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Abstract Fragility curves are commonly used in civil engineering to assess the
vulnerability of structures to earthquakes. The probability of failure associated
with a prescribed criterion (e.g. the maximal inter-storey drift of a building ex-
ceeding a certain threshold) is represented as a function of the intensity of the
earthquake ground motion (e.g. peak ground acceleration or spectral accelera-5

tion). The classical approach relies on assuming a lognormal shape of the fragility
curves; it is thus parametric. In this paper, we introduce two non-parametric ap-
proaches to establish the fragility curves without employing the above assump-
tion, namely binned Monte Carlo simulation and kernel density estimation. As
an illustration, we compute the fragility curves for a three-storey steel frame us-10

ing a large number of synthetic ground motions. The curves obtained with the
non-parametric approaches are compared with respective curves based on the log-
normal assumption. A similar comparison is presented for a case when a limited
number of recorded ground motions is available. It is found that the accuracy of
the lognormal curves depends on the ground motion intensity measure, the fail-15

ure criterion and most importantly, on the employed method for estimating the
parameters of the lognormal shape.

Keywords earthquake engineering � fragility curves � lognormal assumption �
non-parametric approach � kernel density estimation � epistemic uncertainty

1 Introduction20

The severe socio-economic consequences of several recent earthquakes highlight
the need for proper seismic risk assessment as a basis for e�cient decision mak-
ing on mitigation actions and disaster planning. To this end, the probabilistic
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performance-based earthquake engineering (PBEE) framework has been devel-
oped, which allows explicit evaluation of performance measures that serve as deci-25

sion variables (DV) ( e.g. monetary losses, casualties, downtime) accounting for the
prevailing uncertainties ( e.g. ground motion characteristics, structural properties,
damage occurrence). The key steps in the PBEE framework comprise the identi-
�cation of seismic hazard, the evaluation of structural response, damage analysis
and eventually, consequence evaluation. In particular, the mean annual frequency30

of exceedance of a DV is evaluated as [1,2,3]:

� (DV ) =
Z Z Z

P(DV jDM ) dP(DM jEDP ) dP(EDP jIM ) jd� (IM )j ; (1)

in which P(xjy) is the conditional probability of x given y, DM is a damage mea-
sure typically de�ned according to repair costs ( e.g. light, moderate or severe dam-
age), EDP is an engineering demand parameter obtained from structural analysis
(e.g. force, displacement, drift ratio), IM is an intensity measure characterizing35

the ground motion severity ( e.g. peak ground acceleration, spectral acceleration)
and � (IM ) is the annual frequency of exceedance of theIM . Determination of
the probabilistic model P (EDP jIM ) constitutes a major challenge in the PBEE
framework since the earthquake excitation contributes the most signi�cant part to
the uncertainty in the DV . The present paper is concerned with this step of the40

analysis.
The conditional probability P (EDP � edpjIM ), where edp denotes an ac-

ceptable demand threshold, is commonly represented graphically in the shape of
the so-called demand fragility curves [4]. Thus, a demand fragility curve repre-
sents the probability that an engineering demand parameter exceeds a prescribed45

threshold as a function of an intensity measure of the earthquake motion. For
the sake of simplicity, demand fragility curves are simply denoted fragility curves
hereafter, which is also typical in the literature [5,6]. We note however that the
term fragility may also be used for P (DM � dmjIM ) or P (DM � dmjEDP ),
i.e. the conditional probability of the damage measure exceeding a threshold dm50

given the ground motion intensity [7] or the engineering demand parameter [2,3],
respectively.

Originally introduced in the early 1980's for nuclear safety evaluation [8],
fragility curves are nowadays widely used for multiple purposes, e.g. loss estimation
[9], assessment of collapse risk [10], design checking [11], evaluation of the e�ec-55

tiveness of retro�t measures [12], etc. Several novel methodological contributions
to fragility analysis have been made in recent years, including the development of
multi-variate fragility functions [13], the incorporation of Bayesian updating [14]
and the consideration of time-dependent fragility [15]. However, the traditional
fragility curves remain a popular tool in seismic risk assessment and recent lit-60

erature is rich with relevant applications on various type of structures, such as
irregular buildings [6], underground tunnels [16], pile-supported wharfs [17], wind
turbines [18], nuclear power plant equipments [19]. The estimation of such curves
is the focus of the present paper.

Fragility curves are typically classi�ed into four categories according to the65

data sources, namely analytical, empirical, judgment-based or hybrid fragility
curves [20]. Analytical fragility curves are derived from data obtained by anal-
yses of structural models. Empirical fragility curves are based on the observation
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of earthquake-induced damage reported in post-earthquake surveys. Judgment-
based curves are estimated by expert panels specialized in the �eld of earthquake70

engineering. Hybrid curves are obtained by combining data from di�erent sources.
Each of the aforementioned categories has its own advantages and limitations.
In this paper, analytical fragility curves based on data collected from numerical
structural analyses are of interest.

The typical approach to compute analytical fragility curves presumes that the75

curves have the shape of a lognormal cumulative distribution function [21,22].
This approach is therefore consideredparametric . The parameters of the lognormal
distribution are determined either by maximum likelihood estimation [21,23,13] or
by �tting a linear probabilistic seismic demand model in the log-scale [5,24,25,26].
The assumption of lognormal fragility curves is almost unanimous in the literature80

due to the computational convenience as well as due to the ease of combining such
curves with other elements of the seismic probabilistic risk assessment framework.
However, the validity of such assumption remains questionable (see also [27]).

In this paper, we present two non-parametric approaches for establishing the
fragility curves, namely binned Monte Carlo simulation (bMCS) and kernel den-85

sity estimation (KDE). The main advantage of bMCS over existing techniques
also based on Monte Carlo simulation is that it avoids the bias induced by scaling
ground motions to prede�ned intensity levels. In the KDE approach, we introduce
a statistical methodology for fragility estimation, which opens new paths for es-
timating multi-dimensional fragility functions as well. The proposed methods are90

subsequently used to investigate the validity of the lognormal assumption in a
case study, where we develop fragility curves for di�erent thresholds of the maxi-
mum drift ratio of a three-story steel frame subject to synthetic ground motions.
The comparison between KDE-based and lognormal fragility curves is also shown
for a concrete bridge column subject to recorded motions using results from an95

earlier study by the authors [28]. The proposed methodology can be applied in
a straightforward manner to other types of structures or classes of structures or
using di�erent failure criteria.

The paper is organized as follows: in Section 2, the di�erent approaches for
establishing the fragility curves, namely the lognormal and the proposed bMCS and100

KDE approaches, are presented. In Section 3, the method recently developed by
Rezaeian and Der Kiureghian [29] for generating synthetic ground motions, which
is employed in the following numerical investigations, is briey recalled. The case
studies are presented in Sections 4 and 5 and the results are discussed in Section
6. The paper concludes with a summary of the main �ndings and perspectives on105

future research.

2 Computation of fragility curves

Fragility curves represent the probability of failure of a system, associated with a
speci�ed criterion, for a given intensity measure ( IM ) of the earthquake motion.
Failure herein represents the exceedence of a prescribed demand limit. A commonly110

used demand parameter in earthquake engineering is the maximal drift ratio � ,
i.e. the maximal relative horizontal displacement normalized by the corresponding
height [6]. Thus, the fragility function is cast as follows:

Frag( IM ; � o) = P[� � � o jIM ]; (2)
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in which Frag( IM ; � o) denotes the fragility at the given IM for a threshold � o

of � . In order to establish the fragility curves, a number N of transient �nite115

element analyses of the structure under consideration are used to provide paired
values f (IM i ; � i ) ; i = 1 ; : : : ; N g.

2.1 Lognormal approach

The classical approach for establishing fragility curves consists in assuming a log-
normal shape for the curves described in Eq. (2). Two techniques are typically120

used to estimate the parameters of the lognormal fragility curves, namely maxi-
mum likelihood estimation and linear regression. These are presented below.

2.1.1 Maximum likelihood estimation

One assumes that the fragility curves can be written in the following general form:
125

dFrag( IM ; � o) = �
�

ln IM � ln �
�

�
; (3)

where � (�) denotes the standard Gaussian cumulative distribution function (CDF),
� is the \median" and � is the \log-standard deviation" of the lognormal curve.
Shinozuka et al. [21] proposed the use of maximum likelihood estimation to deter-
mine these parameters as follows: One denotes by! the event that the demand
threshold � o is reached or exceeded and assumes thatY (! ) is a random variable130

with a Bernoulli distribution. In particular, Y takes the value 1 with probability
Frag( �; � o) and the value 0 with probability 1 � Frag( �; � o). Considering a set of
i = 1 ; : : : ; N ground motions, the likelihood function reads:

L (�; �; f IM i ; i = 1 ; : : : ; N g) =
NY

i =1

[Frag( IM i ; � o)]y i [1 � Frag( IM i ; � o)]1� y i ;

(4)
where IM i is the intensity measure of the i th seismic motion and yi represents
a realization of the Bernoulli random variable Y . The latter takes the value 1 or135

0 depending on whether the structure under the i th ground motion sustains the
demand threshold � o or not. The parameters ( �; � ) are obtained by maximizing
the likelihood function. In practice, a straightforward optimization algorithm is
applied on the log-likelihood function:

�
� � ; � � 	 T = arg max ln L (�; �; f IM i ; i = 1 ; : : : ; N g) : (5)

2.1.2 Linear regression140

One �rst assumes a probabilistic seismic demand model, which relates a structural
response quantity of interest (herein drift ratio) to an intensity measure of the
earthquake motion. Speci�cally, the demand � is assumed to follow a lognormal
distribution of which the log-mean value is a linear function of ln IM , leading to:

ln � = A ln IM + B + � Z; (6)



Seismic fragility curves for structures using non-parametric representations 5

where Z � N (0; 1) is a standard normal variable. Parameters A and B are deter-145

mined by means of ordinary least squares estimation in a log-log scale. Parameter
� is obtained by:

� 2 =
NX

i =1

e2
i =(N � 2) ; (7)

where ei the residual between the actual value ln � and the value predicted by the
linear model: ei = ln � i � A ln ( IM i ) � B . Then, Eq. (2) rewrites:

dFrag( IM ; � o) = P[ln � � ln � o ] = 1 � P[ln � � ln � o ]

= �
�

ln IM � (ln � o � B ) =A
�=A

�
:

(8)

The median and log-standard deviation of the lognormal fragility curve in Eq. (8)150

are � = exp [(ln � o � B ) =A] and � = �=A respectively. This approach to fragility
estimation is widely employed in the literature, see e.g. [22,30,31,32] among others.

The two methods described in this section are parametric because they impose
the shape of the fragility curves (Eq. (3) and Eq. (8)), which is that of a lognormal
CDF when considered as a function of IM . We note that by using the linear-155

regression approach, one accepts two additional assumptions, namely the linear
function for the log-mean value of � and the constant dispersion (or homoscedas-
ticity) of the residuals independently of the IM level. E�ects of these assumptions
have been investigated by Karamlou and Bocchini [27]. In the sequel, we propose
two non-parametric approaches to compute fragility curves without relying on the160

lognormality assumption.

2.2 Binned Monte Carlo simulation

Having at hand a large sample set f (IM j ; � j ) ; j = 1 ; : : : ; N g, it is possible to
use binned Monte Carlo simulation (bMCS) to compute the fragility curves, as
described next. Let us consider a given abscissaIM o . Within a small bin sur-165

rounding IM o , say [IM o � h; IM o + h] one assumes that the maximal drift � is
linearly related to the IM . This assumption is exact in the case of linear struc-
tures, but would only be an approximation in the nonlinear case. Therefore, the
maximal drift � j , which is related to IM j 2 [IM o � h; IM o + h], is converted
into the drift f� j (IM o), which is related to the j th input signal scaled to have an170

intensity measure equal to IM o :

f� j (IM o) = � j
IM o

IM j
: (9)

This procedure is illustrated in Figure 1. The fragility curve at IM o is then
obtained by a crude Monte Carlo estimator:

dFrag( IM o) =
N f (IM o)
Ns (IM o)

; (10)

where N f (IM o) is the number of points in the bin such that f� j (IM o) > � o and
Ns (IM o) is the total number of points that fall into the bin [ IM o � h; IM o + h].175
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Fig. 1 Scaling of ground motions and corresponding responses in binned Monte Carlo simu-
lation (the bin is enlarged to facilitate visualization).

We note that the bMCS approach bears similarities to the stripe analysis in-
troduced by Shome et al. [33]. However, when using stripe analysis, one scalesall
ground motions to the intensity level of interest. As a result, certain signals are
scaled with factors that are considerably larger or smaller than unity, which may
lead to gross approximations of the corresponding responses [34,35,36]. The reader180

is referred to [36] for some illustrations of the e�ects of the scale factor on the in-
troduced bias, with the latter represented by the ratio of the median nonlinear
response of the considered system subject to the scaled motions to the respective
median response of the system subject to natural motions with all motions char-
acterized by the same IM level. In general, the bias ratio tends to become larger185

with increasing deviation of the scale factor from unity. On the other hand, the
scaling in binned MCS is con�ned in the vicinity of the intensity level IM o , where
the vicinity is de�ned by the bin width 2 h chosen so that the scale factors are
close to unity. Accordingly, the bias due to ground motion scaling is negligible in
bMCS.190

Following the above discussion, it should be noted that bias from scaling can
be avoided by a proper selection of ground motions. For instance, Shome et al.
[33] showed that the scaling of motions that correspond to a narrow interval of
earthquake magnitudes and source-to-site distances does not introduce bias into
the nonlinear response estimates. Furthermore, Luco and Bazzurro [34] showed195

that the bias can be reduced by selecting records that have appropriate response
spectrum shapes. According to Bazzurro et al. [37] and Vamvatsikos and Cornell
[38], the existence of scale-induced bias also depends on several other factors, such
as the structural characteristics and the considered intensity and damage measures.
The topic of ground motion scaling is complex and falls outside the scope of this200

paper. We underline that by using the bMCS approach, we avoid introducing bias
in the results independently of the ground motion characteristics or other factors.
In the following case studies, the resulting fragility curves serve as reference for
assessing the accuracy of the various considered techniques for fragility estimation.
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2.3 Kernel density estimation205

The fragility function de�ned in Eq. (2) may be reformulated using the conditional
probability density function (PDF) f � j IM as follows:

Frag(a; � o) = P(� � � o jIM = a) =

+ 1Z

� o

f � (� jIM = a) d�: (11)

By de�nition, this conditional PDF is given as:

f � (� jIM = a) =
f �;IM (�; a )

f IM (a)
; (12)

where f �;IM (�) is the joint distribution of the vector ( �; IM ) and f IM (�) is the
marginal distribution of the IM . If these quantities were known, the fragility210

function in Eq. (11) would be obtained by a mere integration. In this section, we
propose to determine the joint and marginal PDFs from a sample set f (IM i ; � i ) ,
i = 1 ; : : : ; N g by means of kernel density estimation (KDE).

For a single random variable X for which a sample set f x1 ; : : : ; x N g is avail-
able, the kernel density estimate of the PDF reads [39]:215

f̂ X (x) =
1

Nh

NX

i =1

K
� x � x i

h

�
; (13)

where h is the bandwidth parameter and K (�) is the kernel function which inte-
grates to one. Classical kernel functions are the Epanechnikov, uniform, normal
and triangular functions. The choice of the kernel is known not to a�ect strongly
the quality of the estimate provided the sample set is large enough [39]. In case
a standard normal PDF is adopted for the kernel, the kernel density estimate220

rewrites:

f̂ X (x) =
1

Nh

NX

i =1

1

(2� )1=2
exp

�
�

1
2

� x � x i

h

� 2
�

: (14)

In contrast, the choice of the bandwidth h is crucial since an inappropriate value
of h can lead to an oversmoothed or undersmoothed PDF estimate [40].

Kernel density estimation may be extended to a random vector X 2 Rd given
an i.i.d sample f x 1 ; : : : ; x N g [39]:225

f̂ X (x ) =
1

N jH j1=2

NX

i =1

K
�

H � 1=2(x � x i )
�

; (15)

where H is a symmetric positive de�nite bandwidth matrix with determinant de-
noted by jH j. When a multivariate standard normal kernel is adopted, the joint
distribution estimate becomes:

f̂ X (x ) =
1

N jH j1=2

NX

i =1

1

(2� )d= 2
exp

�
�

1
2

(x � x i )
T H � 1(x � x i )

�
; (16)

where (�)T denotes the transposition. For multivariate problems ( i.e. X 2 Rd ),
the bandwidth matrix typically belongs to one of the following classes: spherical,230
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ellipsoidal and full matrix, which respectively contain 1, d and d(d+1) =2 indepen-
dent unknown parameters. The matrix H can be computed by means of plug-in
or cross-validation estimators. Both estimators aim at minimizing the asymptotic
mean integrated squared error (MISE):

MISE = E

2

4
Z

Rd

h
f̂ X (x ; H ) � f X (x )

i 2
dx

3

5 : (17)

However, the two approaches di�er in the formulation of the numerical approxi-235

mation of MISE. For further details, the reader is referred to Duong [40]. In the
most general case when the correlations between the random variables are not
known, the full matrix should be used. In this case, the smoothed cross-validation
estimator is the most reliable among the cross-validation methods [41].

Eq. (14) is used to estimate the marginal PDF of the IM , namely f̂ IM (a),240

from a sample f IM i ; i = 1 ; : : : ; N g:

f̂ IM (a) =
1

(2� )1=2 Nh IM

NX

i =1

exp

"

�
1
2

�
a � IM i

hIM

� 2
#

: (18)

Eq. (16) is used to estimate the joint PDF f̂ �;IM (�; a ) from the data pairs f (IM i ; � i ); i = 1 ; : : : ; N g:

f̂ �;IM (�; a ) =
1

2�N jH j1=2

NX

i =1

exp

"

�
1
2

�
� � � i

a � IM i

� T

H � 1
�

� � � i

a � IM i

� #

: (19)

The conditional PDF f � (� jIM = a) is eventually estimated by plugging the esti-
mations of the numerator and denominator in Eq. (12). The proposed estimator245

of the fragility function eventually reads:

dFrag(a; � o) =
hIM

(2� jH j)1=2

+ 1R

� o

NP

i =1
exp

"

�
1
2

�
� � � i

a � IM i

� T

H � 1
�

� � � i

a � IM i

� #

d�

NP

i =1
exp

"

�
1
2

�
a � IM i

hIM

� 2
# :

(20)
The choice of the bandwidth parameter h and the bandwidth matrix H plays

a crucial role in the estimation of fragility curves, as seen in Eq. (20). In the above
formulation, the same bandwidth is considered for the whole range of the IM
values. However, there are typically few observations available corresponding to250

the upper tail of the distribution of the IM . This is due to the fact that the annual
frequency of seismic motions with IM values in the respective range (e.g. P GA
exceeding 1g) is low (see e.g. [42]). This is also the case when synthetic ground
motions are used, since these are generated consistently with statistical features
of recorded motions. Preliminary investigations have shown that by applying the255

KDE method on the data in the original scale, the fragility curves for the higher
demand thresholds tend to be unstable in their upper tails [43]. To reduce e�ects
from the scarcity of observations at large IM values, we propose the use of KDE
in the logarithmic scale, as described next.
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Let us consider two random variables X , Y with positive supports, and their260

logarithmic transformations U = ln X and V = ln Y . One has:

+ 1Z

y 0

f Y (yjX = x) dy =

+ 1Z

y 0

f X;Y (x; y )
f X (x)

dy =

+ 1Z

ln y 0

f U;V (u; v)
x y

f U (u)
x

y dv =

+ 1Z

ln y 0

f V (vjU = u) dv:

(21)
Accordingly, by substituting X = IM and Y = � , the fragility function in Eq. (11)
can be obtained in terms of U = ln IM and V = ln � as:

dFrag(a; � o) =

+ 1Z

� o

f̂ � (� jIM = a) d� =

+ 1Z

ln � o

f̂ V (vjU = ln a) dv: (22)

The use of a constant bandwidth in the logarithmic scale is equivalent to the use
of a varying bandwidth in the original scale, with larger bandwidths corresponding265

to larger values of IM . The resulting fragility curves are smoother than those
obtained by applying KDE with the data in the original scale.

2.4 Epistemic uncertainty of fragility curves

It is of major importance in fragility analysis to investigate the variability in the
estimated curves arising due to epistemic uncertainty. This is because a fragility270

curve is always computed based on a limited amount of data, i.e. a limited num-
ber of ground motions and related structural analyses. Large epistemic uncertain-
ties may a�ect signi�cantly the total variability of the seismic risk assessment
outcomes. Characterizing and propagating epistemic uncertainties in seismic loss
estimation has therefore attracted attention from several researchers [2,44,45].275

The theoretical approach to determine the variability of an estimator relies
on repeating the estimation with an ensemble of di�erent random samples. How-
ever, this approach is not feasible in earthquake engineering because of the high
computational cost. In this context, the bootstrap resampling technique is deemed
appropriate [2]. Given a set of observations X = ( X 1 ; : : : ; X n ) of X following an280

unknown probability distribution, the bootstrap method allows estimation of the
statistics of a random variable that depends on X in terms of the observed data
X and their empirical distribution [46].

To estimate statistics of the fragility curves with the bootstrap method, we �rst
draw M independent random sampleswith replacement from the original data set285

f (IM i ; � i ) ; i = 1 ; : : : ; N g. These represent the so-called bootstrap samples. Each
bootstrap sample has the same sizeN as the original sample, but the observations
are di�erent: in a particular sample, some of the original observations may appear
multiple times while others may be missing. Next, we compute the fragility curves
for each bootstrap sample using the approaches in Sections 2.1, 2.2 and 2.3. Finally,290

we perform statistical analysis of the so-obtained M bootstrap curves. In the
subsequent example illustration, the above procedure is employed to evaluate the
median and 95% con�dence intervals of the estimated fragility curves and also,
to assess the variability of the IM value corresponding to a 50% probability of
failure.295
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3 Synthetic ground motions

3.1 Properties of recorded ground motions

Let us consider a recorded earthquake accelerograma(t), t 2 [0; T ] where T is the
total duration of the motion. The peak ground acceleration is P GA = max

t 2 [0 ;T ]
ja(t)j.

The Arias intensity I a is de�ned as:300

I a =
�
2g

TZ

0

a2(t) dt: (23)

De�ning the cumulative square acceleration as:

I (t) =
�
2g

tZ

0

a2(� ) d� ; (24)

one determines the time instant t � by:

t � : I (t � ) = �I a � 2 [0; 1]: (25)

Important properties of a recorded seismic motion are the duration of the strong
motion phase D 5� 95 = t95% � t5% and the instant at the middle of the strong-
shaking phasetmid � t45% .305

3.2 Simulation of synthetic ground motions

The use of synthetic ground motions has been attracting an increasing interest
from the earthquake engineering community. This practice overcomes the limita-
tions posed by the small number of records typically available for a design scenario
and avoids the need to scale the motions. Use of synthetic ground motions allows310

one to investigate the structural response for a large number of motions, which is
nowadays feasible with the available computer resources (seee.g. [47]).

Di�erent stochastic ground motion models can be found in the literature, which
can be classi�ed in three types [48]: record-based parameterized models that are �t
to recorded motions, source-based models that consider the physics of the source315

mechanism and wave travel-path, and hybrid models that combine elements from
both source- and record-based models. Vetter and Taanidis [49] compared the
source-based model by Boore [50] with the record-based model by Rezaeian and
Der Kiureghian [48] with respect to the estimated seismic risks. It was found that
the latter leads to higher estimated risks for low-magnitude events, but the risks320

are quanti�ed in a consistent manner exhibiting correlation with the hazard char-
acteristics. This model is employed in the present study to generate a large suite
of synthetic ground motions that are used to obtain pairs of the ground motion
intensity measure and the associated structural response, (IM; � ), in order to con-
duct fragility analysis. The approach, originally proposed in [29], is summarized325

below.



Seismic fragility curves for structures using non-parametric representations 11

The seismic accelerationa(t) is represented as a non-stationary process. In par-
ticular, the non-stationarity is separated into two components, namely a spectral
and a temporal one, by means of a modulated �ltered Gaussian white noise:

a(t) =
q(t; � )
� h (t)

tZ

0

h [t � �; � (� )] ! (� ) d�; (26)

in which q(t; � ) is the deterministic non-negative modulating function , the integral330

is the non-stationary response of a linear �lter subject to a Gaussian white-noise
excitation and � h (t) is the standard deviation of the response process. The Gaus-
sian white-noise process denoted by! (� ) will pass through a �lter h [t � �; � (� )],
which is selected as the pseudo-acceleration response of a single-degree-of-freedom
(SDOF) linear oscillator:335

h [t � �; � (� )] = 0 for t < �

h [t � �; � (� )] =
! f (� )

q
1 � � 2

f (� )
exp [� � f (� )! f (� )( t � � )] sin

h
! f (� )

q
1 � � 2

f (� )( t � � )
i

for t � �;
(27)
where � (� ) = ( ! f (� ); � f (� )) is the vector of time-varying parameters of the �lter h.
Note that ! f (� ) and � f (� ) are the �lter's natural frequency and damping ratio at
instant � , respectively. They are related to the evolving predominant frequency and
bandwidth of the ground motion that is to be represented. The statistical analysis
of recorded signals shows that� f (� ) may be taken as a constant (� f (� ) � � ), while340

the predominant frequency varies approximately linearly in time [29]:

! f (� ) = ! mid + ! 0(� � tmid ): (28)

In the above equation, ! mid = ! f (tmid ) is the �lter's frequency at instant tmid

(de�ned in Section 3.1) and ! 0 is the slope of the linear evolution. After being
normalized by the standard deviation � h (t), the integral in Eq. (26) becomes a
unit-variance process with time-varying frequency and constant bandwidth. The345

non-stationarity in intensity is then captured by the modulating function q(t; � ),
which determines the shape, intensity and duration T of the signal. This is typically
described by a Gamma-like function [29]:

q(t; � ) = � 1 t � 2 � 1exp(� � 3 t ); (29)

where � = f � 1 ; � 2 ; � 3g is directly related to the energy content of the signal
through the quantities I a , D 5� 95 and tmid de�ned in Section 3.1 (see [29] for350

details).
For computational purposes, the acceleration in Eq. (26) can be discretized as

follows:

â(t) = q(t; � )
nX

i =1

si (t; � (t i )) Ui ; (30)
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where the standard normal random variable Ui represents an impulse at instant

t i = i �
T
n

; i = 1 ; : : : ; n, (T is the total duration) and si (t; � (t i )) is given by:355

si (t; � (t i )) =
h [t � t i ; � (t i )]q P i
j =1 h2 [t � t j ; � (t j )]

: (31)

As a summary, the considered seismic motion generation model consists of three
temporal parameters ( � 1 ; � 2 ; � 3), three spectral parameters

�
! mid ; ! 0; � f

�
and the

standard Gaussian random vector U of size n. Rezaeian and Der Kiureghian [48]
proposed a methodology for determining the temporal and spectral parameters
according to earthquake and site characteristics, i.e. the type of faulting of the360

earthquake (strike-slip fault or reverse fault), the closest distance from the record-
ing site to the ruptured area and the shear-wave velocity of the top 30 m of the
site soil. For the sake of simplicity, in this paper these parameters are directly gen-
erated from the statistical models given in [29], which are obtained from analysis
of a large set of recorded ground motions.365

4 Steel frame structure subject to synthetic ground motions

4.1 Problem setup

We determine the fragility curves for the three-storey three-span steel frame shown
in Figure 2. The dimensions of the structure are: storey-height H = 3 m, span-
length L = 5 m. The vertical load consists of dead load (weight of frame elements370

and supported oors) and live load (in accordance with Eurocode 1 [51]) resulting
in a total distributed load on the beams q = 20 kN/m. In the preliminary design
stage, the standard European I beams with designation IPE 300 A and IPE 330 O
are chosen respectively for the beams and columns. The steel material has a non-
linear isotropic hardening behavior following the uniaxial Giu�re-Menegotto-Pinto375

steel model as implemented in the �nite element software OpenSees [52]. Elling-
wood and Kinali [5] have shown that uncertainty in the properties of the steel mate-
rial has a negligible e�ect on seismic fragility curves. Therefore, the mean material
properties are used in the subsequent fragility analysis: E0 = 210; 000 MPa for the
Young's modulus (initial elastic tangent in the stress-strain curve), f y = 264 MPa380

for the yield strength [53,54] and b = 0 :01 for the strain hardening ratio (ratio
of post-yield to initial tangent in the stress-strain curve). Figure 2 depicts the
hysteretic behavior of the steel material at a speci�ed section for an example
ground motion. The structural components are modelled with nonlinear force-
based beam-column elements characterized by distributed plasticity along their385

lengths, while use of �ber sections allows modelling the plasticity over the ele-
ment cross-sections [55]. The connections between structural elements are modeled
with rigid nodes. The �rst two natural periods of the building obtained by modal
analysis are T1 = 0 :61 s and T2 = 0 :181 s, corresponding to natural frequencies
f 1 = 1 :64 Hz and f 2 = 5 :53 Hz. Rayleigh damping is considered with the damping390

ratio of the �rst two modes set equal to 2%.
The structure is subject to seismic motions represented by synthetic acceler-

ation time histories at the ground level. Each time history is modelled in terms
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Fig. 2 (Left) Steel frame structure. (Right) Hysteretic behavior of steel material at section
1-1 for an example ground motion.

of six randomized parameters
�
� 1 ; � 2 ; � 3 ; ! mid ; ! 0; � f

�
directly related to the pa-

rameters in Table 1 and a Gaussian input vector U as described in Section 3. The395

statistics of the parameters in Table 1 are obtained based on a set of recorded
ground motions corresponding to strong strike-slip and reserve earthquakes with
moment magnitudes in the range 6-8 and rupture distances in the range of 10-
100 km [29]. The reader is referred to [29] for viewing the correlations between
these parameters. The duration of each time history is computed from the corre-400

sponding set of parameters (� 1 ; � 2 ; � 3) and is used to determine the size of the
Gaussian vector U . Two example synthetic acceleration time histories are shown
in Figure 3. Transient dynamic analyses of the frame are carried out for a total of
N = 20 ; 000 synthetic motions using the �nite element software OpenSees.

Table 1 Statistics of synthetic ground motion parameters according to [48].

Parameter Distribution Support � X � X

I a (s� g) Lognormal (0, + 1 ) 0.0468 0.164
D 5� 95 (s) Beta [5, 45] 17.3 9.31
tmid (s) Beta [0.5, 40] 12.4 7.44
! mid /2 � (Hz) Gamma (0, + 1 ) 5.87 3.11
! 0/2 � (Hz) Two-sided exponential [-2, 0.5] -0.089 0.185
� f Beta [0.02, 1] 0.213 0.143

Numerous types of IM can be used to describe the earthquake severity, seee.g.405

[56]. Peak ground acceleration (P GA) is a convenient measure that is straightfor-
ward to obtain from a given time history and has been traditionally used in atten-
uation relationships and design codes. However, structural responses may exhibit
large dispersions for a certain P GA, since they are also highly dependent on other
features of earthquake motions, e.g. the frequency content and duration of the410

strong motion phase. Structure-speci�c IM s, such as the spectral accelerationSa
and the pseudo spectral accelerationP sa, tend to be better correlated with struc-
tural responses [56,57]. In the following, we compute fragility curves considering
both P GA and Sa as IM s. Sa representsSa(T1) i.e. the spectral acceleration for
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Fig. 3 Examples of synthetic ground motions.

a single-degree-of-freedom system with period equal to the fundamental period T1415

of the frame and viscous damping ratio equal to 2%.
The engineering demand parameter commonly considered in fragility analysis

of steel buildings is the maximal inter-storey drift ratio, i.e. the maximal di�erence
of horizontal displacements between consecutive storeys normalized by the storey
height (seee.g. [5,58,59]). Accordingly, we herein develop fragility curves for three420

di�erent thresholds of the maximal inter-storey drift ratio over the frame. To
gain insight into structural performance, we consider the thresholds 0.7%, 1.5%
and 2.5%, which are associated with di�erent damage states in seismic codes. In
particular, the thresholds 0.7% and 2.5% are recommended in [60] to respectively
characterize light and moderate damage for steel frames, while the threshold 1.5%425

corresponds to the damage limitation requirement for buildings with ductile non-
structural elements according to Eurocode 8 [61]. These descriptions only serve as
rough damage indicators, since the relationship between drift limit and damage in
the PBEE framework is probabilistic.

4.2 Fragility curves430

As described in Section 2, the lognormal approach relies on assuming that the
fragility curves have the shape of a lognormal CDF and estimating the parame-
ters of this CDF. Using the maximum likelihood estimation (MLE) approach, the
observed failures for each drift threshold are modeled as outcomes of a Bernoulli
experiment and the parameters (� , � ) of the fragility curves are determined by435

maximizing the respective likelihood function. Using the linear regression (LR)
technique, the parameters of the lognormal curves are derived by �tting a lin-
ear model to the paired data (ln IM; ln � ). Figure 4 depicts the paired data
(ln P GA; ln � ) and (ln Sa; ln � ) together with the �tted models based on lin-
ear regression. It can be seen that a single linear model is not appropriate for the440

cloud of points (ln Sa; ln � ) and thus, bilinear regression is used in this case (see
also [62,63,64] for use of a similar model). The break point in the bilinear model
(Sa = 0 :45g) is determined according to the method presented in [65] using the
Rpackagesegmented. When P GA is used asIM , the coe�cient of determination
of the �tted linear model is R2 = 0 :663; when Sa is used asIM , it is R2

1 = 0 :978445
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and R2
2 = 0 :785 for the �rst and second part of the bilinear model, respectively.

Note that use of Sa as IM leads to a smaller dispersion,i.e. a smaller � in Eq. (6),
as compared to P GA; this is expected since Sa is a structure-speci�c IM . In
the bMCS method, the bandwidth h is set equal to 0:25IM o . The resulting scale
factors vary in the range [0:75; 1:25] corresponding to a bias ratio approximately450

equal to 1. The KDE approach requires estimation of the bandwidth parameter
and the bandwidth matrix. Using the cross-validation estimation implemented in
R [66], these are determined ash = 0 :133, H =

�
0:031 0:024; 0:024 0:027

�
when

P GA is used asIM , and h = 0 :155, H =
�
0:023 0:023; 0:023 0:024

�
when Sa is

used asIM .455

For the two types of IM and the three drift limits considered, Table 2 lists
the medians and log-standard deviations of the lognormal curves obtained with
both the MLE and LR approaches. The median determines the position where the
curve attains the value 0.5, whereas the log-standard deviation is a measure of the
steepness of the curve. Note that the MLE approach yields a distinct log-standard460

deviation for each drift threshold, whereas a single log-standard deviation for all
drift thresholds is obtained with the LR approach. The medians of the KDE-
based curves are also computed and are listed in Table 2 for comparison. The
KDE-based medians, which serve as the reference values, may be overestimated
or underestimated by the lognormal approach, depending on the method used to465

estimate the parameters, the considered IM and the drift threshold; the absolute
deviations tend to be larger for larger drift thresholds.

Table 2 Steel frame structure - Parameters of the obtained fragility curves.

PGA Sa
� o Approach Median Log-std Median Log-std

0.7%
MLE 0 :35g 0.70 0:49g 0.36
LR 0 :37g 0.64 0:44g 0.13

KDE 0 :36g 0:45g

1.5%
MLE 1 :10g 0.56 1:66g 0.31
LR 0 :87g 0.64 1:47g 0.24

KDE 1 :08g 1:53g

2.5%
MLE 1 :76g 0.56 2:82g 0.37
LR 1 :55g 0.64 3:29g 0.24

KDE 1 :82g 3:04g

For the case whenP GA is considered asIM , Figure 5 (left) shows the fragility
curves obtained with the MLE- and LR-based lognormal approaches and the
bMCS- and KDE-based non-parametric approaches. One �rst observes a remark-470

able consistency between the curves obtained with the two non-parametric ap-
proaches despite the distinct di�erences in the underlying algorithms. This vali-
dates the accuracy of the proposed methods. For the lower threshold (� o = 0 :7%),
both parametric curves are in good agreement with the non-parametric ones. For
the two higher thresholds, the LR-based lognormal curves exhibit signi�cant de-475

viations from the non-parametric ones leading to an overestimation of the failure
probabilities. Note that for � o = 1 :5% and � o = 2 :5%, the median P GA (leading
to 50% probability of exceedance) is respectively underestimated by 19% and 15%
when the LR aproach is used (see Table 2). In contrast, the MLE-based lognormal
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Fig. 4 Paired data f (IM i ; � i ) ; i = 1 ; : : : ; N g and �tted models in log-scale.

curves are in a fair agreement with their non-parametric counterparts with the480

largest discrepancies observed for the highest threshold� o = 2 :5%.

Figure 5 (right) shows the resulting fragility curves when Sa is considered as
IM . The non-parametric curves based on bMCS and KDE remain consistent inde-
pendently of the drift threshold. For � o = 0 :7%, the fragility curves are steep, which
is due to the strong correlation between Sa and � when the structure behaves lin-485

early. For this threshold, the LR-based curve is closer to the non-parametric curves
than the MLE-based one. For the two larger thresholds, the MLE-based curves are
fairly accurate, whereas the LR-based curves exhibit signi�cant deviations from
their non-parametric counterparts. In particular, the LR-based curves overestimate
the failure probabilities for � o = 1 :5% and underestimate the failure probabilities490

for � o = 2 :5%. Note that for � o = 1 :5%, the median Sa is underestimated by
4%, whereas for � o = 1 :5%, the median Sa is overestimated by 8% when the LR
aproach is used (see Table 2).

Fig. 5 Fragility curves with parametric and non-parametric approaches using P GA and Sa
as intensity measures (LR: linear regression; MLE: maximum likelihood estimation; bMCS:
binned Monte Carlo simulation; KDE: kernel density estimation).
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Summarizing the above results, the MLE-based lognormal approach yields
fragility curves that are overall close to the non-parametric ones; however, it495

smooths out some details of the curves that can be obtained with the non-parametric
approaches. On the contrary, the LR-based lognormal curves can be highly inac-
curate. As noted in Section 2.1.2, the LR approach assumes that the residuals
of the �tted model in the log-scale (Eq. (6)) follow a normal distribution with a
constant standard deviation independently of the IM level. Figure 6 shows his-500

tograms of ln � at two example levels of P GA and Sa together with the �tted
normal distributions according to Eq. (6). The responses � at each IM level are
obtained consistently with the bMCS approach. Obviously, the assumption of a
normal distribution is not valid, which is more pronounced when Sa is used as
IM . This explains the inaccuracy of the LR-based fragility curves for both types505

of IM , despite the relatively high coe�cients of determination of the �tted models
in the case of Sa.

(a) P GA = 0 :5 g (b) P GA = 1 :5 g

(c) Sa = 0 :5 g (d) Sa = 1 :5 g

Fig. 6 Histograms and �tted normal distributions for ln � at two levels of P GA and Sa.
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4.3 Estimation of epistemic uncertainty by bootstrap resampling

In the following, we use the bootstrap resampling technique (see Section 2.4) to
investigate the epistemic uncertainty in the fragility curves estimated with the510

proposed non-parametric approaches.
We examine the stability of the estimated curves by comparing those with the

bootstrap medians, and the variability in the estimation by computing bootstrap
con�dence intervals. For the two considered IM s and the three drift thresholds of
interest, Figure 7 shows the median bMCS- and KDE-based fragility curves and the515

95% con�dence intervals obtained by bootstrap resampling with 100 replications
together with the respective estimated curves (also shown in Figure 5). Figure 7
clearly shows that both the bMCS-based and the KDE-based median fragility
curves obtained with the bootstrap method do not di�er from the curves estimated
with the original set of observations. This shows the stability of the proposed520

approaches. For a speci�ed IM and drift limit, the con�dence intervals of the
bMCS- and KDE-based curves have similar widths. The interval widths tend to
increase with increasing drift limit and increasing IM value.

(a) Binned Monte Carlo simulation (PGA) (b) Kernel density estimation (PGA)

(c) Binned Monte Carlo simulation (Sa) (d) Kernel density estimation (Sa)

Fig. 7 Estimated and mean bootstrap fragility curves and 95% con�dence intervals for the
binned Monte Carlo simulation and the kernel density estimation approaches.
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In order to quantify the e�ects of epistemic uncertainty, one can estimate the
variability of the median IM , i.e. the IM value leading to 50% probability of525

exceedance. Assuming that the median IM (P GA or Sa) follows a lognormal
distribution [67], the median IM is determined for each bootstrap curve and the
log-standard deviation of the distribution of the median is computed. Table 3 lists
the log-standard deviations of the median IM values for the same cases as in
Figure 7. These results demonstrate that epistemic uncertainty is increasing with530

increasing threshold � o . In all cases, the log-standard deviations are relatively small
indicating a low level of epistemic uncertainty, which is due to the large number
of transient analyses (N = 20 ; 000) considered in this study. Although use of such
large sets of ground motions is not typical in practice, it is useful for the re�ned
analysis presented here.535

Table 3 Log-standard deviation of median IM .

� o Approach P GA Sa

0.7%
bMCS 0:0003g 0:005g
KDE 0 :0005g 0:005g

1.5%
bMCS 0:037g 0:054g
KDE 0 :037g 0:050g

2.5%
bMCS 0:114g 0:090g
KDE 0 :120g 0:080g

5 Concrete column subject to recorded ground motions

To demonstrate the comparison between the lognormal and the non-parametric
approaches for the case when fragility curves are based on recorded ground mo-
tions, we herein briey summarize a case study by the authors originally presented
in [28].540

In this study, we estimate the fragility of a reinforced concrete column with a
uniform circular cross-section, representing a column of a typical California high-
way overpass bridge (see Figure 8). The column is modelled in the �nite ele-
ment code OpenSees as a �berized nonlinear beam-column element. For details
on the modelling of the concrete material and the steel reinforcement, the reader545

is referred to [28]. The loading-unloading behavior and the pushover curve of the
column are shown in Figure 8. Three-dimensional time-history analyses of the
bridge column are conducted for N = 531 earthquake records (each comprising
three orthogonal component accelerograms). These records are obtained from the
PEER strong motion database and cover a wide range of source-to-site distances550

and earthquake moment magnitudes [62]. The developed fragility curves represent
the probability of the maximal drift ratio � in the transverse direction exceed-
ing speci�ed thresholds � o as a function of the peak ground acceleration P GA or
the pseudo-spectral acceleration P sa corresponding to the �rst transverse mode
(T1 = 0 :535 s). The considered drift ratio thresholds, shown in Table 4, are rec-555

ommended for the operational and life safety levels by two di�erent sources [68,
69].
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Fig. 8 Bridge column and hysteretic behavior.

Table 4 Bridge performance and respective drift-ratio threshold.

Reference Level Description Damage Drift ratio � o
[68] II Operational Minor 0.01
[68] III Life safety Moderate 0.03
[69] II Operational Minor 0.005
[69] III Life safety Moderate 0.015

The fragility curves are established with the MLE-based and LR-based lognor-
mal approaches and the KDE-based non-parametric approach. Due to the rela-
tively small number of data, the bMCS method is not considered herein. Figure 9560

depicts the clouds of points (IM i ; � i ) in the logarithmic scale for the two IM s
together with the linear �tted models. The coe�cients of determination of the
latter are R2 = 0 :729 for the case ofP GA and R2 = 0 :963 for the case ofP sa.
Note that for small values of P sa (P sa < 0.2 g) a linear function provides a perfect
�t, which is due to the fact that in this range of P sa, the column behavior can565

be represented by a linear single-degree-of-freedom model. Further details on the
parameters of the di�erent fragility functions can be found in [28].

Fig. 9 Paired data f (IM i ; � i ) ; i = 1 ; : : : ; N g and �tted models in log-scale.
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Figure 10 depicts the obtained fragility curves for the two types of IM and
the four drift-ratio thresholds of interest. When P GA is used asIM , the curves
obtained with the two lognormal approaches are close to each other for all thresh-570

olds, but exhibit deviations from the non-parametric curves, which tend to be
larger for higher PGA levels and larger drift limits. When P sa is used asIM ,
the MLE-based curves are in a fair agreement with the KDE-based ones; however,
the former smooth out some details that can be obtained with the non-parametric
approach. In contrast, the LR-based curves are inaccurate for all but the smaller575

drift threshold. Overall, the LR-based curves exhibit larger deviations from the
non-parametric ones for P sa than for P GA as IM , although the R2 coe�cient of
the linear �t is higher for P sa. This can be explained by the fact that the assump-
tion of homoscedastic errors, inherent in Eq. (6), is not valid for the speci�c data
set (P sa; � ), as one can observe in Figure 9.580

Fig. 10 Fragility curves with parametric and non-parametric approaches using P GA and
P sa as intensity measures (LR: linear regression; MLE: maximum likelihood estimation; KDE:
kernel density estimation.

6 Discussion

Using the non-parametric fragility curves as reference, the accuracy of the lognor-
mal curves is found to depend on the method used to estimate the parameters of
the underlying CDF, the considered IM and the drift threshold of interest. In most
cases, the MLE-based curves are fairly close to the non-parametric ones, whereas585

the LR-based curves exhibit signi�cant deviations. The lognormal curves tend to
deviate more from the non-parametric ones for larger drift limits. Considering both
case studies, the MLE-based curves are more accurate for a structure-speci�cIM
(Sa, P sa) than for P GA. Di�erent IM s have been recommended in the literature
for structures of di�erent type, size and material [57,70]. Accordingly, the accu-590

racy of the lognormal fragility curves may depend on those factors as well. Possible
dependence of the accuracy of the lognormal curves on the considered response
quantity needs to be investigated as well.

As noted in Section 2.2, the bMCS approach bears similarities with the so-
called stripe analysis [33,37,71]. A comparison between the stripe and cloud anal-595
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yses, where the latter corresponds to the LR-based lognormal approach [58,72,73,
74], was carried out by Celik and Ellingwood [73]. In the mentioned study, con-
crete structures were subject to 40 synthetic ground motions. Di�erences in the
response statistics obtained with the two methods for three IM levels were found
insigni�cant and hence, use of the cloud analysis was justi�ed. In contrast, Baker600

[72] showed that cloud analysis can signi�cantly underestimate the mean annual
rate of exceeding a large maximum interstory drift. Karamlou and Bocchini [27]
recently conducted large-scale simulations on bridge structures in order to investi-
gate the underlying assumptions of the cloud analysis. Their results showed that,
in general, the conditional distribution of a demand parameter for a given IM605

level is not lognormal. In addition, it was found that the assumptions of a linear
function for the probabilistic seismic demand model in the log-scale (power func-
tion in the normal scale) and of constant dispersion of the respective errors can
lead to signi�cant errors in fragility analysis. These �ndings are consistent with
our results shown in Figure 6. The limitations of the LR-based approach have also610

been mentioned by Jalayer et al. [74].
Based on the results of our case studies and the above discussion, we recom-

mend the use of the MLE approach if fragility curves are developed in a parametric
manner. The superiority of the MLE over the LR approach relies on the fact that
the former avoids the assumptions of the linear model and the homoscedasticity of615

the errors that are inherent in the latter. However, when a detailed description of
the fragility function is important, a non-parametric approach should be used. The
bMCS method requires a large number of data, which can be typically obtained
by use of synthetic motions; note that due to the current computer capacities and
the use of distributed computing, large-scale simulations are becoming increas-620

ingly popular among both researchers and practitioners. On the other hand, the
KDE approach can be employed even with a limited number of recorded motions
at hand, as shown in our second case study. We again emphasize that the two
non-parametric approaches lead to almost identical curves in the case when they
could be applied independently with the same (large) dataset.625

7 Conclusions

Seismic demand fragility evaluation is one of the basic elements in the framework
of performance-based earthquake engineering (PBEE). At present, the classical
lognormal approach is widely used to establish such fragility curves mainly due
to the fact that the lognormality assumption makes seismic risk analysis more630

tractable. The approach consists in assigning the shape of a lognormal cumulative
distribution function to the fragility curves. However, the validity of this assump-
tion remains an open question.

In this paper, we introduce two non-parametric approaches in order to examine
the validity of the classical lognormal approach, namely the binned Monte Carlo635

simulation and the kernel density estimation. The former computes the crude
Monte Carlo estimators for small subsets of ground motions with similar values of
a selected intensity measure, while the latter estimates the conditional probability
density function of the structural response given the ground motion intensity mea-
sures using the kernel density estimation technique. The proposed approaches can640

be used to compute fragility curves when the actual shape of these curves is not
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known as well as to validate or calibrate parametric fragility curves. Herein, the
two non-parametric approaches are confronted to the classical lognormal approach
in two case studies, considering synthetic and recorded ground motions.

In the case studies, the fragility curves are established for various drift thresh-645

olds and di�erent types of the ground motion intensity measure, namely the peak
ground acceleration (P GA), and the structure-speci�c spectral acceleration ( Sa)
and pseudo-spectral acceleration (P sa). The two non-parametric curves are always
consistent, which proves the validity of the proposed techniques. Accordingly, the
non-parametric curves are used as reference to assess the accuracy of the lognormal650

curves. The parameters of the latter are estimated with two approaches, namely
by maximum likelihood estimation and by assuming a linear probabilistic seismic
demand model in the log-scale. The maximum likelihood estimation approach is
found to approximate fairly well the reference curves in most cases, especially
when a structure-speci�c intensity measure is used; however, it smooths out some655

details that can be obtained with the non-parametric approaches. In contrast, the
assumption of a linear demand model in the log-scale is found overall inaccurate.
When integrated in the PBEE framework, inaccuracy in fragility estimation may
induce errors in the probabilistic consequence estimates that serve as decision vari-
ables for risk mitigation actions. The bootstrap resampling technique is employed660

to assess e�ects of epistemic uncertainty in the non-parametric fragility curves.
Results from bootstrap analysis validate the stability of the fragility estimates
with the proposed non-parametric methods.

Recently, fragility surfaces have emerged as an innovative way to represent the
vulnerability of a system [13]; these represent the failure probability conditional on665

two intensity measures of the earthquake motions. The computation of these sur-
faces is not straightforward and requires a large computational e�ort. The present
study opens new paths for establishing the fragility surfaces: similarly to the case
of fragility curves, one can use kernel density estimation to obtain fragility sur-
faces that are free of the lognormality assumption and consistent with the surfaces670

obtained by Monte Carlo simulation.

We note that the computational cost of the two proposed approaches is signif-
icant when they are based on large Monte Carlo samples. In order to reduce this
cost, alternative approaches may be envisaged. Polynomial chaos (PC) expansions
[75,76] appear as a promising tool. Based on a smaller sample set (typically a few675

hundreds of �nite element runs), PC expansion provides a polynomial approxima-
tion that surrogates the structural response. The feasibility of post-processing PC
expansions in order to compute fragility curves has been shown in [77,78] in the
case a linear structural behavior is assumed. The extension to nonlinear behavior
is currently in progress.680

We underline that the proposed non-parametric approaches are essentially ap-
plicable to other probabilistic models in the PBEE framework, relating decision
variables with structural damage and structural damage with structural response.
Once all the non-parametric probabilistic models are available, they can be in-
corporated in the PBEE framework by means of numerical integration. Then a685

full seismic risk assessment may be conducted by avoiding potential inaccuracies
introduced from simplifying parametric assumptions at any step of the analysis.
Optimal high-�delity computational methods for incorporating non-parametric
fragility curves in the PBEE framework will be investigated in the future.
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