different genomic scales
(Beerenwinkel et al., 2012): (i) position-wise, by identifying single-
nucleotide variants (SNV), (ii) at a local scale, by identifying patterns
of SNVs that co-occur at a distance smaller than the average read
length, and (iii) at a global scale, by phasing mutations over dis-
In the following, we  describe computational methods for
studying viral genetic diversity in accordance with the classifi-
cation scheme introduced above and focusing on most recent
developments.
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Table 1
Comparison of pipelines for variant calling.

ViVan VirVarSeq

OS Lin, Win  Unix/Lin
Language Python Perl, R
Dependencies Python modules,

ea-utils, SAMtools, bwa
R packages, Perl
modules, Fortran
compiler, bwa

Availability No Yesa

Interface CLI/web-server CLI
Platform Illumina Illumina
Input format – reads FASTQ FASTQ
Input format – ref. FASTA FASTA
Pre-processing Quality trimmingb None
Alignment Reference-based

mapping
Reference-based
mapping and
realignment against
consensus

Variant calling Composite Bernoulli
error model

Adaptive quality
filtering

Applications Coxsackie virus,
Chikungunya virus

HCV

Reference Isakov et al. (2015) Verbist et al. (2015)

OS, operating system; Lin, Linux; Mac, Mac  OS X; Win, Windows; Unix, Unix-
compatible operating systems. Platform, sequencing platforms are specified if
pipeline was tested on real data sets, as reported on the original publication. Input
format – reads/reference; FASTA, text-based format for storing biological sequences;
FASTQ, text-based format for storing biological sequences and corresponding quality
S. Posada-Cespedes et al. / V

.1. Detecting single-nucleotide variants in virus populations

A major challenge in variant calling concerns the detection of
are SNVs. In principle, detecting low-frequency mutations is possi-
le due to high coverages that can be attained using HTS platforms.
owever, the separation of genetic variants from technical noise
onstitutes one of the main challenges of the data analysis. While
onservative thresholds for calling variants limit the sensitivity of
he SNV caller, calling all variants results in poor precision. Hence,
oth high sensitivity and precision are desirable features for detec-
ing low-frequency mutations.

Various statistical models accounting for sequencing errors have
een proposed to boost sensitivity limits. The number of errors at
ach genomic position has been modeled using Poisson (Yang et al.,
013; Wang et al., 2007; Wilm et al., 2012), binomial (Macalalad
t al., 2012) and beta-binomial distributions (Flaherty et al., 2012;
erstung et al., 2012; McElroy et al., 2013). Provided reads are
apped onto a reference sequence, an SNV is called as such when

 non-reference base is observed more often than expected under
 given error model. However, imperfect amplification, as well as
ther unknown biases, usually results in a higher-than-expected
ariance of the nucleotide counts, an effect known as overdisper-
ion. Among the proposed methods, beta-binomial models are able
o capture overdispersion (Gerstung et al., 2012). By contrast, Pois-
on and binomial models do not allow for independently adjusting
ean and variance, and therefore cannot account for overdisper-

ion. For instance, the ratio between the mean and the variance
n the Poisson distribution is equal to one. Since the error model
etermines whether the prevalence of a non-reference base is sig-
ificant, overdispersion can result in systematic errors and hence
hould be accounted for in general.

In addition to highly sensitive methods for SNV calling, precision
s also critical. This is because the number of true negatives is, in
eneral, expected to be greater than the number of true positives.
n order to reduce false positives, several tools resort to estimat-
ng position-specific error rates. Employed strategies fall into three
ategories: (i) methods integrating the quality scores when mod-
ling distribution of errors (Yang et al., 2013; Wilm et al., 2012;
acalalad et al., 2012; Isakov et al., 2015), (ii) an approach using

daptive quality filters to rule out noisy base-calls (Verbist et al.,
015), and (iii) methods resorting to a control sample for estimat-

ng the background noise (Flaherty et al., 2012; Gerstung et al.,
012). In the first case, and assuming sequencing reads have been
apped to a reference sequence, non-reference bases at each locus

re modeled as independent Bernoulli random variables, each of
hich has a distinct success probability (Yang et al., 2013; Wilm

t al., 2012; Macalalad et al., 2012; Isakov et al., 2015). These
robabilities are assumed to be a function of quality scores of indi-
idual bases. A tool dubbed VirVarSeq (Verbist et al., 2015) is a
epresentative of the second category. In this case, an adaptive
uality-threshold is estimated for each deep-sequenced sample.
he quality threshold is determined by modeling the distribution
f quality scores as a mixture of three truncated-Gaussians. Com-
onents at the lower end of the quality spectrum are interpreted
s two types of errors, while the third component is interpreted as
eliable calls and every nucleotide variant is treated as such. In the
hird case, variant counts in a heterogeneous virus populations are
ompared against counts in a homogeneous control sample, aiming
t capturing context-specific errors (Flaherty et al., 2012; Gerstung
t al., 2012). The control sample can be acquired, e.g., by sequencing
onoclonal viral strains.
Further improvements in precision can be attained if systematic
rrors are taken into account. For instance, in the case of paired-
nd sequencing, there is growing evidence that sequencing errors
epend on the sequencing direction and are more likely to occur on
ne strand than the other (Guo et al., 2012). Thus, several methods
scores.
a http://sourceforge.net/projects/virtools/?source=directory.
b Quality trimming is carried out by fastq-mcf, a tool from the ea-utils toolkit.

have incorporated statistical tests for strand bias (Yang et al., 2013;
Wilm et al., 2012; McElroy et al., 2013).

4.1.1. Analysis workflows for SNV calling
Over the last years, providing comprehensive solutions for the

analysis of genomic data has become an evident necessity (Leipzig,
2016). To this end, SNV callers have been integrated into bioinfor-
matics pipelines. Pipelines such as Viral Variance Analysis (ViVan)
(Isakov et al., 2015) and VirVarSeq (Verbist et al., 2015) facilitate
the characterization of the genetic diversity of virus populations,
delivering SNVs from raw sequences. These pipelines combine sev-
eral processing steps, including quality assessment, read alignment
and variant calling (cf. Table 1), as well as downstream analyses to
improve interpretability of the results. ViVan, e.g., provides sev-
eral metrics and statistics on population diversity, transitions and
transversion biases, synonymous and non-synonymous mutations,
and gene-by-gene statistics (Isakov et al., 2015).

An overview of two  surveyed pipelines is given in Table 1. We
have listed some features, which include programming languages,
dependencies, supported sequencing platforms, input formats and
analysis steps. It can be seen that these tools are similar in many
ways. For instance, both pipelines are tailored to Illumina reads,
in the sense that quality scores are incorporated under the inter-
pretation provided by Illumina platforms. Other aspects, such as
dependencies on third-party software and being command line
tools, make it necessary for the end-user to have at least interme-
diate computer skills.

4.2. Local diversity estimation

The linkage information between loci is lost when calling
variants at individual genetic sites. One way  to detect linkage
between nucleotide variants is by identifying statistically signifi-

cant patterns of co-variation in the sequencing reads. Such pairs
or higher-order patterns of mutations are often referred to as
phased sites. Phasing nucleotide variants involves detecting muta-
tions which are observed together on multiple sites and occur more

http://sourceforge.net/projects/virtools/?source=directory
http://sourceforge.net/projects/virtools/?source=directory
http://sourceforge.net/projects/virtools/?source=directory
http://sourceforge.net/projects/virtools/?source=directory
http://sourceforge.net/projects/virtools/?source=directory
http://sourceforge.net/projects/virtools/?source=directory
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ften than expected by chance. Indeed, genetic relationships among
ultiple sites have been exploited in software packages such as V-

haser (Macalalad et al., 2012) and its extension V-phaser2 (Yang
t al., 2013), VirVarSeq (Verbist et al., 2015), ViVaMBC (Verbist et al.,
015), CoVaMa (Routh et al., 2015) and ShoRAH (McElroy et al.,
013). An additional advantage of considering multiple sites simul-
aneously is that the detection limit (i.e., the minimum frequency
t which variants are detectable) can be lowered below the techni-
al noise level (McElroy et al., 2013), with a concomitant increase
n statistical power.

Software packages exploiting linkage information can be sub-
ivided into three categories (cf. Table 2). First, methods that
ave been tailored to performing variant calling at the codon

evel (Verbist et al., 2015, 2015). Software ViVaMBC (Virus Vari-
nt Model-Based Clustering) is a representative of this category.
t adopts a probabilistic approach for read clustering in windows
onsisting of triplets of nucleotides. Underlying viral strains are
odeled as the components of a multinomial mixture model. A

imitation of this method is that an upper bound on the number of
ariants should be specified a priori. Methods falling in the second
ategory include V-phaser (Macalalad et al., 2012; Yang et al., 2013)
nd CoVaMa (Routh et al., 2015). These methods are not limited
o adjacent positions and are tailored to identifying pairs of co-
ccurring variants. In order to estimate a detection threshold for
ach pair of loci, V-phaser models the number of mismatches at
oth sites by constructing a composite model of independent, but
ot identically distributed, Bernoulli random variables (Macalalad
t al., 2012). On the other hand, software CoVaMa (Co-Variation
apper) constructs contingency tables for every pair of loci and

very pair of variants, in order to compute the linkage disequili-
rium (LD). A 3�-cutoff rule is employed for assessing significance
f LD values.

The third category includes methods in which the local diversity
stimation is further extended to windows of the reference genome
panned by individual reads. The goal here is to phase all variant
ites within such genomic regions. At this scale, local haplotype
econstruction can be regarded as a clustering problem. A basic
cheme includes: (i) clustering reads based on pairwise similarities,
ii) identifying the cluster centers as predicted haplotypes, and (iii)
sing the cluster sizes as estimates of the haplotype frequencies.

The software ShoRAH (Short Read Assembly into Haplotypes)
s a representative of the third category (Zagordi et al., 2010).
hoRAH implements local diversity estimation, coupled to SNV call-
ng (McElroy et al., 2013), as well as global haplotype reconstruction
Eriksson et al., 2008). Local haplotype reconstruction is formulated
s a probabilistic clustering approach performed in a Bayesian fash-
on. In a traditional clustering problem, the number of component
hould be specified beforehand. However, the number of under-
ying viral strains is, in general, unknown. Hence, and in order to
apture this uncertainty, a Dirichlet process is employed as a prior
robability distribution. Assignment of sequencing reads to clusters

s performed iteratively on the basis of sequence similarity. In every
teration, sequencing reads are assigned with a certain probability
o either an existing cluster or a new cluster. In this way, the num-
er of components can be inferred from the data, instead of fixing it

 priori. The centroids of read clusters are the locally reconstructed
aplotypes. These predicted haplotypes are used to correct errors
ithin read clusters. Error correction is conducted as a previous

tep to global haplotype reconstruction (cf. Section 4.3.1).
Other software packages have resorted to local haplotype

econstruction as the starting point for global haplotype inference
Jayasundara et al., 2015; Prosperi and Salemi, 2012; Töpfer et al.,

013; Prabhakaran et al., 2014), and are described in the next
ection.

Local haplotype reconstruction can be sufficient for some appli-
ations where the focus is on a genomic region which can be fully
esearch 239 (2017) 17–32

covered by individual reads. For instance, in HIV-1 infection, it is
particularly relevant to study emergence of drug-resistance muta-
tions in genes whose protein products are targeted by drugs. One
such gene is the viral protease gene, which is only 297 nt long.

Some of the variant callers have been devised for either 454
or Illumina sequencing reads. Among the differences between
these two  sequencing platforms, the different types of predom-
inant errors, interpretation of the quality scores, read length
and throughput can be pointed out. The latter point concerning
sequencing coverage is relevant for the scalability of these tools.
For instance, V-phaser and ShoRAH (Prabhakaran et al., 2014), orig-
inally tested on 454 sequencing reads, have been observed to scale
poorly when the coverage is on the order of tens of thousands reads.
In addition, methods specialized for 454 sequencing data do not
make use of the information provided by paired-end reads. The
advantage of using pairing information is that distance between
phased sites can be extended to longer stretches constrained only
by the insert size.

4.3. Global haplotype reconstruction

Methods for local diversity estimation are limited by the length
of the sequenced fragments. Correlated pairs or higher-order pat-
terns of mutations cannot be linked at distances longer than the
average read length. On the other hand, the aim in global haplotype
reconstruction is to infer the genetic sequences and frequencies of
the underlying viral strains over a genomic region of interest (e.g.,
a single gene) or across the entire genome. In either case, the size
of the genomic region exceeds the read length.

Over the last decade, HTS platforms have been optimized
either in terms of increased throughput and read length, or
decreased error rates. Along with technological developments, sev-
eral methods have been proposed to efficiently solve the global
reconstruction problem from relatively short and error-prone
reads. Many of these methods were originally devised for handling
454/Roche sequencing reads (Astrovskaya et al., 2011; Prosperi and
Salemi, 2012; Westbrooks et al., 2008; Jojic et al., 2008; Zagordi
et al., 2011), as it was the first widely-used HTS platform. Owing
to the better cost-effectiveness and higher coverage offered by
Illumina sequencing platforms, the focus shifted towards this tech-
nology in recent years (Mangul et al., 2014; Jayasundara et al., 2015;
Töpfer et al., 2014). As the number of reads and sequencing cover-
age increased, more efficient algorithms were required to meet the
sequencing throughput. More recently, so-called third generation
sequencing platforms are gradually becoming the method of choice
(Dilernia et al., 2015; Artyomenko et al., 2016; Quick et al., 2016), as
latest technologies offer read lengths of tens of kilobases (kb). These
developments are being driven by Pacific Biosciences (PacBio) (Eid
et al., 2009) and Oxford Nanopore (Schneider and Dekker, 2012).

An orthogonal classification of the computational methods for
viral haplotypes reconstruction from HTS reads has been proposed
by Beerenwinkel et al. (2012). Algorithms proposed until 2012
were divided into read-graph based methods (cf. Section 4.3.1),
probabilistic models (cf. Section 4.3.2) and de novo reconstruc-
tion (cf. Section 4.3.3). A new category is introduced here, namely
haplotype reconstruction using long sequencing reads. Since meth-
ods designed for the analysis of long sequencing reads are based
on hierarchical clustering, we have named them as such (cf. Sec-
tion 4.3.4).

Methods based on the read graph, probabilistic models, and
algorithms based on hierarchical clustering rely on the alignment
of sequencing reads for the positioning and orientation of the reads

with respect to a reference sequence. On the other hand, de novo
quasispecies reconstruction methods do not rely on the existence
of a reference genome and haplotypes are reconstructed directly
from the sequencing reads. In the former case, a reference sequence
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Table  2
Methods for local diversity estimation.

Software Platform Category Approach Output Applications Avail. Ref.

VirVarSeq Illumina Codon-based
calling

Adaptive
quality filtering

Codon variants HCV, HIV  Yes Verbist et al. (2015)

ViVaMBC 454, Illumina Codon-based
calling

Probabilistic
clustering

Codon variants HCV (NS3) Yes Verbist et al. (2015)

V-Phaser/V-Phaser2 454, Illumina Co-occurrence
of pairs of
variants

Composite
Bernoulli error
model

Variant pairs HIV-1, WNV  Yesa Macalalad et al. (2012)
and Yang et al. (2013)

CoVaMa IIllumina Co-occurrence
of pairs of
variants

Linkage
disequilibrium

Variant pairs HIV (prot) Yes Routh et al. (2015)

ShoRAH 454, Illuminab Local windows Probabilistic
clustering

Local
haplotypes,
SNVs

HIV (pol), HCV Yes McElroy et al. (2013)
and Zagordi et al.
(2010)

Sequencing platforms are specified if software was  tested on real data sets, as reported on the original publication. Avail., availability. Ref., references.
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a Registration required.
b Test for strand bias in SNV calling.

ould have been previously obtained, e.g., by sequencing the sam-
le via Sanger sequencing, or assembling the reads de novo into a
ingle consensus sequence (Henn et al., 2012; Mangul et al., 2014;
ayasundara et al., 2015).

In the following, we  describe in more detail different strategies
or viral haplotype reconstruction. Lastly, we discuss challenges in
hoosing a haplotype reconstruction tool for studying diversity in
ixed viral samples (cf. Section 4.3.5).
.3.1. Read-graph based methods for haplotype reconstruction
The general workflow of methods based on the read graph

ncludes mapping of sequencing reads, error correction, haplotype
econstruction and haplotype frequency estimation (cf. Fig. 3). The

able 3
oftware packages for haplotype reconstruction based on the read graph.

Software Sequencing mode Error handling Haploty
reconstr

ShoRAH Shotgun and
amplicon-based

Probabilistic
clustering

Minima

ViSpA Shotgun Binomial error
model

Max-ba
paths

ShotMCF Shotgun Probabilistic
assignment of
reads to candidate
haplotypes

NAa

VirA (AmpMCF) Amplicon-based Error-corrected
reads

Multi-co
flows

BIOA Amplicon-based Error-corrected
readsb

Max-ba
paths

QuRe Amplicon-based Poisson error
model

Distribu
matchin

ViQuaS PEc Mutation calling Distribu
matchin

HaploClique PEc Probabilistic
sequence similarity
criterion

Iterative
max-cliq

QColors PEc Error-corrected
reads

Minimu
coloring

VGA PEc High-fidelity
sequencing
protocol

Minimu
coloring

vail., availability. Ref., references.
a Candidate haplotypes are generated using the max-bandwidth method of software V
b Software KEC (Skums et al., 2012) was  used for error correction.
c PE, paired-end reads. If available, information from paired-end reads is taken into acc
d Not included.
set of mapped reads, possibly error-corrected reads, is used to build
a graph with the aim of identifying a set of paths as the viral hap-
lotypes.

The read graph is a directed graph with vertices correspond-
ing to non-redundant reads and edges connecting reads that agree
on their non-empty overlap (Eriksson et al., 2008). A read is
non-redundant if it is not fully contained within any other read.
Furthermore, overlapping positions between pairs of reads and
directionality of the edges are determined by the read alignment (cf.

Fig. 4). A similar formulation of the read graph was  independently
proposed by Westbrooks et al. (2008), in which all sequencing
reads are included as nodes. In this case, a more compact graph
is obtained by computing the minimum transitive reduction of the

pe
uction

Haplotype
frequency
estimation

Avail. Ref.

l path cover EM Yes Zagordi et al.
(2011)

ndwidth EM Yes Astrovskaya et al.
(2011)

Normalized flow Yes Skums et al. (2013)

mmodity Normalized flow Yes Skums et al. (2013)

ndwidth Frequency
balancing in forked
nodes

Yes Mancuso et al.
(2012)

tion
g

Haplotypes in
decreasing order of
abundance

Yes Prosperi and
Salemi (2012)

tion
g

Minimum
frequency of
constituent
vertices

Yes Jayasundara et al.
(2015)

ly merging
ues

Normalized read
counts

Yes Töpfer et al. (2014)

m vertex NId No Huang et al. (2011)

m vertex EM Yes Mangul et al.
(2014)

iSpA.

ount.
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Fig. 3. Schematic workflow for global haplotype reconstruction based on the read
graph. A hypothetical virus population consisting of three viral strains is deep
sequenced. Reads originated from different strains are identified by distinct col-
ors  in the diagram. After sequencing, reads are aligned against a reference genome
(black). Typically, aligned reads are corrected for errors, depicted here as red crosses.
Corrected reads are used for building the read graph and candidate haplotypes are
reconstructed as paths in the read graph. Nodes with various colors indicate that cer-
tain  regions are shared among different viral strains. Finally, the relative frequencies
of  the reconstructed haplotypes are estimated.
esearch 239 (2017) 17–32

read graph (Westbrooks et al., 2008). The idea here is to maximally
reduce the number of edges while maintaining the existence of
paths.

Source and sink nodes are typically added to the read graph (cf.
gray nodes in Fig. 3). A source node is connected to all read vertices
with no parents and a sink node is connected to all read vertices
with no children. Thereby, any path from source to sink corresponds
to a plausible haplotype. Since not every possible path corresponds
to a true haplotype, and finding all possible paths leads to overes-
timation of the diversity of the population, the task is to find an
optimal set of paths corresponding to likely viral haplotypes (cf.
Fig. 4c). Several frameworks have been proposed for reconstruc-
ting viral haplotypes using the read graph, e.g., by formulating the
problem as a minimal path cover problem (Eriksson et al., 2008;
Zagordi et al., 2011), as a network flow problem (Westbrooks et al.,
2008; Skums et al., 2013), as a maximum-bandwidth path problem
(Astrovskaya et al., 2011; Mancuso et al., 2011) or using maximal
clique enumeration (Töpfer et al., 2014) (cf. Table 3). In the latter
case, the optimization problem is not formulated as finding paths
in the read graph, but rather iteratively merging fully connected
clusters of read nodes, i.e., maximal cliques, in the read graph into
haplotypes of increasing length.

Recent approaches for haplotype reconstruction include meth-
ods which have been tailored to Illumina reads, such as VGA (Viral
Genome Assembler) (Mangul et al., 2014), HaploClique (Töpfer
et al., 2014) and ViQuaS (Jayasundara et al., 2015, 2015). Some
of these methods were built upon previous algorithmic ideas, but
adjusted to handle larger volumes of input reads typically pro-
duced by Illumina platforms (cf. Supplementary Table S2). VGA
is based on the conflict graph introduced by Huang et al. (2011),
whereas ViQuaS uses the combinatorial approach for hapolotype
reconstruction proposed by Prosperi et al. (2011). Other recent
developments include methods reformulating the network flow
optimization problem (Astrovskaya et al., 2011; Westbrooks et al.,
2008; Mancuso et al., 2012) as a multi-commodity flow approach
(Skums et al., 2013). Hereafter, we  explain these recent methods
for haplotype reconstruction in more detail. For a comprehensive
review of previously available tools, we refer to Beerenwinkel et al.
(2012), as well as to Table 3 which summarizes general aspects
concerning read-graph based methods.

The software ShotMCF (Skums et al., 2013) is an extension of the
Viral Spectrum Assembly (ViSpA) pipeline (Astrovskaya et al., 2011)
for the estimation of haplotype frequencies. Haplotype frequen-
cies are estimated solving a network flow problem with multiple
commodities, i.e., flow demands. Each commodity corresponds to
a candidate haplotype generated by ViSpA and the flow through a
vertex is proportional to corresponding haplotype frequencies. Par-
ticularly, and in order to account for technical errors, flow variables
are weighted by the probability that corresponding reads originate
from a given candidate haplotype.

ShotMCF has been designed for shotgun HTS reads. A simi-
lar approach, using multi-commodity flows, has been proposed
for haplotype reconstruction using amplicon-based sequencing
(Skums et al., 2013). Under sequencing protocols based on ampli-
cons, reads are produced from pre-defined windows of a reference
sequence. By design, the starting and ending positions of the ampli-
cons with respect to a reference genome are known, as well as the
overlap between amplicons. AmpMCF exploits this block structure
of the amplicons for constructing the read graph. In this framework,
the objective is to find a set of paths in the read graph which col-
lectively cover all reads while minimizing the total flow. The main
limitation of this method is that the number of commodities, i.e.,

haplotypes, needs to be specified in advance. This method has been
integrated into the Viral Quasispecies Assembler pipeline (VirA).

Another analysis pipeline for viral quasispecies reconstruction
has been implemented in the software ViQuaS. This software uses



S. Posada-Cespedes et al. / Virus Research 239 (2017) 17–32 25

Fig. 4. Building the read graph. (a) In this example, a genomic region of length 43 bp is covered by seven reads, each of length 20 bp. Sequencing reads are aligned against a
reference sequence (black) and four segregating loci are identified (asterisks). (b) From the real alignment, the read graph is constructed based on five non-redundant reads;
segregating sites are indicated by asterisks. (c) Two  candidate haplotypes covering all reads can be proposed from the graph and one possible solution is shown as highlighted
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aths  in cyan and orange. In this example, closest segregating sites are further apa
hether these SNVs occur in the same viral strain.

 reference-assisted de novo assembly strategy for reconstruction
f haplotypes, which consists of three steps. First, reads are aligned
gainst a reference genome and, subsequently, divided into two
roups depending on whether or not each read has been perfectly
ligned to the reference. Reads which did not aligned perfectly
o the reference genome are assembled into contigs using the
e novo assembly software SSAKE (Warren et al., 2007). In the
econd step, contigs are aligned against the reference and SNVs
re naïvely detected. It may  happen that reads originating from
ifferent strains have a sufficient overlap, such that they are assem-
led into the same contig. Therefore, in the last step, chimeric
rrors are corrected on the basis of reads supporting co-occurring
NVs. If there is no evidence of linking mutations, the contigs
re partitioned accordingly. For the global reconstruction, con-
igs are combined into global haplotypes using a variation of the
ombinatorial approach proposed by Prosperi et al. (2011). On a
enchmark study, it was observed that the pipeline reconstructed a
igh number of false positives, which was attributed to false in silico
ecombinants (Jayasundara et al., 2015), i.e., haplotypes which have
een wrongly reconstructed as the composition of different viral
trains. In order to improve on precision, a probabilisitic approach
as been proposed for estimating the number of underlying strains

n the virus population (Jayasundara et al., 2015). This estimate is
hen used as a threshold value for the number of candidate paths
onstructed from the read graph.

A more recent software based on the read graph is HaploClique

Töpfer et al., 2014). In this framework, the read graph is built with
light modifications. First, in case of paired-end reads, each node
ill correspond to a read pair. Second, in addition to sufficient over-

ap between two reads (or read pairs), an edge is drawn between
n a region that can be cover by any read. Therefore, there is no direct evidence of

two nodes if the corresponding reads are likely to stem from the
same viral strain. The chance that two reads originate from the
same haplotype is evaluated based on two criteria: (i) sequence
similarity in the presence of technical errors, and (ii) compatibil-
ity of the insert sizes. The insert size criterion allows to identify
structural variants. Relatively long indels are detected based on
deviations from the expected insert size for read pairs in a clique.
Therefore, if there are indications that the virus population poses
such structural variants, HaploClique would be a suitable choice
of software. Viral haplotypes are reconstructed iteratively by find-
ing max-cliques and merging them into super-reads. A super-read
is the consensus sequence of all reads in a max-clique. This itera-
tive scheme is used to extend locally reconstructed haplotypes into
full-length haplotypes, provided that the degree of genetic diversity
of the virus population is sufficiently high. If there is no evidence
on how to extend a super-read, the algorithm terminates. A pos-
sible downside of this method is that the run time is exponential
in the read coverage. Nevertheless, HaploClique was observed to
outperform other methods in terms of run time.

A complementary variant of the read-graph, the conflict graph,
was initially proposed and implemented in the software QColors
(Huang et al., 2011). In the conflict graph, the vertices represent
reads (or read pairs) and edges are drawn between conflicting pairs
of vertices, i.e., edges connect reads that do not agree on their
overlap. Reconstructing viral haplotypes has been addressed in a
parsimonious fashion by finding the minimum number of max-

imally independent sets of non-conflicting reads. This problem
is equivalent to finding the minimum number of labels or col-
ors required for coloring the vertices of the conflict graph, such
that no edge connects vertices with identical colors (Huang et al.,
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011). More recently, this problem has been re-formulated as a
ax-Cut problem and it has been solved using a top-down

pproach. The conflict graph is recursively partitioned according to
ts maximum cut, until components become independent (Mangul
t al., 2014). Relative frequencies of the haplotypes are estimated
sing an expectation-maximization (EM) algorithm in a similar
ashion as in the ShoRAH model (Eriksson et al., 2008). Reads
re assumed to be sampled from the underlying distribution of
iral strains, but here a prior probability for the viral haplotypes
s used. Thus, instead of maximizing the likelihood, the posterior
robability is maximized. This computational method has been

mplemented in the software VGA, which stands for Viral Genome
ssembler (Mangul et al., 2014).

As mentioned earlier in this section, error correction can be
ncorporated as a step before building the read graph. Such is the
ase for the software ShoRAH (Zagordi et al., 2010, 2010, 2011)
nd QuRe (Prosperi and Salemi, 2012). Other methods, such as
mpMCF, QColors and VGA, assume reads have been corrected for

echnical errors, either using computational methods for error cor-
ection (Zagordi et al., 2010; Skums et al., 2012; Heo et al., 2014) or
equencing protocols based on primerIDs (Kinde et al., 2011; Lou
t al., 2013; Seifert et al., 2016) (cf. Table 3). Alternatively, tech-
ical errors can be treated in a probabilistic fashion as is done in
oftware ViSpA (Astrovskaya et al., 2011) and HaploClique (Töpfer
t al., 2014).

.3.2. Probabilistic methods for haplotype reconstruction
In many approaches described in the previous section, the

ead graph is constructed from sequencing reads which have been
reviously corrected for sequencing errors. Instead, the stochas-
ic process underlying the generation of sequencing reads can be

odeled explicitly. Methods falling in this category have been for-
ulated as probabilistic models of either the sequencing process

Jojic et al., 2008) or together with a generative process for the
iral haplotypes (Töpfer et al., 2013; Prabhakaran et al., 2014). The
ormer approach has been proposed by Jojic et al. (2008), whereas
he latter have been implemented in software packages Predic-
Haplo (Prabhakaran et al., 2014) and QuasiRecomb (Töpfer et al.,
013) (cf. Table 4).

In the model proposed by Jojic et al. (2008), observed reads are
ssumed to constitute a sample from a fixed number of viral strains,
ut a noisy sample as reads are subject to technical noise. Never-
heless, the number of underlying viral strains, which is generally
nknown, needs to be specified beforehand. To circumvent this

imitation, PredictHaplo and QuasiRecomb implement model selec-
ion strategies that find an optimal trade-off between sensitivity of
nferring haplotypes and depth of the data.

In PredictHaplo, viral haplotypes are modeled as the com-
onents of a multinomial mixture model, in which the mixing
oefficients correspond to the haplotype frequencies. Multinomial
istributions are employed to capture the genetic diversity at each

ocus by means of haplotype- and position-specific probability
ables. Moreover, and in order to avoid specification of the num-
er of components a priori, a non-parametric Dirichlet process is
mployed as prior probability distribution, and haplotype inference
s performed in a fashion similar to the local reconstruction module
f ShoRAH. Full-length haplotypes are reconstructed iteratively by
xtending locally reconstructed haplotypes, starting from the win-
ow of aligned reads with highest coverage. Cluster assignment
robabilities extracted from the locally reconstructed haplotypes
re used as prior information to gradually extend the local win-
ow, and this process is carried out until the window spans the

ntire length of the genome or genetic region of interest.

A third generative model has been proposed based on hidden
arkov models (HMM)  and has been implemented in the software

ackage QuasiRecomb (Töpfer et al., 2013). In addition to modeling
esearch 239 (2017) 17–32

mutations by position-specific probability tables, QuasiRecomb
models recombination events explicitly. This feature is key when
studying some RNA viruses, such as HIV, where recombination is
an important source of genetic heterogeneity. As in PredictHaplo,
global haplotype reconstruction is seeded on locally reconstructed
haplotypes, and solved using a hierarchical assembly strategy (Di
Giallonardo et al., 2014).

Both QuasiRecomb and PredictHaplo were initially tested on
simulated reads mirroring 454 error patterns and read lengths. The
ability of these tools to reconstruct full-length haplotypes was later
validated experimentally using reads from different sequencing
platforms, namely 454/Roche, Illumina and PacBio (Di  Giallonardo
et al., 2014).

4.3.3. De novo assembly of viral haplotypes
As mentioned earlier (cf. Section 3), biases induced by the

read mapping hinder the reconstruction of viral haplotypes. Meth-
ods for de novo quasispecies assembly represent an alternative to
reference-based haplotype reconstruction. To date, two reference-
free methodologies, dubbed Mutant-Bin (Prabhakara et al., 2013)
and MLEHaplo (Malhotra et al., 2016), have been proposed (cf.
Table 5). It is worth emphasizing that assembling a single consensus
genome de novo is not equivalent to assembling an unknown num-
ber of closely related viral haplotypes. Therefore, generic de novo
assemblers are not well suited for the viral quasispecies reconstruc-
tion task.

A computational framework for estimating the number of
viral haplotypes and their frequencies has been implemented
in the method Mutant-Bin (Prabhakara et al., 2013) and later
refined by Malhotra et al. (2013). This framework is based on
the Lander–Waterman model of sequencing, in which reads are
assumed to follow a Poisson distribution parameterized by the
sequencing coverage. As such, frequencies of k-mers (i.e., substrings
of length k) extracted from sequencing reads are modeled as a
mixture of Poisson distributions. Expected values of the Poisson
distributions correspond to the so-called composite frequencies,
i.e., frequencies which are observed as the sum of the abundances
of the underlying haplotypes sharing a given k-mer. The goal is
to infer the frequencies of the underlying haplotypes, which are
denoted as basic frequencies. A greedy strategy is used for finding
a minimal set of basic frequencies explaining composite frequen-
cies. It involves traversing the list of Poisson means in increasing
order. In each iteration, an element is regarded as the frequency
of an underlying haplotype if it cannot be obtained by adding
basic frequencies already present in the solution set. Limitations
of this method include the lack of an error model, the depen-
dence on a uniform coverage and the assumption that different
viral strains are present in the population with distinct frequen-
cies. More importantly, genomic sequences of viral strains are not
reconstructed. On the other hand, an advantage is that it allows to
infer, with high precision and recall, the structure of the popula-
tion when the genetic diversity is low (Malhotra et al., 2013). This
is a notable advantage, because the reconstruction of viral haplo-
types using any other approach becomes harder as the diversity
of the sample decreases (Jayasundara et al., 2015; Eriksson et al.,
2008).

More recently, a de novo assembly algorithm based on the de
Bruijn graph has been proposed for estimating viral haplotypes
from paired-end reads (Malhotra et al., 2016). The de Bruijn graph
is constructed in a similar fashion to the read graph. The vertices
of the graph correspond to k-mers generated from error-corrected
reads and the edges connect overlapping k-mers. However, the ori-

entation of the reads is unknown. Therefore, k-mers from the reads
as well as from their reverse complements are represented in the
graph. In this framework, viral haplotype reconstruction is divided
into two  phases. In the first phase, a fixed number of top-scoring



S. Posada-Cespedes et al. / Virus Research 239 (2017) 17–32 27

Table  4
Probabilistic models for haplotype reconstruction.

Method Sequencing
mode

Approach Model
selection

Inference Avail. Ref.

Jojic et al., 2008 Shotguna Probabilistic model
for generation of
sequencing reads

None EM No Jojic et al.
(2008)

PredictHaplo PEb Multinomial
mixture model

Dirichlet
process as prior
probability
distribution

MCMC  Yesc Prabhakaran
et al. (2014)

QuasiRecomb PEb Jumping HMM  BIC EM Yesd Töpfer et al.
(2013)

Inference, latent variables and underlying probability distributions are estimated from the data by maximum likelihood estimation either using the expectation-maximization
algorithm (EM) or Markov chain Monte Carlo (MCMC). Avail, availability. Ref., references.

a Initially tested on 454 reads.
b PE, paired-end reads. If available the model incorporates information from paired-end reads.
c http://bmda.cs.unibas.ch/HivHaploTyper/.
d https://github.com/cbg-ethz/QuasiRecomb.

Table 5
Other methods for haplotype reconstruction.

Method Platform/sequencing mode Approach Error handling Avail. Ref.

Mutant-Bina 454/Shotgun De novo Thresholding of
low-frequent k-mers

No Prabhakara et al. (2013)

MLEHaplo Illumina/PEb De novo Error-corrected readsc Yesd Malhotra et al. (2016)
Dilernia et al., 2015 PacBio Hierarchical clustering Binomial error model No Dilernia et al. (2015)
2SNV PacBio Hierarchical clustering Binomial error model Yese Artyomenko et al. (2016)

Sequencing platforms are specified if software was  tested on real data sets, as reported on the original publication.
Avail., availability. Ref., references.

a Only applicable for haplotype frequency estimation.
b PE, paired-end reads. Paired-end information explicitly taken into account.
c Software BLESS (Heo et al., 2014) was used for error correction.
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d https://github.com/raunaq-m/MLEHaplo.
e http://alan.cs.gsu.edu/NGS/?q=content/2snv supplement.

aths per vertex are generated using a heuristic algorithm (named
iPRA). The score of a path is based on the number of read pairs
overed by such path as well as on the compatibility of their insert
izes. In the second phase, the set of candidate paths is refined
ia backward elimination. Paths are iteratively removed until the
ikelihood of the remaining paths starts to decrease. This approach
as been implemented in the software MLEHaplo (Malhotra et al.,
016).

.3.4. Hierarchical clustering of long reads for reconstruction
iral haplotypes

Recovering the structure of a virus population from short reads
i.e., reads shorter than the viral genome or genomic region of inter-
st) is further hampered by the existence of relatively long regions,
ommon to many viral strains. This is because conserved regions
onger than the read length introduce ambiguities in the recon-
truction of full-length viral genomes, i.e., there exists more than
ne plausible way to connect the relatively short reads (cf. Fig. 4). In
rder to bridge conserved regions, some algorithms either exploit
he linkage information provided by paired-end reads (Töpfer et al.,
014) or use the relative frequencies as evidence to resolve ambi-
uities (Mangul et al., 2014; Prosperi and Salemi, 2012; Jojic et al.,
008; Prosperi et al., 2011). However, these strategies have severe

imitations. In the former case, pairing information is limited by
he length of the insert size and relies on the location of at least one
f the pairs on a heterogeneous region. In the latter case, ampli-
cation and sequencing biases can lead to a non-uniform sample,
esulting in deviations from the true underlying frequencies of the

iral strains. This issue can be circumvented by using Pacific Bio-
cience or Oxford Nanopore technologies which nowadays offer
ead lengths that are comparable to the size of the genome of many
NA viruses.
Two  methods using hierarchical clustering of long reads have
been proposed for elucidating the structure of virus populations
(Dilernia et al., 2015; Artyomenko et al., 2016) (cf. Table 5). Using a
top down approach, reads are recursively partitioned into clusters
on the basis of common SNVs, until there are no groups contain-
ing conflicting SNVs. Resulting clusters are assumed to correspond
to viral strains and, consequently, haplotypes are reconstructed as
the genetic consensus of each cluster. The computational work-
flow proposed by Dilernia et al. (2015) employs a binomial error
model for calling SNVs and the pairwise distance between reads is
computed as the percentage of SNVs in which the reads differ. In
the framework proposed by Artyomenko et al. (2016), called 2SNV,
errors are also assumed to follow a binomial distribution, but 2SNV
uses linkage information between SNVs. The main limitation of the
2SNV model is reliance on the existence of linkage disequilibrium.
Reads are recursively partitioned into clusters when a read clus-
ter exhibits at least two significant segregating loci with respect
to another cluster. Nonetheless, identifying viral mutant strains
that differ in a single locus is a hard task (Jayasundara et al., 2015;
Eriksson et al., 2008). The software 2SNV has been tested on a mixed
sample obtained by error-prone PCR on the Influenza A virus PB2
segment (approx. 2 kb long). The applicability of 2SNV to longer
genomic regions has not been evaluated, and it might be another
limiting factor as the run time scales quadratically with respect to
the number of sites evaluated.

These hierarchical clustering approaches can be regarded as
local haplotype reconstruction methods, in the sense that they
cannot link variants over distances larger than the read length.

However, since viral genomes can be sequenced in a single run
using Pacific Bioscience or Oxford Nanopore technologies, they
offer the possibility to reconstruct full-length genomes. Other
methods, such as the Dirichlet process mixture implemented in

http://bmda.cs.unibas.ch/HivHaploTyper/
http://bmda.cs.unibas.ch/HivHaploTyper/
http://bmda.cs.unibas.ch/HivHaploTyper/
http://bmda.cs.unibas.ch/HivHaploTyper/
http://bmda.cs.unibas.ch/HivHaploTyper/
http://bmda.cs.unibas.ch/HivHaploTyper/
http://bmda.cs.unibas.ch/HivHaploTyper/
https://github.com/cbg-ethz/QuasiRecomb
https://github.com/cbg-ethz/QuasiRecomb
https://github.com/cbg-ethz/QuasiRecomb
https://github.com/cbg-ethz/QuasiRecomb
https://github.com/cbg-ethz/QuasiRecomb
https://github.com/cbg-ethz/QuasiRecomb
https://github.com/raunaq-m/MLEHaplo
https://github.com/raunaq-m/MLEHaplo
https://github.com/raunaq-m/MLEHaplo
https://github.com/raunaq-m/MLEHaplo
https://github.com/raunaq-m/MLEHaplo
https://github.com/raunaq-m/MLEHaplo
http://alan.cs.gsu.edu/NGS/?q=content/2snv_supplement
http://alan.cs.gsu.edu/NGS/?q=content/2snv_supplement
http://alan.cs.gsu.edu/NGS/?q=content/2snv_supplement
http://alan.cs.gsu.edu/NGS/?q=content/2snv_supplement
http://alan.cs.gsu.edu/NGS/?q=content/2snv_supplement
http://alan.cs.gsu.edu/NGS/?q=content/2snv_supplement
http://alan.cs.gsu.edu/NGS/?q=content/2snv_supplement
http://alan.cs.gsu.edu/NGS/?q=content/2snv_supplement
http://alan.cs.gsu.edu/NGS/?q=content/2snv_supplement
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hoRAH (Zagordi et al., 2010) and PredictHaplo (Prabhakaran et al.,
014) are in principle applicable to reconstruct viral haplotypes
rom long reads, however, these methods have not been rigorously
ested.

Other proof-of-concept applications using long reads have been
lso proposed to elucidate the structure of virus populations. For
nstance, the tag-based protocol proposed by Huang et al. (2016)
elies on known mutant loci for the identification of viral strains
nd avoids phasing haplotypes. This methodology has been applied
o analyze the linkage of HIV-1 drug resistance mutations at the
aplotype level. In addition to haplotype reconstruction applica-
ions, alignment of long reads seems to be another emerging area
f research. The major obstacle in aligning long reads is that due
o higher error rates of, e.g., PacBio platforms and longer read
engths, previous read mappers perform poorly. Several read map-
ers tailored to long reads have been proposed and implemented

n software packages BWA-MEM (Li, 2013), BLASR (Chaisson and
esler, 2012), rHAT (Liu et al., 2016) and ProbAlign (Zeng et al.,
014).

.3.5. Choice of software
When it comes to choosing a tool for analyzing a mixed sample

rom a virus population, the wealth of haplotype reconstruction
ools is overwhelming, especially for inexperienced users. A num-
er of review articles which were published a few years back,
ay  prove useful when selecting a proper tool for a given appli-

ation (Pandit and de Boer, 2014; Prosperi et al., 2013; Schirmer
t al., 2014). However, at the time these studies were conducted,
he number of tools available was scarce, and benchmarks were
imited to evaluation of ShoRAH, QuRe and PredictHaplo. From
hese studies, the general observation is that ShoRAH and QuRe
end to over-estimate the number of haplotypes, while Predic-
Haplo tends to under-estimate it. Not surprisingly, PredictHaplo
onsistently reports the lowest number of false positives, resulting
n high precision oftentimes at the cost of low recall.

Other comparative assessments have been included in publica-
ions of the latest methods. Usually, these studies emphasize how
he authors’ software improves over previous tools, and although
ubjectivity may  be questionable, the main difficulty is a lack
f standardization. Henceforth, we summarize the most general
ndings.

Factors influencing reliability of viral haplotype reconstruc-
ion include the ratio between the read length and the genome
ize, the depth of coverage, technical error rates, abundances of
iral strains and the underlying genetic heterogeneity of the virus
opulation. The first three factors are part of the experimental
esign and, therefore, can be controlled, while the latter are intrin-
ic to the virus population. In general, the longer the reads, the
igher the coverage, the more abundant the viral strain and the

arger the degree of diversity, the better one can expect any given
ethod to perform (Mangul et al., 2014; Jayasundara et al., 2015;
alhotra et al., 2016; Pandit and de Boer, 2014; Eriksson et al.,

008; Prabhakaran et al., 2014; Töpfer et al., 2014; Skums et al.,
013; Prosperi et al., 2013; Schirmer et al., 2014; Zagordi et al.,
012). Coverage influences the minimum frequency at which a rare
utant can be identified, whereas the read length and the genetic

iversity affect the capability of bridging gaps between conserved
egions in different haplotypes. Additionally, most abundant hap-
otypes are better represented in the sample than low abundant
ounterparts, thus, are oftentimes reconstructed more accurately.

Although some of the aforementioned factors can be modi-
ed as part of the experimental design, there are some technical
imitations when choosing a software for analyzing the data. For
nstance, independent studies have indicated that QuRe aborted
xecution, among other reasons, due to the large volume of input
eads (Jayasundara et al., 2015; Prabhakaran et al., 2014; Töpfer
esearch 239 (2017) 17–32

et al., 2014; Schirmer et al., 2014). In order to ease the selec-
tion process, we have listed some aspects reported in the original
publications (cf. Supplementary Table S2). These data are intended
to illustrate in which ranges of, e.g., read lengths or volumes of input
reads, performance of a given tool has been studied. A Haplotype
reconstruction tool may  well run outside these ranges.

In terms of run times, and aggregating results from different
benchmarks, it has been observed that latest read-graph based
algorithms, such as ViQuaS and HaploClique are faster than Pre-
dictHaplo, which in turn is faster than ShoRAH, ViSpA and QuRe
(Jayasundara et al., 2015; Astrovskaya et al., 2011; Prabhakaran
et al., 2014; Töpfer et al., 2014; Schirmer et al., 2014).

To the best of our knowledge, all software packages developed
to date have been developed for research purposes. Unfortunately,
usability, portability and maintainability are not priorities in this
setting. Most, if not all, software are distributed as command line
tools (cf. Supplementary Table S2) and the few available pipelines
lack integration into scientific workflow systems. Therefore, basic
to advanced computational skills are a pre-requisite from the user.

5. Conclusions and future directions

HTS technologies have opened up new avenues for studying
genetic heterogeneity of virus populations at an unprecedented
level of detail. However, since reads are error-prone and typi-
cally shorter than the targeted genomic region, HTS platforms
provide an incomplete and imperfect sample of the virus popula-
tion. Biases and errors introduced during library preparation steps,
amplification and actual sequencing can be ameliorated using sam-
ple controls and superior experimental protocols (e.g., primerIDs,
CirSeq). On the other hand, reference biases induced by the read
alignment remain challenging, and current aligners leave a lot of
room for improvement.

Several methods for SNV calling have been proposed and imple-
mented in the past five years. Nowadays, it is possible to detect
variants in the population at relative frequencies below 1%. Infor-
mation on low-frequency mutations is of relevance for antiviral
treatment and thus we  foresee applications aimed at routine
practice in clinical virology, substituting diagnosis based on Sanger
sequencing.

Many strategies have been proposed as solutions for the viral
quasispecies reconstruction problem. However, it is difficult to
comparatively assess their performance. This is largely due to (i)
several factors influencing the accuracy of methods for haplo-
type reconstruction, as well as (ii) lack of standardized metrics
or (iii) validation standards. Firstly, there are many factors influ-
encing reliability of haplotype reconstruction algorithms, including
aspects related to the sequencing platform of choice (e.g., read
length, coverage, error rates) and intrinsic to the virus popula-
tion (e.g., genetic diversity, strain prevalence). Secondly, it would
be desirable to have a widely accepted performance metric which
quantifies the ability of reconstructing viral haplotypes accounting
for aforementioned factors or with respect to theoretical limits. The
latter can be estimated, e.g., using the Lander–Waterman model.
Under the assumption of uniform coverage, the Lander–Waterman
model provides a theoretical bound on the relative frequency at
which viral strains can be identified (Jayasundara et al., 2015;
Eriksson et al., 2008), but, in addition to several simplifying assump-
tions, ignores the combinatorial problem that arises while merging
short reads into full-length haplotypes. Lastly, from a practical
perspective, many software packages have been tested only on
simulated data sets, where factors such as faithfulness of simu-

lated error profiles and assumptions on the structure of the virus
population may  be questionable. Furthermore, when the perfor-
mance of haplotype reconstruction tools is evaluated on real data
sets, reconstruction accuracy remains an issue (Pandit and de Boer,
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Eigen, M., Schuster, P., 1978. The hypercycle. A principle of natural
S. Posada-Cespedes et al. / V

014). Therefore, further validations in experimental settings are
eeded, e.g., by using well-characterized samples of mixed viral
opulations (Prosperi et al., 2013; Di Giallonardo et al., 2014).
ther topics which are not commonly addressed are the algorith-
ic  complexity and scalability of implemented methods, because

euristics are oftentimes not amenable to asymptotic complexity
nalysis.

The plethora of computational methods for diversity assess-
ent, as well as unresolved challenges concerning their bench-
arking, renders the choice of a proper tool for a given application

 non-trivial task. A potential solution to the lack of robust bench-
ark standards would be to run comparison contests, as has

uccessfully been done to comparatively assess genome assemblers
r metagenomic pipelines (Marx, 2016). Another critical aspect
oncerns usability of tools for haplotype reconstruction. Most soft-
are packages are tailored to well-experienced bioinformaticians,

imiting their applicability. The need for standardized analysis
ork-flows, as well as improved usability, is driving the develop-
ent and implementation of bioinformatics pipeline frameworks

Leipzig, 2016). In spite of technical developments, additional com-
itment from the community is needed in order to embrace more

exible and easily extensible pipelines, without overlooking user-
riendliness. As to the latter, e.g., bioinformatics pipelines often rely
n third-party software to be pre-installed. A promising trend is to
rovide software packages in containers, with a minimal filesystem
hich includes all dependencies. In this way, complex software

uilding steps on the part of the user are made redundant and
nalyses can be made reproducible.

Along with recent advances in sequencing technologies, a
romising direction appears to be reconstructing viral haplotypes
rom long sequencing reads. As error rates and read coverage
ffered by so-called third-generation sequencing technologies con-
inue to improve, we anticipate that novel algorithmic solutions for
he analysis of these data will become an active area of research.
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