Quantitative Analyse der Auswirkungen wirtschaftspolitischer Massnahmen auf die Einkommensverteilung und das «neue magische Viereck» in der Schweiz

Author(s):
Hartwig, Jochen

Publication Date:
2004

Permanent Link:
https://doi.org/10.3929/ethz-a-004871546

Rights / License:
In Copyright - Non-Commercial Use Permitted
Quantitative Analyse der Auswirkungen wirtschaftspolitischer Massnahmen auf die Einkommensverteilung und das «neue magische Viereck» in der Schweiz
Quantitative Analyse der Auswirkungen wirtschaftspolitischer Massnahmen auf die Einkommensverteilung und das „neue magische Viereck“ in der Schweiz

Jochen Hartwig, KOF ETH Zürich

Abstract

Macroeconometric policy simulation models allow for an analysis, and, above all, for a quantification of the effects different economic policies have on the various variables that represent the economy. Despite the seminal ‘Lucas critique’ levelled against them, these models are still widely used, especially within policy-making institutions such as, e.g., central banks. In this paper, a model constructed by the author for the Swiss economy is used to explain, and to quantify the impact of fiscal, monetary, wage and social policies on the functional and personal distribution of income on the one hand, and on the four main objectives of contemporary economic policy on the other. These are: a high GDP growth, low inflation and unemployment, and a low or zero public deficit (the latter replacing the original fourth objective codified, e.g., in the German Stability Act of 1967, which was external balance). Our approach will enable us to answer questions like: Which income group suffers most from a hike in the short term interest rate?, Should a large public spending project better be financed by increasing the VAT rate or the income tax rate?, and How much could the aggregate social security contribution rate be lowered if the formula used for calculating the alignment of retirement pensions was changed?

Key words: Income distribution, ‘magic square’, macroeconometric model, policy simulation, Switzerland

JEL classifications: C51, C53, E17, E52, E61, E62, E63, E64, E65
1 Einleitung


Der nachfolgende Abschnitt 2.1 enthält einige grundlegende Anmerkungen zur „Philosophie“ des Modells.

2 Das Modell

2.1 Modellphilosophie


\[1\] Quartalsdaten werden vom schweizerischen Bundesamt für Statistik (BFS) nicht publiziert.

Zugegebenermassen ist eine unzureichende Datenverfügbarkeit kein hinreichendes Argument, um irgendeine Modellierungsstrategie zu legitimieren. Man könnte auch sagen, dass man eben kein Schweiz-Modell haben kann, wenn zu wenig Daten vorhanden sind. Das Hauptproblem kleiner Stichproben (oder kurzer Zeitreihen) besteht darin, dass statistische Schlüsse über die Parameter von Regressionsgleichungen auf den asymptotischen Eigenschaften des Schätzers beruhen, aber, wie Phillips (1983, S. 451) anmerkt: „(H)eavy reliance on asymptotic theory can and does lead to serious problems of bias and low levels of inferential accuracy when sample sizes are small and asymptotic formulae poorly represent sampling behavior“.

Glücklicherweise ist der hier verwendete Fixpunkt- (FP-) Schätzer für kleine Stichproben besonders geeignet, denn die Fixpunkt-Methode „stays in the structural form, where each relation – be the system small or large – usually involves only some few explanatory variables; hence the FP method is applicable even if the sample size is rather small and/or the ID [inter-dependent] system is rather large“ (Bergström/Wold 1983, S. 10). Im Appendix werden die FP-Koeffizienten jeweils links von den OLS-Koeffizienten² angegeben. Für von einem Systemschätzer berechnete Koeffizienten können keine Standardabweichungen und t-Werte angegeben werden. Diese Tatsache umgeht zwar einerseits das oben angesprochene Problem der inferenziellen Ungenauigkeit, sie stellt uns andererseits aber vor das Problem, dass andere Kriterien benötigt werden, um die Güte der Modellspezifikation zu beurteilen. Eine Möglichkeit besteht im Vergleich der FP- mit den OLS-Koeffizienten. Wenn die beiden Koeffizienten-Sets stark voneinander abweichen – oder gar unterschiedliche Vorzeichen haben – so wäre dies ein Indiz für eine Fehlspezifikation des Modells. Ein Blick in den Appendix zeigt jedoch, dass dies nicht der Fall ist. Ein zweites Kriterium wäre die Stabilität der dynamischen ex post-Simulation. Es kann sehr wohl passieren, dass die dynamische ex post-Simulation für einzelne oder alle Zeitreihen gegen Ende des Simulationszeitraums „explodierte“, d.h. nach oben oder unten gegen unend-

² OLS = Ordinary Least Squares.

Ein Blick auf die im Anhang dokumentierten Gleichungsspezifikationen zeigt, dass das Modell hauptsächlich auf langfristige Gleichgewichts- oder kointegrierende Beziehungen fokussiert. Die kurzfristige Dynamik wird kaum modelliert; nur 9 von 42 Verhaltensgleichungen sind in Fehlerkorrekturform. Natürlich würde der „Beweis“, dass die in die Regressionsbeziehungen eingehenden Variablen de facto kointegriert sind, nur über sorgfältiges Testen zu erbringen sein. Tatsächlich wurden alle 42 Residuenreihen auf eine unit root getestet (wobei die kritischen Werte DAVIDSON/MACKINNON 1993, S. 722, Tab. 20.2 entnommen wurden), ohne dass Anhaltspunkte für unit roots gefunden wurden. Allerdings ist bekannt, dass ADF-Tests auf unit roots, ebenso wie andere Kointegrationstests, bei kurzen Zeitreihen eine geringe Macht (power) haben (vgl. MUSCATELLI/HURN 1992, S. 8f.). Der Verfasser vertraut aber auch darauf, dass die ökonomischen Theorie behilflich sein kann, „echte“ (non-spurious) Beziehungen zwischen Variablen zu identifizieren. Im übrigen ist darauf hinzuweisen, dass der sich heute sehr in Mode befindliche Berechenbare Allgemeine Gleichgewichts- (CGE-) Modellierungsansatz in einem sehr viel stärkeren Ausmass auf theoretischen Identifikationen beruht als der hier verwendete strukturelle Ansatz. Ebenso gilt, worauf HALL 1995, S. 984, hinweist:

(T)he clear distinction between CGE and econometric models is disappearing. ... (E)conometric models draw increasingly on theory; as CGE models increasingly incorporate dynamics and econometric techniques there is increasing convergence between the two methodologies.

Das hier vorgestellte Schweiz-Modell ist einer Philosophie verpflichtet, nach der Informationen sowohl aus den Daten als auch aus der ökonomischen Theorie geschöpft werden können.

---

3 Zwar können hier aus Platzgründen keine solchen Vergleiche gezeigt werden, vgl. dazu aber HARTWIG 2004. Im Schweiz-Modell korrelieren simulierte und tatsächliche Verläufe sehr eng.

4 ADF = Augmented Dickey Fuller.

5 CGE = Computable General Equilibrium.
2.2 Zur theoretischen Struktur des Modells

Das Modell weist eine Blockstruktur auf. Allerdings sind die einzelnen Blöcke interdependent, so dass sie *de facto* einen einzigen grossen Block bilden. Dies hat zur Folge, dass sich nach einer simulierten Veränderung einer Politik- oder Szenariovariable nicht nur bestimmte, sondern alle endogenen Variablen anpassen werden.


Um wenigstens zu einer groben Approximation der personellen Einkommensverteilung zu gelangen, wurden die verschiedenen im Einkommensentstehungs- und Einkommensverteilungs-
konten verbuchten Transaktionen auf drei Einkommensgruppen alloziert, welche als Empfänger von Lohneinkommen, von Transfereinkommen (hauptsächlich Altersrenten und Arbeitslosenunterstützungen) und von Gewinneinkommen (im weiteren Sinne) bezeichnet werden sollen. In allen drei Kategorien handelt es sich um verfügbares Einkommen, d.h. um Einkommen nach Abzug von Einkommensteuern, Sozialversicherungsbeiträgen und bestimmten Ausgaben. Die konkrete Definition der drei Gruppen kann Tabelle 1 eintommen werden.

Tab. 1: Definition der drei Einkommensgruppen

<table>
<thead>
<tr>
<th>Lohneinkommen</th>
<th>Schweizer Haushalten zufließendes Bruttoeinkommen aus unselbständiger Arbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ Einkünfte aus unterstellten Sozialbeiträgen</td>
</tr>
<tr>
<td></td>
<td>+ Einkünfte aus sonstigen laufenden Übertragungen</td>
</tr>
<tr>
<td></td>
<td>− k * (Zinszahlungen + Einkommensteuern)</td>
</tr>
<tr>
<td></td>
<td>− Tatsächliche Sozialversicherungsbeiträge der Inländer</td>
</tr>
<tr>
<td></td>
<td>+ Tatsächliche Sozialversicherungsbeiträge von Nicht-Arbeitnehmern</td>
</tr>
<tr>
<td></td>
<td>− Unterstellte Sozialversicherungsbeiträge</td>
</tr>
<tr>
<td></td>
<td>− Ausgaben der Haushalte für internationale priv. Übertragungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gewinneinkommen</th>
<th>Mixed Income (s.o.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ Zinseinkünfte</td>
</tr>
<tr>
<td></td>
<td>+ Einkünfte aus unterstellten Zinsen auf versicherungstechnische Leistungen</td>
</tr>
<tr>
<td></td>
<td>+ Einkünfte aus Grund, Boden und immateriellen Werten</td>
</tr>
<tr>
<td></td>
<td>+ Einkünfte aus Dividenden und sonstigen verentrten Einkommen von Kapitalgesellschaften</td>
</tr>
<tr>
<td></td>
<td>+ Einkünfte aus entnommenen Gewinnen aus Quasi-Kapitalgesellschaften</td>
</tr>
<tr>
<td></td>
<td>+ (1 − k) * (Zinszahlungen + Einkommensteuern)</td>
</tr>
<tr>
<td></td>
<td>− Ausgaben für Grund und Boden und immaterielle Werte</td>
</tr>
<tr>
<td></td>
<td>− Ausgaben für Sozialeistungen</td>
</tr>
<tr>
<td></td>
<td>− Ausgaben für laufende Übertragungen an priv. Organisationen</td>
</tr>
<tr>
<td></td>
<td>− Ausgaben für sonstige laufende Übertragungen</td>
</tr>
<tr>
<td></td>
<td>− Tatsächliche Sozialversicherungsbeiträge von Nicht-Arbeitnehmern</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transfereinkommen</th>
<th>Einkünfte aus Sozialleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ Einkünfte aus internationalen privaten Übertragungen</td>
</tr>
</tbody>
</table>

Die von der Größenordnung her relativ unbedeutenden Transaktionen werden als Exogene behandelt und ändern sich in Simulationen nicht. (Sie sind in Tab. 1 kursiv gesetzt.) Die Zuordnung dieser Transaktionen zu den drei Gruppen liesse sich aus den genauen Definitionen des ESVG 1978 heraus noch näher begründen, worauf aber an dieser Stelle verzichtet werden soll. Ein Element der Willkür ist allemal vorhanden; dieses ist jedoch am stärksten ausgeprägt hinsichtlich der Aufteilung der Zins- und Einkommensteuerzahlungen. Es wird unterstellt, dass


Die Investitionen sind im Modell zinselastisch. In den Schweizer Daten wurden signifikant negative Korrelationen zwischen langfristigen Zinssätzen (Obligationenrendite, Hypothekarzins-


Alle Gleichungen, die den Sektor Staat beschreiben, sind in einem weiteren Block zusammengestellt. Die Politikvariablen sind bewusst exogenisiert worden, um diskretionäre Änderungen in diesen Variablen zu ermöglichen. Stochastisch modelliert wird allerdings der Deflator des Staatsverbrauchs. Auch für die geldpolitische Variable gibt es eine Verhaltensgleichung, die „abgeschaltet“ werden kann (s.o.).

Ein weiterer Block wurde für den Bereich „Beschäftigung“ im weiteren Sinne gebildet. Die Arbeitsnachfrage sowie das Arbeitsangebot der Männer und das der Frauen werden separat geschätzt; und die Arbeitslosigkeit wird als Differenz von Angebot und Nachfrage berechnet. Von zentraler Bedeutung für diesen ganzen Block ist die Verhaltensgleichung für den Nominallohnindex, welche als um Inflationserwartungen erweiterte Phillips-Kurve im ursprünglichen Sinn von Phillips – also mit der Lohnsteigerungsrate und nicht mit der Inflationsrate an der

---

6 Der Kapitalkoeffizient konnte nicht empirisch bestimmt werden, da für die Schweiz eine Kapitalstockstatistik nicht vorliegt. Es wurde daher der traditionelle Wert von $v=4$ angenommen, vgl. HARROD 1939, S. 18.
Ordinate – aufgefasst werden kann. Die meisten Preisindizes werden hauptsächlich durch die Entwicklung der Geldlöhne bestimmt. Das heisst, dass die Preise im Modell kostendeterminiert sind.7

Das Arbeitsangebot sollte von einem Reallohnzielwert abhängen. In den Schweizer Daten findet sich ein statistisch signifikanter Einfluss des Reallohns allerdings nur für das Arbeitsangebot der Männer, während die Frauen ihr Arbeitsangebot über die letzten 20 Jahre unabhängig von der Lohnentwicklung ausgeweitet haben. Für das Arbeitsangebot der Frauen scheint dagegen die Arbeitsmarktanspannung entscheidender zu sein, insofern, als Frauen sich in Zeiten geringer Arbeitsmarktanspannung (aus Arbeitgebersicht) zu einem gewissen Grad aus dem Arbeitsmarkt zurückziehen.


Eine wichtige Besonderheit dieser Spezifikation der Arbeitsnachfragegleichung verdient Beachtung: Wenn die Geldlöhne steigen, so verschiebt sich (in der Keyneschen Begrifflichkeit)

7 Es gibt einen geringen (statistisch signifikanten) Nachfragedruckeinfluss auf die Konsumentenpreise, der durch die Produktionslücke approximiert wird. Außerdem steigen die Konsumentenpreise, wenn sich die Hypothekarzinsen erhöhen. Der Grund hierfür ist das schweizerische System der Mietregulierung, das die Mieten effektiv an die Hypothekarzinsen koppelt.

8 Die Vollzeitäquivalente werden in einer eigenen Verhaltensgleichung modelliert.

Neben dem Lohneinkommen werden fünf weitere Komponenten des verfügbaren Einkommens des Haushaltssektors im Block „Einkommen“ stochastisch modelliert. Es sind dies die Zinseinkünfte, die Dividendeneinkünfte, die Selbständigeneinkommen, die Transfereinkommen sowie die Zinszahlungen der Haushalte. (Der Bruttobetriebsüberschuss wird hingegen nicht separat modelliert, sondern residual berechnet.) Die Gleichungen dieses Blocks sind für die unten in Abschnitt 3.2.2 berichteten Ergebnisse von entscheidender Bedeutung. Der Leser sei wegen der Spezifikationen an den Appendix verwiesen.

onsfunktion des Modells. Weiterhin besteht ein starker Einfluss des Zinssatzes für kurzfristige Euro-Kredite (vor 1999 D-Mark), was darauf hindeutet, dass die SNB nicht vollkommen autonom beim Verfolg ihrer Geldpolitik ist. Langfristige Zinssätze (Obligationenrendite, Hypothekarzinssatz) hängen vom kurzfristigen Satz, der deutschen Obligationenrendite sowie dem verzögerten BIP-Deflator ab. Letztgenannte Variable erfasst den Einfluss von Inflationserwartungen auf langfristige Zinssätze, der allerdings im Fall der Schweiz nur schwach ist.


---

Tab. 2: Vereinfachte Version des Schweiz-Modells

**Angebotsseite**

\[ \text{Potenzialoutput} = f (\text{Kapitalstock Ausrüstungen}) \]  
\[ \text{Arbeitsangebot} = f (\text{Reallohnindex, Arbeitsmarktanspannung}) \]  
1

**Nachfrageseite**

\[ \text{Reales BIP} = \text{Realter privater Verbrauch} + \text{Realer Staatsverbrauch} + \text{Reale Ausrüstungsinvestitionen} + \text{Reale Bauinvestitionen} + \text{Reale Lagerinvestitionen} + \text{Reale Exporte} – \text{Reale Importe} \]  
\[ \text{Realter privater Verbrauch} = f (\text{Realtes verfügbares Einkommen des Haushaltssektors, Verteilung}) \]  
\[ \text{Reale Exporte} = f (\text{Realer Wechselkursindex, Reales Welthandelsvolumen}) \]  
\[ \text{Reale Importe} = f (\text{Realter privater Verbrauch, Reale Ausrüstungsinvestitionen, Reale Exporte}) \]  
\[ \text{Arbeitsnachfrage} = f (\text{Reales BIP, Nominallohnindex, Betriebsübliche wöchentliche Arbeitszeit, Produktivität}) \]

---

9 Es ist also nicht so, dass „Geld(mengenwachstum) Inflation verursacht“, sondern dass „Geld(mengenwachstum) Zinserhöhungen verursacht“.

**Durch Angebot und Nachfrage bestimmt**

Reale Ausrüstungsinvestitionen = \( f (\text{Produktionslücke, Obligationenrendite (10 Jahre), Preisindex: Investitionsgüter, Lohnstückkosten}) \) \( (8) \)

Reale Bauinvestitionen = \( f (\text{Reale Ausrüstungsinvestitionen, Beschäftigung, Reales verfügbares Einkommen des Haushaltsektors, Langfristige Zinssätze}) \) \( (9) \)

Zahl der Erwerbslosen = Arbeitsangebot – Arbeitsnachfrage \( (10) \)

Nominallohnindex = \( f (\text{Arbeitsmarktanspannung, Konsumentenpreisindex, Einkommensteuersatz}) \) \( (11) \)

Preisindizes = \( f (\text{Nominallohnindex, Hypothekarzinssatz, Produktionslücke, BIP-Deflator OECD, Realer Wechselkursindex}) \) \( (12) \)

Produktionslücke = Potenzialoutput – Reales BIP \( (13) \)

Realer Wechselkursindex = \( f (\text{Konsumentenpreisindex, BIP-Deflator OECD, Obligationenrendite (10 Jahre), Deutsche Obligationenrendite (10 Jahre), Aussenbeitrag zum BIP}) \) \( (14) \)

**Geldpolitik**

Dreimonats-Libor, Schweizer Franken = \( f (\text{Geldmenge M1, Dreimontas-Libor Euro (vor 1999: D-Mark), Arbeitsmarktanspannung}) \) \( (15) \)

**Verfügbares Einkommen**

Reales verfügbares Einkommen des Haushaltsektors = \( f (\text{Arbeitsnachfrage, Nominallohnindex, Zahl der Erwerbslosen, Aggregierter Sozialversicherungsbeitragssatz, Einkommensteuersatz, Obligationenrendite (10 Jahre), Konsumentenpreisindex, ...}) \) \( (16) \)

Exogene Variablen, die mit Ausnahme der realen Lagerinvestitionen simulationsfähig sind, sind kursiv gesetzt.

---

3 **Quantifizierung der Auswirkungen wirtschaftspolitischer Massnahmen**

3.1 **Auswirkungen auf das „neue magische Viereck“**

3.1.1 Geldpolitik


Im dritten Jahr der Simulation wirkt sich die Rücknahme des Schocks im Vergleich zur Realität expansiv aus, und es kommt in jeder Simulation in diesem Jahr zu einer partiellen Korrektur der Schockwirkungen. Langfristig stellt sich eine Wiederannäherung an die tatsächliche Entwicklung ein. Simulierte reale Größen können allerdings selbst 2001 noch leicht oberhalb der wirklichen Entwicklung verbleiben, wenn die Preisindizes noch leicht unterhalb ihrer tatsächlichen Pendants liegen. Nominale Größen sind in diesem Fall leicht tiefer (vgl. auch die Abbildungen in Abschnitt 3.2.2).


---

11 Insofern restriktive fiskal- oder sozialpolitische Schocks zu einer Erhöhung der Arbeitslosigkeit führen, signalisieren sie der Notenbank einen geringeren Lohndruck. Im Modell, in dem die Geldpolitik endogen ist, wenn man sie nicht explizit simuliert, würde dies zu einer Absenkung des kurzfristigen Zinssatzes führen, was die restriktive Wirkung der ursprünglichen Politik abschwächen würde. Um die Wirkungen der Geldpolitik nicht mit anderen Politiken zu vermischen, wird der Zinssatz für die Jahre 1991 und 1992 in allen Simulationen exogenisiert.
3.1.2 Fiskalpolitik


Ein möglicher Einwand gegen die Simulationsergebnisse könnte lauten, dass denkbare Standortverlagerungen von Unternehmen im Zuge der Körperschaftssteuererhöhung unberücksichtigt bleiben würden. Dem ist aber nicht so. Eventuelle Ausweichreaktionen der Unternehmer sind berücksichtigt über eine kalibrierte quadratische Laffer-Kurve in der Investitionsfunktion: Insbesondere bei hohen simulierten Körperschaftssteuersätzen kommt es zu einem starken Rückgang
der Bruttoinvestitionen bzw. negativen Nettoinvestitionen. (Bei einem Steuersatz von 100 PP sind die Bruttoinvestitionen gleich Null.) Dass gemäss Tab. 3 die Wachstumsrate des realen BIP in beiden Jahren 1991/92 überhaupt um ca. 0.15 PP absinkt, liegt an einem Rückgang der Brutto-Ausrüstungsinvestitionen um ca. 1,1 Mrd. Sfr. aufgrund dieser Kalibrierung.\footnote{Empirisch gibt es keine Evidenz für einen statistischen Zusammenhang zwischen Körperschaftssteuersatz und Investitionsvolumen in den Schweizer Daten.}

Es macht einen Unterschied, ob der Staat die über die Steuererhöhung aufgenommenen 2,5 Mrd. Sfr. zur Entschuldung verwendet oder ausgibt. In Tab. 3 wird daher für jede Steuerpolitik auch eine Variante dokumentiert, in der die staatlichen Bauinvestitionen um 2,5 Mrd. Sfr. erhöht werden. Es zeigt sich, dass diese steuerfinanzierte Staatsausgabe die Wachstumsrate des realen BIP im ersten Jahr (je nach Finanzierungsform) um 0,73-0,76 PP erhöht, wobei die Refinanzierung über die Mehrwertsteuer leicht am expansivsten wirkt. Im zweiten Jahr geht der Wachstumsimpuls der Ausgaben verloren, da sie nicht weiter erhöht, sondern nur im Niveau gehalten werden. Die Wachstumsrate des realen BIP liegt unterhalb der Realität, aber doch höher als bei der Steuererhöhung ohne Anhebung der Ausgaben. Die Beschäftigungseffekte der Steuer-cum-Ausgabenerhöhung sind positiv, bei allerdings leicht höherer Inflation. Der Staatshaushalt wird aktiviert, wenn auch weniger als bei der Steuererhöhung allein, da die Bauinvestitionen ihrerseits zu Steuereinnahmen führen. Insgesamt betrachtet, schneidet wiederum die Refinanzierung der Ausgaben über eine Erhöhung der Körperschaftssteuern am besten ab – gemessen am „neuen magischen Viereck“.

3.1.3 Sozialpolitik

wird.\textsuperscript{14} \textit{De facto} gibt es also einen „halben Reallohnausgleich“ für die Rentner/innen. Wenn man diesen Mischindex auf einen reinen Inflationsausgleich umstellte, so würde die AHV Geld einsparen, und der AHV-Beitragssatz könnte gesenkt werden. Im Modell ist der AHV-Beitragsatz keine eigene Variable. Es gibt lediglich einen „aggregierten Sozialversicherungs-Beitragssatz“, berechnet als Aufkommen an Sozialbeiträgen geteilt durch Einkommen aus unselbständiger Arbeit. Eine feinere Differenzierung ist mit VGR-Daten nicht möglich. Der aggregierte Beitragssatz, den man als „Lohnnebenkosten-Quote“ interpretieren kann, umfasst hauptsächlich die Zwangsbeiträge an die AHV, die „Invalidenversicherung“ (IV) sowie die Arbeitslosenversicherung (ALV).\textsuperscript{15}

Da im Jahr 1991 keine Rentenanpassung erfolgt ist, wirkt sich die Modifikation der Rentenformel erst (und nur) 1992 aus. Das Modell berechnet einen Einspareffekt von rd. 1,4 Mrd. Sfr., was eine Reduktion des aggregierten Beitragssatzes um 0,3 PP erlauben würde. Tabelle 3 zeigt die Auswirkungen dieser Revision der Sozialpolitik auf das „neue magische Viereck“: Sie sind schwach.

3.1.4 Lohnpolitik


Obwohl die Lohnpolitik im „neuen magischen Viereck“ am besten abschneidet, stellt sich doch die Frage, ob die in der Schweiz traditionell geübte Lohnzurückhaltung\textsuperscript{16} – die Schweiz ist

\textsuperscript{14} Wenn die Inflationsrate einen Schwellenwert überschreitet, wird der Rentenindex auch in zwei aufeinander folgenden Jahren angepasst. Dies war im Stützbereich des Modells einmal (1992/93) der Fall.

\textsuperscript{15} Nicht enthalten sind hingegen die Pensionskassenbeiträge sowie die Krankenkassenprämien, die in der Schweiz als „Zwangsbeiträge an private Organisationen“ nicht die Kriterien erfüllen, die die VGR an Sozialversicherungsbeiträge anlegt. Dies ist übrigens der Hauptgrund für die im internationalen Vergleich tiefe schweizerische Fiskalquote.

\textsuperscript{16} „Mentalität und Grundhaltung der Schweizer Arbeitnehmer sind im wesentlichen konsensual und gutgläubig, sicher nicht konfliktuell. Ideell ist heute ihre weitgehende Integration in die Unternehmung und die Arbeitgeberseite

Tab. 3: Auswirkungen von Politiksimulationen auf das „magische Viereck“

<table>
<thead>
<tr>
<th>Politik</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Erhöhung des Dreimonats-Zinssatzes (Libor) um 1PP</td>
</tr>
<tr>
<td>2</td>
<td>Erhöhung des MWSt.-Satzes um 1PP</td>
</tr>
<tr>
<td>3</td>
<td>Erhöhung des Einkommensteuersatzes (natürliche Personen) um 1PP</td>
</tr>
<tr>
<td>4</td>
<td>Erhöhung des Körperschaftsteuersatzes (juristische Personen) um 4,5PP</td>
</tr>
<tr>
<td>5</td>
<td>Erhöhung des MWSt.-Satzes um 1PP und der staatl. Bauinvestitionen um 2,5 Mrd. Sfr.</td>
</tr>
<tr>
<td>7</td>
<td>Erhöhung des Körperschaftsteuersatzes um 4,5PP und der staatl. Bauinv. um 2,5 Mrd. Sfr.</td>
</tr>
<tr>
<td>8</td>
<td>Inflationsausgleich in der Rentenformel und Absenkung des aggr. Sozialversicherungs-Beitragssatzes um 0,3PP</td>
</tr>
<tr>
<td>9</td>
<td>Senkung der Lohnwachstumsrate um 1PP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Änderungen in Prozentpunkten gegenüber der Realität</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
</tr>
<tr>
<td>Politik 1</td>
</tr>
<tr>
<td>Politik 2</td>
</tr>
<tr>
<td>Politik 3</td>
</tr>
<tr>
<td>Politik 4</td>
</tr>
<tr>
<td>Politik 5</td>
</tr>
<tr>
<td>Politik 6</td>
</tr>
<tr>
<td>Politik 7</td>
</tr>
<tr>
<td>Politik 8</td>
</tr>
<tr>
<td>Politik 9</td>
</tr>
</tbody>
</table>

Hinweis: g = Wachstumsrate des realen BIP, π = Inflationsrate, u = Erwerbslosenquote, d = Neuverschuldungsquote


3.2 Auswirkungen auf die Einkommensverteilung

3.2.1 Funktionale Einkommensverteilung

Aus Tab. 4 kann als Tendenzaussage abgeleitet werden, dass beide „Produktionsfaktoren“ unter einer restriktiven Wirtschaftspolitik leiden, dass aber das Kapital stärker leidet als der Faktor Arbeit. Dass beide Faktoren Einkommensrückgänge hinnehmen müssen, ist nicht verwunderlich, denn es handelt sich um Angaben zu laufenden Preisen, und eine restriktive Wirtschaftspolitik drückt sowohl auf die Preis- wie auf die Aktivitätsniveaus (vgl. Tab. 3). Einen Sonderfall stellt die Einkommensentwicklung des Faktors Arbeit unter dem Mehrwertsteuer- sowie, im ersten Jahr, unter dem Einkommensteuerschock dar. Die Mehrwertsteuererhöhung erhöht das Preisniveau, und der Faktor Arbeit ist gemäss empirischem Befund (vgl. Appendix) in der Lage, einen partiellen Inflationsausgleich durchzusetzen. Konkret steigt der Konsumentenpreisindex im Jahr 1991 um 0.57% und der Nominallohnindex um 0.35%. Diese Lohnerhöhung überkompensiert den leichten Rückgang der Beschäftigung und führt insgesamt zu einem Anstieg des (nominalen) Einkommens aus unselbständiger Arbeit. Selbst wenn die Unternehmer die gestiegenen Steuern zu 100% auf die Preise überwälzen könnten, würden sie schlechter gestellt, denn sie müssten die Arbeitnehmer für Preissteigerungen entschädigen, deren Nutzniesser allein der Staat ist. Es gelingt aber nur eine 60%-ige Überwälzung (vgl. Tab. 3). Der Faktor Kapital verliert doppelt.

Der geringe Anstieg des Einkommens aus unselbständiger Arbeit im ersten Jahr des Einkommensteuerschocks erklärt sich dadurch, dass gemäss geschätzter Lohngleichung auch für Einkommensteuererhöhungen in geringem Ausmass ein Lohnausgleich durchgesetzt werden kann (vgl. Appendix).

Werden die Steuererhöhungen mit einer Ausweitung der staatlichen Bauinvestitionen um 2,5 Mrd. Sfr. kombiniert, so wirkt sich diese Fiskalpolitik expansiv aus (vgl. Tab. 3). So wie der Faktor Kapital von einer restriktiven Politik stärker belastet wird, so profitiert er auch stärker von einer expansiven Politik als der Faktor Arbeit. 18


Tab. 4: Auswirkungen von Politiksimulationen auf die funktionale Einkommensverteilung

<table>
<thead>
<tr>
<th>Politik</th>
<th>Änderungen in Mio. Sfr. gegenüber der Realität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Politik 1: Erhöhung des Dreimonats-Zinssatzes (Libor) um 1PP</td>
<td>Bruttobetriebsüberschuss</td>
</tr>
<tr>
<td>Politik 2: Erhöhung des MWSt.-Satzes um 1PP</td>
<td>1991</td>
</tr>
<tr>
<td>Politik 3: Erhöhung des Einkommensteuersatzes (natürliche Personen) um 1PP</td>
<td>1084</td>
</tr>
<tr>
<td>Politik 4: Erhöhung des Körperschaftsteuersatzes (juristische Personen) um 4,5PP</td>
<td>1991</td>
</tr>
<tr>
<td>Politik 9: Senkung der Lohnwachstumsrate um 1PP</td>
<td>1991</td>
</tr>
</tbody>
</table>

Bruttobetriebsüberschuss auf einen fiskalpolitischen Schock reagieren wird. Nur ein interdependentes empirisches Modell kann eine solche Frage beantworten.

19 Wenn auch der Faktor Kapital in den restriktiven Szenarien verliert, so kann es natürlich sein, dass sich die Bezieher von Gewinneinkommen real besser stellen. Dies wird im nächsten Abschnitt untersucht.
3.2.2 Personelle Einkommensverteilung


<table>
<thead>
<tr>
<th>Politik 2</th>
<th>+365</th>
<th>+529</th>
<th>-1399</th>
<th>-1343</th>
</tr>
</thead>
<tbody>
<tr>
<td>Politik 3</td>
<td>+30</td>
<td>-224</td>
<td>-350</td>
<td>-1010</td>
</tr>
<tr>
<td>Politik 4</td>
<td>-55</td>
<td>-223</td>
<td>-462</td>
<td>-847</td>
</tr>
<tr>
<td>Politik 5</td>
<td>+694</td>
<td>+1449</td>
<td>+1018</td>
<td>+1459</td>
</tr>
<tr>
<td>Politik 6</td>
<td>+360</td>
<td>+703</td>
<td>+2094</td>
<td>+1822</td>
</tr>
<tr>
<td>Politik 7</td>
<td>+274</td>
<td>+701</td>
<td>+1974</td>
<td>+1965</td>
</tr>
<tr>
<td>Politik 8</td>
<td></td>
<td>-687</td>
<td></td>
<td>+937</td>
</tr>
<tr>
<td>Politik 9</td>
<td>-907</td>
<td>-1940</td>
<td>-523</td>
<td>-2327</td>
</tr>
</tbody>
</table>
ein Ausgleich über die Anpassung der Rentenformel. Dass die beiden anderen Steuerpolitiken
das Transfereinkommen leicht erhöhen, liegt daran, dass sie zu einer Erhöhung der Arbeitslosig-
keit und damit der Transfers an die Arbeitslosen führen.

Die Abbildungen 5-7 beziehen sich auf die steuer-refinanzierte expansive Fiskalpolitik. Einige Unterschiede zu den ersten drei Abbildungen sind erkennbar. So verlieren nun die Trans-
fereinkommensbezieher in allen drei Steuerszenarien. In zwei von drei Fällen ist dies allein auf
den Rückgang der Arbeitslosigkeit zurückzuführen; im Fall der Mehrwertsteuererhöhung geht
allerdings der Reallohnlindex zurück, so dass die Renterinnen und Rentner über die Rentenformel
reale Einbussen erleiden. Die Bezieher von Lohneinkommen profitieren nun real von einer Refi-
nanzierung der höheren Staatsausgaben über die Körperschaftssteuer und stellen sich im Mehr-
wertsteuer-Szenario in etwa gleich. Die Bezieher von Gewinneinkommen verlieren dagegen
nach wie vor in allen drei Szenarien. Diese Einkommensgruppe kann offenbar weder an Steuer-
erhöhungen per se noch an einer steuerfinanzierten Erhöhung der Staatsausgaben ein Interesse
haben.

Abbildungen 1, 8 und 9 stellen die Verteilungswirkungen des geld-, sozial- und lohnpoliti-
schen Schocks dar. Nicht weiter verwunderlich ist, dass der sozialpolitische Schock zu einer
Umverteilung von den Transfereinkommensbeziehern (Rentnerinnen und Rentnern) zu den
Lohnempfängern führt. Wegen der leicht expansiven Wirkung der Massnahme steigt das verfüg-
bare Lohneinkommen um mehr als die Hälfte des Rückgangs der Transfereinkommen. (Die
andere Hälfte entfällt auf die Arbeitgeberbeiträge zur Sozialversicherung und wird teilweise an
die Bezieher von Gewinneinkommen ausgeschüttet.) Zu einer Umverteilung führt auch der geld-
politische Schock. Die Bezieher von Gewinneinkommen profitieren von der Zinserhöhung,
insbesondere im ersten Jahr, da ihre Zinseinkünfte schneller anziehen als ihre Zahlungsver-
pflichtungen. Nachdem es 1992 dann zu einer Anpassung der Hypothekarverträge mit variablen
Zinssätzen gekommen ist, relativiert sich der Vorteil, bleibt aber bestehen, da den Gewinnein-
kommens-Beziehern zwar die gesamten Zinseinkünfte zufließen, sie aber nur einen Teil der
Zinszahlungen leisten. Die Bezieher von Lohneinkommen verlieren durch höhere Zinszahlungen
und geringere Lohneinkünfte wegen der Verschlechterung des Arbeitsmarktlage. Der letztge-
nannte Grund zeichnet auch verantwortlich für den leichten Anstieg bei den Transfereinkommen.
Insgesamt liegt das verfügbare Einkommen des Haushaltssektors nach der Zinserhöhung im
nicht nur die Lohneinkommens-Bezieher, sondern auch die Schuldner-Sektoren Staat und
Unternehmen. An ausländische Gläubiger muss fast eine Milliarde pro Jahr mehr gezahlt
werden.

Abb. 1 - Zins Schock

Abb. 2 – MWSt.-Schock ohne Erhöhung der Bauinvestitionen

Abb. 3 – Eink.St.-Schock ohne Erhöhung der Bauinvestitionen

Abb. 4 – Körpersch.St-Schock ohne Erhöhung der Bauinvestitionen

Abb. 5 – MWSt.-Schock mit Erhöhung der Bauinvestitionen

Abb. 6 – Eink.St.-Schock mit Erhöhung der Bauinvestitionen


4 Schluss


20 In einer Abstimmung vom 16. Mai 2004 wurde aber auch die Erhöhung des Mehrwertsteuersatzes um 1,8 PP zur Sanierung von IV und AHV vom Schweizer Volk mit 68,6% Nein-Stimmen verworfen.

### Literaturverzeichnis


\(^{21}\) Diese Aussage gilt unter der Voraussetzung, dass es den Unternehmern auch weiterhin nicht gelingt, höhere Körperschaftssteuern auf die Preise zu überwälzen.


SNB (1999): Geldpolitische Beschlüsse der Schweizerischen Nationalbank für das Jahr 2000, SNB-Quartalsheft, No. 4, S. 8-23


Appendix: Documentation of the behavioural equations of the Swiss model

A) List of variables and abbreviations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT</td>
<td>Balance of trade</td>
</tr>
<tr>
<td>BUDBAL</td>
<td>Balance of the government budget (federal, state, and local)</td>
</tr>
<tr>
<td>CRF3M</td>
<td>Three-months interest rate, Euromarket, Swiss Francs (LIBOR)</td>
</tr>
<tr>
<td>COREP</td>
<td>Compensation of employees paid out to foreign residents</td>
</tr>
<tr>
<td>CONSG</td>
<td>Government consumption at 1990 prices</td>
</tr>
<tr>
<td>CONSP</td>
<td>Private consumption at 1990 prices</td>
</tr>
<tr>
<td>CPI</td>
<td>Consumer price index</td>
</tr>
<tr>
<td>CPF</td>
<td>Consumer price index</td>
</tr>
<tr>
<td>CPF3M</td>
<td>Three-months interest rate, Euromarket, Swiss Francs (LIBOR)</td>
</tr>
<tr>
<td>CRF3M</td>
<td>Three-months interest rate, Euromarket, Swiss Francs (LIBOR)</td>
</tr>
<tr>
<td>CREDIT</td>
<td>Stock of credit issued by domestic banks</td>
</tr>
<tr>
<td>DEPC</td>
<td>Depreciation, construction at 1990 prices</td>
</tr>
<tr>
<td>DEPME</td>
<td>Depreciation, machinery and equipment at 1990 prices</td>
</tr>
<tr>
<td>DMY00</td>
<td>Dummy variable, 2000 = 1</td>
</tr>
<tr>
<td>DMY01</td>
<td>Dummy variable, 2001 = 1</td>
</tr>
<tr>
<td>DMY0801</td>
<td>Dummy variable, 1980-1981 = 1</td>
</tr>
<tr>
<td>DMY0899</td>
<td>Dummy variable, 1980-1999 = 1</td>
</tr>
<tr>
<td>DMY9284</td>
<td>Dummy variable, 1992-1994 = 1</td>
</tr>
<tr>
<td>DMY9291</td>
<td>Dummy variable, 1992-1991 = 1</td>
</tr>
<tr>
<td>DMY8695</td>
<td>Dummy variable, 1986-1995 = 1</td>
</tr>
<tr>
<td>DMY9193</td>
<td>Dummy variable, 1991-1993 = 1</td>
</tr>
<tr>
<td>DMY9196</td>
<td>Dummy variable, 1991-1996 = 1</td>
</tr>
<tr>
<td>DMY9201</td>
<td>Dummy variable, 1992-2001 = 1</td>
</tr>
<tr>
<td>DMY9495</td>
<td>Dummy variable, 1994-1995 = 1</td>
</tr>
<tr>
<td>DMY96</td>
<td>Dummy variable, 1996 = 1</td>
</tr>
<tr>
<td>DMY9798</td>
<td>Dummy variable, 1997-1998 = 1</td>
</tr>
<tr>
<td>DMY9800</td>
<td>Dummy variable, 1998+2000 = 1</td>
</tr>
<tr>
<td>DMY9899</td>
<td>Dummy variable, 1998-1999 = 1</td>
</tr>
<tr>
<td>DMYZ1</td>
<td>Dummy variable, 1980-1982-1988 = 1 (indicating a monetary easing in the short rate)</td>
</tr>
<tr>
<td>DMYZ2</td>
<td>Dummy variable, 1981-1993-1998 = 1 (indicating a monetary easing in the long rate)</td>
</tr>
<tr>
<td>EUR3M</td>
<td>Three-months interest rate, Euromarket, euros (before 1999 Deutschmarks)</td>
</tr>
<tr>
<td>FDIIS</td>
<td>Stock of foreign direct investment inside Switzerland</td>
</tr>
<tr>
<td>FDIRST</td>
<td>Return on Swiss foreign direct investments</td>
</tr>
<tr>
<td>FTE</td>
<td>Number of full-time equivalents</td>
</tr>
<tr>
<td>GDPN</td>
<td>GDP at current prices</td>
</tr>
<tr>
<td>GDPFOGC</td>
<td>GDP excluding government consumption at 1990 prices</td>
</tr>
<tr>
<td>GNP</td>
<td>Goods market tightness variable (ratio of output gap over potential output)</td>
</tr>
<tr>
<td>GOSME</td>
<td>Gross operating surplus / Mixed income</td>
</tr>
<tr>
<td>GRULC</td>
<td>Growth rate of unit labour costs</td>
</tr>
<tr>
<td>HID</td>
<td>Household income from dividends</td>
</tr>
<tr>
<td>HII</td>
<td>Household income from interest payments</td>
</tr>
<tr>
<td>HISB</td>
<td>Household income from social benefits</td>
</tr>
<tr>
<td>ICBUS</td>
<td>Gross business construction investments at 1990 prices</td>
</tr>
<tr>
<td>ICROM</td>
<td>Number of international commuters working in Switzerland</td>
</tr>
<tr>
<td>IEARWIFA</td>
<td>Income from entrepreneurial activity and wealth received from abroad</td>
</tr>
<tr>
<td>IEAWFR</td>
<td>Income from entrepreneurial activity and wealth paid out to foreign residents</td>
</tr>
<tr>
<td>IECF0</td>
<td>Sum of import elastic components of final demand at 1990 prices</td>
</tr>
<tr>
<td>IECFOPC</td>
<td>Sum of import elastic components of final demand at 1990 prices, per capita</td>
</tr>
<tr>
<td>IGAP</td>
<td>Interest rate gap euro area minus Switzerland (based on short rates)</td>
</tr>
<tr>
<td>IHOUSE</td>
<td>Gross residential construction investments at 1990 prices</td>
</tr>
<tr>
<td>IIIF</td>
<td>Index of increase in pension payments</td>
</tr>
<tr>
<td>IME</td>
<td>Gross capital formation, machinery and equipment at 1990 prices</td>
</tr>
<tr>
<td>INTEREST</td>
<td>Sum of short and long interest rate</td>
</tr>
<tr>
<td>IPGOV</td>
<td>Interest payments by the government</td>
</tr>
<tr>
<td>IPPH</td>
<td>Interest payments by the household sector</td>
</tr>
<tr>
<td>ITR</td>
<td>Average income tax rate, individuals</td>
</tr>
<tr>
<td>IYI</td>
<td>Labour market tightness variable (ratio of labour demand over potential labour force)</td>
</tr>
<tr>
<td>KC</td>
<td>Capital stock, construction</td>
</tr>
<tr>
<td>KD</td>
<td>Capital stock, dwellings</td>
</tr>
<tr>
<td>KME</td>
<td>Capital stock, machinery and equipment</td>
</tr>
<tr>
<td>LD</td>
<td>Labour demand</td>
</tr>
<tr>
<td>LRATE</td>
<td>Swiss bond rate</td>
</tr>
<tr>
<td>LRATGER</td>
<td>German bond rate</td>
</tr>
<tr>
<td>MCPC</td>
<td>Imports of commodities at 1990 prices, per capita</td>
</tr>
<tr>
<td>M1</td>
<td>Mixed income</td>
</tr>
<tr>
<td>MONE</td>
<td>Quantity of money M1</td>
</tr>
<tr>
<td>MRATE</td>
<td>Mortgage interest rate</td>
</tr>
<tr>
<td>MS</td>
<td>Imports of services at 1990 prices</td>
</tr>
<tr>
<td>NERI</td>
<td>Nominal exchange rate index</td>
</tr>
<tr>
<td>NERIPI</td>
<td>Ratio: Nominal exchange rate index over price index of commodity imports</td>
</tr>
<tr>
<td>NETPROF</td>
<td>Net profits</td>
</tr>
<tr>
<td>NWI</td>
<td>Nominal wage index</td>
</tr>
<tr>
<td>NWWH</td>
<td>Normal weekly working hours</td>
</tr>
<tr>
<td>OGAP</td>
<td>Output gap</td>
</tr>
<tr>
<td>OP</td>
<td>Number of occupied persons</td>
</tr>
<tr>
<td>PIC</td>
<td>Price index, constructions</td>
</tr>
<tr>
<td>PIGC</td>
<td>Price index, government consumption</td>
</tr>
<tr>
<td>PIGDP</td>
<td>GDP deflator</td>
</tr>
<tr>
<td>PIGDFA</td>
<td>GDP deflator, adjusted for value added tax</td>
</tr>
<tr>
<td>PIMC</td>
<td>Price index, imports of commodities</td>
</tr>
<tr>
<td>PIME</td>
<td>Price index, machinery and equipment</td>
</tr>
<tr>
<td>PIMS</td>
<td>Price index, imports of services</td>
</tr>
<tr>
<td>PIMSCPI</td>
<td>Ratio: price index of service imports over consumer price index</td>
</tr>
<tr>
<td>PIOECD</td>
<td>GDP deflator, OECD countries</td>
</tr>
<tr>
<td>PISH</td>
<td>Share price index</td>
</tr>
<tr>
<td>PIXC</td>
<td>Price index, exports of commodities</td>
</tr>
<tr>
<td>PIXS</td>
<td>Price index, exports of services</td>
</tr>
<tr>
<td>PRM</td>
<td>Labour force participation rate, men</td>
</tr>
<tr>
<td>PROD</td>
<td>Labour productivity</td>
</tr>
<tr>
<td>PRW</td>
<td>Labour force participation rate, women</td>
</tr>
<tr>
<td>RERI</td>
<td>Real exchange rate index</td>
</tr>
<tr>
<td>RETBI</td>
<td>Return on this year’s bond issues</td>
</tr>
<tr>
<td>RWIN</td>
<td>Real wage index for male employees</td>
</tr>
<tr>
<td>SHARES</td>
<td>Value of Swiss shares</td>
</tr>
<tr>
<td>T</td>
<td>Trend</td>
</tr>
<tr>
<td>UBPC</td>
<td>Unemployment benefits, per capita</td>
</tr>
<tr>
<td>VOB</td>
<td>Value of outstanding Swiss bonds</td>
</tr>
<tr>
<td>VWT</td>
<td>Volume of world trade at 1995 prices</td>
</tr>
<tr>
<td>WAS</td>
<td>Wages and salaries</td>
</tr>
<tr>
<td>XC</td>
<td>Exports of commodities at 1990 prices</td>
</tr>
<tr>
<td>XRFREUR</td>
<td>Exchange rate Swiss Franc / euro (before 1999: Ecu)</td>
</tr>
<tr>
<td>XRFRUSD</td>
<td>Exchange rate Swiss Franc / US dollar</td>
</tr>
<tr>
<td>XS</td>
<td>Exports of services at 1990 prices</td>
</tr>
<tr>
<td>YDISPR</td>
<td>Disposable household income, deflated with the CPI</td>
</tr>
<tr>
<td>YTRANSR</td>
<td>Disposable household income accruing to recipients of transfers, deflated with the CPI</td>
</tr>
<tr>
<td>YWAGER</td>
<td>Disposable household income accruing to employed persons, deflated with the CPI</td>
</tr>
<tr>
<td>ZZ</td>
<td>Labour market tightness variable (cf. PAIR 1994, p. 52)</td>
</tr>
</tbody>
</table>
**B) Estimation output (produced by MEBA software)**

**GENERAL DEFINITIONS**

\[ D(X) = X - \text{LAG}(X, 1) \]

\[ L(X) = \ln(X) \]

\[ Q(X) = 0.5 \times (X + \text{LAG}(X, 1)) \]

<table>
<thead>
<tr>
<th>Estimation Method</th>
<th>Fix-Point</th>
<th>OLS</th>
</tr>
</thead>
</table>

**Dependent Variable: PRW**

<table>
<thead>
<tr>
<th>Text</th>
<th>LAG</th>
<th>Coefficient</th>
<th>Standard Deviation</th>
<th>T-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td></td>
<td>0.1278</td>
<td>0.0358</td>
<td>3.6931</td>
</tr>
<tr>
<td>Intercept</td>
<td></td>
<td>-10.1745</td>
<td>3.5494</td>
<td>-3.0229</td>
</tr>
<tr>
<td>PRW</td>
<td>1</td>
<td>0.6951</td>
<td>0.0568</td>
<td>12.0708</td>
</tr>
<tr>
<td>JJ</td>
<td></td>
<td>0.0277</td>
<td>0.0039</td>
<td>7.4274</td>
</tr>
<tr>
<td>DMY9196</td>
<td>I</td>
<td>1.1579</td>
<td>0.2263</td>
<td>4.7459</td>
</tr>
</tbody>
</table>

**Dependent Variable: PRM**

<table>
<thead>
<tr>
<th>Text</th>
<th>LAG</th>
<th>Coefficient</th>
<th>Standard Deviation</th>
<th>T-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td></td>
<td>-0.3929</td>
<td>0.0284</td>
<td>-11.8166</td>
</tr>
<tr>
<td>Intercept</td>
<td></td>
<td>53.4578</td>
<td>4.9761</td>
<td>10.7429</td>
</tr>
<tr>
<td>RWIM*0.001</td>
<td>I</td>
<td>112.5173</td>
<td>20.3687</td>
<td>5.5240</td>
</tr>
<tr>
<td>DMY8284</td>
<td>I</td>
<td>-0.7857</td>
<td>0.2358</td>
<td>-3.3315</td>
</tr>
<tr>
<td>DMY9193</td>
<td>I</td>
<td>51.5221</td>
<td>17.7904</td>
<td>2.7392</td>
</tr>
</tbody>
</table>

**Dependent Variable: PISH**

<table>
<thead>
<tr>
<th>Text</th>
<th>LAG</th>
<th>Coefficient</th>
<th>Standard Deviation</th>
<th>T-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td></td>
<td>9.9293</td>
<td>1.1701</td>
<td>7.7058</td>
</tr>
<tr>
<td>Intercept</td>
<td></td>
<td>397.6482</td>
<td>89.2329</td>
<td>4.4563</td>
</tr>
<tr>
<td>LRATE</td>
<td></td>
<td>-19.6333</td>
<td>4.3918</td>
<td>-4.4407</td>
</tr>
<tr>
<td>RERI</td>
<td>I</td>
<td>-4.5898</td>
<td>0.8886</td>
<td>-5.1650</td>
</tr>
<tr>
<td>NETPROF*0.001</td>
<td>I</td>
<td>3.7159</td>
<td>1.3752</td>
<td>2.7022</td>
</tr>
<tr>
<td>DMY00</td>
<td>I</td>
<td>48.7319</td>
<td>17.7904</td>
<td>2.7392</td>
</tr>
</tbody>
</table>

**Estimation Method:** Fix-Point

**Estimation Period:** 1981-2001

**Dependent Variable:** PRW

**Estimation Method:** OLS

**Estimation Period:** 1981-2001
### Estimation Method: Fix-Point
### Estimation Period: 1981-2001
### Dependent Variable: LD

<table>
<thead>
<tr>
<th>Text</th>
<th>LAG</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>10391.0488</td>
<td></td>
</tr>
<tr>
<td>NWI</td>
<td>-0.4571</td>
<td></td>
</tr>
<tr>
<td>NWWH</td>
<td>-189.6965</td>
<td></td>
</tr>
<tr>
<td>Q(PROD)</td>
<td>-6.3365</td>
<td></td>
</tr>
<tr>
<td>CONSG*0.01</td>
<td>2.9034</td>
<td></td>
</tr>
</tbody>
</table>

### Estimation Method: OLS
### Estimation Period: 1981-2001
### Sum Squared Resid: 3667.9719
### Durbin-Watson Coefficient: 1.6512
### R-Squared: 0.9971
### Adjusted R-Squared: 0.9960
### F-Test: 1034.5306

<table>
<thead>
<tr>
<th>Text</th>
<th>LAG</th>
<th>Coefficient</th>
<th>Std. Dev.</th>
<th>T-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>9215.1835</td>
<td>1868.3566</td>
<td>4.9322</td>
<td></td>
</tr>
<tr>
<td>NWI</td>
<td>-0.3099</td>
<td>0.1641</td>
<td>-1.8887</td>
<td></td>
</tr>
<tr>
<td>NWWH</td>
<td>-165.2739</td>
<td>40.4216</td>
<td>-4.0888</td>
<td></td>
</tr>
<tr>
<td>Q(PROD)</td>
<td>-8.4536</td>
<td>2.9611</td>
<td>-2.8549</td>
<td></td>
</tr>
<tr>
<td>CONSG*0.01</td>
<td>2.1954</td>
<td>1.1728</td>
<td>1.8718</td>
<td></td>
</tr>
</tbody>
</table>

### Estimation Method: Fix-Point
### Estimation Period: 1981-2001
### Dependent Variable: D(FTE)

<table>
<thead>
<tr>
<th>Text</th>
<th>LAG</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>163.6776</td>
<td></td>
</tr>
<tr>
<td>D(OP)</td>
<td>0.8737</td>
<td></td>
</tr>
<tr>
<td>FTE*0.01</td>
<td>-6.0526</td>
<td></td>
</tr>
</tbody>
</table>

### Estimation Method: OLS
### Estimation Period: 1981-2001
### Sum Squared Resid: 4221.4956
### Durbin-Watson Coefficient: 1.8640
### R-Squared: 0.9036
### Adjusted R-Squared: 0.8876
### F-Test: 84.3771

<table>
<thead>
<tr>
<th>Text</th>
<th>LAG</th>
<th>Coefficient</th>
<th>Std. Dev.</th>
<th>T-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>160.8362</td>
<td>82.1525</td>
<td>1.9578</td>
<td></td>
</tr>
<tr>
<td>D(OP)</td>
<td>0.9204</td>
<td>0.0762</td>
<td>12.0754</td>
<td></td>
</tr>
<tr>
<td>FTE*0.01</td>
<td>-6.0255</td>
<td>2.6910</td>
<td>-2.2391</td>
<td></td>
</tr>
</tbody>
</table>

### Estimation Method: Fix-Point
### Estimation Period: 1981-2001
### Dependent Variable: WAS

<table>
<thead>
<tr>
<th>Text</th>
<th>LAG</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-2633.8273</td>
<td></td>
</tr>
<tr>
<td>WAS</td>
<td>1</td>
<td>1.0224</td>
</tr>
</tbody>
</table>

### Estimation Method: OLS
### Estimation Period: 1981-2001
### Sum Squared Resid: 35792212.0000
### Durbin-Watson Coefficient: 2.0162
### R-Squared: 0.9988
### Adjusted R-Squared: 0.9985
### F-Test: 4569.6684

<table>
<thead>
<tr>
<th>Text</th>
<th>LAG</th>
<th>Coefficient</th>
<th>Std. Dev.</th>
<th>T-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-2804.7895</td>
<td>1840.3953</td>
<td>-1.5240</td>
<td></td>
</tr>
<tr>
<td>WAS</td>
<td>1</td>
<td>1.0235</td>
<td>0.0095</td>
<td>108.0078</td>
</tr>
<tr>
<td>D(NWI)</td>
<td>77.9278</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(OP)</td>
<td>46.6300</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Estimation Method: Fix-Point
### Estimation Period: 1981-2001
### Dependent Variable: D(NWI)

<table>
<thead>
<tr>
<th>Text</th>
<th>LAG</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-999.1636</td>
<td></td>
</tr>
<tr>
<td>D(CPI)</td>
<td>11.0388</td>
<td></td>
</tr>
<tr>
<td>D(JJ)*0.001</td>
<td>2.6857</td>
<td></td>
</tr>
</tbody>
</table>

### Estimation Method: OLS
### Estimation Period: 1981-2001
### Sum Squared Resid: 100.3340
### Durbin-Watson Coefficient: 2.4678
### R-Squared: 0.9993
### Adjusted R-Squared: 0.9982
### F-Test: 276.9140

<table>
<thead>
<tr>
<th>Text</th>
<th>LAG</th>
<th>Coefficient</th>
<th>Std. Dev.</th>
<th>T-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-1029.3808</td>
<td>91.8610</td>
<td>-11.2059</td>
<td></td>
</tr>
<tr>
<td>D(CPI)</td>
<td>10.3873</td>
<td>0.8890</td>
<td>11.6843</td>
<td></td>
</tr>
<tr>
<td>D(JJ)*0.001</td>
<td>2.6973</td>
<td>0.7010</td>
<td>3.8479</td>
<td></td>
</tr>
<tr>
<td>D(ITR)</td>
<td>1.3587</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NWI</td>
<td>1</td>
<td>-0.7705</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JJ</td>
<td>1</td>
<td>1.0668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPI</td>
<td>1</td>
<td>13.5024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMY01</td>
<td>1</td>
<td>16.1317</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Estimation Method: Fix-Point
### Estimation Period: 1981-2001
### Dependent Variable: D(NWI)

<table>
<thead>
<tr>
<th>Text</th>
<th>LAG</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-1029.3808</td>
<td>91.8610</td>
</tr>
<tr>
<td>D(CPI)</td>
<td>10.3873</td>
<td>0.8890</td>
</tr>
<tr>
<td>D(JJ)*0.001</td>
<td>2.6973</td>
<td>0.7010</td>
</tr>
<tr>
<td>D(ITR)</td>
<td>1.3587</td>
<td></td>
</tr>
<tr>
<td>NWI</td>
<td>1</td>
<td>-0.7705</td>
</tr>
<tr>
<td>JJ</td>
<td>1</td>
<td>1.0668</td>
</tr>
<tr>
<td>CPI</td>
<td>1</td>
<td>13.4349</td>
</tr>
<tr>
<td>DMY01</td>
<td>1</td>
<td>28.3209</td>
</tr>
<tr>
<td>DMY01</td>
<td>1</td>
<td>28.3209</td>
</tr>
</tbody>
</table>

#### Dependent Variable: L(RWIM)

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
<th>T-TEST</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.9147</td>
<td>0.8814</td>
<td>0.8369</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


**SUM SQUARED RESID**: 0.0010  
**DURBIN WATSON COEFFICIENT**: 0.8589  
**R-SQUARED**: 0.9640  
**ADJUSTED R-SQUARED**: 0.9640  
**P-TEST**: 240.7671


#### Dependent Variable: L(RWIM)

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
<th>T-TEST</th>
<th>T-TEST</th>
</tr>
</thead>
</table>


**SUM SQUARED RESID**: 0.0010  
**DURBIN WATSON COEFFICIENT**: 0.8589  
**R-SQUARED**: 0.9640  
**ADJUSTED R-SQUARED**: 0.9640  
**F-TEST**: 240.7671


#### Dependent Variable: HID

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
<th>T-TEST</th>
<th>T-TEST</th>
</tr>
</thead>
</table>


**SUM SQUARED RESID**: 12151456.0000  
**DURBIN WATSON COEFFICIENT**: 1.9355  
**R-SQUARED**: 0.9723  
**ADJUSTED R-SQUARED**: 0.9658  
**F-TEST**: 199.2478


#### Dependent Variable: HID

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
<th>T-TEST</th>
<th>T-TEST</th>
</tr>
</thead>
</table>


**SUM SQUARED RESID**: 54443.8007  
**DURBIN WATSON COEFFICIENT**: 1.9771  
**R-SQUARED**: 0.9994  
**ADJUSTED R-SQUARED**: 0.9993  
**F-TEST**: 7084.7148


#### Dependent Variable: COEFR

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
<th>T-TEST</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2926.0461</td>
<td>35.8398</td>
<td>-8.4180</td>
<td>-8.4180</td>
<td>-8.4180</td>
</tr>
</tbody>
</table>


**SUM SQUARED RESID**: 54443.8007  
**DURBIN WATSON COEFFICIENT**: 1.9355  
**R-SQUARED**: 0.9723  
**ADJUSTED R-SQUARED**: 0.9658  
**F-TEST**: 199.2478


#### Dependent Variable: COEFR

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
<th>T-TEST</th>
<th>T-TEST</th>
</tr>
</thead>
</table>


**SUM SQUARED RESID**: 54443.8007  
**DURBIN WATSON COEFFICIENT**: 1.9355  
**R-SQUARED**: 0.9723  
**ADJUSTED R-SQUARED**: 0.9658  
**F-TEST**: 199.2478


#### Dependent Variable: L(IEAWFA)

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
<th>T-TEST</th>
<th>T-TEST</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0374</td>
<td>0.5861</td>
<td>0.2482</td>
<td>-0.9400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


**SUM SQUARED RESID**: 0.0779  
**DURBIN WATSON COEFFICIENT**: 1.5763  
**R-SQUARED**: 0.9904  
**ADJUSTED R-SQUARED**: 0.9904  
**F-TEST**: 200.1359


#### Dependent Variable: L(IEAWFA)

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
<th>T-TEST</th>
<th>T-TEST</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0501</td>
<td>0.5932</td>
<td>0.2424</td>
<td>-1.1370</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


**SUM SQUARED RESID**: 0.0779  
**DURBIN WATSON COEFFICIENT**: 1.5763  
**R-SQUARED**: 0.9904  
**ADJUSTED R-SQUARED**: 0.9904  
**F-TEST**: 200.1359

---

31
### Estimation Method: Fix-Point

**Dependent Variable:** D(IEAWFR)

<table>
<thead>
<tr>
<th>Text</th>
<th>Lag</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1867.7283</td>
<td></td>
</tr>
<tr>
<td>D(FDIIS)</td>
<td>0.3806</td>
<td></td>
</tr>
<tr>
<td>D(INTEREST)</td>
<td>744.9775</td>
<td></td>
</tr>
<tr>
<td>IEAWFR</td>
<td>-0.1654</td>
<td></td>
</tr>
<tr>
<td>DMY9800</td>
<td>13910.8544</td>
<td></td>
</tr>
</tbody>
</table>

**Estimation Period:** 1981-2001

**Sum Squared Resid:** 43710088.0000

**Durbin Watson Coefficient:** 2.3409

**Adjusted R-Squared:** 0.9212

**F-Test:** 62.6502

### Estimation Method: OLS

**Dependent Variable:** D(IEAWFR)

<table>
<thead>
<tr>
<th>Text</th>
<th>Lag</th>
<th>Coefficient</th>
<th>Standard Dev.</th>
<th>T-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1685.4409</td>
<td>673.5530</td>
<td>2.5023</td>
<td></td>
</tr>
<tr>
<td>D(FDIIS)</td>
<td>0.3770</td>
<td>0.0790</td>
<td>4.7733</td>
<td></td>
</tr>
<tr>
<td>D(INTEREST)</td>
<td>751.4545</td>
<td>153.2335</td>
<td>4.9040</td>
<td></td>
</tr>
<tr>
<td>IEAWFR</td>
<td>-0.1542</td>
<td>0.0367</td>
<td>-4.1973</td>
<td></td>
</tr>
<tr>
<td>DMY9800</td>
<td>13860.4003</td>
<td>1467.8909</td>
<td>9.4424</td>
<td></td>
</tr>
</tbody>
</table>

**Estimation Period:** 1981-2001

**Sum Squared Resid:** 43710088.0000

**Durbin Watson Coefficient:** 2.3409

**R-Squared:** 0.9400

**Adjusted R-Squared:** 0.9212

**F-Test:** 62.6502

### Estimation Method: Fix-Point

**Dependent Variable:** D(MI)

<table>
<thead>
<tr>
<th>Text</th>
<th>Lag</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2809.3503</td>
<td></td>
</tr>
<tr>
<td>MI*0.01</td>
<td>-5.4559</td>
<td></td>
</tr>
<tr>
<td>D(GOSME)</td>
<td>0.0882</td>
<td></td>
</tr>
<tr>
<td>DMY9798</td>
<td>-2109.1118</td>
<td></td>
</tr>
</tbody>
</table>

**Estimation Period:** 1981-2001

**Sum Squared Resid:** 5903328.5000

**Durbin Watson Coefficient:** 1.9025

**R-Squared:** 0.7941

**Adjusted R-Squared:** 0.7457

**F-Test:** 21.8564

### Estimation Method: OLS

**Dependent Variable:** D(MI)

<table>
<thead>
<tr>
<th>Text</th>
<th>Lag</th>
<th>Coefficient</th>
<th>Standard Dev.</th>
<th>T-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2262.3852</td>
<td>770.6817</td>
<td>2.9356</td>
<td></td>
</tr>
<tr>
<td>MI*0.01</td>
<td>-4.7965</td>
<td>2.0182</td>
<td>-2.3766</td>
<td></td>
</tr>
<tr>
<td>D(GOSME)</td>
<td>0.1965</td>
<td>0.0404</td>
<td>4.8665</td>
<td></td>
</tr>
<tr>
<td>DMY9798</td>
<td>-1806.0494</td>
<td>462.8928</td>
<td>-3.9017</td>
<td></td>
</tr>
</tbody>
</table>

**Estimation Period:** 1981-2001

**Sum Squared Resid:** 5903328.5000

**Durbin Watson Coefficient:** 1.9025

**R-Squared:** 0.7941

**Adjusted R-Squared:** 0.7457

**F-Test:** 21.8564

### Estimation Method: Fix-Point

**Dependent Variable:** D(HISB)

<table>
<thead>
<tr>
<th>Text</th>
<th>Lag</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>587.6171</td>
<td></td>
</tr>
<tr>
<td>D(UBPC)</td>
<td>0.7247</td>
<td></td>
</tr>
<tr>
<td>D(IIPP)</td>
<td>0.1928</td>
<td></td>
</tr>
<tr>
<td>HISB</td>
<td>0.0228</td>
<td></td>
</tr>
</tbody>
</table>

**Estimation Period:** 1981-2001

**Sum Squared Resid:** 3682240.7500

**Durbin Watson Coefficient:** 2.6501

**R-Squared:** 0.9356

**Adjusted R-Squared:** 0.9204

**F-Test:** 82.2836

### Estimation Method: OLS

**Dependent Variable:** D(HISB)

<table>
<thead>
<tr>
<th>Text</th>
<th>Lag</th>
<th>Coefficient</th>
<th>Standard Dev.</th>
<th>T-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>732.4653</td>
<td>317.8907</td>
<td>2.3041</td>
<td></td>
</tr>
<tr>
<td>D(UBPC)</td>
<td>1.1457</td>
<td>0.0906</td>
<td>12.6428</td>
<td></td>
</tr>
<tr>
<td>D(IIPP)</td>
<td>0.1257</td>
<td>0.0231</td>
<td>5.4468</td>
<td></td>
</tr>
<tr>
<td>HISB</td>
<td>0.0243</td>
<td>0.0050</td>
<td>4.8430</td>
<td></td>
</tr>
</tbody>
</table>

**Estimation Period:** 1981-2001

**Sum Squared Resid:** 3682240.7500

**Durbin Watson Coefficient:** 2.6501

**R-Squared:** 0.9356

**Adjusted R-Squared:** 0.9204

**F-Test:** 82.2836

### Estimation Method: Fix-Point

**Dependent Variable:** HII

<table>
<thead>
<tr>
<th>Text</th>
<th>Lag</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1338.7401</td>
<td></td>
</tr>
<tr>
<td>VOB*0.01</td>
<td>2.7834</td>
<td></td>
</tr>
<tr>
<td>RETBI*0.01</td>
<td>4.2303</td>
<td></td>
</tr>
<tr>
<td>FISH</td>
<td>44.2543</td>
<td></td>
</tr>
</tbody>
</table>

**Estimation Period:** 1981-2001

**Sum Squared Resid:** 20138208.0000

**Durbin Watson Coefficient:** 1.5478

**R-Squared:** 0.9281

**Adjusted R-Squared:** 0.9112

**F-Test:** 73.1554

### Estimation Method: OLS

**Dependent Variable:** HII

<table>
<thead>
<tr>
<th>Text</th>
<th>Lag</th>
<th>Coefficient</th>
<th>Standard Dev.</th>
<th>T-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2478.4785</td>
<td>1182.8192</td>
<td>2.0594</td>
<td></td>
</tr>
<tr>
<td>VOB*0.01</td>
<td>2.7218</td>
<td>0.2510</td>
<td>10.8103</td>
<td></td>
</tr>
<tr>
<td>RETBI*0.01</td>
<td>3.5940</td>
<td>0.6214</td>
<td>5.7837</td>
<td></td>
</tr>
<tr>
<td>FISH</td>
<td>-44.4427</td>
<td>7.8265</td>
<td>-5.6785</td>
<td></td>
</tr>
</tbody>
</table>

**Estimation Period:** 1981-2001

**Sum Squared Resid:** 20138208.0000

**Durbin Watson Coefficient:** 1.5478

**R-Squared:** 0.9281

**Adjusted R-Squared:** 0.9112

**F-Test:** 73.1554
### Estimation of \( \Delta CONSP \)

**Dependent Variable:** \( \Delta CONSP \)

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7325</td>
<td>0.0682</td>
<td>10.926</td>
</tr>
<tr>
<td>1</td>
<td>-0.4627</td>
<td>0.1459</td>
<td>-3.171</td>
</tr>
<tr>
<td>1</td>
<td>0.2291</td>
<td>0.1346</td>
<td>1.717</td>
</tr>
<tr>
<td>1</td>
<td>0.2670</td>
<td>0.3050</td>
<td>0.883</td>
</tr>
</tbody>
</table>

#### Durbin-Watson Coefficient

2.3076

#### R-Squared

0.8867

#### Adjusted R-Squared

0.8489

#### F-Test

23.4727

### Estimation of \( PIME \)

**Dependent Variable:** \( PIME \)

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9799</td>
<td>0.0645</td>
<td>15.183</td>
</tr>
<tr>
<td>1</td>
<td>6.4182</td>
<td>2.3083</td>
<td>2.780</td>
</tr>
<tr>
<td>1</td>
<td>-14.1009</td>
<td>5.5772</td>
<td>-2.517</td>
</tr>
<tr>
<td>1</td>
<td>-1.7726</td>
<td>0.7751</td>
<td>-2.517</td>
</tr>
</tbody>
</table>

#### Durbin-Watson Coefficient

2.3076

#### R-Squared

0.8867

#### Adjusted R-Squared

0.8489

#### F-Test

23.4727
### ESTIMATION METHOD: FIX-POINT
### ESTIMATION PERIOD: 1981-2001

**DEPENDENT VARIABLE**: IME

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td></td>
<td>7273.2221</td>
<td>1056.3164</td>
<td>7.8323</td>
</tr>
<tr>
<td>IME</td>
<td>1</td>
<td>0.9791</td>
<td>0.0216</td>
<td>43.6643</td>
</tr>
<tr>
<td>Q(LRATE)</td>
<td></td>
<td>-1265.5236</td>
<td>142.3815</td>
<td>-8.5857</td>
</tr>
<tr>
<td>D(OGAP)</td>
<td></td>
<td>-0.3159</td>
<td>0.0327</td>
<td>-9.6573</td>
</tr>
<tr>
<td>D(PIME)</td>
<td></td>
<td>-331.0270</td>
<td>42.5862</td>
<td>-8.9719</td>
</tr>
<tr>
<td>GRULC</td>
<td></td>
<td>365.2241</td>
<td>58.2863</td>
<td>6.6046</td>
</tr>
<tr>
<td>DMY9201</td>
<td></td>
<td>-3421.1691</td>
<td>436.2795</td>
<td>-7.3852</td>
</tr>
</tbody>
</table>

### ESTIMATION METHOD: OLS
### ESTIMATION PERIOD: 1981-2001

**SUM SQUARED RESID**: 2655476.5000
**DURBIN WATSON COEFFICIENT**: 2.4164
**R-SQUARED**: 0.9975
**ADJUSTED R-SQUARED**: 0.9963
**F-TEST**: 946.0372

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td></td>
<td>8273.4335</td>
<td>1056.3164</td>
<td>7.8323</td>
</tr>
<tr>
<td>IME</td>
<td>1</td>
<td>0.9435</td>
<td>0.0216</td>
<td>43.6643</td>
</tr>
<tr>
<td>Q(LRATE)</td>
<td></td>
<td>-1222.4508</td>
<td>142.3815</td>
<td>-8.5857</td>
</tr>
<tr>
<td>D(OGAP)</td>
<td></td>
<td>-0.3159</td>
<td>0.0327</td>
<td>-9.6573</td>
</tr>
<tr>
<td>D(PIME)</td>
<td></td>
<td>-382.0806</td>
<td>42.5862</td>
<td>-8.9719</td>
</tr>
<tr>
<td>GRULC</td>
<td></td>
<td>384.9556</td>
<td>58.2863</td>
<td>6.6046</td>
</tr>
<tr>
<td>DMY9201</td>
<td></td>
<td>-3221.9897</td>
<td>436.2795</td>
<td>-7.3852</td>
</tr>
</tbody>
</table>

### ESTIMATION METHOD: FIX-POINT
### ESTIMATION PERIOD: 1981-2001

**DEPENDENT VARIABLE**: DEPME

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td></td>
<td>-6382.8349</td>
<td>408.0667</td>
<td>-15.3969</td>
</tr>
<tr>
<td>DEPME</td>
<td>1</td>
<td>0.6796</td>
<td>0.0189</td>
<td>36.2789</td>
</tr>
<tr>
<td>KME</td>
<td></td>
<td>109.1150</td>
<td>5.6261</td>
<td>19.1195</td>
</tr>
<tr>
<td>DMY9798</td>
<td></td>
<td>-544.4063</td>
<td>158.1554</td>
<td>-3.4440</td>
</tr>
</tbody>
</table>

### ESTIMATION METHOD: OLS
### ESTIMATION PERIOD: 1981-2001

**SUM SQUARED RESID**: 707434.1250
**DURBIN WATSON COEFFICIENT**: 0.9947
**R-SQUARED**: 0.9993
**ADJUSTED R-SQUARED**: 0.9992
**F-TEST**: 8678.1923

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td></td>
<td>-6282.9418</td>
<td>408.0667</td>
<td>-15.3969</td>
</tr>
<tr>
<td>DEPME</td>
<td>1</td>
<td>0.6844</td>
<td>0.0189</td>
<td>36.2789</td>
</tr>
<tr>
<td>KME</td>
<td></td>
<td>107.5673</td>
<td>5.6261</td>
<td>19.1195</td>
</tr>
<tr>
<td>DMY9798</td>
<td></td>
<td>-544.6801</td>
<td>158.1554</td>
<td>-3.4440</td>
</tr>
</tbody>
</table>

### ESTIMATION METHOD: FIX-POINT
### ESTIMATION PERIOD: 1981-2001

**DEPENDENT VARIABLE**: DEPC

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td></td>
<td>-522.4611</td>
<td>217.6180</td>
<td>-2.2768</td>
</tr>
<tr>
<td>DEPC</td>
<td>1</td>
<td>0.7361</td>
<td>0.0372</td>
<td>19.9296</td>
</tr>
<tr>
<td>KC</td>
<td></td>
<td>12.2887</td>
<td>1.7447</td>
<td>6.8901</td>
</tr>
</tbody>
</table>

### ESTIMATION METHOD: OLS
### ESTIMATION PERIOD: 1981-2001

**SUM SQUARED RESID**: 147319.9843
**DURBIN WATSON COEFFICIENT**: 2.5294
**R-SQUARED**: 0.9997
**ADJUSTED R-SQUARED**: 0.9997
**F-TEST**: 33096.6679

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td></td>
<td>-495.4652</td>
<td>217.6180</td>
<td>-2.2768</td>
</tr>
<tr>
<td>DEPC</td>
<td>1</td>
<td>0.7420</td>
<td>0.0372</td>
<td>19.9296</td>
</tr>
<tr>
<td>KC</td>
<td></td>
<td>12.0211</td>
<td>1.7447</td>
<td>6.8901</td>
</tr>
</tbody>
</table>

### ESTIMATION METHOD: FIX-POINT
### ESTIMATION PERIOD: 1981-2001

**DEPENDENT VARIABLE**: ICBUS

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td></td>
<td>-37460.3164</td>
<td>3185.2773</td>
<td>-12.4153</td>
</tr>
<tr>
<td>KC</td>
<td>1</td>
<td>-18.2725</td>
<td>1.7061</td>
<td>10.4895</td>
</tr>
<tr>
<td>FTE</td>
<td></td>
<td>17.8110</td>
<td>1.5875</td>
<td>11.7470</td>
</tr>
<tr>
<td>Q(IME)</td>
<td></td>
<td>0.1344</td>
<td>0.0323</td>
<td>2.4882</td>
</tr>
<tr>
<td>Q(LRATE)</td>
<td></td>
<td>-473.0021</td>
<td>217.6180</td>
<td>-2.2768</td>
</tr>
</tbody>
</table>

### ESTIMATION METHOD: OLS
### ESTIMATION PERIOD: 1981-2001

**SUM SQUARED RESID**: 2539059.2500
**DURBIN WATSON COEFFICIENT**: 1.7061
**R-SQUARED**: 0.9633
**ADJUSTED R-SQUARED**: 0.9518
**F-TEST**: 104.8815

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td></td>
<td>-39546.3242</td>
<td>3185.2773</td>
<td>-12.4153</td>
</tr>
<tr>
<td>KC</td>
<td>1</td>
<td>-16.2205</td>
<td>1.5875</td>
<td>11.7470</td>
</tr>
<tr>
<td>FTE</td>
<td></td>
<td>18.7633</td>
<td>1.7061</td>
<td>10.4895</td>
</tr>
<tr>
<td>Q(IME)</td>
<td></td>
<td>0.0803</td>
<td>0.0323</td>
<td>2.4882</td>
</tr>
<tr>
<td>Q(LRATE)</td>
<td></td>
<td>-507.1906</td>
<td>217.6180</td>
<td>-2.2768</td>
</tr>
</tbody>
</table>
### Estimation Method: Fix-Point
### Estimation Period: 1981-2001

- **Dependent Variable:** PIC

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>17.0144</td>
</tr>
<tr>
<td>PIC</td>
<td>0.9063</td>
</tr>
<tr>
<td>D(NWI)*0.01</td>
<td>10.0592</td>
</tr>
<tr>
<td>LRATE</td>
<td>-2.5891</td>
</tr>
</tbody>
</table>

### Estimation Method: OLS
### Estimation Period: 1981-2001

- **Dependent Variable:** PIC

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STANDARD DEVIATION</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>16.6622</td>
<td>3.5487</td>
<td>4.6952</td>
</tr>
<tr>
<td>PIC</td>
<td>0.9152</td>
<td>0.0407</td>
<td>22.4749</td>
</tr>
<tr>
<td>D(NWI)*0.01</td>
<td>10.6665</td>
<td>1.7737</td>
<td>6.0137</td>
</tr>
<tr>
<td>LRATE</td>
<td>-2.7471</td>
<td>0.5019</td>
<td>-5.4729</td>
</tr>
</tbody>
</table>

### Estimation Method: Fix-Point
### Estimation Period: 1981-2001

- **Dependent Variable:** IHOUSE

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2876.4033</td>
</tr>
<tr>
<td>IHOUSE</td>
<td>0.5429</td>
</tr>
<tr>
<td>YDISPR</td>
<td>0.1433</td>
</tr>
<tr>
<td>KD</td>
<td>-65.2808</td>
</tr>
<tr>
<td>MRATE</td>
<td>2837.4333</td>
</tr>
</tbody>
</table>

### Estimation Method: OLS
### Estimation Period: 1981-2001

- **Dependent Variable:** IHOUSE

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STANDARD DEVIATION</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2158.6037</td>
<td>3283.2990</td>
<td>0.6574</td>
</tr>
<tr>
<td>IHOUSE</td>
<td>0.5528</td>
<td>0.1443</td>
<td>3.8313</td>
</tr>
<tr>
<td>YDISPR</td>
<td>0.1567</td>
<td>0.0585</td>
<td>2.6768</td>
</tr>
<tr>
<td>KD</td>
<td>-71.4643</td>
<td>29.1694</td>
<td>-2.4500</td>
</tr>
<tr>
<td>MRATE</td>
<td>2780.1215</td>
<td>545.6471</td>
<td>5.0951</td>
</tr>
</tbody>
</table>

### Estimation Method: Fix-Point
### Estimation Period: 1981-2001

- **Dependent Variable:** CHF3M

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.5076</td>
</tr>
<tr>
<td>MONE*0.01</td>
<td>1.6135</td>
</tr>
<tr>
<td>EUR3M</td>
<td>0.6855</td>
</tr>
<tr>
<td>ZZ</td>
<td>31.4394</td>
</tr>
<tr>
<td>DMYZ1</td>
<td>-1.8123</td>
</tr>
</tbody>
</table>

### Estimation Method: OLS
### Estimation Period: 1981-2001

- **Dependent Variable:** CHF3M

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STANDARD DEVIATION</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.8533</td>
<td>0.5979</td>
<td>1.4272</td>
</tr>
<tr>
<td>MONE*0.01</td>
<td>1.3546</td>
<td>0.4115</td>
<td>3.2916</td>
</tr>
<tr>
<td>EUR3M</td>
<td>0.6728</td>
<td>0.0538</td>
<td>12.5123</td>
</tr>
<tr>
<td>ZZ</td>
<td>30.2600</td>
<td>4.1667</td>
<td>7.2623</td>
</tr>
<tr>
<td>DMYZ1</td>
<td>-1.8649</td>
<td>0.3274</td>
<td>-5.6954</td>
</tr>
</tbody>
</table>

### Estimation Method: Fix-Point
### Estimation Period: 1981-2001

- **Dependent Variable:** MONE

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>32.0536</td>
</tr>
<tr>
<td>MONE</td>
<td>0.7644</td>
</tr>
<tr>
<td>GDPN*0.00001</td>
<td>11.7881</td>
</tr>
<tr>
<td>LRATE</td>
<td>-7.2701</td>
</tr>
</tbody>
</table>

### Estimation Method: OLS
### Estimation Period: 1981-2001

- **Dependent Variable:** MONE

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STANDARD DEVIATION</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>33.3610</td>
<td>5.7573</td>
<td>5.7946</td>
</tr>
<tr>
<td>MONE</td>
<td>0.6777</td>
<td>0.0580</td>
<td>11.6884</td>
</tr>
<tr>
<td>GDPN*0.00001</td>
<td>16.1811</td>
<td>3.1308</td>
<td>5.1684</td>
</tr>
<tr>
<td>LRATE</td>
<td>-8.1909</td>
<td>1.0258</td>
<td>-7.9851</td>
</tr>
</tbody>
</table>
### ESTIMATION METHOD: OLS
#### ESTIMATION PERIOD: 1981-2001

**DEPENDENT VARIABLE:** MRATE

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td>0.5802</td>
<td>0.2188</td>
<td>3.7249</td>
</tr>
<tr>
<td>Q(LRATE)</td>
<td>0.8545</td>
<td>0.0745</td>
<td>11.2351</td>
</tr>
<tr>
<td>CHF3M</td>
<td>0.1563</td>
<td>0.0310</td>
<td>4.9198</td>
</tr>
<tr>
<td>DMY8081</td>
<td>-1.5636</td>
<td>0.1816</td>
<td>-7.1453</td>
</tr>
<tr>
<td>DMY8099</td>
<td>0.4954</td>
<td>0.1120</td>
<td>2.9360</td>
</tr>
</tbody>
</table>

**SUM SQUARED RESID:** 0.3143
**DURBIN WATSON COEFFICIENT:** 1.5573
**R-SQUARED:** 0.9874
**ADJUSTED R-SQUARED:** 0.9835

### ESTIMATION METHOD: FIX-POINT
#### ESTIMATION PERIOD: 1981-2001

**DEPENDENT VARIABLE:** LRATE

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td>-1.8009</td>
<td>0.7780</td>
<td>-1.2838</td>
</tr>
<tr>
<td>CHF3M</td>
<td>0.3261</td>
<td>0.0372</td>
<td>9.2951</td>
</tr>
<tr>
<td>LRATEGE</td>
<td>0.2629</td>
<td>0.0731</td>
<td>3.5976</td>
</tr>
<tr>
<td>PIGDPA</td>
<td>0.0234</td>
<td>0.0047</td>
<td>4.9401</td>
</tr>
<tr>
<td>DMYZ2</td>
<td>-0.5462</td>
<td>0.1391</td>
<td>-3.9256</td>
</tr>
</tbody>
</table>

**SUM SQUARED RESID:** 0.7837
**DURBIN WATSON COEFFICIENT:** 1.0101
**R-SQUARED:** 0.9625
**ADJUSTED R-SQUARED:** 0.9508

### ESTIMATION METHOD: FIX-POINT
#### ESTIMATION PERIOD: 1981-2001

**DEPENDENT VARIABLE:** D(PIGC)

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td>-4.5880</td>
<td>0.1429</td>
<td>-5.3987</td>
</tr>
<tr>
<td>PIGDPA</td>
<td>0.6834</td>
<td>0.1295</td>
<td>5.2787</td>
</tr>
</tbody>
</table>

**SUM SQUARED RESID:** 7.5019
**DURBIN WATSON COEFFICIENT:** 2.2072
**R-SQUARED:** 0.9089
**ADJUSTED R-SQUARED:** 0.8804

### ESTIMATION METHOD: FIX-POINT
#### ESTIMATION PERIOD: 1981-2001

**DEPENDENT VARIABLE:** IPGOV

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td>-620.1854</td>
<td>293.2637</td>
<td>-2.1148</td>
</tr>
<tr>
<td>IPGOV</td>
<td>0.9960</td>
<td>0.0236</td>
<td>42.2581</td>
</tr>
<tr>
<td>BUDBAL*0.01</td>
<td>-4.2153</td>
<td>0.7964</td>
<td>-5.2931</td>
</tr>
<tr>
<td>LRATE</td>
<td>155.0898</td>
<td>46.6142</td>
<td>3.3271</td>
</tr>
<tr>
<td>DMY96</td>
<td>-518.7785</td>
<td>154.7448</td>
<td>-3.3525</td>
</tr>
</tbody>
</table>

**SUM SQUARED RESID:** 331185.9062
**DURBIN WATSON COEFFICIENT:** 2.2773
**R-SQUARED:** 0.9957
**ADJUSTED R-SQUARED:** 0.9943

### ESTIMATION METHOD: OLS
#### ESTIMATION PERIOD: 1981-2001

**DEPENDENT VARIABLE:** IPGOV

<table>
<thead>
<tr>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td>-620.1854</td>
<td>293.2637</td>
<td>-2.1148</td>
</tr>
<tr>
<td>IPGOV</td>
<td>0.9960</td>
<td>0.0236</td>
<td>42.2581</td>
</tr>
<tr>
<td>BUDBAL*0.01</td>
<td>-4.2153</td>
<td>0.7964</td>
<td>-5.2931</td>
</tr>
<tr>
<td>LRATE</td>
<td>155.0898</td>
<td>46.6142</td>
<td>3.3271</td>
</tr>
<tr>
<td>DMY96</td>
<td>-518.7785</td>
<td>154.7448</td>
<td>-3.3525</td>
</tr>
</tbody>
</table>
ESTIMATION METHOD: FIX-POINT
ESTIMATION PERIOD: 1981-2001
DEPENDENT VARIABLE: XS
TEXT LAG I COEFFICIENT I
-------------I--------------I
INTERCEPT I 4295.3208 I
D(PISH) I 25.2166 I
D(XC) I 0.0989 I
XS 1 I 0.4070 I
PISH 1 I 30.4365 I

ESTIMATION METHOD: OLS
ESTIMATION PERIOD: 1981-2001
SUM SQUARED RESID : 9441966.0000
DURBIN WATSON COEFFICIENT : 2.2801
R-SQUARED : 0.9717
ADJUSTED R-SQUARED : 0.9683
F-TEST : 137.1819

DEPENDENT VARIABLE: XS
TEXT LAG I COEFFICIENT I STAND.DEV. I T-TEST I
-------------I--------------I--------------I--------------I
INTERCEPT I 3858.8027 I 1090.0776 I 3.5399 I
D(PISH) I 22.0544 I 10.1862 I 2.1651 I
D(XC) I 0.1263 I 0.0573 I 2.2022 I
XS 1 I 0.4815 I 0.1439 I 3.3470 I
PISH 1 I 25.0022 I 7.4733 I 3.3456 I

ESTIMATION METHOD: FIX-POINT
ESTIMATION PERIOD: 1981-2001
DEPENDENT VARIABLE: PIXS
TEXT LAG I COEFFICIENT I
-------------I--------------I
INTERCEPT I 0.1501 I
PIXS 1 I 0.9946 I
D(NWI) I 0.0613 I

ESTIMATION METHOD: OLS
ESTIMATION PERIOD: 1981-2001
SUM SQUARED RESID : 8.9859
DURBIN WATSON COEFFICIENT : 2.0103
R-SQUARED : 0.9983
ADJUSTED R-SQUARED : 0.9981
F-TEST : 5384.4472

DEPENDENT VARIABLE: PIXS
TEXT LAG I COEFFICIENT I STAND.DEV. I T-TEST I
-------------I--------------I--------------I--------------I
INTERCEPT I 0.3033 I 1.2218 I 0.2482 I
PIXS 1 I 0.9937 I 0.0104 I 95.1881 I
D(NWI) I 0.0600 I 0.0066 I 9.1571 I

ESTIMATION METHOD: FIX-POINT
ESTIMATION PERIOD: 1981-2001
DEPENDENT VARIABLE: XC
TEXT LAG I COEFFICIENT I
-------------I--------------I
INTERCEPT I 32689.6757 I
XC 1 I 0.8913 I
VWT 1 I 5.5058 I
RERI 1 -357.0499 I
DMY8291 1 -6555.5079 I

ESTIMATION METHOD: OLS
ESTIMATION PERIOD: 1981-2001
SUM SQUARED RESID : 49537888.0000
DURBIN WATSON COEFFICIENT : 1.8737
R-SQUARED : 0.9942
ADJUSTED R-SQUARED : 0.9927
F-TEST : 518.6742

DEPENDENT VARIABLE: XC
TEXT LAG I COEFFICIENT I STAND.DEV. I T-TEST I
-------------I--------------I--------------I--------------I
INTERCEPT I 34190.9140 I 10274.8457 I 3.2767 I
XC 1 I 0.8894 I 0.0492 I 18.0911 I
VWT 1 I 5.8529 I 1.6876 I 3.4683 I
RERI 1 -380.5426 I 120.3744 I -3.1613 I
DMY8291 1 -6106.8286 I 1382.4364 I -4.4174 I
DMY00 1 8437.0517 I 2084.0456 I 4.0484 I

ESTIMATION METHOD: FIX-POINT
ESTIMATION PERIOD: 1981-2001
DEPENDENT VARIABLE: PIXC
TEXT LAG I COEFFICIENT I
-------------I--------------I
INTERCEPT I 51.0307 I
PIXC 1 I 0.5114 I
PIGDPA 1 I 0.3083 I
RERI 1 -0.3360 I

ESTIMATION METHOD: OLS
ESTIMATION PERIOD: 1981-2001
SUM SQUARED RESID : 17.9658
R-SQUARED : 0.9856
ADJUSTED R-SQUARED : 0.9823
F-TEST : 388.9035

DEPENDENT VARIABLE: PIXC
TEXT LAG I COEFFICIENT I STAND.DEV. I T-TEST I
-------------I--------------I--------------I--------------I
INTERCEPT I 53.8953 I 6.7497 I 7.9849 I
PIXC 1 I 0.5249 I 0.1047 I 5.0116 I
PIGDPA 1 I 0.3188 I 0.0691 I 4.6108 I
RERI 1 -0.3997 I 0.0623 I 6.2536 I
**ESTIMATION METHOD:** FIX-POINT  
**ESTIMATION PERIOD:** 1981-2001  
**DEPENDENT VARIABLE:** MS  
<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td></td>
<td>3447.1982</td>
<td>0.9010</td>
<td>1671.3724</td>
</tr>
<tr>
<td>IECFD*0.01</td>
<td></td>
<td>-2083.5561</td>
<td>471.5322</td>
<td>-4.1464</td>
</tr>
<tr>
<td>PIMSCPI*0.01</td>
<td></td>
<td>-1671.3724</td>
<td>471.5322</td>
<td>-4.1464</td>
</tr>
</tbody>
</table>

**ESTIMATION METHOD:** OLS  
**ESTIMATION PERIOD:** 1981-2001  
**SUM SQUARED RESID:** 574753.9375  
**DURBIN WATSON COEFFICIENT:** 1.7416  
**R-SQUARED:** 0.9777  
**ADJUSTED R-SQUARED:** 0.9777  
**F-TEST:** 307.8307  

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td></td>
<td>2867.8674</td>
<td>1306.8408</td>
<td>2.1945</td>
</tr>
<tr>
<td>IECFD*0.01</td>
<td></td>
<td>1.0184</td>
<td>0.2464</td>
<td>4.1337</td>
</tr>
<tr>
<td>PIMSCPI*0.01</td>
<td></td>
<td>-1955.1754</td>
<td>471.5322</td>
<td>-4.1464</td>
</tr>
<tr>
<td>DMY8097</td>
<td></td>
<td>-1571.1971</td>
<td>471.5322</td>
<td>-4.1464</td>
</tr>
</tbody>
</table>

**ESTIMATION METHOD:** FIX-POINT  
**ESTIMATION PERIOD:** 1981-2001  
**DEPENDENT VARIABLE:** D(PIMS)  
<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td></td>
<td>61.1336</td>
<td>16.1744</td>
<td>4.1816</td>
</tr>
<tr>
<td>PIMS</td>
<td>1</td>
<td>-0.2004</td>
<td>0.0969</td>
<td>2.5172</td>
</tr>
<tr>
<td>D(NERI)</td>
<td>1</td>
<td>-0.6547</td>
<td>0.1910</td>
<td>3.5944</td>
</tr>
<tr>
<td>DMY8695</td>
<td>1</td>
<td>-15.0470</td>
<td>2.1440</td>
<td>-5.2935</td>
</tr>
</tbody>
</table>

**ESTIMATION METHOD:** OLS  
**ESTIMATION PERIOD:** 1981-2001  
**SUM SQUARED RESID:** 80.8465  
**DURBIN WATSON COEFFICIENT:** 1.8158  
**R-SQUARED:** 0.9225  
**ADJUSTED R-SQUARED:** 0.8915  
**F-TEST:** 35.7241  

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td></td>
<td>67.6356</td>
<td>13.2975</td>
<td>50.5050</td>
</tr>
<tr>
<td>PIMS</td>
<td>1</td>
<td>-0.2440</td>
<td>0.1332</td>
<td>2.5172</td>
</tr>
<tr>
<td>D(NERI)</td>
<td>1</td>
<td>-0.6945</td>
<td>0.1244</td>
<td>5.5944</td>
</tr>
<tr>
<td>DMY8695</td>
<td>1</td>
<td>-11.3494</td>
<td>2.1440</td>
<td>-5.2935</td>
</tr>
</tbody>
</table>

**ESTIMATION METHOD:** FIX-POINT  
**ESTIMATION PERIOD:** 1981-2001  
**DEPENDENT VARIABLE:** MCPC  
<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td></td>
<td>-10.7516</td>
<td>1.4580</td>
<td>-7.5916</td>
</tr>
<tr>
<td>IECFDPC</td>
<td>1</td>
<td>0.6595</td>
<td>0.0110</td>
<td>60.5050</td>
</tr>
<tr>
<td>PIMC</td>
<td>1</td>
<td>-0.0552</td>
<td>0.0141</td>
<td>-3.9085</td>
</tr>
</tbody>
</table>

**ESTIMATION METHOD:** OLS  
**ESTIMATION PERIOD:** 1981-2001  
**SUM SQUARED RESID:** 0.9896  
**DURBIN WATSON COEFFICIENT:** 1.2668  
**R-SQUARED:** 0.9951  
**ADJUSTED R-SQUARED:** 0.9943  
**F-TEST:** 1841.5870  

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td></td>
<td>-10.6586</td>
<td>1.5001</td>
<td>6.3985</td>
</tr>
<tr>
<td>IECFDPC</td>
<td>1</td>
<td>0.6662</td>
<td>0.0807</td>
<td>8.0850</td>
</tr>
<tr>
<td>PIMC</td>
<td>1</td>
<td>-0.0551</td>
<td>0.0141</td>
<td>-3.9085</td>
</tr>
</tbody>
</table>

**ESTIMATION METHOD:** FIX-POINT  
**ESTIMATION PERIOD:** 1981-2001  
**DEPENDENT VARIABLE:** D(PIMC)  
<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td></td>
<td>16.9418</td>
<td>13.2975</td>
<td>1.2668</td>
</tr>
<tr>
<td>PIMC</td>
<td>1</td>
<td>-0.2072</td>
<td>0.1332</td>
<td>2.5172</td>
</tr>
<tr>
<td>D(NERI)</td>
<td>1</td>
<td>-0.6945</td>
<td>0.1244</td>
<td>3.5944</td>
</tr>
<tr>
<td>D(L(PIOECD))</td>
<td>1</td>
<td>113.1491</td>
<td>38.8379</td>
<td>2.9134</td>
</tr>
<tr>
<td>DMY9899</td>
<td>1</td>
<td>-3.3803</td>
<td>1.5001</td>
<td>-5.2532</td>
</tr>
</tbody>
</table>

**ESTIMATION METHOD:** OLS  
**ESTIMATION PERIOD:** 1981-2001  
**SUM SQUARED RESID:** 62.9907  
**DURBIN WATSON COEFFICIENT:** 1.2668  
**R-SQUARED:** 0.8211  
**ADJUSTED R-SQUARED:** 0.7652  
**F-TEST:** 18.3571  

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td></td>
<td>21.7282</td>
<td>13.2975</td>
<td>1.6340</td>
</tr>
<tr>
<td>PIMC</td>
<td>1</td>
<td>-0.2510</td>
<td>0.1332</td>
<td>-1.8844</td>
</tr>
<tr>
<td>D(NERI)</td>
<td>1</td>
<td>-0.6945</td>
<td>0.1244</td>
<td>-5.5842</td>
</tr>
<tr>
<td>D(L(PIOECD))</td>
<td>1</td>
<td>13.1491</td>
<td>38.8379</td>
<td>2.9134</td>
</tr>
<tr>
<td>DMY9899</td>
<td>1</td>
<td>-3.8031</td>
<td>1.5001</td>
<td>-5.2532</td>
</tr>
</tbody>
</table>
### ESTIMATION METHOD: FIX-POINT

**ESTIMATION PERIOD:** 1981-2001

**DEPENDENT VARIABLE:** XRFREUR

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td>1</td>
<td>1.7272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGAP*0.01</td>
<td>1</td>
<td>5.1236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOT*0.001</td>
<td>1</td>
<td>-0.0151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMY8081</td>
<td>I</td>
<td>0.2277</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### ESTIMATION METHOD: OLS

**ESTIMATION PERIOD:** 1981-2001

**SUM SQUARED RESID:** 0.0255

**DURBIN WATSON COEFFICIENT:** 2.3666

**R-SQUARED:** 0.9512

**ADJUSTED R-SQUARED:** 0.9397

**F-TEST:** 110.4207

**DEPENDENT VARIABLE:** XRFREUR

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td>1</td>
<td>1.7315</td>
<td>0.0152</td>
<td>114.0041</td>
</tr>
<tr>
<td>IGAP*0.01</td>
<td>1</td>
<td>5.0038</td>
<td>1.0656</td>
<td>4.6956</td>
</tr>
<tr>
<td>BOT*0.001</td>
<td>1</td>
<td>-0.0154</td>
<td>0.0011</td>
<td>-13.8112</td>
</tr>
<tr>
<td>DMY8081</td>
<td>I</td>
<td>0.1971</td>
<td>0.0462</td>
<td>4.2691</td>
</tr>
</tbody>
</table>

### ESTIMATION METHOD: FIX-POINT

**ESTIMATION PERIOD:** 1981-2001

**DEPENDENT VARIABLE:** NERI

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td>I</td>
<td>164.6495</td>
</tr>
<tr>
<td>XRFRUSD</td>
<td>I</td>
<td>-9.4306</td>
</tr>
<tr>
<td>XRFREUR</td>
<td>I</td>
<td>-32.7861</td>
</tr>
</tbody>
</table>

### ESTIMATION METHOD: OLS

**ESTIMATION PERIOD:** 1981-2001

**SUM SQUARED RESID:** 19.4612

**DURBIN WATSON COEFFICIENT:** 1.5008

**R-SQUARED:** 0.9833

**ADJUSTED R-SQUARED:** 0.9805

**F-TEST:** 529.7213

**DEPENDENT VARIABLE:** NERI

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td>I</td>
<td>166.1765</td>
<td>2.5652</td>
<td>64.7820</td>
</tr>
<tr>
<td>XRFRUSD</td>
<td>I</td>
<td>-7.1851</td>
<td>0.8344</td>
<td>-8.6108</td>
</tr>
<tr>
<td>XRFREUR</td>
<td>I</td>
<td>-35.7767</td>
<td>1.8048</td>
<td>-19.8226</td>
</tr>
</tbody>
</table>

### ESTIMATION METHOD: FIX-POINT

**ESTIMATION PERIOD:** 1981-2001

**DEPENDENT VARIABLE:** D(RERI)

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td>I</td>
<td>-22.2741</td>
</tr>
<tr>
<td>D(NERI)</td>
<td>I</td>
<td>0.8785</td>
</tr>
<tr>
<td>D(CPIPIOECD)</td>
<td>I</td>
<td>0.2035</td>
</tr>
</tbody>
</table>

### ESTIMATION METHOD: OLS

**ESTIMATION PERIOD:** 1981-2001

**SUM SQUARED RESID:** 7.9714

**DURBIN WATSON COEFFICIENT:** 2.0139

**R-SQUARED:** 0.9748

**ADJUSTED R-SQUARED:** 0.9648

**F-TEST:** 116.1654

**DEPENDENT VARIABLE:** D(RERI)

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td>I</td>
<td>-12.8849</td>
<td>8.8925</td>
<td>-1.4490</td>
</tr>
<tr>
<td>D(NERI)</td>
<td>I</td>
<td>0.9981</td>
<td>0.0476</td>
<td>20.7707</td>
</tr>
<tr>
<td>D(CPIPIOECD)</td>
<td>I</td>
<td>0.4216</td>
<td>0.1244</td>
<td>3.3903</td>
</tr>
</tbody>
</table>

### ESTIMATION METHOD: FIX-POINT

**ESTIMATION PERIOD:** 1981-2001

**DEPENDENT VARIABLE:** CPIPIOECD

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td>I</td>
<td>0.1919</td>
</tr>
<tr>
<td>D(NERI)</td>
<td>I</td>
<td>-0.2819</td>
</tr>
</tbody>
</table>

### ESTIMATION METHOD: OLS

**ESTIMATION PERIOD:** 1981-2001

**SUM SQUARED RESID:** 1.3930

**DURBIN WATSON COEFFICIENT:** 2.0139

**R-SQUARED:** 0.9748

**ADJUSTED R-SQUARED:** 0.9648

**F-TEST:** 116.1654

**DEPENDENT VARIABLE:** CPIPIOECD

<table>
<thead>
<tr>
<th>TEXT</th>
<th>LAG</th>
<th>COEFFICIENT</th>
<th>STAND.DEV.</th>
<th>T-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td>I</td>
<td>0.1354</td>
<td>0.0907</td>
<td>1.4930</td>
</tr>
</tbody>
</table>