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Abstract

A constructive perspective on public-key encryption. Public-key
encryption (PKE) is an extremely important and fundamental crypto-
graphic primitive. The security of PKE has received much attention in
the cryptographic literature, and many security notions for PKE have
been proposed.

When a PKE scheme is used in a larger protocol, the security of this
protocol is proved by showing a reduction of breaking a certain security
property of the PKE scheme to breaking the security of the protocol. Con-
sequently, each protocol requires in principle its own tailor-made security
reduction. Moreover, which PKE security notion should be used in a given
context is a priori not evident: PKE security notions are usually defined in
terms of a certain game that an efficient adversary cannot win with non-
negligible advantage; the employed games model the use of the scheme
implicitly through oracle access to its algorithms, and the sufficiency for
specific applications is neither explicitly stated nor proven.

The first part of this thesis proposes a new approach to investigating
the application of PKE, following the constructive cryptography (CC)
paradigm of Maurer and Renner [MR11]: The basic use of PKE is to enable
confidential communication from a sender A to a receiver B, assuming
A is in possession of B’s public key. One can distinguish two relevant
cases: The (non-confidential) communication channel from A to B can be
authenticated (e.g., because messages are signed) or non-authenticated.
The application of PKE is shown to provide the construction of a secure
channel from A to B from two assumed authenticated channels, one in
each direction, or, alternatively, if the channel from A to B is completely
insecure, the construction of a confidential channel without authenticity.

The composition theorem of CC implies that the assumed channels
can either be physically realized or can themselves be constructed cryp-
tographically, and also that the constructed channels can directly be used
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in any applications that require such a channel. In other words, several
construction steps can be composed, which guarantees the soundness of
this approach and eliminates the need for separate reduction proofs.

In addition to the above, several popular game-based security notions
(and variants thereof) are revisited and given constructive semantics by
demonstrating which type of construction is achieved by a PKE scheme
satisfying which notion.

Domain extension for public-key encryption. One approach to-
wards basing public-key encryption (PKE) schemes on weak and credible
assumptions is to build “stronger” or more general schemes generically
from “weaker” or more restricted ones. One particular line of work in this
context was initiated by Myers and shelat [MS09] and continued by Ho-
henberger, Lewko, and Waters [HLW12], who investigated domain exten-
sion for CCA-secure PKE—which is the strongest standard PKE security
notion, requiring security against attackers with access to a decryption
oracle—that is, they provide constructions of multi-bit CCA-secure PKE
from single-bit CCA-secure PKE.

It is well-known that encrypting each bit of a plaintext string indepen-
dently is not CCA-secure—the resulting scheme is malleable. The second
part of this thesis investigates whether this malleability can be dealt with
using the conceptually simple approach—suggesting itself when one takes
a constructive view on the issue of PKE domain extension—of applying
a suitable non-malleable code (a notion introduced by Dziembowski et
al. [DPW10]) to the plaintext and subsequently encrypting the resulting
codeword bit-by-bit. The attacker’s ability to ask multiple decryption
queries requires that the underlying code be continuously non-malleable
(as defined by Faust et al. [FMNV14]). Since, as is also shown in this
thesis, this flavor of non-malleability can only be achieved if the code is
allowed to “self-destruct,” the resulting scheme inherits this property and
therefore only achieves a weaker variant of CCA security.

The second main contribution of this thesis is formalizing this notion
of so-called indistinguishability under (chosen-ciphertext) self-destruct at-
tacks (IND-SDA) as CCA security with the restriction that the decryption
oracle stops working once the attacker submits an invalid ciphertext. First,
it is shown that the above approach based on non-malleable codes yields
a solution to the problem of domain extension for IND-SDA-secure PKE,
provided that the underlying code is continuously non-malleable against
a reduced form of bit-wise tampering. Then, it is proved that the code
by [DPW10] is actually already continuously non-malleable against (even
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full) bit-wise tampering; this constitutes an information-theoretically se-
cure continuously non-malleable code, a technical contribution that may
be of independent interest. Compared to the previous approaches to PKE
domain extension, the resulting scheme is more efficient and intuitive, at
the cost of not achieving full CCA security. This result is also one of the
first applications of non-malleable codes in a context other than memory
tampering.

Self-destruct attacks. The third contribution of this thesis is a thor-
ough investigation of security against self-destruct attacks. A new security
notion for PKE dubbed non-malleability under (chosen-ciphertext) self-
destruct attacks (NM-SDA), which is a natural generalization of IND-SDA
security and the so-called (standard) notion of non-malleability under
chosen-plaintext attacks (NM-CPA), is introduced. The notions of IND-SDA
and NM-CPA are shown to be incomparable, which implies that NM-SDA
is a strictly stronger notion than either of them. A black-box construction
by Choi et al. [CDMW08] of NM-CPA PKE from basic IND-CPA PKE is
shown to also achieve NM-SDA security. As such, NM-SDA is a strongest
PKE security notion currently known to be implied by IND-CPA security.

Finally, the thesis treats the domain-extension problem for NM-SDA
PKE. It turns out that the approach based on non-malleable codes out-
lined above cannot work with standard non-malleable codes. Therefore, a
novel notion of non-malleable codes with secret state is introduced and a
code strong enough for the domain extension is constructed.





Zusammenfassung

Public-Key Encryption: Eine konstruktive Perspektive. Public-
Key Encryption (PKE) ist eine extrem wichtige und fundamentale kryp-
tographische Primitive. Der Sicherheit von PKE ist bereits viel Aufmerk-
samkeit gewidmet worden und es gibt dementsprechend eine grosse Anzahl
an Sicherheitsdefinitionen für PKE.

Wird PKE in einem Protokoll verwendet, so muss die Sicherheit des
Protokolls durch eine Reduktion vom Brechen der PKE auf das Brechen
des Protokolls bewiesen werden. Im Prinzip benötigt man deswegen für
jedes neue Protokoll eine massgeschneiderte Sicherheitsreduktion. Zudem
ist a priori meist unklar, welcher Typ Sicherheit für einen gegebenen Kon-
text angemessen ist: PKE-Sicherheitsdefinitionen basieren für gewöhnlich
auf sogenannten Games, die effiziente Angreifer nur mit vernachlässigen-
der Wahrscheinlichkeit gewinnen können sollen. Solche Games modellieren
die Anwendung von PKE bloss implizit durch sogenannte Orakel und im
Allgemeinen wird weder die Anwendbarkeit in bestimmten Szenarien be-
wiesen, noch wird definiert, was Anwendbarkeit überhaupt bedeutet.

Der erste Teil dieser Arbeit schlägt einen neuen Ansatz, basierend auf
dem Konzept der Constructive Cryptography (CC) von Maurer und Ren-
ner [MR11], vor: Die Standardanwendung von PKE ist es, vertrauliche
Kommunikation zwischen einem Sender A und einem Empfänger B zu er-
möglichen, falls B den öffentlichen Schlüssel von A besitzt. Man kann zwei
relevante Fälle unterscheiden: Der (nicht-vertrauliche) Kanal von A zu B
kann authentifiziert oder nicht-authentifiziert sein. Es wird beweisen, dass
die Anwendung von PKE die Konstruktion eines sicheren Kanals von A zu
B von zwei angenommenen authentifizierten Kanälen – einem pro Rich-
tung – erreicht oder, falls der Kanal von A zu B vollständig unsicher ist, die
Konstruktion eines vertraulichen, jedoch nicht-authentifizierten Kanals.

Das Kompositionstheorem von CC impliziert, dass die angenomme-
nen Kanäle entweder physisch implementiert oder ihrerseits selbst mittels
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kryptographischen Protokollen realisiert werden können, und auch, dass
die konstruierten Kanäle direkt in jeder Anwendung eingesetzt werden
können, die solche Kanäle erfordert. Anders gesagt: Konstruktionsschrit-
te im obigen Sinn können aneinandergefügt – komponiert – werden. Dies
macht den auf CC basierenden Ansatz solide und eliminiert die Notwen-
digkeit von separaten Reduktionsbeweisen.

Zusätzlich zu oben beschriebenem analysiert diese Arbeit mehrere häu-
fig verwendete game-basierte Sicherheitsdefinitionen (sowie Varianten da-
von) und zeigt, welche Sicherheitsdefinition welche Konstruktion erreicht.
Dadurch erhalten die game-basierten Definitionen eine konstruktive Se-
mantik.

Domain Extension für PKE. Eine Art, die Sicherheit von PKE auf
schwache und glaubwürdige Annahmen aufzubauen, besteht darin „stärke-
re“, allgemeinere Verfahren aus „schwächeren“, spezifischeren zu konstruie-
ren. Eine Reihe von Arbeiten, beginnend mit Myers und shelat [MS09] und
fortgeführt von Hohenberger, Lewko und Waters [HLW12], untersucht in
diesem Sinne das Problem der Domain Extension für CCA-Sicherheit, die
die stärkste PKE-Sicherheitsstufe darstellt und Sicherheit gegen Angreifer,
die Zugriff auf ein sogenanntes Decryption-Orakel haben, erfordert. Do-
main Extension ist das Problem, aus ein-bit CCA-sicherer PKE, generisch
multi-bit CCA-sichere PKE zu erreichen.

Es ist bekannt, dass, wenn jedes Bit einer Nachricht einzeln verschlüs-
selt wird, das daraus resultierende Verfahren nicht CCA-sicher ist – es ist
sogenanntmalleable (verformbar). Der zweite Teil dieser Arbeit untersucht
daher folgenden, einfachen, von dem CC-Paradigma inspirierten Ansatz:
Um eine multi-bit Nachricht zu verschlüsseln, wird diese zunächst mit ei-
nem Non-Malleable Code kodiert (ein Konzept, das von Dziembowski et
al. [DPW10] eingeführt wurde) und anschliessend wird jedes Bit des Code-
wortes einzeln verschlüsselt. Da der Angreifer Zugriff auf ein Decryption-
Orakel hat, muss der zugrundeliegende Code sogenannt continuously non-
malleable sein (wie von Faust et al. [FMNV14] definiert). Die vorliegende
Arbeit zeigt, dass diese Art der Non-Malleability jedoch nur erreicht wer-
den kann, wenn der Code einen sogenannten „self-destruct“-Modus hat.
Dieses Verhalten findet sich im daraus resultierenden PKE-Verfahren wie-
der, weshalb dieses lediglich eine schwächere CCA-Variante erreicht.

Der zweite Hauptbeitrag dieser Arbeit besteht in der Formalisierung
dieses Sicherheitsbegriffs, der sogenannten indistinguishability under (cho-
sen-ciphertext) self-destruct attacks (IND-SDA) als CCA-Sicherheit mit der
Einschränkung, dass das Decryption-Orakel nur solange funktioniert, bis
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der Angreifer die erste ungültige Anfrage macht. Es wird gezeigt, dass
der obige auf Non-Malleable Codes basierende Ansatz für die Domain
Extension von IND-SDA-sicherer PKE geeignet ist, falls der verwendete
Code gegen eine bestimmte Form von reduziertem bit-weisem Tampering
non-malleable ist. Danach wird bewiesen, dass der Code von [DPW10]
bereits continuously non-malleable ist, sogar gegen vollwertiges bit-weises
Tampering. Dies stellt einen informations-theoretisch sicheren continuous-
ly non-malleable Code dar, was ein technischer Beitrag von unabhängi-
gem Interesse sein mag. Im Vergleich zu den vorhergehenden Lösungen
im Bereich der Domain Extension für PKE ist das hier vorgestellte Ver-
fahren effizienter und intuitiver, erreicht jedoch nicht die volle IND-CCA-
Sicherheitsstufe. Das beschriebene Resultat ist ebenfalls eine der ersten
Anwendungen von Non-Malleable Codes ausserhalb des Bereichs des so-
genannten Memory Tampering.

Self-Destruct-Attacken. Der dritte Beitrag dieser Arbeit ist eine Ana-
lyse der Sicherheit unter Self-Destruct-Attacken. Eine zusätzliche Sicher-
heitsdefinition, genannt non-malleability under (chosen-ciphertext) self-
destruct attacks (NM-SDA), wird präsentiert. Es handelt sich dabei um
eine natürliche Verallgemeinerung von IND-SDA und der sogenannten (in
der Literatur bekannten) non-malleability under chosen-plaintext attacks
(NM-CPA). Es wird gezeigt, dass IND-SDA- und NM-SDA-Sicherheit nicht
vergleichbar sind, was bedeutet, dass NM-SDA strikt stärker als die beiden
ist. Eine black-box Konstruktion von Choi et al. [CDMW08], ursprünglich
von NM-CPA PKE basierend auf PKE der grundlegendsten Sicherhietsstu-
fe IND-CPA, ist sogar NM-SDA-sicher, wie in dieser Arbeit bewiesen wird.
Dadurch ist NM-SDA eine stärkste derjenigen Sicherheitsstufen, über die
bekannt ist, dass sie von IND-CPA aus erreicht werden können.

Schliesslich betrachtet diese Arbeit das Domain Extension-Problem
auch für NM-SDA-Sicherheit. Dabei stellt sich heraus, dass dieser An-
satz basierend auf gewöhnlichen Non-Malleable Codes nicht funktionieren
kann. Deshalb wird ein neues Konzept von Non-Malleable Codes mit ge-
heimem Zustand eingeführt und ein Code vorgestellt, der genügend stark
für NM-SDA-Domain Extension ist.
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Chapter 1

Introduction

1.1 Public-Key Encryption

Public-Key Encryption (PKE) is a fundamental cryptographic primitive
that allows to achieve confidential communication in a context where
only non-confidential communication is available [RSA78]. Specifically,
a party A, in possession of the public-key of some other party B, may en-
crypt a message in such a way that only B, using the corresponding secret
key, can decrypt the message. PKE schemes are used in most modern
secure communication protocols, where they most often serve the purpose
of securely transmitting a session key, i.e., for key agreement [DH76].

Security notions. Following the seminal work by Diffie and Hellman
[DH76] and Rivest, Shamir, and Adleman [RSA78], the first formal defi-
nition of PKE security was proposed by Goldwasser and Micali [GM84].
Nowadays, there exist a plethora of security definitions for PKE. The two
most common such notions are the notions of indistinguishability under
chosen-plaintext attacks (IND-CPA) and indistinguishability under chosen-
ciphertext attacks (IND-CCA). Intuitively, IND-CPA security requires that
a computationally bounded attacker be unable to distinguish encryptions of
different messages, and IND-CCA extends this guarantee to the case where
the attacker is given access to a decryption oracle. There exist (practical)
scenarios in which IND-CPA security is insufficient and IND-CCA security
is needed. However, while IND-CCA is widely regarded as the “right” PKE
security notion and is used in most protocols for secure communication,
recent work in this area showed that in interactive settings in which the
recipient B is online, secure communication can be achieved by means of
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IND-CPA security only [MTC13, DF14].

Constructions. There exist quite a number of constructions of PKE
schemes whose security is based on specific number-theoretic assumptions.
For example, ElGamal [ElG84] proposes an IND-CPA-secure PKE scheme
based on the so-called decisional Diffie-Hellman (DDH) assumption; Cra-
mer and Shoup [CS98, CS01] propose an IND-CCA-secure PKE scheme
under the DDH assumption, and Hofheinz and Kiltz [HK09] put forth a
scheme with the same security assuming the hardness of factoring.

Considerable effort has also been spent on the (im-)possibiliy of generic
constructions. For example, in a seminal paper Impagliazzo and Rudich
[IR89] show that there exists no black-box construction of public-key en-
cryption from one-way functions; Cramer et al. [CHH+07] build bounded-
query chosen-ciphertext secure schemes from chosen-plaintext secure ones,
Choi et al. [CDMW08] non-malleable schemes from chosen-plaintext se-
cure ones, and Lin and Tessaro [LT13] show how the security of weakly
chosen-ciphertext secure schemes can be amplified. A line of work started
by Myers, Sergi, and shelat [MSS12] and continued by Dachman-Soled
[Dac14] shows how to obtain chosen-ciphertext secure schemes from plain-
text-aware ones. Myers and shelat [MS09] and Hohenberger, Lewko, and
Waters [HLW12] generically build a multi-bit chosen-ciphertext secure
scheme from a single-bit chosen-ciphertext secure one.

The “holy grail”—generically building an IND-CCA secure scheme from
an IND-CPA-secure one—has so far remained out of reach, and the rela-
tion between these two notions (despite partial negative results [GMM07])
remains largely unresolved.

1.2 Non-Malleable Codes

Non-malleable codes (NMCs), introduced in a seminal paper by Dziem-
bowski, Pietrzak, and Wichs [DPW10], allow to encode a message in such
a way that an attacker cannot transform the encoding into one that de-
codes to a related message, where “related” means that the outcome of
decoding the tampered encoding can be predicted solely from how the
adversary tampers with it (but independently of the encoding itself).

Since the introduction of the concept, NMCs resilient against various
forms of tampering have been developed. For example, in the original
paper [DPW10], the authors provide an NMC resilient against bit-wise
tampering, where the attacker tampers with each bit of an encoding in-
dependently; Aggarwal et al. [ADKO15b] develop NMCs for the so-called
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split-state model in which an attacker tampers with two independent parts
of memory.

On an axis orthogonal to the type of tampering, there have also been
results on various different attack models. For instance, Faust et al.
[FMNV14] and later Jafargholi and Wichs [JW15] investigated the no-
tion of continuous tampering, in which an attacker gets to tamper with
an encoding repeatedly.

1.3 Constructive Cryptography

A paradigm common to most constructive disciplines (e.g., software de-
sign) is the decomposition of a large, complex system into small, simple
component systems, which in turn may again be decomposed into even
smaller and simpler systems. This paradigm is only useful if there is a
well-defined notion of system composition and if said composition pre-
serves the relevant properties of the components.

The paradigm of constructive cryptography (CC) by Maurer [Mau11],
based on the framework of abstract cryptography by Maurer and Ren-
ner [MR11], was proposed with the objective of putting the design of
cryptographic protocols on a constructive foundation.

In CC, resources, such as various types of communication channels,
shared keys, memories, etc., are modeled explicitly, and the goal of a
protocol π is to construct—in a well-defined sense—a resource S from an
assumed resource R, which is denoted by

R
π

==⇒ S.

The assumed resource R (explicitly) captures the “infrastructure” available
to the parties participating in the execution of π, while the constructed re-
source S (explicitly) specifies the functionality π is expected to implement
using R.

The key feature of CC is that such construction steps compose: If, in
addition to the above, protocol ψ constructs resource T from S, then the
composed protocol, denoted by ψ ◦ π, constructs T from R, i.e.,

R
π

==⇒ S ∧ S
π

==⇒ T =⇒ R
ψ◦π

==⇒ T.

This kind of composition precisely enables the step-wise refinement ap-
proach outlined above, in which a protocol is built in a modular fashion
from isolated construction steps, each construction step is analyzed in iso-
lation, and the composition property guarantees the security of the final
protocol.
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1.4 Contributions of This Thesis

The contributions of this thesis comprise the works [CMT13], [CMTV15],
and [CDTV16].

1.4.1 A Constructive Perspective on PKE

The cryptographic security of PKE is traditionally defined in terms of
certain games in which no efficient adversary is supposed to achieve a
non-negligible advantage. There exists quite a wide spectrum of security
notions and variants thereof. These notions are motivated by certain at-
tacks (e.g., a chosen-ciphertext attack) that should be prevented, and, in
some cases, new notions are also proposed because they are stronger than
previous notions or can be shown to be incomparable.

Game-based security notions only implicitly encode

• the assumptions about the setting in which a PKE scheme is de-
ployed, via oracles available to the attacker, and

• the guaranteed security properties, via the winning condition in the
game.

Consequently, game-based notions do not compose. That is, when faced
with the question of which PKE security notion is suitable or necessary for
a certain higher-level protocol (using PKE) to be secure, one first needs
to identify an appropriate security notion and then provide a reduction
proof to show that a PKE satisfying that notion yields a secure protocol.

An alternative approach, based on the CC paradigm (cf. Section 1.3),
to capturing the security of a PKE scheme is to consider a protocol π
based on PKE and a construction

R
π

==⇒ S,

making explicit—via the definition of the assumed resource R—in which
contexts π can be used securely and—via the definition of the constructed
resource S—the security guarantees of π.

In this spirit, in the first part of this thesis (Chapter 3), the use of
PKE is treated as such a construction step. First, it is shown how one
can construct, using PKE, confidential channels from authenticated and
insecure channels. Second, several known game-based security notions
(and variants thereof) are revisited and given a constructive semantics,
providing an explicit understanding of the application contexts for which
a given notion is suitable.
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Constructing confidential channels using PKE. From the perspec-
tive of CC, the purpose of a public-key encryption scheme is to construct
a confidential channel from non-confidential channels. Here, a channel
is a resource that involves a sender, a receiver, and—to model channels
with different levels of security—an attacker. A channel generally allows
the sender to transmit a message to the receiver; the security properties
of a particular channel are captured by the capabilities available to the
attacker, which might, e.g., include reading or modifying the messages in
transmission.

The parties access the channel through interfaces that the channel
provides and that are specific for each party. For example, the sender’s
interface allows to input messages, and the receiver’s interface allows to
receive them. The interfaces are labeled by A, B, and E, where A and
B are the sender’s and the receiver’s interfaces, respectively, and E is the
adversary’s interface. This thesis considers the following four basic types
of channels (from A to B; channels in the opposite direction are defined
analogously):

• An insecure channel, denoted INSECAB , allows the adversary to
read, deliver, and to delete all messages input at A, as well as to
inject its own messages.

• An authenticated channel, denoted AUTHAB , still allows to read all
messages, but the adversary is limited to forwarding or deleting mes-
sages input at interface A.

• A confidential channel, denoted CONFAB , only leaks the length of
the messages sent by A but does not necessarily prevent injections.

• A secure channel, denoted SECAB , also only leaks the message length
and only allows the adversary to forward or delete messages input
at A.

To use public-key encryption, the receiver initially generates a key pair
and transmits the public key to the sender. The sender needs to obtain
the correct public key, which corresponds to assuming that the channel
from B to A is authenticated (1-AUTHBA).1 To transmit a message confi-
dentially, the sender then encrypts the message under the received public
key and sends the ciphertext to the receiver over a channel that could be
authenticated or completely insecure.

1The “1” denotes that 1-AUTHBA is a single-use channel, i.e., only one message can
be transmitted.
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The exact type of channel that is constructed depends on the type
of assumed channel used to transmit the ciphertext to the receiver: If
the assumed channel is authenticated (AUTHAB) and the PKE scheme
is IND-CPA-secure, the constructed channel is a secure channel (SECAB).
If, however, the assumed channel is insecure (INSECAB) and the PKE
scheme is IND-CCA-secure, the constructed channel is a confidential chan-
nel (CONFAB). Using the above notation, for protocols π and π′ based on
IND-CPA and IND-CCA encryption schemes, respectively, these construc-
tions can be written as

[1-AUTHBA,AUTHAB ]
π

==⇒ SECAB

and
[1-AUTHBA, INSECAB ]

π′

==⇒ CONFAB ,

where, informally, the bracket notation means that both resources in the
brackets are available in parallel.

The notion of constructing the confidential (or secure) channel from
the two assumed non-confidential ones is made precise in a simulation-
based sense [MR11, Mau11], where the simulator can be interpreted as
translating all attacks on the protocol into attacks on the constructed
(ideal) channel. As the constructed channel is secure by definition, there
are no attacks on the protocol.

The composability of the construction notion then means that the con-
structed channel can again be used as an assumed resource (possibly along
with additional assumed or constructed resources) in other protocols. For
instance, if a higher-level protocol uses the confidential channel to trans-
mit a message together with a shared secret value in order to achieve an
additionally authenticated (and hence fully secure) transmission of the
message, then the proof of this protocol is based on the “idealized” confi-
dential channel and does not (need to) include a reduction to the security
of the PKE scheme. In the same spirit, the authenticated channel from
B to A could be a physically authenticated channel, but it could also be
constructed by using, for instance, a digital signature scheme to authen-
ticate the transmission of the public key (which is done by certificates in
practice).

Constructive semantics of game-based security notions. Security
properties for PKE are often formalized via a game between a hypotheti-
cal challenger and an attacker. This thesis assigns constructive semantics
to several existing game-based definitions by first characterizing the ap-
propriate assumed and constructed resources and then showing that the
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“standard use” of a PKE scheme over those channels (as illustrated above)
achieves the construction if (and sometimes only if) it has the considered
property.2

In particular, it is shown that IND-CPA-security is not only sufficient
but also necessary for constructing a secure channel from two authen-
ticated channels. For the construction of a confidential channel from an
authenticated and an insecure channel, it turns out that IND-CCA-security,
while sufficient, is unnecessarily strong. The transformation only requires
the weaker notion of IND-RCCA-security, which was introduced by Canetti
et al. [CKN03] to avoid the artificial strictness of IND-CCA.

Bellare et al. [BHK09] considered several non-equivalent definitional
variants of IND-CCA. It is shown that only the stricter notions they con-
sider are sufficient for the channel construction, leaving the exact seman-
tics of the weaker notions unclear.

Non-adaptive chosen-ciphertext security (IND-CCA1) is also consid-
ered: the notion corresponds to a transformation between somewhat arti-
ficial channels but might still be useful for specific applications.

Finally, an approach to generalizing security in the three-party setting
to a setting with multiple senders and receivers is discussed.

1.4.2 On the Gap between IND-CPA and IND-CCA Security

In some contexts, the most basic PKE security notion of IND-CPA is not
sufficient, e.g., when the channel from the sender to the receiver is not
authenticated, as illustrated in Section 1.4.1. Another example where
mere IND-CPA-secure PKE is not adequate is the simple setting of an
electronic auction, where the auctioneer U publishes a public key pk and
invites several participants P1, P2, . . . to encrypt their bids bi under pk.
As was observed in the seminal paper of Dolev et al. [DDN00], although
IND-CPA security ensures that P1 cannot decrypt a bid of P2 under the
ciphertext e2, it leaves open the possibility that P1 can create a special
ciphertext e1 that decrypts to a related bid b1 (e.g., b1 = b2 + 1). Hence,
to overcome such “malleability” problems, stronger forms of security are
required.

The strongest such security notion is IND-CCA. However, the fact that
it is not known whether IND-CCA-secure PKE schemes can be generically
built from IND-CPA-secure ones (cf. Section 1.1) motivates the study of
various “middle-ground” security notions between IND-CPA and IND-CCA;

2Note that the negative results do not rule out the existence of other protocols that
are derived from the scheme in some possibly more complicated way; those could still
achieve the respective construction.



8 Introduction

notions that are sufficient for applications, and, yet, might be constructed
from simpler basic primitives (e.g., IND-CPA encryption).

One influential such notion is non-malleability under chosen-plaintext
attacks (NM-CPA), originally introduced by Dolev et al. [DDN00] with the
goal of precisely addressing the auction example above, by demanding that
an adversary not be able to maul ciphertexts to other ciphertexts encrypt-
ing related plaintexts. As was later shown by Bellare and Sahai [BS99] and
by Pass et al. [PSV07], NM-CPA is equivalent to security against adver-
saries with access to a non-adaptive decryption oracle, meaning that the
adversary can only ask one “parallel” decryption query. Although NM-CPA
appears much closer to IND-CCA than IND-CPA security, a seminal result
by Pass et al. [PSV06] showed that one can generically build NM-CPA
encryption from any IND-CPA-secure scheme, and Choi et al. [CDMW08]
later proved that this transformation can also be achieved via a black-
box construction. Thus, NM-CPA schemes can be potentially based on
weaker assumptions than IND-CCA schemes, and yet suffice for important
applications.

Another middle-ground security notion for PKE—termed indistingui-
shability under (chosen-ciphertext) self-destruct attacks (IND-SDA)—is in-
troduced by this thesis. With IND-SDA the adversary gets access to an
adaptive decryption oracle, which, however, stops decrypting after the first
invalid ciphertext is submitted. Applying this notion to the auction ex-
ample above, it means that the auctioneer can reuse the secret key for
subsequent auctions, as long as all the encrypted bids are valid. Unfortu-
nately, if an invalid ciphertext is submitted, even the results of the current
auction should be discarded, as IND-SDA security is not powerful enough
to argue that the decryptions of the remaining ciphertexts are unrelated
w.r.t. prior plaintexts.

The second part of this thesis (Chapter 4) first formally defines the new
notion of IND-SDA security. Then, it shows that IND-SDA and NM-CPA
are incomparable, i.e., there exist (albeit contrived) PKE schemes that
satisfy the former notion but not the latter and vice-versa.

Motivated by the above, a new security notion dubbed non-malleability
under (chosen-ciphertext) self-destruct attacks (NM-SDA) is introduced.
This notion naturally combines NM-CPA and IND-SDA, by allowing the
adversary to ask many adaptive “parallel” decryption queries (i.e., a query
consists of many ciphertexts) up to the point when the first invalid ci-
phertext is submitted. In such a case, the whole parallel decryption query
containing the invalid ciphertext is still answered in full, but no further
decryption queries are allowed. Since NM-SDA security implies both of the
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incomparable NM-CPA and IND-SDA notions, it is strictly stronger than
them. Hence, NM-SDA security appears to be a strongest natural PKE
security notion that is (probably) still weaker than IND-CCA—together
with q-bounded CCA-secure PKE [CHH+07], to which it seems incom-
parable. In particular, it seems to apply better to the auction example
above: First, unlike with basic NM-CPA, the auctioneer can reuse the
same public key pk, provided no invalid ciphertexts were submitted. Sec-
ond, unlike IND-SDA, the current auction can be safely completed, even
if some ciphertexts are invalid. Compared to IND-CCA, however, the auc-
tioneer will still have to change the public key for subsequent auctions if
some of the ciphertexts are invalid. Still, one can envision situations in
which parties are penalized for submitting such malformed ciphertexts, in
which case NM-SDA security might be practically sufficient, leading to an
implementation under (potentially) weaker computational assumptions as
compared to using a full-blown IND-CCA PKE.

Additionally, the auction example is formalized in the CC framework,
and NM-SDA-secure PKE is shown to be sufficient to realize it. Similar
constructive semantics are given to the notions of IND-SDA and NM-CPA.

Finally, a generalization of the Choi et al. [CDMW08] construction
from IND-CPA encryption is presented. The new construction has an im-
proved plaintext-length to ciphertext-length rate (by a factor linear in the
security parameter) and is shown to achieve NM-SDA security.3

1.4.3 Domain Extension for PKE

For several security notions in public-key cryptography, is is known that
single-bit public-key encryption implies multi-bit public-key encryption.
For IND-CPA-secure PKE, this question is simple [GM84], since the parallel
repetition of a single-bit scheme (i.e., encrypting every bit of a message
separately) yields an IND-CPA-secure multi-bit scheme. For the other
notions considered in this thesis, i.e., for NM-CPA, IND-SDA, and NM-SDA,
as well as for IND-CCA, the parallel repetition (even using independent
public keys) is not a scheme that achieves the same security level as the
underlying single-bit scheme.

To illustrate this, consider the naïve, parallel-repetition method in
more detail: each bit m[i] of a plaintext m = m[1] · · ·m[k] is encrypted
under an independent public key pki of the single-bit scheme. The re-
sulting scheme is, however, malleable: given a ciphertext e = (e1, . . . , ek),

3Note that the original scheme by Choi et al. [CDMW08] without the rate improve-
ment also achieves NM-SDA security.
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where ei is an encryption of m[i], an attacker can generate a new cipher-
text e′ 6= e that decrypts to a related message, for instance by copying
the first ciphertext component e1 and replacing the other components by
fresh encryptions of, say, 0.

The above malleability issue suggests the following natural encode-
then-encrypt-bit-by-bit (EtEb) approach: first encode the message using a
non-malleable code to protect its integrity, obtaining an n-bit codeword
c = c[1] · · · c[n]; then encrypt each bit c[i] of the codeword using public
key pki as in the naïve scheme from above.

Given that each bit c[i] of the encoding is encrypted under a separate
public key, the non-malleable code used in the transformation must be
resilient against bit-wise tampering. This is seen particularly easily when
considering the fact that a single-bit PKE scheme with IND-SDA security
allows to construct a single-bit confidential channel CONF1-bit

AB , similarly
to IND-CCA security (cf. Section 1.4.1). Since n such PKE schemes in
parallel construct n such channels in parallel ([CONF1-bit

AB ]n), the NMC
must achieve the transformation

[CONF1-bit
AB ]n ==⇒ CONFk-bit

AB .

Since the single-bit channels are independent, if they are used to transmit
an encoding from A to B, the attacker can tamper with each bit of the
encoding separately. (Similar arguments can be made for NM-CPA and
NM-SDA security.)

It turns out that plain non-malleable codes as introduced by [DPW10]
are not sufficient to obtain PKE domain extension for IND-SDA security:
Since such NMCs are only secure against a single tampering, the security
of the resulting scheme would only hold with respect to a single decryp-
tion. The third part of this thesis (Chapter 5) shows that continuously
non-malleable codes (Faust et al. [FMNV14]) allow to extend the NMC
guarantees to multiple decryptions. However, such codes “self-destruct”
once an attack has been detected, and, therefore, so must any PKE scheme
built on top of them. This is a restriction that is proved to be unavoidable
for the EtEb approach to work.4

Even continuous non-malleable codes are, however, not strong enough
to obtain PKE domain extension for NM-CPA and NM-SDA via the EtEb
approach: since these notions allow the attacker to make parallel decryp-
tion queries, the underlying code must be non-malleable w.r.t. parallel

4In fact, the self-destruct notions were originally discovered in the context of ana-
lyzing the EtEb approach for IND-CCA encryption.
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tampering attacks. Since one can show that normal NMCs cannot be se-
cure against parallel tampering, this thesis introduces the new notion of
secret-state NMCs, in which the decoder has access to a secret value it
generates initially. When such NMCs are combined with PKE, this secret
value simply becomes part of the secret key.

1.4.4 Non-Malleability against Bit-Wise Tampering

The final part of this thesis (Chapter 6) provides an NMC resilient against
continuous and one against continuous parallel tampering. For the former
case, a construction by Dziembowski et al. [DPW10] secure against non-
continuous tampering is shown to withstand continuous tampering attacks
as well. For the latter case, a secret-state non-malleable code based on
so-called linear error-correcting secret sharing and the idea of a secret
“trigger” set (inspired by the [CDMW08] construction) is presented.

1.5 Related Work

Real-World/Ideal-World Security. The idea of defining protocol se-
curity with respect to an ideal execution was first proposed by Goldreich et
al. [GMW87], where a simulator was used to formalize that whatever the
adversary can achieve in an attack on the protocol he can also achieve in
the ideal execution. First formal treatments of this approach were by Gold-
wasser and Levin [GL90], Micali and Rogaway [MR91], and Beaver [Bea91]
in the context of multi-party computation. The concept of a simulator can
be traced back to the seminal work by Goldwasser et al. [GMR85], who
introduced it in the context of zero-knowledge proofs.

General security frameworks that allow the formalization of arbitrary
functionalities to be realized by cryptographic protocols have been intro-
duced by Canetti [Can00] as Universal Composability (UC) as well as by
Pfitzmann and Waidner [PW01] and Backes et al. [BPW07] as Reactive
Simulatability (RSIM). Treatments of PKE exist in both frameworks. As
explained in more detail in Section 3.4, the treatment in UC is with respect
to an “ideal PKE” functionality. Realizing this functionality is equivalent
to IND-CCA-security [CKN03].

Canetti and Krawczyk [CK02] formulate UC functionalities that model
different types of communication channels and can be interpreted as net-
work resources; they show that their secure channels functionality can
be realized by key exchange and symmetric encryption. They do not
treat public-key encryption (beyond what is implied by viewing the above
scheme as KEM-DEM).
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The formalization of the functionalities in [PW01] is closer to the ap-
proach used here, but less modular and hence more complicated since
they immediately analyze the schemes in a multi-party scenario; the treat-
ment is restricted to and directly proves the case where the authenticated
transmission of the ciphertexts is achieved by digital signatures instead
of using a generic composition statement. More generally, both frame-
works [Can00] and [PW01] are designed from a bottom-up perspective
(starting from a selected machine model), whereas this work follows the
top-down approach of [MR11], which leads to simpler, more abstract def-
initions and statements.

Maurer et al. [MRT12] described symmetric encryption as the con-
struction of confidential channels from non-confidential channels and shared
keys, and compared the security definitions they obtained to previous
game-based definitions. The goal of this work is to provide a comparable
treatment for the case of public-key encryption. In the same spirit, specific
anonymity-related properties of public-key encryption and their relation
to the construction of receiver-anonymous channels have been discussed
by Kohlweiss et al. [KMO+13].

Domain extension for PKE. The problem of domain extension for
fully IND-CCA-secure PKE was considered by Myers and shelat [MS09]
and Hohenberger et al. [HLW12]. A detailed comparison between the
EtEb approach and these works is given in Section 5.4.1.

Non-malleable codes. Optimal-rate (non-continuous) NMCs against
bit-wise tampering are provided by [CG14b]. NMCs also exist against
block-wise tampering [CKM11], against bit-wise tampering plus permuta-
tions [AGM+15a, AGM+15b], against split-state tampering—both infor-
mation-theoretic [DKO13, ADL14, CZ14, ADKO15b, ADKO15a] and com-
putational [LL12, DLSZ15]—and in a setting where the computational
complexity of the tampering functions is limited [CG14a, FMVW14, JW15].

The typical application of non-malleable codes is to protect crypto-
graphic schemes against memory tampering (see, e.g., [GLM+04, DPW10,
DFMV13, DFMV15]). A further application of non-malleable codes has
been shown by Agrawal et al. [AGM+15a]. They show that one can ob-
tain a non-malleable multi-bit commitment scheme from a non-malleable
single-bit commitment scheme by encoding the value with a (specific) non-
malleable code and then committing to the codeword bits. Despite the
similarity of the approaches, the techniques applied in their paper differ
heavily from those used in this theses.



Chapter 2

Preliminaries

2.1 Constructive Cryptography

The constructive cryptography paradigm (cf. Section 1.3) and its construc-
tion notion are explained in Section 2.5, after introducing the necessary
formalism in Sections 2.2 and 2.3.

2.2 Systems

This thesis uses so-called systems to capture resources, protocols, and
security games. At the highest level of abstraction (following the hierarchy
in [MR11]), systems are objects with interfaces by which they connect to
(interfaces of) other systems. This concept of abstract systems captures
the topological structures that result when multiple systems are connected
in this manner.

The abstract systems concept, however, does not model the behavior
of systems, i.e., how the systems interact via their interfaces. Conse-
quently, statements about cryptographic protocols are statements at the
next (lower) abstraction level. In this work, all systems are described
in terms of (probabilistic) discrete systems, which are explained in Sec-
tion 2.3.

Resources and Converters. Resources and converters are the main
objects of interest in CC. All resources in this work are systems with
three interfaces, labeled by A, B, and E. Converters are two-interface
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systems, which are directed in that they have an inside and an outside
interface, denoted by in and out, respectively.

As a notational convention, upper-case, bold-face letters (e.g., R, S)
and upper-case sans-serif fonts (e.g., INSECMAB) generally denote resources
and lower-case Greek letters (e.g., α, β) or lower-case sans-serif fonts (e.g.,
enc, dec) denote converters. The set of all resources is denoted by Φ and
the set of all converters by Σ.

Converters model protocol engines that are used by the parties, and
using a protocol is modeled by connecting the party’s interface of the
resource to the inside interface of the converter (which hides those two
interfaces) and using the outside interface of the converter instead.

For I ∈ {A,B,E}, a resource R ∈ Φ, and a converter α ∈ Σ, the
expression αIR denotes the composite system obtained by connecting the
inside interface of α to interface I of R; the outside interface of α be-
comes the I-interface of the composite system. The system αIR is again
a resource.

For two resources R and S, [R,S] denotes the parallel composition of
R and S. For each I ∈ {A,B,E}, the I-interfaces of R and S are merged
and become the sub-interfaces I.1 and I.2 of the I-interface of [R,S].

Two converters α and β can be composed serially by connecting the
inside interface of β to the outside interface of α, written β ◦ α, with the
effect that (β ◦ α)

I
R = βIαIR. Moreover, converters can also be taken in

parallel, denoted by [α, β], with the effect that [α, β]
I
[R,S] = [αIR, βIS];

the inner and outer interfaces of [α, β] are denoted by in.1, in.2 and
out.1, out.2, respectively. This work assumes the existence of an identity
converter id ∈ Σ with idIR = R for all resources R ∈ Φ and interfaces
I ∈ {A,B,E}.

Distinguishers. A distinguisher D connects to all interfaces of a re-
source U and outputs a single bit at the end of its interaction with U.
The expression DU defines a binary random variable corresponding to the
output of D when interacting with U, and the distinguishing advantage
of a distinguisher D on two systems U and V is defined as

∆D(U,V) := |P[DU = 1]− P[DV = 1]|.

The distinguishing advantage measures how much the output distribution
of D differs when it is connected to U as opposed to V. Note that the
distinguishing advantage satisfies the triangle inequality, i.e.,

∆D(S,T) ≤ ∆D(S,R) + ∆D(R,T)

for all distinguishers D, and systems S, R, and T.
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Reductions. When relating two distinguishing problems, it is conve-
nient to use a special type of system C that translates one setting into
the other. Formally, C is a converter that has an inside and an outside
interface. When it is connected to a system S, which is denoted by CS,
the inside interface of C connects to the (merged) interface(s) of S and
the outside interface of C is the interface of the composed system. C is
called a reduction system (or simply reduction).

To reduce distinguishing two systems S,T to distinguishing two sys-
tems U,V, one exhibits a reduction C such that CS ≡ U and CT ≡ V.
Then, for all distinguishers D,

∆D(U,V) = ∆D(CS,CT) = ∆DC(S,T),

where the last equality follows from the fact that C can also be thought
of as being part of the distinguisher.1

2.3 Discrete Systems

The behavior of systems can be formalized by random systems as in
[Mau02, Mau13]: A random system S is a sequence (pS

Y i|Xi)i≥1 of condi-
tional probability distributions, where pS

Y i|Xi(y
i, xi) is the probability of

observing the outputs yi = (y1, . . . , yi) given the inputs xi = (x1, . . . , xi).
Systems with multiple interfaces are modeled similarly; the interface to
which an input or output is associated is explicitly specified as part of the
input or output. For the restricted (but for this work sufficient) class of
systems that for each input provide (at most) a single output, an execu-
tion of a collection of systems is defined as the consecutive evaluation of
the respective random systems (similarly to the model in [Can00]).

If for two systems R and S,

pR
Y i|Xi = pS

Y i|Xi

for all i and for all parameters where both are defined, they are called
equivalent, denoted by R ≡ S. In that case, ∆D(R,S) = 0 for all distin-
guishers D.

A system S can be extended by a so-called monotone binary output
(or MBO) B, which is an additional one-bit output B1, B2, . . . with the
property that Bi = 1 implies Bi+1 = 1 for all i. 2 The enhanced system is

1This follows from the so-called composition-order independence. See [MR11] for
more details.

2In other words,once the MBO is 1, it cannot return to 0.
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denoted by Ŝ, and its behavior is described by the sequence (pŜ
Y i,Bi|Xi)i≥1

(since one is only interested in the behavior as long as the MBO is zero).
If for two systems R̂ and Ŝ with MBOs,

pR̂
Y i,Bi=0|Xi = pŜ

Y i,Bi=0|Xi

for all i, they are called game equivalent, which is denoted by R̂
g
≡ Ŝ.

In such a case, ∆D(R,S) ≤ ΓD(R̂) = ΓD(Ŝ), where ΓD(R̂) denotes the
probability that D provokes the MBO.3 For more details and a proof of
this fact, consult [Mau13].

2.4 Asymptotics

All statements in this paper are phrased in a non-asymptotic fashion, but
asymptotic statements can be obtained by treating systems S as asymp-
totic families {Sλ}λ∈N and letting the distinguishing advantage be a real-
valued function of λ. Then, for a given notion of efficiency, one can con-
sider security w.r.t. classes of efficient distinguishers and a suitable neg-
ligibility notion. All reductions in this work are efficient with respect to
the standard polynomial-time notions.

2.5 The Notion of Construction

Following the CC paradigm, the task of a cryptographic protocol π is to
transform a particular assumed resource R into a (stronger) constructed
resource S. This is formalized via the well-known real-world/ideal-world
paradigm, which compares two different settings: the actual execution of
the protocol π using the assumed resource R and an ideal setting, in which
each adversarial party accesses S via a simulator. The protocol is secure if
there exist suitable simulators such that the real and the ideal settings are
indistinguishable to a distinguisher with access to all interfaces. Hence,
the simulator captures the fact that everything a party attacking π in the
real world can achieve it could also achieve in the ideal setting with S.

In the three-party setting considered in this thesis, two of the par-
ties, Alice and Bob, are considered honest, i.e., they follow their protocol,
while the third party, Eve, is adversarial and may behave arbitrarily. Con-
sequently, in this setting

3Intuitively, this means that in order to distinguish the two systems, D has to
provoke the MBO.
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• resources S have an honest mode, denoted by S-h, that captures the
behavior of the resource when Eve does not interfere,

• protocols π = (π1, π2) consist of two converters, one for Alice and
one for Bob, and

• to prove a particular protocol secure, one needs to

– show that πA1 πB2 R-h is indistinguishable from S-h and

– to exhibit a simulator σ for E such that πA1 πB2 R is indistin-
guishable from σES.

The above leads to the following definition, which originally appeared
in [Mau11]:

Definition 2.1. Let Φ and Σ be as defined in Section 2.2, and let ε1

and ε2 be two functions mapping each distinguisher D to a real number
in [0, 1]. A protocol π = (π1, π2) ∈ Σ2 constructs resource S ∈ Φ from
resource R ∈ Φ with distance (ε1, ε2) and with respect to the simulator
σ ∈ Σ, denoted4

R
π,σ,(ε1,ε2)

==⇒ S,

if for all distinguishers D,{
∆D(π1

Aπ2
BR-h,S-h) ≤ ε1(D) (availability)

∆D(π1
Aπ2

BR, σES) ≤ ε2(D) (security).

The availability condition captures that a protocol must correctly imple-
ment the functionality of the constructed resource in the absence of the
attacker. The security condition models the requirement that everything
the attacker can achieve in the setting with the assumed resource and
the protocol, he can also accomplish in the setting with the constructed
resource (using the simulator to translate the behavior).

2.6 The Composition Theorem

The construction notion defined in the previous section considers the se-
curity of a protocol in isolation. The notion, however, composes: if a
(lower-level) protocol constructs the resource that is assumed by another

4In less formal contexts, some of the superscripts on ==⇒ are occasionally
dropped.
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(higher-level) protocol, then the composition of those two protocols con-
structs the same resource as the higher-level protocol, but from the re-
sources assumed by the lower-level protocol, under the assumptions that
occur in (at least) one of the individual security statements.

The composition theorem below was first explicitly stated in [MT10],
but the statement there was restricted to asymptotic settings. Later,
in [KMO+13], the theorem was stated in a way that also allows to capture
concrete security statements. The proof, however, still follows the same
steps as the one in [MT10].5

Theorem 2.1. Let R,S,T,U ∈ Φ be resources. Let π = (π1, π2) and
ψ = (ψ1, ψ2) be protocols, σπ and σψ be simulators, and (ε1

π, ε
2
π), (ε1

ψ, ε
2
ψ)

be such that

R
(π,σπ,(ε

1
π,ε

2
π))

==⇒ S and S
(ψ,σψ,(ε

1
ψ,ε

2
ψ))

==⇒ T.

Then,

R
(α,σα,(ε

1
α,ε

2
α))

==⇒ T

with α := (ψ1 ◦ π1, ψ2 ◦ π2), σα := σπ ◦ σψ, and εiα(D) := εiπ(DσEψ ) +

εiψ(DπA1 π
B
2 ), where DσEψ and DπA1 π

B
2 mean that D applies the converters

at the respective interfaces. Moreover,

[R,U]
([π,(id,id)],[σπ,id],(ε̄1π,ε̄

2
π))

==⇒ [S,U],

with ε̄iπ(D) := εiπ(D[·,U]), where D[·,U] means that the distinguisher em-
ulates U in parallel. (The analogous statement holds with respect to [U,R]
and [U,S].)

2.7 Channels

A channel is a resource that involves a sender A, a receiver B, and—
to model channels with different levels of security—an attacker E.6 The
channel types relevant for this thesis are defined below. All channels are
parametrized by a message space M ⊆ {0, 1}∗, which is often dropped

5Recall from Section 2.2 that id is the converter that behaves transparently (i.e.,
allows access to the underlying interface of the resource). Furthermore, it is assumed
that the operation [·, . . . , ·] is left-associative; in this way multiple resources can be
expressed using a single variable U.

6Channels in the opposite direction are defined similarly.
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when it is not of importance. All channel resources S, whenever no at-
tacker is present (i.e., with S-h) relay messages from A to B faithfully.
That is, when a message m ∈M in input at A, it is output at B.

The following sections describe the behavior of the channels when an
attacker is present at interface E.

2.7.1 Insecure Channel

The insecure channel INSECMAB transmits messages m ∈ M and corre-
sponds to, for instance, communication via the Internet. Communication
can be controlled via the E-interface, i.e., the attacker learns all messages
input at the A-interface and chooses the messages to be output at the
B-interface. The channel is described in more detail in Figure 2.1.

Channel INSECM
AB

on m ∈M at A
output (msg,m) at E

on (inj,m′) with m′ ∈M at E
output m′ at B

Figure 2.1: Insecure communication channel from A to B.

2.7.2 Authenticated Channel

The authenticated channel AUTHMAB authentically transmits messagesm ∈
M. Communication can be controlled via the E-interface with the re-
striction that only messages input at A may be output at B. That is,
the attacker learns all messages input at the A-interface and chooses the
messages to be output at the B-interface from a buffer B containing all
messages input at A. The channel is described in more detail in Figure 2.2.

Channel AUTHM
AB

init
i← 0
B ← ∅

on m ∈M at A
i← i+ 1
B ← B ∪ {m}
output (msg, i,m) at E

on (dlv, i′) at E
if ∃m : (i′,m) ∈ B

output m at B

Figure 2.2: Authenticated communication channel from A to B.
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2.7.3 Confidential Channel

The confidential channel CONFMAB works as follows: When a message is
input at A, it is stored in a buffer B, and its length is output at E. The
attacker can (repeatedly) either choose a message from the buffer to be
delivered at B or inject a message m′ independent of the messages in B.7

The channel is described in more detail in Figure 2.3.

Channel CONFM
AB

init
i← 0
B ← ∅

on m ∈M at A
i← i+ 1
B ← B ∪ {m}
output (msg, i, |m|) at E

on (dlv, i′) at E
if ∃m : (i′,m) ∈ B

output m at B

on (inj,m′) at E
output m′ at B

Figure 2.3: Confidential communication channel from A to B.

2.7.4 Secure Channel

The secure channel SECMAB works as follows: When a message is input at
A, it is stored in a buffer B, and its length is output at E. The attacker
can (repeatedly) choose a message from the buffer to be delivered to B.

The channel is described in more detail in Figure 2.4.

Channel SECM
AB

init
i← 0
B ← ∅

on m ∈M at A
i← i+ 1
B ← B ∪ {m}
output (msg, i, |m|) at E

on (dlv, i′) at E
if ∃m : (i′,m) ∈ B

output m at B

Figure 2.4: Secure communication channel from A to B.

2.7.5 Single-Use Channels

The channels INSECMAB ,AUTHMAB , . . . defined above also appear as single-
use variants, denoted 1-INSECMAB , 1-AUTHMAB , . . ., which allow at most one

7That is, the confidential channel is non-malleable.
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Distinguishing Game Gpke
b

init
(pk, sk)← K
output pk

on (chall,m0)
m1 ←M s.t. |m0| = |m1|
e← Epk(mb)
output e

on (dec, e′)
if valid(e′)

m′ ← Dsk(e
′)

else
m′ ← test

output m′

Figure 2.5: Distinguishing game used to define various security notions
for PKE schemes Π = (K,E,D). The predicate valid(·) determines whether
a ciphertext is permissible to ask at a given point.

message to be input at A and output at B.

2.8 Public-Key Encryption

A public-key encryption (PKE) scheme with message spaceM ⊆ {0, 1}∗
and ciphertext space E is defined as three algorithms Π = (K,E,D),
where the key-generation algorithm K outputs a key pair (pk, sk), the
(probabilistic) encryption algorithm E takes a message m ∈ M and a
public key pk and outputs a ciphertext e ← Epk(m), and the decryption
algorithm takes a ciphertext e ∈ E and a secret key sk and outputs a
plaintext m← Dsk(e). The output of the decryption algorithm can be the
special symbol ⊥, indicating an invalid ciphertext.

A PKE scheme is correct if m = Dsk(Epk(m)) (with probability 1 over
the randomness in the encryption algorithm) for all messages m and all
key pairs (pk, sk) generated by K.

The following standard security notions are considered in this thesis:
IND-CPA (CPA for short), IND-CCA1 (CCA1), IND-RCCA (RCCA), and
IND-CCA (CCA). All notions are defined via the distinguishing game Gpke

b

depicted in Figure 2.5 (for different predicates valid(·)).8

Chosen-plaintext security. Indistinguishability under chosen-plaintext
attacks (IND-CPA) considers an attacker trying to decide whether a chal-
lenge ciphertext is an encryption of a plaintext of his choice or an encryp-
tion of a random message. The corresponding game GCPA

b is obtained from
Gpke
b by letting valid(e′) = 0 for all e′.

8Game Gpke
b defines the so-called real-or-random versions of these games, which are

equivalent to the more popular left-or-right formulations (as shown in [BDJR97] for
symmetric encryption).
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Chosen-ciphertext security. Indistinguishability under chosen-cipher-
text attacks considers an attacker trying to decide whether a challenge ci-
phertext is an encryption of a plaintext m0 of his choice or an encryption
of a random message m1 while given access to a decryption oracle:

• Lunchtime attacks (IND-CCA1): The decryption oracle is available
only before the challenge ciphertext is output. The corresponding
game GCCA1

b is obtained from Gpke
b by letting valid(e′) = 1 for all e′

before the challenge is output and valid(e′) = 0 for all e′ after the
challenge is output.

• No-replay attacks (IND-RCCA): The decryption oracle is available at
all times with the restriction that no decryption query c′ may decrypt
to m0 or m1. The corresponding game GRCCA

b is obtained from Gpke
b

by letting valid(e′) = 1 for all e′ before the challenge is output and
changing to valid(e′) = 0 for e′ with Dsk(e

′) ∈ {m0,m1} after the
challenge was output. For more details about RCCA-security, see
Section 3.2.2 or consult [CKN03], where the notion was introduced.

• Full attacks (IND-CCA): The decryption oracle is available at all
times with the restriction that the challenge ciphertext may not be
queried. The corresponding game GCCA

b is obtained from Gpke
b via

valid(e′) = 1 for all e′ before the challenge is output and changing
to valid(e) = 0 after the challenge e is output.

Definition 2.2. Let SN ∈ {CPA,CCA1,RCCA,CCA}, t ∈ N and ε ≥ 0. A
PKE scheme Π = (K,E,D) is (t, ε)-SN-secure if

∆D(GSN
0 ,GSN

1 ) ≤ ε

for all distinguishers D running in time at most t.

2.9 Coding Schemes, LECSS, and AMD Codes

Definition 2.3 (Coding scheme). A (k, n)-coding scheme (Enc,Dec) over
a field F consists of a randomized encoding function Enc : Fk → Fn
and a deterministic decoding function Dec : Fn → Fk ∪ {⊥} such that
Dec(Enc(m)) = m (with probability 1 over the randomness of the encod-
ing function) for each m ∈ Fk. The special symbol ⊥ indicates an invalid
codeword.

The following notions of linear error-detecting/correcting secret shar-
ing, introduced by Dziembowski et al. [DPW10], are used in several places
in this thesis.
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Definition 2.4 (Linear error-detecting sharing scheme). Let n ∈ N be a
security parameter and F a finite field. A (k, n, δ, τ) linear error-detecting
secret sharing (LEDSS) over F is a coding scheme (E,D) over F, with the
following properties:

• Linearity: For any vectors w output by E and any c ∈ Fn,

D(w + c) =

{
⊥ if D(c) = ⊥, and
D(w) + D(c) otherwise.

• Minimum distance: For any c ∈ Fn with 0 < wH(c) < δn, D(c) = ⊥.

• Secrecy: The symbols of a codeword are individually uniform over F
and τn-wise independent (over the randomness of E).

Definition 2.5 (Linear error-correcting sharing scheme). Let n ∈ N be a
security parameter and F a finite field. A (k, n, δ, τ) linear error-correcting
secret sharing (LECSS) over F is a triple of algorithms (E,D,R), where
(E,D) is a (k, n, δ, τ)-LEDSS over F, with the additional property:

• Error correction: It is possible to efficiently correct up to δn/2 errors,
i.e., for any m ∈ Fk and any w output by E(m), if dH(c, w) ≤ t for
some c ∈ Fn and t < δn/2, then R(c, t) = w.

This paper considers various instantiations of LECSSs, which are described
where they are used.

The following concept of algebraic manipulation detection was intro-
duced by Cramer et al. [CDF+08], who also provide an instantiation.

Definition 2.6 (AMD code). A (k, n)-coding scheme (A,V) is a ρ-secure
algebraic manipulation detection (AMD) code if for all m ∈ {0, 1}n and
non-zero ∆ ∈ {0, 1}n, P[V(A(m) + ∆) 6= ⊥] ≤ ρ, where the probability is
over the randomness of the encoding algorithm A.

2.10 One-Time Signatures

A digital signature scheme (DSS) is a triple of algorithms Σ = (K,S, V ),
where the key-generation algorithm K outputs a key pair (sk, vk), the
(probabilistic) signing algorithm S takes a message m and a signing key
sk and outputs a signature s ← Ssk(m), and the verification algorithm
takes a verification key vk, a message m, and a signature s and outputs
a single bit Vvk(m, s). A (strong) one-time signature (OTS) scheme is
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a digital signature scheme that is secure as long as an adversary only
observes a single signature. More precisely, OTS security is defined using
the following game Gots played by an adversary A: Initially, the game
generates a key pair (sk, vk) and hands the verification key vk to A. Then,
A can specify a single message m for which he obtains a signature s ←
Svk(m). Then, the adversary outputs a pair (m′, s′). The adversary wins
the game if (m′, s′) 6= (m, s) and Vvk(m′, s′) = 1. The advantage of A is
the probability (over all involved randomness) that A wins the game, and
is denoted by ΓA(Gots).

Definition 2.7. A DSS scheme Σ is a (t, ε)-strong one-time signature
scheme if for all adversaries A with running time at most t, ΓA(Gots) ≤ ε.

2.11 Chernoff Bound

The following (standard) Chernoff bound is used.

Theorem 2.2. Let X1, . . . , Xn be i.i.d. with Xi ∼ Be(pi). Then, for
X :=

∑
iXi and µ :=

∑
i pi,

P[X ≤ (1− ε)µ] ≤ e−µε
2/2

for any ε ∈ (0, 1].

2.12 Plotkin Bound

The following theorem allows to bound the number of codewords of a code
over a binary alphabet with relative minimum distance δ > 1/2.

Theorem 2.3. For a code over a binary alphabet with block length n and
distance d ≥ n

2 + 1, the maximum number of codewords is

A(n, d) ≤ d

d− n
2

≤ 1 +
1

2ε

where ε = d
n −

1
2 .

A proof can be found in [MS78, p. 41].



Chapter 3

A Constructive Perspective
on Public-Key Encryption

From the perspective of constructive cryptography (CC), the purpose of a
public-key encryption (PKE) scheme is to construct a confidential chan-
nel from non-confidential channels between a sender and a receiver. Sec-
tion 3.1 analyzes two such channel constructions based on public-key en-
cryption: one where the communication from the sender to the receiver
is authenticated and one where it is not. For either scenario, the appro-
priate security level required of the PKE for the construction to work is
identified.

In Section 3.2 constructive semantics are assigned to several existing
game-based definitions by first characterizing the appropriate assumed and
constructed resources and then showing that the “standard use” of a PKE
scheme over those channels (cf. Section 3.1.1) achieves the construction if
(and sometimes only if) it has the considered property.

Finally, Section 3.3 explains how the three-party scenario considered
here actually captures settings with multiple senders and receivers, and
Section 3.4 points out some differences between the channel-based ap-
proach taken here and approaches that idealize the properties of crypto-
graphic schemes.

3.1 Constructing Confidential Channels with PKE

The main purpose of public-key encryption (PKE) is to achieve confiden-
tial communication. As a constructive statement, this means that a PKE
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scheme Π is viewed as a protocol, a pair of converters pke = (enc, dec),
whose goal is to construct a confidential channel from non-confidential
channels. Differentiating between the two cases where the communica-
tion from the sender to the receiver is authenticated and unauthenticated,
respectively, this corresponds to the two constructions1

[1-AUTHKBA,AUTHEAB ]
pke

==⇒ SECMAB (3.1)

and
[1-AUTHKBA, INSECEAB ]

pke
==⇒ CONFMAB , (3.2)

where K, E , and M are the key space, ciphertext space, and plaintext
space of Π. For readability, these superscripts are dropped in the rest of
this chapter.

In both cases, the single-use channel 1-AUTHBA captures the ability of
the sender to obtain the receiver’s public key in an authenticated fashion.
In construction (3.1), the communication from the sender A to the receiver
B is authenticated, which is modeled by the channel AUTHAB . The goal
is to achieve a secure channel SECAB , which only leaks the length of the
messages sent at interface A. In construction (3.2), the communication
from A to B is completely insecure, which is captured by the insecure
channel INSECAB . In this case, the goal is to achieve a confidential channel
CONFAB , which still hides messages input at the A-interface but also
allows to inject arbitrary messages (unrelated to those sent by A) at E.

In the following, Section 3.1.1 first explains how a PKE scheme Π
can be transformed into a converter pair pke = (enc, dec). Then, in Sec-
tion 3.1.2, it is shown that pke achieves construction (3.1) if the underlying
PKE scheme is CPA-secure, and Section 3.1.3 shows that construction (3.2)
is realized if the underlying PKE scheme is CCA-secure. Section 3.1.5 dis-
cusses how CCA security can be exploited to construct channels with replay
protection. Finally, Section 3.1.6 briefly discusses the applicability of the
channels constructed in this section.

3.1.1 PKE Schemes as Protocols

Let Π = (K,E,D) be a PKE scheme. Based on Π, a pair of protocol
converters pke = (enc, dec) for constructions (3.1) and (3.2) can be defined
as shown below. Both converters have two sub-interfaces in.1 and in.2 on
the inside, as they are connected to a resource that is a parallel composition
of two other resources (cf. Section 2.2).

1Consult Section 2.7 for the definitions of the channels.
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Converter enc works as follows: It initially expects a public key pk
at in.1. When a message m is input at the outside interface out, enc
outputs e← Epk(m) at in.2. Converter dec initially generates a key pair
(pk, sk) using key-generation algorithm K and outputs pk at in.1. When
dec receives e′ at in.2, it computes m′ ← Dsk(e

′) and, if m′ 6= ⊥, outputs
m′ at the outside interface out.

3.1.2 Secure Channel from Authenticated Channel

Towards proving that protocol pke indeed achieves construction (3.1), note
first that the correctness of Π implies that the availability condition of Def-
inition 2.1 is satisfied. To prove security, one needs to exhibit a simulator
σ such that the assumed resource [1-AUTHBA,AUTHAB ] with the protocol
converters is indistinguishable from the constructed resource SECAB with
the simulator (cf. Figure 3.1).

A B

E.1 E.2

1-AUTHBA

AUTHAB

enc dec A B

E.1 E.2

SECAB

σ

Figure 3.1: Left: The assumed resource (two authenticated channels)
with protocol converters enc and dec attached to interfaces A and B, de-
noted encAdecB [1-AUTHBA,AUTHAB ]. Right: The constructed resource
(a secure channel) with simulator σ attached to the E-interface, denoted
σESECAB. In particular, σ must simulate the E-interfaces of the two au-
thenticated channels. The protocol is secure if the two systems are indistin-
guishable.

Let 〈AUTHAB〉n and 〈SECAB〉n denote the authenticated resp. secure
channels processing only the first n messages at interface A. Theorem 3.1
implies that (enc, dec) realizes (3.1) if the underlying PKE scheme is CPA-
secure.

Theorem 3.1. There exists a simulator σ and for any n ∈ N there exists
a (efficient) reduction C such that for every D,

∆D(encAdecB [1-AUTHBA, 〈AUTHAB〉n], σE〈SECAB〉n)

≤ n ·∆DC(GCPA
0 ,GCPA

1 ).
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Proof. First, consider the following simulator σ for interface E of SECAB ,
which has two sub-interfaces denoted by out.1 and out.2 on the outside
(since the real-world system has two sub-interfaces at E): Initially, σ
generates a key pair (pk, sk) and outputs (msg, 1, pk) at out.1.2 When it
receives (msg, i, l) at the inside interface in, σ generates an encryption
e ← Epk(m1) of a randomly chosen message m1 of length l and outputs
(msg, i, e) at out.2. When (dlv, i′) is input at out.2, σ simply outputs
(dlv, i′) at in. Consider the two systems

encAdecB [1-AUTHBA, 〈AUTHAB〉1] and σE〈SECAB〉1.

Distinguishing GCPA
0 from GCPA

1 can be reduced to distinguishing these
two systems via the following reduction system C′, which connects to a
game on the inside and provides interfaces A, B, and E on the outside (cf.
Section 2.2 for details on reduction systems): Initially, C′ takes a value
pk from the game (on the inside) and outputs (msg, 1, pk) at the (outside)
E.1-interface. When a message m is input at the A-interface of C′, it is
passed as (chall,m) to the game. The resulting challenge e is output as
(msg, 1, e) at the E.2-interface. When (dlv, 1) is input at the E.2-interface,
C′ outputs m at interface B. By inspection, one verifies that

C′GCPA
0 ≡ encAdecB [1-AUTHBA, 〈AUTHAB〉1]

and
C′GCPA

1 ≡ σE〈SECAB〉1,

and thus

∆D(encAdecB [1-AUTHBA, 〈AUTHAB〉n], σE〈SECAB〉n)

≤ n ·∆DC′′
(encAdecB [1-AUTHBA, 〈AUTHAB〉1], σE〈SECAB〉1)

= n ·∆DC′′
(C′GCPA

0 ,C′GCPA
1 )

= n ·∆DC(GCPA
0 ,GCPA

1 ),

where C := C′′C′ and the first inequality follows from Lemma 3.3, which
is a standard hybrid argument, for a reduction system C′′.

3.1.3 Confidential Channel from Insecure Channel

To prove that protocol pke achieves construction (3.2), one needs to exhibit
a simulator σ such that the assumed resource [1-AUTHBA, INSECAB ] with

2For simplicity, it is assumed that the public key is always delivered, i.e., that (dlv,)
is input at interface E of 1-AUTHBA.
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the protocol converters is indistinguishable from the constructed resource
CONFAB with the simulator.

Let 〈INSECAB〉n and 〈CONFAB〉n denote the insecure resp. confidential
channels processing only the first n messages at interface A. Theorem 3.2
implies that (enc, dec) realizes (3.2) if the underlying PKE scheme is CCA-
secure.

Theorem 3.2. There exists a simulator σ and for any n ∈ N there exists
a (efficient) reduction C such that for every D,

∆D(encAdecB [1-AUTHBA, 〈INSECAB〉n], σE〈CONFAB〉n)

≤ n ·∆DC(GCCA
0 ,GCCA

1 ).

Note that the confidential channel CONFAB is the best channel one can
construct from the two assumed channels. As the E-interface has the
same capabilities as the A-interface at both the authenticated (from B
to A) and the insecure channels, it will necessarily also be possible to
inject messages to the receiver via the E-interface by simply applying the
sender’s protocol converter.

Proof. First, consider the following simulator σ for interface E of CONFAB ,
which again has two outside sub-interfaces out.1 and out.2: Initially, it
generates a key pair (pk, sk) and outputs (msg, 1, pk) at out.1. When it
receives (msg, i, l) at the inside interface in, it generates an encryption
e← Epk(m1) of a randomly chosen message m1 of length l, outputs (i, e)
at out.2, and records (c, i). When (inj, e′) is input at out.2, σ proceeds as
follows: If (e′, i′) has been recorded for some i′, it outputs (dlv, i′) at in.
Otherwise, it computes e′ ← Dsk(e

′) and, if m′ 6= ⊥, outputs (inj,m′) at
in.

Consider now the problem of distinguishing the two systems

U := encAdecB [1-AUTHBA, 〈INSECAB〉1] and V := σE〈CONFAB〉1,

which are depicted in Figure 3.2.
A distinguisher D connected to the real-world system U initially sees

a public key at interface E.1. If D inputs a message m at interface A,
an encryption of m (created by enc) is output at interface E.2. When D
inputs a ciphertext e′ at E, it sees the decryption of e′ (by dec) at B. The
ideal-world system V behaves differently: Initially, D also sees a public
key at E.1. But when it inputs a message m at A, an encryption e of
a randomly chosen message is output at interface E.2 (by simulator σ).
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←−•

〈INSECAB〉1

enc dec

pk

m

e e′

m′

〈CONFAB〉1

σ

pk

m

e e′

m′

Figure 3.2: The systems U and V with the “message flow” from the per-
spective of a distinguisher: Initially, a public-key pk is output at interface E.
Inputting a message m at interface A causes a ciphertext e to be output at
the E-interface. Note that e is the challenge in the CCA-game. Inputting
a ciphertext e′ at interface E results in a message m′ being output at B.
This corresponds to the decryption oracle in the CCA-game.

When e is input at interface E.2, m is output at B (as σ issues a (dlv, ·)-
instruction to the channel). When e′ 6= e is input at E.2, the decryption
of e′ (injected by σ) is output at B.

The translation between the channel setting and the game setting is
achieved by the following reduction system C′: Initially, C′ takes a value
pk from the game (on the inside) and outputs it as (msg, 1, pk) at the
(outside) E.1-interface. When a message m is input at interface A of C′,
(chall,m) is output to the game. The resulting challenge e is output as
(msg, 1, e) at interface E.2. When (inj, e) is input at interface E.2, C′

outputs m at interface B. When (inj, e′) with e′ 6= e is input at interface
E.2, C′ passes (dec, e′) to the game’s decryption oracle and outputs the
answer m′ at interface B, provided m′ 6= ⊥.

By inspection, one verifies that

C′GCCA
0 ≡ encAdecB [1-AUTHBA, 〈INSECAB〉1]

and
C′GCCA

1 ≡ σE〈CONFAB〉1,

and thus

∆D(encAdecB [1-AUTHBA, 〈INSECAB〉n], σE〈CONFAB〉n)

≤ n ·∆DC′′
(encAdecB [1-AUTHBA, 〈INSECAB〉1], σE〈CONFAB〉1)

= n ·∆DC′′
(C′GCCA

0 ,C′GCCA
1 )

= n ·∆DC(GCCA
0 ,GCCA

1 ),
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where C := C′′C′ and the first inequality follows from Lemma 3.4, which
is a standard hybrid argument, for a reduction system C′′.

3.1.4 Multi-Message Security

Let (enc, dec) be a protocol constructed from a PKE scheme as shown in
Section 3.1.1.

Lemma 3.3. For every n ∈ N there exists a (efficient) reduction C′′ such
that

∆D(encAdecB [1-AUTHBA, 〈AUTHAB〉n], σE〈SECAB〉n)

≤ n ·∆DC′′
(encAdecB [1-AUTHBA, 〈AUTHAB〉1], σE〈SECAB〉1),

where σ is the simulator from Theorem 3.1.

Proof. Omitted (as similar to the proof of Lemma 3.4).

Lemma 3.4. For every n ∈ N there exists a (efficient) reduction C′′ such
that

∆D(encAdecB [1-AUTHBA, 〈INSECAB〉n], σE〈CONFAB〉n)

≤ n ·∆DC′′
(encAdecB [1-AUTHBA, 〈INSECAB〉1], σE〈CONFAB〉1),

where σ is the simulator from Theorem 3.2.

Proof. Let D be an arbitrary distinguisher. For i = 1, . . . , n, consider the
following reduction system C′′i (which processes at most n inputs at the
outside A interface): Initially, C′′i forwards a public key pk from the inside
E.1-interface to the outside E.1-interface. When the jth message m0 is
input at the outside A-interface, if j < i, C′′i randomly chooses a random
message m1 of length |m0| and computes e← Epk(m1), if j = i, it outputs
m0 at the inside A-interface and obtains e at the inside E.2-interface, and
if j > i it computes e ← Epk(m0). In all cases, it outputs (msg, j, e) at
the outside E.2-interface and records (e,m). When (inj, e′) is input at
the outside E.2-interface, if (e′,m′) has been recorded for some m′, m′
is output at the outside B-interface, and otherwise (inj, e′) is output at
the inside E.2-interface and the subsequently received message m′ at the
inside B-interface is output at the outside B-interface. Note that

C′′1

(
encAdecB [1-AUTHBA, 〈INSECAB〉1]

)
≡ encAdecB [1-AUTHBA, 〈INSECAB〉n]
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and

C′′n

(
encAdecB [1-AUTHBA, 〈INSECAB〉1]

)
≡ σE〈CONFAB〉n.

Moreover, for i = 1, . . . , n− 1, we have

C′′i−1

(
σE〈CONFAB〉1

)
≡ C′′i

(
encAdecB [1-AUTHBA, 〈INSECAB〉1]

)
.

Thus for the reduction C′′ that chooses i uniformly at random from
{1, . . . , n} and then implements C′′i ,

∆DC′′
(encAdecB [1-AUTHBA, 〈INSECAB〉1], σE〈CONFAB〉1)

=
1

n
∆D(encAdecB [1-AUTHBA, 〈INSECAB〉n], σE〈CONFAB〉n).

3.1.5 Replay-Protected Channels from CCA-Security

As discussed later in Section 3.2.2, CCA-security is overly strict in that only
the weaker RCCA-security is necessary to achieve construction (3.2). In
fact, using a CCA-secure PKE scheme one can construct a replay-protected
confidential channel, which works as CONFAB with the exception that for
any index i′, the query (dlv, i′) is processed at most once. The correspond-
ing protocol converters (enc′, dec′) are built as (enc, dec) in Section 3.1.1,
except that dec′ processes every ciphertext received at in.2 only once.
Similarly, the corresponding simulator σ′ also processes every ciphertext
received at out.2 only once.3

3.1.6 Applicability of the Constructed Channels

The plain use of PKE yields constructions (3.1) and (3.2), i.e., one obtains
the resources SECAB and CONFAB . Both channels allow the adversary to
reorder or replay the messages sent by A. In practice, where PKE is often
used to encapsulate symmetric keys, it is important, however, that keys
used in various protocols by different users be independent. Thus, it is
more useful to obtain independent single-use channels

[1-SECAB , . . . , 1-SECAB ] and [1-CONFAB , . . . , 1-CONFAB ]

3Note that, in fact, an SD-RCCA-secure PKE scheme suffices (cf. [CKN03] for more
details). In this case, dec′ and σ′ process only one ciphertext per equivalence class.
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instead of SECAB and CONFAB , respectively.
In the authenticated setting, given independent authenticated chan-

nels, protocol (enc, dec) (with only formal modifications) achieves the con-
struction

[1-AUTHAB , . . . , 1-AUTHAB ]
(enc,dec)
==⇒ [1-SECAB , . . . , 1-SECAB ].

In the unauthenticated setting, however, the analogous construction

[1-INSECAB , . . . , 1-INSECAB ]
(enc,dec)
==⇒ [1-CONFAB , . . . , 1-CONFAB ]

is not achieved by (enc, dec) since, due to the absence of authenticity, the
adversary can freely take a ciphertext it observes on any of the insecure
channels 1-INSECAB and insert it into another one. Thus, the ideal re-
source cannot consist of independent channels. This issue can be taken
care of by (explicitly) introducing session identifiers (SIDs). A system-
atic treatment of SIDs and handling multiple sessions and senders can be
found in [MTC13].

3.2 Constructive Semantics of Game-Based Notions

In this section, several game-based security notions are analyzed from a
constructive viewpoint. The analysis of CPA-security from Section 3.1.2 is
completed in Section 3.2.1 by showing that it is also necessary to achieve
construction (3.1). Moreover, as shown in Section 3.2.2, the notion of CCA
is unnecessarily strict for construction (3.2), which in fact only requires
the weaker notion of RCCA introduced in [CKN03].

Bellare et al. [BHK09] compare several variants of defining CCA-security.
As pointed out in Section 3.2.4 below, only the stricter notions they con-
sider are sufficient for construction (3.2). Finally, Section 3.2.5 gives con-
structive semantics to the notion of IND-CCA1.4

3.2.1 Necessity of CPA Security

As proved in Section 3.1.2, indistinguishability under chosen-plaintext at-
tacks, IND-CPA-security, suffices to construct a secure channel from two
authenticated channels. It turns out that it is also necessary. That is,
if protocol pke = (enc, dec), based on a PKE scheme Π as shown in Sec-
tion 3.1.1, achieves the construction, then Π must be CPA-secure.

4A similar treatment is provided for non-malleability in Section 4.3.
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In the following, let

U := encAdecB [1-AUTHBA,AUTHAB ] and V := σESECAB ,

where σ is an arbitrary simulator.

Theorem 3.5. There exist (efficient) reductions C0 and C1 such that for
all adversaries A,

∆A(GCPA
0 ,GCPA

1 ) ≤ ∆AC0(U,V) + ∆AC1(U,V).

Proof. Consider the following reduction systemsC0 andC1, both connect-
ing to an {A,B,E}-resource on the inside and providing a single interface
on the outside (for the adversary): Initially, both obtain (msg, 1, pk) at
the inside E.1-interface and output pk at the outside interface. When
(chall,m0) is received on the outside, C0 outputs m0 at the inside A-
interface and C1 a randomly chosen message m1 of length |m0|. Subse-
quently, (msg, 1, e) is received at the inside E.2-interface, and e is output
(as the challenge) on the outside by both systems. It holds that

C0U ≡ GCPA
0 and C1U ≡ GCPA

1 and C0V ≡ C1V,

where the last equivalence follows from the fact that, in V, the input
from SECAB to σ is the same in both systems (the length of the message
input at the A-interface of SECAB), and therefore they behave identically.
Hence,

∆A(GCPA
0 ,GCPA

1 ) = ∆A(C0U,C1U)

≤ ∆A(C0U,C0V) + ∆A(C0V,C1V) + ∆A(C1V,C1U)

= ∆AC0(U,V) + ∆AC1(U,V).

3.2.2 Necessity of Replayable CCA Security

Indistinguishability under chosen-ciphertext attacks, CCA-security, suf-
fices to construct a confidential channel from an authenticated and an
insecure one (cf. Section 3.1.3). It is, however, unnecessarily strict, as can
be seen from the following example, adapted from [CKN03]: Let Π be a
PKE scheme and assume it is CCA-secure. Consider a modified scheme
Π′ that works exactly as Π, except that a 0-bit is appended to every en-
cryption, which is ignored during decryption. It is easily seen that Π′ is
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not CCA-secure, since the adversary can obtain a decryption of the chal-
lenge ciphertext by flipping its last bit and submitting the result to the
decryption oracle. PKE scheme Π′ can, however, still be used to achieve
construction (3.2) using a simulator that also issues the (dlv, ·)-instruction
to CONFAB when flipping the last bit of a ciphertext received at the out-
side interface results in a recorded ciphertext (but otherwise works like σ
from Theorem 3.2).

Canetti et al. [CKN03] introduced the notion of replayable chosen ci-
phertext security, RCCA, which is more permissive in that it allows the
adversary to transform a ciphertext into one that decrypts to the same
message. As shown below if protocol (enc, dec), based on a PKE scheme
Π as defined in Section 3.1.1, achieves construction (3.2), then Π must be
RCCA-secure. Note that RCCA is also sufficient for the construction if the
message space of Π is sufficiently large (cf. Section 3.2.3).

In the following, let

U := encAdecB [1-AUTHBA, INSECAB ] and V := σECONFAB ,

where σ is an arbitrary simulator.

Theorem 3.6. There exist (efficient) reductions C0 and C1 such that for
all adversaries A,

∆A(GRCCA
0 ,GRCCA

1 ) ≤ ∆AC0(U,V) + ∆AC1(U,V).

Proof. Consider the following reductions C0 and C1. Again, both connect
to an {A,B,E}-resource on the inside and provide a single interface on
the outside: Initially, both obtain (msg, 1, pk) at the inside E.1-interface
and output pk at the outside interface. When (chall,m0) is received on
the outside, both systems choose a random message m1. C0 outputs m0

at the inside A-interface and C1 outputs m1. Subsequently, (msg, 1, e) is
received at the inside E-interface, and c is output on the outside by both
systems. When a decryption query (dec, e′) is received on the outside,
both systems output (inj, e′) at the inside E.2-interface. A subsequently
received message m′ at B is output on the outside by both systems (as
answer to the decryption query) unless m′ ∈ {m0,m1}, in which case test
is returned. It holds that

C0U ≡ GRCCA
0 and C1U ≡ GRCCA

1 and C0V ≡ C1V,

where the last equivalence follows from the fact that, in V, the input from
SECAB to σ is the same in both systems (the length of the message input
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at the A-interface of SECAB) and that decryption queries causing m0 or
m1 to be output at the B-interface are answered by test. Hence,

∆A(GRCCA
0 ,GRCCA

1 ) = ∆A(C0U,C1U)

≤ ∆A(C0U,C0V) + ∆A(C0V,C1V)

+ ∆A(C1V,C1U)

= ∆AC0(U,V) + ∆AC1(U,V).

3.2.3 Sufficiency of Replayable CCA Security

To settle the question of equivalence between transformation (3.2) and
RCCA-security, it remains to see whether RCCA-security suffices to achieve
(3.2). It turns out that this is the case if the message space M of the
underlying PKE is large. For simplicity, it is assumed that all messages
inM have equal length.

Theorem 3.7. There exist a simulator σ and for any n ∈ N there exists
a (efficient) reduction C such that for every D,

∆D(encAdecB [1-AUTHBA, 〈INSECAB〉n], σE〈CONFAB〉n)

≤ n ·∆DC(GRCCA
0 ,GRCCA

1 ) +
n2

|M|
(3.3)

Proof (sketch). One first shows that

∆D(encAdecB [1-AUTHBA, 〈INSECAB〉1], σE〈CONFAB〉1)

≤ ∆DC(GRCCA
0 ,GRCCA

1 ) +
n

|M|
. (3.4)

The proof can be generalized using a standard hybrid argument.
Consider the following simulator σ (with two outside sub-interfaces

out.1 and out.2): Initially, σ generates a key pair (pk, sk) and outputs
(msg, 1, pk) at out.1. When it receives (msg, i, l) at the inside interface
in, it generates an encryption e← Epk(m1) of a randomly chosen message
m1 (of length l), outputs (msg, i, e) at out.2, and records (m, i). When
(inj, e′) is input at out.2, σ proceeds as follows: It computes m′ ← Dsk(c

′).
If (m′, i′) has been recorded for some i′, it outputs (dlv, i′) at its inside
interface. Otherwise, if m′ 6= ⊥, it outputs (inj,m′) at the inside interface.
Set

U := encAdecB [1-AUTHBA, 〈INSECAB〉1]
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and

V := σE〈CONFAB〉1.

The translation between the game and the channel setting is done by
the reduction C. Initially, C takes pk from the game and outputs it at
the E-interface. When a message m is input at interface A of C, it is
forwarded to the game. The resulting challenge e is output as (msg, 1, c)
at interface E. When (inj, e′) with e′ 6= e is input at interface E, C passes
e′ to the game’s decryption oracle. If the answer is test, it outputs m at
interface B. If the answer is a message m′ 6= ⊥, it is output at B. Clearly,

CGRCCA
1 ≡ V.

Moreover, for any D, ∆D(CGRCCA
0 ,U) ≤ n/|M|, since the two systems

behave identically until D inputs (inj, e′) for an e′ that decrypts to m1

(chosen by GRCCA
0 ) at the E-interface. Therefore,

∆D(U,V) ≤ ∆D(U,CGRCCA
0 ) + ∆D(CGRCCA

0 ,CGRCCA
1 )

≤ n

|M|
+ ∆DC(GRCCA

0 ,GRCCA
1 ),

and the claim follows.

3.2.4 Variants of CCA Security

Bellare et al. [BHK09] analyze several ways of enforcing the condition
that the adversary must not query the challenge ciphertext e to the de-
cryption oracle. They consider modifications along two axes: First, the
condition can be enforced during the entire game (b for both phases) or
only in the second phase (s for second phase), i.e., after e has been given
to the adversary. Second, one can either exclude adversaries with a non-
zero probability of violating the condition from consideration (e for ex-
clusion) or penalize an adversary (by declaring the game lost) whenever
he asks the challenge e (p for penalty). The combination of these choices
yields four non-equivalent notions IND-CCA-sp, IND-CCA-se, IND-CCA-bp,
IND-CCA-be. The s-notions are equivalent to each other and to the for-
mulation of CCA-security in this work (cf. Section 2.8). The e-notions
are strictly weaker and do in fact not even imply CCA1-security [BHK09].
Since CCA1-security is weaker than RCCA-security and RCCA is needed
for construction (3.2), they are not sufficient for (3.2).
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3.2.5 CCA1 Security

The notion of IND-CCA1-security is defined via a corresponding game
GCCA1, which works as GCCA except that no decryption queries are an-
swered once the adversary has been given the challenge ciphertext. The
most natural way to translate this into a constructive statement is to con-
sider the construction of a (type of) confidential channel CONF-STOPAB
where the adversary can inject messages at interface E only as long as no
message has been input at A from an insecure channel INSEC-STOPAB
with the same property.

Let 〈INSEC-STOPAB〉n and 〈CONF-STOPAB〉n denote the insecure
resp. confidential channels processing only the first n messages at inter-
face A. Theorem 3.8, whose proof is omitted since it is very similar to the
proof of Theorem 3.2, implies that protocol pke = (enc, dec) built from a
CCA1-secure PKE scheme Π as in Section 3.1.1 achieves

[1-AUTHBA, INSEC-STOPAB ]
pke

==⇒ CONF-STOPAB . (3.5)

Theorem 3.8. There exists a simulator σ and for any n ∈ N there exists
a (efficient) reduction C such that for every D,

∆D(encAdecB [1-AUTHBA, 〈INSEC-STOPAB〉n], σE〈CONF-STOPAB〉n)

≤ n ·∆DC(GCCA1
0 ,GCCA1

1 ).

Although this construction seems somewhat artificial, it can be used in
any setting where the assumed channel is an appropriate modeling of an
available physical channel (or can itself be constructed from such a chan-
nel).

3.3 Capturing Settings with Multiple Senders

Although in this work the security definitions for public-key encryption are
phrased in a setting where there is only one legitimate sender (at the A-
interface), the treatment captures the setting with multiple senders. What
is needed to formalize this more general case explicitly is a lifting of the
setting with interfaces A, B, and E into the multi-party setting with many
senders. In the case where all senders in the multi-sender setting faithfully
follow the protocol, this lifting simply relates all those sender interfaces to
the single sender interface in the setting with three interfaces.

In a scenario with multiple senders, it is important to formulate the
guarantees that are maintained if one or more of the senders deviate from
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the protocol because their machines are controlled by some attacker. This
is captured in most security frameworks by considering an external ad-
versary that has the capability of corrupting some of the parties. In the
context of PKE and secure communication, the goal is to still provide
confidentiality guarantees to non-corrupted senders. (If the receiver is
corrupted, then no security can be guaranteed.)

The ability of an attacker to act on behalf of corrupted senders means
that it can directly send (potentially bogus) ciphertexts to the receiver,
even if the communication to the receiver is authenticated. This capabil-
ity corresponds exactly to the case of assuming only an unauthenticated
channel, where the messages are injected via the E-interface. Hence, our
treatment extends to the case of (static) sender corruption by consider-
ing the lifting that relates the interfaces of the senders in the multi-party
scenario to the A-interface in the three-party setting, and provides the
capabilities of the statically corrupted parties also at the E-interface. The
lifting mappings described above are generic for constructive cryptography
and not specific to public-key encryption, and hence formalizing them is
not in the scope of the current paper.

In summary, the security of public-key encryption in the presence of
potentially (statically) corrupted senders corresponds exactly to the con-
struction of a confidential channel CONFAB from one insecure channel
INSECAB and one authenticated channel 1-AUTHBA in the opposite di-
rection, as discussed in Section 3.1.3. This implies that in the presence of
(static) corruption, IND-RCCA security is required and sufficient both in
the case where the channel from the sender to the receiver is authenticated
and also where it is not authenticated.

3.4 Idealized Algorithms vs. Resources

The security guarantees that one requires from a cryptographic scheme can
be modeled in fundamentally different ways, even within a single formal
security framework. One approach, which underlies the public-key en-
cryption functionality Fpke in [CKN03], is to idealize the properties of the
algorithms that comprise the scheme. Such a functionality corresponds to
a cryptographic scheme, and its interfaces closely resemble the interfaces
of the algorithms (although, e.g., the private key is never output by Fpke).
In such a treatment, elements that are essential for using the scheme, such
as the ciphertext or the public key, will still appear in the functionality,
but they are idealized in that, e.g., the ciphertext is independent of the
corresponding plaintext; the idealized scheme is unbreakable by definition.
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Another—fundamentally different—approach is to explicitly model re-
sources that are available to one or more parties. The communication
channels described in Section 2.7 can be considered network resources;
there are also functionalities in the UC framework, such as Fauth or Fsc
in [CK02], that can be interpreted in this way. More generally, one can
also think of randomness, memory, or even computation as resources of
this type. Following the constructive paradigm, the guarantees of a cryp-
tographic scheme are not a resource, but modeled as the guarantee that
the scheme transforms one (assumed) resource into another (constructed)
resource.5 Compared to ideal functionalities of the above type, the de-
scription of resources tends to be simpler and easier to understand. For
example, in the case of public-key encryption, the confidential channel
does not need to specify implementation artifacts such as ciphertexts or
public keys.

While both approaches allow to divide the security proof of a composite
protocol into several separate steps that can be proven independently, only
the second approach enables a fully modular protocol design. Each sub-
protocol achieves a well-defined construction step transforming a resource
R into a resource S, which abstracts from how S is achieved. A higher-level
protocol can thus use such a resource S independently of how it is obtained,
and the construction of S can be replaced with a different one without
affecting the design or proof of the higher-level protocol. Concretely, a
protocol using the resource CONFAB does not depend on whether or not
the channel is constructed by a public-key encryption scheme, whereas a
protocol using the functionality Fpke will always be specific to this step.

5By contrast, a typical UC security statement is that a cryptographic scheme im-
plements some functionality. While statements about hybrid protocols in UC appear
similar to constructive statements, they are less expressive since, e.g., the UC framework
technically does not allow to make statements about assuming only bounded resources,
as protocols that use hybrid functionalities can always instantiate arbitrarily many
functionalities of a given type.



Chapter 4

Self-Destruct Attacks

The strongest security level for public-key encryption (PKE) is indistin-
guishability under chosen-ciphertext attacks IND-CCA, where the adver-
sary is given unrestricted adaptive access to a decryption oracle (modulo
not being able to ask the “challenge ciphertext”); this notion is sufficient
for most natural applications of PKE.

Despite numerous efforts, it remains unknown whether IND-CCA-secure
PKE schemes can be generically built from IND-CPA-secure PKE. This
motivates the study of various “middle-ground” security notions between
IND-CPA and IND-CCA, which are sufficient for applications, and, yet, can
be constructed from the more basic IND-CPA security notion. The study
of domain extension for PKE via non-malleable codes (cf. Chapter 5) lead
to the discovery of two such security notions:

• Indistinguishability under self-destruct attacks (IND-SDA): the at-
tacker gets access to an (adaptive) decryption oracle that only an-
swers decryption queries up to the first invalid ciphertext submitted.

• Non-malleability under self-destruct attacks (NM-SDA): The attacker
gets to adaptively ask many “parallel” decryption queries (i.e., a
query consists of many ciphertexts) up to the point when the first
invalid ciphertext is submitted. In such a case, the whole parallel
decryption query containing the invalid ciphertext is still answered
in full, but no future decryption queries are allowed.

The notion of IND-SDA turns up when combining single-bit PKE with non-
malleable codes, and NM-SDA is a natural generalization of both IND-SDA
and the standard notion NM-CPA, which can be seen as security against
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IND-CCA

NM-SDA

NM-CPA IND-SDA

IND-CPA

Figure 4.1: Diagram of the relationships between the new security notions
considered in this chapter. X → Y means that X implies Y ; X 9 Y
indicates a separation between X and Y . Notions with the same shades are
equivalent under black-box transformations; notions with different shades
are not known to be equivalent.

an attacker that asks but a single parallel decryption query. Section 4.1
contains the definitions of all three notions.

As shown in Section 4.2, IND-SDA and NM-CPA are incomparable no-
tions in that there are schemes that satisfy the former but not the latter
and vice versa. Hence, NM-SDA, being a generalization of both IND-SDA
and NM-CPA, is strictly stronger than either notion (cf. Figure 4.1).

Section 4.3 provides constructive semantics for the new notions (in the
spirit of Section 3.2).

Finally, Section 4.4 shows how to generically transform a IND-CPA-
secure PKE scheme into a NM-SDA-secure one.

4.1 Definitions of the New Notions

The new self-destruct-attack notions are formalized using the distinguish-
ing game Gpke-sda

q,p,b , depicted in Figure 4.2: The distinguisher (adversary) is
initially given a public key and then specifies a message m0. This message
or a random messagem1 of the same length is encrypted and the adversary
is given the resulting challenge ciphertext. During the entire game, the
distinguisher has access to a decryption oracle that allows him to make at
most q decryption queries, each consisting of at most p ciphertexts. Once
the distinguisher specifies an invalid ciphertext, the decryption oracle self-
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Distinguishing Game Gpke-sda
q,p,b

init
ctr← 0
(pk, sk)← K
output pk

on (chall,m0)
m1 ←M s.t. |m0| = |m1|
e← Epk(mb)
output e

on (dec, e(1), . . . , e(p))
ctr← ctr + 1
for j ← 1 to p

if valid(e(j))
m(j) ← Dsk(e

(j))
else

m(j) ← test

output (m(1), . . . ,m(p))

if ∃j : m(j) = ⊥ or ctr ≥ q
self-destruct

Figure 4.2: Distinguishing game used to define the self-destruct-attack
security notions for PKE schemes Π = (K,E,D). The numbers q, p ∈ N
specify the maximum number of decryption queries and their size, respec-
tively. The command self-destruct results in all future decryption queries
being ignored.

destructs, i.e., no additional decryption queries are answered.
Define valid(e′) = 1 for all e′ before the challenge is output and change

to valid(e) = 0 after the challenge e is output.
Depending on the values of q and p, one obtains the three notions

NM-CPA, IND-SDA, and NM-SDA:

• Non-malleability (NM-CPA): The adversary can make a single de-
cryption query consisting of arbitrarily many ciphertexts, i.e., q = 1
and p arbitrary (denoted by p = ∗). For readability, set GNM-CPA

b :=

Gpke-sda
1,∗,b for b ∈ {0, 1}.1

• Indistinguishability under self-destruct attacks (IND-SDA): The ad-
versary can make arbitrarily many decryption queries, but each may
consist of a single ciphertext only, i.e., q arbitrary (denoted by q = ∗)
and p = 1. For readability, set GIND-SDA

b := Gpke-sda
∗,1,b for b ∈ {0, 1}.

• Non-malleability under self-destruct attacks (NM-SDA): The adver-
sary can make arbitrarily many decryption queries, each consisting
of arbitrarily many ciphertexts, i.e., q and p arbitrary (denoted by
q = p = ∗). For readability, set GNM-SDA

b := Gpke-sda
∗,∗,b for b ∈ {0, 1}.

1Note that the way NM-CPA is defined here is slightly stronger than the normal
notion. This is due to the adversary’s ability to ask a parallel decryption query at any
time—as opposed to only after receiving the challenge ciphertext in earlier definitions
(cf., e.g., [PSV06]).
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Definition 4.1. Let SN ∈ {NM-CPA, IND-SDA,NM-SDA}, t ∈ N and
ε ≥ 0. A PKE scheme Π = (K,E,D) is (t, ε)-SN-secure if

∆D(GSN
0 ,GSN

1 ) ≤ ε

for all distinguishers D running in time at most t.

Remark. Note that one or both of the parameters q, p ∈ N are some-
times made explicit, resulting in the definition of, e.g., a (t, q, p, ε)-NM-SDA-
secure scheme. Correspondingly, one considers, e.g., the game GΠ,NM-SDA

q,p,b

(making the PKE Π in consideration explicit as well).

4.2 Separating IND-SDA and NM-CPA

The notions of NM-CPA and IND-SDA security are incomparable, as shown
in this section. That is, there are schemes that are NM-CPA-secure but
not IND-SDA-secure and vice versa.

4.2.1 NM-CPA Does Not Imply IND-SDA

The modified scheme. Let λ be the security parameter and Π =
(K,E,D) be a NM-CPA-secure PKE scheme with message space M =
{0, 1}λ. Consider the following modification Π′ = (K ′, E′, D′) of Π (cf.
Figure 4.3):

• The key generation algorithm K ′ works as K but additionally sam-
ples a uniformly random message ρ ← M, which becomes part of
the secret key.

• The encryption algorithm E′ works as E except that it prepends a
zero-bit to all ciphertexts.

• The decryption algorithm D′ proceeds as follows upon receiving a
ciphertext e′ = β‖e: If β = 1, it outputs ρ. If β = 0, it decrypts
m← Dsk(e). If m = ρ, the decryption algorithm outputs the secret
key, and otherwise m.

Security of the modified scheme. PKE scheme Π′ clearly is not
IND-SDA-secure: A distinguisher simply queries 1‖Epk(m) for some mes-
sage m to obtain message ρ. By subsequently querying 0‖Epk(ρ), the
distinguisher obtains the secret key.
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PKE Scheme Π′ = (K′, E′, D′)

Key Generation K ′
(pk, sk)← K
ρ←M
pk′ ← pk
sk′ ← (ρ, sk)
return (pk′, sk′)

Encryption E′pk′(m)

e← Epk(m)
e′ ← 0 ‖ e
return e′

Decryption D′sk′(e
′)

β ‖ e← e′

m← Dsk(e)
if β = 1

return ρ
else

if m = ρ
return sk

else
return m

Figure 4.3: PKE scheme Π′ based on an NM-CPA-secure PKE scheme Π.

The modified scheme is, however, still NM-CPA-secure as implied by
the following lemma:

Lemma 4.1. For all p ∈ N, there exists a reduction C such that for all
distinguishers D,

∆D(GΠ′,NM-CPA
1,p,0 ,GΠ′,NM-CPA

1,p,1 ) ≤ ∆DC(GΠ,NM-CPA
1,p,0 ,GΠ,NM-CPA

1,p,1 ) + 2 · p2−λ.

Proof. Reduction C works as follows: Initially, it chooses ρ ← M uni-
formly at random and forwards the public key received on the inside to
the outside. Upon receiving (chall,m0) on the outside, C forwards it to
the inside, which results in a ciphertext e∗ being received on the inside.
The value 0‖e∗ is then output by C on the outside.

Moreover, C answers each component e′ of the parallel decryption
query received at the outside as follows: It first parses e′ as β‖e. Then, if
β = 1, the answer to the query is ρ. Otherwise, C uses its own decryption
oracle on the inside to decrypt e and answers the query by the answer m.2

It is easily seen that for b ∈ {0, 1},

GΠ′,NM-CPA
1,p,b and CGΠ,NM-CPA

1,p,b

differ only if D asks a ciphertext that decrypts to ρ. This event occurs
with probability p · |M| = p · 2−λ. The lemma now follows using a simple
triangle inequality.

2Of course, C actually asks a single parallel query with the ciphertexts e for all
components.
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PKE Scheme Π′′ = (K′′, E′′, D′′)

Key Generation K ′′
(pk′′, sk′′)← K
return (pk′′, sk′′)

Encryption E′′pk′′(m)

c← Enc(m)
e← Epk(c)
e′′ ← 0 ‖ 0 ‖ 0ν ‖ e
return e′′

Decryption D′′sk′′(e
′′)

β ‖ d ‖ i ‖ e← e′′

c← Dsk(e)
m← Dec(c)
if β1 = 0

if (β2 = 0) ∧ (i = 0ν)
return m

else
return ⊥

else
if (c[i] = d)

return 0k

else
return ⊥

Figure 4.4: PKE scheme Π′′ based on an IND-SDA-secure PKE scheme Π.

4.2.2 IND-SDA Does Not Imply NM-CPA

The modified scheme. Let λ be the security parameter and Π =
(K,E,D) be a IND-SDA-secure PKE scheme with message space M =
{0, 1}λ. Moreover, let (Enc,Dec) be a (k, λ)-coding scheme with τλ-
secrecy (as defined for LEDSS in Section 2.9) for some constant τ > 0
and some k > 0. Consider the following modification Π′′ = (K ′′, E′′, D′′)
of Π (cf. Figure 4.4):

• The key generation algorithm K ′′ is the same as K.

• The encryption algorithm E′′ works as follows: To encrypt a message
m ∈ {0, 1}k, it computes c ← Enc(m) and e ← Epk(c) and outputs
e′′ ← 0‖0‖0ν‖e, where ν := dlog λe.

• The decryption algorithm D′′ proceeds as follows upon receiving a
ciphertext e′′ = β‖d‖i‖e: If β = 0, d = 0, and i = 0ν , it decrypts
c ← Dsk(e), computes m ← Dec(c), and outputs m. If β = 1 and
c[i] = d (i.e., if d is a correct guess for the ith bit of the encoding),
D′′ outputs 0k. In all other cases, it outputs ⊥.3

3Note that in general, not all ν-bit strings i are valid indices. If the decryption
algorithm encounters an invalid index, it also outputs ⊥. For readability this issue is
ignored in the remainder of this section.
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Security of the modified scheme. PKE scheme Π′′ is not NM-CPA-
secure: A distinguisher can recover each bit i ∈ [n] of the encoding c∗
encrypted in the challenge ciphertext 0‖0‖0ν‖e∗ by via a single parallel
query containing ciphertexts

e(i) := 1 ‖ 0 ‖ i ‖ e∗.

If the answer to the ith query is 0k, then c∗[i] = 0; otherwise c∗[i] = 1.
Computing Dec(c∗) yields the plaintext encrypted by the challenge.

The modified scheme is, however, still IND-SDA-secure as implied by
the following lemma:

Lemma 4.2. For all q ∈ N, there exist reductions C0 and C1 such that
for all distinguishers D,

∆D(GΠ′′,IND-SDA
0 ,GΠ′′,IND-SDA

1 )

≤ ∆DC0(GΠ,IND-SDA
0 ,GΠ,IND-SDA

1 ) + ∆DC1(GΠ,IND-SDA
0 ,GΠ,IND-SDA

1 )

+ 2−τλ.

Proof. Let b ∈ {0, 1} and consider the hybrid system Hb that works ex-
actly as GΠ,IND-SDA

b except that

• the ciphertext e∗ in the challenge ciphertext 0‖0‖0ν‖e∗ is computed
as the encryption of a random λ-bit string (instead of an encoding
of mb), and

• decryption queries of the form 1‖d‖i‖e∗ are answered based on an
internally generated encoding cb = Enc(mb), i.e., the answer is 0k if
cb[i] = d and ⊥ otherwise.

Let Cb be the following reduction: Initially, it obtains a public key pk
at the inside interface, which it forwards to the outside interface. When
(chall,m0) is received on the outside, the reduction chooses a random mes-
sage m1 and computes cb ← Enc(mb) and outputs (chall, cb) on the inside.
Subsequently, it obtains a ciphertext e∗ and outputs 0‖0‖0ν‖e∗ on the
outside. Cb answers decryption queries β‖d‖i‖e as follows (implementing
the self-destruct mode if the answer is ⊥):

• If β = 0, d = 0, and i = 0ν , Cb proceeds as follows: If e = e∗, the an-
swer to the query is test. Otherwise, it outputs (dec, e) at the inside
interface. The value c subsequently received at the inside interface
is decoded to m ← Dec(c) and output at the outside interface. If
β = 0 but d 6= 0 or i 6= 0ν , Cb responds with ⊥.



48 Self-Destruct Attacks

• If β = 1 and e = e∗, Cb outputs 0k if cb[i] = d and ⊥ otherwise.

• If β = 1 and e 6= e∗, Cb outputs (dec, e) at the inside interface and
subsequently obtains a value c at the inside interface. Cb outputs
0k if c[i] = d and ⊥ otherwise.

By inspection, one verifies that for b ∈ {0, 1}

CbG
Π,IND-SDA
0 ≡ GΠ′′,IND-SDA

b

and that
CbG

Π,IND-SDA
1 ≡ Hb.

Moreover, note that ∆D(H0,H1) ≤ 2−τλ due to the τλ-secrecy of the
coding scheme (Enc,Dec) and the fact that the hybrids Hb do not leak
any information about cb other than by answering decryption queries with
β = 1 and e = e∗.

The lemma now follows using a simple triangle inequality.

4.3 Constructive Semantics of the New Notions

IND-SDA security. Consider a PKE scheme Π and the protocol pke =
(enc, dec) based on it as shown in Section 3.1.1. Consider the following mi-
nor modification pke′ of pke: dec, after receiving the first invalid ciphertext
e′ (i.e., Dsk(e

′) = ⊥), stops decrypting. It can be shown along the lines of
the proof of Theorem 3.2 that pke′ also achieves transformation (3.2).

NM-SDA security. The notions of NM-CPA and NM-SDA provide secu-
rity against attackers with access to decryption oracles that answer parallel
queries. As shown below, both notions, albeit weaker than full IND-CCA-
security, suffice for the scenario of a blind auction, where participants
submit encrypted bits. It turns out that NM-CPA schemes can be used
for a single auction, whereas NM-SDA schemes can be used as long as no
participant submits an invalid ciphertext.

To model the auction, consider the following channel AUCAB : It inter-
nally keeps an initially empty list L of messages. When the ith message
m is input at interface A, it is recorded as (i,m) and (i, |m|) is output at
interface E. When (dlv, i′) is input at interface E and if (i′,m′) has been
recorded, m′ is appended to L. When (inj,m′) is input at interface E, m′
is appended to L. When dlv-all is input at B, all messages in L are output
at B, and L is flushed.
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Consider the following protocol pke′′ = (enc′′, dec′′), built based on Π
as pke = (enc, dec) in Section 3.1.1, except that dec′′ only outputs the
messages it received once dlv-all is input at the outside interface; if ⊥ is
among these messages, the converter halts. Theorem 4.3 below implies
that pke′′ achieves construction

[1-AUTHBA, INSECAB ]
pke′′

==⇒ AUCAB . (4.1)

if Π is NM-SDA-secure.

Theorem 4.3. There exists a simulator σ and for any n ∈ N there exists
a (efficient) reduction C such that for every D,

∆D(enc′′Adec′′B [1-AUTHBA, 〈INSECAB〉n], σE〈AUCAB〉n)

≤ n ·∆DC(GNM-SDA
0 ,GNM-SDA

1 ).

Proof. Let σ be the simulator from Theorem 3.2. Consider the two systems

enc′′Adec′′B [1-AUTHBA, 〈INSECAB〉1] and σE〈AUCAB〉1.

Distinguishing GNM-SDA
0 from GNM-SDA

1 can be reduced to distinguishing
these two systems via the following reduction systemC′. Initially, C′ takes
pk from the game and outputs it at the E-interface. When a message m is
input at interface A of C′, it is forwarded as (chall,m) to the game. The
challenge e from the game is output as (msg, 1, e) at interface E. When
(inj, e′) is input at interface E, C′ records e′ in a list L. When dlv-all is
input at interface B, C′ passes the vector of all recorded ciphertexts in L
as a decryption query to the game. In the subsequently received vector
of plaintexts from the game, it replaces all test-messages by m. Then, it
outputs all the plaintexts at B and clears the list L. If any of the plaintexts
output are ⊥, it halts. It holds that

C′GNM-SDA
0 ≡ enc′′Adec′′B [1-AUTHBA, 〈INSECAB〉1]

and
C′GNM-SDA

1 ≡ σE〈AUCAB〉1,
and thus

∆D(enc′′Adec′′B [1-AUTHBA, 〈INSECAB〉n], σE〈AUCAB〉n)

≤ n ·∆DC′′
(enc′′Adec′′B [1-AUTHBA, 〈INSECAB〉1], σE〈AUCAB〉1)

= n ·∆DC′′
(C′GNM-SDA

0 ,C′GNM-SDA
1 )

= n ·∆DC(GNM-SDA
0 ,GNM-SDA

1 ),
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where C := C′′C′ and the first inequality follows from a standard hy-
brid argument for a reduction system C′′ (similar to that in the proof of
Lemma 3.4).

NM-CPA security. Based on AUCAB , one can also define a single-auction
variant AUC-SINGLEAB that shuts down after the first dlv-all command.
A straight-forward adaptation of the above protocol pke′′ yields a protocol
that achieves

[1-AUTHBA, INSECAB ] ==⇒ AUC-SINGLEAB . (4.2)

4.4 NM-SDA Security from IND-CPA Security

NM-SDA security can be achieved in a black-box fashion from IND-CPA
security. Specifically, a generalization using LECSS (cf. Section 2.9) of
the scheme by Choi et al. [CDMW08] (dubbed the CDMW construction
in the remainder of this section) is NM-SDA-secure. Using a constant-
rate LECSS allows to improve the rate of the CDMW construction from
Ω(1/λ2) to Ω(1/λ), where λ is the security parameter. This abstraction
might also give a deeper understanding of the result of [CDMW08]. The
main difficulty in the analysis is to extend the original proof to deal with
adaptively chosen parallel decryption queries (with self-destruct).

4.4.1 The CDMW Construction

The CDMW construction uses a randomized Reed-Solomon code, which is
captured as a special case by the notion of a linear error-correcting secret
sharing (LECSS) (E,D,R) (cf. Section 2.9).

The LECSS has to satisfy an additional property, which is that given a
certain number of symbols chosen uniformly at random and independently
and a plaintext m, one can efficiently produce an encoding that matches
the given symbols and has the same distribution as E(m). It is described
in more detail in the proof of Lemma 4.9, where it is needed.4

Let Π = (K,E,D) be a PKE scheme with message spaceM = {0, 1}`
(we assume ` = Ω(λ)), and let Σ = (Kots, S, V ) be a one-time signature
scheme with verification keys of length κ = O(λ). Moreover, let α > 0 be
any constant and (E,D) a (k, n, δ, τ)-LECSS over GF(2`) with δ > 2α.

The CDMW construction (cf. Figure 4.5), to encrypt a plaintext m ∈
{0, 1}k`, first computes an encoding (c1, . . . , cn)← E(m) and then creates

4Of course, the Reed-Solomon-based LECSS from [CDMW08] has this property.
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PKE Scheme Π′ = (K′, E′, D′)

Key Generation K ′
for (b, i, j) ∈ {0, 1} × [κ]× [n]

(pkbi,j , skbi,j)← K

PK← (pkbi,j)b,i,j

SK← (skbi,j)b,i,j

T ←
(

[n]
τn

)
return (PK, (SK, T ))

Encryption E′PK(m)
(c1, . . . , cn)← E(m)
(verk, sigk)← Kots

(v[1], . . . , v[κ])← verk
for (i, j) ∈ [κ]× [n]

ei,j ← E
pk
v[i]
i,j

(cj)

E← (ei,j)i,j
σ ← Ssigk(E)
return (E, verk, σ)

Decryption D′(SK,T )(E, verk, σ)

if Vverk(E, σ) = 0
return ⊥

for j ∈ T
decrypt jth column of E
if not all entries identical

return ⊥
decrypt first row of E to c
w ← R(c, αn)
if w = ⊥ or ∃j ∈ T : cj 6= wj

return ⊥
return D(w)

Figure 4.5: The CDMW PKE scheme Π′ constructed from a CPA-secure
scheme Π [CDMW08].

the (κ×n)-matrix C in which this encoding is repeated in every row. For
every entry Cij of this matrix, there are two possible public keys pkbi,j ;
which of them is used to encrypt the entry is determined by the ith bit
v[i] of the verification key verk = (v[1], . . . , v[κ]) of a freshly generated
key pair for Σ. In the end, the encrypted matrix E is signed using verk,
producing a signature σ. The ciphertext is (E, verk, σ).

The decryption algorithm first verifies the signature. Then, it decrypts
all columns indexed by a set T ⊂ [n], chosen as part of the secret key, and
checks that each column consists of a single value only. Finally, it decrypts
the first row and tries to find a codeword with relative distance at most α.
If so, it checks whether the codeword matches the first row in the positions
indexed by T . If all checks pass, it outputs the plaintext corresponding to
the codeword; otherwise it outputs ⊥.

Theorem 4.4. Let t ∈ N and Π be a (t+ tcpa, εcpa)-IND-CPA-secure PKE
scheme, α > 0, (E,D) a (k, n, δ, τ)-LECSS with δ > 2α, and Σ a (t +
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tots, εots)-secure OTS scheme with verification-key length κ. Then, for any
q, p ∈ N, PKE scheme Π′ is (t, q, p, ε)-NM-SDA-secure with

ε = (1− τ)κn · εcpa + 2 · εots + 4 · p(1− τ)αn,

where tcpa and tots represent the overhead incurred by corresponding re-
ductions.

Instantiating the construction. Note that the security proof below
does not use the linearity of the LECSS. The CDMW construction can
be seen as using a Reed-Solomon-based LECSS with rate O(1/κ). If the
construction is instantiated with a constant-rate LECSS, the final rate
improves over CDMW by a factor of Ω(κ) = Ω(λ). More concretely,
assuming a constant-rate CPA encryption, a ciphertext of length O(λ3)
can encrypt a plaintext of length Ω(λ2) as compared to Ω(λ) for plain
CDMW. As shown in Section 4.4.3, the LECSS can be instantiated with
constructions based on Reed-Solomon or algebraic geometric codes (which
also satisfy the additional property mentioned above), both with constant
rate. Among the constant-rate codes, algebraic geometric codes allow to
choose the parameters optimally also for shorter plaintexts.

4.4.2 Security Proof of the CDMW Construction

Overview

In the following, let GCPA
b be the IND-CPA game for the underlying PKE

scheme Π, GNM-SDA
b the game for the constructed PKE scheme Π′, and

Gots be the security game for the OTS scheme Σ.
The proof follows the original one by [CDMW08]. The main change

is that one needs to argue that, unless they contain invalid ciphertexts,
adaptively chosen parallel queries do not allow the attacker to obtain useful
information, in particular on the secret set T . This is facilitated by using
the self-destruct lemma (cf. Section 7). The proof proceeds in three steps
using two hybrid games Hb and H′b:

• The first hybrid Hb gets rid of signature forgeries for the verification
key used to create the challenge ciphertext. The indistinguishability
of the hybrid from GNM-SDA

b follows from the security of the OTS
scheme and requires only minor modifications compared to the orig-
inal proof.
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• The second hybridH′b uses an alternative decryption algorithm. The
indistinguishability of H′b and Hb holds unconditionally; this step
requires new techniques compared to the original proof.

• Finally, the distinguishing advantage betweenH′0 andH′1 is bounded
by a reduction to the IND-CPA security of the underlying scheme Π;
the reduction again resembles the corresponding one in [CDMW08].

Dealing with Forgeries

For b ∈ {0, 1}, hybrid Hb behaves as GNM-SDA
b but generates the signature

key pair (sigk∗, verk∗) used for the challenge ciphertext initially and rejects
any decryption query (E′, σ′, verk′) if verk′ = verk∗.

Lemma 4.5. For b ∈ {0, 1}, there exists a reduction R′b such that for all
distinguishers D,

∆D(GNM-SDA
b ,Hb) ≤ ΓDR′

b(Gots).

Proof. R′b is a standard reduction to the unforgeability of Σ.

Alternative Decryption Algorithm

For b ∈ {0, 1}, hybrid H′b behaves as Hb but for the way it answers de-
cryption queries (E′, σ′, verk′): As before, it first verifies the signature σ′
and checks that each column of E′ consists of encryptions of a single value.
Then, it determines the first position i at which verk′ and verk∗ differ, i.e.,
where v′[i] 6= v∗[i]. It decrypts the ith row of E and checks if there is a
codeword w within distance 2αn.5 If such w does not exist or else if w
does not match the first row in a position indexed by T , the check fails.
Otherwise, the plaintext corresponding to w is output.

Lemma 4.6. For b ∈ {0, 1} and all distinguishers D,

∆D(Hb,H
′
b) ≤ 2 · p(1− τ)αn.

The proof of Lemma 4.6 shows that the original and alternative decryption
algorithms are indistinguishable not just for a single parallel query (as is
sufficient for NM-CPA) but even against adaptively chosen parallel queries
(with self-destruct). It is the main technical contribution of this section.

5Recall that the actual decryption algorithm always decrypts the first row and tries
to find w within distance αn.
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At the core of the proof is an analysis of how different types of encoding
matrices C are handled inside the two decryption algorithms. To that end,
one can define two games B and B′ (below) that capture the behaviors
of the original and the alternative decryption algorithms, respectively.
The proof is completed by bounding ∆(B,B′) (for all distinguishers) and
showing the existence of a wrapper Wb such that WbB behaves as Hb and
WbB

′ as H′b (also below). This proves the lemma since ∆D(Hb,H
′
b) =

∆D(WbB,WbB
′) = ∆DWb(B,B′).

The games B and B′ behave as follows: Both initially choose a random
size-τ subset of [n]. Then, they accept parallel queries with components of
the type (C, i) for C ∈ Fκ×n and i ∈ [κ]. The answer to each component
is computed as follows:

1. Both games check that all columns indexed by T consist of identical
entries.

2. Game B tries to find a codeword w with distance less than αn from
the first row (regardless of i), whereas B′ tries to find w within 2αn
of row i. Then, if such a w is found, both games check that it matches
the first row of C in the positions indexed by T .

3. If all checks succeed, the answer to the (component) query is w;
otherwise, it is ⊥.

Both games then output the answer vector and implement the self-destruct,
i.e., if any of the answers is ⊥, all future queries are answered by ⊥.

Claim 4.7. For b ∈ {0, 1} and all distinguishers D,

∆D(B,B′) ≤ 2 · p(1− τ)αn.

Encoding matrices. Towards a proof of Claim 4.7, consider the follow-
ing partition of the set of encoding matrices C (based on the classification
in [CDMW08]):

1. There exists a codeword w within αn of the first row of C, and all
rows have distance at most αn.

2. (a) There exist two rows in C with distance greater than αn.

(b) The rest; in this case the first row differs in more than αn
positions from any codeword.
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Observe that queries (C, i) with C of type 1 are treated identically by
both B and B′: A codeword w within αn of the first row of C is certainly
found by B; since all rows have distance at most αn, w is within 2αn of
row i and thus also found by B′. Furthermore, note that if C is of type 2b,
it is always rejected by B (but not necessarily by B′).

Consider the hybrids B̃ and B̃′ that behave as B and B′, respectively,
but always reject all type-2 queries. Since type-1 queries are treated iden-
tically, B̃ and B̃′ are indistinguishable. Moreover:

Claim 4.8. For all distinguishers D,

∆D(B, B̃) ≤ p(1− τ)αn and ∆D(B̃′,B′) ≤ p(1− τ)αn.

The proof of Claim 4.8 follows a generic paradigm, at whose core is the
so-called self-destruct lemma, which deals with the indistinguishability
of hybrids with the self-destruct property and is explained in detail in
Section 7. Roughly, this lemma applies whenever the first hybrid (in this
case B resp. B′) can be turned into the second one (in this case B̃ resp.
B̃′) by changing (“bending”) the answers to a subset (the “bending set”)
of the possible queries to always be ⊥, and when additionally non-bent
queries have a unique answer (cf. the statement of Lemma 7.1). Intuitively,
the lemma states that parallelism and adaptivity do not help distinguish
(much) in such cases.

Proof. To use the self-destruct lemma, note that B, B̃, B̃′, and B′ all
answer queries from X := Fκ×n × [κ] by values from Y := Fn. Moreover,
note that they use as internal randomness a uniformly chosen element T
from the set R :=

(
[n]
τn

)
of size-τn subsets of [n].

Consider first B and B̃. Let g : X × R → Y correspond to how
B answers queries (C, i) (see above). Let B be the set B of all type-
2a-queries. Then, B̃ is its B-bending (cf. Definition 7.2). Observe that
queries x = (C, i) /∈ B are either of type 1 or 2b. For the former, the
unique answer yx is the codeword w within αn of the first row of C; for
the latter, yx is ⊥. Therefore, using the self-destruct lemma (Lemma 7.1),
for all distinguishers D,

∆D(B, B̃) ≤ p · max
(C,i)∈B

P[g((C, i), T ) 6= ⊥],

where the probability is over the choice of T . Since type-2a queries have
two rows with distance greater than αn, the probability over the choice of
T that this remains unnoticed is at most (1− τ)αn.
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For the second part of the claim, consider B′ and B̃′. Now, let g :
X×R → Y correspond to how B′ answers queries (C, i) (see above again),
and let B be the set B of all type-2-queries. Then, B̃′ is the B-bending
of B′.

Note that all queries x = (C, i) /∈ B′ are of type 1, and the unique
answer yx is the codeword w within 2αn of row i of C. Therefore, using
Lemma 7.1 again, for all distinguishers D,

∆D(B′, B̃′) ≤ p · max
(C,i)∈B′

P[g′((C, i), T ) 6= ⊥],

where the probability is again over the choice of T . Since type-2a queries
have two rows with distance greater than αn and in type-2b queries
the first row differs in more than αn positions from any codeword, the
probability over the choice of T that this remains unnoticed is at most
(1− τ)αn.

Proof (of Claim 4.7). The proof follows using the triangle inequality:

∆D(B,B′) ≤ ∆D(B, B̃) + ∆D(B̃, B̃′) + ∆D(B̃′,B′)

≤ 2 · p(1− τ)αn.

Wrapper. It remains to show that there exists a wrapper Wb such
that WbB behaves as Hb and WbB

′ as H′b. The construction of Wb is
straight forward: Hb and H′b generate all keys and the challenge in the
identical fashion; therefore, Wb can do it the same way. Wb answers
decryption queries (E′, verk′, σ′) by first verifying the signature σ′ and
rejecting queries if σ′ is invalid or if verk′ is identical to the verification key
verk∗ chosen for the challenge, decrypting the entire matrix E′ to C′ and
submitting (C′, i) to the oracle (eitherB orB′), where i is the first position
at which verk′ and verk∗ differ, and decoding the answer w and outputting
the result or simply forwarding it if it is ⊥. Moreover, Wb implements
the self-destruct. By inspection it can be seen that WbB implements the
original decryption algorithm and WbB

′ the alternative one.

Reduction to IND-CPA Security

Lemma 4.9. There exists a reduction R such that for all distinguish-
ers D,

∆D(H′0,H
′
1) = (1− τ)κn ·∆DR(GCPA

0 ,GCPA
1 ).
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Proof (sketch). The proof is a straight-forward generalization of the orig-
inal proof by [CDMW08]; the only difference is that it needs to process
multiple parallel decryption queries and implement the self-destruct fea-
ture appropriately. For ease of exposition, we describe the reduction to a
many-public-key version of the CPA game for Π.6

Reduction R initially chooses the secret set T and creates the challenge
OTS key pair with verification key verk∗ = (v∗[1], . . . , v∗[κ]) and all key
pairs (pkbi,j , skbi,j) with j ∈ T or b 6= v∗[i]. The remaining (1 − τ)κn key
pairs are generated by the CPA game.

Recall that the LECSS is assumed to satisfy the following property:
Given τn symbols (ci)i∈T chosen uniformly at random and independently
and any plaintext m ∈ Fk, one can efficiently sample symbols (ci)i/∈T such
that (c1, . . . , cn) has the same distribution as E(m). Using this fact, R
creates the challenge form0 as follows: It picks the random symbols (ci)i∈T
and completes them to a full encoding cm0 with the above procedure, using
m0 as the plaintext. Let Cm0

be the corresponding matrix (obtained by
copying the encodings κ times). Observe that this matrix would match a
matrix Cm1

generated from any other message m1 in the columns indexed
by T . These entries are encrypted byR, using the public key pkbi,j for entry
(i, j) for which b 6= v∗[i]. Denote byC′m0

the matrixCm0 with the columns
in T removed. The reduction outputs (chall,C′m0

) to its oracle and obtains
the corresponding ciphertexts, which it combines appropriately with the
ones it created itself to form the challenge ciphertext.

Finally, note that since the reduction knows all the secret keys pkbi,j
with b 6= v∗[i], it can implement the alternative decryption algorithm (and
the self-destruct).

Overall Proof

Proof (of Theorem 4.4). Let tcpa be the overhead caused by reduction R
and tots the larger of the overheads caused by R′0 and R′1. Moreover, let
D be a distinguisher with running time at most t. Using the triangle

6In the many-public-key version of the CPA game, an attacker can play the CPA
game for several independently generated public keys simultaneously; this is equivalent
to the normal formulation by a standard hybrid argument [BBM00].
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inequality, and Lemmas 4.5, 4.6, and 4.9,

∆D(GNM-SDA
0 ,GNM-SDA

1 ) ≤ ∆D(GNM-SDA
0 ,H0)

+ ∆D(H0,H
′
0) + ∆D(H′0,H

′
1)

+ ∆D(H′1,H1) + ∆D(H1,G
NM-SDA
1 )

≤ Γ·R
′
0D(Gots) + 2 · p(1− τ)αn

+ (1− τ)κn ·∆·RD(GCPA
Π 0,GCPA

Π 1)

+ 2 · p(1− τ)αn + Γ·R
′
1D(Gots)

≤ εots + 2 · p(1− τ)αn

+ (1− τ)κn · εcpa + 2 · p(1− τ)αn + εots.

4.4.3 LECSS for the CDMW Construction

In this section we show how to instantiate the LECSS used for the CDMW
construction in Section 4.4.1. Let F be a finite field of size L = 2`, where
` is the plaintext length of the IND-CPA scheme used in the construction.
Then, there are the following variants of a (k, n, δ, τ)-LECSS:

• CDMW Reed-Solomon codes: The original CDMW construction can
be seen as using a Reed-Solomon-based LECSS with rate Θ(1/λ),
which is suboptimal (see next item).

• Constant-Rate Reed-Solomon codes: Cheraghchi and Guruswami
[CG14b] provide a LECSS based on a construction by Dziembowski
et al. [DPW10] and on Reed-Solomon (RS) codes with ` = Θ(log n).
One can show that it achieves the following parameters (not opti-
mized): α = 1/8, τ = 1/8 and rate k/n ≥ 1/4 (i.e., all constant).

• Algebraic geometric codes: Using algebraic geometric (AG) codes,
Cramer et al. [CHH+07] provide a LECSS with ` = O(1) and still
constant error correction, secrecy, and rate (but with worse concrete
constants than Reed-Solomon codes).

Note that asymptotically, RS and AG codes are equally good: both have
constant rate, distance, and secrecy. However, since with AG codes ` is
constant (i.e., they work over an alphabet of constant size), the minimal
plaintext length can be shorter than with RS codes.



Chapter 5

PKE Domain Extension via
Non-Malleable Codes

Domain extension for public-key encryption (PKE) is the problem of trans-
forming a single-bit PKE satisfying a particular security notion into a
multi-bit scheme for the same notion. This section presents two different
perspectives on this issue:

• The constructive approach: As shown in Section 3.1, PKE schemes
can be used to obtain confidential channels from non-confidential
ones; in particular, a single-bit scheme achieves a single-bit such
channel. To obtain multi-bit confidential channels, one needs to find
a way of transforming several single-bit channels into a single multi-
bit channel. The composition theorem of CC guarantees the security
of the composed construction.

• The game-based approach: With this approach, a single-bit scheme
is combined in an arbitrary (yet preferably black-box) fashion to
obtain a multi-bit scheme and the transformation is accompanied by
a (direct) reduction from breaking the single-bit scheme to breaking
the multi-bit scheme.

Translated to the game-based view, the constructive approach sug-
gests the following natural encode-then-encrypt-bit-by-bit (EtEb) ap-
proach to domain extension for PKE: To encrypt a (multi-bit) mes-
sage, first encode it with a suitable code. Then, encrypt each bit of
the resulting codeword (under an independent public key) using the
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single-bit scheme.1

This chapter shows that using suitable non-malleable codes (NMCs),
the EtEb approach can be used to obtain PKE domain extension for all
three notions IND-SDA, NM-CPA, and NM-SDA introduced in Chapter 4;
to obtain suitable codes for the cases of NM-CPA and NM-SDA security,
the classical NMC notion needs to be extended to so-called NMCs with
secret state.

Both the constructive and the game-based approaches work for all three
cases. However, for reasons of presentation and comparison, the construc-
tive approach is used in Section 5.2 for the case of IND-SDA security and
the game-based approach in Section 5.3 for NM-CPA and NM-SDA secu-
rity. The constructive approach is particularly intuitive and conveys very
well why non-malleable codes, which are introduced in Section 5.1, are the
proper choice for the EtEb paradigm.

Section 5.4 analyzes the efficiency of the constructions based on the
EtEb approach and compares it to the efficiency of the schemes by [MS09,
HLW12] and to the straight-forward detour via IND-CPA security and the
construction by [CDMW08].

Suitable codes to be used with the constructions presented in this chap-
ter are provided in Chapter 6.

5.1 Definitions of Non-Malleable Codes

This section introduces all variants of non-malleable codes (NMCs) used
in this thesis: Standard NMCs are defined in Section 5.1.1 and a multi-
encoding generalization thereof in Section 5.1.2. The new variant of secret-
state NMCs, which can be made resilient against parallel tampering at-
tacks, is presented in Section 5.1.3. Finally, Section 5.1.4 introduces bit-
wise tampering functions, which is the main type of tamper functions
encountered in the context of PKE domain extension.

5.1.1 Security against Simple Tampering

Non-malleable codes, introduced by Dziembowski et al. [DPW10], are cod-
ing schemes (cf. Section 2.9) that protect the encoded messages against
certain classes of adversarially chosen modifications, in the sense that the
decoding will result either in the original message or in an unrelated value.

1Note that transforming single-bit PKE into multi-bit PKE directly allows for a
wider variety of transformations. For example, it seems that the schemes by Myers and
shelat [MS09] and Hohenberger et al. [HLW12] cannot be cast as EtEb transformations.
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Tamperable Memory MEMF,n

on first x ∈ {0, 1}n at A
record x

on (tamper,⊥) at E
self-destruct

on (tamper, f) at E
if x has been recorded

x̃← f(x)
output x̃ at B

Figure 5.1: Tamperable memory MEMF,n. The self-destruct-command
causes the resource to output ⊥ at interface B and halt.

Basic non-malleable codes [DPW10] provide the above guarantee in a
context where the adversary is allowed to modify a (random) codeword c
(of a message of his choice) by specifying a function f : {0, 1}n → {0, 1}n
from a particular function class F and observe the output of the decoding
algorithm applied to the tampered codeword f(c).

Continuous non-malleability, introduced in [FMNV14], extends this
guarantee to the case where the adversary is allowed to perform multiple
such modifications of a target codeword c. That is, he can repeatedly and
adaptively specify functions f ∈ F and see the decoding of the tampered
codeword f(c).2 Unless explicitly stated otherwise, all statements in this
thesis are w.r.t. continuous non-malleability.

Memory resource. Non-malleable codes can be captured construc-
tively in that they transform tamperable memory into untamperable mem-
ory. To that end, consider the {A,B,E}-setting resource MEMF,n in Fig-
ure 5.1, for a class F of functions f : {0, 1}n → {0, 1}n. It allows a single
message x to be encoded at interface A. At the attacker interface E, the
resource (repeatedly) accepts instructions (tamper, f) for f ∈ F , which
causes f(x) to be output at interface B. The resource also allows E to
issue the command (tamper,⊥), upon which the resource “self-destructs,”
i.e., it outputs ⊥ at B and halts.

Coding schemes as protocols. Any (k, n)-coding scheme CS = (Enc,
Dec) can be turned into a protocol nmc = (encode, decode) that can be
attached to MEMF,n in a straight-forward manner:

• Converter encode, upon receiving m at the outside interface, com-
putes Enc(m) and outputs it at the inside interface.

• Converter decode, upon receiving c̃ at the inside interface, computes
m̃ ← Dec(c̃) and outputs it at the outside interface. If m̃ = ⊥,

2The functions f specified by the adversary are always applied to the same c.
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decode halts. Upon receiving ⊥ at the inside interface, decode out-
puts ⊥ at the outside interface and halts.

Defining non-malleability. The non-malleability requirement can now
be captured by requiring that nmc (based on (Enc,Dec)) achieve

MEMF,n
nmc,σ,(0,ε)

==⇒ MEMFtriv,k (5.1)

for some simulator σ and ε ≥ 0, where Ftriv is the class of trivial functions,
i.e., it consists only of the identity function, denoted by id, and constant
functions.
Set

RF,CS := encodeAdecodeBMEMF,n

and
Sσ := SFtriv,σ := σEMEMFtriv,k.

Then, the standard definition of (continuous) non-malleability is recovered
by requiring that

∆D(RF,CS,Sσ) ≤ ε

for all distinguishers D.

Definition 5.1. A coding scheme CS = (Enc,Dec) is (F , ε)-non-malleable
if there exists a (efficient) simulator σ such that

∆D(RF,CS,Sσ) ≤ ε

for all distinguishers D.

Strong non-malleability. The original paper on NMCs by Dziem-
bowski et al. [DPW10] also introduced a notion of strong non-malleability,
which can be thought of as prescribing a particular simulation strategy.
This notion is not considered in this thesis.

Non-malleable reductions. Instead of requiring that a coding scheme
immediately achieve construction (5.1), one can instead consider an inter-
mediate (weaker) tamper-function class F ′ and consider the construction

MEMF,n
nmc,σ,(0,ε)

==⇒ MEMF
′,k. (5.2)

This leads to the notion of a non-malleable reduction, a concept introduced
by Aggarwal et al. [ADKO15b].
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Definition 5.2. A coding scheme (Enc,Dec) is an (F ,F ′, ε)-non-malleable
reduction if there exists a (efficient) simulator σ such that

∆D(RF,CS,SF
′,σ) ≤ ε

for all distinguishers D.

Non-malleable reductions are composable: If CS is an (F ,F ′)-reduction
and CS′ a (F ′,F ′′)-reduction, then combining CS and CS′ (in a straight-
forward manner) yields an (F ,F ′′)-reduction. This follows from the CC
composition theorem (cf. Section 2.6).

5.1.2 Security when Encoding Many Messages

This section introduces the notion of adaptive (continuous) non-malleabi-
lity, which is an extension of (continuous) non-malleability in that the ad-
versary is allowed to adaptively specify multiple messages m(1),m(2), . . .
and the functions may depend on all of the corresponding codewords
c(1), c(2), . . .. That is, the tamper class F̄ is actually a sequence (F (i))i≥1

of function families with F (i) ⊆ {f | f : ({0, 1}n)i → {0, 1}n}, and after
encoding i messages, the adversary chooses functions from F (i).3

For the definition of adaptive non-malleability, consider the resource
A-MEMF,n depicted in Figure 5.2. Similarly to Section 5.1.1, let nmc =
(encode, decode) be the protocol built based on a (k, n)-coding scheme
CS = (Enc,Dec) and set

R̄F̄,CS := encodeAdecodeBA-MEMF̄,n

and
S̄σ := S̄F̄triv,σ := σEA-MEMF̄triv,k.

for a simulator σ, where F̄triv = (F̄ (i)
triv)i≥1 and F̄ (i)

triv consists of constant
functions and functions id(i) with id(j)(x(1), . . . , x(i)) = x(j).

Definition 5.3. A coding scheme CS = (Enc,Dec) is (F̄ , ε, `, q)-adaptive
non-malleable if there exists a (efficient) simulator σ such that

∆D(〈R̄F̄,CS〉`,q, 〈S̄σ〉`,q) ≤ ε

3A similar adaptive notion has been already considered for continuous strong non-
malleability in the split-state model [FMNV15].
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Adaptively Tamperable Memory A-MEMF,n

init
i← 0

on x ∈ {0, 1}n at A
i← i+ 1

x(i) ← x

on (tamper,⊥) at E
self-destruct

on (tamper, f) with f ∈ F (i) at E
if i > 0

x̃← f(x(1), . . . , x(i))
output x̃ at B

Figure 5.2: Adaptively tamperable memory A-MEMF,n. The command
self-destruct causes the resource to output ⊥ at interface B and halt.

for all distinguishers D, where 〈·〉`,q denotes that only the first ` queries
at the A-interface and only the first q queries at the E-interface are pro-
cessed.4

Note that (F̄ , ε, 1, ∗)-adaptive non-malleable (where ∗ stands for “arbi-
trary”) is the same as (F (1), ε)-non-malleable.

5.1.3 A Novel Flavor of Non-Malleability: Parallel Tampering

Codes with secret state. PKE domain extension based on non-malle-
able codes for NM-CPA and NM-SDA-secure PKE schemes (cf. Section 5.3)
requires security against parallel tampering attacks, in which an attacker
gets to repeatedly (and adaptively) specify parallel queries. The first time
a parallel query results in an invalid encoding, the self-destruct mode
occurs, but the attacker still obtains the answers to that entire parallel
query.

It can be shown that this security level cannot be achieved by conven-
tional non-malleable codes (cf. Section 6.3.3). To circumvent this impos-
sibility, one can consider so-called secret-state non-malleable codes.

Definition 5.4 (Coding scheme with secret state). A (k, n)-coding scheme
with secret state (CSS) is a triple of algorithms (Gen,Enc,Dec), where the
(randomized) state-generation algorithm Gen outputs a secret state s from
some set S, the (randomized) encoding algorithm Enc : {0, 1}k → {0, 1}n
takes a k-bit plaintext m and outputs an n-bit encoding c← Enc(m), and
the (deterministic) decoding algorithm Dec : {0, 1}n × S → {0, 1}k ∪ {⊥}
takes an encoding as well as some secret state s ∈ S and outputs a plaintext
m← Dec(c, s) or the special symbol ⊥, indicating an invalid encoding.

4The reason for making both the number ` of encoded messages and the number q of
tamper queries explicit is that the security of constructions of adaptive non-malleable
codes in this thesis depend on these quantities.
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Parallel Tamperable Memory P-MEMF,n
p

on first x at A
record x

on (tamper,⊥) at E
self-destruct

on (tamper, f (1), . . . , f (p)) at E
if x has been recorded

for j = 1 to p
x(j) ← f (j)(x)

output (x(1), . . . , x(p)) at B
if ∃j : x(j) = ⊥

self-destruct

Figure 5.3: Parallel tamperable memory P-MEMF,n
p . The command

self-destruct causes the resource to output ⊥ at interface B and halt.

Memory resource. To define security against parallel tampering, con-
sider the {A,B,E}-setting resource P-MEMF,np in Figure 5.3, for a class
F of functions f : {0, 1}n → {0, 1}n. It allows a single message x to
be encoded at interface A. At the attacker interface E, the resource (re-
peatedly) accepts instructions (tamper, f (1), . . . , f (p)) for f (j) ∈ F , which
causes (f (1)(x), . . . , f (p)(x)) to be output at interface B. The resource
also allows E to issue the command (tamper,⊥), upon which the resource
“self-destructs,” i.e., it outputs ⊥ at B and halts.

Coding schemes as protocols. For the case of parallel tampering,
the protocol p-nmc = (p-encode, p-decode) attached to P-MEMF,np based
on a coding scheme with secret state CS = (Gen,Enc,Dec) is obtained as
follows:

• Converter p-encode, upon receiving m at the outside interface, com-
putes Enc(m) and outputs it at the inside interface.

• Converter p-decode initially generates the secret state s ← Gen.
Upon receiving (c(1), . . . , c(p)) at the inside interface, p-decode com-
putes m(j) ← Dec(c(j), s) for j = 1, . . . , p and outputs (m(1), . . . ,
m(p)) at the outside interface. If m(j) = ⊥ for some j, p-decode
halts. Upon receiving ⊥ at the inside interface, p-decode outputs ⊥
at the outside interface and halts.

Defining non-malleability. Non-malleability against parallel tamper-
ing can now be captured by requiring that nmc (based on (Gen,Enc,Dec))
achieve

P-MEMF,np

p-nmc,σ,(0,ε)
==⇒ P-MEMFtriv,k

p (5.3)

for some simulator σ and ε ≥ 0, where Ftriv is the class of trivial functions,
i.e., it consists only of the identity function, denoted by id, and constant
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functions.
Set

RF,CS
p := p-encodeAp-decodeBP-MEMF,np

and
Sσp := SFtriv,σ

p := σEP-MEMFtriv,k
p .

Then, the definition of (continuous) non-malleability against parallel tam-
pering is obtained by requiring that

∆D(RF,CS
p ,Sσp ) ≤ ε

for all distinguishers D.

Definition 5.5. A coding scheme with secret state CS = (Gen,Enc,Dec)
is (F , ε)-parallel non-malleable if there exists a (efficient) simulator σ
such that

∆D(RF,CS
p ,Sσp ) ≤ ε

for all distinguishers D.

Remark. One could also define an adaptive variant for parallel tamper-
ing, but this is beyond the scope of this thesis.

5.1.4 Bit-Wise Tampering Functions

This thesis considers two main tamper-function classes Fbit and Fcopy that
allow an attacker to tamper with each bit of an encoding individually.
While Fbit allows arbitrary tampering with each bit, functions in Fcopy are
not allowed to flip bits of the encoding.

Tampering with a single encoding. A function f : {0, 1}n → {0, 1}n
in Fbit is characterized by a vector (f [1], . . . , f [n]), where f [i] : {0, 1} →
{0, 1} is the function applied to the ith bit. That is, f [i] ∈ {zero, one, keep,
flip} with the meaning that the ith bit is either set to 0 (zero), set to 1
(one), unchanged (keep), or flipped (flip). Similarly, a function f [i] ∈ Fcopy

is restricted to being f [i] ∈ {zero, one, keep}. In slight abuse of notation,
one writes f = (f [1], . . . , f [n]).

For a function f in Fbit or Fcopy, let A(f) := {i | i ∈ {zero, one}} and
B(f) := {i | i ∈ {keep, flip}}. Moreover, set a(f) := |A(f)|. Finally, let
val(zero) := val(keep) := 0 and val(one) := val(flip) := 1.
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Tampering with multiple encodings. The (sequences of) function
classes corresponding to adaptive bit-wise tampering with and without
bit flips are F̄bit = (F (i)

bit )i≥1 and F̄copy = (F (i)
copy)i≥1 , respectively.

A function f : ({0, 1}n)i → {0, 1}n in F (i)
bit is characterized by a vector

(f [1], . . . , f [n]), where f [i] : {0, 1} → {0, 1} is the function applied to
the ith bit. That is, f [v] ∈ {zero, one, keep1, . . . , keepi, flip1, . . . flipi} with
the meaning that the vth bit is either set to 0 (zero), set to 1 (one),
the vth bit of the jth encoding (keepj), or the flipped vth bit of the jth
encoding (flipj). Similarly, a function f ∈ Fcopy is restricted to being
f [v] ∈ {zero, one, keep1, . . . , keepi}.

5.2 From Single-Bit to Multi-Bit Channels

This section presents the constructive approach to PKE domain extension.

Single-bit PKE viewed constructively. As argued in Section 4.3,
one can show that a 1-bit IND-SDA-secure PKE scheme can be used to
design a protocol 1-pke′ that achieves the construction

[1-AUTHBA, INSECAB ]
1-pke′
==⇒ CONF1-bit

AB (5.4)

Using the composition theorem, one then obtains

[1-AUTHBA, INSECAB ]n
1-pke′′
==⇒ [CONF1-bit

AB ]n,

where 1-pke′′ = (1-enc′′, 1-dec′′) and where 1-enc′′ and 1-dec′′ are the n-fold
parallel composition of 1-enc′ and 1-dec′, respectively. A slight modifica-
tion of protocol 1-pke′′ yields a protocol 1-pke for construction

[1-AUTHBA, INSECAB ]
1-pke

==⇒ [CONF1-bit
AB ]n, (5.5)

Essentially, all public keys are concatenated and sent via a single ←−•. A
proof of security is straight-forward.

Tying the channels together. Using an adaptive (continuously) non-
malleable (k, n)-code (cf. Section 5.1.2), a (single) k-bit confidential chan-
nel can be constructed from the n independent single-bit confidential chan-
nels. This is achieved by having the sender encode the message with
the non-malleable code and sending the resulting codeword over the 1-bit
channels (bit-by-bit), while the receiver decodes all n-bit strings received
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CONF1-bit
AB

CONF1-bit
AB

...

CONF1-bit
AB

encode decodeA B

E

A B

E

CONFk-bit
AB

σ

Figure 5.4: Left: The assumed resource [CONF1-bit
AB ]n with protocol

converters encode and decode attached to interfaces A and B, denoted
encodeAdecodeB [CONF1-bit

AB ]n. Right: The constructed resource CONFk-bit
AB

with simulator σ attached to the E-interface, denoted σECONFk-bit
AB . In

particular, σ must simulate the E-interfaces of [CONF1-bit
AB ]n. The protocol

is secure if the two systems are indistinguishable.

via these channels. Additionally, due to the self-destruct property of con-
tinuously non-malleable codes, the receiver must stop decoding once an
invalid codeword has been received.

More precisely, let CS = (Enc,Dec) be a (k, n)-coding scheme and
consider the following protocol nmc = (encode, decode): Converter encode
encodes every messagem ∈ {0, 1}k input at its outside interface with fresh
randomness, resulting in an n-bit encoding c = c[1] · · · c[n] ← Enc(m).
Then, for i = 1, . . . , n, it outputs bit c[i] to the ith channel at the inside
interface. Converter decode, whenever it receives an n-bit string c′ =
c′[1] · · · c′[n] (where the ith bit c′[i] was received on the ith channel), it
computes m′ ← Dec(c′) and outputs m′ at the outside interface. If m′ =
⊥, it implements the self-destruct mode, i.e., it halts.

The goal is now to show that protocol nmc achieves the construction

[CONF1-bit
AB ]n

nmc
==⇒ CONFk-bit

AB . (5.6)

The required non-malleability. By inspecting both sides of Figure 5.4,
it becomes apparent why adaptive (continuously) non-malleable codes are
the proper choice to achieve construction (5.6): On the left-hand side, the
distinguisher can repeatedly input messages m(i) at interface A, which re-
sults in encodings c(i) being input (bit-by-bit) into the single-bit channels.
Using the E-interfaces of these channels, the distinguisher can repeatedly
see the decoding of an n-bit string c′ = c′[1] · · · c′[n] at interface B, where
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each bit c′[j] results from either forwarding one of the bits already in the
jth channel or from injecting a fresh bit that is either 0 or 1.

Put differently, the distinguisher can effectively launch tampering at-
tacks using functions from F̄copy (cf. Section 5.1.2).

On the right-hand side, the distinguisher may again input messages
m(i) at interface A—to the k-bit confidential channel. At interface E,
this channel only allows to either deliver entire k-bit messages already
sent by A or to inject independent messages. The simulator σ required to
prove (5.6) needs to simulate the E-interfaces of the single-bit confidential
channels at its outside interface and, based solely on what is input at
these interfaces, decide whether to forward or inject a message, which
corresponds exactly to the task of the simulator σ in the non-malleability
experiment (cf. Section 5.1.2).

Theorem 5.1 below formalizes this correspondence; its proof is essen-
tially a technicality—one merely needs to “translate” between the channel
settings and the non-malleability experiment—and is therefore omitted.

Theorem 5.1. For any `, q ∈ N, if a (k, n)-coding scheme (Enc,Dec) is
(F̄copy, ε, `, q)-adaptive non-malleable, there exists a simulator σ such that

[〈CONF1-bit
AB 〉`,q]n

nmc,σ,(0,ε)
==⇒ 〈CONFk-bit

AB 〉`,q,

where 〈·〉`,q denotes a channel that only processes the first ` queries at the
A-interface and only the first q queries at the E-interface.

Plugging it together. The composition theorem of constructive cryp-
tography (cf. Section 2.6) implies that the protocol m-pke = nmc ◦ 1-pke
resulting from composing the protocols 1-pke and nmc for transforma-
tions (5.5) and (5.6), respectively, achieves

[1-AUTHBA, INSECAB ]
m-pke
==⇒ CONFk-bit

AB . (5.7)

Protocol m-pke corresponds (in a straight-forward manner) to a PKE
scheme Π that achieves IND-SDA security. A direct, game-based proof
of this fact can be obtained as a special case of the game-based proof for
NM-SDA security provided in Section 5.3. The resulting proof is a hy-
brid argument and can be obtained by “unwrapping” the concatenation
of the statements in this section. The modular nature and the intuitive
simplicity of the proofs are lost, however.



70 PKE Domain Extension via Non-Malleable Codes

5.3 Domain Extension for NM-SDA-Secure PKE

This section shows how to combine a single-bit PKE NM-SDA scheme
with a non-malleable code resilient against parallel tampering to obtain a
multi-bit NM-SDA PKE scheme. Due to the nature of the transformation,
the resulting scheme is only replayable NM-SDA-secure (cf. Section 3.2.2
about replayable security). However, there is a generic transformation
from replayable to full security (cf. [CKN03]) that can also be applied
here.

All results in this section translate to the notion of NM-CPA in a
straight-forward manner.

5.3.1 Replayable NM-SDA Security

Recall the relaxation IND-RCCA of full IND-CCA-security presented in Sec-
tion 3.2.2. This idea carries over seamlessly to the definition of NM-SDA
security; the corresponding distinguishing game GNM-RSDA

b is obtained by
changing GNM-SDA

b (cf. Figure 4.2 in Section 4.1) via the valid-predicate as
shown in Section 2.8.

Definition 5.6. A PKE scheme Π is replayable (t, p, ε)-NM-SDA-secure
(NM-RSDA) if for all distinguishers D with running time at most t,

∆D(GΠ,NM-RSDA
p,0 ,GΠ,NM-RSDA

p,1 ) ≤ ε.

Remark. Since the statements in this section depend only on the width
p of the parallel queries (but not on the number q of parallel queries),
this is the only parameter made explicit. The same is the case for the
non-malleable codes (resilient against parallel tampering) used below.

5.3.2 Combining Non-Malleable Codes and PKE

The construction of a multi-bit NM-RSDA-secure PKE scheme Π′ from
a single-bit NM-SDA-secure scheme Π and a secret-state non-malleable
(k, n)-code (Gen,Enc,Dec) works as follows: It encrypts a k-bit message
m by first computing an encoding c = (c[1], . . . , c[n]) of m and then en-
crypting each bit c[j] under an independent public key of Π; it decrypts
by first decrypting the individual components and then decoding the re-
sulting codeword using the secret state of the non-malleable code; the
secret state is part of the secret key. The scheme is depicted in detail in
Figure 5.5.
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PKE Scheme Π′ = (K ′, E′, D′)

Key Generation K ′
for i← 1 to n

(pki, ski)← K
pk← (pk1, . . . , pkn)
sk← (sk1, . . . , skn)
s← Gen
return (pk, (sk, s))

Encryption E′pk(m)

c = (c[1], . . . , c[n])← Enc(m)
for i← 1 to n

ei ← Epki(c[i])
return e = (e1, . . . , en)

Decryption D′(sk,s)(e)
(e1, . . . , en)← e
for i← 1 to n

c[i]← Dski(ei)
if c[i] = ⊥

return ⊥
m← Dec(c[1] · · · c[n], s)
return m

Figure 5.5: The k-bit PKE scheme Π′ = (K′, E′, D′) built from a 1-bit
PKE scheme Π = (K,E,D) and a (k, n)-coding scheme with secret state
(Gen,Enc,Dec).

Theorem 5.2. Let p ∈ N and Π be a (trsda + t1bit, p, ε1bit)-NM-SDA-secure
1-bit PKE scheme and let CS = (Gen,Enc,Dec) be (Fcopy, p, εnmc)-parallel
non-malleable. Then, Π′ is (trsda, p, εrsda)-NM-RSDA-secure PKE scheme
with

εrsda = 2(nε1bit + εnmc),

where t1bit represents the overhead incurred by the reductions.

In the following, let F := Fcopy. The proof follows directly from the
following lemma:

Lemma 5.3. For b ∈ {0, 1} and i ∈ [n], there exist reductions Cb,i and
Wb such that for all distinguishers D,

∆D(GΠ′,NM-RSDA
p,0 ,GΠ′,NM-RSDA

p,1 )

≤
∑
b,i

∆DCb,i(GΠ,NM-SDA
p,0 ,GΠ,NM-SDA

p,1 )

+
∑
b

∆DWb(Rcopy,Strivial),

where σ is the simulator for the non-malleable code.

Towards a proof of Lemma 5.3, consider the following hybrids for b ∈
{0, 1} and i ∈ [n]: Hb,i proceeds as G

Π′,NM-RSDA
p,b except that the challenge

query (chall,m0) and decryption queries (dec, e(1), . . . , e(p)) are handled
differently:

• Challenge query: The first i bits of the encoding c = (c[1], . . . , c[n])
of mb are replaced by uniformly random and independent bits. The
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resulting n-bit string is then encrypted bit-wise (as done by E′).
This results in the challenge ciphertext e∗ = (e∗1, . . . , e

∗
n).

• Decryption query: Every component e(l) = (e′1, . . . , e
′
n) is an-

swered as follows: Hybrid Hb,i computes c′ = (c′[1], . . . , c′[n]), where

c′[i] =

{
c[j] if e′j = e∗j , and
Dskj (e

′
j) otherwise.

Then, Hb,i outputs Dec(c′, s) as the answer to the component of the
decryption query.5

Let Hb,0 := GΠ′,NM-RSDA
p,b .

Lemma 5.4. For all b ∈ {0, 1} and i ∈ [n], there exist reductions Cb,i

such that for all D

∆D(Hb,i−1,Hb,i) = ∆DCb,i(GΠ,NM-SDA
p,0 ,GΠ,NM-SDA

p,1 ).

Proof. Fix b and i. Hybrid Cb,i works as follows: Initially, it generates
the secret state s ← Gen and n − 1 key pairs (pkj , skj) for j ∈ [n] \ {i},
obtains pki (but not ski) from the oracle (from GΠ,NM-SDA

p,0 or GΠ,NM-SDA
p,0 ),

and outputs pk := (pk1, . . . , pkn). When it receives (chall,m0), it chooses
m1 ← {0, 1}k and computes an encoding c = (c[1], . . . , c[n]) ← Enc(mb).
Then, it chooses i random bits c̃[1], . . . , c̃[i] and computes

e∗j =

{
Epkj (c̃[j]) for j < i, and
Epkj (c[j]) for j > i.

Moreover, it outputs (chall, c[i]) to its oracle and obtains a ciphertext e∗i .
It finally returns e∗ = (e∗1, . . . , e

∗
n).

When Cb,i receives a (parallel) decryption query, for each component
e′ = (e′1, . . . , e

′
n) it proceeds as follows: For j 6= i, it computes c′[j] as

Hb,i does. Moreover, if e′i = e∗i , it sets c′[i] ← c[i]. Otherwise, it outputs
(dec, e′i) to its oracle and obtains the answer c′[i].6 Then, it computes
m′ ← Dec(c′). The answer to the component of the decryption query
is m′, unless m′ ∈ {m0,m1}, in which case the it is test. If one of the

5Assume here and below that Dec(c′) = ⊥ if any of the bits c′[j] equal ⊥.
6In fact, it is important that Cb,i output a single parallel decryption query con-

taining all e′i for the individual components; but it is less cumbersome to describe how
individual components are handled.
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component answers is ⊥, Cb,i implements the self-destruct mode, i.e., it
halts.

Consider Cb,iG
Π,NM-SDA
p,0 and Hb,i−1. Both generate the public key in

the same fashion. As to the challenge ciphertext, the first i− 1 ciphertext
components ej generated by Cb,iG

Π,NM-SDA
p,0 are encryptions of random

bits c̃[j], whereas the ith and the remaining components are encryptions
of the corresponding bits of an encoding of mb (generated by GΠ,NM-SDA

p,0

and Cb,i, respectively). The same is true for Hb,i−1. The answer to a
decryption query component sent to Cb,iG

Π,NM-SDA
p,0 is Dec(c′) for c′ =

(c′[1], . . . , c′[n]), where c′[j] = Dskj (e
′
j) unless j < i and e′j = ej , in which

case c′[j] = c̃[j]. Again, the same holds for Hb,i−1. Moreover, both
Cb,iG

Π,NM-SDA
p,0 and Hb,i−1 answer test if Dec(c′) ∈ {m0,m1}. Thus, they

behave identically.
Cb,iG

Π,NM-SDA
p,1 and Hb,i are compared similarly. This concludes the

proof.

Lemma 5.5. For b ∈ {0, 1}, there exists a wrapper Wb such that

1. WbR
copy behaves as Hb,n, and

2. W0S
trivial and W1S

trivial behave identically.

Proof. Wrapper Wb works as follows: Initially, it generates n key pairs
(pki, ski) for i ∈ [n] and outputs pk := (pk1, . . . , pkn). When it receives
(chall,m0), it picks n random values c̃[1], . . . , c̃[n], computes e∗i ← Epk(c̃[i])
for i = 1, . . . , n, and returns e = (e1, . . . , en). Additionally, it outputs mb

to its inside A-interface.
When it gets a (parallel) decryption query, for every component e′ =

(e′1, . . . , e
′
n), it proceeds as follows: First, it creates a tamper query f =

(f [1], . . . , f [n]) where

f [i] =


zero if e′i 6= e∗i and Dski(e

′
i) = 0,

one if e′i 6= e∗i and Dski(e
′
i) = 1, and

keep if e′i = e∗i .

Then, it outputs (tamper, f) to the inside E-interface and obtains an an-
swer m′ at the inside B-interface. If m′ ∈ {m0,m1}, the answer to the
component query test.7 Otherwise, it is m′. If one of the component
answers is ⊥, Wb implements the self-destruct mode, i.e., it halts.

7Again, Wb needs to output a single parallel tamper query containing the tamper
functions f for the individual components.
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Consider WbR
copy and Hb,n. Both generate the public key in the same

fashion. Furthermore, in either case, the challenge ciphertext consists of
n encryptions of random bits. Finally, both answer a decryption query by
applying the same tamper function to an encoding of mb before decoding
it. When the decoding of the tampered codeword results in m0 or m1,
both answer test. Therefore, they behave identically.

Due to the fact that test is output when a decryption query results in
m0 orm1, the observable behavior is the same inW0S

trivial andW1S
trivial.8

Proof (of Lemma 5.3). Lemma 5.3 follows using a triangle inequality:

∆D(GΠ′,NM-RSDA
p,0 ,GΠ′,NM-RSDA

p,1 )

≤
∑
i

∆D(H0,i−1,H0,i) + ∆D(W0R
copy,W0S

trivial)

+ ∆D(W1S
trivial,W1R

copy) +
∑
i

∆D(H1,i−1,H1,i)

≤
∑
b,i

∆D(Cb,iG
Π,NM-SDA
p,0 ,Cb,iG

Π,NM-SDA
p,1 )

+
∑
b

∆DWb(Rcopy,Strivial)

for any distinguisher D.

5.4 Efficiency of the Transformations

This section compares the efficiency of the PKE schemes resulting from the
EtEb paradigm to the efficiency of domain-extension transformations for
full IND-CCA security and to the straight-forward approach via IND-CPA
security and the CDMW construction (cf. Section 4.4).

5.4.1 Comparison to Full-CCA Transformations

The work of Hohenberger et al. [HLW12]—building on the work of Myers
and shelat [MS09]—describes a multi-bit IND-CCA-secure (CCA for short)
encryption scheme from a single-bit CCA-secure one, an IND-CPA-secure
(CPA) one, and a 1-query-bounded CCA-secure one. Their scheme is rather
sophisticated and has a somewhat circular structure, requiring a complex
security proof. The public key is of the form pk = (pkin , pkA, pkB), where

8This is where the proof reflects that Π′ is only NM-RSDA secure.
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the “inner” public key pkin is the public key of a so-called DCCA secure
PKE scheme, and the “outer” public keys pkA and pkB are, respectively,
the public key of a 1-bounded CCA and a CPA secure PKE scheme. To
encrypt a k-bit message m, one first encrypts a tuple (rA, rB ,m), using
the “inner” public key, obtaining a ciphertext ein , where rA and rB are
thought of as being the randomness for the “outer” encryption schemes.
Next, one has to encrypt ein under the “outer” public key pkA (resp. pkB)
using randomness rA (resp. rB) and thus obtaining a ciphertext eA (resp.
eB). The output ciphertext is e = (eA, eB).

To use the above scheme, one has to instantiate the DCCA, 1-bounded
CCA and CPA components. As argued in [HLW12], all schemes can be
instantiated using a single-bit CCA-secure PKE scheme yielding a fully
black-box construction of a multi-bit CCA-secure PKE from a single-bit
CCA-secure PKE. Denote by lp (resp., le) the bit-length of the public key
(resp., the ciphertext) for the single-bit CCA-secure PKE scheme. If one
refers to the construction of [CHH+07] for the 1-bounded CCA component,
one obtains a public key of size roughly (3 + 16s) · lp for the public key
and (k + 2s) · 4s · l2e for the ciphertext, for security parameter s.9

In contrast, a scheme based on the EtEb paradigm instantiated with
an NMC of rate ρ has ciphertexts and public keys of length ρ−1k · le and
ρ−1k · lp, respectively.

5.4.2 Comparison to the CDMW Construction

Any single-bit IND-SDA, NM-CPA, or NM-SDA PKE scheme is (of course)
IND-CPA-secure. It follows from a straight-forward, standard hybrid ar-
gument that the parallel repetition (i.e., encrypting each bit of a k-bit
message individually—even under a single public key) is IND-CPA-secure.
Therefore, to obtain an NM-SDA-secure PKE scheme, the CDMW con-
struction can be used. If a rate-ρ LECSS is used, the resulting PKE
scheme has ciphertext size ρ−1k3 · le and public-key size ρ−1k2 · le.

9For simplicity, it is assumed here that the random strings rA, rB are computed by
stretching the seed (of length s) of a pseudo-random generator.





Chapter 6

Non-Malleability against
Bit-Wise Tampering

This section provides non-malleable codes (NMCs) resilient against bit-
wise tampering. These codes can be used in the domain-extension con-
structions presented in Chapter 5.

The first code, in Section 6.1, is an NMC resilient against simple tam-
pering (cf. Section 5.1.1) and is used for the case of IND-SDA security
(cf. Section 5.2). Moreover, Section 6.2 shows that any NMC resilient
against bit-wise tampering is also secure w.r.t. multiple encodings (cf.
Section 5.1.2). Section 6.1.3 shows that the self-destruct mode is neces-
sary.

The second code, in Section 6.3, is a secret-state NMC secure against
parallel tampering (cf. Section 5.1.3) and is used for the cases of NM-CPA
and NM-SDA (cf. Section 5.3). Section 6.3.3 shows that the secret state is
necessary to obtain security against parallel tampering.

This chapter uses notation established in Chapter 5.1.

6.1 Simple Tampering

It turns out that a code construction by Dziembowski et al. [DPW10],
which combines an AMD code and a LEDSS (cf. Section 2.9), already is
a (continuously) non-malleable code resilient against tampering from the
class Fbit.1 This fact is proved in this section by first showing that the

1Dziembowski et al. [DPW10] only proved basic non-malleability of said code.



78 Non-Malleability against Bit-Wise Tampering

LEDSS is a non-malleable reduction from Fbit to an intermediate class Fxor

(defined below) and then that the AMD code is a non-malleable reduction
from Fxor to Ftriv. Hence, combining the two yields a non-malleable code
against Fbit.

6.1.1 From Bit-Wise Tampering to Algebraic Manipulation

Consider the class Fxor that consists of all functions f : {0, 1}n → {0, 1}n
of the following types:

• Algebraic functions: f(x) = x + ∆ for some ∆ ∈ {0, 1}n; such
functions are denoted by “⊕∆”.

• Constant functions: f(x) = z for some z ∈ {0, 1}n; such functions
are denoted by “}z”.

A LEDSS with sufficiently high minimum distance constitutes a non-
malleable reduction from Fbit to Fxor:

Theorem 6.1. Let CS = (E,D) be a (k, n, δ, τ)-LEDSS with δ > 1/4 and
δ ≥ τ .2 Then, CS is an (Fbit,Fxor, ε)-non-malleable reduction for

ε = 2−(τn−1) +

(
τ

(δ − 1/4)2

)τn/2
.

Security Proof

The reader is referred to Sections 5.1.1 and 5.1.4 for security definitions
of non-malleable codes and notation surrounding bit-wise tampering, re-
spectively.

Let Rbit := RFbit,CS and Sxor := SFxor,σ be as in Definition 5.2 (for a
simulator σ to be determined) and fix some distinguisher D. The theorem
is proved conditioned on the message m encoded by D.

In the following, queries f ∈ Fbit with 0 ≤ a(f) ≤ τn, τn < a(f) <
(1− τ)n, and (1− τ)n ≤ a(f) ≤ n are called low queries, middle queries,
and high queries, respectively.

On a high level, the proof proceeds as follows: First, one shows that
middle queries are rejected with high probability. Then, one proves that
issuing low and high queries actually corresponds to guessing bits of the
encoding that is being tampered with. Using the secrecy property of the

2Note that the requirement δ ≥ τ can always be achieved by “ignoring” some of the
secrecy.
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LEDSS, one can show that only with negligible probability, some attacker
can guess sufficiently many of those bits before the self-destruct in order to
be able to distinguish tampering with an actual encoding from tampering
with uniformly random bits, which leads to a simulation strategy.

Analyzing low and high queries. Consider the system Rbit and let
c = c[1] · · · c[n] = E(m; r) be the encoding of the message m initially
specified by D, where r are the random bits used by E. Moreover, for a
query f , let c̃ = c̃[1] · · · c̃[n] = f(E(m; r)) be the tampered encoding. By
the linearity of the LEDSS,

D(c̃) = D(c) + D(d),

where d = c̃− c.

• Consider a low query f . It fully determines the bits i ∈ B(f) of
d; namely, d[i] = val(f [i]). Let d∗ be a codeword such that d∗[i] =
val(f [i]) for all i ∈ B(f). Due to the fact that the LEDSS has
distance δ ≥ τ and |B(f)| ≥ (1− τ)n, d∗ is unique (and determined
solely by f).

Therefore, D(c̃) 6= ⊥ if and only if for all i ∈ A(f), d[i] = d∗[i] or,
equivalently, val(f [i])− c[i] = d∗[i].

• Consider a high query f . It fully determines the bits i ∈ A(f) of
c̃; namely, c̃[i] = val(f [i]). Let c̃∗ be a codeword such that c̃∗[i] =
val(f [i]) for all i ∈ A(f). Due to the fact that the LEDSS has
distance δ ≥ τ and |A(f)| ≥ (1− τ)n, c̃∗ is unique (and determined
solely by f).

Therefore, D(c̃) 6= ⊥ if and only if for all i ∈ B(f), c̃[i] = c̃∗[i] or,
equivalently, c[i] + val(f [i]) = c̃∗[i].

Handling middle queries. Consider the hybrid system H that pro-
ceeds as Rbit except that as soon as D specifies a middle query, it outputs
⊥ and self-destructs.

Lemma 6.2. ∆D(Rbit,H) ≤ 2−τn +
(

τ
(δ−1/4)2

)τn/2
.

The proof of Lemma 6.2 follows a generic paradigm, at whose core is the
so-called self-destruct lemma, which deals with the indistinguishability
of hybrids with the self-destruct property and is explained in detail in
Section 7. Roughly, this lemma applies whenever the first hybrid (in this
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case Rbit) can be turned into the second one (in this case H) by changing
(“bending”) the answers to a subset (the “bending set”) of the possible
queries to always be ⊥, and when additionally non-bent queries have a
unique answer (cf. the statement of Lemma 7.1). Intuitively, the lemma
states that adaptivity does not help distinguish in such cases.3

Proof. To use the self-destruct lemma, note that both Rbit and H answer
queries from X := F by values from Y := {0, 1}k ∪ {⊥}. Moreover, note
that their internal randomness is an element uniformly chosen from the
space R of random strings r for the encoding algorithm E.

Let g : X × R → Y be the function according to which Rbit answers
queries, i.e.,

g(f, r) := D(f(E(m; r))).

Hence, Rbit is a PSSD game and H is its B-bending (cf. Definition 7.2)
where B ⊆ Fbit is the set of middle queries.

Moreover, given the above it is easy to see that queries f /∈ B, i.e., low
and high queries, can only be answered by a unique value yf or ⊥. For

• low queries that value is yf := m+ D(d∗) and for

• high queries that value is yf := D(c̃∗).

Finally, note that by the original analysis of middle queries f in [DPW10],

P[D(f(E(m; r))) 6= ⊥] ≤
(

τ

(δ − 1/4)2

)τn/2
.

Bit-guessing. Consider the hybrid system H. Making tamper queries
to this system essentially amounts to trying to “guess” the bits of the
encoding E(m) with the caveat that an incorrect guess leads to the self-
destruct. This intuition is formalized by defining a system B capturing
the bit-guessing and a wrapper system W such that WB ≡ H.

System B works as follows: Initially, it takes a value m ∈ {0, 1}k,
computes an encoding c[1] · · · c[n]← E(m) of it, and outputs λ (where the
symbol λ indicates an empty output). Then, it repeatedly accepts guesses
gi = (j, b), where (j, b) is a guess b for cj . If a guess gi is correct, B returns
ai = 1. Otherwise, it outputs ai = ⊥ and self-destructs (i.e., all future
answers are ⊥).

3Note that Lemma 7.1 is state for games that accept parallel queries. This is not
needed here, i.e., p = 1 in the statement of the lemma.
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Wrapper System W

init
∀i ∈ [n] : c[i]← ∅

on first m at A
output m at in

on (tamper, f) with 0 ≤ a(f) ≤ τn at E
if
∃codeword d∗: ∀i ∈ B(f) : val(f [i]) = d∗[i]

for i where f [i] ∈ A(f)
g ← val(f [i])− d∗[i]
if c[i] = ∅

output (i, g) at in
get a ∈ {⊥, 1} at in
if a = ⊥

self-destruct
c[i]← g

else
if c[i] 6= g

self-destruct
if D(d∗) = ⊥

self-destruct
else

output m+ D(d∗) at out
else

self-destruct

on (tamper, f) with τn < a(f) < n− τn at out
self-destruct

on (tamper, f) with n− τn ≤ a(f) ≤ n at out
if ∃codeword c̃∗ : ∀i ∈ A(f) : val(f [i]) = c̃∗[i]

for i where f [i] ∈ B(f)
g ← c̃∗[i]− val(f [i])
if c[i] = ∅

output (i, g) at in
get a ∈ {⊥, 1} at in
if a = ⊥

self-destruct
c[i]← g

else
if c[i] 6= g

self-destruct
if D(c̃∗) = ⊥

self-destruct
else

output D(c̃∗) at out
else

self-destruct

Figure 6.1: The wrapper system W. The command self-destruct causes
W to output ⊥ at B and to halt.

The wrapper system W (cf. Figure 6.1) initially forwards the mes-
sage m the distinguisher wishes to encode to B, which internally creates
an encoding c[1] · · · c[n] of m. Then, W follows the intuition already built
above:

• A low query f results in m + D(d∗) if c[i] = val(f [i]) − d∗[i] for all
i ∈ A(f).

• A middle query f results in ⊥.

• A high query f results in D(c̃∗) if c[i] = c̃∗[i] − val(f [i]) for all i ∈
B(f).

Hence, upon receiving a low or a high query, W issues the corresponding
guesses to B. If all guesses succeed, W outputs m + D(d∗) resp. D(c̃∗).
Otherwise, it outputs ⊥ and self-destructs.

Lemma 6.3. WB ≡ H.

Proof. By inspection and the above arguments.
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Simulation. Consider the systemB′ behaves asB except that the initial
input m is ignored and the c1, . . . , cn are chosen uniformly at random and
independently.

Lemma 6.4. ∆D(B,B′) ≤ 2−τn.

Proof. The behavior of B (and similarly that of B′) is described by a se-
quence (pB

Ai|Gi)i≥0 of conditional probability distributions (cf. Section 2.3),
where pB

Ai|Gi(a
i, gi) is the probability of observing the outputs ai = (λ, a1,

. . . , ai) given the inputs gi = (m, g1, . . . , gi). For simplicity, assume that
gi is such that no position is guessed twice (a generalization is straight-
forward) and that ai is of the form {λ}{1}∗{⊥}∗ (as otherwise it has
probability 0 anyway).

For system B, all i, and any gi, pB
Ai|Gi(a

i, gi) = 2−(s+1) if ai has
s < min(i, τn) leading 1’s; this follows from the τn-wise independence
of the bits of E(m). All remaining output vectors ai, i.e., those with at
least min(i, τn) preceding 1’s, share a probability mass of 2−min(i,τn), in a
way that depends on the code in use and on m. (It is easily verified that
this yields a valid probability distribution.) The behavior of B′ is obvious
given the above (simply replace “τn” by “n” in the above description).

On both systems B and B′, one can define an MBO B (cf. Section 2.3)
that is zero as long as less than τn positions have been guessed correctly.
In the following, B̂ and B̂′ denote B and B′ with the MBO, respectively.

Analogously to the above, the behavior of B̂ (and similarly that of
B̂′) is described by a sequence (pB̂

Ai,Bi=0|Gi)i≥0 of conditional probability

distributions, where pB̂
Ai,Bi=0|Gi(a

i, gi) is the probability of observing the
outputs ai = (λ, a1, . . . , ai) and b0 = b1 = . . . = bi = 0 given the inputs
gi = (m, g1, . . . , gi). One observes that due to the τn-wise independence
of E(m)’s bits, for i < τn,

pB̂
Ai,Bi=0|Gi(a

i, gi) = pB̂′

Ai,Bi=0|Gi(a
i, gi)

=


2−(s+1) if ai has s < i leading 1’s,
2−i if ai has i leading 1’s, and
0 otherwise,
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Simulator σ
init
∀i ∈ [n] : c[i]← {0, 1}

on (tamper, f) with 0 ≤ a(f) ≤ τn at out
for i where f [i] ∈ A(f)

d′[i]← val(f [i])⊕ c[i]
for i where f [i] ∈ B(f)

d′[i]← val(f [i])
d′ ← d′[1] · · · d′[n]
if D(d′) = ⊥

output (tamper,⊥) at in
else

output ⊕D(d′) at in

on (tamper, f) with τn < a(f) < (1− τ)n at out
output (tamper,⊥) at in

on (tamper, f) with (1− τ)n ≤ a(f) ≤ n at out
for i where f [i] ∈ A(f)

c′[i]← val(f [i])
for i where f [i] ∈ B(f)

c′[i]← c[i]⊕ val(f [i])
c′ ← c′[1] · · · c′[n]
output (tamper,}D(c′)) at in

Figure 6.2: The simulator σ.

and for i ≥ τn,

pB̂
Ai,Bi=0|Gi(a

i, gi) = pB̂′

Ai,Bi=0|Gi(a
i, gi)

=

{
2−(s+1) if ai has s < τn leading 1’s,
0 otherwise.

Therefore, B̂
g
≡ B̂′ and ∆D(B,B′) ≤ ΓD(B̂′). Observe that by an ar-

gument similar to the one above, adaptivity does not help in provoking
the MBO of B̂′. Thus, ΓD(B̂′) ≤ 2−τn, since an optimal non-adaptive
strategy simply tries to guess distinct positions.

Consider now the system WB′. Due to the nature of B′, the behavior
ofWB′ is independent of the valuem that is initially encoded. This allows
to easily design a simulator σ as such that WB′ ≡ Sxor. It internally
creates a simulated encoding consisting of uniformly random bits (just as
WB′) and then follows the intuition above. The simulator is described in
Figure 6.2. By inspection, one easily verifies:

Lemma 6.5. WB′ ≡ Sxor.

The proof of Theorem 6.1 now follows from a simple triangle inequality.

Proof (of Theorem 6.1). From Lemmas 6.2-6.5, one obtains that for all
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distinguishers D,

∆D(Rbit,Sxor)

≤ ∆D(Rbit,H) + ∆D(H,WB)︸ ︷︷ ︸
=0

+ ∆D(WB,WB′)︸ ︷︷ ︸
=∆DW(B,B′)

+ ∆D(WB′,Sxor)︸ ︷︷ ︸
=0

≤ 2−τn +

(
τ

(δ − 1/4)2

)τn/2
+ 2−τn

≤ 2−(τn−1) +

(
τ

(δ − 1/4)2

)τn/2
.

Security against Fcopy. By inspecting the above proof, one can easily
see that if only functions from Fcopy ⊆ Fbit are used, no queries ⊕∆ for
∆ 6= 0n are issued by σ. This implies that the LEDSS is a non-malleable
code resilient against Fcopy.

Theorem 6.6. Let CS = (E,D) be a (k, n, δ, τ)-LEDSS with δ > 1/4 and
δ ≥ τ . Then, CS is an (Fbit, ε)-non-malleable code for

ε = 2−(τn−1) +

(
τ

(δ − 1/4)2

)τn/2
.

6.1.2 From Algebraic Manipulation to Non-Malleability

An AMD code already constitutes a non-malleable reduction from Fxor

to Ftriv:

Theorem 6.7. Let AMD = (A,V) be a ρ-AMD code. Then, AMD is an
(Fxor,Ftriv, ρ)-non-malleable reduction.

Proof. Consider the following simulator σ: Upon receiving (tamper, f) for
f ∈ Fxor at the outside interface, it outputs (tamper, f) at the inside
interface if f = }z for some z ∈ {0, 1}n or if f = ⊕0n. Otherwise, it
outputs (tamper,⊥) at the inside interface.

Consider Rxor := RFxor,AMD and Strivial := SFtriv,σ. These systems only
differ in behavior if the first query (tamper,⊕∆) with ∆ 6= 0n does not
trigger the self-destruct. Since all other queries (replacing by a constant
or the identity) clearly do not reveal any information on the encoding, the
security of the AMD code guarantees that this happens with probability
at most ρ.
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6.1.3 On the Necessity of Self-Destruct

No (k, n)-coding scheme (Enc,Dec) is (continuously) non-malleable against
Fcopy without self-destruct. This fact is reminiscent of the negative result
by Gennaro et al. [GLM+04], and was already observed by Faust et al.
[FMNV14] (without a proof) for the easier case of so-called strong con-
tinuous non-malleability. The distinguisher D provided by Theorem 6.8
is universal, i.e., it breaks any coding scheme (if given oracle access to its
decoding algorithm).

For the remainder of this section, let Rcopy := RFcopy,CS and Strivial :=
SFtriv,σ for an arbitrary simulator σ. However, both Rcopy and Strivial are
stripped of the self-destruct mode.

Theorem 6.8. There exists a distinguisher D such that for all coding
schemes CS = (Enc,Dec) and all simulators σ,

∆D(Rcopy,Strivial) ≥ 1− n+ 1

2k
.

Proof. DistinguisherD := DExt uses an algorithm Ext that always extracts
the encoded message when interacting with system Rcopy and does so with
small probability only when interacting with system Strivial.

The extraction algorithm. Consider the following algorithm, denoted
Ext, which repeatedly issues tamper queries (tamper, f) with f ∈ Fcopy, ex-
pects an answer in {0, 1}k∪{⊥, same}, and eventually outputs a valuem′ ∈
{0, 1}k: Initially, it initializes variables f [1], . . . , f [n]← ∅ (where the value
∅ stands for “undefined”). Then, for i = 1, . . . , n it proceeds as follows: It
queries (tamper, f) with f = (f [1], . . . , f [i− 1], zero, keep, . . . , keep). If the
answer is same, it sets f [i] ← zero and otherwise f [i] ← one. In the end
Ext outputs m′ ← Dec(val(f [1]) · · · val(f [n])).

The distinguisher. Consider the following distinguisherDExt: Initially,
it choosesm← {0, 1}k and outputsm to the A-interface of the system it is
connected to. Then, it lets Ext interact with that system, forwarding the
tamper queries to the E-interface and the answers from the B-interface,
replacing an answer by same whenever it is m. When Ext terminates and
outputs a value m′, DExt outputs 1 if m′ = m and 0 otherwise.

Real world. Assume that before the ith iteration of Ext, asking the
query (tamper, f) with f = (f [1], . . . , f [i−1], keep, keep, . . . , keep) to Rcopy

yields the answer m. From this it follows that either (f [1], . . . , f [i −
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1], zero, keep, . . . , keep) or (f [1], . . . , f [i − 1], one, keep, . . . , keep) leads to
the answer m; Ext sets f [i] appropriately (the fact that the answer m
is replaced by same plays no role here). Thus, in the end, computing
Dec(val(f [1]) · · · val(f [n])) yields m. Therefore,

P[DExtR
copy = 1] = 1.

Ideal world. Consider the following modified distinguisher D̂Ext that
works as DExt except that it does not modify the answers received by
the system it is connected to. Moreover, let Ŝtrivial be the the system that
ignores all messagesm input at interface A and handles queries (tamper, f)
by inputting them to σ at interface out and outputting σ’s answer at
interface in, replacing (tamper, id) by same.

Note that in both experiments, Ext’s view is identical unless it causes
σ to output m (the value encoded by D), which happens with probability
at most n

2k
. Thus,

|PDExtS
trivial

[Ext outputs m]− PD̂ExtŜ
trivial

[Ext outputs m]| ≤ n

2k
.

Furthermore, in experiment D̂ExtŜ
trivial, Ext’s view is independent of m,

and therefore, m is output by Ext with probability 1
2k
. Hence,

P[DExtS
trivial = 1] ≤ n+ 1

2k
.

This proves the theorem.

6.2 Achieving Adaptive Non-Malleability

If a coding scheme is non-malleable w.r.t. Fbit (or Fcopy), then it is also
adaptive non-malleable w.r.t. F̄bit (or F̄copy).

Theorem 6.9. Let ε ≥ 0. If a (k, n)-coding scheme (Enc,Dec) is (Fbit, ε)-
non-malleable (resp. (Fcopy, ε)-non-malleable), it is also (F̄bit, 2`ε+

q`
2k
, `, q)-

adaptive non-malleable (resp. (F̄copy, 2`ε+
q`
2k
, `, q)-adaptive non-malleable),

for all `, q ∈ N.

Left-or-right non-malleability. The proof of Theorem 6.9 is facili-
tated by considering the notion of left-or-right (LOR) non-malleability,
for which the transition from single-encoding to multi-encoding security
is less cumbersome than for the standard definition.
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System LF̄,CS
b

init
i← 0

on (lor-enc,m0,m1) at A
i← i+ 1

m
(i)
0 ← m0

m
(i)
1 ← m1

c(i) ← Enc(mb)

on (tamper, f) with f ∈ F (i) at E
c′ ← f(c(1), . . . , c(i))
m′ ← Dec(c′)
if m′ = ⊥

self-destruct
if ∃j : m′ ∈ {m(j)

0 ,m
(j)
1 }

m′ ← id(j)

output m′ at B

Figure 6.3: Systems LF̄,CS
0 and LF̄,CS

1 defining LOR-non-malleability of
(Enc,Dec). The self-destruct command causes the system to output ⊥ at
interface B and halt.

In the LOR variant,4 the A-interface takes as input pairs of messages
and encodes either always the first or always the second message. The
goal of the attacker is to find out which is the case. Formally, LOR-non-
malleability is defined using the two random {A,B,E}-systems LF̄,CS

0 and
LF̄,CS

1 , shown in Figure 6.3.5
When processing a tamper query, if there are multiple indices j for

which id(j) could be output, LF̄,CS
b outputs the largest such j.

Definition 6.1. A coding scheme CS = (Enc,Dec) is (F̄ , ε, `, q)-adaptive
LOR non-malleable if

∆D(〈LF̄,CS
0 〉`,q, 〈LF̄,CS

1 〉`,q) ≤ ε

for all distinguishers D, where 〈·〉`,q denotes that only the first ` queries at
the A-interface and only the first q queries at the E-interface are processed.

The two definitions are equivalent, however, as shown by Lemmas 6.10
and 6.11.

Lemma 6.10. If CS = (Enc,Dec) is (F̄ , ε, `, q)-adaptive non-malleable,
it is also (F̄ , 2ε, `, q)-adaptive LOR-non-malleable.

Proof. Fix `, q, and a simulator σ, and let R := 〈R̄F̄,CS〉`,q, S := 〈S̄σ〉`,q,
L0 := 〈LF̄,CS

0 〉`,q, and L1 := 〈LF̄,CS
1 〉`,q. For b ∈ {0, 1}, consider the fol-

lowing reduction Cb: Upon the ith query (lor-enc, x0, x1) at the outside
4One should not confuse the above LOR variant with strong non-malleability, the

difference being that for strong non-malleability LF̄,CS
b would output id(j) iff c′ = c(j).

In fact, being equivalent to non-malleability, our LOR variant is strictly weaker.
5The same LOR variant was already considered in [DPW10, Definition A.1] (and

referred to as “alternative” non-malleability). In this sense Lemma 6.10 and 6.11 below
are a generalization of [DPW10, Theorem A.1] to the adaptive and continuous case.
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A-interface, it stores m(i)
0 := x0 and m

(i)
1 := x1 internally and outputs

xb at the inside A-interface. Upon a query (tamper, f) at the outside
E-interface, Cb outputs (tamper, f) at the inside E-interface and subse-
quently receives a value m′ at the inside interface. If there exist indices i′

such that m′ ∈ {m(i′)
0 ,m

(i′)
1 }, Cb outputs id(i′) for the largest such index

at the outside B-interface. Otherwise, it outputs m′.
One observers that

C0R ≡ L0 and C1R ≡ L1 and C0S ≡ C1S,

where the third equivalence follows from the fact that the observable be-
havior of CbS is independent of the messages Cb outputs to S. Hence, for
all distinguishers D,

∆D(L0,L1) = ∆D(C0R,C1R)

≤ ∆D(C0R,C0S) + ∆D(C0S,C1S) + ∆D(C1S,C1R)

≤ ∆DC0(R,S) + ∆DC1(R,S)

≤ 2ε.

Lemma 6.11. If (Enc,Dec) is (F̄ , ε, `, q)-adaptive LOR-non-malleable, it
is also (F̄ , ε+ q`

2k
, `, q)-adaptive non-malleable.

Proof. Fix ` and q, and let R := 〈R̄F̄,CS〉`,q, S := 〈S̄σ〉`,q (for a sim-
ulator σ to be defined next), L0 := 〈LF̄,CS

0 〉`,q, and L1 := 〈LF̄,CS
1 〉`,q.

Consider the following simulator σ: It internally keeps a counter i ← 0.
When invoked on (i′, f) with f ∈ F (i′), if i′ > i, it samples m(j)

1 ←
{0, 1}k \ {m(1)

1 , . . . ,m
(j−1)
1 } and computes c(j)1 ← Enc(m

(j)
1 ) for all i <

j ≤ i′ and sets i ← i′. Then, it computes the tampered codeword
c′ ← Dec(f(c

(1)
1 , . . . , c

(i)
1 )) and decodes it to m′ ← Dec(c′). If m′ = m

(j)
1

for some indices j, σ returns (same, j) for the largest such j. Otherwise,
it returns m′.

Consider the following reduction C: Upon the ith message m at the
outside A-interface, it chooses m(i)

1 ← {0, 1}k \ {m
(1)
1 , . . . ,m

(i−1)
1 }, stores

m
(i)
0 := m internally, and outputs (lor-enc,m

(i)
0 ,m

(i)
1 ) at the inside A-

interface. Upon a query (tamper, f) at the outside E-interface, C outputs
(tamper, f) at the inside E-interface and subsequently receives a value m′

at the inside B-interface. If m′ = id(j) for some j, C outputs m(j)
0 at the

outside B-interface. Otherwise, it outputs m′.
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Observe that CL1 ≡ S. In both cases, the ith message m is treated by
sampling fresh values m(i)

1 distinct from all m(1)
1 , . . . ,m

(i−1)
1 and comput-

ing c(i)1 as an encoding of m(i)
1 . (This is delayed in S, but that does not

change the distribution.) A query (tamper, f) with some function f ∈ F (i)

is answered by evaluating f(c
(1)
1 , . . . , c

(i)
1 ), decoding the resulting codeword

to obtain a messagem′, and ifm′ = m
(j)
1 for some j ∈ {1, . . . , i}, returning

m
(j)
0 and m′ otherwise.
The systems CL0 and R are, however, not equivalent. The reason

is that if, in CL0, Dec(f(c
(1)
0 , . . . , c

(i)
0 )) = m

(j)
1 for some j ∈ {1, . . . , i},

then L0 returns (same, j), which C replaces by m
(j)
0 . There is no com-

parable behavior in R. Provoking this event, however, corresponds to
“non-adaptively guessing” one of the values m(j)

1 , which occurs with prob-
ability at most i

2k
in each query.

Hence, for all distinguishers D,

∆D(R,S) = ∆D(R,CL1)

≤ ∆D(R,CL0) + ∆D(CL0,CL1)

≤ q`
2k

+ ∆DC(L0,L1)

≤ q`
2k

+ ε.

From single to multiple encodings. It remains to show that LOR
non-malleability implies adaptive LOR non-malleability.

Lemma 6.12. If (Enc,Dec) is (F̄copy, ε, 1, q)-adaptive LOR-non-malleable,
it is also (F̄copy, ` · ε, `, q)-adaptive LOR-non-malleable, for all ` ∈ N.

Proof. Fix ` and q, let F̄ := F̄copy, and set L′b := 〈LF̄,CS
b 〉`,q and Lb :=

〈LF̄,CS
b 〉1,q for b ∈ {0, 1}.
The distinguishing advantage between L′0 and L′1 is bounded via a

hybrid argument, where the ith hybrid H(i) picks x0 when processing the
first i encode queries (lor-enc, x0, x1) and x1 afterwards. For each i, the
distinguishing advantage between successive hybrids H(i−1) and H(i) is
bounded by exhibiting a system Ci that reduces distinguishing L0 and L1

to distinguishing the hybrids.
For i = 0, 1, . . . , `, hybrid H(i) works as follows: Initialization and

(tamper, f) are defined as with L′0 and L′1. The first i queries (lor-enc, x0, x1)
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are handled by encoding x0, i.e., c(j) ← Enc(x0) for the jth encoding. For
all later queries, x1 is encoded, i.e., c(j) ← Enc(x1).

One observes that

H(`) ≡ L′0 and H(0) ≡ L′1.

For i = 1, . . . , n, reduction Ci works as follows: For the first i −
1 encode queries (lor-enc, x0, x1) (at the outside interface), it computes
and stores an encoding of x0, i.e., c(j) ← Enc(x0) for the jth encoding.
Upon the ith query (lor-enc, x0, x1), it outputs (lor-enc, x0, x1) at the inside
interface. (Note that as a consequence, a target encoding c ← Enc(xb)
is generated, depending on whether Ci is connected to L0 or L1.) The
remaining encode queries are handled by encoding the second message x1,
i.e., c(j) ← Enc(x1).

System Ci maintains a counter j that keeps track of the number of
encode queries it has encountered. When a tamper query (tamper, f) with
f ∈ F (j)

copy and f = (f [1], . . . , f [n]) is received at the outside interface, it
computes f [1]′, . . . , f [n]′, where

f [v]′ :=


f [v] if f [v] ∈ {zero, one},
zero if f [v] = keepw for w 6= i, and c(w)[v] = 0,
one if f [v] = keepw for w 6= i, and c(w)[v] = 1,
keep1 if f [v] = keepi.

Then, it outputs (tamper, f ′) at the inside interface, where f ′ is the func-
tion in F (1)

copy with f ′ = (f [1]′, . . . , f [n]′).6 Let m′ be the answer to the
tamper query at the inside interface. Ci computes the set of indices j
for which m′ matches one of the two messages of the jth encode query.
Moreover, if m′ = same, index i is added to that set as well. Then, it
outputs id(j) for the largest index j in the set. If the set is empty, m′ is
output.

One observes that

CiL0 = H(i) and CiL1 = H(i−1).

6For simplicity, we assume here that L0 and L1 answer tamper queries consisting
of zero and one instructions only even before a message has been encoded.
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Thus, for all distinguishers D,

∆D(L′0,L
′
1) = ∆D(H(`),H(0)) ≤

∑̀
i=1

∆D(H(i),H(i−1))

≤
∑̀
i=1

∆D(CiL0,CiL1) ≤
∑̀
i=1

∆DCi(L0,L1) ≤ ` · ε.

Proof (of Theorem 6.9). Follows from Lemmas 6.10, 6.11, and 6.12 in a
straight-forward manner.

Lemma 6.13. If (Enc,Dec) is (F̄bit, ε, 1, q)-adaptive LOR-non-malleable,
it is also (F̄bit, ` · ε, `, q)-adaptive LOR-non-malleable, for all ` ∈ N.

Proof. The proof is analogous to the proof of Lemma 6.12, except that
the reduction system Ci computes f [v]′ as follows:

f [v]′ :=



f [v] if f [v] ∈ {zero, one},
zero if f [v] = keepw for w 6= i, and c(w)[v] = 0,
one if f [v] = keepw for w 6= i, and c(w)[v] = 1,
keep1 if f [v] = keepi,
one if f [v] = flipw for w 6= i, and c(w)[v] = 0,
zero if f [v] = flipw for w 6= i, and c(w)[v] = 1,
flip1 if f [v] = flipi.

6.3 Parallel Tampering

6.3.1 A Code Non-Malleable against Parallel Tampering

This section shows a non-malleable code with secret state resilient against
parallel tampering. The intuition behind the construction is the following:
If a code has the property (as is the case with, e.g., the scheme from
Section 6.1.1 secure against non-parallel bit-wise tampering) that changing
a single bit of a valid encoding results in an invalid codeword, then the
tamper function that fixes a particular bit of the encoding and leaves the
remaining positions unchanged can be used to determine the value of that
bit (cf. Section 6.1.3); this attack is parallelizable, and thus a code of this
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type cannot provide security against parallel tampering. A similar attack
is also possible if the code corrects a fixed (known) number of errors.
To circumvent this issue, the construction presented here uses a—for the
lack of a better word—“dynamic” error-correction bound: The secret state
(which is initially chosen at random) is used to determine the positions of
the encoding in which (a certain amount of) errors is tolerated.

Construction. Let F = GF(2) and α > 0. Let (E,D) be a (k, n, δ, τ)-
LECSS (cf. Definition 2.5 in Section 2.9) with minimum distance δ and
secrecy τ over F such that:7

• Minimum distance: δ > 1/4 + 2α and δ/2 > 2α.

• Constant rate: k/n = Ω(1).

• Constant secrecy: τ = Ω(1).

In the following, it is assumed that α ≥ τ , an assumption that can always
be made by ignoring some of the secrecy. Consider the following (k, n)-
code with secret state CS = (Gen,Enc,Dec):

• Gen: Choose a subset T of [n] of size τn uniformly at random and
output it.

• Enc(m) for m ∈ {0, 1}k: Compute c = E(m) and output it.

• Dec(c, T ) for c ∈ {0, 1}n: Find a codeword w = (w[1], . . . , w[n])
with dH(w, c) ≤ αn. If no such w exists, output ⊥. Moreover, if
w[j] 6= c[j] for some j ∈ T , output ⊥ as well. Otherwise, decode w
to its corresponding plaintext m and output it.

The above code is resilient against (continuous) parallel tampering:

Theorem 6.14. For all p ∈ N, (k, n)-code CS = (Gen,Enc,Dec) based on
a (k, n, δ, τ)-LECSS satisfying the three conditions above is (Fcopy, p, εnmc)-
non-malleable with

εnmc = p(O(1) · e−τn/16 + e−τ
2n/4) + pe−τ

2n.

7The reasons for these restrictions become apparent in the proof; of course, α must
be chosen small enough in order for these constraints to be satisfiable.
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Instantiating the construction. Section 6.3.2 details how a LECSS
satisfying the above properties can be constructed by combining high-
distance binary codes with a recent result by Cramer et al. [CDD+15] in
order to “add” secrecy. The resulting LECSS has secrecy τ = Ω(1) and
rate ρ = Ω(1) (cf. Corollary 6.23 in Section 6.3.2). The secrecy property
depends on the random choice of a universal hash function. Thus, the
instantiated code can be seen as a construction in the CRS model. When
combined with the single-bit PKE as described above, the description of
the hash function can be made part of the public key.

Security Proof

The reader is referred to Sections 5.1.3 and 5.1.4 for security definitions
of non-malleable codes and notation surrounding bit-wise tampering, re-
spectively.

Let Rcopy := R
Fcopy,CS
p and Strivial := SFtriv,σ

p be as in Definition 5.5 (for
a simulator σ to be determined) and fix some distinguisher D.

In the following, queries f ∈ Fbit with 0 ≤ a(f) ≤ τn, τn < a(f) <
(1− τ)n, and (1− τ)n ≤ a(f) ≤ n are called low queries, middle queries,
and high queries, respectively.

On a high level, the proof proceeds as follows: First, it shows that mid-
dle queries are rejected with high probability. For low and high queries,
one can show that their effect on the decoding process can always be
determined from the query itself and the bits of the encoding at the posi-
tions indexed by the secret trigger set T . Since the size of T is τn, these
symbols are uniformly random and independent of the encoded message,
which immediately implies a simulation strategy for σ.

Analyzing query types. The following lemma states that an isolated
middle query is rejected with high probability.

Lemma 6.15. Let f ∈ Fcopy be a middle query. Then, for any m ∈
{0, 1}k,

P[Dec(f(Enc(m)), T ) 6= ⊥] ≤ O(1) · e−τn/16 + e−τ
2n/4

where the probability is over the randomness of Enc and the choice of the
secret trigger set T .

Proof. Fix m ∈ {0, 1}k and a middle query f = (f [1], . . . , f [n]). Suppose
first that a(f) ≥ n/2. Define

W := {w ∈ Fn | w is codeword ∧ ∃r : dH(f(E(x; r)), w) ≤ αn},
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where r is the randomness of E. That is,W is the set of all codewords that
could possibly be considered while decoding an encoding of x tampered
with via f . Consider two distinct codewords w,w′ ∈ W. From the defi-
nition of W it is apparent that w[j] 6= val(f [j]) for at most αn positions
j ∈ A(f) (and similarly for w′), which implies that w and w′ differ in
at most 2αn positions j ∈ A(f). Therefore, w and w′ differ in at least
(δ − 2α)n positions j /∈ A(f).

For w ∈ W, let w̃ be the projection of w onto the unfixed positions
j /∈ A(f) and set W̃ := {w̃ | w ∈ W}. The above distance argument
implies that |W| = |W̃|. Moreover, W̃ is a binary code with block length
n− a(f) and relative distance at least

(δ − 2α)n

n− a(f)
≥ (δ − 2α)n

n/2
= 2δ − 4α > 1/2,

where the last inequality follows from the fact that δ and α are such
that δ − 2α > 1/4. Therefore, by the Plotkin bound (Theorem 2.3 in
Section 2.12),8

|W| = |W̃| ≤ O(1).

Denote by c = (c[1], . . . , c[n]) and c̃ = (c̃[1], . . . , c̃[n]) the (random
variables corresponding to the) encoding c = Enc(m) and the tampered
encoding c̃ = f(c), respectively. For an arbitrary (n-bit) codeword w ∈ W,

E[dH(c̃, w)] =

n∑
j=1

E[dH(c̃[j], w[j])] ≥
∑
j∈J

E[dH(c̃[j], w[j])],

where J ⊆ [n] is the set containing the indices of the first τn bits not fixed
by f . Note that by the definition of middle queries, there are at least that
many, i.e., |J | = τn.

Observe that for j ∈ J , dH(c̃[j], w[j]) is an indicator variable with
expectation E[dH(c̃[j], w[j])] ≥ 1

2 , since c[j] is a uniform bit. Thus,

E[dH(c̃, w)] ≥ τn

2
.

Additionally, (dH(c̃[j], w[j]))j∈J are independent. Therefore, using a
Chernoff bound (Theorem 2.2 in Section 2.11), for ε > 0

P[dH(c̃, w) < (1− ε)τn/2] ≤ e−τε
2n/4.

8The size constant absorbed by O(1) here depends on how close 2δ − 4α is to 1/2.
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Therefore, the probability that there exists w ∈ W for which the above
does not hold is at most

|W| · e−τε
2n/4 ≤ O(1) · e−τε

2n/4,

by a union bound.
Suppose now that dH(c̃, w) ≥ (1 − ε)τn/2 for all codewords w ∈ W.

Then, over the choice of T ,9

P[∀j ∈ T : dH(c̃[j], w[j]) = 0] ≤ (1−(1−ε)τ/2)τn ≤ e−(1−ε)τ2n/2.

The lemma now follows by setting ε := 1
2 .

If a(f) < n/2 an analogous argument can be made for the difference
d := c̃ − c between the encoding and the tampered codeword, as such a
query f fixes at least half of the bits of d (to 0, in fact) and D(d) 6= ⊥
implies D(c̃) 6= ⊥.

It turns out that low and high queries always result in ⊥ or one other
value.

Lemma 6.16. Low queries f ∈ Fcopy can result only in ⊥ or the originally
encoded message m ∈ {0, 1}k. High queries f ∈ Fcopy can result only in ⊥
or one other value mf ∈ {0, 1}k, which solely depends on f . Furthermore,
mf , if existent, can be found efficiently given f .

Proof. The statement for low queries is trivial, since a low query f cannot
change the encoding beyond the error correction bound αn.

Consider now a high query f and the following efficient procedure:

1. Compute c̃f ← f(0n).

2. Find a codeword wf with dH(wf , c̃f ) ≤ 2αn (which is possible since
2α < δ/2).

3. Output wf or ⊥ if none exists.

Consider an arbitrary encoding c and let c̃ ← f(c) be the tampered en-
coding. Assume there exists w with dH(w, c̃) ≤ αn. Since a high query f
fixes all but τn bits, dH(c̃, c̃f ) ≤ τn ≤ αn, and, thus, dH(w, c̃f ) ≤ 2αn, by
the triangle inequality. Hence, w = wf .

In other words, if the decoding algorithm Dec on c̃ finds a codeword
w = wf , one can find it using the above procedure, which also implies that
high queries can only result in ⊥ or one other message mf = D(wf ).

9Recall that |T | = τn.
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Handling middle queries. Consider the hybrid game H1 that behaves
as Rcopy, except that it answers all middle queries by ⊥.

Lemma 6.17. ∆D(Rcopy,H1) ≤ p(O(1) · e−τn/16 + e−τ
2n/4).

The proof of Lemma 6.17 follows a generic paradigm, at whose core is the
so-called self-destruct lemma, which deals with the indistinguishability
of hybrids with the self-destruct property and is explained in detail in
Section 7. Roughly, this lemma applies whenever the first hybrid (in this
caseRcopy) can be turned into the second one (in this caseH1) by changing
(“bending”) the answers to a subset (the “bending set”) of the possible
queries to always be ⊥, and when additionally non-bent queries have a
unique answer (cf. the statement of Lemma 7.1). Intuitively, the lemma
states that parallelism and adaptivity do not help distinguish (much) in
such cases, which allows using Lemma 6.15.

Proof. The lemma is proved conditioned on the message m encoded by
D. To use the self-destruct lemma, note first that both Rcopy and H1

answer parallel tamper queries in which each component is from the set
X := F by vectors whose components are in Y := {0, 1}k∪{⊥}. Moreover,
both hybrids use as internal randomness a uniformly chosen element from
R := {0, 1}ρ × S, where ρ is an upper bound on the number of random
bits used by Enc and S is the set of all τn-subsets T of [n]. Rcopy answers
each component of a query f ∈ X by

g(f, (r, T )) := Dec(f(Enc(m; r)), T ).

Define B ⊆ X to be the set of all middle queries; H1 is the B-bending of
Rcopy (cf. Definition 7.2).

Observe that queries f /∈ B are either low or high queries. For low
queries f , the unique answer is yf = m, and for high queries f , yf = mf

(cf. Lemma 6.16). Thus, by Lemmas 7.1 and 6.15,

∆D(Rcopy,H1) ≤ p ·max
f∈B

P[g(f, (r, T )) 6= ⊥]

≤ p(O(1) · e−τn/16 + e−τ
2n/4),

where the probability is over the choice of (r, T ).

Handling high queries. Consider the following hybrid game H2: It
differs from H1 in the way it decodes high queries f . Instead of applying
the normal decoding algorithm to the tampered codeword c̃, it proceeds
as follows:
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1. Find wf (as in the proof of Lemma 6.16).

2. If wf does not exist, return ⊥.

3. If c̃[j] = wf [j] for all j ∈ T , return Dec(w). Otherwise, return ⊥.

Lemma 6.18. ∆D(H1,H2) ≤ pe−τ
2n.

Proof. The lemma is proved conditioned on the message m encoded by D
and the randomness r of the encoding. For the remainder of the proof,
r is therefore considered fixed inside H1 and H2. The proof, similarly to
that of Lemma 6.17, again uses the self-destruct lemma.

Set X := F and Y := {0, 1}k ∪ {⊥}. However, this time, let R := S.
For f ∈ X and T ∈ R, define

g(f, T ) := Dec(c̃, T ),

where c̃ := f(Enc(m; r)). The bending set B ⊆ X is the set of all high
queries f such that wf exists and dH(wf , c̃) > αn.10 It is readily verified
that H2 is a parallel stateless self-destruct game (cf. Definition 7.1) that
behaves according to g, and that H1 is its B-bending.

Consider a query f /∈ B. If f is a low query, the unique answer is
yf = m; if it is a middle query, yf = ⊥; if it is a high query, yf = mf (cf.
Lemma 6.16). Therefore,

∆D(H1,H2) ≤ max
f∈B

P[g(f, T ) 6= ⊥] ≤ pe−τ
2n,

where the first inequality follows from the self-destruct lemma (Lemma 7.1)
and the second one from the fact that dH(mf , c̃) > τn for queries f ∈ B,
and therefore the probability over the choice of T that it is accepted is at
most (1− τ)τn ≤ e−τ2n.

Simulation. By analyzing hybrid H2, one observes that low and high
queries can now be answered knowing only the query itself and the symbols
of the encoding indexed by the secret trigger set T ∈ S.

Lemma 6.19. Consider the random experiment of distinguisher D in-
teracting with H2. There is an efficiently computable function Dec′ :
Fcopy × S × {0, 1}τn → {0, 1}k ∪ {same,⊥} such that for any low or high
query f , any fixed message m, any fixed encoding c thereof, and any output
T of Gen, [

Dec′(f, T, (c[j])j∈T )
]
same/m

= Dec(f(c)),

10These are queries potentially accepted by H2 but not by H1.
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where [·]same/m is the identity function except that same is replaced by m
and where (c[j])j∈T are the symbols of c specified by T .

Proof. Consider a low query f . Due to the error correction, Dec(f(c)) is
the message originally encoded if no bit indexed by T is changed and ⊥
otherwise. Which one is the case can clearly be efficiently computed from
f , T , and (c[j])j∈T .

For high queries f the statement follows by inspecting the definition
of H2 and Lemma 6.16.

In H2, by the τn-secrecy of the LECSS, the distribution of the symbols
indexed by T is independent of the message m encoded by D. Moreover,
the distribution of T is trivially independent of m. This suggests the
following simulator σ: Initially, it chooses a random subset T from

(
[n]
τn

)
and chooses τn random symbols (c[j])j∈T . Every component f of any
tamper query is handled as follows: If f is a low or a high query, the
answer is Dec′(f, T, (c[j])j∈T ); if f is a middle query, the answer is ⊥.
This implies:

Lemma 6.20. H2 ≡ Strivial.

Proof of Theorem 6.14. Follows from Lemmas 6.17, 6.18, and 6.20 and a
triangle inequality.

6.3.2 LECSS for the Non-Malleable Code

Let F = GF(2) and α > 0. This section shows shows how to construct a
(k, n, δ, τ)-LECSS (E,D) (cf. Definition 2.5 in Section 2.9) with minimum
distance δ and secrecy τ over F and the following properties (as required
in Section 6.3.1):

• Minimum distance: δ > 1/4 + 2α and δ/2 > 2α.

• Constant rate: k/n = Ω(1).

• Constant secrecy: τ = Ω(1).

The construction combines high-distance binary codes with a recent result
by Cramer et al. [CDD+15], which essentially allows to “add” secrecy to
any code of sufficient rate.

Let C be a (n, l)-code with rate R = l
n over F. In the following we

write C(x) for the codeword corresponding to x ∈ Fl and C−1(c, e) for the
output of the efficient error-correction algorithm attempting to correct up



6.3 Parallel Tampering 99

to e errors on c, provided that e < δn/2;11 the output is ⊥ if there is no
codeword within distance e of c.

Adding secrecy. Let l be such that k < l < n. The construction
by [CDD+15] combines a surjective linear universal hash function h : Fl →
Fk with C to obtain a LECSS (E,D) as follows:12

• E(m) for m ∈ {0, 1}k: Choose s ∈ {0, 1}l randomly such that h(s) =
x and output c = C(s).

• D(c, e) for c ∈ {0, 1}n and e < δn/2: Compute s = C−1(c, e). If
s = ⊥, output ⊥. Otherwise, output x = h(s).

The resulting LECSS has rate ρ = k
ln and retains all distance and error-

correction properties of C. Additionally, if R is not too low, the LECSS
has secrecy. More precisely, Cramer et al. prove the following theorem:

Theorem 6.21 ([CDD+15]). Let τ > 0 and η > 0 be constants and H
be a family of linear universal hash functions h : Fl → Fk. Given that
R ≥ ρ + η + τ + h(τ), there exists a function h ∈ H such that (E,D)
achieves secrecy τ . Moreover, such a function h can be chosen randomly
with success probability 1− 2−ηn.

It should be pointed out that the version of the above theorem in [CDD+15]
does not claim that any τn bits of an encoding are uniform and inde-
pendent but merely that they are independent of the message encoded.
However, by inspecting their proof, it can be seen that uniformity is guar-
anteed if τn ≤ l − k, which is the case if and only if τ ≤ l

n −
k
n = R − ρ,

which is clearly implied by the precondition of the theorem.

Zyablov bound. For code C, we use concatenated codes reaching the
Zyablov bound:

Theorem 6.22. For every δ < 1/2 and all sufficiently large n, there exists
a code C that is

• linear,
11This assumes that C is efficiently decodable up to relative distance δ/2. However,

while the codes we consider here have this property, for our non-malleable code con-
struction, it would be sufficient to have efficient error correction up to distance 2α for
whatever particular choice of the constant α.

12Note that we switched the roles of l and k here in order to remain consistent with
the notation in this paper.
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• efficiently encodable,

• of distance at least δn,

• allows to efficiently correct up to δn/2 errors,

and has rate

R ≥ max
0≤r≤1−h(δ+ε)

r

(
1− δ

h−1(1− r)− ε

)
,

for ε > 0 and where h(·) is the binary entropy function.

The Zyablov bound is achieved by concatenating Reed-Solomon codes with
linear codes reaching the Gilbert-Varshamaov bound (which can be found
by brute-force search in this case). Alternatively, Shen [She93] showed
that the bound is also reached by an explicit construction using algebraic
geometric codes.

Choice of parameters. Set α := 1/200 and δ := 1/4 + 2α + ε for
ε := 1/500, say. Then, δ−2α > 1/4, as required. Moreover, the rate of the
Zyablov code with said distance δ can be approximated to be R ≥ 0.0175.
Setting, τ := 1/1000 yields τ + h(τ) ≤ 0.0125, leaving a possible rate for
the LECSS of up to ρ ≈ 0.005− η. Hence:

Corollary 6.23. For any α > 0 there exists a (k, n, δ, τ)-LECSS (E,D)
with the following properties:

• Minimum distance: δ > 1/4 + 2α and δ/2 > 2α.

• Constant rate: k/n = Ω(1).

• Constant secrecy: τ = Ω(1).

6.3.3 On the Necessity of Secret State

No (k, n)-coding scheme (Enc,Dec) without secret state can be non-mallea-
ble against even a single parallel tampering query from Fcopy.

For the remainder of this section, let Rcopy := R
Fcopy,CS
p and Strivial :=

SFtriv,σ
p for an arbitrary simulator σ and p ≥ n.
Note that the attacker in Theorem 6.24 below is not efficient, and

therefore it remains an open question whether security against parallel
tampering can be obtained via cryptographically secure codes.
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Theorem 6.24. There exists a distinguisher D such that for all coding
schemes CS = (Enc,Dec) and all simulators σ,

∆D(Rcopy,Strivial) ≥ 1− 1

2k − 2n
.

Proof. DistinguisherD := DExt uses an algorithm Ext that always extracts
the encoded message when interacting with system Rcopy and does so with
small probability only when interacting with system Strivial.

Distinguishing strings. For a position i ∈ [n], let ci, c′i ∈ {0, 1}n be
two strings that differ exactly in the ith bit and decode to two different
values. Clearly, one can without loss of generality assume that for all
positions in a coding scheme such strings exist.

The extraction algorithm. Consider the following algorithm, denoted
Ext: It issues a single parallel tamper query (tamper, f (1), . . . , f (n)), where
the ith function f (i) ∈ Fcopy is determined as follows: For j 6= i,

f (i)[j] :=

{
zero if ci[j] = 0,
one otherwise,

and f (i)[i] = keep.
Upon receiving an answer (m(1), . . . ,m(n)) with m(i) ∈ {0, 1}k ∪ {⊥},

it sets

x[i] :=

{
ci[i] if m(i) = Dec(ci),
c′i[i] otherwise.

The algorithm finally outputs Dec(x[1], . . . , x[n]).

The distinguisher. Consider the following distinguisherDExt: Initially,
it chooses

m← {0, 1}k \ {Dec(ci),Dec(c′i) | i ∈ [n]}

and outputs m to the A-interface of the system it is connected to. Then,
it lets Ext interact with that system, forwarding the tamper queries to the
E-interface and the answers from the B-interface. If at some point one of
the answers is the initially encoded message, the algorithm outputs 0 and
terminates. Otherwise, when Ext terminates and outputs a value m′, DExt

outputs 1 if m′ = m and 0 otherwise.
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Real world. It can be easily verified that in the real world, the output
of Ext is always the message initially encoded by DExt. Moreover, all of
the messages m(i) are clearly in {Dec(ci),Dec(c′i) | i ∈ [n]} and DExt never
outputs 0. Therefore,

P[DExtR
copy = 1] = 1.

Ideal world. By definition, if one of the answers m(i) equals the orig-
inally encoded message, DExt outputs 0. Thus, whenever the output of
Ext influences the output of DExt, Ext’s view is independent of the origi-
nal message m. Therefore, the probability that Ext outputs m is at most

1
2k−2n

. Hence,

P[DExtS
trivial = 1] ≤ 1

2k − 2n
.

This proves the theorem.



Chapter 7

A General
Indistinguishability
Paradigm

A recurring issue in this paper are proofs that certain self-destruct games
answering successive parallel decryption/tampering queries are indistin-
guishable. Such games are formalized as parallel stateless self-destruct
games.

Definition 7.1. A system U is a parallel stateless self-destruct (PSSD)
game if

• it accepts parallel queries in which each component is from some set
X and answers them by vectors with components from some set Y,

• ⊥ ∈ Y,

• there exists a function g : X × R → Y such that every query com-
ponent x ∈ X is answered by g(x, r), where r ∈ R is the internal
randomness of U, and

• the game self-destructs, i.e., after the first occurrence of ⊥ in an
answer vector all further outputs are ⊥.

A PSSD game can be transformed into a related one by “bending” the
answers to some of the queries x ∈ X to the value ⊥. This is captured by
the following definition:
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Definition 7.2. Let U be a PSSD game that behaves according to g and
let B ⊆ X . The B-bending of U, denoted by U′, is the PSSD game that
behaves according to g′, where

g′(x, r) =

{
⊥ if x ∈ B,
g(x, r) otherwise.

The self-destruct lemma below states that in order to bound the distin-
guishing advantage between a PSSD and its bending, one merely needs to
analyze a single, non-parallel query, provided that all non-bent queries x
can only be answered by a unique value yx or ⊥.

Lemma 7.1. Let U be a PSSD game and U′ its B-bending for some
B ⊆ X . If for all x /∈ B there exists yx ∈ Y such that

{g(x, r) | r ∈ R} = {yx,⊥},

then, for all distinguishers D,

∆D(U,U′) ≤ p ·max
x∈B

P[g(x,R) 6= ⊥],

where the probability is over the choice of R and where p is the number of
components the largest parallel query.

Proof. Fix a distinguisherD and denote by R and R′ the random variables
corresponding to the internal randomness of U and U′, respectively. Call
a value x ∈ X dangerous if x ∈ B and a query dangerous if it contains a
dangerous value.

In the random experiment corresponding to the interaction between
D and U, define the event E that the first dangerous query contains
a dangerous value X with g(X,R) 6= ⊥ and that the self-destruct has
not been provoked yet. Similarly, define the event E′ for the interaction
between D and U′ that the first dangerous query contains a dangerous
value X ′ with g(X ′, R′) 6= ⊥ and that the self-destruct has not been
provoked yet.1

Clearly, U and U′ behave identically unless E resp. E′ occur. Thus,
it remains to bound P[E] = P[E′]. To that end, note that adaptivity
does not help in provoking E. For any distinguisher D, there exists a
non-adaptive distinguisher D̃ such that whenever D provokes E, so does
D′. D′ proceeds as follows: First, it interacts with D only. Whenever D

1Note that the function g is the same in the definitions of either event.
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asks a non-dangerous query, D′ answers every component x /∈ B by yx.
As soon as D specifies a dangerous query, D′ stops its interaction with D
and sends all queries to U.

Fix all randomness in experiment D′U, i.e., the coins of D (inside D′)
and the randomness r of U. Suppose D would provoke E in the direct
interaction with U. In such a case, all the answers by D′ are equal to the
answers by U, since, by assumption, the answers to components x /∈ B
in non-dangerous queries are yx or ⊥ and the latter is excluded if E is
provoked. Thus, whenever D provokes E, D′ provokes it as well.

The success probability of non-adaptive distinguishers D is bounded
from above by the probability over R that their first dangerous query
provokes E, which is at most p ·maxx∈B P[g(x,R) 6= ⊥].
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