
ETH Library

Empirics of multimodal traffic
networks - Using the 3D
macroscopic fundamental diagram

Working Paper

Author(s):
Loder, Allister; Ambühl, Lukas; Menendez, Monica; Axhausen, Kay W. 

Publication date:
2016-12

Permanent link:
https://doi.org/10.3929/ethz-b-000124043

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Arbeitsberichte Verkehrs- und Raumplanung 1225

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-3331-1318
https://doi.org/10.3929/ethz-b-000124043
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Empirics of multimodal traffic networks - Using the
3D macroscopic fundamental diagram

Allister Loder
Lukas Ambühl
Monica Menendez
Kay W. Axhausen

Working paper 1225

Institute for Transport Planning and Systems December 2016



            

Working paper 1225

Empirics of multimodal traffic networks - Using the 3D macro-
scopic fundamental diagram

Allister Loder
IVT
ETH Zürich

CH-8093 Zürich
phone: +41-44-633 62 58
fax: +41-44-633 10 57
allister.loder@ivt.baug.ethz.ch

Lukas Ambühl
IVT
ETH Zürich

CH-8093 Zürich
phone: +41-44-633 32 51
fax: +41-44-633 10 57
lukas.ambuehl@ivt.baug.ethz.ch

Monica Menendez
IVT
ETH Zürich

CH-8093 Zürich
phone: +41-44-633 66 95
fax: +41-44-633 10 57
monica.menendez@ivt.baug.ethz.ch

Kay W. Axhausen
IVT
ETH Zürich

CH-8093 Zürich
phone: +41-44-633 39 43
fax: +41-44-633 10 57
axhausen@ivt.baug.ethz.ch

December 2016

Abstract

Traffic is multimodal in most cities. However, the impacts of different transport modes on
traffic performance and on each other, are unclear – especially at the network level. The recent
extension of the macroscopic fundamental diagram (MFD) to the 3D-MFD, offers a novel
framework to address this gap at the urban scale. The 3D-MFD relates the network density of
cars and public transport vehicles to the network flow, for either vehicles or passengers. No
empirical 3D-MFD has been reported so far.

In this paper, we present the first empirical estimate of a 3D-MFD at the urban scale. To this
end, we use data from loop detectors and automatic vehicle location devices (AVL) of the
public transport vehicles in the city of Zurich, Switzerland. We compare two different areas
within the city, that differ in their topology and share of dedicated lanes to public transport. We
propose a statistical model of the 3D-MFD, which estimates the effects of the demands on car
and public transport speeds. The results quantify the multimodal effects of both, vehicles and
passengers, and confirms that a greater share of dedicated lanes reduces the marginal effect of
public transport vehicles on car speeds. Lastly, we derive a new application of the 3D-MFD, by
identifying the share of public transport users that maximizes the journey speeds in an urban
network accounting for all motorized transport modes.
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1 Introduction and background

Potential benefits from public transport provision and improvements in urban transportation net-
works are not limited to reduction in passengers’ travel time (Hensher, 2001) or congestion relief
(Adler and van Ommeren, 2016; Anderson, 2014), but also include an increase in agglomeration
economies (Chatman and Noland, 2011). Identifying that optimal share of public transport users
(from a set of all users) to maximize these benefits is abundantly documented in literature (Small
and Verhoef, 2007; Tirachini and Hensher, 2012). While infrastructure investments for both
modes are long-term-oriented, an optimal modal share of public transport users for the short
term considers how travel demand should be allocated to existing infrastructure while improving
accessibility for all users. Recent advances in understanding network-wide traffic through the
macroscopic fundamental diagram (MFD), a well-defined and reproducible relationship between
vehicle network accumulation and network flow (Geroliminis and Daganzo, 2008), offer a new
approach for optimal demand allocation to existing infrastructure. The MFD is considered
invariant to small changes in demand and network topology determines its shape (Daganzo
and Geroliminis, 2008). Public transport and private cars do not affect congestion equally
(Boyac and Geroliminis, 2011; Chiabaut et al., 2016; Gronau, 2000). To properly account for
these two systems, the MFD must be extended to the bimodal or 3D-MFD (Geroliminis et al.,
2014) that integrates transport modes. Although promising, no empirical 3D-MFD has yet been
found. Such empirical study, however, is crucial for further applications of the 3D-MFD in
transportation and economics.

In this paper, we present the first empirical estimate of a 3D-MFD the urban scale, using
data from loop detectors and automatic vehicle location devices (AVL) for the city of Zurich,
Switzerland. We combine both vehicle and passenger data to econometrically estimate the
bi-modal interaction costs at vehicle and passenger levels. We compare interaction costs for
two regions in the city of Zurich differing in their share of dedicated lanes. We find evidence
that cars and public transport vehicles do not contribute equally to congestion and that a greater
share of dedicated lanes reduces bi-modal interaction costs. Finally, we derive a new application
of the 3D-MFD, by linking the share of public transport users and average journey speeds in
the city. Using this approach, we then identify an optimal share of public transport users to
maximize journey speeds in an urban area (considering all motorized transport modes).

In the following, we give a literature overview. First, we concentrate on the car MFD, then
on interactions between cars and public transport at a network level, from both vehicle and
passenger perspectives, including the concept of the 3D-MFD.

Origins of the MFD can be traced back to network traffic flow theory in the 1960s and are





            

based on work by Smeed (1961, 1968), Thomson (1967), Wardrop (1968) and Godfrey (1969).
In the 1980s, Mahmassani et al. (1984, 1987) and Williams et al. (1987) used simulations to
relate average speed, flow and density at the network level. The studies found that the network
relationships of these variables are similar to their link-based counterparts. Daganzo and
Geroliminis (2008) used variational theory to analytically derive the MFD as a characteristic of
a network (free flow speed, average link length, link capacity, traffic signal cycle characteristics,
jam density and backward wave speed) and found it to be a well-defined, reproducible and
concavely curved. In addition to simulation and analytical estimates of the MFD, the macroscopic
relationship has also been observed with empirical data. The MFD has been shown to exist for
Yokohama, Japan (Geroliminis and Daganzo, 2008), Toulouse, France (Buisson and Ladier,
2009), Brisbane, Australia (Tsubota et al., 2014), Shenzhen, China (Ji et al., 2014), Sendai,
Japan (Wang et al., 2015) and Zurich, Switzerland (Ambühl et al., 2017). Such estimates are
typically based on either loop detector data (LDD) or floating car data (FCD), although both
data sources have drawbacks. The spatial distribution of loop detectors within the link and
network affects the shape of the MFD significantly (Buisson and Ladier, 2009; Ambühl et al.,
2017).An MFD based on FCD, on the other hand, is sensitive to an inhomogeneous distribution
of probe vehicles across the network (Du et al., 2016), and to the fact that probe vehicles might
not be a representative sample of the entire vehicle fleet, e.g. taxis (Geroliminis and Daganzo,
2008; Ji et al., 2014). Recent efforts aim to overcome limitations of both data sources, e.g. by
using fusion algorithms (Ambühl and Menendez, 2016) or combining data sources (Courbon
and Leclercq, 2011; Ambühl et al., 2017).

The MFD was applied to traffic control (e.g. Haddad and Geroliminis (2012); Aboudolas and
Geroliminis (2013)), pricing (Zheng et al., 2012, 2016), investigation of network topology’s
impact on traffic performance (Knoop et al., 2014, 2015; Ortigosa et al., 2015; Muhlich et al.,
2015) and to describe the effects of other systems, in particular parking (Geroliminis, 2015;
Zheng and Geroliminis, 2016a; Cao and Menendez, 2015).

Although public transport plays an important role in cities, its impact on traffic at the network
level has not received much attention in literature. At the link level, analytical approaches have
been developed to quantify maximum capacity of mixed traffic and analyze the effects of stop
types, dwell times and distance between stops on speeds (Köhler et al., 1998; Anderhub et al.,
2008; Chiabaut, 2015; Chiabaut et al., 2016; Lüthy et al., 2016) and empirical data has been
used to analyze car capacity with and without busses (Arnet et al., 2015). Additionally, Small
and Verhoef (2007) investigated the optimal pricing for both public and private transport modes.
At the network level, Smeed (1961, 1968) discussed the effects of car and bus interactions
on respective travel times and the effect of urban design on traffic performance, emphasizing
the dilemma between public and private transport modes for both travel times and vehicle
occupancies. He discussed the relationship between share of car users and average travel time





            

per kilometer and traveler for a given travel demand in a city. To summarize: the greater the
travel demand, the greater the share of public transport users must be to maintain a certain
average speed. Work following Smeed’s macroscopic relations was almost non-existent for
decades, until Boyac and Geroliminis (2011) discussed urban design and multimodal capacities
at network level, and Geroliminis et al. (2014) extended the MFD to a 3D-MFD using simulation
data. For a network with only mixed traffic lanes, the maximum vehicular flow in a 3D-MFD
occurs when no public transport vehicles operate. When including passenger flows, the 3D-MFD
becomes the 3D-passenger MFD (3D-pMFD). The maximum passenger flow in a 3D-pMFD,
on the other hand, is observed at non-zero provision of public transport. Analogue to the uni-
modal MFD, Zheng and Geroliminis (2016b) argue that 3D-MFD can be obtained either from
analytical approximations or real data. Chiabaut (2015) related the accumulation of passengers
per kilometer to passenger flow and discussed the concept of the 3D-MFD for multimodal
arterials from a passenger’s point of view, emphasizing the user and system optimum. Chiabaut
et al. (2016) discuss the design of multimodal arterials with respect to mixed or dedicated lanes.
Vasileios et al. (2016) evaluate the impact of different bus network designs on the overall car
capacity of the network.

While analytical approximations for MFDs concentrating either on cars (Daganzo and Gerolimi-
nis, 2008; Leclercq and Geroliminis, 2013; Geroliminis and Boyacı, 2012) or multimodal MFDs
(Boyac and Geroliminis, 2011; Chiabaut, 2015; Chiabaut et al., 2016) exist, empirical MFDs
have only been obtained for cars so far. Data describing multimodal relations has been obtained
only from simulations of San Francisco and Zurich (Geroliminis et al., 2014; Ortigosa et al.,
2017; Menendez et al., 2016).

First applications of the 3D-MFD (and 3D-pMFD) are related to urban space allocation (Zheng
and Geroliminis, 2013), parking (Zheng and Geroliminis, 2016a) and mode choice (Schreiber
et al., 2016). Further research is suggested to analyze the aggregate performance of both modes
with public transport priority (Christofa et al., 2016).

The remainder of this paper is organized as follows; in section 2, we, describe the case study for
Zurich with the available data. In section 3, we present the empirical 3D-MFD. In section 4,
we propose a model to quantify the effects of bi-modal traffic at the network level. In section 5,
we show the results of the proposed model for both vehicles and passengers. In section 6, we
present a methodology to derive the optimal share of public transport users from the 3D-MFD.
We then finish in section 7 with concluding remarks.





            

Table 1: Statistics of Zurich’s private and public transport network.

City center Wiedikon

Car network length, Lc [lane-km] 39 31
Covered by loop detector [lane-km] 24 10
Number of signalized intersections 42 22
Public transport network length, Lpt [lane-km] 34 25
Share of lanes dedicated to public transport [% Lpt ] 75 60

2 Data

2.1 Analyzed areas and time period

Zurich is the largest city in Switzerland, encompassing an area of around 92 km2, with a
population of approximately 400’000 and roughly 300’000 daily inbound commuters. The road
network, excluding motorways, has a length of 740 km. For the analysis, we concentrate on
the time period between the 26th and the 30th of October 2015 (a total of 5 days). For each
day, we use data from 06:00 to 24:00 (the public transport operating time). We focus on two
regions within Zurich, each with an area of approximately 2 km2. Figure 1 shows both regions.
We denote the zone in the west as Wiedikon and the zone in the east as City center. The zones
are selected for two main reasons. First, both regions differ in their share of public transport
dedicated lanes; in the City center almost 75 % of the public transport lanes are dedicated,
whereas in Wiedikon this number is 60 %. Second, we have chosen the area of each region to
minimize the likelihood of violating the MFD homogeneity assumption of the MFD (Buisson
and Ladier, 2009). Thus, we avoid further partitioning of the network, as in (Ji et al., 2014).

Table 1 summarizes transport network characteristics for both transport modes in the two regions.
In the City center, the network length includes 22 km for trams and 12 km for buses, while in
Wiedikon, 7 km are for trams and 18 km for busses. Even though both regions have a high share
of dedicated lanes for public transport, interactions between both modes occur particularly at
intersections and curbside stops.

2.2 Car data

The traffic management system of Zurich operates 4852 traffic detectors at 384 intersections for
public transport vehicles, cars, or both (Stadt Zürich - Dienstabteilung Verkehr (DAV), 2015).





            

Figure 1: Zones of analysis. Map by Map by Open Street Map (2016).
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Source: Open Street Map (2016)

Their purpose is to give priority to public transport, support traffic signal control and identify
congestion. In this paper, we concentrate on data from loop detectors that measures car traffic.
Each detector records vehicle counts, q, and occupancy, o, with a resolution of 0.1 s, aggregated
in three minute intervals. Data from malfunctioning loop detectors was removed from the data
set. All detectors were geo-coded; then we collected their positions xi referenced from the next
downstream intersection and the link length li. Average link length is 220 m. Most detectors are
located close to the next downstream intersection and thus, the corresponding traffic density is
overestimated (Ambühl et al., 2017; Buisson and Ladier, 2009; Courbon and Leclercq, 2011). In
Figure 1, the white dots are the locations of loop detectors and gray lines are the links covered
by this analysis. The number of selected loop detectors, N , is 217 in the City center and 114 in
Wiedikon.





            

As density, k, is not directly measured by loop detectors, its value must be approximated by
the space-effective mean length, le, of a car (k = o/le). For Zurich, this value is 6.3 m (AKP
Verkehrsingenieure AG, 2016; Stadt Zürich - Dienstabteilung Verkehr (DAV), 2015). Ambühl
et al. (2017) compared empirical loop detector data with simulation data and developed a
correction method that takes loop detectors’ spatial distribution into account. For the reader’s
convenience, from now on we will summarize the approach described in Ambühl et al. (2017).
The proposed approach weighs loop detector measurements as if they were uniformly distributed
across the length of the links in the entire network. This is required for reliable MFD estimation
(Courbon and Leclercq, 2011). In other words, we group loop detectors into J groups defined
by their relative position xi/li on link i. Each segment j then holds N j loop detectors. We then
calculate the weighted flow and occupancy of all loop detectors in each segment j. Finally,
we take the average flow and occupancy over all segments. After testing for different values
of J, we choose J = 20, as this value ensures at least one loop detector in each segment. The
equations for this correction method for flow, q, and density, k, are given below.

q̃c =
1
J

J∑
j=1

∑
i∈Nj

qili∑
li

(1)

k̃c =
1
Js

J∑
j=1

∑
i∈Nj

oili∑
li

(2)

with N =
⋃
j∈J

N j and N j = {i ∈ N |
j − 1

J
<

xi

li
<

j
J
}

With the corrected q̃c and k̃c we compute the space-mean speed ṽc according to Equation 3.

ṽc =
q̃c

k̃c
(3)

Figure 2 shows the resulting MFDs from loop detector data. In Figure 2(a), we observe a higher
capacity and critical density in Wiedikon than in the City center. While Wiedikon shows a
decrease in flow once critical density is reached, this congested portion of the MFD is absent for
the City center. We assume that this is due to Zurich’s traffic management scheme. For the City
center, a gating control operates, designed to reduce congestion during peak hours. Thus, we
do not expect strong indications of congestion. Additionally, the reduced capacity of around
400 veh/h for the City center compared to Wiedikon is due to the City center’s extensive public
transport priority system (for more details, see Ortigosa et al. (2014)). Figure 2(b) shows the
familiar relationship between average speed and density. In general, Wiedikon shows greater
free flow speeds than the City center. We attribute this to the differences in intersection density





            

(see Table 1). Wiedikon has longer average links and less intersections than the denser City
center, thus, vehicles in Wiedikon need to stop less frequently.

Similar to Chiabaut (2015), we compute the car passenger density by multiplying vehicle density
by two-hour averages of car passenger occupancy. The latter value is calculated from the trip
diary of the Swiss transportation micro-census 2010 (Swiss Federal Statistical Office (BFS),
2012). We select all car trips by drivers heading for any part of Zurich (including both the City
center and Wiedikon) and compute the mean car occupancy for weekdays and two-hour intervals,
e.g. one value for 06:00 to 08:00, one for 08:00 to 10:00, etc. This makes the calculations of
the 3D-pMFD more accurate than taking one average value over the whole time period. Note,
average car occupancy during the morning peak is around 1.2 and increases toward the evening
to 1.36.

2.3 Public transport data

Data on public transport performance is obtained from Zurich’s transit operator, Verkehrsbetriebe

Zürich (VBZ). The data set contains information on each public transport vehicle’s travel time
from stop to stop, ti, including the dwell time at each stop (Stadt Zürich, 2016b), recorded
by automatic vehicle location (AVL) devices. We add the distance di from stop to stop, and
compute the mean speed vi,pt = di/ti (Leclercq et al., 2014). A unique vehicle identifier in the
data set allows us to count the number of vehicles Npt at any point in time within the defined
regions.

Vehicle occupancies are available for the year 2014 (Stadt Zürich, 2016a). This data set contains
- for each line - type of day, scheduled trip, and leg between two stops, as well as the annual
average passenger counts. We do not expect significant changes in occupancies between 2014
and 2015, given the absence of exogenous changes in the city and region. For each time interval,
the average speed vpt of public transport vehicles is computed according to Equation 4.

vpt =

∑N
i=1 vi,pt li∑N

i=1 li
(4)

The average density kpt is computed with Equation 5 using a network length Lpt .

kpt =
Npt

Lpt
(5)





            

Figure 2: Macroscopic relationships for the car traffic in Zurich.

(a) Relationship between density and flow.
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(b) Relationship between density and speed.
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Then we calculate public transport vehicle flow, qpt with Equation 6.

qpt = kptvpt (6)

3 Empirical 3D-MFD

In this analysis, we focus on bi-modal interactions and their implications for speeds of the private
and public modes. We aggregate all data points into 15 min intervals to avoid systematic variation
in the 3D-MFD, due to the relatively rigid fixed-interval timetable for public transportation in
Zurich.

In Figure 3(a) we compare the speeds of cars and public transport vehicles during Tuesday,
October 27th 2015. Remember that the speeds of public transport vehicles contain the dwell
times. In the City center, we observe that the car speeds decrease during the morning and
afternoon peak and remain at around 14 to 15 km/h during the day. The speed of public transport
vehicles is around 12 km/h all the time, but shows a slight decrease to around 10 km/h during
the afternoon peak. In Wiedikon, speeds of both modes are higher than in the City center and
show a greater variance. In the afternoon, car speeds drop remarkably below public transport
speeds.

Figure 3(b) shows the total number of travelers in the two regions, staked by mode. We observe
- for both regions - that travel demand increases significantly during morning and evening peaks.
The increase in travel demand during peak hours in the City center is mostly captured by public
transport, whereas in Wiedikon, both modes show a similar increase. Regarding the share of
public transport users, we observe a higher share in the City center than Wiedikon. We attribute
this to the higher concentration of public transport lines in the City center (see Table 1).

In Figure 4, we present the observed 3D-MFDs for the City center and Wiedikon. The horizontal
plane represents the accumulation of both modes and the vertical axis the total vehicle flow.
Since this is an empirical data set, the range of observed data points is limited, especially for
public transport accumulation (due to tight timetables). That being said, we can still compare
the two similarly-sized regions. In general, we register higher public transport accumulation for
the City center than for Wiedikon, due to the very high number of public transport lines found in
the City center. Conversely, slightly higher car accumulations are registered in Wiedikon than in
the City center. For any given car accumulations, we observe a higher vehicle flow in Wiedikon
than in the City center.





            

Figure 3: Bi-modal relationships in the city of Zurich.

(a) Car and public transport speeds.
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(b) Accumulation of travelers by mode.
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4 A statistical model for the 3D-MFD based on empirical data

With the available - but limited - range of data, in this section, we quantify the macroscopic
relationships using a statistical model. This allows us to use the 3D-MFD in further applications.
Figure 4 shows trends similar to those found in Geroliminis et al. (2014) for the 3D-MFD
using simulation data, but our data does not exhibit similar experimental variation because it is





            

Figure 4: 3D-MFDs in Zurich

(a) City center.
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(b) Wiedikon.
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empirical. Geroliminis et al. (2014) propose linking car and public transport density to total flow
exponentially with a bivariate quadratic function of both modes’ densities. However, with our
data showing limited empirical variation, we cannot estimate this function, especially because
extreme values must be arbitrarily defined to fit the curve. Therefore, we follow Zheng and
Geroliminis (2016b), and define functions for the vehicle based 3D-MFD and the passenger 3D-
MFD (3D-pMFD), based on observed data. Note that accumulation, n, can be easily transformed
into density, if the network length, Lc or Lpt , is known, kc = nc/Lc or kpt = npt/Lpt . In the





            

following, we introduce a model based on densities, rather than accumulation, to normalize for
the different regions

4.1 3D-MFD

For simplicity and as a first order approach, we model a linear relationship between density
and speed (in accordance with Mahmassani et al. (1987)). The speed of public transport, vpt , is
modeled by a linear relationship for car speed ṽc, as proposed by Geroliminis et al. (2014) and
Zheng and Geroliminis (2013) and covers mode interactions.

Therefore, we propose modeling the 3D-MFD using empirical data using two equations. The
first equation links car speeds ṽc to free flow speed βc,0, the density of cars k̃c and the density
of public transport vehicles kpt . βc and βpt are coefficients to be estimated from the data and
represent the marginal effect of each mode.

ṽc = βc,0 + βc k̃c + βpt kpt (7)

Using the definition by Geroliminis et al. (2014) and Zheng and Geroliminis (2013), the speed
of public transport vehicles vpt is defined in Equation 8 as a function of car speed ṽc. Thus,
public transport speed does not explicitly depend on vehicles’ densities k̃c and kpt . However,
ṽc is a function of vehicle densities and therefore vpt depends implicitly on vehicle densities.
The coefficients to be estimated are βpt,0 and βc,pt . βc,pt captures the aspect that public transport
vehicles typically move more slowly than cars due to frequent stops, and βpt,0 adjusts for the
fact that public transport speeds might exceed car speeds during congested time due to dedicated
lanes. This effect is observed in both regions during the evening peak, see Figure 3(a).

vpt = βc,ptvc + βpt,0
Eq.7
= βc,pt (βc,0 + βc k̃c + βpt kpt ) + βpt,0 (8)

4.2 3D-pMFD

The 3D-pMFD is estimated by substituting vehicle densities in Equation 7 for passenger densities
k̃pax,c for cars and kpax,pt for public transport, as introduced by Chiabaut (2015). Thus, the
resulting model equation is changed to Equation 9. In this approach, Equation 8 for public





            

Table 2: Model estimates for the vehicle 3D-MFD. The dependent variables are the space-mean
speeds of cars and public transport vehicles. All estimates are significant at 1 % level of
significance.

City center Wiedikon
Car Public transport Car Public transport

Car density [veh/km] -0.355 -0.362
Pub. tr. vehicle density [veh/km] -1.223 -5.442
Car speed [km/h] 0.125 0.121
Constant 27.935 37.503
Constant 10.049 12.614

R2 0.96 0.72 0.95 0.77
N 365 365 365 365

transport vehicle speeds still holds.

ṽc = βpax,c,0 + βpax,c k̃pax,c + βpax,pt kpax,pt (9)

5 Model results

5.1 3D-MFD

In Table 2, we show model estimates for the vehicle 3D-MFD for both regions in Zurich. All
estimates are significant and show the expected sign. Wiedikon shows a higher free flow speed
than the City center and a similar marginal effect of cars; both findings are in accordance with
the results from Figure 2(b). The higher free flow speed can be attributed to longer links and
fewer signalized intersections in Wiedikon (see Table 1). CComparing the marginal effects of
public transport vehicles, we find -1.2 km/h per vehicle in the City center and -5.4 km/h per
vehicle in Wiedikon. In addition, we compute the elasticities at mean of both vehicle densities
on car speed. The elasticity in the City center is −0.2 and in Wiedikon −0.5. We expect that the
lower impact of public transport vehicles in the City center is due to the larger share of dedicated
lanes. Considering public transport speeds, we observe 12.6 km/h in Wiedikon and 10.0 km/h in
the City center for the constant βpt,0 and around 0.12 km/h per car speed change in km/h in both
zones. Again, we also compute, the elasticity between car speed and public transport speed and
find it to be around 0.15 for both regions. These findings are in line with Figure 3(a).





            

Table 3: Model estimates for the passenger 3D-MFD. The dependent variables are the space-
mean speeds of cars and public transport vehicles. All estimates are significant at 1 %
level of significance except those annotated otherwise.

City center Wiedikon
Car Public transport Car Public transport

Car passenger density [pax/km] -0.273 -0.225
Pub. tr. passenger density [pax/km] -0.005* -0.067
Car speed [km/h] 0.125 0.121
Constant 25.192 30.909
Constant 10.049 12.614

R2 0.92 0.72 0.89 0.77
N 360 365 360 365

* Not significant at 1 % level of significance but significant at 10 % level of significance.

5.2 3D-pMFD

For the 3D-pMFD, Table 3 presents the model estimates. All model estimates show the expected
sign and are significantly different from zero. Compared to the vehicle 3D-MFD estimates,
differences in effect sizes of the 3D-pMFD reflect different vehicle occupancies. Note that
estimates for public transport speed are identical because the model equation has not changed.
The model estimates for the car speed equations emphasize that one additional passenger does,
at least, impose one order of magnitude less impact on all car drivers when he chooses public
transport instead of the car. In the City center, this ratio is even stronger than in Wiedikon,
arguably, again, due to the larger share of dedicated lanes in the City center than in Wiedikon.

5.3 Predicted 3D-MFD

Using Table 2 we predict the familiar 3D-MFD shape (as introduced by Geroliminis et al.
(2014)) for both regions in Figures 5(a) and 5(b). Speeds v̂c and v̂pt are calculated over a range
of densities kc and kpt . Thus, we calculate the total network flow with q̂tot = kcv̂cLc + kpt v̂pt Lpt .
The 3D-pMFDs in Figures 5(c) and 5(d) are based on estimates from Table 3.

Arguably, the curves’ shapes are mainly determined by the functional form of the model.
However, the figures illustrate a plausible vehicle and passenger 3D-MFD. Maximum vehicle
flow occurs at zero accumulation of public transport vehicles and, for a given car accumulation,
increasing public transport accumulation reduces vehicular flow. In contrast, passenger flow
increases with greater accumulation of public transport passengers, whereas the maximum





            

Figure 5: Predicted 3D-MFD shape for passenger and vehicles.

(a) 3D-MFD in City center.
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(b) 3D-MFD in Wiedikon.
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(c) 3D-pMFD in City center.
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(d) 3D-pMFD in Wiedikon.
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passenger flow is outside the range of observed accumulations. Interestingly, the maximum
vehicle flow as a function of the public transport accumulation exhibits different behavior for
the City center than for Wiedikon. The maximum vehicle flow for any given public transport
accumulation is found at around 1500 cars. However, for Wiedikon, the maximum vehicle flow
changes with the public transport vehicles. This confirms that the interaction between cars and
public transport is higher in Wiedikon than in the City center - particularly due to the different
share of dedicated lanes.





            

Figure 6: Share of public transport passengers and average journey speeds in Zurich.

(a) City center.
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(b) Wiedikon.
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6 Optimal share of public transport users based on the
3D-pMFD

An interesting application of the 3D-MFD is to compute and compare journey speeds of car
users vc and public transport users vpt of a given population of travelers (excluding users’s access
time) (Wardrop, 1968; Mogridge, 1997). We define weighted average journey speed v̄ of car
passengers paxc and public transport passengers paxpt in Equation 10 as a function of total
travel demand paxtot = paxc + paxpt and share of public transport users paxpt/paxtot .

v̄ =
vpt paxpt + vcpaxc

paxtot
(10)

This can be seen as a supply function of infrastructure’s capacity, i.e. which travel times can
be reached given a certain infrastructure. We use the passenger 3D-MFD for both regions and
compute the weighted average journey speed as a function of share of public transport users
for three demand levels indicated in Figure 6. The share of public transport users maximizing
weighted average journey speed can be seen as an optimal share from the infrastructure capacity
perspective. Note that we only plot realistic optimal shares (0.1-0.9). We observe a similar
pattern in both regions; when the number of passengers increases, a larger number must use
public transport to maximize the weighted average journey speed. Not surprisingly, the region
of Wiedikon provides higher average speeds for the same combination of travel demand.





            

Furthermore, we analyzed empirical data for passenger levels around paxtot = 7500 in the City
center and paxtot = 5000 in Wiedikon; both values represent the average number of passengers
during peak hours. These observed values are shown as a triangle in Figure 6. They give an
insight on how well existing demand is distributed across respective modes. We see that the City
center already has a high share of public transport users, which leads to a speed close to the
optimum. On the other side, Wiedikon would benefit from a higher share of public transport
users during peak hours.

7 Conclusions

This paper presents the first empirical 3D-MFD for vehicles and passengers, in two regions in
Zurich. The 3D-MFDs are estimated based on loop detector data, GPS trajectories of public
transport vehicles, and vehicle occupancies (i.e., number of passengers per vehicle). We use a
linear model between the accumulation of vehicles and car speeds and a linear model between
public transport and car speeds. We observe a negative marginal effect for both public transport
and cars, in line with previous studies (Smeed, 1961, 1968; Geroliminis et al., 2014). The
marginal effect of one public transport vehicle is 3 to 10 times greater than the marginal effect of
a car. The elasticity of public transport vehicles on car speeds in the City center is −0.23 and in
Wiedikon −0.52. We attribute these significant differences in the two regions to the higher share
of dedicated public transport lanes in the City center. Even though both regions already have
high shares of dedicated lanes for public transport, it is important to note that other, substantial
interactions are present, especially at intersections. This effect is amplified in Zurich, since the
public transport priorization scheme in Zurich gives high priority to public transport (Ambühl
et al., 2017).

We introduce a novel application of the 3D-pMFD, discussing an optimal share of public
transport users. We emphasize that starting from a certain level of travel demand, the provision
of public transport is necessary to improve urban speeds. With the 3D-MFD, policy makers and
transport planners can assess policy changes at vehicle and passenger level for both modes. In
essence, a comparison between the observed and the optimal share of public transport users
gives quantitative insights on how efficiently a city’s multimodal transportation network operates.
Authorities can then formulate changes necessary to shift the network to its optimum directly
from a 3D-pMFD. Recall that the policy-relevant implications should be carefully evaluated
because of limited variance and range in the data. However, most applications building on - and
around - the 3D-MFD and the 3D-pMFD will be based on the observed equilibrium. For such
small deviations around the observed 3D-MFD, our estimates are appropriate.





            

This study does have some data limitations. Overall, the limited exogenous empirical variation
in public transport due to tight timetables limits the validity of model estimates to the observed
range and does not allow estimation of second order effects. Complete car data is not available
for all links and public transport provision is not homogeneously distributed on the entire road
network. This implies that our 3D-MFD might be biased due to an unrepresentative sample,
but as the covered network length is large, we expect this bias to be small. We aggregated the
sample at 15 min intervals to avoid random scattering caused by the public transport timetable
when considering smaller intervals. These greater intervals, in turn, reduce the sample size for
model estimation. As the timetable and public transport vehicles’ routes cannot be changed
‘ad libitum’, a homogeneous distribution of public transport vehicles in space and time using
smaller intervals is not possible.

Our future research will concentrate on analytical approximations of the 3D-MFD follow-
ing the work by Daganzo and Geroliminis (2008), Chiabaut (2015),Boyac and Geroliminis
(2011),Leclercq and Geroliminis (2013) and Geroliminis and Boyacı (2012). This kind of work
would not only improve general understanding of the 3D-MFD, but would also allow derivation
of a methodology to estimate the 3D-MFD with less data, based on infrastructure and public
transport system parameters.
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