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Abstract

Bacterial growth depends crucially on metabolic fluxes, which are limited by the cell’s

capacity to maintain metabolic enzymes. The necessary enzyme amount per unit flux is a

major determinant of metabolic strategies both in evolution and bioengineering. It depends

on enzyme parameters (such as kcat and KM constants), but also on metabolite concentra-

tions. Moreover, similar amounts of different enzymes might incur different costs for the

cell, depending on enzyme-specific properties such as protein size and half-life. Here, we

developed enzyme cost minimization (ECM), a scalable method for computing enzyme

amounts that support a given metabolic flux at a minimal protein cost. The complex inter-

play of enzyme and metabolite concentrations, e.g. through thermodynamic driving forces

and enzyme saturation, would make it hard to solve this optimization problem directly. By

treating enzyme cost as a function of metabolite levels, we formulated ECM as a numeri-

cally tractable, convex optimization problem. Its tiered approach allows for building models

at different levels of detail, depending on the amount of available data. Validating our

method with measured metabolite and protein levels in E. coli central metabolism, we

found typical prediction fold errors of 4.1 and 2.6, respectively, for the two kinds of data.

This result from the cost-optimized metabolic state is significantly better than randomly

sampled metabolite profiles, supporting the hypothesis that enzyme cost is important for

the fitness of E. coli. ECM can be used to predict enzyme levels and protein cost in natural

and engineered pathways, and could be a valuable computational tool to assist metabolic

engineering projects. Furthermore, it establishes a direct connection between protein cost

and thermodynamics, and provides a physically plausible and computationally tractable

way to include enzyme kinetics into constraint-based metabolic models, where kinetics

have usually been ignored or oversimplified.
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Author Summary

“Enzyme cost”, the amount of protein needed for a given metabolic flux, is crucial for the
metabolic choices cells have to make. However, due to the technical limitations of linear
optimization methods, this cost has traditionally been ignored by constraint-basedmeta-
bolic models such as Flux Balance Analysis. On the other hand, more detailed kinetic
models which use ordinary differential equations to simulate fluxes for different choices of
enzyme allocation, are computationally demanding and not scalable enough. In this work,
we developed a methodwhich utilizes the full kineticmodel to predict steady-state enzyme
costs, using a scalable and robust algorithm based on convex optimization. We show that
the minimization of enzyme cost is a meaningful optimality principle by comparing our
predictions to measured enzyme and metabolite levels in exponentially growing E. coli.
This method could be used to quantify the enzyme cost of many other pathways and
explain why evolution has selected some low-yield metabolic strategies, including aerobic
fermentation in yeast and cancer cells. Furthermore, future metabolic engineering projects
could benefit from our method by choosing pathways that reduce the total amount of
enzyme required for the synthesis of a value-added product.

This is a PLOS Computational BiologyMethods paper.

Introduction

The biochemical world is remarkably diverse, and new pathways and chemicals are still discov-
ered routinely. Even for extensively studied model organisms like E. coli, efforts to exhaustively
map metabolic networks are only nearing completion on the stoichiometric level. Our under-
standing of metabolic fluxes, their dynamic regulation and their connection to cell fitness is far
from perfect [1]. Furthermore, the rational design of novel and efficientmetabolic pathways
remains a substantial challenge and metabolic engineering projects require considerable efforts
even for relatively simple metabolic tasks. Among the different possible criteria [2], one key to
understanding the choices of metabolic routes, both in naturally evolved and engineered
organisms, may be enzyme cost. Quite often, cells use metabolic pathways in ways that seem
irrational, as in the case of aerobic fermentation (known as the Crabtree effect in yeast or the
Warburg effect in cancer cells [3]). However, apparently yield-inefficient fluxes can sometimes
be explained by an economic use of enzyme resources [4, 5]. It is posited that pathway struc-
tures that require too much enzyme per unit flux will be out-competed during evolution and
will not be efficient for biotechnological applications. Thus, a quantitative analysis of resource
investment in enzyme production, predicting the amount of enzyme needed to support a given
flux, would be valuable in aiding the rational design of metabolic pathways.

To understand why specific enzymes or pathways occupy larger or smaller areas of the pro-
teome [6], we could proceed in two steps, determining first the metabolic fluxes and then
enzyme levels needed to realize these fluxes. Metabolic fluxes can be measured through iso-
tope-labeled tracer experiments in combination with computational modeling.Methods for
flux prediction ab initio rely on mechanistic aspects (chemical mass balances and kinetics)
and economic aspects (cost and benefit of pathway fluxes) and combine them in different
ways. Constraint-basedmethods like Flux Balance Analysis (FBA) determine fluxes by
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requiring steady states—i.e., fluxes must be such that internal metabolite levels remain con-
stant in time—and assuming that natural selectionmaximizes some benefit function (e.g.,
maximal yield of biomass). Several optimality criteria for fluxes can be combined by multi-
objective optimization [1, 7]. In some cases, the second law of thermodynamics is used to put
further constraints on fluxes or metabolite levels [8–11]. Some extensions of FBA [12–14] use
metabolite log-concentrations as extra variables and constrain fluxes to flow only in the direc-
tion of thermodynamic driving forces, i.e., towards lower chemical potentials. Thermodynam-
ics links between flux directions and reactant concentrations, and thus physiological bounds
on metabolite levels are translated into restrictions on flux directions. These links between
fluxes and metabolite concentrations hold independently of specific reaction kinetics. The
relationship between fluxes and metabolite concentrations can be used also in the opposite
direction—i.e. given all flux directions, certain metabolite profiles can be excluded [14]. The
set of feasible metabolite profiles can be depicted as a polytope in the space of metabolites’
log-concentrations. To further narrow down the metabolite concentration profiles, the Max-
min Driving Force (MDF) method [15] chooses profiles that ensure sufficient driving forces,
thus keeping reactions distant from chemical equilibrium.

Typically, constraint-based models bypass the non-linearity of enzyme kinetics by focusing
on the feasible flux space and assess the relative benefits of different flux distributions. Thus,
such models do well in simulating binary perturbations such as reaction knockouts or nutrient
deprivation. On the other hand, they were not designed to predict the necessary enzyme levels
and the cost of making and maintaining the enzymes, and therefore perform poorly at these
tasks. Here we ask: how can we estimate the amount of protein required to sustain a given flux
through a reaction or pathway? It is often assumed that the flux through a reaction is propor-
tional to the enzyme level. FBA methods use this assumption to translate enzyme expression,
as a proxy for protein burden, into flux bounds or linear flux cost functions [16]. For practical
reasons (computational tractability and lack of detailed knowledge), flux costs are often repre-
sented by the sum of absolute fluxes [17, 18]. To obtain better proxies of protein demand and
related cellular burdens, fluxes have been weighted by “flux burdens” that account for different
catalytic constants kcat [2, 19], protein size and lifetime [20], or equilibrium constants [17]. In
reality, however, enzyme demand does not only depend on fluxes, but also on metabolite levels,
which in turn are determined by the non-linear kinetics of all active enzymes and transporters.
Therefore, it is not only the choice of numerical cost weights, but the very relation between
enzyme amounts and fluxes that needs to be clarified.

For a simple estimate, we can assume that each enzyme molecule works at its maximal rate,
the catalytic constant kcat. In this case, enzyme demand is given by the flux divided by the cata-
lytic constant [2, 19]. To translate enzyme demand into cost, the different sizes or effective life-
times of enzymes can be considered [20]. The notion of Pathway Specific Activity [2] applies
this principle to the efficiencyof entire pathways (assuming that enzyme levels are optimally
distributed), and provides a direct way to compare between alternative pathways. However, by
assuming that enzymes operate at their maximal capacity, we underestimate the true enzyme
demand (see Fig 1). Enzymes typically do not operate at full capacity. This is due to backward
fluxes, incomplete substrate saturation, allosteric regulation, and regulatory post-translational
modifications. Below, we will refer to allosteric regulation only, but other types of post-transla-
tional regulation, e.g., by phosphorylation, could be treated similarly. The relative backward
fluxes depend on the ratio between product and substrate concentrations, called the mass-
action ratio. Whenever the mass-action ratio deviates from its equilibrium value, the equilib-
rium constant, this deviation can be conceptualized as a thermodynamic driving force. The
driving force determines the relative backward flux and thus affects reaction kinetics and enzy-
matic efficiency [21, 22]. With smaller forces, the relative backward flux increases, enzyme
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usage becomes less efficient, and enzyme demand increases [4, 23]—a situation that, in models,
can be avoided by applying the MDF method. In fact, a cost increase due to backward fluxes
can be included in the principle of minimal fluxes in FBA [17]. However, metabolites do not
only affect thermodynamic forces, as acknowledged in thermodynamic FBA, but also affect
kinetics as reactants and allosteric effectors.While the relative backward fluxes depend on ther-
modynamic forces, the forward flux depends on the availability of substrate molecules. At sub-
saturating substrate levels, enzyme molecules spend some time waiting for substrate molecules,
thus reducing their average catalyzed flux. Likewise, the presence of reaction product can
reduce the fraction of enzyme molecules available for catalysis in the direction of pathway flux.

Thus, converting metabolic fluxes into enzyme demand can be difficult because enzymes
may not realize their maximal capacity. Since reduced enzyme efficiency is mostly due to
metabolite concentrations, enzyme and metabolite profiles must be considered together. This
quickly becomes a cyclic inference problem because steady-state metabolite levels depend
again on enzyme profiles. Since many metabolites (e.g., co-factors like ATP) participate in mul-
tiple pathways, enzyme demands may be coupled across the entire metabolic network. More-
over, there may be many possible enzyme and metabolite profiles that realize the same flux
distribution. To determine a single solution, one can make the assumption that the most rea-
sonable enzyme profile for realizing a given flux is the one with the minimum associated cost.
This assumption may be justified if we focus on biological systems shaped by evolution, or on
engineered pathways that should be efficient. A direct optimization of enzyme levels can be dif-
ficult, but there is a tractable approach in which metabolite levels are treated as free variables,
which determine the enzyme levels, and therefore enzyme cost. This approach, together with a
minimization of metabolite concentrations [24], has been previously applied to predict enzyme
and metabolite levels in metabolic systems [23] and to compare structural variants of glycolysis
by the cost of ATP production [4].

However, to make such optimization schemes generally applicable, some open problems
need to be addressed. First, our knowledge of the kinetic rate laws and parameters contains
large gaps for the vast majority of enzymes [25], and combining rate constants from different

Fig 1. Enzyme cost in metabolism. (a) Measured enzyme levels in E. coli central metabolism (molecule counts displayed as rectangle areas). Colors

correspond to the network graphics in Fig 3. To predict such protein levels, and to explain the differences between enzymes, we start from known

metabolic fluxes and assume that these fluxes are realized by a cost-optimal distribution of enzyme levels. (b) Enzyme-specific flux depends on a

number of physical factors. Under ideal conditions, an enzyme molecule catalyzes its reaction at a maximal rate given by the enzyme’s forward catalytic

constant (top left). The rate is reduced by microscopic reverse fluxes (center left) and by incomplete saturation with substrate (causing waiting times

between reaction events) or by allosteric inhibition or incomplete activation (bottom left). With lower catalytic rates (center), realizing the same metabolic

flux requires larger amounts of enzyme (right).

doi:10.1371/journal.pcbi.1005167.g001
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sources may lead to inconsistent models [26, 27]. Second, the optimization problem may be
computationally challenging for large networks and realistic rate laws. To turn enzyme cost
minimization into a generally applicable method, we address a number of questions: (i) When
setting up models for enzyme cost prediction, how can we deal with missing, uncertain, or con-
flicting data on rate constants? Are there approximations, for example based on thermodynam-
ics, that yield good predictions with fewer input parameters? (ii) How do factors such as the
kcat, driving force, or rate law affect enzyme demand, and how do they shape the optimal meta-
bolic state? (iii) How can enzyme optimization be formulated as a numerically tractable opti-
mality problem? Existing approaches for flux and enzyme prediction have focused on different
aspects (stationary state, energetics [8, 28], kinetics [23, 29], molecular crowding [19, 30], as
well as enzyme cost [31, 32], metabolite cost [24], or flux cost [17]). The new approach, which
uses a modular kinetic rate law to translate fluxes into enzyme demand, shows how these
approaches are logically related, and how heuristic assumptions by other methods, e.g. an
avoidance of small driving forces, follow from enzyme economy as a general principle (S1 Text
section 4). We show that enzyme cost minimization is closely related to cost-benefit
approaches, which treat cell fitness as a function of enzyme levels [31, 33–37]. Some general
results of these approaches, e.g., relationships between enzyme costs and metabolic control
coefficients, can be reproduced.

Results

Enzyme cost landscape of a metabolic pathway

Given a pathway flux profile and a kineticmodel of the pathway, one can predict the enzyme
demand by assuming that cells minimize the enzyme cost in that pathway. A reaction rate v =
E � r(c) depends on enzyme level E and metabolite concentrations ci through the enzymatic rate
law, r(c). If the metabolite levels were known, we could directly compute enzyme demands E =
v/r(c) from fluxes, and similarly calculate the flux-specific enzyme demand E/v = 1/r(c). How-
ever, metabolite levels are often unknown and vary between experimental conditions. There-
fore, there can be many solutions for E and c realizing one flux distribution. To select one of
them, we employ an optimality principle: we define an enzyme cost function (for instance,
total enzyme mass) and choose the enzyme profile with the lowest cost while restricting the
metabolite levels to physiological ranges and imposing thermodynamic constraints. As we shall
see below, the optimal solution is in many cases unique. Let us demonstrate this with a simple
example (Fig 2a). In the pathway XÐ AÐ BÐ Y, the external metabolite levels [X] and [Y]
are fixed and given, while the intermediate levels [A] and [B] need to be found. As rate laws for
all three reactions, we use reversible Michaelis-Menten (MM) kinetics

vðs; p;EÞ ¼ E
kþcat s=KS � k�cat p=KP

1þ s=KS þ p=KP
ð1Þ

with enzyme level E, substrate and product levels s and p, turnover rates kþcat and k�cat, and
Michaelis constants KS and KP. In kineticmodeling, steady-state concentrations would usually
be obtained from given enzyme levels and initial conditions through numerical integration.
Here, instead, we fix a desired pathway flux v and compute the enzyme demand as a function
of metabolite levels:

Eðs; p; vÞ ¼ v
1þ s=KS þ p=KP

kþcat s=KS � k�cat p=KP
: ð2Þ

The Protein Cost of Metabolic Fluxes
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Fig 2 shows how the enzyme demand in each reaction depends on the logarithmic reactant
concentrations. To obtain a positive flux, substrate levels s and product levels p must be
restricted: for example, to allow for a positive flux in reaction 2, the rate law numerator
kþcat ½A�=KS � k�cat ½B�=KP must be positive. This implies that [B]/[A]< Keq where the reaction’s
equilibrium constant Keq is determined by the Haldane relationship,
Keq ¼ ðkþcat=k

�
catÞ � ðKP=KSÞ. With all model parameters set to 1, we obtain the constraint [B]/[A]

< 1, i.e., ln[B] − ln[A]< 0, putting a linear boundary on the feasible region (Fig 2(c)). Close to
chemical equilibrium ([B]/[A]� Keq), the enzyme demand E2 approaches infinity. Beyond the
boundary ([B]/[A]> Keq) no positive flux can be achieved (grey region). Such a threshold
exists for each reaction (see Fig 2b–2d). The remaining feasible metabolite profiles form a trian-
gle in log-concentration space, which we callmetabolite polytope P (Fig 2e), and Eq (2) yields
the total enzyme demand Etot = E1 + E2 + E3, as a function on the metabolite polytope. The
demand increases steeply towards the edges and becomesminimal in the center. The minimum
point marks the optimal metabolite profile, and via Eq (2) we obtain the resulting optimal
enzyme profile.

Fig 2. Enzyme demand in a metabolic pathway. (a) Pathway with reversible Michaelis-Menten kinetics (equilibrium constants, catalytic constants, and

KM values are set to values of 1, [A] and [B] denote the variable concentrations of intermediates A and B in mM). The external metabolite levels [X] and

[Y] are fixed. Plots (b)-(d) show the enzyme demand of reactions 1, 2, and 3 at given flux v = 1 according to Eq (2). Grey regions represent infeasible

metabolite profiles. At the edges of the feasible region (where A and B are close to chemical equilibrium), the thermodynamic driving force goes to zero.

Since small forces must be compensated by high enzyme levels, edges of the feasible region are always dark blue. For example, in reaction 1 (panel

(b)), enzyme demand increases with the level of A (x-axis) and goes to infinity as the mass-action ratio [A]/[X] approaches the equilibrium constant

(where the driving force vanishes). (e) Total enzyme demand, obtained by summing all enzyme levels. The metabolite polytope—the intersection of

feasible regions for all reactions—is a triangle, and enzyme demand is a convex function on this triangle. The point of minimum total enzyme demand

defines the optimal metabolite levels and optimal enzyme levels. (f) As the kcat value of the first reaction is lowered by a factor of 5, states close to the

triangle edge of reaction 1 become more expensive and the optimum point is shifted away from the edge. (g) The same model with a physiological upper

bound on the concentration [A]. The bound defines a new triangle edge. Since this edge is not caused by thermodynamics, it can contain an optimum

point, in which driving forces are far from zero and enzyme costs are kept low.

doi:10.1371/journal.pcbi.1005167.g002
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The metabolite polytope and the large enzyme demand at its boundaries follow directly
from thermodynamics. To see this, we consider the unitless thermodynamic driving force Θ =
−ΔrG0/RT [38] derived from the reaction Gibbs free energyΔrG0. For a given mass-action ratio
Q = [B]/[A], the thermodynamic force can also be written asΘ = ln(Keq/Q), i.e., the driving
force is positive wheneverQ< Keq, and it vanishes if Q = Keq. How is this force related to
enzyme cost? A reaction’s net flux is given by the difference v = v+ − v− of forward and back-
ward fluxes, and the ratio v+/v− depends on the driving force as v+/v− = eΘ. Thus, only a frac-
tion v/v+ = 1 − e−Θ of the forward flux acts as a net flux, while the remaining forward flux is
canceled by the backward flux (Figure A in S1 Text). Close to chemical equilibrium,where the
mass-action ratio approaches the equilibrium constant, i.e.Q! Keq, the driving force goes to
zero, the reaction’s backward flux increases, and the flux per unit enzyme level drops. This is
what happens at the triangle edges in Fig 2. Exactly on the edge, the driving force vanishes and
no enzyme level, no matter how large, can support a positive flux. The quantitative cost
depends on model parameters: for example, lowering a kcat value increases the cost of each
enzyme unit, making the polytope boundary steeper and thus the optimum is shifted away
from the boundary (see Fig 2f and Figure B in S1 Text).

Enzyme cost as a function of metabolite profiles

The prediction of optimal metabolite and enzyme levels can be extended to models with gen-
eral rate laws and complex network structures. In general, enzyme demand depends not only
on driving forces and kcat values, but also on the kinetic rate law, which includes Michaelis-
Menten constants (KM) and allosteric regulation. Thus, one must model these factors using the
available kinetic information [39, 40], or approximate them when the information is not avail-
able. For some of these parameters, genome-scale prediction methods exist [41, 42]. The rate of
a reaction depends on enzyme level E, forward catalytic constant kþcat (i.e. the maximal possible
forward rate per unit of enzyme, in s−1), driving force (i.e., the ratio of forward and backward
fluxes), and on kinetic effects such as substrate saturation or allosteric regulation. If all active
fluxes are positive, reversible rate laws like the Michaelis-Menten kinetics in Eq (1) can be fac-
torized as [22]

v ¼ E � kþcat � Z
rev � Zkin: ð3Þ

Negative fluxes, which would complicate this formula, can be avoided by orienting all reac-
tions in the direction of fluxes. The reversible Michaelis-Menten rate law Eq (1), for example,
can be written in this separable form [22]:

v ¼ E kþcat
s=KS 1 �

k�cat
kþcat

p=KP
s=KS

� �

1þ s=KS þ p=KP
¼ E kþcat 1 �

k�cat
kþcat

p=KP

s=KS

� �

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Zrev

s=KS

1þ s=KS þ p=KP
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Zkin

; ð4Þ

and similar factorizations exist for reactions of any stoichiometry (see S1 Text section 2.2). The
term E � kþcat describes the maximal reaction velocity, which is reduced, depending on metabo-
lite levels, by condition-specific factors ηrev and ηkin (see Fig 1b), accounting for backward
fluxes, incomplete substrate saturation, or saturation with product (see Table 1 for a summary
of all mathematical symbols used throughout this paper). The reversibility factor ηrev can be
expressed in terms of the driving forceΘ� −ΔrG0/RT by the general formula ηrev = 1 − e−Θ,
which also applies to reactions with multiple substrates and products [22]. The factor ηkin

depends on the rate law and thus on the enzyme mechanism considered (see S1 Text section
2.2). In some cases, it could be convenient to subdivide Eq (3) even further: the kþcat value can be

The Protein Cost of Metabolic Fluxes
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decomposed into a product kþcat ¼ k1cat � Z
cat, where k1cat denotes the catalytic constant of a hypo-

thetical, infinitely fast enzyme whose rate is only limited by substrate diffusion. The enzyme-
specific, constant factor Zcat ¼ kþcat=k

1
cat is a unitless number between 0 and 1. A realistic value of

k1cat ¼ 108 s−1 can be obtained by considering a very fast enzymatic reaction, the breakdown of
water structure around a polymer [43]. Furthermore, with some rate laws, ηkin can be further
decomposed into ηkin = ηsat � ηreg, where ηreg refers to certain types of allosteric regulation (see
example in Methods).

The factorization in Eq 3, and any finer subdivision into factors, will lead to a subdivision of
enzyme demands. Enzyme demand can be quantified as a concentration (e.g., enzyme mole-
cules per volume) or mass concentration (where enzyme molecules are weighted by their
molecular weights). If rate laws, fluxes, and metabolite levels are known, the enzyme demand
of a single reaction l follows from Eq 3 as

Elðc; vlÞ ¼ vl �
1

kþcat;l
�

1

Zrev
l ðYðcÞÞ

�
1

Zsat
l ðcÞ

�
1

Z
reg
l ðcÞ

: ð5Þ

To determine the enzyme demand of an entire pathway, we sum over all reactions:
Etot = ∑l El. Based on its enzyme demands El, we can associate each metabolic flux with an
enzyme cost q ¼

X

l
hEl

El, describing the effort of maintaining the enzymes. The burdens hEl

of different enzymes represent, e.g., differences in molecularmass, post-translation modifica-
tions, enzyme maintenance, overhead costs for ribosomes, as well as effects of misfolding and
non-specific catalysis. The enzyme burdens hEl

can be chosen heuristically, for example,

Table 1. Mathematical symbols used. The fitness unit Darwin (D) is a proxy for the different fitness units

used in cell models. Reaction must be orientated in such a way that all fluxes are positive. To define metabo-

lite log-concentrations, we use the standard concentration cσ = 1 mM. For a more comprehensive list of math-

ematical symbols used in ECM, see Table C in S1 Text.

Name Symbol Unit

Flux vl mM/s

Metabolite level ci mM

Logarithmic metabolite level xi = ln(ci /cσ) unitless

Enzyme level El mM

Reaction rate vl (El,c) = El � rl (c) mM/s

Catalytic rate rl = vl /El 1/s

Scaled reactant elasticity E li unitless

Gibbs energy of formation (std. chemical potential) G0�i kJ/mol

Reaction Gibbs energy ΔrG
0
l ¼ ΔrG

0
l� þ RT ∑ i nil lnci kJ/mol

Driving force Yl ¼ � ΔrG
0
l=RT unitless

Forward/backward catalytic constant kþcat; k
�
cat 1/s

Diffusion-limited catalytic constant k1cat 1/s

Michaelis-Menten constant Kli mM

Protein mass ml Da

Efficiency factors ηcat, ηrev, ηkin, ηsat, ηreg unitless

Enzyme cost hðEÞ ¼ ∑ l hEl El D

Enzyme burden hEl D/mM

Enzyme-induced metabolite cost q(x, v) = h(E(x, v)) D

Flux-specific cost avl D/(mM/s)

Baseline flux-specific cost acat
vl

D/(mM/s)

doi:10.1371/journal.pcbi.1005167.t001
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depending on enzyme sizes, amino acid composition, and lifetimes (see S1 Text section 2.1).
Setting hEl

¼ ml (protein mass in Daltons), q will be in mg protein per liter. Considering the
specific amino acid composition of enzymes, we can also assign specific costs to the different
amino acids. Alternatively, an empirical cost per protein molecule can be established by the
level of growth impairment that an artificial induction of protein would cause [44, 45]. Thus,
each reaction flux vl is associated with an enzyme cost ql, which can be written as a function
qlðc; vlÞ � hEl

Elðc; vlÞ of flux and metabolite concentrations. From now on, we refer to log-
scale metabolite concentrations xi = ln ci in order to obtain simple optimality problems below.
From the separable rate law Eq 5, we obtain the enzyme cost function

qðx; vÞ �
X

l

hEl
Elðx; vlÞ ¼

X

l

hEl
� vl �

1

kþcat;l
�

1

Zrev
l ðxÞ

�
1

Zsat
l ðxÞ

�
1

ZregðxÞ
ð6Þ

for a given pathway flux v. If the fluxes are fixed and given, our enzyme cost becomes, at least
formally, a function of the metabolite levels. We call it enzyme-basedmetabolic cost (EMC) to
emphasize this fact. The cost function is defined on the metabolite polytope P, a convex poly-
tope in log-concentration space containing the feasible metabolite profiles. Like the triangle in
Fig 2, the polytope is defined by physiological and thermodynamic constraints. It can be
bounded by two types of faces: On “E-faces”, one reaction is in equilibrium, and enzyme cost
goes to infinity; “P-faces” stem from physiological metabolite bounds. The shape of the cost
function depends on rate laws, rate constants, and enzyme burdens, and its minimum points
can be inside the polytope or on a P-face (see Fig 2f).

Enzyme cost minimization

The cost function q(x, v) reflects a trade-off between fluxes to be realized and enzyme expres-
sion to be minimized, where the relation between fluxes and enzyme levels is not fixed, but
depends on metabolite log-concentrations x. Wherever trade-offs exists in biology, it is com-
mon to assume that evolution converges to Pareto-optimal solutions [1], i.e. cases where there
are no other solution with both a higher flux and a lower cost. Therefore, we can now use this
principle to predict metabolite and enzyme concentrations in cells. As with our simple model
in Fig 1, the metabolite profile that minimizes the enzyme cost for a given flux, and the corre-
sponding enzyme profile (computed using Eq 5) could be good predictions for the abundance
of metabolites and enzymes in naturally evolved organisms.

The resulting method, which we call enzyme cost minimization (ECM), is a convex optimi-
zation problem and can be solved with local optimizers. Enzyme demand and enzyme cost
functions, for single reactions or pathways, are differentiable, convex functions on the metabo-
lite polytope. This convexity holds for a variety of rate laws, including rate laws describing
polymerization reactions [46], and even for the more complicated problem of preemptive
enzyme expression, i.e., a cost-optimal choice of enzyme levels that allows the cell to deal with
a number of future conditions (see S1 Text section 3.7). If a model contains non-enzymatic
reactions, this changes the shape of the metabolite polytope, but not the enzyme cost function,
and the polytope remains convex, e.g., if the non-enzymatic reactions are irreversible with
mass-action rate laws (see Methods). Obviously, metabolite and enzyme levels may be subject
to various other constraints that are not reflected by our pathway model. To assess how easily
the metabolic state can be adapted to external requirements, we can study the cost of deviations
from the optimal metabolite levels. If the cost function q(x) has a broad optimum as in Fig 2,
cells may flexibly realize metabolite profiles around the optimal point, and the choice of metab-
olite levels may vary from cell to cell. We can quantify the tolerable variations by relaxing the
optimality assumptions and computing a tolerance range for each metabolite level (see
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Methods). To apply ECM in practice, we developed a workflow in which a kinetic model is
constructed, all necessary enzyme parameters are determined by a method called parameter
balancing, and optimal metabolite and enzyme levels are predicted along with their tolerance
ranges. In parameter balancing [47, 48], a complete, consistent set of enzyme parameters is
determined from measured values by employing prior distributions, parameter dependencies
arising from thermodynamic laws, and Bayesian statistics (for details, see Methods). Different
kinds of EMC functions and constraints (e.g., defining concentration ranges for specificmetab-
olites) can be chosen. Missing data (e.g.,KM values), can thus be handled in two ways: either,
by using a simplified EMC function that does not require this parameter, or by relying on
parameter values chosen by the workflow.

Which factors shape the optimal enzyme profile and how?

Beyond minimizing the total enzyme cost, one can also use ECM to analyze the individual
enzyme demands. When the metabolite levels are known, the demand can be directly calcu-
lated and each efficiency factor in Eq (6) reflects a different part of the cost (see Methods).
Alternatively, by omitting some factors or replacing them with constant numbers 0< η� 1,
simplified enzyme cost functions with fewer parameters can be obtained. For example, ηrev = 1
would imply an infinite driving forceΘ!1 and a vanishing backward flux, ηkin = 1 implies
full substrate saturation, as well as full allosteric activation and no allosteric inhibition (or no
allosteric regulation at all). In these limiting cases, enzyme activity will not be reduced, and
enzyme demand will be given by the capacity-based estimate v=kþcat, a lower bound on the
actual demand. Such simplifications are practical if rate constants are unknown.

Depending on the data available (e.g., kcat values, equilibrium constants, or evenKM values),
one may choose between different cost functions with different data requirements: EMC0
(“sum-of-fluxes-based” same prefactors for all enzymes), EMC1 (“capacity-based”, setting all η
= 1 and thus replacing reaction rates by the maximal velocities), EMC2 (“reversibility-based”;
considering driving forces, and setting ηkin = 1), EMC3 (“saturation-based”, assuming simple
rate laws depending on products of substrate or product concentrations, and including the
driving forces), and EMC4 functions (“kinetics-based”;with dependence on individual metab-
olite levels). Details of the simplified EMC functions are given in Table 2 and Table A in S1
Text. Each EMC function is a lower bound on the subsequent functions; i.e., even if only a sim-
plified cost function can be used, it will always yield a lower bound on the cost computed using
the full EMC4 model.

Let us consider the various simplifications in more detail. If fluxes are the only data avail-
able, we may assign identical catalytic constants and burdens to all enzymes and assume that

Table 2. Simplified enzyme cost functions. By omitting some terms in Eq (5), we obtain a number of cost functions with simple dependencies on enzyme

parameters and metabolite levels. Terms marked by ✓ appear explicitly in the rate and cost formulae, while other terms are omitted or set to constant values.

The EMC0 function yields the sum of fluxes, EMC1 functions contain enzyme-specific flux burdens based on kcat and h values (i.e., replacing reaction rates

by their maximal velocities). EMC2 depends on metabolite levels only via the driving forces. EMC3 functions are based on simplified rate laws, and EMC4

functions capture all rate laws, possibly including allosteric regulation. The rate law denominators DS, DSP, D1S, and D1SP, and the EMC functions them-

selves are described in Table A in S1 Text.

EMC function ηrev(Θ(c)) ηkin(c) Parameters Denominators Depends on

EMC0 (“Sum of fluxes”) - - -

EMC1 (“Capacity-based”) - - hE, kþcat

EMC2 (“Reversibility-based”) ✓ - hE, kþcat, Keq DS, DSP Driving force

EMC3 (“Saturation-based”) ✓ ✓ hE, kþcat, Keq, KM D1S, D1SP Metabolite levels

EMC4 (“Kinetics-based”) ✓ ✓ hE, kþcat, Keq, KM general Metabolite levels

doi:10.1371/journal.pcbi.1005167.t002
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all reactions run at their maximal velocities. Then, enzyme levels and fluxes will be propor-
tional for all reactions, the cost function in Eq (6) will be EMC0, and the cost will be propor-
tional to the sum of fluxes. However, catalytic constants span many orders of magnitude [25],
as do molecularmasses of enzymes, suggesting that EMC0 is an oversimplification. If individ-
ual kþcat and hEl

values are known, we can define an individual flux burden acat
vl
¼ hEl

=kþcat l for
each enzyme, independent of metabolite levels. Then we obtain an EMC1 cost function
P

l a
cat
vl
vl, which is the same as the cost weights used in FBA with flux minimization [17] or

molecular crowding [19]. When kcat values are unknown, they can be estimated [42], replaced
by “typical” values [25], or bounded by the value k1cat ¼ 108 1/s for a very fast, but diffusion-
limited enzyme. The enzyme burdens hE can include factors like protein size, protein lifetime,
covalent modifications, or space restrictions (see [20] and S1 Text section 2.1).

However, by assuming that enzymes work at their maximal rate and setting ηrev = ηkin = 1,
we may obtain unrealistic results. First, the simplifying assumption ηrev = ηkin = 1 implies uncon-
trollable metabolic states. In a kineticmodel with completely irreversible and substrate-saturated
enzymes, the reaction rates would be independent of metabolite levels and the steady-state fluxes
and metabolite levels would depend on finely tuned enzyme levels [15]. Random variation in
enzyme levels would lead to non-steady states, with fast accumulation or depletion of intermedi-
ate metabolites. Such states are extremely fragile and thus uncontrollable. When assuming effi-
ciencies ηrev or ηkin smaller than 1, we accept an increased cost and thereby acknowledge that
control must be paid for by enzyme investments. Second, EMC1 functions underestimate all
enzyme costs, and for reactions close to chemical equilibrium the errors may be quite large. For
a reactionGibbs energy of ΔrG0 = −0.1RT, the efficiencyof the catalyzing enzyme is reduced by a
factor of ηrev = 1 − e0.1� 0.1, and the demand for enzyme increases by a factor of 1/ηrev� 10. To
account for this decreased efficiency, we can use EMC2 functions, which include the reversibility
factor Zrev

l ¼ 1 � e� YlðxÞ. The driving forces are expressed in terms of metabolite log-concentra-
tionsΘl(x) and equilibrium constants, which need to be known. This factor approaches infinity
as reactions reach equilibrium (i.e. whereΘl! 0), which is what forces reactions away from
equilibriumduring cost minimization (see, for example, Fig 2).

The advantage of reversibility-based cost functions (EMC2) is that they are based on kcat

and equilibrium constants only. Several in-silicomethods exist to estimate Keq for virtually any
biochemical reaction [41, 49] and the values can be easily obtained at http://equilibrator.
weizmann.ac.il/ [50]. As in the case of EMC1, kcat values can be estimated or set to a default
constant value. Methods like MDF [15] and mTOW [23] have been developed to address
exactly this situation, where detailed kinetic information is hard to obtain. We discuss the rela-
tion between EMC2 and MDF in section 4 of the S1 Text. Aside from the EMC2 function,
there are other reversibility-based estimates of the enzyme cost. For instance, the enzyme
demand in Fig 2 (an EMC3-functionwith kinetic constants, fluxes, and enzyme burdens set to
1) has the reversibility-based cost apw

v ¼
P

l½1 � e� YðcÞ�
� 1 as a lower bound. Since 1 − e−x� x

for all positive x, an even lower estimate is ∑lΘ(c)−1 (Figure B and Figure C in S1 Text). Some
variants of FBA relate fluxes to metabolite profiles, which are then required to be thermody-
namically feasible, i.e., within the metabolite polytope. ECM constrains the metabolite profiles
even further: as shown in Fig 2, profiles close to an E-face are very costly and can never be opti-
mal. This holds for EMC2 functions and for the more realistic enzyme costs, which will even be
higher. Thus, regions close to E-faces can be excluded from the polytope. At P-faces, defined by
physiological bounds, there will be no such increase, so the optimum may lie on a P-face (see
Fig 2f). To exclude regions near E-faces, we simply define lower bounds for all driving forces
(see S1 Text section 7.1). These bounds can be used both in ECM or in thermodynamic FBA to
reduce the search space.
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The next logical step is to relax the assumption that ηkin = 1. Just like the reversibility factor
ηrev, the kinetic factors ηsat and ηreg can be used to define tighter constraints on metabolite lev-
els. However, unlike ηrev, the kinetic terms may take various forms and contain many kinetic
parameters. To obtain simple, but reasonable formulae in EMC3, we first consider rate laws in
which enzyme molecules exist only in three possible states: unbound, bound to all substrate
molecules, or bound to all product molecules.Metabolites affect the rate only through the
mass-action terms S = ∏i(si/KMi) (for substrates) and P = ∏j pi/KMj (for products), and the
degree of saturation is determined by ηsat = S/(1 + S + P), where the formula effectively has two
Michaelis-Menten constants: one for substrates and one for products (which are equivalent to
the product of all KMi and all KMj values). EMC3 represents a balance between complexity and
requirement for kinetic parameters, and is a practical cost function if simple, realistic rate laws
are desired. The EMC4 functions, finally, represent general rate laws and ηkin can take many
different forms depending on mechanism and order of enzyme-substrate binding. Again, for
simplicity, we resort to analyzing only a small set of relatively general templates for EMC4,
known as convenience kinetics [51] or modular rate laws [21]. Nevertheless, our formalism
allows a much wider range of rate laws, and we consider EMC4 a wild-card cost function that
covers almost any reasonable rate law (see S1 Text section 2.2 for more details).

Enzyme and metabolite levels in E. coli central metabolism

To benchmark our optimality-based prediction of metabolite, we applied ECM to a model of
E. coli central metabolism, containing three major pathways: glycolysis, the pentose phos-
phate pathway, and the TCA cycle (see Fig 3a, and Methods for modeling details). Fig 3b–3d
compares predicted enzyme profiles to measured protein levels [53]. The absolute values of
predicted enzyme levels arise directly from the model, using the fluxes reported in [52],
while cellular protein concentrations were obtained from proteomics data (measured in
similar conditions [53]) and assuming an average cell volume of * 1 fL (10−15 liters) [54].
EMC4 predicts values that are of the right order of magnitude and reflect differences in
enzyme levels along the pathways. The prediction error of 0.42 for enzyme levels (RMSE:
root mean square error on a log10-scale) corresponds to a typical fold error of 10RMSE = 2.6.
In line with the measured protein levels, the predicted enzyme levels tend to be larger in gly-
colysis than in TCA and pentose phosphate pathway, reflecting the larger fluxes and less-
favorable thermodynamics. All predictions including metabolite concentrations, thermody-
namic forces and c/KM ratios can be found online at the accompanying website www.
metabolic-economics.de/enzyme-cost-minimization/.

We note that predicted enzyme levels becomemore accurate as more complex cost func-
tions are used, with a prediction error decreasingmonotonically from 1.35 with EMC0 to 0.42
with EMC4. The capacity-based enzyme cost (EMC1) assumes that enzymes operate at full
capacity (v ¼ E kþcat) and therefore underestimates all enzyme levels (Fig 3b). In reality, many
reactions in central metabolism are reversible and many substrates do not reach saturating
concentrations. When taking these effects into account, predictions come closer to measured
enzyme levels (Fig 3c–3e). For instance, FUM (fumarase, fumA) and MDH (malate dehydroge-
nase) have a much higher predicted level in EMC2-4 than in EMC1 as the reversibility-based
costs account for their low driving forces. Similarly, the predicted levels of two pentose-phos-
phate enzymes (ribulose-5-phosphate epimerase RPE and ribose phosphate isomerase RPI) are
much higher in EMC3 and EMC4 because of their low affinity for the substrate ribulose-
5-phosphate (Ru5P). In some cases, however, the more complex EMC4 fails to improve the
prediction over the simpler methods. For instance, the 6-phosphogluconolactonase (PGL) and
phosphoglycerate kinase (PGK) reactions are underestimated by all EMC functions, perhaps
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due to regulation mechanisms that reduce activity such as allosteric inhibition. In very few
cases, EMC4 overestimates the level of an enzyme that has a more precise prediction in EMC1-
3, e.g. phosphofructokinase (PFK). Overall, the EMC4 function performs substantially better
on average than the simpler cost functions even though it relies on a larger set of parameters,
many of which are known with low certainty. Moreover, EMC4 predicts well the total of all
enzyme levels (0.64 mM, compared to the measured value—0.62 mM), while the other EMC
function underestimate this value (0.17, 0.24 and 0.43 mM for EMC1, EMC2 and EMC3
respectively). To test the sensitivity of our results to the choice of parameters, we performed
random sampling of kinetic constants, fluxes and fixed metabolite levels, and analyzed the
effect on the enzyme level predictions (see Methods and Fig 4a). We further tested the sensitiv-
ity to our choice of proteomic data, by repeating the entire analysis using measured enzyme
concentrations from [55] and reached essentially the same findings (see Figure F in S1 Text).

Finally, we tested whether our kineticmodel can also predict enzyme levels without the
assumption of cost optimality: to do so, we randomly sampled feasible metabolite profiles from
the metabolite polytope, computed the resulting enzyme profiles, and compared them to prote-
omic data. It turned out that the cost-optimal metabolite profile, or similar profiles, yielded sig-
nificantly better predictions than metabolite profiles sampled from a broader range (see

Fig 3. Predicted enzyme levels in E. coli central metabolism. (a) Network model with pathways marked by colors. Flux magnitudes are represented

by the arrows’ thickness. (b) The ratio flux/kþcat (EMC1) as a predictor for enzyme levels. Points on the dashed line would represent precise predictions. (c)

Enzyme levels predicted by the reversibility-based EMC2(S) function. Vertical bars indicate tolerance ranges obtained from a relaxed optimality condition

(allowing for a one percent increase in total enzyme cost). (d) Enzyme levels predicted with EMC3 function representing fast substrate or product

binding. (e) Enzyme levels predicted with EMC4 function based on the common modular rate law [21]. In all sub-figures (b-e), RMSE is the root mean

squared error (in log10-scale) of our predictions compared to the measured enzyme levels, and r stands for the Pearson correlation coefficient.

Predictions are based on fluxes from [52], kþcat and KM values from BRENDA [40], and compared to protein data from [53]. For metabolite predictions, see

Figure E in S1 Text.

doi:10.1371/journal.pcbi.1005167.g003
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Methods and Fig 4b). This supports the hypothesis that cost-optimality shapes the metabolic
state in E. coli.

Although ECM puts enzymes on a pedestal due to their relatively high cost, the metabolite
concentrations are key to minimizing that cost. One would thus expect to find good correspon-
dence between the predicted metabolite profile and concentrations measured in vivo, especially
when predictions of enzyme levels are good. Since some EMC functions leave metabolite levels
underdetermined,we penalized very high or low metabolite concentrations by adding a second,
concentration-dependent objective to the optimization problem. In particular for EMC0 and
EMC1, this regularization term is the only term—aside from global constraints—that deter-
mines the metabolite concentrations as they do not affect enzyme cost whatsoever. In all other
cases, the term mostly influencesmetabolites that have a minimal effect on the cost. Compar-
ing the EMC metabolite prediction with in-vivo experimental data, as shown in Figure E in S1
Text, the predicted metabolite levels are in the correct scale. Similar to enzyme level predic-
tions, EMC4cm has the smallest prediction error—about 0.62 (corresponding to a typical fold
error of 4.1).

We can now use EMC analysis to rationalize cellular enzyme levels. Fig 5 (like the scheme in
Fig 1b) shows the specific contributions to enzyme demand for each reaction. The reversibility
cost terms provided by EMC2s (purple bars in Fig 5a) improve the enzyme demand predictions
in most cases, compared to the basic capacity-based costs. However, the EMC4cm predictions
show that saturation-based costs (orange bars in Fig 5b) are often larger than the reversibility
costs, and they improve the predictions even more. For practical cost estimates, for example
when computing flux burdens for FBA, we can conclude that multiplying the experimentally

Fig 4. Prediction uncertainties and evidence for cost optimality. (a) Uncertainty of predicted enzyme levels due to uncertain model parameters. A

hundred sets of kinetic model parameters were generated by Monte Carlo sampling. Due to the multivariate distribution used for sampling, each

parameter set satisfies the Haldane relationships. At the same time, fluxes were sampled according to their experimental error bars (typically around

15% of the measured flux), and the fixed metabolite concentrations were randomly varied in a ± 5% range. The resulting predicted enzyme levels,

computed using the EMC4cm score, are shown by small gray dots. Solid blue circles show medians, and error bars show 25% and 75% quantiles; empty

red circles show the original ECM4cm prediction, i.e. without sampling. (b) The enzyme levels in E. coli appear to be cost-optimized. We compared the

ECM solution (with ECM4cm score) to enzyme profiles obtained from metabolite profiles randomly sampled in the metabolite polytope. The ECM solution

(red) or metabolite profiles sampled in a close neighborhood (pink) yield significantly better enzyme predictions (quantified by RMSE, compare Fig 3)

than metabolite profiles sampled in the entire polytope (light blue). The total enzyme cost (on x-axis) represents the sum of weighted enzyme

concentrations (in mM); the weight of an enzyme is given by its amino chain length, divided by the median chain length of all enzymes considered.

doi:10.1371/journal.pcbi.1005167.g004
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determined kcat values by reversibility factors will likely improve the fidelity of FBA predic-
tions. For more details, see S1 Text section 4.

Discussion

When applying mathematical models to learn about biology, one typically faces a conflict
betweenmodel accuracy and the amount of available data. Metabolic systems are known to
abide to several physical and physiological considerations, all of which are mathematically
well-described (e.g. flux balance, thermodynamics, kinetics, and cost-benefit optimality). Tak-
ing all of these aspects into account would create very detailedmodels but at the price of con-
siderably increasing the demand for data. Here, we obtained a flexible modelingmethod by
combining the two main modeling approaches, constraint-based and kineticmodeling, in a
new way: with fixed metabolic fluxes, kineticmodels are used to determine a cost-optimal
state. The tiered approach in ECM allows for different levels of detail, which can easily be
matched to the amount of existing data. The minimal requirement for running ECM is to have
a metabolic network with given steady-state fluxes, while the maximal requirement would be a
fully parameterized kinetic model. The method applies to individual metabolic pathways and,
theoretically, entire metabolic networks. No matter if we model exponentially growing cells,
microbial cells in stationary phase, or non-growing eukaryotic cells, the sum of enzyme costs
per unit flux is a meaningful objective for pathways used by the cell. Although similar
approaches exist in dynamic modeling [48, 56] and enzyme optimization [4, 15, 23], ECM
extends these ideas to the most general kinetic rate laws and cost functions, while proving that
the emerging optimization problem is convex and thus easily (albeit numerically) solvable.
ECM advances metabolic modeling in six different ways:

Fig 5. Enzyme demand in central metabolism. (a) Measured fluxes for all reactions (black dots on top) lead to an enzyme demand (bottom). The

enzyme demand, predicted by using the reversibility-based EMC2s cost function, can be split into factors representing enzyme capacity and

thermodynamics (see Methods). Bars show predicted enzyme levels in mM for individual enzymes on logarithmic scale. Yellow dots denote measured

enzyme levels (in μM). Note that the bars do not represent additive costs, but multiplicative cost terms on logarithmic scale; therefore, the relevant

feature of the blue bars is not their absolute lengths, but their differences between enzymes. (b) The kinetics-based EMC4cm cost function includes

saturation terms and yields more accurate predictions. Starting from the capacity cost (in blue), the reversibility (purple) and saturation (red) terms

increase the enzyme demands and decrease the variability between enzymes (on log-scale). Note that flux data (circles) and protein data (yellow dots)

are identical in both plots.

doi:10.1371/journal.pcbi.1005167.g005
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1. Solving the enzyme optimality problem in metabolite spaceOne way of modeling the
cost and benefit of enzymes is to study kineticmodels and to treat enzyme levels as free vari-
ables to be optimized. However, this calculation can be hard because enzyme profiles may lead
to one, several, or no steady states, and the resulting optimality problem can be non-convex. By
fixing fluxes and using metabolite concentrations as our primary variables, we drastically sim-
plify this optimization problem. Flux directions and the second law of thermodynamics impose
constraints that define a set of feasible metabolite profiles, the metabolite polytope. This poly-
tope is used here as a space for screening, sampling, and optimizing metabolic states; accord-
ingly bounds on metabolite concentrations or driving forces can be easily formulated as linear
constraints. Using log-concentrations as free variables, and given a (steady and non-steady)
flux distribution, we can parametrize the set of metabolic states very easily: we simply consider
all feasible metabolite profiles and compute, for each of them, the corresponding enzyme pro-
file by taking the inverse rate laws. With enzyme levels as free variables, parameterizing the set
of metabolic states would be much more complicated.

2. Convexity The metabolite polytope not only provides a good search space, but it also
facilitates optimization because enzyme cost is a convex function of the metabolite log-concen-
trations (see S1 Text section 3.2). Convexity makes the optimization tractable and scalable—
unlike a direct optimization in enzyme space. Simple convexity holds for a wide range of rate
laws and for extended versions of the problem, e.g., including bounds on the sum of (non-loga-
rithmic) metabolite levels or bounds on weighted sums of enzyme fractions. By using specific
rate laws (e.g., the ECM4cm rate law, as shown by our colleague Joost Hulshof—personal com-
munication) or by adding a regularization term, representing additional biological objectives,
we can even ensure strict convexity, and thus the existence of a unique optimum that can be
efficiently found. It is important to distinguish this computational scalability, which is facili-
tated by convexity, from other pragmatic issues that arise when increasing the scale of a model,
in particular the scarcity of kinetic data. Standard kinetic modeling is difficult to apply to
whole-cell metabolic networks due to both scalability problems. Therefore, even if network-
wide kcat and KM values were to become available (e.g. by estimation methods that rely on
high-throughput data [42]), it would still be impractical to exhaustively search the parameter
space. ECM—due to its convexity—is solvable even on a genomic scale.

3. Separable rate laws disentangle individual enzyme cost effectsTo assess how different
physical factors shape metabolic states, we focused on separable rate laws, which lead to a series
of easily interpretable, convex cost functions. The terms in these functions represent specific
physical factors and require different kinetic and thermodynamic data for their calculation. By
neglecting some of the terms, one obtains different approximations of the true enzyme cost.
The more terms are considered, the more precise our predictions about metabolic states
becomes (see Methods and S1 Text section 2). By comparing the different scores, we can esti-
mate the enzyme cost that cells “pay” for running reactions at small driving forces (to save
Gibbs free energy) or for keeping enzymes beneath substrate-saturation (e.g., to dampen fluc-
tuations in metabolite levels). Of course, it is often important to keep models simple and the
number of parameters small, and therefore the stripped-down versions of ECM can be useful
in practice. For example, in some conditions such as batch-fed E. coli, a simple enzyme econ-
omy might still be a realistic approximation. Our results in Fig 3 indicate that indeed one can
predict enzyme levels quite well even with relatively simple enzyme cost objectives. Finally, in
conditions where ECM’s predictions are far from the measured enzyme levels, we can focus on
specific enzymes or pathways that deviate the most, which may therefore display optimization
or adaptations beyond simple resource allocation.

4. Relationship to other optimality approaches Beyond the practical advantages of using
factorized enzyme cost functions, they also allow us to easily compare our methods to earlier
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approaches. These approaches typically focused on only one or two of the factors that are taken
into account in ECM, and many of them can be reformulated as approximations of ECM (as
we have shown for MDF [15] and, by proxy, earlier thermodynamic profiling methods [57,
58]). For example, the optimization performed by FBA with flux minimization is equivalent to
using EMC0, while EMC1 is based on the same principles as FBA with molecular crowding
[19], pathway specific activities [2], and ConstrainedAllocation Flux Balance Analysis
(CAFBA) [59]. Thermodynamic profiling methods [15, 57, 58] which use driving forces as a
proxy for the cost, can be compared to EMC2 (where all kcat are assumed to be equal, see S1
Text section 4). To our knowledge, ECM is the first method that accounts for substrate and
product saturation (as well as allosteric) effects in the optimization process and guarantees a
convex (i.e., relatively tractable) optimality problem. Moreover, ECM highlights how different
aspects of metabolism are linked: most importantly, thermodynamic feasibility [15] is general-
ized by the quantitative notion of thermodynamic efficiency, which then turns out to be a natu-
ral precondition for enzyme economy.

5. Kinetics-basedflux cost functions for flux balance analysisAccordingly, results from
ECM can be used to improve flux analysis [13, 23] by definingmore realistic flux cost functions
for FBA and by providing formulae for the pathway specific activity [2] (see S1 Text section
2.3). In practice, the cost weights used in FBA so far (typically, defined by kcat values and enzyme
sizes) could be adjusted by dividing them by efficiency factors obtained from our workflow. In
FBA (specifically in variants with flux minimization or molecular crowding), flux cost or
enzyme demand are linear functions of the fluxes. Enzyme Cost Minimization allows us to com-
pute plausible prefactors for this formula from detailed knowledge of enzyme kinetics: by rear-
ranging Eq (6), we can write the enzyme cost as a linear function q ¼

X

l
avl � vl with flux

burdens avlðcÞ ¼ hEl
� 1

kþcat;l
� 1

Zrev
l ðcÞ
� 1

Zsat
l ðcÞ
� 1

ZregðcÞ. The flux burden has a lower bound acat
vl
¼ hEl

=kþcat;l,

denoting the cost per flux under ideal conditions. Ignoring all dependencies on metabolite levels,
acat
vl

could be used as a cost weight to define flux cost functions for FBA. However, these values
are further increased by the reciprocal values of the enzyme efficiency factors. A similar, flux-
specific enzyme cost (or, inversely, a flux per enzyme invested) can also be defined for entire
pathways. The Pathway Specific Activity (PSA) [2] is defined as the flux per enzyme mass (in
units of mmol/s per mg of enzyme) and can be computed by treating enzyme mass as a cost
function.Assuming that ηrev = ηkin = 1 and that cost is expressed in terms of protein mass in
Daltons ðhEl

¼ mlÞ, we obtain the pathway specific activity using the formula Apw = vpw/q.
6. EmbeddingECM into flux analysis Furthermore, ECM could be “embedded” into FBA

by screening a finite set of possible flux distributions, characterizing each of them by quantita-
tive cost (using ECM) and choosing the most cost-favorable mode. Since we now know that
any metabolic state that has maximal specific rate is an elementary flux mode [60], it would be
sufficient to scan only the elementary flux modes. This could be seen as a version of minimal-
flux FBA, but one that uses kinetic knowledge instead of the various heuristic assumptions that
go into FBA. Second, we can derive realistic bounds on thermodynamic forces based on kinet-
ics and enzyme cost, or lower/upper bounds on substrates/products concentrations to avoid
extreme saturation effects. All these constraints follow systematically from setting upper limits
on the individual efficiency factors. By applying them in thermodynamics-based flux analysis,
we shrink the metabolite polytope by excluding strips at its boundarywhere costs would be too
high to allow for an optimal state. Similarly, by giving individual weights to thermodynamic
driving forces, MDF could be used as a method to optimize some lower bound on the system’s
enzyme cost (see S1 Text section 4).

ECM is based on the central assumptions that the metabolic states of cells are cost-opti-
mized and that cost arises from cellular protein levels. Both assumptions are of course
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debatable. There is ample evidence that cells assume apparently sub-optimal states in order to
maintain robust homeostasis or to gain metabolic flexibility for addressing future challenges
[1]. For example, an allosterically regulated enzyme will often not reach its maximal possible
activity, so investment in enzyme production appears to be wasted. Nevertheless, cells pay this
price in order to gain the ability to adjust quickly to changes (i.e. within seconds rather than
the minutes required for altering gene expression). One intriguing example is the bacterium
Lactococcus lactis, which uses the exact same enzyme expression profile for completely differ-
ent anaerobic growth modes [61]: slow growth / high yield acetate fermentation, and fast
growth / low yield lactate fermentation. The reason that low-yield strategies achieve higher
growth rates is typically attributed to much lower protein investments, but obviously, this is
not the case in the Lactococcus lactis experiments. This stands in contrast to aerobic fermenta-
tion in E. coli, which seems to be explained well by predictable shifts in protein allocation [5].

As these examples show us, the importance that certain cells attribute to saving on protein
costs is highly variable and, in some cases, can be negligible: for instance, when protein levels
are already low or when protein demands change quickly and unpredictably. Moreover, ran-
dom fluctuations in protein levels will be tolerable as long as the impact on fitness is not very
high. Nevertheless, we think that a simple principle of cost optimality as in ECM can be a useful
heuristics. On the one hand, it can reveal theminimal protein investment that would be
required to support a certainmetabolic state. In metabolic engineering, such predicted invest-
ments may be used to rule out potential, but uneconomicalmetabolic pathways. On the other
hand, ECM can be used as a background model to be compared to more complicated optimal-
ity-based cell models. Such comparisons can allow us to quantify the impact of other fitness
objectives in units of “protein cost”, to learn which objectives can best explain cellular behavior,
and to describe non-optimality as a deviation from a presumable cost-optimal state.

Furthermore, ECM can be extended to cover more realistic optimality scenarios. Some alter-
native objectives can be integrated into ECM by adding them to the objective function.We
have tried to keep our method as general as possible to facilitate such objectives, e.g. by allow-
ing for non-linear, convex enzyme costs (h(E)). In particular, metabolite levels may be under
additional constraints or optimality pressures because they appear in pathways outside our
model, which may favor high or low levels of the metabolites. Also chemical molecule proper-
ties, such as hydrophobicity or charge, may affect the preferable metabolite levels in cells [62].
For example, if our model captures an ATP-producing pathway, low ATP levels will be ener-
getically favorable, whereas other ATP-consuming pathways would favor higher ATP levels.
To account for this trade-off, a requirement for sufficiently high ATP levels can be included in
our ECM model by constraints or additional objectives b(c)(x) that penalize low ATP levels (see
Methods). If metabolite levels are kept far from their upper or lower physiological bounds, this
will allow for more flexible adjustments in case of perturbation.

If enzyme profiles were shaped by optimal resource allocation, as assumed in ECM, this
would have consequences for the shapes of enzyme and metabolite profiles. Enzyme cost, ther-
modynamic forces, and an avoidance of low substrate levels would be tightly entangled, and
the shapes of enzyme profiles would reflect the role of enzymes in metabolism, i.e., the way in
which they control metabolic concentrations and fluxes. Among other things, this would imply
three general properties of enzyme profiles:

1. Enzyme cost is related to thermodynamics In FBA, thermodynamic constraints and
flux costs appear as completely unrelated aspects of metabolism. Thermodynamics is used to
restrict flux directions, and to relate them to metabolite bounds, while flux costs are used to
suppress unnecessary fluxes. In ECM, thermodynamics and flux cost appear as two sides of a
coin. Like in FBA, flux profiles are thermodynamically feasible if they lead to a finite-sized
metabolite polytope, allowing for positive forces in all reactions. However, the values of these
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forces also play a role in shaping the enzyme cost function on that polytope. Together, metabo-
lite polytope and enzyme cost function (as in Fig 2) summarize all relevant information about
flux cost.

2. Enzymeprofiles reflect localmetabolic necessitiesWhat are the factors that determine
the levels of specific enzymes? High levels are required whenever catalytic constants, driving
forces, or substrate concentrations are low. Accordingly, an efficient use of enzymes requires
metabolite profiles with sufficient driving forces (for energetic efficiency) and sufficient sub-
strate levels (for saturation efficiency).Trade-offs between these requirements, together with
predefined bounds, will shape the optimal metabolite profiles [23]: in a linear pathway, a need
for energetic efficiencywill push substrate concentrations up and product concentrations
down; the need for saturation efficiencyhas the same effect. However, since the product of one
reaction is the substrate of another reaction, there will be trade-offs between efficiencies in dif-
ferent reactions. Therefore, where enzymes are costly or show low kcat values, we may expect a
strong pressure on sufficient driving forces and substrate levels.

3. Enzymeprofiles reflect global effects of enzyme usage If enzyme profiles follow a cost-
benefit principle, costly enzymes should provide large benefits. Such a correspondence has
been predicted, for example, from kineticmodels in which flux is maximized at a fixed total
enzyme investment [63]: in optimal states, high-abundance enzymes exert a strong control on
the flux, and enzymes with strong flux control are highly abundant. If this applies in reality,
then high investment (e.g., large enzyme levels shown in Fig 1A) could be seen as a sign of
large benefit, in terms of flux control. Here, we studied a different optimality problem (fixing
the fluxes and optimizing enzyme levels under constraints on metabolite levels), and obtain a
more general result. The optimal enzyme cost profile obtained by ECM is a linear combination
of flux control coefficients and, possibly, control coefficients on metabolites that hit upper or
lower bounds (see S1 Text section 7.4). In simple cases (e.g., the example in Fig 2), where there
is only one flux mode and none of the metabolites hits a bound, enzyme demands and flux con-
trol coefficientswill be directly proportional.

Beyond the analysis of central metabolism, ECM can be applied to select candidate path-
ways in metabolic engineering projects. A prediction of enzyme demands or specific activities
(S1 Text section 2.3) can be helpful at different stages of pathway design. The optimal expres-
sion profile for a pathway can be determined, critical steps in a pathway can be detected (i.e.,
steps where lowering the enzyme’s flux-specific cost avl would be most important), and enzyme
demand and cost can be compared between pathway structures. This type of application is not
unique to ECM, and although several of the methods that we mention throughout this manu-
script [2, 4, 23, 32, 64, 65] have been used for this purpose in the past, we believe that ECM
manages to bring them all under one umbrella.

Materials and Methods

Metabolite polytope and enzyme cost functions

A metabolic network with given flux directions, equilibrium constants, and metabolite bounds
defines themetabolite polytope. This convex polytope P in the space of log-concentrations xi =
ln ci represents the set of feasible metabolite profiles. The flux profile used can be stationary
(e.g. determined by FBA or 13C MFA) or non-stationary (e.g. from dynamic 13C labeling exper-
iments [66]). If the provided flux directions are thermodynamically infeasible, the metabolite
polytope will be an empty set, P ¼ ;. The faces of the metabolite polytope arise from two
types of inequality constraints. First, the physical ranges xmin

i � xi � xmax
i of metabolite levels

define a box-shaped polytope (bounded by P-faces). Some metabolite levels may even be con-
strained to fixed values. Second, each reaction must dissipate Gibbs free energy, and to make
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this possible, driving forces and fluxes must have the same signs (Θl � vl> 0), and
thus signðvlÞ ¼ signðDrG0

�

l =RT þ
P

inilxiÞ. The resulting constraints define E-faces of the
metabolite polytope (representing equilibrium states, Θl = 0). Close to these faces, enzyme cost
goes to infinity.

Separable rate laws and enzyme cost functions

According to Eq (3), reversible rate laws can be factorized into four terms: the enzyme level E,
its forward catalytic constants kþcat, and two efficiency factors [22]. In Fig 6 we add a non-com-
petitive allosteric inhibitor x. While the enzyme level and kþcat are not directly affected by the
concentration of metabolites (although kþcat can vary with conditions such as pH, ionic strength,
or molecular crowding in cells), the efficiency factors are concentration-dependent, unitless,
and can vary between 0 and 1. The reversibility factor ηrev depends on the driving force (and
thus, indirectly, on metabolite levels), and the equilibrium constant is required for its calcula-
tion. The saturation factor ηsat depends directly on metabolite levels and contains theKM values
as parameters. Allosteric regulation yields additive or multiplicative terms in the rate law
denominator, which in our example can be captured by a separate factor ηreg. In general, ηsat

and ηreg can be combined into one kinetic factor ηkin, as depicted in Eq 6.
The second equation in Fig 6 describes the enzyme cost for a flux v, and contains the terms

from the rate law in inverse form multiplied by the enzyme burden hE. The left-hand part of the
equation, hE v=kþcat, defines a minimum enzyme cost, which is then increased by the following
efficiency factors. Again, 1/ηkin can be split into 1/ηsat � 1/ηreg. By omitting some of these factors,
one can construct simplified enzyme cost functions with higher specific rates, or lower enzyme
demands (compare Fig 1b). Since both rate and enzyme demand are a product of several terms,

Fig 6. Rate law and enzyme demand of reversible Meichalis-Menten reactions. For a reaction SÐ P

with reversible Michaelis-Menten kinetics, a driving force θ = −ΔrG
0/RT, and a prefactor for non-competitive

allosteric inhibition, the rate law can be written as with inhibitor concentration x. In the example, with non-

competitive allosteric inhibition, the kinetic factor ηkin could even be split into a product ηsat � ηreg. The first two

terms in our example, E � kþcat, represent the maximal velocity (the rate at full substrate-saturation, no

backward flux, full allosteric activation), while the following factors decrease this velocity for different

reasons: the factor ηrev describes a decrease due to backward fluxes (see Figure A in S1 Text) and the factor

ηkin describes a further decrease due to incomplete substrate saturation and allosteric regulation (see Fig

1b). The inverse of all these terms appear in the equation for enzyme demand, q, which is given by the

enzyme level multiplied by the burden of that enzyme, hE.

doi:10.1371/journal.pcbi.1005167.g006
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it is convenient to depict them as a sum on a logarithmic scale (Fig 7), where the simplified func-
tions are seen as upper/lower bounds on the more complex rate/demand functions.

Enzyme cost minimization can be formulated as a convex optimality

problem for metabolite levels

Enzyme cost minimization (ECM) uses a metabolic network, a flux profile v, kinetic rate laws,
enzyme burdens, and bounds on metabolite levels to predict optimal metabolite and enzyme
concentrations. The enzyme cost of reactions or pathways is a convex function on the metabo-
lite polytope (proof in S1 Text section 3.2), that is, a log-scalemetabolite vector x, linearly inter-
polated between vectors xa and xb, cannot have a higher cost than the interpolated cost of xa

and xb. Convexity also holds for cost functions h(E) that are non-linear, but convex over E.
Some EMC functions are strictly convex (i.e., Eq. (S18) holds with a< sign instead of�), while
others are not (e.g. EMC2). The most simplified EMC functions are actually constant (as in
EMC0 and EMC1). To find an optimal state, we choose an EMC function and minimize the
total enzyme cost within the metabolite polytope. Optimal metabolite profiles, enzyme profiles,
and enzyme costs are obtained by solving the enzyme cost minimization (ECM) problem

xoptðvÞ ¼ argmin
x2P qðx;vÞ

EoptðvÞ ¼ EðxoptðvÞ;vÞ

qoptðvÞ ¼ qðxopt;vÞ:

ð7Þ

The total cost q(x, v) (defined in Eq (6)) is the sum of enzyme costs given by EMC functions.
Since q(x) and the metabolite polytope itself are convex, ECM is a convex optimization problem.
The optimal enzyme levels depend on external conditions and have to be recalculated after any
change in external metabolite levels. There are cases where q(x) is convex, but not strictly con-
vex, and therefore Eq (7) will have a continuum of optimal metabolite solutions. This holds, in
particular, for EMC1 scores, which are independent of metabolite levels, and for EMC2 scores,
which only depend on reaction Gibbs free energies, i.e., on some linear combinations of the log-
arithmic metabolite levels. In such cases, to enforce a unique solution one may add a strictly

Fig 7. The conversion between fluxes and enzyme levels, in both directions. (a) Starting from the

logarithmic enzyme level (dashed line on top), we add the terms log kþcat, log ηrev, and log ηkin, and obtain

better and better approximation of the rate. In the example shown, kþcat has a numerical value smaller than 1.

The more precise approximations (with more terms) yield smaller rates. The EMC4 arrows refer to other

possible rate laws with additional terms in the denominator. (b) Enzyme demand is shaped by the same

factors (see Eq (5)). Starting from a desired flux (bottom line), the predicted demand increases as more

terms are considered.

doi:10.1371/journal.pcbi.1005167.g007
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convex side objective that scores the log-metabolite levels, e.g., a quadratic function favoring
metabolite levels close to some typical concentration vector x̂ : minx2P ðqðx; vÞ þ ljjx � x̂jjÞ,
where λ is a small, heuristically chosen weighing factor (see S1 Text section 3.3). Such extra
objectives can be justified biologically, e.g. by assuming that intermediate metabolite levels give
cells more flexibility to adapt to perturbations. Strict convexity not only simplifies numerical cal-
culations, but it also guarantees that the optimization problem has a unique solution. In fact,
metabolite polytope and cost functions remain convex even under various modifications of the
problem. When adding constraints on the total metabolite level, on weighted sums of metabolite
levels, or on weighted sums of enzyme levels, the metabolite polytope is intersectedwith curved
manifolds (since we are dealing with concentrations in logarithmic scale) but remains convex
(S1 Text section 3.4). Finally, we can consider the more complicated problem of preemptive
enzyme expression, where a fixed enzyme profile and allosteric inhibition must allow a cell to
realize different flux distributions under different conditions. Also this problem is convex (S1
Text section 3.7). If a model contains non-enzymatic reactions (or non-enzymatic processes
such as metabolite diffusion out of the cell or dilution in growing cells), each such reaction leads
to an extra constraint on the metabolite polytope (S1 Text section 3.8). A known flux in an irre-
versible diffusion or dilution reaction fixes the concentration of one metabolite. In the presence
of irreversible non-enzymatic reactions with mass-action rate laws, the polytope is intersected
by a subspace. In both cases, the resulting sub-polytope may be empty, i.e., the given flux distri-
bution will not be realizable.

Non-stationary states and the importance of boundary metabolites

Flux balance analysis and kineticmodels rely on the assumption that certainmetabolites are
mass-balanced: in FBA, this assumption, together with stationarity, defines the set of steady-
state fluxes; in kineticmodels, the mass-balancedmetabolites are the ones whose dynamics is
describedby the system equations. ECM, in contrast, assumes fluxes to be given and makes no
assumption about mass balances. If the fluxes in our pathway model lead to a mass imbalance in
a metabolite, we may still assume that the entire cell is in stationary state, but that mass balances
are reached with the help of other pathways that are not part of our model. Alternatively, we
may assume that the metabolite is actually not mass-balanced and that we are describing a non-
stationary, transient state. In both cases, ECM is fully applicable as long as metabolic fluxes are
predefined and loop-less (in order to be realizable by a thermodynamically consistent state [67]).

A key point in ECM is the choice of metabolite levels on the model boundary. If we prede-
fine all these metabolite levels, our pathway will be “isolated” from the rest of the network, and
any information about the surrounding network can be safely ignored. In our E. coli model,
ATP is one such important boundarymetabolite: if we allowed for a lower ATP level, ATP
could be produced at a lower enzyme cost because of the more favorable driving forces. If we
do not fix the ATP concentration, but define an allowed range, ECM would choose the lowest
possible ATP level; thus, if the allowed ATP range is too broad, no meaningful predictions can
be expected. In a model of ATP-consuming biosynthesis pathways, the situation would be
exactly the opposite: here, it is a high ATP level that would lead to higher driving forces and to
lower enzyme requirements. Whole-cell models contain both types of pathways—ATP-pro-
ducing and ATP-consuming ones. In such a model, ECM could predict some meaningful com-
promise, i.e. an intermediate ATP level that minimizes the enzyme cost of ATP production
plus the enzyme cost of biosynthesis. Since in our central metabolism model there are only 3
reactions that produce or consume ATP, it is unlikely that so few reactions would be represen-
tative of the cost tradeoff between the dozens of enzymes that use ATP in the full metabolic
network. Therefore, we chose to fix the ATP level to its measured value (*3 mM).
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Our use of small-scale pathway models, which ignore most of the metabolic network, is
therefore justified: as long as we predefine all metabolic fluxes and all metabolite levels at the
pathway boundary, pathways can be modeled separately and the models can later be combined
without any adjustment. This makes the ECM approach fully modular. All the input parame-
ters (kinetic parameters, fluxes and boundary concentrations) are directly obtained from mea-
surements without any further tuning. By setting all relevant fluxes and boundarymetabolite
concentrations to their measured values, we isolate our submodel from any effects that the sur-
rounding network might have on predicted enzyme cost. Finally, there may be metabolites that
are “free” in a model, but that affect enzymes that are not in the model (e.g. pyruvate, which
affects 30 other enzymes). By neglecting these enzymes, we ignore some of the complex com-
promises between them, and the predicted metabolite concentration may be wrong. In our spe-
cific case of central metabolism, whose enzymes comprise a very large fraction of E. coli’s
proteome, this effect is probably not so severe. In any case, this problem can be easily fixed by
imposing constraints or fixed concentrations for central metabolites such as pyruvate (similar
to how we deal with ATP and other co-factors).

Tolerance ranges for nearly optimal solutions

Evolution could tolerate non-optimal enzyme costs; this tolerance depends on population
dynamics and can sometimes be quite significant, e.g. in small isolated communities. To com-
pute realistic tolerance ranges for the ECM problem, we start from the optimum (total cost q)
and choose a tolerable cost qtol (e.g., one percent higher than the optimal cost). This defines a
tolerable region in P : P tol � fx 2 P j qðxÞ � qtolg. A tolerance range for each metabolite is
defined by the minimal and maximal values the metabolite can show within Ptol. Tolerance
ranges for enzyme levels are defined in a similar way. Alternatively, tolerance ranges and nearly
optimal solutions can be estimated from the Hessian matrix (see S1 Text section 7.3).

Sensitivity analysis with respect to kinetic constants

The predicted enzyme and metabolite levels depend on the kineticmodel chosen, and in partic-
ular on the kinetic constants (kcat and KM values). Errors or uncertainties in these constants
will cause errors or uncertainties in the predicted enzyme profiles. To estimate these uncertain-
ties, we considered a joint distribution of all model parameters, describing both the uncertain-
ties of individual parameters and the correlations between dependent parameters. This
probability distribution was directly obtained from parameter balancing (S1 Text section 5.2).
We sampled the kinetic parameters from this distribution, sampled metabolic fluxes according
to their experimentalmean values and standard deviations, and varied the fixed metabolite lev-
els in a ± 5% range around their standard values. Then we applied ECM on each of the sampled
parameter sets, and gathered statistics for the optimal enzyme and metabolite levels. Fig 4(a)
shows the distributions of the predicted enzyme levels. For narrow parameter distributions, the
mean values, variances, and covariances of the predicted enzyme levels can even be computed,
approximately, from the ECM solution with standard parameters (see S1 Text section 3.5).
Enzyme uncertainties caused by parameter uncertainties should not be confusedwith the toler-
ance ranges describedbefore. The tolerance ranges are always associated with sub-optimal
solutions, i.e., enzyme profiles with a higher total cost; enzyme variations caused by parameter
variation, in contrast, can go both ways and may sometimes decrease the cost.

Testing the hypothesis of cost-optimal metabolite profiles

Our enzyme level predictions rely on two main assumptions: a mechanistic model that defines
a quantitative relation betweenmetabolite levels, enzyme levels, and fluxes, and an optimality
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assumption stating that metabolite levels are optimized for a minimal total enzyme cost. To
test whether such cost optimality holds in reality, we used the same mechanistic model and
predicted enzyme levels based on feasible, randomly sampled metabolite profiles. We first sam-
pled metabolite profiles around the ECM optimum by adding normally distributed random
numbers (standard deviation 0.05, for metabolite levels on natural log scale); then we sampled
metabolite profiles in a much wider range, by sampling convex combinations of extreme points
in the metabolite polytope (i.e., points realizing minimal or maximal values of individual
metabolite concentrations). As shown in Fig 4(b), the metabolite profiles close to the ECM
optimum yield significantly better enzyme level predictions than broadly sampled metabolite
profiles. The fact that predictions from the same kineticmodel, without the optimality assump-
tion, becomemuch worse provides strong support for cost-optimality as a principle in living
cells.

Workflow for model building and enzyme prediction

To predict enzyme and metabolite levels in metabolic pathways we developed an automated
workflow (Fig 8). In a consistent model, all parameters must satisfy Wegscheider conditions
for equilibrium constants [68] and Haldane relationships between equilibrium constants and
rate constants [69]. The kinetic constants used in rate laws should represent effective parame-
ters, which may differ from “ideal” parameters, e.g., by crowding effects. However, since

Fig 8. Data integration in the ECM-based modeling workflow. After collecting all available kinetic and thermodynamic data and mapping them onto

the network model, we use parameter balancing to obtain a consistent, complete set of kinetic constants. For a fully parameterized kinetic model, the

metabolite and enzyme levels must be determined. We compute them by enzyme cost minimization with predefined metabolic fluxes (obtained from

experiments or computationally). Finally, the predicted values are validated with measured metabolite and protein concentrations.

doi:10.1371/journal.pcbi.1005167.g008
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measured parameter values are usually incomplete and inconsistent, parameter balancing [47]
is used to translate measured kinetic constants into consistent model parameters. Based on a
network and given fluxes, the software extracts relevant data from a database (thermodynamic
constants, rate constants, fluxes, and protein sizes; metabolite and protein levels for validation),
determines a consistent set of model parameters, builds a kineticmodel, and optimizes enzyme
and metabolite profiles for the EMC function chosen. To assess the effects of parameter varia-
tion, parameter sets can be sampled from the posterior distribution as described above. The
workflow has been implemented in MATLAB and uses Systems BiologyMarkup Language
(SBML) for model structures and the SBtab table format for numerical data [70].

E. coli model

The model shown in Fig 3 was built automatically from a list of chemical reactions in E. coli
central metabolism (for details, see S1 Text section 6). Equilibrium constants were estimated
using the component contribution method [41], kinetic constants (kþcat and KM values) were
obtained from the BRENDA database (after which each value was curated manually), and a
complete, globally consistent parameter set was determined by parameter balancing. During
ECM, all metabolite levels were limited to predefined ranges, and the levels of cofactors and
some other metabolites were fixed at experimentally known values. To compute tolerances for
predicted metabolite and enzyme levels, we defined an acceptable enzyme cost, one percent
higher than the minimal value, and determined ranges for metabolite levels that agree with this
cost limit. The enzyme cost function accounts for protein composition, giving different costs to
different amino acids. However, models with equal cost weights for all proteins, or with size-
dependent protein costs yielded similar results (results are provided on the website). Data,
model, and MATLAB code for ECM can be obtained from www.metabolic-economics.de/
enzyme-cost-minimization/.

Supporting Information

S1 Text. Supplementarymaterial text containing Figure A—Figure F and Table A—
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(PDF)
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