Doctoral Thesis

Metabolic regulations governing cell growth: a mechanistic focus on reversible protein aggregation during stress

Author(s):
Saad, Shady

Publication Date:
2016

Permanent Link:
https://doi.org/10.3929/ethz-a-010792309

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use.
"Metabolic regulations governing cell growth: a mechanistic focus on reversible protein aggregation during stress."

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

Shady Saad

MSc. in Pharmaceutical Sciences (Pharmacology and Toxicology)
German University in Cairo

born on 21.05.1984
citizen of Egypt

accepted on the recommendation of

Prof. Matthias Peter
Prof. Wilhelm Krek
Prof. Robbie Loewith

2016
2 Abstract

Regulation of metabolism is essential for cellular adaptation to fast growth as well as surviving stress. In yeast, one of the major growth pathways is regulated by cAMP-dependent protein kinase A (PKA), activated in the presence of nutrients. Upon activation, PKA forces a switch towards fermentative metabolism, favorable for fast growth. Here we show a phospho-proteome of PKA highlighting its major targets in central carbon metabolism. The majority of targets were proteins involved in carbon storage, suggesting that immobilization of these storage factors could take part in metabolic regulation. We also describe a novel regulatory mechanism of the metabolic enzyme Cdc19 through its reversible aggregation upon cellular stress. We further show that this regulation is needed to protect the protein from degradation providing a survival tool needed for ATP production and cell cycle restart upon stress relief. We further describe the mechanism of the reversible aggregation by showing it depends solely on a monomeric form of Cdc19 exposing a low complexity domain. We show that this domain is essential and sufficient for the aggregation. Under favorable conditions, phosphorylation of this domain and/or tetramerization of Cdc19 protect it from aggregation. Failure to dephosphorylate the LCR during stress allows this intrinsically unstable protein to form toxic aggregates. To further explore the mechanism behind the reversibility of the aggregation, we applied a mass spectrometric analysis of phospho-sites on Cdc19 in carbon starvation. We show that phosphorylation on S22 increases with the stress persistence. We further show that this phosphorylation affects negatively the reversibility of Cdc19 aggregation after the relief of stress.
3 Sommario

La regolazione del metabolismo è essenziale per le cellule, sia per potersi adattare a un ritmo di crescita elevato che per poter sopravvivere a diversi tipi di stress. Negli lieviti, uno dei principali pathway di crescita è regolato dalla proteina chinase A (PKA), che dipende da cAMP e viene activata in presenza di nutrienti. Una volta attiva, questa proteina fa sì che la cellula passi al metabolismo fermentativo, favorendo quindi una crescita cellulare rapida. In questo lavoro, mostriamo un fosfoproteoma della PKA, evidenziando i suoi principali bersagli all’interno del metabolismo centrale del carbonio. La maggior parte di essi sono proteine coinvolte nello stoccaggio del carbonio, suggerendo quindi che l’immobilizzazione di queste scorte potrebbe prendere parte alla regolazione del metabolismo. Inoltre, in questo scritto descriviamo una nuova modalità di regolazione dell’enzima metabolico Cdc19, basata sulla sua aggregazione reversibile in condizioni di stress. Mostriamo che questo processo è essenziale per proteggere la proteina stessa dall’essere degradata durante un periodo di stress cellulare ed è un evento essenziale per poter produrre ATP e riniziare il ciclo cellulare una volta cessato lo stress. Dimostriamo anche che l’aggregazione dipende solamente dalla forma monomerica della Cdc19 nella quale viene esposta una regione a bassa complessità che si è rivelata sia necessaria che sufficiente per indurre l’aggregazione. In condizioni favorevoli alla crescita cellulare, la fosforilazione di questa regione o la tetramerizzazione della Cdc19 impedisce l’aggregazione. La mancata defosforilazione di questa corta sequenza di aminoacidi durante uno stress cellulare permette a questa proteina instabile di formare aggregati tossici. In fine, per analizzare più a fondo il meccanismo che controlla la reversibilità degli aggregati, abbiamo utilizzato la spettroscopia di massa per analizzare i fosfati della Cdc19 durante un’inedia di carbonio. Mostriamo che la fosforilazione del residuo S22 si accumula con la persistenza del periodo di inedia e riportiamo che questo sito di fosforilazione regola negativamente la reversibilità degli aggregati della Cdc19 dopo la cessazione dello stress.