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Abstract

Access-control systems are essential for protecting sensitive resources, be
it digital or physical assets. Modern access-control systems are, however,
complex software artifacts. They consist of multiple interconnected compo-
nents that are subject to communication and component failures. These
often influence access decisions in surprising and unintended ways. Fur-
thermore, these components collectively enforce nontrivial decentralized
policies, i.e. policies issued and managed by multiple principals, which
are difficult to get right. Constructing correct access-control systems, i.e.
systems that grant and deny access in conformance to all access-control
requirements, is therefore a challenging task.

In this thesis, we tackle the problem of constructing correct access-
control systems. We present a novel access-control framework that can be
used to (i) specify decentralized access-control policies, which are policies
that require both authority delegation and policy composition, (ii) verify
access-control systems against security requirements in the presence of an
active attacker who can selectively cause communication and component
failures, and (iii) synthesize access-control policies for distributed enforce-
ment points. We also develop an efficient interpreter that supports our
policy specification language and can be used to construct access-control
systems that directly enforce (verified) policies.

Our first contribution is a novel logic-programming language, called
BELLOG, which extends stratified Datalog over the four truth values from
Belnap’s logic. We show that BELLOG can formalize access-control policies
with authority delegation and policy composition, such as those based on the
recent XACML v3.0 standard. Furthermore, we show that the verification
of BELLOG policies against access-control requirements is readily reduced
to BELLOG’s core decision problems.

Our second contribution is a comprehensive and systematic investiga-
tion of the role of failure handling in access-control systems. We show
that communication and component failures often affect access decisions
in nontrivial and unintended ways, resulting in insecure systems. The
verification of fail-security requirements, which define how access-control
systems must handle failures, is therefore imperative in practice. We define
a realistic attacker model tailored to failure scenarios and we demonstrate
how the BELLOG access-control framework is used to verify access-control
systems against fail-security requirements in the presence of our attacker.
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Our third contribution is a synthesis approach for automatically con-
structing local access-control policies enforced by multiple, distributed
enforcement points, such as the locks in a building. We focus on access-
control policies for physical spaces, like office building and airports, where
the requirements are often formulated in terms of system-wide require-
ments. For example, “there is an authorized path to exit the building from
every room.” We illustrate the effectiveness of our synthesis approach
in three real-world case studies where we synthesize the policies for a
university building, a corporate building, and an airport terminal.

To sum up, our contributions make up a comprehensive framework
that can be used to solve key problems in access control that go beyond
the specification and analysis of individual policies. Namely, it is the first
framework that can be used to verify the correctness of failure handlers in
access-control systems. Furthermore, it is the first framework that leverages
program synthesis techniques to solve the problem of automatic construc-
tion of access-control policies from system-wide requirements.



Zusammenfassung

Zutrittskontrollsysteme sind wichtig für den Schutz sensibler Ressourcen,
seien es digitale oder physikalische Vermögenswerte. Moderne Zutrittskon-
trollsysteme sind jedoch komplexe Softwareartefakte. Sie bestehen aus
mehreren miteinander verbundenen Komponenten, die Kommunikations-
und Komponentenfehlern unterliegen. Diese beeinflussen oft überraschen-
de und unbeabsichtigte Zugriffsentscheidungen. Darüber hinaus erzwingen
diese Komponenten kollektiv nicht-triviale dezentralisierte Richtlinien, die
von mehreren Richtlinienverwaltern ausgegeben und gepflegt werden. Es ist
schwierig diese Richtlinien korrekt zu definieren. Der Aufbau korrekter Zu-
gangskontrollsysteme, d.h. Systeme, die den Zugang in Übereinstimmung
mit allen Zugangsanforderungen gewähren und verweigern, ist daher eine
anspruchsvolle Aufgabe.

In dieser Arbeit befassen wir uns mit dem Problem der Konstrukti-
on korrekter Zugangskontrollsysteme. Wir präsentieren ein neuartiges
Zugangskontroll-Framework, das verwendet werden kann, um (i) dezen-
tralisierte Zugangskontrollrichtlinien festzulegen, bei denen es sich um
Richtlinien handelt, die sowohl Bevollmächtigungen als auch Komposition
erlauben, (ii) die Kontrolle der Zugangskontrollsysteme vor den Sicher-
heitsanforderungen in Anwesenheit eines aktiven Angreifers, der selektiv
Kommunikations- und Komponentenfehler verursachen kann, zu schützen
und (iii) die Synthese von Zugriffskontrollrichtlinien für verteilte Durch-
setzungspunkte ermöglicht. Weiterhin entwickeln wir einen effizienten
Interpreter, der unsere Policy-Spezifikationssprache unterstützt und für die
Konstruktion von Zutrittskontrollsystemen verwendet werden kann, die
direkt (verifizierte) Richtlinien umsetzen.

Unser erster Beitrag ist eine neuartige Logik-Programmiersprache na-
mens BelLog, die stratifiziertes Datalog mit den vier Wahrheitswerten der
Logik von Belnap erweitert. Wir zeigen, dass wir Zugriffskontrollrichtlinien
mit Bevollmächtigung und Komposition in BelLog formalisieren können,
wie beispielsweise basierend auf dem aktuellen XACML-Standard. Darüber
hinaus zeigen wir, dass die Überprüfung der BelLog-Richtlinien hinsichtlich
von Zugangsregelungsanforderungen leicht auf die Kernentscheidungspro-
bleme von BelLog reduziert werden können.

Unser zweiter Beitrag ist eine umfassende und systematische Unter-
suchung der Rolle des Ausfallmanagements in Zutrittskontrollsystemen.
Wir zeigen, dass Kommunikations- und Komponentenfehler häufig Zugriffs-
entscheidungen auf nichttriviale und unbeabsichtigte Weise beeinflussen,



iv

was zu unsicheren Systemen führt. Die Überprüfung der Fail-Security-
Anforderungen, die definieren, wie Zutrittskontrollsysteme mit Fehlern um-
gehen müssen, ist daher in der Praxis zwingend erforderlich. Wir definieren
ein realistisches Angreifermodell, das auf Fehlerszenarien zugeschnitten ist,
und wir zeigen, wie das BelLog-Zugriffssteuerungs-Framework verwendet
wird, um in Gegenwart unseres Angreifers Zugriffskontrollsysteme gegen
Fehlersicherheitsanforderungen zu verifizieren.

Unser dritter Beitrag ist ein Syntheseansatz für die automatische Er-
stellung lokaler Zugangskontrollstrategien, die durch mehrere, verteilte
Durchsetzungspunkte, wie die Schlösser in einem Gebäude, gewährlei-
stet werden. Wir konzentrieren uns auf Zugangskontrollmassnahmen für
physische Räume wie Bürogebäude und Flughäfen, in denen die Anforde-
rungen oft systemweit formuliert werden, wie zum Beispiel: "Gibt es einen
autorisierten Weg, um das Gebäude aus jedem Raum zu verlassen."Wir
veranschaulichen die Wirksamkeit unseres Syntheseansatzes in drei realen
Fallstudien, in denen wir die Richtlinien für jeweils ein Hochschulgebäude,
ein Firmengebäude und ein Flughafenterminal erstellen.

Zusammenfassend bilden unsere Beiträge einen umfassenden Rahmen
für die Lösung von Schlüsselproblemen in der Zugangskontrolle, die über
die Spezifikation und Analyse einzelner Richtlinien hinausgehen. Insbeson-
dere ist es das erste Framework, das verwendet werden kann, um die Kor-
rektheit von Fehlerbehandlungsroutinen in Zugriffssteuerungssystemen zu
überprüfen. Darüber hinaus ist es das erste Framework, das Programmsyn-
thesetechniken verwendet, um das Problem der automatischen Erstellung
von Zugangskontrollrichtlinien ausgehend von systemweiten Anforderun-
gen zu lösen.
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Chapter 1

Introduction

Access control is essential for protecting both physical and digital assets.
Consider, for example, an airport. There, access to terminals, boarding
gates, and other physical spaces, is restricted to protect the physical assets
in the airport, such as aircraft, equipment, and passengers. Access to digital
assets is also strictly controlled. Financial institutions, like banks, carefully
control who can access their business-critical data. This is necessary not
only to keep this data away from the hands of their competitors but also to
comply with mandatory regulations.

To secure access to resources, be it physical or digital assets, security
engineers deploy access-control systems, which restrict how subjects access
resources. For example, gates and turnstiles are deployed to control access
to the physical spaces in an airport. Simply deploying an access-control
system, however, does not entail that access to the resources is appropriately
secured. A turnstile, for example, will not protect any of the airport’s assets
if it simply lets anyone through. To correctly secure the resources, the
access-control system must grant and deny access in compliance with
access-control requirements, which impose constraints on how the subjects
can access the resources. Such requirements are usually elicited by the
resource owners. For example, a bank’s security manager may require
that only project managers may access business-critical data. Similarly, an
airport’s security officer may require that all passengers must pass through
a security check to access the terminals.

Access-control systems must grant and deny access in compliance with
all access-control requirements. Otherwise, attackers can abuse the pro-
tected resources. For example, attackers may exploit unintended grant
decisions to gain access to a bank’s business-critical data. Furthermore,
attackers may exploit unintended deny decisions to cause harm as well.
Suppose an attacker can block all the turnstiles deployed in a stadium
immediately before a big football game. Then, the attacker can prevent
anyone, including visitors with tickets, to access the stadium. Even worse,
the attacker can trap all the people inside the stadium.

In this thesis, we tackle the problem of constructing correct access-
control systems, i.e. systems that grant and deny access in compliance
with all access-control requirements. Before stating our contributions, we
describe how modern access-control systems restrict access to resources
and discuss key challenges that engineers face when building such systems.



2 1 Introduction

Terminal Gate

Terminal

Air Traffic Control
(ATC)

ATC Gate

Central
ServerGrants access only to

employees whose creden-
tials are not revoked

Stores revoked
credentials

Figure 1.1: Layout of a very small airport that consists of a terminal and an
air traffic control room. Access to these subspaces is controlled by gates.

1.1 The Access-Control Setting
We now describe the key components of modern access-control systems
and explain how they affect which resources subjects can access.

To illustrate the main concepts, we present a simple example taken
from the physical access-control domain. In Figure 1.1, we show the layout
of a very small airport, which consists of two subspaces — a terminal
and an air traffic control (ATC) room. There are two gates that restrict
who can access these two subspaces: one gate that controls access to the
terminal and another one that controls access to the ATC room. To access a
particular subspace, a subject presents credentials (e.g., stored on a phone
or a smart card) to the gate that controls access to that subspace. Based on
the provided credentials, the gate either opens and lets the subject in or
remains closed. The ATC gate is connected to a central server, which stores
a list of credentials that have been revoked.

Access-control Policies and Components. Modern access-control systems
are configured with policies, which define a mapping from access requests
to access decisions. Each policy is deployed at a component called a Policy
Decision Point (PDP), which evaluates its policy and returns access decisions.
In our airport example, each gate is equipped with a PDP. The ATC gate is
configured with the policy that evaluates to grant for all requests made by
non-revoked employees and to deny for all other requests. This policy is
depicted in a gray dialog box in Figure 1.1. To give a subject access to the
ATC room, the administrator issues a designated “employee” credential and
gives it to the subject. Later on, the administrator may decide to revoke an
employee credential, e.g. because the subject to which it belongs has been
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fired. To revoke a credential, the administrator stores it at a central server
that maintains a list of all revoked credentials; see Figure 1.1. To enforce
its policy, the ATC gate’s PDP checks whether the subject has submitted an
employee credential and queries the central server to check whether the
provided credential has been revoked. Clearly, all access decisions made
by the PDP depend on the policy it enforces.

Communication and Component Failures. One may think that the policy
deployed at a PDP fully determines its access decisions. This is, however,
false. Communication and component failures may prevent the PDP from
evaluating its policy, and thereby influence how it makes access decisions.
To illustrate this point, consider our airport example. To check whether a
credential has been revoked, the ATC gate’s PDP queries the central server.
However, what happens if the PDP is unable to reach the central server?
In such a scenario, the PDP cannot fetch the list of revoked credentials
and therefore it cannot evaluate its policy. To understand whether the
PDP would return a grant or deny decision, we need to know how the
PDP handles such failures. It may, for example, evaluate another policy
(e.g., a designated fallback policy) or it may conservatively return a deny
decision. This example shows that whenever failures affect the availability
of information needed to evaluate a policy, the PDP’s access decisions cannot
be understood without considering its failure handlers as well. That is,
access decisions also depend on the PDP’s failure handlers.

Distributed Components. Access-control systems usually consist of multi-
ple PDPs that enforce different access-control policies. The airport access-
control system shown in Figure 1.1, for example, has two PDPs — one at the
ATC gate and another one at the terminal gate. To understand how subjects
access a particular resource, we cannot simply inspect the behavior of the
PDP that protects that resource. For example, we cannot understand which
subjects can access the ATC room by inspecting the policy of the ATC gate
alone. The ATC gate’s policy cannot guarantee that non-revoked employees
can access the ATC room: If non-revoked employees cannot access the
terminal that leads to the ATC room, then this policy is useless. Neither
can it guarantee that revoked employees cannot access the ATC room: The
ATC room may have another gate that simply lets anyone through. Here, to
check system-wide requirements like “Employees who are not revoked can
access the ATC room”, we must consider the layout of the airport, which
defines how subjects can navigate through its subspaces, along with all the
policies deployed at the PDPs.
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Subjects Protected
System

access

Access-control
System

|=
Security

Requirements

Decentralized,
fail-security, and

global requirements

Mediates access
to the system’s

resources

Figure 1.2: Access to the system’s resources is restricted by an access-control
system. The gray box on the left depicts the relevant components that define
which resources can subjects access. Security engineers must verify that
subjects access the resources in compliance with security requirements.

1.2 Challenges and Gaps
Constructing access-control systems that grant and deny access in compli-
ance with all access-control requirements is difficult [28, 34, 35, 45, 47].
Security engineers must account for all possible ways subjects can access
the resources, including unexpected scenarios, such as subjects who de-
liberately jam wireless channels to disrupt the PDP’s communication to
credential servers and subjects who hide their credentials. The security
engineers must then ensure that the access-control requirements are always
satisfied.

The task of formally verifying that a system satisfies a set of requirements
is known as program verification. In the context of access control, to verify
the correctness of an access-control system with respect to access-control
requirements, security engineers must: (i) construct a formal specification
that defines how subjects can access the system’s resources, (ii) formalize
all access-control requirements, and (iii) verify that the formal specification
satisfies the requirements. We have abstractly depicted the access-control
verification task in Figure 1.2.

The access-control community has developed numerous frameworks
that can be used to verify the correctness of access-control systems. Exam-
ples include frameworks for formally specifying and reasoning about access-
control policies [28, 34, 35], SAT-based and model-checking techniques
for reasoning about physical access-control systems [45, 47], and others.
Existing access-control frameworks, however, do not fully support recent
standards for writing access-control policies, such as XACML v3.0 [94],



1.2 Challenges and Gaps 5

which is the latest access-control standard approved by OASIS commit-
tee [2]. Neither do they support reasoning about access-control systems
that are subject to communication and component failures. These limita-
tions have serious negative consequences in practice: security engineers
cannot obtain security guarantees about real-world access-control systems.

In the following, we present three major problems that existing access-
control frameworks do not address.

Decentralized Requirements Many access-control systems today, such
as those deployed at electronic health record management systems [13],
grid resource sharing systems [81], large physical access-control systems [60],
are managed in a decentralized manner. That is, there are multiple re-
source owners who usually delegate their authority over resources to other
principals. In corporate settings, for example, a security officer usually
delegates authority over project files to project leaders. Since all principals
who have authority over a given resource can issue policies, their policies
must be composed to define how all access decisions are combined into
one decision, namely the access decision that the access-control system
must enforce. Policies with authority delegation and policy composition
are common today, and the OASIS committee has recently extended the
XACML access-control standard to support these policy idioms.

Unfortunately, existing formal access-control frameworks do not support
policies with authority delegation and policy composition. It is therefore
currently impossible to derive security guarantees about systems that en-
force decentralized policies, e.g. those specified in XACML v3.0.

Problem 1: Security engineers cannot specify policies with both
authority delegation and policy composition and verify them against
decentralized requirements.

Fail-Security Requirements Verifying the policy alone is insufficient in
practice, as we have illustrated with our airport example. Virtually all access-
control systems are distributed and therefore subject to communication and
component failures. These often affect access decisions in surprising and
unintended ways, resulting in insecure systems. Therefore, access-control
frameworks must account for the PDP’s failure handlers. Furthermore, they
must support the specification and verification of fail-security requirements,
which are access-control requirements that stipulate how the PDP must
handle failures. Only then can security guarantees be derived for the PDP’s
access decisions, both in the presence and absence of failures.
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Existing access-control frameworks are inadequate for this task. In
more detail, they lack (i) a system and attacker model tailored for failure
scenarios, (ii) idioms for specifying a PDP’s failure handlers, and (iii) tools
and algorithms for verifying fail-security requirements.

Problem 2: Security engineers cannot formalize PDPs with failure
handlers and verify them against fail-security requirements.

Global Requirements In access-control systems with multiple PDPs, such
as physical access-control systems, global requirements express constraints
on access paths through multiple PDPs. For example, “Employees who
are not revoked can access the ATC room from the main entrance.” To
enforce such requirements, security engineers write local policies, one
policy for each PDP, such that the PDP’s local policies collectively enforce all
global requirements. Writing these local policies is, however, challenging
because (i) physical spaces constrain the ways subjects navigate through
their subspaces, and (ii) global requirements often have interdependencies.

Writing the local policies manually is a tedious and error-prone task
that scales poorly. None of the existing frameworks can be used to helps
developers in writing a correct set of local policies.

Problem 3: Security engineers lack tools for automatically con-
structing local policies that collectively enforce global requirements.

1.3 Contributions
In this thesis, we present a formal access-control framework that helps
developers construct access-control systems and verify their correctness
against access-control requirements – decentralized, fail-security, and global
requirements. The main contributions of this thesis are:

• BELLOG Access-control Framework. We present a novel access-
control framework that can be used to (i) specify policies with au-
thority delegation and policy composition, (ii) verify the formal-
ized policies against decentralized requirements, and (iii) construct
access-control systems that directly enforce the verified access-control
policies. At the heart of our access-control framework is a novel
logic-programming language, called BELLOG. The BELLOG language
subsumes (i) all decentralized policy languages based on Datalog [30]
and (ii) all existing composite policy languages based on policy al-
gebras [28, 36]. We illustrate how BELLOG can be used to specify
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policies with authority delegation and policy composition. We demon-
strate that practical decentralized requirements can be formalized as
policy analysis questions, which are readily reduced to BELLOG’s core
decision problems. Finally, we present an efficient PDP that supports
BELLOG policies and can be used to construct access-control systems
that directly enforce BELLOG policies.

• Specifying and Verifying Fail-Security Requirements. We system-
atically analyze the role of failure handling in real-world access-
control systems. We investigate different kinds of security flaws due
to incorrect failure handling. Our findings demonstrate that such
flaws can affect access decisions in subtle and unintended ways.

We demonstrate how the BELLOG access-control framework can be
used to verify a PDP against fail-security requirements. In particular:
First, we demonstrate how the PDP, including its failure handlers, can
be formalized in BELLOG. Second, we define an attacker model tai-
lored to analyzing the effect of failures on the PDP’s access decisions.
Finally, we show how fail-security requirements are formalized, and
we demonstrate the verification of PDPs against fail-security require-
ments with respect to our attacker model.

• Synthesizing Local Policies from Global Requirements. We de-
velop an efficient algorithm for automatically constructing local poli-
cies that collectively enforce a set of global requirements for a given
system. Security engineers formalize global requirements in a declar-
ative language and give them as input to our synthesis algorithm. Our
algorithm then outputs local access-control policies that enforce the
requirements. We show that the synthesis problem can be efficiently
solved for practically relevant requirements and setups. We demon-
strate the effectiveness of our synthesis algorithm using real-world
case studies: We construct the local policies for an airport terminal,
a corporate building, and a university building.

Together these contributions enable security engineers to formalize
PDPs that enforce decentralized policies, along with their failure-handlers,
and to verify the formalized PDPs against decentralized and fail-security
requirements. Furthermore, they enable the automatic construction of
correct access-control policies enforced by multiple distributed PDPs from
a set of global requirements, thereby automating this challenging task for
security engineers. Together, our contributions address all three problems
described in Section 1.2.



8 1 Introduction

1.4 Thesis Overview
This thesis is organized into 7 chapters.

In Chapter 2, we introduce our access-control system model and intro-
duce the terminology used in this thesis.

In Chapter 3, we define the BELLOG language. We also define the main
decision problems for BELLOG programs and identify their complexity. We
deliberately present the BELLOG language in a separate section, as it is a
general-purpose logic-programming language that has applications beyond
access control.

In Chapter 4, we illustrate the specification of policies with authority
delegation and policy composition in BELLOG. We show that the verification
of BELLOG policies against decentralized requirements can be reduced to
BELLOG’s decision problems. We also present a PDP that supports BELLOG
policies and report on experiments that demonstrate the PDP’s efficiency.

In Chapter 5, we introduce the concept of fail-secure access control.
We give examples of PDP failure handlers and fail-security requirements
for access-control systems. We define an attacker model for access-control
systems prone to failures. We show the formalization of real-world access-
control systems with failure handling in BELLOG and their verification
against fail-security requirements using the BELLOG access-control frame-
work.

In Chapter 6, we define a declarative language for formalizing global
requirements. We formally define the policy synthesis problem and investi-
gate its complexity. We present an efficient policy synthesis algorithm and
report on several real-world case studies.

In Chapter 7, we conclude the thesis and discuss interesting directions
for future work.

Publications The content presented in this thesis is based on the following
publications:

• Petar Tsankov, Srdjan Marinovic, Mohammad Torabi Dashti, and
David Basin, “Decentralized Composite Access Control”, in POST, 2014

• Petar Tsankov, Srdjan Marinovic, Mohammad Torabi Dashti, and
David Basin, “Fail-Secure Access Control”, in CCS, 2014

• Petar Tsankov, Mohammad Torabi Dashti, and David Basin, “Access
Control Synthesis for Physical Spaces”, in CSF, 2016



Chapter 2

System Model

Subjects PEP

Credentials
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··
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utes
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Figure 2.1: System model

In this chapter, we present our system model. To illustrate the key
components of our system model, we will refer to our airport example
depicted in Figure 1.1.

Components We consider distributed access-control systems that consist
of multiple Policy Enforcement Points (PEPs), Policy Decision Points (PDPs),
and Policy Information Points (PIP). Access to each resource is controlled by
one or more PEPs, and a PEP may control access to multiple resources. To
access a resource, a subject provides his credentials to one of the PEPs that
control access to the resource. Each PEP is associated with a PDP, which
is configured with a policy and issues access decisions. Upon receiving a
subject’s credentials, the PEP forwards them to the PDP. The PDP, in turn,
queries PIPs if needed to fetch attributes such as the current time, evaluates
its policy, and forwards the access decision — either grant or deny — to the
PEP. The PEP then enforces the PDP’s decision. We depict these components
in Figure 2.1.

As an illustration, consider our airport example from Figure 1.1. The
airport’s access-control system has two PEPs — one deployed at the ATC
gate and another one at the terminal gate. Each PEP controls when the
respective gate should open. Subjects, such as passengers and airport
employees, submit their credentials to the gate’s PEP through a reader.
Each of these PEPs is associated with a PDP (not depicted in Figure 1.1) that
is configured with a policy. For example, the ATC gate’s PDP is configured
with the policy that grants access only to employees whose credentials are
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not revoked. The airport access-control system has one PIP, the central
server, which stores information about revoked credentials.

Attributes and Credentials The access requests and policies we consider
are attribute based and may reference three kinds of attributes. A subject
attribute represents information about a subject. For example, Alice’s
organizational role and clearance level are her subject attributes. A contextual
attribute represents information about the security context provided by a
PIP, such as the list of revoked credentials and the current time. We also
introduce resource attributes, which represent information about resources.
These are issued by a system architect. For example, the attributes room-
number and floor may represent room number and the floor of a physical
space.

We consider a decentralized access-control model where any subject
may issue subject attributes. Each attribute is signed by its issuer, and we
refer to signed attributes as credentials. Such credentials can be exchanged
between the subjects. For example, the airport’s manager Alice may issue
an employee credential to Bob and she can give this credential to Bob.
Bob can then provide his employee credential to the PEP, which can check
the credential’s authenticity by verifying Alice’s digital signature. In our
decentralized access-control model, a subject may delegate authority over
attributes to other subjects. For example, Alice may delegate authority
over the employee attribute to Bob, which allows Bob to issue employee
credentials.

Access-control Policy The PDP is configured with an access-control pol-
icy, which maps attributes to access decisions. The PDP receives attributes
from subjects, who may submit credentials along with their requests. The
PDP may obtain additional attributes relevant for making access decisions
from PIPs. The PDP may also locally store credentials. Attributes that are
not explicitly communicated to the PDP are assumed not to have been
issued, as is the case in other decentralized systems [25]. Recall that in our
airport example the central server stores revoked credentials. If the cen-
tral server does not store Bob’s employee credential, then Bob’s employee
credential is assumed to be valid, i.e. not revoked.

The PDP’s policy is defined by policy rules. Multiple subjects may
issue policy rules and store them at the PDP for evaluation. The PDP has
one designated subject, the administrator, who has the authority over all
access requests and his policy rules are always evaluated. The PDP takes
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other rules into account only if the administrator has delegated to their
issuers, either directly or transitively, authority over the given request.
For example, the administrator of our airport access-control system may
delegate authority over all access requests to the airport’s security officer.
The PDP would then take into account all policy rules issued by the airport’s
security office.

Failures In our model, we assume that PDPs and PEPs do not fail, whereas
PIPs can fail. We also assume that the communication channels between
the PDP and the PIPs can fail, while all other channels (e.g. PEP-to-PDP)
are reliable. In our airport example, this means that the central server may
fail, and the communication channel between the ATC gate’s PDP and the
central server may fail. All other components and communication channels
do not fail.

We assume that communication delays are bounded and failures are
determined either by timeouts or by receiving corrupted messages. After the
PDP queries a PIP for an attribute, it therefore receives one of two responses:
(1) the attribute’s value; or (2) error, indicating a communication failure.
For example, whenever the ATC gate’s PDP quires the central server, it
either receives a yes/no answer that indicates whether the credential is
revoked or it receives an error. Note that in our model, PIP failures are
indistinguishable from communication failures.





Chapter 3

The BelLog Language

In this chapter, we define the syntax and semantics of BELLOG and study the
time complexity of its decision problems. BELLOG builds upon the syntax
and semantics of stratified Datalog [30], and extends it over a four-valued
truth space. We see BELLOG as a foundation for constructing high-level
access-control languages, and we therefore present BELLOG as a generic
many-valued logic-programming language. In later chapters, we will use
BELLOG for specifying and reasoning about access-control. Namely, in
Chapter 4, we will illustrate how BELLOG can be used to specify access-
control policies, and how its decision problems can be used to verify BELLOG
policies against security requirements. Afterwards, in Chapter 5, we will
use BELLOG to formalize PDPs with failure handling and verify them against
fail-security requirements.

Organization We define BELLOG’s syntax in Section 3.1 and its semantics
in Section 3.2. We define BELLOG’s core decision problems in Section 3.3.
To simplify the writing of BELLOG programs, we present syntactic extension
in Section 3.4. The proofs of all theorems stated in this chapter are given
in Section 3.5.

3.1 Syntax
We fix a finite set P of predicate symbols, where D4 = {f4,?4,>4, t4} ✓ P ,
along with a countably infinite set C of constants, and a countably infinite
set V of variables. The sets P , C, and V are pairwise disjoint. Each predicate
symbol p 2 P is associated with an arity and we may write pn to emphasize
that p’s arity is n. The predicate symbols in D4 have zero arity. As a
convention, we write P to denote a BELLOG program and use the remaining
uppercase letters to denote variables. Predicate and constant symbols are
written using lowercase italic and sans font respectively.

A domain ⌃ is a nonempty finite set of constants. We associate a
domain ⌃ with a set of atoms

A⌃(V) = {pn(t1, · · · , tn) | pn 2 P , {t1, · · · , tn} ✓ ⌃[V}.

A literal is either a, ¬a, or ⇠a, for a 2 A⌃(V), and L⌃(V) denotes the set
of literals over ⌃. We refer to ¬a as negative literals and to a and ⇠a as
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non-negative literals. The function vars : A⌃(V) 7! P(V) maps atoms to the
set of variables appearing in them. An atom a is ground iff vars(a) = ;, and
A⌃(;) denotes the set of ground atoms. We extend vars to literals in the
standard way.

A BELLOG program, defined over the domain ⌃, is a finite set of rules of
the form:

a l1, . . . , ln ,

where n> 0, a 2A⌃(V), {l1, · · · , ln} ✓ L⌃(V), and vars(a) ✓
S

1in vars(li).
We refer to a as the rule’s head and to l1, . . . , ln as the rule’s body.

The predicate symbols in a BELLOG program P are partitioned into
intensionally defined predicates, denoted idbP , and extensionally defined
predicates, denoted edbP . The set idbP contains all predicate symbols that
appear in the heads of P ’s rules, and the set edbP contains the remaining
predicate symbols. We write AedbP

⌃(V) (LedbP
⌃(V)) and AidbP

⌃(V) (LidbP
⌃(V)) to denote

the sets of atoms (literals) constructed from predicate symbols in edbP and
idbP respectively.

A rule a l1, · · · , ln is ground iff all the literals in its body are ground.
The grounding of a BELLOG program P is the finite set of ground rules,
denoted by P#, obtained by substituting all variables in P ’s rules with
constants from ⌃ in all possible ways.

A BELLOG program P is stratified iff the rules in P can be partitioned
into sets P0, · · · , Pn called strata, such that:

1. for every predicate symbol p, all rules with p in their heads are in
one stratum Pi;

2. if a predicate symbol p occurs as a non-negative literal in a rule of Pi ,
then all rules with p in their heads are in a stratum Pj with j  i;

3. if a predicate symbol p occurs as a negative literal in a rule’s body in
Pi , then all rules with p in their heads are in a stratum Pj with j < i.

The given definition of stratified BELLOG extends with non-negative literals
that of stratified Datalog [10].

3.2 Semantics
The truth space of BELLOG is the lattice (D,�,^,_), where D = {f,?,>, t},
� is the partial truth ordering on D, and ^ and _ are the meet and join
operators. Figure 3.1 shows the lattice’s Hasse diagram, where� is depicted
upwards. We adopt the meaning of the non-classical truth values ? and
> from Belnap’s four-valued logic [22]: ? denotes missing information
and > denotes conflicting information. We define the partial knowledge
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Figure 3.1: BELLOG’s truth space.
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Figure 3.2: Truth tables of BELLOG’s operators.

ordering on D, denoted with �k, and depict it in Figure 3.1 rightwards.
We denote the meet and join operators on the lattice (D,�k) by ⌦ and �,
respectively. The truth tables of the unary operators ¬ and ⇠ are given in
Figure 3.2, where we also depict the truth tables for the operators ^ and _
for convenience.

An interpretation I , over a domain ⌃, is a function I : A⌃(;)!D, map-
ping ground atoms to truth values, where I(f4) = f, I(?4) =?, I(>4) =>,
and I(t4) = t. Fix a domain ⌃, and let I be the set of all interpretations
over ⌃. We define a partial ordering v on interpretations: given I1, I2 2 I,
I1 v I2 iff 8a 2 A⌃(;). I1(a) � I2(a). We define the meet u and join t
operators on I as: I1u I2 = �a. I1(a)^ I2(a) and I1t I2 = �a. I1(a)_ I2(a).
The structure (I,v,u,t, I

f

, I
t

) is a complete lattice where I
f

= �a.f is the
least element and I

t

= �a.t is the greatest element. Given a continuous
function � : I ! I, we write d�e for the least fixed point of �. The inter-
pretation d�e is calculated, using the Kleene fixed point theorem, as M!

where M0 = I
f

, and M i+1 = �(M i) for i � 0.
We extend interpretations over the operators ¬ and ⇠ as I(¬a) = ¬I(a)

and I(⇠a) = ⇠I(a), respectively, where a 2A⌃(;). We also extend interpre-
tations over vectors of literals as I(~l) = I(l1)^ · · ·^ I(ln) where ~l = l1, . . . , ln
and {l1, . . . , ln} ✓ L⌃(;). We write

W
{v1, . . . , vn} for v1 _ · · · _ vn. For the

empty set we put
W
{}= f.
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An interpretation I is a model of a given program P iff

8(a ~l) 2 P#. I(a)⌫ I(~l).

A model therefore, for every rule, assigns to the head a truth value no
smaller, in �, than the truth value assigned to the body. A model I is
supported iff

8a 2A⌃(;). I(a) =
_
{I(~l) | (a ~l) 2 P#}.

Note that the definition of supported models for BELLOG programs extends
that of stratified Datalog. Intuitively, a model I is supported if it does
not over-assign truth values to head atoms. In contrast to stratified Data-
log, BELLOG’s truth values are not totally ordered; therefore, a supported
model I of a BELLOG program P does not guarantee that for an atom a there
is a rule (a ~l) 2 P# such that I(a) = I(~l). For example, for the program
P = {a >4, a ?4} the interpretation I = {a 7! t} is a supported model;
note that {a 7! ?} and {a 7! >} are not models of P.

We associate a BELLOG program P with the operator TP : I 7! I:

TP(J)(a) =
_
{J(~l) | (a ~l ) 2 P#}

Lemma 1. Given a BELLOG program P, an interpretation I is a supported
model iff TP(I) = I .

The proof follows immediately from the definition of TP .
In general, a program P may have multiple supported models. For

instance, any interpretation is a supported model for the program {a a}.
For BELLOG’s semantics we choose a minimal supported model: a supported
model I is minimal iff there does not exist another supported model I 0 such
that I 0 ¿ I . For any a program P that contains only non-negative literals,
TP is monotone (see Theorem 7 in Section 3.5.1), hence continuous due to
the finiteness of I, and has a unique minimal supported model. In contrast,
if a program P contains negative literals in its rules, then the operator TP is
not monotone, and there could be multiple minimal supported models. For
example, the program P = {a ¬b} has more than one minimal supported
models, e.g. {a 7! f, b 7! t} and {a 7! t, b 7! f}.

For a stratified BELLOG program P, we construct one minimal supported
model by computing, for each strata of P, the minimal supported model that
contains the model of the previous stratum. This construction is analogous
to that of stratified Datalog given in [5]. To define the model construction,
we introduce the following notation. We write (P#) / I for the program
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obtained by replacing all literals in P# constructed with edbP predicate
symbols with their truth values according to I . Formally,

(P#) / I = {a l 01, · · · , l 0n | (a l1, · · · , ln) 2 P#,

l 0i = I(li) if li 2 LedbP
⌃(;) , otherwise l 0i = li} .

Note that all negative literals in a stratum Pi of a stratified BELLOG program
are constructed with predicate symbols in edbPi

. Given an interpretation I ,
the program P#i / I therefore contains only non-negative literals, and the
operator TP#i /I

is monotone.
We now define the model semantics of a stratified BELLOG program:

Definition 1. Given a stratified BELLOG program P, with strata P0, · · · , Pn,
the model of P, denoted JPK, is the interpretation Mn, where M�1 = If, and
Mi = dTP#i /Mi�1

e tMi�1 for 0 i  n.

Each Mi , for 0  i  n, is well-defined because the operators TP#i /Mi�1

are monotone, and therefore continuous because the lattice (I,v,u,t) is
finite.

Theorem 1. Given a stratified BELLOG program P, JPK is a minimal supported
model.

We prove Theorem 1 in Section 3.5.1.
For the previous example P = {a ¬b}, the given construction results

in JPK= {a 7! t, b 7! f}. We choose a minimal supported model semantics
for BELLOG because it does not over-assign truth values to head atoms and
it assumes that least amount of truth for atoms which are not explicitly
assigned a truth value. We justify, in terms of access-control decisions, our
choice of semantics in Section 4.2.

We remark that a BELLOG program P that does not use the predicates>4,
?4, and the operator ⇠ in its rules is a syntactically valid stratified Datalog
program. Furthermore, stratified BELLOG subsumes stratified Datalog; we
prove this in Section 3.5.2. In particular, this means that BELLOG can
express all policy languages based on stratified Datalog.

The input to a BELLOG program P is an interpretation I 2 I, where all
atoms from AidbP

⌃(;) are mapped to f. For a program P and the input I , we
write JPKI as a shorthand for JP [ PIK, where PI = {a  v4 | I(a) = v}
and v 2D.

From the definition of stratification, it is immediate that given a stratified
program P with strata P0, · · · , Pn, and an input I , the program P [ P 0 can
be stratified into strata PI , P0, · · · , Pn.



18 3 The BelLog Language

We finally remark that the semantics of a BELLOG program is inde-
pendent of the given stratification. We state and prove this theorem in
Section 3.5.3.

3.3 Decision Problems
We define BELLOG’s decision problems. In Section 4.3, we reduce the deci-
sion problems within our policy analysis framework to BELLOG’s decision
problems.

Similarly to the data complexity of Datalog [90], we study the complex-
ity of the given decision problems when the maximum arity of predicates
in P and the set of variables that appear in P are fixed. The input size for
BELLOG’s decision problems is thus determined by the number of predicate
symbols in P , the number of rules in P, and the number of constants in the
domain ⌃.

Let P be a stratified BELLOG program, ⌃ be a domain of constants, and
a be a ground atom. For a given input I , the query entailment decision
problem, denoted P |=I

⌃ a, asks whether JPKI (a) = t. The general case of
JPKI (a) = v, with v 2D, is immediately reducible to the query entailment
problem.

Theorem 2. The query entailment problem for stratified BELLOG programs
belongs to the complexity class PTIME.

The query validity decision problem, denoted P |=⌃ a, asks whether for
all inputs I defined over ⌃, P |=I

⌃ a.

Theorem 3. The query validity problem for stratified BELLOG programs
belongs to the complexity class CO-NP-COMPLETE.

We next consider a generalization of the query validity problem. Let
⌃P denote the set of constants that appear in P. The all-domains query
validity decision problem, denoted P |= a, asks whether P |=⌃0 a for all
domains ⌃0 ✓ C that contain ⌃P and the constants in a; recall that C is
the infinite set of constants. The problem of all-domains query validity
is in general undecidable for BELLOG programs, because the problem of
query validity in Datalog, which is undecidable [80], can be reduced to this
problem. We show, however, that all-domains query validity is decidable
for any stratified BELLOG program P that has only unary predicate symbols
in edbP . We call those unary-edb programs. We show in Chapter 4 that
the unary-edb BELLOG programs capture a useful class of policies. Namely,
those policies where the set of principals is finite.
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Decision problem Complexity

Entailment PTIME
Domain containment CO-NP-COMPLETE
All-domains containment UNDECIDABLE
All-domains containment for unary-edb programs CO-NEXP

Table 3.1: Complexity of BELLOG’s decision problems.

Theorem 4. The all-domains query validity problem for a unary-edb BELLOG
program belongs to CO-NEXP.

Note that the input for the all-domains query validity problem is deter-
mined only by the number of predicate symbols in P and the number of
rules in the program P. We summarize the complexity of BELLOG’s decision
problems in Table 3.1.

3.4 Syntactic Extensions
We now present a set of syntactic extension to BELLOG to ease the specifi-
cation of complex rules. In Chapter4, we use these extensions for writing
decentralized composite policies. The proofs of all theorems given in this
section are in Section 3.5.4.

We extend the syntax for writing policy rules to

rule ::= a body
body ::= l1, · · · , ln | ¬body | ⇠body | body^ body ,

where n > 0, a 2 A⌃(V), and {l1, · · · , ln} ✓ L⌃(V). We call the rules of
the form a l1, · · · , ln basic rules and the remaining rules composite rules.
Similarly to basic rules, we require that for any composite rule a body,
vars(a) ✓ vars(body).

We define the translation function T that maps a basic rule r to the
set {r}:

T (a l1, · · · , ln) = {a l1, · · · , ln} ,

and maps a composite rule a body to a set of basic rules:
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T (a ¬body) = {a ¬p
fresh

( ~X )}[ T (p
fresh

( ~X ) body)

T (a ⇠body) = {a ⇠p
fresh

( ~X )}[ T (p
fresh

( ~X ) body)

T (a body1 ^ body2) = {a p
fresh1

( ~X1), p
fresh2

( ~X2)}[
T (p

fresh1

( ~X1) body1)[ T (pfresh2

( ~X2) body2)

In these rules p
fresh

, p
fresh1

, p
fresh2

are predicate symbols that do not appear
in P , ~X = vars(body) and ~Xi = vars(bodyi) for i 2 {1,2}. In Section 3.5.4
we prove that the recursive function T terminates for any composite rule
and it yields a set of basic rules. The size of the set of basic rules is linear
in the number of nested body elements in the composite rule.

The meaning of a BELLOG program P with composite rules is that of the
BELLOG program P 0 =

S
r2P(T (r)). For example, consider the composite

rule:

p(X) ¬⇠q(X , Y ) .

The function T translates this composite rule into a set of basic rules:

{ p(X )  ¬p
fresh

(X , Y )
p

fresh

(X , Y )  ⇠q(X , Y ) } .

A BELLOG program P with composite rules is well-formed iff its rules
can be partitioned into sets P0, · · · , Pn such that: (1) for every predicate
symbol p, all rules with p in their heads are in one stratum Pi; (2) if a
predicate symbol p occurs as a non-negative literal in a basic body in Pi ,
then all rules with p in their heads are in a stratum Pj with j  i; and (3)
if a predicate symbol p occurs in the body of a composite rule in Pi or as
a negative literal in a basic rule in Pi , then all rules with p in their heads
are in a stratum Pj with j < i. Note that well-formed BELLOG extends
stratified BELLOG with the condition that if a predicate symbol p occurs in
the body of a composite rule in Pi , then all rules with p in their heads are in
a stratum Pj with j < i. This is a sufficient but not necessary condition that
any composite rule of a well-formed program is translated into a stratified
set of basic rules.

Theorem 5. The translation of a well-formed BELLOG program with compos-
ite rules is a stratified BELLOG program.

In Figure 3.3, we derive additional connectives using syntactic combi-
nations of ¬, ⇠, and ^. The binary connective __ _ corresponds to the join
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p _ q := ¬(¬p ^¬q)
p⌦ q := (p ^?)_ (q ^?)_ (p ^ q)
p� q := (p ^>)_ (q ^>)_ (p ^ q)
p = t := p ^⇠p
p = f := ¬(p _⇠p)

p = ? := (p 6= f)^ (p 6= t)^ ((p _>) = t)
p = > := (p 6= f)^ (p 6= t)^ ((p _?) = t)
p 6= v := ¬(p = v)

Figure 3.3: Derived connectives for combining composite rule bodies. Here
p, q, and c denote rule bodies and v 2D.

operator on the lattice (D,�), and the binary connectives _⌦_ and _�_ cor-
respond to the meet and join operators on the lattice (D,�k), respectively;
for details see [22]. The unary connective _ = v, where v 2 D, indicates
whether the truth value assigned to the atom is v. The result of a = v is t

if a’s result is v, and f otherwise. The composition a 6= v returns t only if a’s
result is not v, otherwise it returns f. Furthermore, we formally establish
that BELLOG can represent any n-ary operator Dn! D:

Theorem 6. Given an operator g : Dn ! D and a list of n rule bodies
b1, · · · , bn, there exists a body expression � for a BELLOG composite rule
a � such that

JPKI (a) = g(JPKI (b1), . . . , JPKI (bn)) ,

for all inputs I , and programs P where {a �} ✓ P and a is not the head of
any other rule.

3.5 Proofs
In this section, we prove all theorems stated in this chapter.

3.5.1 BELLOG Semantics
Below, we prove the model JPK of any BELLOG program P is a minimal
supported model. First, we show that the consequence operator TP is
monotone for programs with non-negative literals. Then, we state and
prove several useful lemmas pertaining to the consequence operator TP .
We conclude with the proof of Theorem 1.

Theorem 7. For a BELLOG program P, defined over a domain ⌃, where P
has only non-negative literals in its rules, the operator TP is monotone.
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Proof. Let I1 v I2 for some I1, I2 2 I, where I is the set of all interpretations
defined over the domain ⌃. We show that TP(I1)v TP(I2).

To prove the claim we need to show that for an arbitrary atom a 2A⌃(;),
TP(I1)(a)� TP(I2)(a). By definition of the TP operator,

TP(Ii)(a) =
_
{Ii(~l) | (a ~l) 2 P#},

for i 2 {1, 2}.
• If the sets {Ii(~l) | (a ~l) 2 P#} are the empty set, then TP(I1)(a) =

TP(I2)(a) =
W
{}= f.

• Otherwise, there is at least one rule in P# with a in its head. Note that
the operator ⇠ is monotone, because for any v1, v2 2D, if v1 � v2 then
⇠v1 � ⇠v2. Furthermore, P ’s rules have only non-negative literals
and the operator ^ is monotone. Therefore for any rule body ~l we
have I1(~l) � I2(~l), simply because I1 v I2. By definition of TP , all
rule bodies with a in their heads are combined with the _ operator.
Since _ is monotone it follows that TP(I1)(a)� TP(I2)(a).

This concludes our proof.

We proceed with three lemmas, pertaining to the TP operator, which
we use throughout the remaining proofs in this section. To avoid clutter
in the following proofs, we use the following terminology. For a program
P defined over a domain ⌃, we say that an atom a is an edb atom of P if
a 2AedbP

⌃(;) . Similarly we say that an atom a is an idb atom of P if a 2AidbP
⌃(;).

When the program P is clear from the context, we may write edb atom
instead of edb atom of P. We refer to the set of atoms that appear in the
bodies of P ’s rules as the body atoms of P.

Lemma 2. Given two programs P and P 0 and an interpretation I, TP[P 0(I) =
TP(I)t TP 0(I).

Proof. By definition TP computes each rule independently and then com-
bines their result using the meet _ operator. As the operator _ is associative
and symmetric, we get TP[P 0(I) = TP(I)t TP 0(I).

Lemma 3. Given a program P, and interpretations I1, I2, if I1(a) � I2(a)
for any body atom a of P, then TP(I1 t I2) = TP(I2).

Proof. Since for any body atom a we have I1(a)� I2(a), TP(I1 t I2) com-
putes the body atoms’ truth values according to I2 because (I1 t I2)(a) =
I2(a). Therefore TP(I1 t I2) = TP(I2).
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Lemma 4. Given a program P, and interpretations I1, I2, if for any edb

atom a it holds that I1(a) � I2(a) and for any idb atom b it holds that
I2(b)� I1(b), then TP(I1 t I2) = TP#/I2

(I1).

Proof. By definition of TP we have TP(I1 t I2) = TP#(I1 t I2).
Recall that P# / I2 replaces the edb atoms in P ’s rules by their truth

values according to I2. Since for any edb atom a we have I1(a)� I2(a), it
follows that (I1 t I2)(a) = I2(a). Therefore the computation of TP#(I1 t I2)
always computes the edb atoms’ truth values according to I2, and therefore
TP#(I1 t I2) = TP#/I2

(I1 t I2).
Finally, note that the body atoms of P# / I2 are the idb atoms of P.

Because for any idb atom b of P, we have I2(b) � I1(b), for any body
atom b of P# / I2 we have I2(b) � I1(b). By Lemma 3 it follows that
TP#/I2

(I1 t I2) = TP#/I2
(I1).

Recall that JPK = Mn where M�1 = I
f

and Mi = dTP#i /Mi�1
e t Mi�1 for

0 i  n. Here, Pi are the strata of P, with 0 i  n. Note that the fixed
points dTP#i /Mi�1

e are well-defined due to Theorem 7.

Lemma 5. Given a stratified BELLOG program P, the interpretation JPK is a
supported model of P.

Proof. By Lemma 1, the interpretation JPK is a supported model of P iff
JPK is a fixed point of TP .

To show that JPK is a fixed point of TP , we use induction to prove that
TPk[···[P0

(Mk) = Mk holds for 0 k  n. Note that TP = TPn[···[P0
.

Base Case For the base case, k = 0, we have M0 = dTP#0 /If

e t I
f

. Since no

edb of P0 is the head of a rule in P#0 / I
f

, any edb atom a of P0 is mapped
to f in dTP#0 /If

e, thus dTP#0 /If

e(a) � I
f

(a). Also, for any idb atom b of P0,
I
f

(b)� dTP#0 /If

e(b). By Lemma 4, it follows that

TP0
(M0) = TP0

(dTP#0 /I
f

e t I
f

) = TP#0 /If

(dTP#0 /If

e) = dTP#0 /If

e (3.1)

Since M0 = dTP#0 /If

e t I
f

= dTP#0 /I
f

e, we conclude that TP0
(M0) = M0.

Inductive Step Assume that for a given 0  k < n, TPk[···[P0
(Mk) = Mk.

We prove that TPk+1[···[P0
(Mk+1) = Mk+1.

By Lemma 2, we can now rewrite TPk+1[···[P0
(Mk+1) to

TPk+1
(Mk+1)t TPk[···[P0

(Mk+1) (3.2)
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Recall that Mk+1 = dTP#k+1/Mk
e tMk. We first simplify TPk+1

(Mk+1). Since no

edb atom of Pk+1 is the head of a rule in P#k+1 /Mk, any edb atom a of Pk+1
is mapped to f in dTP#k+1/Mk

e, and thus dTP#k+1/Mk
e(a)� Mk(a). Also, for any

idb atom b of Pk+1 we have Mk(b) = f� dTP#k+1/Mk
e(b). By Lemma 4,

TPk+1
(Mk+1) = TPk+1

(dTP#k+1/Mk
e tMk) =

= TP#k+1/Mk
(dTP#k+1/Mk

e) = dTP#k+1/Mk
e (3.3)

We second simplify TPk[···[P0
(Mk+1). Due to stratification, any body atom b

of Pk[· · ·[P0 is not the head of a rule in Pk+1 and therefore b is mapped to f

in dTP#k+1/Mk
e; thus dTP#k+1/Mk

e(b)� Mk(b) for any body atom b of Pk[· · ·[P0.
Now, by Lemma 3, and the induction hypothesis, we get:

TPk[···P0
(Mk+1) = TPk[···[P0

(dTP#k+1/Mk
e tMk) =

= TPk[···[P0
(Mk) = Mk (3.4)

From (3.2), (3.3), and (3.4) it follows that TPk+1[···[P0
(Mk+1) = dTP#k+1/Mk

et
Mk, and therefore TPk+1[···[P0

(Mk+1) = Mk+1.

Theorem 1 Given a stratified BELLOG program P, JPK is a minimal sup-
ported model of P.

Proof. JPK is a supported model of P by Lemma 5. We claim that JPK is
minimal. We use induction to show that for any interpretation I , if I v Mk
and TP0[···[Pk

(I) = I then I = Mk for 0  k  n. Note that the case k = n
proves the claim.

Base Case For the base case, assume that I v M0 and TP0
(I) = I for

some interpretation I . We prove that I = M0. Since no edb atom of P0
appears in the head of a rule in P0, for any edb atom a of P0 we have
I(a) = TP0

(I)(a) = f. That is, I(a) = f � I
f

(a) for any edb atom a of P0.
For any idb atom b of P0 we have I

f

(b) = f � I(b). Now, by Lemma 4
we get TP0

(I) = TP0
(I t I

f

) = TP#0 /If

(I) = I . Hence, I is a fixed point of
TP#0 /If

. From M0 = dTP#0 /If

et I
f

= dTP#0 /If

e, it follows that M0 is the least fixed
point of TP#0 /If

. Thus, M0 v I . From the assumption I v M0, it then follows
that I = M0.
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Inductive Step Assume that for a given 0 k < n and any interpretation
J , if J v Mk and TP0[···[Pk

(J) = J , then J = Mk. We prove that I = Mk+1
for any interpretation I where I v Mk+1 and TP0[···[Pk+1

(I) = I .
It is immediate that I can be uniquely decomposed into I = Ik t Ik+1

such that Ik maps all idb atoms of Pk+1 to f and Ik+1 maps all edb atoms of
Pk+1 to f. By Lemma 2:

TP0[···[Pk
(Ik t Ik+1)t TPk+1

(Ik t Ik+1) = Ik t Ik+1 (3.5)

Note that TP0[···[Pk
(Ik t Ik+1) maps all idb atoms of Pk+1 to f and TPk+1

(Ik t
Ik+1) maps all edb atoms of Pk+1 to f. Therefore TP0[···[Pk

(Ik t Ik+1) = Ik
and TPk+1

(Ik t Ik+1) = Ik+1, by the uniqueness of the decomposition.
In the following, we show that (a) Ik = Mk and (b) Ik+1 = dTPk+1/Mk

e.
These two entail I = Mk+1, thus completing the proof.

Part (a). For any edb atom a of Pk+1 we have Ik+1(a) = f � Ik(a), simply
because only edb atoms of Pk+1 can appear in the rule bodies of P0[ · · ·[Pk.
Now by Lemma 3 we get TP0[···[Pk

(Ik t Ik+1) = TP0[···[Pk
(Ik). That is, Ik is a

fixed point of TP0[···[Pk
:

TP0[···[Pk
(Ik) = Ik (3.6)

Recall that I = Ikt Ik+1 v Mk+1 = MktdTPk+1/Mk
e, by the assumption. If

a is an edb atom of Pk+1, then (Ikt Ik+1)(a) = Ik(a)� (MktdTPk+1/Mk
e)(a) =

Mk(a); otherwise a is an idb atom of Pk+1 and we have Ik(a) = Mk(a) = f.
Therefore,

Ik v Mk. (3.7)

From 3.6, 3.7, and the induction hypothesis, it follows that Ik = Mk.

Part (b). With an argument similar to Part (a), it follows that Ik+1 v
dTPk+1/Mk

e. Then, by replacing Ik with Mk in TPk+1
(Ik t Ik+1) = Ik+1 we get

TPk+1
(Mk t Ik+1) = Ik+1. For any edb atom a of Pk+1 we have Ik+1(a) =

f � Mk(a), and Mk(b) = f � Ik+1(b) for any idb atom b of Pk+1. Applying
Lemma 4 we get TPk+1

(Mk t Ik+1) = TPk+1/Mk
(Ik+1) = Ik+1. That is, Ik+1 is a

fixed point of TPk+1/Mk
. Since dTPk+1/Mk

e is the least fixed point of TPk+1/Mk

and Ik+1 v dTPk+1/Mk
e, we have Ik+1 = dTPk+1/Mk

e.
This conclude our proof.

3.5.2 Semantic Link between Datalog and BELLOG
We first define Datalog’s syntax and semantics before proceeding with the
proof of the theorem.
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Syntax of Stratified Datalog We define the syntax of stratified Datalog
as a syntactic restriction of BELLOG: A stratified Datalog program is any
stratified BELLOG program P where the predicates ?,>, and the operator
⇠ do not appear in P ’s rules.

In the following we fix a stratified Datalog program P, with strata
P0, · · · , Pn, defined over a domain ⌃.

Semantics of Stratified Datalog We adopt the semantics of stratified
Datalog programs from [10]. The set of Datalog interpretations is J =
P(A⌃(;)). Unlike BELLOG interpretations, which maps ground atoms to
BELLOG’s truth values, a Datalog interpretations is a set of ground atoms.
The structure (J ,✓,[,\,;,A⌃(;)) is a complete lattice. Define T D

P : J 7! J
as

T D
P (I) = {a 2A⌃(;) | 9(a l1, · · · , ln) 2 P#. 8l 2 {l1, · · · , ln}. I |=D li}

where I |=D l iff
(1) l is an atom a and a 2 I , or
(2) l is a negative literal ¬a and a 62 I .
The powers of the operator T D

P are defined as:

T D
P "0 (I) = I

T D
P "i+1 (I) = T D

P (T
D
P "i (I))[ T D

P "i (I), for i > 0

The model of P, denoted with JPKD is M D
n , where M D

�1 = ; and M D
i =

T D
Pi
"! (M D

i�1), for 0 i  n.
We link Datalog interpretations to BELLOG interpretations with the

function ↵ : J 7! I, defined as ↵(J)(a) = t if a 2 J , and ↵(J)(a) = f

otherwise.

Theorem 8. Given a stratified Datalog program P, ↵(JPKD) = JPK.
Proof. We prove using induction that ↵(M D

k ) = Mk for �1 k  n.

Base Case For the base case, we have ↵(M D
�1) = ↵(;) = I

f

= M�1.

Inductive Step Assume that ↵(M D
k ) = Mk, for some k where 0 k < n.

The definition of the operators _, ^, and ¬, if the predicates ?,> and the
operator ⇠ do not appear in Pk+1’s rules then the truth values ? and >
do not appear in TPk+1

(I) for any interpretation I . Therefore to show that
↵(M D

k+1) = Mk+1, it is sufficient to prove that a 2 M D
k+1 iff Mk+1(a) = t, for

any atom a.
We proceed by case distinction on atoms.
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• Assume that a is an edb atom of Pk+1. Then, for any set of atoms
from Datalog’s domain J 2 J , a 62 T D

Pk+1
(J) because a does not

appear in the head of any rule in Pk+1. Therefore a 2 M D
k+1 iff a 2

M D
k . Similarly, for any interpretation J 2 I, TP#k+1/Mk

(J)(a) = f, and
therefore Mk+1(a) = t iff Mk(a) = t. From the induction hypothesis,
we conclude that a 2 M D

k+1 iff Mk+1(a) = t.

• Assume that a is an idb atom of Pk+1. For any idb atom a, a 62 M D
k

and Mk(a) = f. Therefore, a 2 M D
k+1 iff a is derived in some iteration

of T D
Pk+1
"i (M D

k ). Similarly, Mk+1(a) = t iff dTP#k+1/Mk
e(a) = t. By

the definition of the operators T D
Pk+1

and TP#k+1/Mk
, a 2 T D

Pk+1
(I) iff

TP#k+1/Mk
(↵(I))(a) = t, for any I 2 J . From the induction hypothesis

Mk = ↵(M D
k ), and because at every iteration the operators T D

Pk+1
and

TP#k+1/Mk
derive the same idb atoms, we conclude that a 2 M D

k+1 iff
Mk+1(a) = t.

This concludes our proof.

3.5.3 Independence of Stratification
We prove that given two different stratifications of a program P, the itera-
tive fixed point construction defined in §3.1 results in the same minimal
supported model for P.

Given a stratification P0, · · · , Pn of a program P, we write MPi
for the

model of P0 [ · · ·[ Pi obtained using the iterative fixed point construction;
see §3.1. A predicate symbol p is defined in Pi if all rules with p in their
heads are in Pi . Given a program P, a predicate symbol p refers-to q iff
there is a rule r in P such that p appears in r ’s head and q appears in r ’s
body. Let p depends-on q be the transitive closure of the refers-to relation.
A stratum Pi is minimal iff for any two predicate symbols p, q 2 P defined
in Pi , p depends-on q iff q depends-on p. A stratification P0, · · · , Pn is refined
iff all Pi are minimal, with 0 i  n. It is straightforward to see that given
two different refined stratifications P0, · · · , Pn and P 00, · · · , P 0m, n = m and
for any stratum Pi , there is a stratum P 0j such that Pi = P 0j , for 0  i  n
and 0 j  m, and vice versa.

The proof proceeds as follows. We will show that any stratification
P0, · · · , Pn can be transformed into a refined stratification P 00, · · · , P 0m such
that MPn

= MP 0m
. Then we will prove that for any two refined stratifications

the iterative fixed point construction results in the same model. These two
points establish that the computed model for P is independent to how the
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rules are partitioned into strata. We start with the following lemma which
allows us to partition the set of rules of a non-minimal stratum:

Lemma 6. Given a program P where all negative literals in P are constructed
from predicate symbols in edbP , an input I , and a stratification P1, P2 of P, we
have M = M2 where M = dTP#/I et I , M1 = dTP#1 /I

et I , M2 = dTP#2 /M1
etM1.

Proof. We proceed by case distinction on the atoms a.

• Case a is an edb atom of P. Because M(a) = I(a), and M2(a) =
M1(a) = I(a), it is immediate that M(a) = M2(a).

• Case a is an idb atom of P1. Due to the stratification requirements,
all rules with a in their heads are contained in P1. It follows that
M2(a) = M1(a) = dTP#1 /I

e(a). Since no atoms defined in P2 appear
in the rule bodies in P1, we get M(a) = dTP#/I e(a) = dTP#1 /I

e(a).
Therefore M(a) = M2(a).

• Case a is an idb atom of P2. For M(a) we have M(a) = dTP#/I e(a),
and for M2(a) we have M2(a) = dTP#2 /M1

e(a). Any idb atom of P1 has
the same truth value in M1 and dTP#/I e(a); see previous case. We can
thus subtract the rules of P1 from P and replace the truth values of
idb atoms of P1 according to M1, i.e. we get dTP#/I e(a) = dTP#2 /M1

e(a).

This concludes our proof.

We now prove that any two refined stratifications result in the same
model for P.

Theorem 9. Given two refined stratifications P0, · · · , Pn and P 00, · · · , P 0n, we
have MPn

= MP 0n
.

Proof. We use induction to prove that for any atom a, if a is defined in
P0 [ · · · [ Pi and P 00 [ · · · [ P 0j then MPi

(a) = MP 0j
(a), for 0  i  n and

0 j  n. Note that the case for i = j = n completes our proof.

Base Case For the base case, let a is defined in P0 and P 00; otherwise
the claim obviously holds. It is immediate that MP0

(a) = MP 00
(a) because

P0 = P 00.
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Inductive Step Assume that for a given 0  i < n and 0  j < n, if a is
defined in P0 [ · · ·[ Pi and P 00 [ · · ·[ P 0j then MPi

(a) = MP 0j
(a). We claim

that for any atom a, if a is defined in P0 [ · · ·[ Pi+1 and P 00 [ · · ·[ P 0j , then
MPi+1

(a) = MP 0j
(a). The inductive step for j + 1 is symmetric.

Consider an atom a. Let a be defined in P 00[· · ·[P 0j . Note that otherwise
the claim obviously holds.

Assume a is defined in P0 [ · · ·[ Pi , then MPi+1
(a) = MPi

(a) because no
rules with a in the head appear in Pi+1, The claim holds by the induction
hypothesis.

Assume a is not defined in P0 [ · · ·[ Pi . Let a be defined in P0 [ · · ·[
Pi+1. Note that otherwise the claim obviously holds. By the stratification
requirements, a is defined in exactly one stratum. Let P 0k, with 0 k  j,
be the stratum where a is defined in P 00 [ · · ·[ P 0j . Since the stratifications
are refined, it follows that Pi+1 = P 0k. Due to the stratification requirements,
all edb atoms of Pi+1 and P 0k are defined in previous strata, and by the
induction hypothesis they are mapped to the same truth values according
to MPi

and MP 0k�1
. Therefore MPi+1

(a) = MP 0k
(a).

We show that any stratification can be transformed into a refined stratifi-
cation. Take a stratification P0, · · · , Pn and a stratum Pi that is not-minimal,
with 0 i  n. Let Pi = P1

i [P2
i such that P1

i , P2
i is a stratification of Pi . The

iterative fixed point construction applied on P0, · · · , Pi�1, P1
i , P2

i , Pi+1, · · · , Pn
results in the same model for P, because MP2

i
= MPi

due to Lemma 6. We
successively partition the non-minimal strata to obtain a refined stratifica-
tion with the same model as MPn

.
It follows that any stratification can be transformed into a refined one.

Now, by Lemma 9 the following theorem is immediate.

Theorem 10. Given two stratifications P0, · · · , Pn and P 00, · · · , P 0m, of a strat-
ified program P, MPn

= MP 0m
.

3.5.4 BELLOG Extensions
In this Section, we prove all theorems pertaining to BELLOG’s syntactic
extensions.

Termination To prove that the translation function T , which maps a
composite rule to a set of basic rules, terminates, we associate a BELLOG
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rule r with the measure µ(r), where µ is inductively defined as:

µ(a body) = µ(body)
µ(l1, · · · , ln) = 1
µ(¬body) = 1+µ(body)
µ(⇠body) = 1+µ(body)

µ(body1 ^ body2) = 1+µ(body1) +µ(body2)

Recall that given a BELLOG program P with composite rules, the program
P is translated into a program P 0 =

S
r2P T (r) with basic rules, where T

is the recursive function that maps rules to sets of basic rules. To show that
this translation terminates, we state and prove the following Lemma.

Theorem 11. Given a rule r, the recursive function T (r) terminates.

Proof. The proof proceeds by showing that given a rule r, 8r 0 2 T (r). (µ(r) =
µ(r 0) = 1)_ (µ(r 0)< µ(r)). By definition of µ, for any rule r, µ(r)� 1.

Assume µ(r) = 1. By definition of µ, r must be a basic rule a  
l1, · · · , ln. T (r) terminates simply because T (a  l1, · · · , ln) = {a  
l1, · · · , ln}.

Assume µ(r) > 1. By definition of µ, r must be a composite rule. By
definition of T , the intermediate step of T (r) is a set of rules that contains
one basic rule and one or two fresh rules, and then T is recursively applied
on the fresh rules. We show that µ(r 0) < µ(r), where r 0 is a fresh rule
generated by T . We proceed by case distinction on r:

• Case r = a ¬body. T generates one fresh rule r 0 = a
fresh

 body.
By definition of µ we have µ(r) = 1+µ(body) and µ(r 0) = µ(body),
thus µ(r 0)< µ(r).

• Case r = a  ⇠body. Similarly to the case r = a  ¬body, T
generates one fresh rule r 0 = p

fresh

 body, and we get µ(r 0)< µ(r).

• Case r = a  body1 ^ body2. T generates two fresh rules r1 =
p

fresh1

 body1 and r2 = p
fresh2

 body2. Because µ(r) = 1 +
µ(body1) + µ(body2), µ(r1) = µ(body1), and µ(r2) = µ(body2), we
get µ(r1)< µ(r) and µ(r2)< µ(r).

This completes our proof.

Stratification of Well-formed BELLOG Programs We now prove that
well-formed BELLOG programs are translated into stratified BELLOG pro-
grams.
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Theorem 5 Given a well-formed BELLOG program P with composite rules,
the translated program P 0 =

S
r2P T (r) is stratified.

Proof. The definition of a well-formed program extends the conditions of a
stratified program. Therefore, any well-formed program P that contains
only basic rules is stratified.

Let r 2 P be a rule of a well-formed program P, and P0, · · · , Pn are the
partitions that satisfy the conditions of a well-formed program. Assume
r 2 Pi for some 0  i  n. By definition of T , the intermediate result of
applying T on r is a set of rules R containing one basic rule and one or two
fresh rules. We claim that (P \ {r})[ R is well-formed. Since T is applied
on P ’s rules to obtain a program P 0 with basic rules, the claim implies that
P 0 is well-formed, thus stratified, which completes our proof.

We prove that (P \ {r}) [ R is well-formed by case distinction on the
rule r.

• Case r = a l1, · · · , ln. R = {a l1, · · · , ln}, and clearly the parti-
tions P0, · · · , Pi�1, (Pi \ {r})[ {a l1, · · · , ln}, Pi+1, · · · , Pn satisfy the
conditions of a well-formed program, because Pi = (Pi \ {r})[ {a 
l1, · · · , ln}.

• Case r = a  ¬body. R = {a  ¬p
fresh

, p
fresh

 body}, and the
partitions

P0, · · · , Pi�1, {p
fresh

 body}, (Pi \ {r})[ {a ¬p
fresh

}, Pi+1, · · · , Pn

satisfy the conditions of a well-formed program, because all rules with
a’s predicate symbol in the heads are contained in (Pi \ {r})[ {a 
¬p

fresh

}, and all predicate symbols that appear in body can only
appear in the heads of the rules contained in P0 [ · · ·[ Pi�1.

• Case r = a  ⇠body. This case is analogous to the case r = a  
¬body.

• Case r = a  body1 ^ body2. R = {(a  p
fresh1

, p
fresh2

), (p
fresh1

 
body1), (pfresh2

 body2)}. The partitions

P0, · · · , Pi�1, {(p
fresh1

 body1), (pfresh2

 body2)},
(Pi \ {r})[ {a p

fresh1

, p
fresh2

}, Pi+1, · · · , Pn

satisfy the conditions of a well-formed program, because all rules
with a’s predicate symbol in the heads are contained in (Pi \ {r})[
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{a p
fresh1

, p
fresh2

}, and all predicate symbols that appear in body1
and body2 can only appear in the heads of the rules contained in
P0 [ · · ·[ Pi�1.

Theorem 6 Given an operator g : Dn ! D and a list of n rule bodies
b1, · · · , bn, there exists a body expression � for a BELLOG composite rule
a � such that

JPKI (a) = g(JPKI (b1), . . . , JPKI (bn)) ,

for all inputs I , and programs P where {a �} ✓ P and a is not the head of
any other rule.

Proof. Fix an arbitrary g : Dn! D, for some n > 0, and let b1, · · · , bn be
the list of rule bodies.

For each (d1, · · · , dn) 2Dn, we construct the composite body

�d1,··· ,dn
:= (b1 = d1 ^ · · ·^ bn = dn)

t7! g(d1, · · · , dn)

Let the body � of the rule a � be the disjunction of composite bodies
�d1,...,dn

for all possible (d1, · · · , dn) 2Dn. That is,

� =
_
{�d1,··· ,dn

| (d1, · · · , dn) 2Dn}

By construction, given an input I , exactly one �d1,...,dn
, namely the one

where JPKI(bi) = di for 1  i  n, evaluates to t; all others evaluate to f.
The body � thus evaluates to g(d1, · · · , dn).

Finally, we remark that for any well-formed program P where a does
not appear in the head of any rule in P, the program P [ {a  �} is
well-formed.

3.5.5 Complexities of Decision Problems
In this section we show the complexities of BELLOG’s decision problems.
Given a program P, the maximum arity of predicates in P and the set of
variables that appear in P are fixed. The input size for BELLOG’s decision
problems is thus determined by the number of predicate symbols in P ,
the number of rules in the program P, and the number of constants in the
domain ⌃.
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Lemma 7. Given a set P of ground rules with non-negative literals, the
complexity of computing the least fixed point of TP belongs to the complexity
class PTIME.

Proof. Following Kleene’s fixed point theorem, we can compute the least
fixed point dTPe as T! where T0 = I

f

and T i+1 = TP(T i) for i � 0; recall
that TP is monotone by Theorem 7, and due to the finiteness of the lattice
of interpretations monotonicity of TP entails its continuity.

We claim that the operator TP needs to be iteratively applied to I
f

at
most 3 ⇥ |A⌃(;)| times (to compute the least fixed point dTPe). This is
because in each application of TP at least one ground atom changes its
truth value to a value strictly higher in the lattice (D,�); otherwise, a fixed
point has been reached. Since the height of the lattice (D,�) is 3, the
number of iterated applications of TP is bound by 3⇥ the number of ground
atoms in A⌃(;). This proves the aforementioned claim.

The number of ground atoms in A⌃(;) is at most |P |⇥ |⌃|c , where c is
the fixed maximum arity of the predicate symbols in P . We conclude that
the number of iterated applications of TP is at most 3⇥ |P |⇥ |⌃|c .

Finally, the number of steps taken when computing TP(I), for any inter-
pretation I , is linear in the number of (ground) rules in P. Consequently,
the complexity of computing the least fixed point dTPe (under the assump-
tion that the maximum arity of the predicates in P is fixed) is polynomial
in the number of predicate symbols in P , the number of constants in ⌃,
and the number of rules in P.

Theorem 2 The query entailment problem for stratified BELLOG programs
belongs to the complexity class PTIME.

Proof. The query entailment problem P |=I
⌃ a can be decided by construct-

ing P ’s model JPK and then checking whether, or not, JPK(a) = t holds.
To compute the model JPK of P, we must compute the interpretation

Mi associated to each stratum Pi . Consider a stratum Pi . To compute
Mi = dTP#i /Mi�1

etMi�1, we need to compute the least fixed point of TP#i /Mi�1
;

recall that this operator is continuous.
The number of rules in P#i /Mi�1 is bounded by |Pi |⇥ |⌃|k, where |Pi |

is the number of (non-ground) rules in Pi , and k is the fixed number of
variables that appear in Pi ’s rules. By Lemma 7, Mi can be computed
in PTIME. Since the number of strata of P is no larger than the number of
rules in P, we conclude that the complexity of computing the model JPK,
and in turn the complexity of deciding query entailment, is in PTIME.
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Theorem 3 The query validity problem for stratified BELLOG programs
belongs to the complexity class CO-NP-COMPLETE.

Proof. First, we show that the query validity problem is in CO-NP. The com-
plement of P |=⌃ a, namely P 6|=⌃ a, can be decided by non-deterministically
choosing an input I such that P 6|=I

⌃ a. By Theorem 2, the complexity of
deciding P |=I

⌃ a belongs to PTIME, and therefore the complexity of deciding
P 6|=⌃ a belongs to the complexity class NP. Therefore, the complexity of
deciding P |=⌃ a belongs to CO-NP.

Second, we reduce the proposition validity decision problem, which
belongs to CO-NP-COMPLETE, to query validity. Take an instance of propo-
sitional validity �, where � is a propositional formula constructed with
propositions, ^, and _. Let P = {a  �} be a BELLOG program, where
a does not appear in �. Clearly P is well-formed. It is immediate that
P |=⌃ a iff � is valid in any interpretation.

Complexity of all-domains query validity In the following we prove
that the all-domains query validity decision problem is decidable for unary-
edb BELLOG programs.

We fix a stratified program P with strata P0, · · · , Pn, and with unary
predicate symbols in edbP . We also fix a query a. In the following, we
assume, without loss of generality, that the constants appearing in the
query a also appear in P. Let ⌃P be the set of constants that appear in
P. A domain ⌃ ✓ C is suitable for P iff ⌃P ✓ ⌃, where C is the infinite
countable set of constant symbols. Let I be the set of all interpretations
over all suitable domains for P. Each interpretation I 2 I is associated with
a domain ⌃ over which I is defined. We write dom(I) to denote I ’s domain.

We define a constant type as a four-way partitioning (t
f

, t?, t>, t
t

) of the
predicate symbols in edbP . Let T be the finite set of all possible constant
types. Given an interpretation I 2 I with dom(I) = ⌃, a constant c 2 ⌃
is of type (t

f

, t?, t>, t
t

) iff 8v 2 D. 8p 2 tv . I(p(c)) = v. We write ⌧(c, I)
to denote the type of the constant c according to I . For c, c0 2 dom(I),
write c ⌘ c0 iff ⌧(c, I) = ⌧(c0, I). It is straightforward that the equivalence⌘
is a congruence, c ⌘ c0 =) TP(I)p(· · · , c, · · · ) = TP(I)p(· · · , c0, · · · ), for
any p 2 P and any input I .

Let I 2 I and define ⌃I = ⌃P [ {[c]⌘ | c 2 dom(I) \⌃P}. Now, for any
interpretation J defined over ⌃I , we say I and J agree iff 8c 2 ⌃P . ⌧(c, I) =
⌧(c, J) and 8c 62 ⌃P . ⌧(c, I) = ⌧([c]⌘, J). We claim JPKI (a) = JPKJ (a).

Lemma 8. JPKI (a) = JPKJ (a).
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Proof. The proof is immediate by induction on the minimal fixed points of
the strata of P. The only non-trivial observation pertains to that any c 2
dom(I) \⌃P and the corresponding [c]⌘ 2 ⌃I (recall that dom(J) = ⌃I)
have the same constant types.

Note that for any I 2 I, the set ⌃I can have finitely many elements. This
is because ⌃P is finite and there are finitely many constant types. Therefore,
there are finitely many interpretations J that agree with the infinitely many
interpretations of I. The proof of decidability therefore is immediate now:
one needs to answer finitely many problems of the form P |=J

dom(J) a to
answer P |= a. These problems are decidable, due to Theorem 3. The proof
of the following theorem is now immediate.

Theorem 12. The all-domains query validity problem for unary-edb BELLOG
programs is decidable.

Theorem 4 The all-domains query validity problem for unary-edb BELLOG
programs belongs to CO-NEXP.

Proof. The complement of P |= a can be decided by non-deterministically
choosing an input I such that P 6|=I

dom(I) a. Due to Lemma 8, instead of
checking P 6|=I

dom(I) a we can check P 6|=J
⌃I

a for some J where I and J agree.
The size of ⌃I is bounded by 4|edbP |+ |⌃P |, because there are at most 4|edbP |

constant types. Therefore, by Theorem 2, the complexity P 6|= a is in NEXP.
The complexity of P |= a is thus CO-NEXP.





Chapter 4

BELLOG Access Control Framework

In this chapter, we illustrate how the BELLOG language can be used to
specify and verify decentralized composite policies, which are policies that
require both authority delegation and policy composition. To illustrate
these two concepts and the tight coupling between them, we present a
simple grid system example, which we use throughout this chapter to show
how we use BELLOG to specify and verify decentralized composite policies.
We present syntactic extensions of BELLOG that ease the specification of
common policy composition and authority delegation idioms. Examples
include permit-override, only-one-applicable, agreement, hand-off trust ap-
plication, transitive delegation, etc. We present a policy analysis framework
for verifying policies written in BELLOG, and demonstrate how different pol-
icy analysis questions are used to reason about a policy’s behavior in some
or all system configurations. We also show how generic access-control re-
quirements, such as “the policy must not deny all requests” and “all conflicts
must be handled”, can be encoded within our policy analysis framework.
Finally, we present a PDP for BELLOG policies and evaluate its performance
and scalability. Our results indicate that BELLOG policies can be enforced
efficiently.

Organization We present our grid example in Section 4.1. We show how
BELLOG is used to specify decentralized composite policies in Section 4.2.
We illustrate the verification of BELLOG policies in Section 4.3. In Sec-
tion 4.4, we present our BELLOG PDP and the experiments we conducted
with it.

4.1 Grid System Example
Consider a grid system that stores files for multiple research projects. Each
project has one or more project leaders. The grid system has one PDP that
decides access for all files. We depict the example in Figure 4.1. The access-
control requirements, inspired by policies in the Swedish Grid Initiative
(SweGrid) system [81], are:

R1: A project leader controls access to the project’s files and folders, and
can delegate these rights.
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Subject Grid System

Project
Leaders

access

Access-control
System

control

Policies issue

enforced
by

Figure 4.1: The enforcement model for our running example.

R2: If there is a conflicting decision among the project leaders for a given
request, then grant access only to requests made by the project leaders.

R3: If no policy applies to a given request, then grant the request if its
target is a public project folder, otherwise deny it.

R4: Access rights are recursively extended to sub-folders.

These requirements demonstrate how modern access-control systems
require both authority delegation and policy composition features. In
particular, requirements R1 and R4 require authority delegation, and R2-3
require policy composition. Existing composition-only policy language,
e.g. such as XACML v2.0, and delegation-only policy languages, such as
KeyNote 2 [25], cannot be used to specify the policy for this example.

The example also exemplifies the tight coupling between the use of
delegation and composition in decentralized composite policies. The PDP
must first compute the delegations for each folder according to R1, then
compose the access rights for each folder according to R2 and R3, and
finally extend the policy decisions to sub-folders according to R4. Note that
R4 can be encoded as delegation from a parent folder to its children. Such
couplings of delegation and composition idioms prevent the decentralized
composite policies from being split into and evaluated as two independent,
delegation and composition, parts.

We remark that such decentralized composite access-control systems are
commonplace; for example, they are also found in electronic health record
management systems [13], highly distributed Web services [11], physical
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access-control systems [61], and so forth. To cater for such decentralized
composite access-control systems, the industry has recently released the
XACML v3.0 standard.

4.2 Policy Specification
We first introduce the basic building blocks, namely attributes and delega-
tions, and then we demonstrate how to encode decentralized composite
policies in BELLOG, including the policy of our running example. We
conclude with a discussion of BELLOG’s more intricate features for policy
specifications.

We assume that the PDP’s domain database contains all constants that
appear in the policies, attributes, and access requests, as well as any other
additional constants which may denote roles, file names, etc.

4.2.1 Attributes and Delegations
Attributes We represent attributes with predicate symbols. We take the
first argument of an attribute as the issuing principal’s identifier. For ex-
ample, hr(ann, fred) denotes that, according to Ann, Fred works in the
Human Resources department. To highlight the attribute’s issuer, we may
write ann:hr(fred) instead of hr(ann, fred). For brevity, we omit prepending
admin to the attributes issued by the administrator.

The truth value of an attribute a is t if it is present at the PDP. Recall
that the PDP obtains attributes from subjects, PIPs, and its local storage, as
described in our system model in Chapter 2. An attribute’s truth value is f

if it is not present at the PDP. In short, the attributes are by default assumed
not to exist if they are not present. For some policies it may however be
more appropriate to assume that a given attribute (e.g. an attribute that
is provided by the subject) is missing (?) rather than non-existent (f).
BELLOG can accommodate for such policies too. For example, given an
attribute a, we can define its assume-missing counterpart a? with the rule
a?  a _?.

Delegations Subjects can delegate authority over attributes to other sub-
jects. Attribute delegations are specified with BELLOG rules where the rule’s
head is the delegated attribute and the rule body is the delegation condition.
For example, with the rule

ann:researcher(S) ann:hr(S0), S0 : lab-card(S) ,
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Ann asserts that a subject S is a researcher if a subject S0 with the at-
tribute hr asserts that S is a researcher. That is, Ann delegates the attribute
researcher to subjects who have the attribute hr. For example, if Fred
has the attribute hr and issues fred : lab-card(dave), then the PDP derives
ann:researcher(dave).

Delegations may require non-monotonic operators. Imagine that Ann
stores at the PDP a list of revoked subjects, and she will not accept del-
egations of the attribute researcher for revoked subjects. We extend her
delegation rule as

ann:researcher(S) ann:hr(S0), S0 : lab-card(S),¬ann:revoked(S) .

Non-monotonic operators must be used with caution when applied to the
attributes that subjects supply. This is because a subject may gain access if
she can withhold the attribute revoked from the PDP; cf. [36]. In Section 4.3,
we return to this issue and show how one can verify whether a policy is
monotone with respect to the attributes provided by the subject.

BELLOG’s composite rules can be used to express more complex delega-
tion conditions. In our grid example, the administrator may for instance
require two project leaders — Ann and Fred — to agree on the pub file
attribute, denoting that a file is public. This is written as

pub-agree(F) ann:pub(F)� fred:pub(F) ,

where � is the maximal agreement operator. Note that the administrator
derives a conflict if the principals disagree whether a file is public, be-
cause f� t = >. This conflict can be resolved using the conflict-override
composition operator, which we define shortly.

As illustrated, BELLOG can specify standard attribute delegations, as well
as non-monotonic delegation idioms which cannot be captured in existing
Datalog-based languages. There are other delegation idioms that BELLOG
can express, but we omit their presentation. For example, the hand-off
idiom [4], where a principal delegates authority over all attributes, can
be expressed in BELLOG by representing attributes with a predicate says
where one of the arguments denotes an attribute name.

4.2.2 Policies
We now explain how we specify decentralized composite policies using
BELLOG rules and access decisions are represented using BELLOG’s truth
values.
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Policy Decisions We take the t, f,?, and > elements as, respectively,
grant, deny, gap, and conflict policy decisions. The gap decision indicates
that a policy neither grants nor denies a request, and conflict indicates
that a policy can both grant and deny a request. The partial ordering �
in Figure 3.1 defines the permissiveness of policy decisions. The meet ^
and join _ operators on the lattice (D,�) correspond to the standard
deny-override and permit-override operators for composing policy decisions.
The meet ⌦ and join � operators on the lattice (D,�k) correspond to
the maximal agreement and minimal agreement composition operators;
see [44].

Policies Policies are specified using BELLOG rules. A policy’s decisions
are represented by a designated predicate symbol. In our grid scenario,
we use the predicate symbol pol to represent policy decisions: the atom
Prin : pol(S, F) denotes the decision of the policy issued by Prin, for the
subject S accessing the file F . The project leader Piet may, for example,
issue the policy

piet:pol(S, F) piet:researcher(S),piet:prj-file(F) ,

which grants his researchers S access to any project files F .
An access request for a policy P is a pair (I , q), where I is an input for

P and q is a ground policy atom. The input I defines which attributes are
present at the PDP. Recall that attributes can be pushed to the PDP in the
form of credentials, stored locally at the PDP, and fetched from PIPs; see
Chapter 2. Furthermore, the input I is defined over a domain ⌃, where the
constants in ⌃ identify subjects, resources, and other relevant elements.
The policy atom q identifies which subject requests access to which resource.
For example, pol(fred, foo.txt) represents that Fred requests access to the
file foo.txt.

Definition 2. Given a policy P and an access request (I , q), P grants (I , q) if
P |=I

⌃ q.

When the PDP derives t for the atom piet:pol(fred, foo.txt), the PDP in-
terprets this as “Piet’s policy grants Fred access to the file foo.txt”. Similarly,
Ann, who is a project leader, may issue the policy

ann:pol(ann, F) ann:prj-file(F)
ann:pol(S, F) ann:pol(S0, F), S0 :give-access(S, F) ,
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where the first rule grants Ann access to any project file F , and the second
rule states that any subject S0 with access to F may delegate this access
to any subject S by issuing a give-access attribute. Then, Ann may provide
access to Fred by issuing ann:give-access(fred, foo.txt); Fred too may issue
fred:give-access(dave, foo.txt) to further delegate to Dave access to foo.txt.

A principal can issue multiple policies for different subjects and re-
sources; we insist however that each principal has one designated root
policy. A root policy combines all of the principal’s sub-policies and possibly
other principals’ policies. We fix the atom Prin : pol(Sub, File) to denote
Prin’s root policy. Principals may choose any other predicate symbols to
denote decisions of their sub-policies.

Composite Policies A policy can also combine the decisions of a set of
sub-policies; we call these composite policies. A composite policy specified
with a basic BELLOG rule, for example, implicitly combines the sub-policies’
decisions using the deny-override ^ operator. Composite policies that com-
bine their sub-policies’ decisions with more complex composition operators,
such as the gap- and conflict-override operators, are specified with BELLOG
composite rules.

In addition to ^, BELLOG’s operators ¬, ⇠, _, ⌦, � can also be employed
as composition operators. To complement these operators, in Figure 4.2 we
define further conditional and override operators for composing policies.
The ternary operator _ / _ . _ is the if-then-else operator. The result of the
composition p / c . q is p’s decision only if c’s result is t, otherwise q’s
decision is taken.

The binary operator _
v7! _, where v 2D, is the v-override operator. The

result of the composition p
v7! q is q if p’s decision is v, otherwise it results

in p’s decision. The operators
?7! and

>7! correspond to the gap-override and
conflict-override operators, respectively. Given a list of policies p1, · · · , pn,

we encode the operator first-applicable as p1
?7! (p2

?7! (· · · ?7! pn)), i.e. the
composition takes the decision of the first policy in the list whose decision
is not ?.

The binary operator _ ./ _ is the only-one-applicable operator, i.e. the
composition p ./ q results in ? if both policy decisions are not ? or both
decisions are ?, otherwise the result is the policy decision that is not ?.

The binary operator _m _ is the on-permit-apply-second1 operator. The
composition p m q returns q only if the decision of p is t, otherwise it

1The on-permit-apply-second operator has been recently proposed as an additional operator
for the XACML 3 standard. See [78] for full description.
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p / c . q := ((c = t)^ p)_ ((c 6= t)^ q) (if -then-else)
p

v7! q := q / (p = v) . p (v-override)
p ./ q := p / (q = ?) . (q / (p = ?) .?) (only-one-applicable)
pm q := q / (p = t) .? (on-permit-apply-second)

Figure 4.2: Conditional and override policy composition operators.

returns ?. The operator m is useful for specifying policies that either (1)
grant or provide no decision, or (2) deny or provide no decision. For
example, the policy researcher(Sub)m t grants access only if the subject
Sub is a researcher; otherwise, the policy returns ?. In contrast, the policy
revoked(Sub)m f denies access if the subject Sub is revoked, and provides
no decision otherwise. We also use the operator m for specifying policies
with policy targets, which define the requests that are applicable to a policy.
Given a policy p and its target p

target

, p
target

m p results in ? if p
target

does
not evaluate to t, otherwise it results in p’s decision.

We finally remark that BELLOG can express any four-valued policy
composition language, such as PBel [28]. This is a corollary of Theorem 6
given in Section 3.4.

4.2.3 Grid Policy
We now exercise these operators to specify the policy of our running ex-
ample. The administrator may compose the policies issued by the project
leaders Piet and Ann with the maximal agreement operator:

pol-leaders(S, F) piet:pol(S, F)� ann:pol(S, F) .

For brevity, we have not specified the policies of Piet and Ann. The com-
position of their policies may result in conflicts and gaps. According to
requirements R2 and R3, the administrator must resolve conflicts by grant-
ing requests made by project leaders, and resolve gaps by granting access
only to public folders. The pol-root policy encodes these requirements:

pol-root(S, F) (pol-leaders(S, F)
>7! prj-leader(S))

?7! pub(F) .

The composite policy pol-leaders considers the decisions of Piet’s and
Ann’s policies for all requests. The administrator may, however, want to
consider the decisions of Piet’s policy only for the files contained in the
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folder prj1. This can be encoded by defining a policy with an explicit policy
target:

pol_piet(S, F) contains(prj1, F)m piet:pol(S, F) ,

where the attribute contains(F1, F2) indicates that the folder F1 contains F2.
The attribute is transitively assigned to sub-folders:

contains(F1, F2) fs :subfolder(F1, F2) ,
contains(F1, F3) contains(F1, F2), contains(F2, F3) ,

where the attribute fs :subfolder(F1, F2) is provided by the file system fs and
indicates that F1 is directly contained in F2. Note that the policy pol_piet
results in ? for any request to a file not contained in the folder prj1.

The administrator must also encode the requirement R4, which states
that any access right to a folder is transitively extended to sub-folders.
Namely

pol-root(S, F) contains(F 0, F), pol-root(S, F 0) .

Note that the policy decision for a folder is extended to sub-folders with
the permit-override operator. This is because instantiating the variable F 0

results in multiple rules with the same head atom, which are combined with
the operator _ according to BELLOG’s semantics. To illustrate this, consider
the folder f3, where f3 is contained in f2, which in turn is contained in f1.
Instantiating the variable F 0 and simplifying the instantiated rules result in
the following rule:

pol-root(S, f3) pol-root(S, f1)_ pol-root(S, f2) .

Alternatively, the administrator may want to combine the instantiated rule
bodies with deny-override, maximal agreement, or minimal agreement. We
show how this can be done with BELLOG’s intensional operators, defined
below.

4.2.4 Intensional Compositions
So far, we have presented extensional policy composition operators that
compose a fixed, explicitly given list of sub-policies. For example, we used

pol-leaders(S, F) piet:pol(S, F)� ann:pol(S, F)
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to combine policies of two project leaders, one from Piet and one from Ann,
with the maximal agreement operator. Such extensional encodings are
tediously “static”, because if new project leaders are added to or removed
from the PDP, then the administrator must explicitly change the policy rule.
Alternatively, the administrator may write a rule that composes the policies
that are issued by any principal who is a project leader. One attempt to do
this is:

pol-leaders(S, F) P :pol(S, F), prj-leader(P) ,

where the set of composed policies is intensionally defined as those issued
by project leaders. This attempt however fails because the project leaders’
policies are implicitly combined with the permit-override operator, instead
of the maximal agreement operator �. This is because BELLOG’s semantics,
much like other logic programs, uses the join operator _ when combining
rule bodies with the same head atom.

We extend BELLOG’s syntax with additional operators to account for
intensional compositions:

rule ::= a [
_
|
^
|
M
|
O
] body ,

where a 2A⌃(V ), body is a composite rule body, as defined in Section 3.4,
and vars(a) ✓ vars(body). We refer to the operators written in front of body
as intensional composition operators. Intuitively, the intensional operatorL

combines all grounded bodies of rules with the same head atom with the
� operator. For example, grounding the simple rule p(a) Lq(X ) over
the domain ⌃ = {a,b} results in two grounded bodies, q(a) and q(b), with
the same head atom p(a). The grounded bodies are combined with �; the
meaning of p(a) Lq(X ) is therefore p(a) q(a)�q(b). Other operators
behave similarly with respect to their syntactic counterparts. We relegate
the formal translation of the these intensional operators to Section 4.7.1.
We remark that the intensional operators

V
,
L

, and
N

cannot have the
head atom appear in the rule body because their encoding uses composite
rules.

We can now specify the intensional composition of the project leaders’
policies with the maximal agreement operator as

pol-leaders(S, F) 
M
(P :pol(S, F) / prj-leader(P) . ?) .

Note that the policies that are not issued by a project leader are replaced
with ?, and the composition “ignores” such policies, because v �? = v for
any v 2D.



46 4 BELLOG Access Control Framework

Intensional compositions are also useful for specifying policies that
propagate policy decisions over hierarchically structured data, such as file
systems, role hierarchies, etc. To illustrate, we extend our grid example
with Piet’s policy that by default permits a subject S to access a folder F ,
unless Piet issues the attribute deny(S, F). In contrast to the requirement
R4, he uses the deny-override operator to propagate deny decisions over
the sub-folders:

piet:pol-fold(S, F) ¬piet:deny(S, F)

piet:pol(S, F) 
^
(piet:pol-fold(S, F 0) / contains(F 0, F) . t) .

The last rule replaces the policy decisions for folders F 0 that do not contain F
with t, since for any v 2D we have v ^ t= v.

We summarize the key difference between intensional and extensional
operators as follows. The intensional operators reflect changes in the
domain (e.g. addition and removal of principals, files, etc.) through changes
in the policy input. The extensional operators require explicit modification
of the policy rules to reflect such changes.

4.3 Policy Verification
Writing a correct policy, i.e. one that grants and denies requests as intended
by the access-control requirements, is often challenging in practice. This is
both because requirements are often initially given informally and impre-
cisely and because the security engineer can err in their formalization. In
particular, a security engineer must foresee all possible access requests, un-
derstand how the delegation rules, the sub-policies, and their compositions
influence the policy’s access decisions, and verify that the policy does not
exhibit any unintended access decisions. As a first step towards verifying
the policy, the security engineer specifies the access-control requirements
as formal policy analysis questions. Second, a decision procedure is used
to check, in an automated manner, whether the analysis questions are
answered positively, or not.

Below we present our framework for analyzing policies written in BEL-
LOG. We fix the atom pol(S, R) to denote the decisions of the policy under
analysis, for the subject S and the resource R.

4.3.1 Policy Entailment
Policy entailment answers whether a policy grants a given access request.
Policy entailment analysis is akin to software testing in that the security
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engineer checks the policy for unintended grants and denies. Although
limited in its scope, since the security engineer must give a specific policy
input, determining policy entailment scales with the size of the domain,
unlike the policy containment problem which we define shortly.

To illustrate policy entailment, consider the following policy P:

{ pol(S, R) (pol-leaders(S, R)
>7! prj-leader(S))

?7! pub(R) } .

For simplicity we do not specify the policy pol-leaders. One requirement
for P, which is derived from the requirement R2, may be to deny access to
subjects who are not project leaders whenever the policy pol-leaders returns
a conflict. To check this property, we may ask whether the policy entails
the policy atom pol(fred, foo.txt) in the input:

I = {pol-leaders(fred, foo.txt) 7! >,
prj-leader(fred) 7! f} ,

where the remaining atoms are mapped to f. For this input the policy does
not entail the policy atom, as expected.

Because the guarantees provided by entailment analysis are limited to
the access request provided by the security engineer, the requirement may
not hold for other access requests. For example, the given policy P violates
its requirement for

I 0 = {pol-leaders(fred, foo.txt) 7! >,
prj-leader(fred) 7! ?,
pub(foo.txt) 7! t} ,

because the policy entails pol(fred, foo.txt), although pol-leaders results in
a conflict and the PDP does not know whether Fred is a project leader.

Deciding policy entailment is reducible to query entailment; see Sec-
tion 3.3. Policy entailment can be therefore decided in time polynomial in
the size of the context.

4.3.2 Policy Containment
Policy containment thoroughly analyzes a policy against all access requests.
It can be used to answer questions such as: “Do all access requests evaluate
to a conclusive policy decision, i.e. grant or deny?” Containment analysis is
done either for a particular policy domain or for all possible policy domains.
In more detail, the domain policy containment answers whether a policy P1
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is more permissive than another policy P2 for all access request for a given
domain. The all-domains policy containment answers whether a policy P1
is more permissive than another policy P2 for all access requests for all
possible domains. Even though all-domains evaluations imply those for
one domain, checking for all domains is decidable only for a fragment of
BELLOG, as we later show.

To verify whether a policy satisfies a given access-control requirement,
security engineers check whether the policy has the desired behavior for
all access requests to which the requirement is applicable. For example, to
verify that the policy P satisfies the requirement R2, the security engineer
must check whether P denies all requests made by subjects who are not
project leaders, for all access requests where the policy pol-leaders results
in a conflict. We encode such analysis questions with a condition that
constraints the access requests where the policies are compared. Formally,
the syntax for writing containment questions is

cond) P1 � P2 .

The symbols P1 and P2 are policies and cond is inductively defined as

cond ::= 8X .cond | a � v | v � a | ¬cond | cond^ cond | t
v ::= ? | > ,

where X 2 V , a 2AedbP
⌃(V), i.e. a is an input attribute. Note that the attributes

in a condition may contain variables. We write fv(cond) for the set of
variables in cond that are not in the scope of 8. We fix the variables S and R
to denote the subject and the resource in the policy atom pol(S, R). A policy
containment question cond) P1 � P2 is well-formed iff fv(cond) ✓ {S, R}.

We define the satisfaction relation ç⌃ between a policy input I , a
condition cond of a well-formed policy containment question, and a policy
domain ⌃:

I ç⌃ t

I ç⌃ a � v if I(a)� v
I ç⌃ v � a if v � I(a)
I ç⌃ ¬cond if I 6ç⌃ cond
I ç⌃ cond1 ^ cond2 if I ç⌃ cond1 and I ç⌃ cond2

I ç⌃ 8X .cond(X ) if 8X 2 ⌃. I ç⌃ cond(X )

In Figure 4.3, we define syntactic shorthands to ease the writing of contain-
ment conditions.
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a 6= v := ¬(a = v)
c1 _ c2 := ¬(¬c1 ^¬c2)

a1 = a2 := (a1 = f^ a2 = f)_ (a1 = ?^ a2 = ?)
_ (a1 = >^ a2 = >)_ (a1 = t^ a2 = t)

Figure 4.3: Shorthands for writing containment conditions. The symbols a,
a1, and a2 denote BELLOG atoms; c1 and c2 denote containment conditions.

Definition 3. (Domain Policy Containment) Given a question cond) P1 �
P2, and a domain ⌃, P1 is contained in P2 for all policy inputs over ⌃ that
satisfy cond, denoted by ç⌃ cond) P1 � P2, iff

8I 2 I,8S, R 2 ⌃. (I ç⌃ cond)! (JP1KI (pol(S, R))� JP2KI (pol(S, R))) ,

where I is the set of all policy inputs defined over the domain ⌃.

Note that we overload the relation ç⌃.
In practice, the policy domain may change over time, e.g. subjects and

resources are added to and removed from the system. After changes to ⌃,
domain policy containment may no longer hold. As mentioned, a stronger
policy containment guarantee is thus to verify that P1 is contained in P2 for
all domains ⌃0.

Definition 4. (All-domains Policy Containment) Given a question cond)
P1 � P2, P1 is contained in P2 for all access requests in all policy domains,
denoted ç cond) P1 � P2, iff ç⌃ cond) P1 � P2 holds for all domains ⌃.

Example As an example, we use policy containment to specify the re-
quirement that the policy P denies access to subjects who are not project
leaders whenever the policy pol-leaders results in a conflict:

(pol-leaders(S, R) = >)^¬(prj-leader(S) = t)) P � P
f

,

where P
f

is the policy that denies all requests. This asks whether P de-
nies access requests where the policy pol-leaders results in a conflict, i.e.
(pol-leaders(S, R) = >), and the subject S is not a project leader, namely
¬(prj-leader(S) = t). Both domain and all-domains containment evalua-
tions give negative answers; see the counterexample above. The policy,
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however, satisfies the requirement if the attribute prj-leader is either t or f.
We can easily encode this assumption as

(pol-leaders(S, R) = >)^ (prj-leader(S) = f)) P � P
f

.

Domain and all-domains containment evaluations answer this question
positively.

Policy Conclusiveness To illustrate how containment questions are spec-
ified and used to verify policies against generic requirements, we formalize
the requirement: “All access requests evaluate to a conclusive policy decision”.
To specify this requirement as a containment question for the policy P, we
construct a policy P 0 by first renaming the predicate symbol pol in P to pol0

and then adding the rule

pol(S, R) (pol0(S, R)
>7! f)

?7! f .

By construction, the policy P 0 denies all requests that are evaluated to gap
or conflict by the policy P. Therefore, |=⌃ t) P � P 0 holds iff the policy P
is conclusive. We set the condition to t because we must this requirement
applies to all access requests.

Push-Monotonicity Policy containment is also useful for comparing the
policy for one access requests with another access requests that defines a
different policy input. Consider a scenario where a subject can push some
attributes to the PDP. An important property for the policy is that a subject
cannot influence the policy to grant a request by withholding attributes.
We refer to such policy as push-monotonic: whenever a subject provides
fewer attributes to the PDP, the policy results in a less permissive decision.
Consider the policy P:

{ pol(S, R) researcher(S), prj-file(R)
researcher(S) hr(S0), lab-card(S0, S),¬revoked(S) }

To check whether this policy is push-monotonic, the security engineer may
formulate the question: “Is the policy more restrictive when the subject pro-
vides fewer (pushed) attributes?” To answer this question, one must compare
the policy to itself in all access requests that are identical except for the
attributes pushed by the subject. To encode this question, we first construct
a policy P 0 by renaming every predicate symbol p that appears in edbP
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to p0, where edbP = {revoked(·), lab-card(·, ·), hr(·), revoked(·), prj-file(·)}.
Suppose the attribute revoked is locally stored at the PDP and the remain-
ing attributes are pushed by the subject. The analysis question is encoded
as 0B@ 8X . (revoked(X ) = revoked0(X ))

^8X , Y. (lab-card(X , Y )� lab-card0(X , Y ))
^8X . (hr(X )� hr0(X ))
^8X . (prj-file(X )� prj-file0(X ))

1CA) P � P 0 .

This analysis problem asks whether P is less permissive than P 0 in all access
requests that are identical for the stored attribute and all pushed attributes
to P are also pushed to P 0. The question indeed holds for the policy P.

Deciding Policy Containment The problems of deciding domain and
all-domains policy containment are reducible to domain and all-domains
query validity, respectively.

Theorem 13. Policy containment is polynomially reducible to query validity.

Corollary 1. The problem of domain policy containment belongs to the com-
plexity class CO-NP-COMPLETE. The problem of all-domains policy containment
for unary-edb policies belongs to the complexity class CO-NEXP.

If a policy has attributes associated to a single user, group, resource,
etc., and there are finitely many principals, then the policy can be written
in the unary-edb fragment. This is because all attributes have the form
attr-name(Issuer, Resource) can be re-encoded as attr-nameIssuer(Resource)
since there are finitely many principals.

4.4 Policy Enforcement
In this section, we present a PDP for policies written in BELLOG, and we
evaluate its performance and scalability. The key idea underpinning the
design of our BELLOG PDP is that the policy entailment decision problem
in BELLOG can be reduced to the query entailment problem in stratified
Datalog (which is in PTIME). In the following, we first define a translation
procedure that takes as input a stratified BELLOG program and outputs a
stratified Datalog program. Second, we describe the design of our BELLOG
PDP. Finally, we empirically evaluate the performance and scalability of the
BELLOG PDP.
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4.4.1 Translating BELLOG to Stratified Datalog
The first insight that powers our translation is that we can encode the truth
value of every BELLOG atom through truth values of two Datalog atoms.
Namely, for any BELLOG atom a, we introduce two Datalog atoms a? and
a> that encode whether a’s truth value is greater than or equal to ? and,
respectively, >. This is sufficient to encode a’s truth value. For example, if
both Datalog atoms a? and a> are derived, then the truth value of a must
be t. As another example, if a? is derived but not a> , then a must be ?.

The second insight is that BELLOG’s operators can be encoded through
Datalog operators. This allows us to precisely encode the derivation of the
introduced Datalog atoms a? and a>, which we introduce for each BELLOG
atom a.

Translation We now formalize the translation from stratified BELLOG to
stratified Datalog. For the syntax and semantics of stratified Datalog we
refer the reader to Section 3.5.2.

Let P be a stratified BELLOG program defined over the set P of predicate
symbols, the set V of variables, and the domain ⌃ ✓ C of constants. We
translate P into a stratified Datalog program, D, defined over the set

PD = {p?, p> | p 2 P}

of predicate symbols, the set of V of variables, and the set ⌃ of constants.
Let AD

⌃(V) denote the set of Datalog atoms. We define the function
⇢ : A⌃(V) ⇥ {?,>}!AD

⌃(V) as

⇢(pn(t1, · · · , tn),?) = p?(t1, · · · , tn)
⇢(pn(t1, · · · , tn),>) = p>(t1, · · · , tn) .

The function ⇢ maps a BELLOG atom and a truth value from {?,>} to a
Datalog atom. We overload ⇢ over BELLOG literals as follows:

⇢(¬a,?) = ¬⇢(a,>) ⇢(⇠a,?) = ⇢(a,>)
⇢(¬a,>) = ¬⇢(a,?) ⇢(⇠a,>) = ⇢(a,?) .

Note that ⇢ maps negative BELLOG literals (¬a) to negative Datalog literals,
and non-negative BELLOG literals (a and ⇠a) to positive Datalog literals.
Given a BELLOG literal l, the Datalog literals ⇢(l,?) and ⇢(l,>) encode
that the truth value of l is greater than or equal to ? and >, respectively.
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We now define the function R that maps BELLOG rules to sets containing
two Datalog rules

R(a l1, · · · , ln) = { ⇢(a,?) ⇢(l1,?), · · · ,⇢(ln,?);
⇢(a,>) ⇢(l1,>), · · · ,⇢(ln,>) } .

The Datalog translation of a BELLOG program P into stratified Datalog,
denoted by R(P), is

R(P) =
[
r2P

R(r) .

Note that if P is a stratified BELLOG program, then R(P) is a stratified
Datalog program because ⇢ maps only negative BELLOG literals to negative
Datalog literals. Furthermore, for any BELLOG program that consists of n
basic BELLOG rules, the above translation procedure generates a stratified
Datalog program with 2n rules and twice as many predicate symbols. In
particular, the predicates’ arities do not increase.

Correctness To state the correctness of our translation, we link BELLOG
interpretations to Datalog interpretations. Let I and J denote the set
of all BELLOG interpretations and the set of all Datalog interpretations,
respectively. We link these sets with the functions � : I ! J and �̄ : J ! I:

�(I) = {⇢(a,>) |> � I(a)}
[

{⇢(a,?) |? � I(a)}
and

�̄(J)(a) =

8><>:
t if ⇢(a,?) 2 J and ⇢(a,>) 2 J
> if ⇢(a,?) 62 J and ⇢(a,>) 2 J
? if ⇢(a,?) 2 J and ⇢(a,>) 62 J
f if ⇢(a,?) 62 J and ⇢(a,>) 62 J

Here, a 2A⌃(;) is a ground BELLOG atom, I 2 I is BELLOG interpretation,
and J 2 J is a Datalog interpretation.

Theorem 14. Given a stratified BELLOG program P and an input I for P, we
have JPKI = �̄(JR(P)[�(I)KD).

The above theorem establishes that we can compute the model of a BEL-
LOG program P by (i) computing the model of P ’s Datalog translation R(P)
for the input �(I) and then (ii) mapping back the computed Datalog model
to a BELLOG model with the function �̄. We prove this theorem in Sec-
tion 4.7.3. In the following we give an example, which illustrates how we
compute JPKI using the above translation procedure.
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Example Consider the following stratified BELLOG program:

P = {p(X ) q(X ),¬r(X ),⇠s(X )} ,

and the input:

I = { p(a) 7! f, t4 7! t

q(a) 7! t, f4 7! f

r(a) 7! f, ?4 7! ?
s(a) 7! ?, >4 7! > } .

The input I assigns truth values to the ground atoms in A⌃(;) as well as to
the nullary predicate symbols t4, f4,?4, and >4. The model JPKI is

JPKI = { p(a) 7! >, t4 7! t,
q(a) 7! t, f4 7! f,
r(a) 7! f, ?4 7! ?,
s(a) 7! ?, >4 7! > } .

We now show how we can compute JPKI using P ’s Datalog translation.

Step 1: Translation We first translate the BELLOG program P to a strati-
fied Datalog program R(P):

R(P) = { p?(X )  q?(X ),¬r>(X ), s>(X )
p>(X )  q>(X ),¬r?(X ), s?(X ) } .

Step 2: Map Input to Datalog We translate the BELLOG input I to a
Datalog interpretation J :

J = �(I) = {q?(a), q>(a), s?(a), t4?, t4?,?4?,>4>} .

Step 3: Compute Datalog Model We compute the Datalog model of
R(P)[ J :

JR(P)[ JKD = {p>(a)}[ J .

Step 4: Map Datalog Model to BELLOG Interpretation Finally, we map
the computed Datalog model to a BELLOG interpretation:

�̄(JR(P)[ JKD) = { p(a) 7! >, t4 7! t,
q(a) 7! t, f4 7! f,
r(a) 7! f, ?4 7! ?,
s(a) 7! ?, >4 7! > } .

Note that �̄(JR(P)[ JKD) = JPKI .



4.5 Empirical Evaluation 55

BELLOG policy Datalog rules

translate

Datalog engine

load

Credentials

load output Grant/Deny

PIP PIP
qu

er
y query

Figure 4.4: Design of our BELLOG PDP.

4.4.2 BELLOG PDP
Our BELLOG PDP has two main components: (i) the translator component
which translates BELLOG policies and credentials into Datalog rules, and
(ii) the Datalog interpreter which evaluates the resulting rules. The PDP
queries PIPs using the standard SQL interface. Before any requests are
evaluated, the security engineer must load a BELLOG policy into the PDP.
The policy is translated into Datalog rules and loaded into the interpreter.
Figure 4.4 depicts the design of our PDP.

The input to the PDP is an access request, i.e. a policy input and a policy
atom. The PDP first loads the policy input into the Datalog interpreter. The
PDP then queries the Datalog interpreter with the policy atom. It outputs
grant if the interpreter derives this policy atom; otherwise, it outputs deny.

We implemented the PDP using XSB [3] as the Datalog interpreter
component. The translator component is implemented in Python and has
460 lines of code. To connect to a database, the PDP uses XSB’s database
module and translates BELLOG remote queries into XSB prepared queries.
Our implementation is publicly available at http://bellog.org.

4.5 Empirical Evaluation
In this section, we measure the performance of our BELLOG PDP. Our main
goal here is to investigate whether the BELLOG PDP is practical and can be
used to construct real-world access-control systems. In the following, we
first describe our experimental setup and then we report on our results.

http://bellog.org
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Subject has access Subject does not have access Delegation

Figure 4.5: The figure shows which subjects have access according to the
delegation chains policy. All subjects in the left-most row are researchers.
Arrows represent delegations. A subject S has access if S is a researcher or
S has a delegation chain rooted at a researcher. The parameters used to
generate the attributes for this example are N = 16, l = 3, and p = 0.25.

4.5.1 Experimental Setup
For our experiments, we use the BELLOG policies and algorithms presented
in [27]. To keep the thesis self-contained, we describe the policies used in
our experiments and the algorithms used to generate attributes and access
requests for these policies.

Policy 1: Delegation Chains Authority delegation is a key idiom in de-
centralized access-control policies. To investigate how the length of the
delegation chains and the number of subjects affect the PDP’s response
time, we use the following policy:

pol(S)  researcher(S)
pol(S)  pol(S0), S0 :give-access(S)

The predicate pol(S) denotes the policy decision for the subject S. The
administrator issues the credential researcher(S) to all researchers. The
first rule formalizes that researchers are granted access. The second rule
formalizes that a subjects S0 who has access may delegate access to another
subject S by issuing the credential S0 :give-access(S).

The input attributes for this policy are researcher and give-access. The
algorithm for generating these attributes is parameterized by three param-
eters:
• N , the number of subjects,
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• l, the length of the longest delegation chain,
• p, the probability of issuing a give-access credential.

The principals are partitioned into l + 1 partitions of equal size. For each
subject S in the first partition, an attribute researcher(S) is generated. The
first partition thus contains all researchers and the remaining partitions
contain the subjects who are not researchers. For each pair of subjects
(S0, S) where S0 is a subject from a partition i, with 0  i  l, and S is
a subject from partition i + 1, we generate an attribute S0 :give-access(S)
with probability p. The ith partition thus consists of subjects who may
have multiple delegations of length i � 1. Note that the longest delegation
length is thus l. In Figure 4.5 we depict an access-control scenario that is
generated using parameters N = 16, l = 3, and p = 0.25.

We generate access requests for the subjects contained in partition l + 1
(the right-most partition in Figure 4.5). This allows us to focus on the
impact of the delegation length on the PDP’s response time.

Policy 2: Delegation Group with Conflict Resolution The second policy
features both authority delegation and policy compositions. This policy
extends the delegation chains policy as follows:

pol(S)  (grant(S)�¬deny(S))
>7! whitelist(S) (R1)

grant(S)  researcher(S) (R2)
grant(S)  grant(S0), S0 :give-access(S) (R3)
deny(S)  grant(S0), S0 :deny-access(S) (R4)

Rules (R2-3) are identical to those used in the delegation chains policy. They
formalize that researchers are granted access and may further delegate their
access to other subjects. Rule (R4) states that a subject S0 that is granted
access may also decide to deny access to another subject S by issuing the
credential S0 :deny-access(S). Finally, rule (R1) combines the truth values
assigned to the attributes grant(S) and deny(S) for a subject S using the
agreement operator �. Note that the result is a conflict (>) if the subject S
is both granted and denied access. Rule (R1) resolves such conflicts using

the conflict override operator (
>7!): A subject S with conflicting grant and

deny credentials is granted access if S has the attribute whitelist(S), which
represents that the subject is in a whitelist.

The input attributes for this policy are: whitelist, researcher, give-access,
and deny-access. The algorithm for generating these attributes is parame-
terized by:
• N , the number of subjects,
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Subject has access

Subject does not have access

Subject is in the whitelist

Delegation

Revocation

Figure 4.6: The figure shows which subjects have access according to the
delegation group with conflict resolution policy. The top-most subject is
the only researcher. Solid arrows represent delegations and dashed arrows
revocations. Subjects that are in the whitelist are depicted in a white
box. The parameters used to generate this example are N = 8, pg = 0.1,
pd = 0.07, pr = 0.125, and pw = 0.5.

• pg , the probability that a subject grants another subject,
• pd , the probability that a subject denies another subject,
• pr , the probability that a subject is a researcher,
• pw, the probability that a subject is in the whitelist.

The algorithm for generating attributes constructs a directed random graph
where each node is a subject. Grant and deny edges are added to rep-
resent delegations (grant-access attributes) and revocations (deny-access
attributes), respectively. Each grant edge is added with probability pg
and each deny edge with probability pd . For a subject S, an attribute
researcher(S) is generated with probability pr and an attribute whitelist(S)
is generated with probability pw. In Figure 4.5 we depict an access-control
scenario generated with parameters N = 8, pg = 0.1, pd = 0.07, pr = 0.125,
and pw = 0.5.

We generate access requests by sampling the set of subjects uniformly
at random.

Policy 3: Corporate Document Repository The third policy defines how
employees access the documents stored in a corporate document repository.
The documents are hierarchically organized into directories. The employees
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are also hierarchically organized as well: an employee may have a manager,
who may in turn have another manager, and so forth. The policy enforced
by repository’s access-control system is as follows:

pol(S, D)  access(S, D),¬revoked(S) (R1)
access(S, D)  grant(S, D) (R2)
access(S, D)  grant(S, F), contains(F, D) (R3)
grant(S, D)  owner(O, D), O :give-access(S, D) (R4)
grant(M , D)  manager(M , S), grant(S, D) (R5)
contains(F1, F2)  fs :subfolder(F1, F2) (R6)
contains(F1, F3)  contains(F1, F2), contains(F2, F3) (R7)
manager(M , S)  direct-manager(M , S) (R8)
manager(M , S)  manager(M , M 0), manager(M 0, S) (R9)
revoked(S)  manager(M , S), M :revoke(S) (R10)

Rule (R1) states that a subject S can access a document D if S has access
to that document and S is not revoked. Rules (R2-3) specify that a subject S
has access to a document D if S is (directly) granted access to D or S is
granted access to a parent folder F that (transitively) contains D. Subjects
are granted access to a document D if D’s owner O issues the attribute
O : give-access(S, D) (see rule (R4)). Rule (R5) specifies that managers
inherit all grants issued to their subordinates. Rules (R6-7) specify that
folders contain their subfolders and all folders transitively contained in
their subfolders. Rules (R8-9) transitively define the manager relation.
Finally, rule (R10) specifies that a manager M can revoke any of their
subordinates S by issuing the credential M :revoke(S).

The input attributes for this policy are: give-access, subfolder, revoke,
direct-manager, and owner. The algorithm used to generate these attributes
is parameterized by:
• N , the number of subjects,
• D, the number of folders and documents,
• pg , the probability that a subject grants access to another subject,
• pr , the probability that a subject revokes another subject.

The attributes give-access and subfolder define the subject hierarchy and
the directory hierarchy, respectively. To generate these two attributes, the
algorithm constructs random trees that define these sets of attributes. For
example, to generate the tree that represents the subject hierarchy, the
algorithm starts from the root and recursively expand its leafs in a breath-
first manner until the tree contains the desired number N of subjects. While
expanding the leafs, the algorithm chooses a branching factor from the
set {4,6,8} uniformly at random. The directory hierarchy is generated
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similarly, with the difference that the branching factor is chosen from the set
{4, 16, 32}. All leafs in the generated tree represent the documents stored
in the repository. For each document and folder D, the algorithm selects
a subject O as its owner uniformly at random and generates the attribute
owner(O, D). For any pair of subjects (M , S), the algorithm generates a
credential O : give-access(S, D) with probability pg and a credential M :
revoke(S) with probability pr .

Access requests are generated by sampling the set of subjects and docu-
ments uniformly at random.

4.5.2 Experiments
We now report on our experiments. We first report on the parameters used
to generate attributes for the policies and then we turn to our results.

Parameters To investigate the PDP’s response time, we varied the param-
eters in the attribute generation algorithms as follows.

For the policy delegation chains, we set N = 105. To investigate the
impact of the delegation length on the PDP’s response time, we selected
the values for parameter l from the set {1,3, 7,15}. For each pair (N , l) 2
{105}⇥ {1,3, 7,15}, we calculated the value for p as follows:

pN ,l = 105 ÷
Å

l ·
Ä N

l + 1

ä2ã
We get P105,1 = 4.0 · 10�4, P105,3 ⇡ 5.3 · 10�4, P105,7 ⇡ 9.1 · 10�4, P105,15 ⇡
17.1 · 10�4. The value of pN ,l is calculated such that the expected number
of delegations is 105.

For the policy delegation group with conflict resolution, we set pg =
5 · 10�3, pd = ·10�3, pr = 5 · 10�3, and pw = 0.2. The experimented with
values for parameter N from the set {1000,2500, 5000,10000}.

For the policy corporate document repository, we set pg = 5 · 10�3

and pr = 5 · 10�3. We selected the values for parameter N from the set
{1000,2500, 5000,10000}.

Results For each set of parameters, we generated 10 different sets of
attributes and access requests. For each set of attributes, we evaluated all
generated access requests and measured the PDP’s response time. All times
reported in this chapter are in milliseconds. We ran all experiments on a
Macbook Pro “Mid 2015” (2.5GHz Intel Core i7/16GB/256GB-Flash).
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(a) Average PDP response times for the
delegation chains policy.
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(b) Average PDP response times for the
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(c) Average PDP response times for the
corporate document repository policy.

Figure 4.7: Average PDP response times for the three policies.
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In Figure 4.7 we show three bar charts that depict the PDP’s average
response times for the three policies, respectively. Each bar chart has
multiple bars, where different bars shows the PDP’s response time for
different set of parameters. The height of each bar shows the PDP’s average
response time computed over all access requests generated for the given
policy and set of parameters.

The first bar chart, given in Figure 4.7a, shows the PDP’s average
response times for the delegation chains policy. For delegation lengths 1,
3, 7, and 15, the PDP’s average response times are 0.792, 0.993, 1.244,
and 1.526 milliseconds, with standard deviations 0.176, 0.228, 0.601, and
1.448 milliseconds, respectively. As expected, the PDP’s response time
increases with the length of the delegation chains. We remark that even
when all access requests have delegation chains of length 15, the PDP’s
response time is reasonable (roughly 1.5ms). Furthermore, we remark that
the delegation lengths are short in practice (e.g. OAuth has 1).

In Figure 4.7b we show the PDP’s response times for the delegation
group with conflict resolution policy. For 1K, 2.5K, 5K, and 10K subjects,
the PDP’s average response times are 2.483, 3.041, 4.603, and 5.420
milliseconds, with standard deviations 4.936, 4.339, 3.833, and 6.413
milliseconds, respectively. The data shows that the PDP’s response time
scales to large number of subjects.

Finally, the bar chart of Figure 4.7c presents the PDP’s average response
times for the corporate document repository policy. For 1K, 2.5K, 5K, and
10K subjects, the PDP’s average response times are 1.061, 1.556, 2.423,
and 3.951 milliseconds, with standard deviations 0.804, 2.129, 4.409, and
8.588 milliseconds, respectively. Compared to the second policy, the PDP’s
response time is faster despite that this policy has more BELLOG policy
rules.

Overall, the data shows that our BELLOG PDP is efficient: its response
time is on average under 10ms per access request for all policies and
parameters used in our experiments.

4.6 Related Work
The closest related works to the specification and verification of decentral-
ized composite policies are policy algebras, formal delegation languages,
and XACML v3.0, which is an informal policy language.

Policy algebras — such as PBel [28], PTaCL [36], and D-Algebra [71]
— are languages for composing a set of policies. A composite policy is
a tree, where the internal nodes are composition operators, and the leaf
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nodes are core policies. Existing policy algebras cannot express arbitrarily
long delegation chains and therefore cannot be used for decentralized
composite access control. Moreover, they lack operators for composing
intensionally defined policy sets, i.e. policy sets that are not fixed at the
policy specification time, such as the examples described in Section 5.3.

Delegation languages — such as KeyNote2 [25], DKAL [53], SecPAL [21],
RT [65], GP [48], and DCC [4] — allow a policy writer to delegate to
other principals authority over attributes and policy decisions. In contrast
to BELLOG, these languages support only the permit-override operator for
composing policies. Although the permit-override operator is sufficient
in their access control setup, this is not the case for decentralized com-
posite policies. Most existing delegation languages are founded on logic
programming. We remark that although many-valued extensions for logic
programming exist [39, 44, 67], they also cannot express all composition
operators found in policy algebras, e.g. the only-one-applicable operator;
that is, they are functionally incomplete.

XACML 3 is currently the only access control language supporting de-
centralized composite access control. Similarly to BELLOG, XACML 3 has
four policy decisions and operators for encoding delegation and policy com-
position. In contrast to BELLOG, XACML is informal and some aspects are
underspecified; for example, loop handling in delegation chains is left to
implementations. Moreover, XACML 3 has a fixed set of composition opera-
tors and new operators cannot be added as syntactic extensions. Kolovski et
al. [63] give a formalization of XACML 3 which focuses on delegations and
supports only three composition operators. BELLOG, in contrast, supports
all finitary composition operators.

Finally, we remark that BELLOG is not meant to be an all-encompassing
policy specification language. For example, the constraint-based conditions
of [21] are not expressible in BELLOG.

4.7 Technical Details and Proofs
In this section, we formally define the translation of BELLOG’s intensional
operators defined in Section 4.2.4. We also prove Theorem 14, which
establishes the correctenss of BELLOG’s translation to stratified Datalog.

4.7.1 Semantics of Intensional Operators
In this section, we define the semantics of the intensional operators

W
,
V

,L
, and
N

as their translation into BELLOG using the function T :
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T (p( ~X ) 
_

b( ~X [ ~Y )) = {p( ~X ) b( ~X [ ~Y )}
T (p( ~X ) 
^

b( ~X [ ~Y )) = {p( ~X ) ¬p
fresh

( ~X ), p
fresh

(X ) ¬b( ~X [ ~Y )}
T (p( ~X ) 
M

b( ~X [ ~Y )) = {p( ~X ) b( ~X [ ~Y )^>, p( ~X ) ¬p
fresh

( ~X ),

p
fresh

(X ) ¬b( ~X [ ~Y )}
T (p( ~X ) 
O

b( ~X [ ~Y )) = {p( ~X ) b( ~X [ ~Y )^?, p( ~X ) ¬p
fresh

( ~X ),

p
fresh

(X ) ¬b( ~X [ ~Y )}

where ~X = vars(p), ~Y = vars(b) \ ~X .
As an example we illustrate the operator

L
. Consider the simple policy

rule p(X ) Lq(X , Y ). We have ~X = {X }, and ~Y = {Y }. According to the
translation function T , this policy rule is translated into the following set
of rules:

p(X ) q(X , Y )^> (r1)
p(X ) ¬p

fresh

(X ) (r2)
p

fresh

(X ) ¬q(X , Y ) (r3)

where p
fresh

is a fresh predicate symbol. For the policy domain ⌃ = {a, b},
grounding the variable Y in rule r3 results in two rules, which are (by
default) combined with _

p
fresh

(X ) ¬q(X , a)_¬q(X , b)

We rewrite r2 by replacing p
fresh

(X ) with ¬q(X , a)_¬q(X , b) and get

p(X ) ¬(¬q(X , a)_¬q(X , b)) (r4)

We simplify r4 to p(X ) q(X , a)^ q(X , b). Finally, we ground the variable
Y in r1 and combine the result with the simplified rule r4:

p(X ) (q(X , a)^>)_ (q(X , b)^>)_ (q(X , a)^ q(X , b)) ,

which can be simplified, according to the derived operators in Section 3.4,
to

p(X ) q(X , a)� q(X , b) .
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T (p,8X .cond) := {p(~Y ) ¬p
fresh1

(~Y ), p
fresh1

(~Y ) ¬p
fresh2

({X }[ ~Y )}
[ T (p

fresh2

, cond), where ~Y = vars(cond) \ {X }
T (p, attr� v) := {p( ~X ) attr( ~X )� v}, where ~X = vars(attr)

T (p, v � attr) := {p( ~X ) v � attr( ~X )}, where ~X = vars(attr)

T (p,¬cond) := {p( ~X ) ¬p
fresh

( ~X )}[ T (p
fresh

, cond),

where ~X = vars(cond)

T (p, cond1 ^ cond2) := {p( ~X ) p
fresh1

( ~X1)^ p
fresh2

( ~X2)}[ T (pfresh1

, cond1)

[ T (p
fresh2

, cond2), where ~X1 = vars(cond1),
~X2 = vars(cond2), ~X = ~X1 [ ~X2

T (p, t) := {p t}

Figure 4.8: Translating a policy containment condition cond to a set of
BELLOG rules.

4.7.2 Reducing Policy Containment to Query Validity

Theorem 13. Policy containment is polynomially reducible to query validity.

Proof. Fix a domain ⌃ and two programs P1 and P2 defined over ⌃ such
that idbP1

= idbP2
. We reduce the problem of deciding ç⌃ cond) P1 � P2

to the problem of query validity P |=⌃ �, where P and � are constructed
as follows.

Let P = ;. For all rules in P1 we rename every predicate symbol p in
idbP1

to p1. Similarly, we rename every predicate symbol p from idbP2
in

P2’s rules to p2. The renamed rules are added to P.
In Figure 4.8, we define the function T that translates a predicate a

policy containment condition cond to a set of BELLOG rules. The operator �
which appears in the generated rule bodies is defined as p � q = t iff
p � q, otherwise p � q = f. Note that by Theorem 6 this operator can be
expressed in BELLOG. The rules generated by T (pcond, cond), where cond is
the containment condition in ç⌃ cond) P1 � P2, are added to P.

Finally, we define the operator p! q in the standard way ¬p _ q, and
add the following rule to P:

� (pcond(S, R)! (pol1(S, R)� pol2(S, R)))

By construction we get P |=⌃ � iff ç⌃ cond) P1 � P2.
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4.7.3 Reducing BELLOG to Stratified Datalog
To show that our translation from BELLOG to stratified Datalog is correct,
we proceed as follows. First, we prove that the function ⇢ correctly encodes
the truth values of a BELLOG literal l through the Datalog atoms ⇢(l,>)
and ⇢(l,?). Second, we show that the least fixed point of the BELLOG
operator TPi

associated with the BELLOG strata Pi are linked to the least
fixed points of their corresponding Datalog operators T D

R(Pi)
. Finally, we

show that the model of a BELLOG program P is linked to the model of the
Datalog translation R(P) (Theorem 14).

Lemma 9. For any BELLOG interpretation I and any ground literal l 2 L⌃(;),
we have

I(l)⌫ ? , �(I) |=D ⇢(l,?)
I(l)⌫ > , �(I) |=D ⇢(l,>)

Proof. By case distinction on the literal l. The case where the literal l is a
positive atom a follows immediately from the definitions of � and ⇢. Below,
we consider the cases where l is ⇠a and ¬a.

• Case l = ⇠a. We have ⇢(⇠a,?) = ⇢(a,>) and ⇢(⇠a,>) = ⇢(a,?).
– Assume I(l)⌫ ?. Then I(⇠a) 2 {?, t}, and so I(a) 2 {>, t}. It

follows that I(a) ⌫ >, and by definition of � it must be that
⇢(a,>) 2 �(I). Therefore, �(I) |=D ⇢(a,>). Since ⇢(l,?) =
⇢(a,>), we get �(I) |=D ⇢(l,?).

– Assume �(I) |=D ⇢(l,?). Then, ⇢(a,>) 2 �(I). By definition
of �, we have I(a)⌫ >, and so I(a) 2 {>, t}. Since l = ⇠a, we
conclude that I(l) 2 {?, t}, and thus I(l)⌫ ?.

– Assume I(l)⌫ >. Then I(⇠a) 2 {>, t}, and so I(a) 2 {?, t}. It
follows that I(a) ⌫ ?, and we get ⇢(a,?) 2 �(I). Therefore,
�(I) |= ⇢(a,?), and since ⇢(l,>) = ⇢(a,?), we conclude that
�(I) |=D ⇢(l,>).

– Assume �(I) |=D ⇢(l,>). Then ⇢(a,?) 2 �(I), and we get
I(a)⌫ ?, and so I(a) 2 {?, t}. Since l = ⇠a, we conclude that
I(l) 2 {>, t}, and so I(l)⌫ >.

• Case l = ¬a. We have⇢(¬a,?) = ¬⇢(a,>) and⇢(¬a,>) = ¬⇢(a,?).

– Assume I(l) ⌫ ?. Then I(¬a) 2 {?, t}, and so I(a) 2 {?, f}.
We have I(a) 6⌫ >, and so ⇢(a,>) 62 �(I). Therefore, �(I) 6|=D
⇢(a,>). Since ⇢(l,?) = ¬⇢(a,>), we get �(I) |= ⇢(l,?).
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Figure 4.9: The BELLOG domain (left) and the Datalog domain (right). By
Lemma 10, the result of applying BELLOG operator TP on I is identical to
the result of applying T D

R(P) on �(I).

– Assume �(I) |=D ⇢(l,?). Then, ⇢(a,>) 62 �(I), and so I(a) 6⌫
>. We get I(a) 2 {?, f}, and since l = ¬a we have I(l) 2 {?, t}.
We conclude that I(l)⌫ ?.

– Assume l(l) ⌫ >. Then, I(¬a) 2 {>, t}, and so I(a) 2 {>, f}.
We have I(a) 6⌫ ?, and so ⇢(a,?) 62 �(I). Therefore, �(I) 6|=D
⇢(a,?). Since ⇢(l,>) = ¬⇢(a,?), we conclude that �(I) |=D
⇢(l,>).

– Assume �(I) |=D ⇢(l,>). Then, ⇢(a,?) 62 �(I), and so I(a) 6⌫
?. We get I(a) 2 {>, f}, and since l = ¬a we have I(l) 2 {>, t}.
We conclude that I(l)⌫ >.

This concludes our proof.

Lemma 10. Let P be a BELLOG program. For any BELLOG interpretation
I 2 I, we have

�(TP(I)) = T D
PD
(�(I))

where PD =R(P) is the Datalog translation of P.

Proof. We first prove that �(TP(I)) ✓ T D
PD
(�(I)) and then that �(TP(I)) ◆

T D
PD
(�(I)).

• Assume ⇢(a,?) 2 �(TP(I)). Then we have TP(I)(a) ⌫ ?. By def-
inition fo TP and by the monotinicity of ^ and _, there is a rule
a l1, . . . , ln in P# such that I(li)⌫ ? for 1 i  n (1).
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By definition of R(P), there is a rule ⇢(a,?) ⇢(l1,?), . . . ,⇢(ln,?)
in R(P). From (1) and Lemma 9, we get �(I) |=D ⇢(li ,?) for 1 
i  n. By definition of T D

PD
, we get ⇢(a,?) 2 T D

PD
(�(I)). The case for

atoms of the form ⇢(a,>) is analogous.

• Assume ⇢(a,?) 2 T D
PD
(�(I)). By definition of T D

PD
, there is a rule

⇢(a,?)  ⇢(l1,?), . . . ,⇢(ln,?) in R(P) such that �(I) |=D li for
1  i  n. By Lemma 9, we have I(li) ⌫ ? for 1  i  n. By
definition of R(P), we must have a rule a  l1, . . . , ln in P. We
conclude that TP(I)(a)⌫ ?. Therefore ⇢(a,?) 2 �(TP(I)).

This concludes our proof.

Lemma 11. Let P be a a BELLOG stratum. For any input I for P, we have

�(JPKI t I) = T D
PD
"! (�(I))

where PD =R(P) is the Datalog translation of P.

Proof. For the left-hand-side, recall that JPKI is computed as the least
fixed point of the operator TP#/I , which can be iteratively computed as
TP#/I "i+1= TP#/I (TP#/I "i) where TP#/I "0= I

f

. Furthermore, �(JPKI t I) =
�(JPKI )[�(I).

For the right-hand-side, recall also that T D
PD
"! (�(I)) is computed as

T D
PD
"i+1 (�(I)) = T D

PD
(T D

PD
"i )[ T D

PD
"i (I)

where T D
PD
"0= �(I). Note that I is an input, and therefore we have

T D
PD
"! (�(I)) = T D

P#D/�(I)
"! (;)[�(I)

because for any edb atom ⇢(a,?) 2 T D
PD
"i (�(I)) iff ⇢(a,?) 2 �(I), for

i � 0.
To prove the lemma, it remains to show that �(JPKI ) = T D

P#D/�(I)
"! (;).

This follows by induction on the iterations, where the inductive step follows
from Lemma 10.

Theorem 14. Given a stratified BELLOG program P and an input I for P, we
have JPKI = �̄(JR(P)[�(I)KD).
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Proof. Since �(�(JR(P) [ �(I)KD)) = JR(P) [ �(I)KD, it is sufficient to
prove that �(JPKI ,⌃) = JR(P) [ �(I)KD. The proof is straightforward by
induction on the models computed for each of the strata P1, · · · , Pn. The
only non-trivial observation is that the model of a stratum Pi is the join
of the model of the previous stratum Pi�1 and the least fixed point of the
current stratum’s operator. It is easy to see however that the function � is
join-preserving; that is, for any two BELLOG interpretations I , J , we have
�(I t J) = �(I)[�(J).





Chapter 5

Fail-Security

Modern access-control systems are often distributed, and therefore subject
to communication and component failures. If failures affect the availability
of information needed for security decisions, then access-control systems
must, either implicitly or explicitly, handle these failures. This concern
permeates all access-control domains. For example, firewalls must oper-
ate even when their log engines crash [33] or rule updates fail [77], web
applications must service requests even if authentication services are unre-
sponsive [72], delegation systems must evaluate requests even when they
cannot update their revocation lists, and perimeter security systems must
control access even when the wireless channels to their central database
are jammed. In such settings, the access decisions of a PDP cannot be
understood without considering the PDP’s failure handlers as well.

The access-control community has not thus far rigorously studied the
effects of failure handlers on access decisions. One reason for this is that
simply interpreting failures as denies appears sufficient to conservatively
approximate the PDP’s desired behavior. This would suggest that the policy
writer need not overly concern himself with analyzing the PDP’s failure
handlers. However, failures can affect the PDP’s decisions in surprising and
unintended ways. Such simplistic approximations are not only inflexible,
they also do not necessarily result in secure systems. As an example, we
describe later how the conservative approach of replacing failures with
denies had been originally adopted in the XACML v3.0 standard, and was
later dropped due to its insecurity.

Given that failure handling influences the PDP’s access decisions, it
follows that formal analysis frameworks for access-control should account
for the PDP’s failure handlers. Only then can security guarantees be derived
for the PDP’s access decisions, both in the presence and absence of failures.
Analysis techniques for obtaining such security guarantees would be of
immediate practical value because existing access-control systems separate
failure handling from the “normal” (typically declarative) policy interpreted
by the PDP, i.e. the policy that defines the PDP’s decisions when no failures
occur. The logic that decides access requests is therefore split into two
parts. This separation makes the PDP’s behavior difficult to understand
and analyze.

Existing formal analysis frameworks for access-control policies are inad-
equate for the task at hand. This is neither an issue with the expressiveness
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of their formal languages nor the complexity of their decision problems.
Rather, they lack (i) a system and attacker model tailored for failure sce-
narios, (ii) idioms for specifying failure handlers, and (iii) methods for
verifying fail-security requirements, i.e. security requirements that describe
how distributed access-control systems ought to handle failures. Thus,
currently it is all but impossible to derive security guarantees that extend
beyond the PDP’s normal behaviors. In this paper, we show how to realize
these three artifacts using the BELLOG analysis framework [88].

In this chapter, we systematically analyze the role of failure handling in
access-control systems. We give examples of systems that exhibit different
failure-handling flaws; a common thread in these systems is their seeming
conformance to security common sense.

We also demonstrate how the PDP, including its failure handlers, can
be modeled and analyzed using the BELLOG access-control framework. In
particular: (i) We investigate seven real-world access-control systems and
use these to extract a system and an attacker model tailored for analyzing
the effect of failures on the PDP’s decisions. (ii) We derive common failure-
handling idioms from these systems, which can be readily encoded in
BELLOG. (iii) Through examples, we show how to express fail-security
requirements and we provide a tool to automatically verify them for a given
PDP with respect to our attacker model. We argue that our verification
method is effective by demonstrating how the three kinds of security flaws
mentioned above can be discovered.

Organization In Section 5.1, we give examples of PDP failure handlers
and fail-security requirements for access-control systems. In Section 5.2
extend our system model from Chapter 2 with an attacker that can cause
communication and component failures. In Section 5.3, we show how
BELLOG is used to specify the examples from Section 5.1. In Section 5.4,
we analyze these examples with respect to their fail-security requirements.
We discuss related work in Section 5.5.

5.1 Motivating Examples
As motivation, we use the XACML v3.0 standard to show that approximating
failures with denials, although seemingly conservative, can lead to insecure
systems. Through our second and third examples, taken from the web
application and grid computing domains, we illustrate the common PDP
implementation pattern that treats failure handlers as a separate add-
on to the normal policy engine. We show how this separation makes
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1 evaluate(Request req)
2 Set decisions
3 foreach (pol in policies) // loop through all policies
4 try
5 decision = pol.evaluate(req) // evaluate the current policy
6 if (pol.issuer == admin) or authorize(pol, req)
7 // consider policies that are issued
8 // or authorized by admin
9 decisions.add(decision)
10 else
11 // ignore policies that are neither issued
12 // nor authorized by admin
13 pass
14 catch (EvaluationException e)
15 // ignore policies that cannot be evaluated
16 pass
17 return compositionOperator.apply(decisions)

Figure 5.1: PDP module for evaluating XACML v3.0 policy sets. The meth-
ods pol.evaluate(req) and authorize(pol, req) throw an exception if the PDP
fails to execute them.

understanding and analyzing PDPs particularly difficult, resulting in systems
open to attacks.

5.1.1 XACML v3.0
XACML v3.0 is an OASIS standard for specifying access-control policies [94].
XACML v3.0 policies are issued by principals and evaluated by a PDP. A
policy issued by the PDP’s administrator is called trusted; otherwise, it is
non-trusted. The administrator specifies whether a non-trusted policy is
authorized to decide a given request. XACML v3.0 policies are grouped into
policy sets and their decisions are combined with composition operators,
such as permit-overrides, which grants access if at least one policy grants
access. To decide a given request, the PDP first computes the decisions of
all policies in the set. Afterwards, it checks which non-trusted policies are
authorized by the administrator. Finally, the PDP combines the decisions
of the trusted policies and the authorized non-trusted policies using the
policy set’s composition operator.

An XACML v3.0 PDP obtains all information needed for policy eval-
uations, such as attributes and credentials, from PIPs. The XACML v3.0
standard, up to Revision 16, stated that the PDP should refrain from using
policies that could not be evaluated or authorized due to communication
and PIP failures. This decision follows the intuitive idea that all suspicious
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policies should be excluded from the PDP’s decision. Figure 5.1 specifies
such a PDP, including its failure handler, in pseudo-code. Although this
failure handler is inflexible, the committee did not anticipate other con-
sequences on the PDP’s decisions apart from always making them more
conservative (i.e. less permissive). This however turned out to be wrong.

When the proposed failure-handling behavior was considered together
with the deny-overrides composition operator, the following attack was
discovered [95]. Consider a request r and a policy set P that contains one
trusted policy P1 that grants r and one authorized non-trusted policy P2
that denies r. P ’s decisions are combined with deny-overrides. If the PDP
successfully evaluates P1 and fails to evaluate P2, then the PDP will grant r,
even though it does not have all the necessary information to make this
decision. In this case, the attacker can simply launch denial-of-service
attacks against PIPs and obtain a grant decision for r. In Section 5.4 we
show how this attack can be found through automated analysis using our
BELLOG access-control framework.

This example illustrates that a PDP’s failure handlers, regardless of
their simplicity, can affect access decisions in surprising ways. In this
example, the failure-oblivious composition of sub-policies is the root of the
security flaw. To remedy this flaw, the XACML v3.0 standard currently uses
a designated policy decision (the indeterminate IN) for every policy that
cannot be evaluated due to failures. Consequently, failure handling is now
a concern of the security engineer.

5.1.2 Authorizations in Web Apps
Web applications use access-control frameworks to specify and manage user
permissions. Examples include the Java Authentication and Authorization
Service JAAS, Apache Shiro, and Spring Security. Basic policies can be
specified using declarative policy languages. The PDP loads policies and
evaluates them within its authorization method. A reoccurring problem
is that the PDP fails to load a policy due to syntactic errors or missing
files. To deal with this problem, administrators often maintain a default
policy that serves as a fallback option. Use of the default policy is typically
conditioned on whether logging is enabled. This fallback approach imposes
the following fail-security requirement:

Fail-security requirement 1 (FR1): When the PDP cannot compute an
access decision due to malformed or missing policy, then it uses the default
policy if logging is enabled, and it denies access otherwise.
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1 isAuthorized(User usr, Object obj, List aclIDs)
2 try
3 foreach (id in aclIDs) // loop through all ACLs
4 if (readAcl(id).grants(usr,obj))
5 // grant access if an ACL evaluates to true
6 return true
7 catch (ReadAclException e)
8 // evaluate the default ACL if an exception is thrown
9 return def.grants(usr,obj) and logger.isEnabled()
10 return false

Figure 5.2: A PDP module for the web app example.

To illustrate this, consider the case where the PDP composes finitely
many access-control lists (ACLs) using the permit-overrides operator, which
permits access if at least one of the ACLs permits access, and denies access
otherwise. To adhere to FR1, the PDP must invoke the failure handler
if and only if none of the ACLs permits access and at least one of them
is malformed. The failure handler in this example would evaluate the
default ACL def and check whether logging is enabled. Figure 5.2 gives
a straightforward authorization method for this scenario in pseudo-code.
The method takes as input a user object usr, the requested object obj, and
a list aclIDs of ACL identifiers. The method readAcl(id) returns the ACL
object corresponding to id, and throws a ReadAclException exception
when it cannot find or parse the associated ACL. The default ACL def is
hard-coded in the method.

The pseudo-code describes a correct permit-overrides operator for ACLs
under normal conditions, i.e. when there are no failures. The catch block
is also correct as it intuitively follows the structure of FR1. However, the
failure handling is overly eager in that if a ReadAclException is thrown
while evaluating an input ACL then the PDP stops evaluating the remaining
input ACLs and jumps to the catch block. This method therefore does not
satisfy FR1: if a list of two ACL identifiers is passed to the method and the
first ACL fails to load, then the method immediately consults def, which
would be wrong if the second ACL would permit access.

This problem is rooted in the overly eager invocation of the failure
handler. The problem here is not an instance of syntactic vulnerability
patterns, such as overly-broad throws declaration and overly-broad catch
block [56], and it cannot be solved for example by simply moving the try-
catch construct inside the for loop. One solution would be to delay the
invocation of the failure handler until all the ACLs have been evaluated.
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To conclude, because existing web access-control frameworks typically
separate failure handling from the normal policy of the PDP, it is difficult to
gain confidence in their security. To rise to this challenge, policy specifica-
tion languages and their analysis frameworks should also account for the
interactions that result from the separation. In Section 5.3 we give a formal
specification of the method of Figure 5.2, and we verify the specification
against FR1 in Section 5.4, which reveals the discussed problem.

5.1.3 Authorizations in Grids
In grid computing platforms, resources (such as storage space) are located
in different domains. Each domain has an owner, and only one PDP controls
access to the domain’s resources. It is however infeasible for each PDP to
manage authorizations for all subjects from all domains. Domain owners
therefore delegate authorization management to trusted subjects, possibly
from other domains. These subjects may then issue tokens to authorize
other subjects and to further delegate their rights. All tokens are stored
as digital credentials. Subjects then submit their credentials, alongside
their access requests, to a PDP. In addition, it is sometimes necessary to
revoke subject’s credentials, for example when dealing with ex-employees.
A common solution is to store all revoked credentials on a central revocation
server.

A (delegation) chain for a subject S is a transitive delegation from the
domain owner to S. We say that a delegation chain is non-revoked if none
of the delegations in the chain has been revoked. A given domain’s PDP
grants access if the subject has at least one non-revoked delegation chain or
the subject is the domain’s owner. The revocation server may sometimes
be unavailable, for example due to lost network connectivity. Denying all
access in the case of failures may be too restrictive as the unavailability
of some resources, to selected subjects, would be too costly [91]. One
fail-security requirement that reflects this notion is:

Fail-security requirement 2 (FR2): When the PDP cannot check whether
a subject has at least one non-revoked delegation chain due to failures, the
PDP grants access if the subject is a direct delegate of the owner; otherwise it
denies access.

The rationale is that the owner rarely revokes his direct delegates. This
requirement also states that the owner chooses to ignore all delegations
issued by subjects, including his direct delegates, whose delegation chains
cannot be checked. Figure 5.3 illustrates one delegation scenario and
shows which subjects are granted access according to FR2. In the depicted
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Owner

Bob

Carol

Dave

Ann Fred

Subject has access

Subject does not have access

The PDP failed to check that
the delegation is not revoked

Non-revoked delegation

Figure 5.3: The figure shows which subjects in the depicted scenario have
access according to FR2

scenario, Ann has access because her delegation is issued by the owner.
Bob and Dave have access because they have non-revoked chains. Fred
and Carol are denied access because they do not have non-revoked chains
and they are not the owner’s direct delegates.

Existing delegation languages do not specify failure handling within
policy specifications, but rely on having failure handlers within the PDP.
This approach, which separates the delegation logic from failure handling,
is described in [25]. Based on these guidelines, Figure 5.4 depicts a possible
PDP design for our grid access-control scenario. In Figure 5.4a, we specify
the normal policy of the PDP using two BELLOG policy rules. The policy
grants access to a subject X if X is an owner or has a (transitive) delegation
chain from an owner. Before evaluating the policy, the PDP checks whether
each supplied delegation is still valid by querying the revocation server. If
it is revoked then the PDP discards the delegation.

Considered separately, the normal policy and the failure handler of
Figure 5.4 intuitively conform to FR2. Their interaction however leads
to a subtle attack. The attack, described in Section5.4, results from the
preemptive masking of failures. We were unable to find the attack before
specifying this PDP in BELLOG; we believe this applies to most security
engineers.

Finally, we remark that our goal is not to promote particular fail-security
requirements; they can be determined for example from a risk analysis of
each deployed system. Our goal is instead to raise and address the need
for analyzing access-control systems in the presence of (malicious) failures
with respect to their security requirements. We stress that even systems
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1 pol(X) :- owner(X)
2 pol(X) :- pol(Y), grant(Y,X)

(a) Access-control policy del.policy.

1 isAuthorized(Subject subj, List delegations)
2 datalogEngine.load(del.policy) // load the policy
3 // loop through all delegations
4 foreach ((delegator, delegatee) in delegations)
5 try
6 if (rev.query(delegator, delegatee) == false)
7 // keep only non-revoked delegations
8 datalogEngine.assert(grant(delegator, delegatee))
9 else
10 // discard revoked delegations
11 pass
12 catch (QueryException e)
13 if isOwner(delegator)
14 // keep delegations issued by the owner
15 datalogEngine.assert(grant(delegator, delegatee))
16 return datalogEngine.check(pol(subj))

(b) PDP module, where datalogEngine represents a Datalog interpreter. The
method rev.query() may throw an exception.

Figure 5.4: A PDP module for the grid example.

that are intended to conform to simple conservative requirements, such as
the fail-safe principle (deny all access if there is any failure) [79], are not
exempt from failure-handling flaws, and thus should also be analyzed.

5.2 Attacker Model
We now present our attacker model. As described in Chapter 2, PDPs obtains
attributes from PIPs through remote queries. In our system model, PDPs and
PEPs cannot fail, whereas PIPs can fail. Furthermore, the communication
channels between the PDP and the PIPs can fail, while all other channels
(e.g. PEP-to-PDP) are reliable.

We consider an attacker who can cause any remote query to fail. Note
that our attacker model subsumes all failures due to benign causes. The
attacker can in particular cause complete channel failure by causing all
remote queries through that channel to fail. In Figure 5.5, we depict in red
the components that our attacker can cause to fail.

The attacker cannot, however, forge credentials or forge and replay
past remote queries and obsolete responses. To this end, we assume that
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Subjects PEP

Credentials

Grant/Deny
PDP

Credentials
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Attrib
utes

Attributes
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Figure 5.5: Extended system model with an attacker that can cause com-
munication and component failures.

all communication channels are authentic and have freshness guarantees
(through timestamps, nonces, etc.).

5.3 Specifying PDPs with Failure Handling
In this section, we first describe three failure-handling idioms, derived
by analyzing seven existing access-control systems and their failure han-
dlers. These idioms are abstractions we use for modeling failure-handling
mechanisms. We then show how BELLOG can be used to specify the failure-
handling idioms and the PDPs of Section 5.1, including their failure han-
dlers.

5.3.1 Failure-handling Idioms
To understand how existing systems handle communication failures, we
have inspected the documentation of seven access-control systems; see
Table 5.1. Our analysis revealed three failure-handling idioms, which are
sufficient to describe how failures are handled in these systems. To describe
the idioms, we abstract a PDP as evaluating a request through a finite
sequence of computation and communication steps; hereafter referred
to as events. We assume that computation events always terminate suc-
cessfully, while communication events either terminate successfully or fail.
Note that similar abstractions exist for exception handling in programming
languages [55, 64].

Fallback The fallback idiom abstracts the failure handlers that use fallback
information sources when the communication channels to the primary in-
formation sources fail. If a communication event fails then it is re-executed
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System Failure-handling Idioms

Cisco IOS [31] Catch
KABA KES-2200 [60] Catch
Kerberos [62] Fallback
RedHat Firewall [77] Catch
Spring Framework [83] Propagate, Catch
WebSphere [93] Catch
XACML PDPs [96] Propagate, Catch

Table 5.1: Analyzed access-control systems and their failure-handling id-
ioms.

using the fallback source. The fallback source can be, for example, a backup
of a primary information source. This idiom is used in access-control sys-
tems whose primary authentication services are unreliable. For example,
Kerberos [62] can fall back on local user/password lists when its primary
LDAP authentication service is unavailable.

To instantiate this idiom, a fallback source must be configured for each
information source that may fail. Although the fallback source may be
periodically synchronized with the information source, it may nevertheless
provide stale information of inferior quality.

Catch This idiom abstracts the failure handlers that catch failures and
then enforce alternative access-control policies. The catch idiom is analo-
gous to exception handling in programming languages where the failure to
execute a given procedure is handled by a designated procedure. In terms
of the PDP’s execution, whenever an event fails, the execution branches to
another (alternative) sequence of events.

We can use this idiom to implement a system that meets FR2. The
system’s alternative access-control policy would contain only the grants
for the owners’ direct delegates. Systems that employ this idiom include:
KABA KES-2200 [60], which is a token-based physical access-control system
that upon power failures is configured to either grant or deny all requests;
IBM WebSphere [93], whose exception handlers evaluate designated error-
override policies; and Cisco IOS [31] and RedHat Firewall [77], which in
case of failures use alternative rule sets.

Propagate Both the fallback and the catch idioms handle failed events
immediately upon failure. In contrast, FR1 requires failures to be handled
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after all the ACLs have been evaluated. The propagate idiom abstracts the
mechanisms for meeting requirements with such “delayed” failure handling.
Whenever an event fails, the PDP pushes a designated error value as the
input to all subsequent events.

For example, to meet FR1, ideally an error value that indicates a failure
to evaluate an ACL is propagated. The default ACL is evaluated iff no
ACL grants a given request and the PDP failed to evaluate at least one
ACL. Note that the failure handler of Figure 5.2 implementing FR1 is,
however, an instance of the catch idiom. Systems that employ the propagate
idiom include XACML PDPs [96], which propagate indeterminate policy
decisions, and Spring-based applications [83], which propagate data access
exceptions.

5.3.2 Specifying PDPs in BELLOG

We now explain how a PDP, i.e. its normal policy and its failure handlers,
can be specified in BELLOG. We illustrate this by specifying the examples of
Section 5.1.

A PDP’s behavior is determined by three elements:
(i) the PDP inputs, namely credentials forwarded by a PEP, attributes

stored locally at the PDP or obtained from PIPs,
(ii) the policy evaluated by the PDP, and

(iii) the failure-handling procedures used when the communication chan-
nels between the PDP and PIPs fail.

In the following, we describe how these elements can be specified in BEL-
LOG.

Inputs We represent attributes as described in Section 4.2. For example,
ann:public(file) is interpreted as “Ann asserts that file is public”. We model
attributes obtained from PIPs as remote queries, which check whether a
specified attribute is stored at a designated PIP. We write remote queries
as ann : public(file)@pip, where ann : public(file) is an attribute and pip

is a PIP identifier. Formally, remote queries are represented as atoms
where the PIP identifier is appended to the predicate symbol; for example,
ann:public(file)@pip is represented with the atom public_pip(ann,file).

The PDP’s input consists of credentials forwarded by a PEP, attributes
stored at the PDP, and attributes obtained using remote queries to PIPs.
We model a PDP’s input as BELLOG input. Given a BELLOG input I and a
credential cred, the truth value I(cred) is: t if cred is a credential forwarded
by the PEP, and f if cred is not forwarded by the PEP. Given an attribute
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attr, the truth value I(attr) is: t if attr is stored at the PDP, and f if cred is
not stored by the PEP. For a remote query attr@pip, I(attr@pip) is: t if
attr is stored at pip, f if attr is not stored at pip, and ? if a failure prevents
the PDP from obtaining attr from pip.

Policies For simplicity, in this chapter we confine our attention to PDPs
that enforce delegation policies, such as SecPAL [21], RT [65], Binder [38],
and DKAL [53]. Any policy written in these languages can be specified in
BELLOG; see Section 4.2 for details about specifying policies in BELLOG.
We do not consider PDPs that enforce policies with composition operators
because we use BELLOG’s truth value ? to represent policy evaluation
failures. This technical limitation can be lifted by extending BELLOG with
additional truth values.

Failure Handling We define the error-override operator as

p … q := p
?7! q ,

where p and q are rule bodies. The construct p … q evaluates to q’s truth
value if p’s truth value is ?; otherwise, the result of p is taken. Using this
operator, we can model the failure-handling idioms given in Section 5.3.1.
Consider the remote query cred@pip, which checks whether the credential
cred is stored at pip. To instantiate the fallback idiom, where fallback is the
fallback PIP’s identifier, we write cred@pip… cred@fallback.

To illustrate the catch idiom’s specification, consider a PDP with the
following two policies.

pol1(X ) empl(X )@db (Policy P1)
pol2(X ) stud(X ) (Policy P2)

Here the atom poli(X ) denotes policy Pi ’s decision. The communication
between the PDP and the PIP db can fail. Imagine that the PDP instantiates
the catch idiom and uses P2 whenever it cannot evaluate P1 due to failures.
We can specify this failure handler as

pol(X ) pol1(X )… pol2(X ) .

The propagate idiom is the default failure handler used in BELLOG
specifications. That is, we need not explicitly encode it using BELLOG
rules. This is because we represent failures with ?, and this truth value is
always propagated unless it is explicitly handled with an operator such as
error-override.
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5.3.3 Examples
We now specify the PDPs discussed in Section 5.1.

XACML v3.0 We first observe that the failure handling in Figure 5.1 is
independent of the policies in a policy set and of the composition operator
used to compose their decisions. Therefore, to illustrate the specification
of a complete PDP (i.e. one that contains both a normal policy and failure
handling), we choose deny-overrides as the designated composition opera-
tor for the policies. In BELLOG, the deny-overrides operator corresponds to
the infinitary meet

V
over the truth ordering �; see Section 4.2.4.

The following BELLOG program models the XACML v3.0 PDP’s failure
handling with the deny-overrides operator:

PDP Specification 1 (S1):

pol_set(Req) 
^�

X :pol(Req) / auth(X, Req) . t
�

auth(X , Req) admin(X )
auth(X , Req) auth(X , Req)@check … f

X :pol(Req) pol(X , Req)@eval… t

We use Req to denote access requests and X to denote principals. For
brevity, we assume that each principal X has one policy for all requests,
denoted by X :pol(Req). The outcome of evaluating the policy issued by the
principal X is represented by pol(X , Req)@eval, where eval represents the
PDP’s policy evaluation procedure. To represent whether X is authorized
for a given Req, we write auth(X , Req). Therefore auth(X , Req)@check is a
query to the procedure check to check whether a non-trusted policy issued
by X is authorized to give decisions for the request Req.

To encode that a policy is dropped if a PDP cannot evaluate it, we use
the (_ … t) pattern. This is because t is the identity element for the

V
operator. Thus, if there is an error while evaluating a policy, then t is
returned, which does not influence the final outcome of the composition.
It formalizes that the policy was ignored. If we were modeling another
composition operator, then that operator’s identity element would be used.

To specify that a policy is dropped if a PDP cannot check its authoriza-
tion, we use the (_ … f) pattern. This means that a policy is treated as
unauthorized and thus its decision is ignored (i.e. mapped to t through the
if-then operator).

Finally, the for-loop is implicitly modeled using
V

and the if-then oper-
ator. The
V

operator returns the decision evaluated over the set of policies
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of all principals. Those policies that are not authorized are treated as the
identity element and thus do not influence the result.

Authorizations in Web Applications To model the web application sce-
nario given in Section 5.1, we suppose that there are n input ACLs and one
default ACL. We specify the authorization method given in Figure 5.2 as
follows.

PDP Specification 2 (S2):

pol(U , O) (isGranted(U , O)@acl

1

f7! · · ·

· · · f7! isGranted(U , O)@acl

n

)
… (isGranted(U , O)@def ^ logging)

We model the ACL i’s evaluation of the access request (U , O)with the atom
isGranted(U , O)@acl

i

, where U represents the user and O the requested
object. We model the logger’s status with the credential logging, and in-
stantiate the catch idiom using the error-override operator. To specify the
list iterator of Figure 5.2, we unroll the loop’s n iterations. We use the

f-override operator (
f7!) to capture that the PDP evaluates the ACL i if the

ACL i � 1 does not permit the request. This models the exit from the loop
when the decision is grant. Similarly, the exit from the loop when there
is a failure is captured with the catch idiom using the … operator. This is
because if isGranted(U , O)@acl

i

evaluates to ? then the entire expression
on the left-hand side of … is evaluated to ? as well.

We recall that this specification violates FR1 because the PDP does not
evaluate all ACLs if it fails to evaluate, for example, the first ACL. The
reason is that the catch block is invoked prematurely. In Section 5.4, we
show how our analysis reveals this security flaw, and how the flaw can be
fixed.

Authorizations in Grids A BELLOG specification of the PDP for the grid
scenario (see Figure 5.4) is as follows.

PDP Specification 3 (S3):

pol(X ) owner(X )
pol(X ) pol(Y )^ X :grant(Y )

X :grant(Y ) X :delegate(Y )^
((¬X :revoke(Y )@rev)… owner(X ))
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The PDP stores a credential owner(X ) for each domain owner X . We
represent a delegation from the subject X to the subject Y with the cre-
dential X : delegate(Y ). The credential X : revoke(Y ) represents that the
subject X has revoked Y , and the remote query X :revoke(Y )@rev checks
whether the revocation server stores such revocations.

The top two BELLOG rules encode the policy of Figure 5.4. The last
BELLOG rule encodes the check for revoked credentials. Note that the
for-loop is implicitly encoded, since this BELLOG rule is evaluated for all
principals and subjects. The rule establishes that X grants Y if X delegates
to Y and has not revoked this delegation. The failure handler is invoked
for each delegation separately whenever the revocation check cannot be
made. This follows the inner-loop logic of Figure 5.4.

To summarize, these examples demonstrate the use of BELLOG and
its modeling capabilities. We believe that the failure-handling idioms
considered in this paper, as well as other common authorization idioms,
map naturally to BELLOG constructs. This makes BELLOG a suitable language
for specifying PDPs. Of course, there are limitations to BELLOG’s modeling
power. Not all procedural constructs map naturally to BELLOG’s declarative
specifications, for example see the list iterator of the web app example. A
further investigation of BELLOG’s expressiveness is orthogonal to our results
and outside the scope of this paper.

5.4 Verifying PDPs against Fail-Security Require-
ments

The goal of our analysis is to check a PDP’s access decisions in the presence
of failures. In the following, we first show how one can simulate a PDP
using entailment questions in BELLOG. As an example, we use simulation
to discover the previously described security flaw in XACML v3.0. Second,
we show how given a BELLOG PDP specification P, and a fail-security
requirement r, one can formulate the problem of checking whether P
meets r as a containment problem in BELLOG. We use this to determine
whether P conforms to r for all possible PDP inputs in our attacker model.
As examples, we check whether the PDPs given in Section 5.1 meet their
requirements, and we use the analysis framework to reveal flaws that
violate the fail-security requirements FR1 and FR2.

5.4.1 Simulating PDPs
Given a PDP input and a request, one can use the PDP’s specification to
simulate the PDP and check whether it grants or denies the request also
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in the presence of failures. A PDP can be simulated by posing entailment
questions to its BELLOG specification S as follows. First, the PDP input is
encoded as a BELLOG input I , defined over some domain ⌃, and the request
is encoded as a BELLOG atom r, as described in Section 5.3.2. Second, to
check whether the PDP grants or denies r, we pose the entailment question
S |=I

⌃ r.
To illustrate, we simulate the XACML v3.0 PDP and describe how

one can find the attack described in Section 5.1. The PDP’s specification
is XACML v3.0-spec, given in Section 5.3.2, and we consider the following
scenario. There are two policies, one issued by Ann and one by Bob. Ann
is the PDP’s administrator. Let req be a request such that Ann’s policy
grants req, while Bob’s policy denies req. Imagine that Bob’s policy is autho-
rized to give decisions for req. The PDP must therefore deny req because
Ann and Bob’s policies are composed using the deny-overrides operator.
The following BELLOG input models this scenario.

I = { admin(ann) 7! t

pol(ann, req)@eval 7! t

pol(bob, req)@eval 7! f

auth(bob, req)@check 7! t

Here the input I describes a no-failure scenario where the PDP success-
fully evaluates both policies and successfully checks that Bob’s policy is
authorized.

To simulate how the PDP behaves in the presence of failures, we may
check the PDP’s decision for the input

I
fail

= { admin(ann) 7! t

pol(ann, req)@eval 7! t

pol(bob, req)@eval 7! f

auth(bob, req)@check 7! ?
The only difference here is that the PDP fails to check whether Bob’s policy
is authorized for req. We observe that for this scenario we have S1 `I

fail

pol_set(req), i.e. the PDP grants req because the PDP’s failure handler drops
Bob’s policy decision. As the XACML committee discovered, this behavior
is undesirable because an adversary may gain access by forcing the PDP to
drop authorized policy decisions.

Note that our simulation method is similar to fault injection in software
testing [86, 92]: The system’s behavior is tested in various failure scenarios.
The difference is that we do not directly execute the PDP’s code and instead
work with its specification.
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5.4.2 Verifying Fail-security Requirements
To verify that a PDP specification S meets a requirement r, we formulate a
number of containment problems. Each containment problem is defined us-
ing two BELLOG specifications, where one of them is the PDP specification S
and the other one constrains the PDP’s permissiveness, as prescribed by the
requirement r. In the following, we formulate and verify whether the web
app and grid PDPs from Section 5.1 meet their fail-security requirements.
We also give an example of a generic fail-security requirement and show
that it can be verified similarly.

Authorizations in Web Applications. Consider the PDP specification S2
and the fail-security requirement FR1, which states that when the PDP
cannot compute an access decision due to malformed or missing specifications,
then it uses the default specification if logging is enabled; otherwise, it denies
access.

To determine whether S2 meets FR1, we first write a condition that is
satisfied by the inputs for which the PDP cannot compute an access decision
due to failures. Since the ACLs are composed with the permit-overrides
operator, the PDP grants a request if any of the ACLs grant the request, and
it denies it if all the ACLs deny it; otherwise, the PDP cannot compute a
decision and it must, as prescribed by FR1, evaluate the default ACL and
check the logging status. We encode the containment condition as

c
error

= ¬
Ä�

isGranted(U , O)@acl

1

= t _ · · ·_ isGranted(U , O)@acl

n

= t

�
_
�
isGranted(U , O)@acl

1

= f^ · · ·^ isGranted(U , O)@acl

n

= f

�ä
.

We then construct the BELLOG specification R
error

:

R
error

= {pol(U , O)  (isGranted(U , O)@def ^ logging} .

The specification R
error

evaluates to grant if the PDP’s default ACL evaluates
to grant and logging is enabled; otherwise it evaluates to deny. Finally, to
check whether the specification S2 meets FR1, we formulate the contain-
ment problem

c
error

) S = R
error

.

Our analysis tool shows that the specification S2 violates the require-
ment FR1 for the PDP input

I = { isGranted(ann,file)@acl

1

7! ?,
isGranted(ann,file)@acl

2

7! t,
isGranted(ann,file)@def 7! f } .



88 5 Fail-Security

1 isAuthorized(User u, Object o, List aclIDs)
2 error = false
3 for (id in aclIDs) // loop through all ACLs
4 try
5 if (readAcl(id).grants(u,o))
6 // grant if the current ACL grants
7 return true
8 catch (NotFoundException e)
9 // remember if the PDP failed to evaluate an ACL
10 error = true
11 if error
12 // check the default ACL and the logger’s status
13 return def.grants(u,o) and logger.isEnabled()
14 return false

Figure 5.6: A PDP module that meets FR1.

S2 violates FR1 because it denies the request pol(ann,file) even though
ACL 2 grants this request.

To meet FR1, the PDP must correctly implement the propagate failure-
handling idiom and apply the failure handler only if it fails to evaluate an
ACL and all remaining ACLs deny access. We correct the PDP’s specification
as follows.

PDP Specification 4 (S4):

pol(U , O) 
�
isGranted(U , O)@acl

1

_ · · ·_ isGranted(U , O)@acl

n

�
…
�
isGranted(U , O)@def ^ logging

�
To automatically check whether S4 meets FR1, we translate domain

policy containment problems into propositional validity problems, which
can be answered using off-the-shelf SAT solvers. Note that we cannot
check whether S4 meets FR1 for any domain since containment of BELLOG
programs is, in general, undecidable.

For a PDP with 10 ACLs, for all PDP inputs in a fixed domain of 10 con-
stants. The verification takes 0.03 seconds. Naturally, the verification time
increases with the number of ACLs and the domain size. For example, the
verification time for a PDP with 100 ACLs and inputs ranging over domains
of size 10, 100, and 1000 is 0.13, 2.09, and 34.42 seconds, respectively.

We give the pseudo-code for the authorization method that imple-
ments S4 in Figure 5.6. This method delays handling failures until all ACLs
have been evaluated. The PDP correctly implements the propagate idiom,
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i.e. it consults the ACL def only if no input ACL grants the request and
the PDP has failed to evaluate at least one of them (recorded in the error
variable).

Authorizations in Grids Consider the PDP specification S3 and the fail-
security requirement FR2, which states that when the PDP cannot check
whether a subject has at least one non-revoked delegation chain due to failures,
the PDP grants access if the subject is a direct delegate of the owner; otherwise
it denies access.

To verify that the specification meets the requirement, we formulate
two containment problems. The first problem checks whether the PDP
correctly evaluates the requests made by direct delegates and the second
one checks whether the PDP correctly evaluates the requests made by non-
direct delegates. We formulate these containment problems as the BELLOG
program

R
chain

= { chain(X ) owner(X )
chain(X ) chain(Y )^ Y :delegate(X )^¬Y :revoke(X )@rev} .

Given a subject X , chain(X ) is: (1) t if the PDP checks that X has at least
one non-revoked chain, (2) ? if the PDP fails to check whether X has at
least one non-revoked chain, and (3) f if X has no chains or the PDP checks
that X has only revoked chains. We use the containment condition

c
direct

= (9Y. owner(Y ) = t^ Y :delegate(X ) = t ^ Y :revoke(X )@rev 6= t) ,

which is satisfied by a PDP input iff the subject X who makes the request is
a direct delegate and the owner has either not revoked the delegation or
the PDP cannot check if the delegation is revoked.

We formulate the first containment problem as

c
direct

) S = R
direct

, where
R

direct

= R
chain

[ {pol(X ) chain(X )… t} .

The condition c
direct

restricts PDP inputs to direct delegates and R
direct

specifies which direct delegates S must grant and deny access to. Since the
PDP must grant access to a direct delegate X iff the PDP either checks, or
fails to check, that X has at least one non-revoked chain, R

direct

conflates ?
and t into the grant decision using the (_… t) pattern.

We formulate the second problem as

(¬c
direct

) ) S = R
non�direct

, where
R

non�direct

= R
chain

[ {pol(X ) chain(X )… f} .
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The condition ¬c
direct

restricts PDP inputs to non-direct delegates and re-
voked direct delegates, and R

non�direct

specifies which ones S must grant
and deny access to. Since the PDP must deny access to a non-direct dele-
gate X iff the PDP fails to check that X has at least one non-revoked chain
or X has only revoked chains, R

non�direct

conflates ? and f into the deny
decision using the (_… f) pattern.

Our analysis tool shows that the PDP specification S3 does not meet
FR2 because the problem

(¬c
direct

)) S = R
non�direct

is answered negatively. The tool outputs the following PDP input:

I = { admin:owner(piet) 7! t,
piet:delegate(ann) 7! t,
piet:revoke(ann)@rev 7! ?,
ann:delegate(fred) 7! t,
ann:revoke(fred)@rev 7! f } .

In this scenario, Piet is the owner, and he delegates access to Ann, who
further delegates access to Fred. Furthermore, the PDP fails to check
whether Piet’s delegation to Ann is revoked, and it succeeds in checking
that Ann has not revoked Fred; see Figure 5.3. The PDP must deny access
to Fred because he does not have a non-revoked delegation chain and
he is not a direct delegate. The PDP, however, grants access to Fred, thus
violating FR2. This flaw stems from the preemptive masking of failures. The
adversary Fred can exploit this flaw and force an unintended grant decision
by preventing the PDP from checking whether the owner’s delegation to
Ann is revoked. To confirm the attack, we simulated the attack scenario
using our BELLOG interpreter.

To meet FR2, we modify the specification as follows.

PDP Specification 5 (S5):

pol(X ) grant(X )…
�
owner(Y )^ Y :delegate(X )^ (¬Y :revoke(X )@rev)

�
grant(X ) owner(X )
grant(X ) grant(Y )^ Y :delegate(X )^ (¬Y :revoke(X )@rev)

In the original specification S3, errors are not propagated through dele-
gation chains. In contrast, the specification S5 propagates errors through
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delegation chains and thus denies access to subjects who are not direct
delegates and do not have a non-revoked chain. The pseudo-code that
reflects S5 would have to, in effect, distinguish between permissions solely
due to direct delegation versus permissions due to non-revoked chains.

Our analysis tool shows that the specification S5 meets FR2 for all PDP
inputs in a fixed policy domain with eight constants; the verification takes
149.38 seconds. Our tool did not terminate in a reasonable time for larger
domains.

We remark that domain containment gives weaker security guarantees
than (general) policy containment because the guarantees are only for
the given policy domain. Hence, domain policy containment does not
account for possible attacks in other domains. For example, domain policy
containment misses the attack described in our grid example if the policy
domain has only two constants (e.g., two subjects). This is because the
adversary must assume the role of a subject who is delegated access by a
direct delegate, and such a subject does not exist in a domain with fewer
than three constants.

Other Requirements In addition to the aforementioned requirements,
one can verify whether a PDP meets certain generic security requirements.
For example, one may want to ensure that a PDP handles all failures, i.e.
it always evaluates requests to either grant or deny decisions. We refer
to this requirement as error-freeness, and show how it can be checked by
formulating suitable containment problems.

Let S be the PDP specification and pol(X ) be the atom used to denote
the PDP’s access decisions. We construct a specification R as follows. Let
R = ;. We rename the predicate symbol pol to tmp in S’s rules and add the
changed rules to R. Finally, we add the rule

pol(X ) tmp(X )… f ,

to R. We formulate the containment problem as S = R. By construction, R
denies all requests that S evaluates to ?. Therefore, if S evaluates a request
to ?, then R is not equal to S; otherwise, S is error-free. Note that one can
similarly verify that any atom other than pol(·) in the PDP’s specification is
error-free.

To conclude, these examples show that our simulation and verification
methods can reveal security flaws in PDPs that handle failures incorrectly.
Our preliminary experiments show that our simulation tool scales well to
realistic problems. The runtimes for our analysis tool, however, are mixed.
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In our grid example the analysis tool does not terminate in a reasonable
amount of time for a domain with nine constants, whereas in the web
app example the tool terminates in less than a minute for domains with
thousands of constants.

5.5 Related Work
Although fail-security requirements have been discussed in the security
literature [24, 91], there has been no rigorous, systematic treatment of fail-
secure access control. The existing access control specification languages,
such as [21, 26, 38, 46, 53, 65], do not explicitly deal with failure handlers
in their analysis. Although failures are considered in [35], failure-handling
mechanisms are not dealt with.

Static and dynamic policy analysis frameworks such as [20, 28, 40,
43, 49, 63] can potentially be tailored to reason about PDPs with failure
handling, similarly to BELLOG. In particular, PBel’s analysis framework [28]
also supports policies with many-valued policy decisions and can, if delega-
tions are excluded, express our failure-handling idioms. We remark that
dynamic analysis frameworks, such as [20, 40, 49], consider history-based
access decisions, which fall outside the scope of this thesis.



Chapter 6

Access Control Synthesis for Physical
Spaces

In this chapter, we present our access-control synthesis algorithm for syn-
thesizing local policies from global requirements. The focus in this chapter
is on physical access-control systems, which are used to restrict access to
physical spaces. For example, they control who can access which parts of
an office building or how personnel can move within critical spaces such
as airports or military facilities. As physical spaces are usually comprised
of subspaces, such as rooms connected by doors, policies are enforced by
multiple policy enforcement points (PEPs). Each PEP is associated with a
control point, like a door, and enforces a local policy.

Consider, for example, an office building. An electronic door lock might
control access to an office by enforcing a policy that states that only an
employee may enter the office. This policy is local in the sense that its scope
is limited to an individual enforcement point, here the office’s door. The
policy therefore does not guarantee that non-employees cannot enter the
office, since the office may have other doors. Neither does it guarantee
that employees can actually access the office. If employees cannot enter
the corridor leading to the office’s door, then the local policy is useless.

In contrast to the local policies for enforcement points, access-control
requirements for physical spaces are typically global. They express con-
straints on the access paths through the entire space. In the example above,
a requirement might be that employees should be able to access the office
from the lobby. This requirement is global in that no single PEP alone can
guarantee its satisfaction. A standard electronic lock, which enforces only
local policies such as grant access to employees, is oblivious to the physical
constraints of the office building and what policies the other PEPs enforce.
It therefore cannot address this requirement.

Problem Statement The discrepancy between global requirements and
local policies creates an abstraction gap that must be bridged when configur-
ing access-control mechanisms. We consider the problem of automatically
synthesizing a set of PEP policies that together enforce global access-control
requirements in a given physical space.

This problem is nontrivial. A given physical space usually constrains
the ways subjects may access its subspaces. These constraints must be
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Figure 6.1: Access control synthesis for physical spaces

accounted for when configuring the individual PEPs. Moreover, global
access-control requirements may have interdependencies and hence their
individual solutions may not contribute to an overall solution. To illustrate
this lack of compositionality, suppose in addition to the requirement that
employees can access an office room from the lobby, we require that they
must not enter the area where auditing documents are stored. Giving em-
ployees access to their office through any path satisfies the first requirement,
but it would violate the second one if the path goes through the audit area.

In practice, constructing local policies for a physical space is a manual
task where a security engineer writes individual policies, one per PEP, that
collectively enforce the space’s global requirements. This manual process
results in errors, such as granting access to unauthorized subjects or denying
access to authorized ones; the literature contains numerous examples of
such problems [19, 45, 47]. Moreover, engineers must manually revise their
policies whenever requirements are changed, or when the physical space
changes, e.g. due to construction work. In short, writing local policies
manually is error-prone and scales poorly. Our thesis is that it is also
unnecessary: the automatic synthesis of local policies with system-wide
security guarantees is a viable alternative.

Approach and Contributions We propose an algorithm for automati-
cally synthesizing local policies that run on distributed PEPs from a set of
global access-control requirements for a given physical space. The main
ingredients of our synthesis approach are depicted in Figure 6.1. The key
component is a synthesizer, which is an algorithm that takes as input a
model of the physical space and a set of global requirements. The synthe-
sizer’s output is the set of local policies that the PEPs enforce. If the global
requirements are satisfiable, then the synthesizer is guaranteed to output
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a correct set of local policies; otherwise, it returns unsat to indicate that
the requirements cannot be satisfied. Hence, using our synthesis algorithm,
engineers can generate local policies from global requirements simply by
formalizing the global requirements and modeling the physical space.

Below, we briefly describe the components of our synthesis approach,
depicted in Figure 6.1. We use directed graphs to model physical spaces:
a node represents an enclosed space, such as an office or a corridor, and
an edge represents a PEP, for example installed on a door or turnstile. The
nodes are labeled to denote their attributes. These attributes may include
the assets the node contains (audit documents), its physical attributes
(international terminal), and its clearance level (high security zone). These
attributes may be used when specifying policies. Formally, our model of a
physical space is a Kripke structure.

We give a declarative language, called SPCTL, for specifying global re-
quirements. Our language is built on the computation tree logic (CTL) [42]
and supports subject attributes (e.g., an organizational role), time con-
straints (e.g., business-hour requirements), as well as quantification over
paths and branches in physical spaces. To demonstrate its expressiveness,
we show how common physical access-control requirements can be directly
written in SPCTL. Moreover, to simplify the task of formalizing such require-
ments, we develop requirement patterns and illustrate their use through
examples.

Our synthesis algorithm outputs attribute-based policies, expressed
as constraints over subject attributes and contextual conditions, such as
organizational roles and the current time. We restrict our attention to
policies without authority delegation and policy composition because syn-
thesizing arbitrary policies specified in BELLOG, which is our policy spec-
ification language used in Chapters 4 and 5, is prohibitively expensive.
Nonetheless, the attribute-based policies supported by our algorithm cover
a wide range of practical setups and scenarios, including attribute-based
and role-based access control. We strike a balance between the requirement
language’s expressiveness and the complexity of synthesizing local policies.
The synthesis problem we consider is NP-hard. However, we show that for
practically-relevant requirements, it can be efficiently solved using existing
SMT solvers. This is intuitively because physical spaces, in practice, induce
directed graphs that have short simple-paths. We illustrate our algorithm’s
effectiveness using three case studies where we synthesize access-control
policies for a university building, a corporate building, and an airport termi-
nal. Synthesizing local policies in each case takes less than 30 seconds. The
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last two case studies are based on real-world examples developed together
with KABA, a leading physical access control company.

To the best of our knowledge, ours is the first framework for synthesizing
policies from system-wide access-control requirements. We thereby solve a
fundamental problem in access control for physical spaces. An immediate
practical consequence is that security engineers can focus on system-wide
requirements, and delegate to our synthesizer the task of constructing the
local policies with correctness guarantees. We remark that although this
work is focused on access control for physical spaces, the ideas presented are
general and can be extended to other domains, such as computer networks
partitioned into subnetworks by distributed firewalls.

Organization We give an overview of our access-control synthesis ap-
proach in Section 6.1. In Section 6.2, we describe and formalize our system
model. In Section 6.3, we define our SPCTL language for specifying global
requirements, and present requirement patterns. In Section 6.4, we define
the policy synthesis problem and prove its decidability. In Section 6.5, we
define an efficient policy synthesis algorithm. In Section 6.6, we describe
our implementation and report on our experiments. We review related
work in Section 6.7. All proofs are given in Section 6.8.

6.1 Overview
We start with a simple example that illustrates the challenges of constructing
local policies that cumulatively enforce global access-control requirements.
We also explain how our synthesis algorithm is used, that is, we describe
its inputs and outputs.

6.1.1 Running Example
Consider a small office space consisting of a lobby, a bureau, a meeting
room, and a corridor. The office layout is given in Figure 6.2a. Access
within this physical space is secured using electronic locks. Each door has a
lock and a card reader. The lock stores a policy that defines who can open
the door from the card reader’s side. The door can be opened by anyone
from the opposite side. We annotate locks with arrows in Figure 6.2a to
indicate the direction that the locks restrict access. For example, the lock at
the main entrance restricts who can access the lobby, and it allows anyone
to exit the office space from the lobby. To open a door from the card reader’s
side, a subject presents a smartcard that stores the holder’s credentials. The
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Main
entrance

Side
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(a) Floor plan (∆ marks security zones)

R1: Visitors can access the meeting room between 8AM and 8PM.

R2: Visitors cannot access the meeting room if they have not
passed through the lobby.

R3: Employees can access the bureau between 8AM and 8PM.

R4: Employees can access the bureau at any time if they enter
their correct PIN.

R5: Non-employees cannot access security zones.

(b) Global requirements

Figure 6.2: Floor plan and global requirements of our running example.

lock can access additional information, such as the current time, needed to
evaluate the policy. The lock opens whenever the policy evaluates to grant.

The global requirements for this physical space are given in Figure 6.2b.
The requirements R1, R3, and R4 define permissions, while R2 and R5
define prohibitions. To meet these requirements, the electronic locks must
be configured with appropriate local policies. As previously observed, this
is challenging because one must account for both spatial constraints and
all global access-control requirements. We illustrate these points below.

Spatial Constraints The layout of the physical space prevents subjects
from freely requesting access to any resource. For example, the requirement
R1 is not met just because the meeting room’s lock grants access to visitors;
the visitor must also be able to enter the corridor from the outside. Such
constraints must be accounted for when defining the local policies. To
satisfy R1, we may for instance choose a path from the main entrance to
the meeting room and configure all the locks along that path to grant access
to visitors.
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Global Requirements Each global requirement typically has multiple
sets of local policies that satisfy it. The local policies must however be
constructed to ensure that all requirements are satisfied simultaneously.
For example, the requirement R1 is satisfied if the side-entrance lock and
the meeting room lock both grant access to visitors between 8AM and 8PM.
It can also be satisfied by ensuring that the main entrance, the lobby, and
the meeting room locks all grant access to visitors between 8AM and 8PM.
Granting visitors access through the side entrance however violates the
requirement R2, which requires that visitors pass through the lobby. Hence,
to meet both requirements, the locks along the path through the lobby must
grant access to visitors between 8AM and 8PM, while the side-entrance
lock must always deny access to visitors.

6.1.2 Synthesis Algorithm
Figure 6.3 depicts our synthesis algorithm’s input and output for our running
example. The input is a model of the physical space and a specification of
its global requirements. The output produced by our synthesizer is a set of
local policies.

A physical space is modeled as a rooted directed graph called a resource
structure; see Figure 6.3a. We have depicted the root node in gray. In our
example, this corresponds to the public space that surrounds the office
space, e.g. public streets. The remaining (non-root) nodes are the spaces
inside the building. The locks control access along the edges. A subject
can traverse a solid edge of the resource structure only if the lock’s policy
evaluates to grant, whereas any subject can follow the dashed edges. Hence,
the locks effectively enforce the grant-all policy along the dashed edges. We
use two attributes to label the physical spaces: the attribute id represents
room identifiers, and sec-zone formalizes that a space is inside the security
zone.

Global requirements are specified using a declarative language, called
SPCTL. In Figure 6.3b we show the formalization of our running exam-
ple’s requirements in SPCTL. For instance, R1, which states that visitors
can access the meeting room between 8AM and 8PM, is formalized as�
(role= visitor)^ (8 time 20)

�
) GRANT(id=mr). This formalization

instantiates SPCTL’s permission pattern GRANT to state that there is a path
from outside to the meeting room such that every lock on the path grants
access to any visitor between 8AM and 8PM. We define SPCTL’s syntax and
semantics and present several patterns in Section 6.3.

Given these inputs, the synthesizer automatically constructs a local
policy for each lock. The synthesized policies are attribute-based policies
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id = out

sec-zone = false

id = lob

sec-zone = false

id = cor

sec-zone = false

id =mr

sec-zone = false

id = bur

sec-zone = true

(a) Resource structure S

((role= visitor)^ (8 time 20)) ) GRANT(id=mr)
(role= visitor) ) WAYPOINT(id= lob, id=mr)
((role= employee)^ (8 time 20)) ) GRANT(id= bur)
((role= employee)^ correct-pin) ) GRANT(id= bur)
(role 6= employee) ) DENY(sec-zone= true)

(b) Formalized requirements

S Resource
structure

Formalized
requirements

Synthesizer

out cor := (role 6= visitor)^ correct-pin

out lob := (8 time 20)
cor bur := (role= employee)
cor mr := (role= visitor)
lob cor := (role 6= ?)

(c) The synthesizer takes as input the resource structure and the formalized
requirements and outputs local policies.

Figure 6.3: Synthesizing the local policies for our running example
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that collectively enforce the global requirements. The synthesized policies
for our running example are given in Figure 6.3c. We write, for example,
cor bur for the synthesized policy deployed at the bureau’s lock. This
policy (role= employee) grants access to subjects with the role employee.
We define the synthesis problem, and the syntax and semantics of attribute-
based local policies in Section 6.4.

6.2 Physical Access Control
We first describe our model for physical spaces, and then formalize it.

6.2.1 Basic notions
Each physical space is partitioned into finitely many enclosed spaces and
one open (public) space. We call the enclosed spaces resources. Two spaces
may be directly connected with a gate, controlled by a PEP. Examples of
gates include doors, turnstiles, and security checkpoints. Each PEP has
its own PDP, which stores a local policy mapping access requests to access
decisions.

To enter a space, a subject provides his credentials to the PEP that
controls the gate. The PEP forwards the subject’s credentials to its PDP.
The PDP, in turn, queries the PIP if needed, evaluates the policy, and then
forwards the access decision — either grant or deny — to the PEP. The PEP
then enforces the PDP’s decision. See Figure 2.1.

We assume that access requests contain all relevant information for
making access decisions. PDPs can thus make their decisions independent
of past access requests. Hence it has no bearing on our model whether the
PDPs are actually distributed or are realized through a centralized system.
This is desirable from a practical standpoint since PDPs and PIPs need not
be equipped with logging mechanisms. Moreover, different PDPs and PIPs
need not synchronize their local views on the request history. In this sense
they are autonomous entities.

As described in Chapter 2, the access requests and local policies we
consider are attribute based and may reference three kinds of attributes:
subject, contextual, and resource attributes. For example, the resource
attributes floor and department may represent the floor of an office space
and the department it belongs to. We use such resource attributes to specify
global requirements. They are however not needed for expressing access
requests or local policies in our model. This is because the PDPs associated
to any resource can be hardwired with all the attributes of that resource.
In this sense, each PDP “knows” the space under its control.
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Our system model targets electronic PEP/PDPs that can enforce attribute-
based policies and read digital credentials, e.g. stored on smart cards and
mobile phones. Manufacturers often refer to these as smart locks [12,
50, 66]. In large physical access-control systems, smart locks are rapidly
replacing mechanical locks and keys, which can only enforce simple, crude
policies.

6.2.2 Formalization
We now formalize the above notions.

Attributes Fix a finite set A of attributes and a set V of attribute values.
The domain function dom: A! P(V) associates each attribute with the set
of values it admits. For instance, the current time attribute is associated with
the set of natural numbers, and the clearance level attribute is associated
with a fixed finite set of levels. We assume that any attribute can take the
designated value ?, representing the situation where the attribute’s value
is unknown. We partition the set of attributes into subject attributes AS ,
contextual attributes AC , and resource attributes AR.

Access Requests We represent an access request as a total function that
maps subject and contextual attributes to values from their respective
domains. This function is computed by PDPs after receiving a subject’s
credentials and querying PIPs. For instance, the PDP maps the attribute role

to visitor when the subject’s credentials indicate this. It maps the at-
tribute correct-pin to true when the PIN entered through the keypad at-
tached to the PDP is correct. Finally, it maps the contextual attribute time

to 8 after querying a time server at 8AM. We denote the set of all access
requests by Q.

A remark on set-valued attributes is due here. In some settings, at-
tributes take a finite set of values, as opposed to a single value. For example,
in role-based access control, a subject may activate multiple roles. The at-
tribute role must then be assigned with the set of all the activated roles. We
account for such set-valued attributes simply by defining a Boolean attribute
for each value; for example, we define role_employee and role_manager. An
access request q assigns true to both Boolean attributes whenever a subject
has activated both the employee and the manager roles.

Local Policies Local policies map access requests to grant or deny. We
extensionally define local policies as subsets of Q: a local policy is defined
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as the set of requests that it grants. The structure (P(Q),✓,\,[,;,Q) is
a complete lattice that orders local policies by their permissiveness. The
least permissive policy, namely ;, denies all access requests, and the most
permissive one, i.e.Q, grants them all. In section 6.4.1, we will intensionally
define local policies as constraints over subject and contextual attributes.
The local policies shown in Figure 6.3, for example, are defined by such
constraints.

Resource Structures We now give a formal model of physical spaces. A
resource structure is a tuple S = (R, E, re, L), where R is a set of resources,
E ✓ R ⇥R is an irreflexive edge relation, re 2 R is the entry resource,
and L : R! (AR! V) is a total function mapping resources to resource
attribute valuations. We assume that every resource r 2R is reachable from
the entry resource re, that is, (re, r) 2 E⇤, where E⇤ is the reflexive-transitive
closure of E.

The edges in a resource structure model PEPs. The irreflexivity of E
captures the condition that once a subject enters a physical space, he cannot
re-enter the space before first leaving it. We assume that resource structures
do not contain deadlocks. A resource r0 in S is a deadlock if there does not
exists an r1 such that (r0, r1) 2 E. This assumption is valid in physical-space
access control: a deadlock resource corresponds to a “black hole” that no
one can leave. Note that dead-end corridors are not deadlocks, provided
one can backtrack.

The entry resource re represents the public space and the remaining
resources denote enclosed spaces. A resource structure describes how
subjects can access resources. A subject accesses a resource along a path,
which is a sequence of resources connected by edges, starting from the
entry resource. For example, before entering a room in a hotel, a subject
enters the hotel’s lobby from the street, and then goes through the corridor.
Figure 6.3(c) gives an example of a resource structure.

Configurations Each edge of a resource structure represents a gate con-
trolled by a local policy installed on the gate’s PDP. We therefore define a
configuration for a resource structure S as a function that assigns to each
edge of S a local policy. We write CS for the set of all configurations for S.
The set CS is partially ordered under the relation vS , defined as: c vS c0 if
for any edge e of S we have c(e) ✓ c0(e). Namely, a configuration is less
permissive than another configuration if, for any edge, the former assigns
a less permissive local policy than the latter.
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id = out

sec-zone = false

id = lob

sec-zone = false

id = cor

sec-zone = false

id =mr

sec-zone = false

id = bur

sec-zone = true

Figure 6.4: The double-lined edges denote the PEPs that deny the access
request q = {role 7! visitor, time 7! 10, correct-pin 7! ?}, given the con-
figuration c from Figure 6.3. The resource structure Sc,q is obtained by
removing the double-lined edges and nodes.

We can now define which resources are accessible given an access
request and a configuration. For a resource structure S, a configuration c
for S, and an access request q, we define Sc,q as the resource structure
obtained by removing all the edges from S whose policies deny q, and then
removing all nodes that are not reachable from the entry resource. The
structure Sc,q ’s entry resource is the same as S’s. To illustrate, consider
the resource structure S and the configuration c given in Figure 6.3, and
the access request q = {role 7! visitor, time 7! 10, correct-pin 7! ?}. The
side-entrance PEP and the bureau PEP deny q and therefore these two
edges are removed from S. The node that represents the bureau is not
reachable from the entry resource and it is thus also removed. In Figure 6.4
we depict the removed edges and nodes.

We remark that the structure Sc,q is defined for a fixed access request q.
Access requests, which assign values to subject and contextual attributes,
can however change, for instance when a subject’s role is revoked or as
time progresses. We abstract away such changes in Sc,q ’s definition. In
our running example, this amounts to assuming that a subject’s role does
not change during this time, and the time needed to move through the
office building is negligible compared to the time needed for a subject’s
access rights to change; for example, the requirements R1-5 stipulate that
subject’s access rights may change only twice per day — at 8AM and at
8PM. This abstraction corresponds to taking a snapshot of all the attributes,
and then computing Sc,q based on the snapshot. We refer to these snapshots
as sessions. Henceforth we interpret global requirements and local policies
in the context of such sessions.
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Interpreting requirements and polices in the context of a session is
justified for many practical scenarios. This is because, in most practical
settings, changes in subject and contextual attributes are addressed through
out-of-band mechanisms. To illustrate, consider a subject who has the role
visitor and enters the meeting room of our running example at 3PM as
permitted by the system’s requirements. Now, suppose that the subject’s
visitor role is revoked at 4PM, or that the subject remains in the meeting
room until 10PM. No access-control system can force the subject to leave.
In practice, out-of-band mechanisms, such as security guards, address such
concerns.

In the following sections, we confine our attention to configurations
that do not introduce deadlocks. That is, we consider those configurations c
where for any q 2Q, the structure Sc,q is deadlock-free. In Section 6.3.3,
we describe how this provision can be encoded as a global requirement.

6.3 Specifying Requirements
In this section we define SPCTL, a simple declarative language for specifying
requirements. We give the language’s syntax and semantics in Section 6.3.1.
To simplify the specification of global requirements, in Section 6.3.2 we
present four requirement patterns that capture common access-control
idioms for physical spaces. Finally, in Section 6.3.3, we illustrate the
specification of two generic access-control requirements: deny-by-default
and deadlock-freeness.

6.3.1 Requirement Specification Language

The design of SPCTL has been guided by real-world physical access-control
requirements. Virtually all such requirements can be formalized as prop-
erties that specify which physical spaces subjects can and cannot access,
directly and over paths, based on the security context and on the physical
spaces they have accessed. In our physical access-control model, subjects
choose which physical spaces to access, which induces a branching structure
over the spaces they access. We therefore build our requirement specifica-
tion language SPCTL upon the computation tree logic (CTL) [41], whose
branching semantics is a natural fit for physical spaces.
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a = c := a 2 {c}
a 6= c := ¬(a = c)
a

bool

:= a
bool

= true

a
num

 n := a
num

2 {0, . . . , n}
a

num

� n := ¬(a
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 n� 1)
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num
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� n)^ (a
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Figure 6.5: Syntactic shorthands: a 2A is an attribute, a
num

2A
num

is a
numeric attribute, a

bool

2A
bool

is a boolean attribute, n, n0 2 N are natural
numbers.

Syntax A requirement specified in SPCTL is a formula of the form T ) '
given by the following BNF:

T ::= true | as 2 D | ac 2 D | ¬T | T ^ T
' ::= true | ar 2 D | ¬' | ' ^' | EX' | AX'

| E['U'] | A['U'] .

Here as 2 AS is a subject attribute, ac 2 AC is a contextual attribute,
ar 2AR is a resource attribute, and D ✓ V is a finite subset of values. The
formula T is a constraint over subject and contextual attributes that defines
the access requests to which the requirement applies. We call T the target.
The formula ' is a CTL formula over resource attributes. It defines a path
property that must hold for all access requests to which the requirement is
applicable. We call ' an access constraint.

Note that additional Boolean and CTL operators can be defined in the
standard way. For example, we write false for ¬true, and define the Boolean
connectives _ and) in the standard manner using ¬ and ^. We will later
make use of the CTL operators EF', AG', and A['R ], which are defined
as E[true U '], ¬(EF¬'), and ¬(E[¬'U¬ ]), respectively. Below we give
intuitive explanations of EX, AX, EU, and AU, which are standard CTL
connectives.

The connectives exists-next EX and always-next AX constrain the physi-
cal spaces that a subject can access next. In our running example, suppose
that a subject has entered the lobby. The subject can next enter the corridor
or go to the public space: these are immediately accessible from the lobby.
In the lobby, EX' states that the formula ' is true in at least one of these
“next” spaces. In contrast, AX' states that ' is true both in the corridor
and in the public space.
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S, r0 |= true

S, r0 |= a 2 D if L(r0)(a) 2 D
S, r0 |= ¬' if S, r0 6|= '
S, r0 |= '1 ^'2 if S, r0 |= '1 and S, r0 |= '2

S, r0 |= EX' if 9(r0, r1, · · · ) 2 S(r0). S, r1 |= '
S, r0 |= AX' if 8(r0, r1, · · · ) 2 S(r0). S, r1 |= '
S, r0 |= E['1U'2] if 9(r0, r1, · · · ) 2 S(r0). 9i � 0.

S, ri |= '2 ^8 j 2 [0, i). S, rj |= '1
S, r0 |= A['1U'2] if 8(r0, r1, · · · ) 2 S(r0). 9i � 0.

S, ri |= '2 ^8 j 2 [0, i). S, rj |= '1

Figure 6.6: The relation |= between a resource structure S = (R, E, re, L),
a resource r0 2R, and an access constraints '.

The operators exists-until EU and always-until AU relate two access
constraints '1 and '2 over paths. The formula E['

1

U'
2

] states that there
exists a path that reaches a resource r that satisfies '2, and any resource
prior to r on the path satisfies '1. We use this connective to formalize,
for example, waypointing requirements such as: visitors cannot access the
meeting room until they have accessed the lobby. The formula A['

1

U'
2

]
states that every path reaches some resource r that satisfies '2, and that
any resource prior to r on the path satisfies '1.

To simplify writing attribute constraints in SPCTL, we introduce in
Figure 6.5 abbreviations for numeric and boolean attributes. Based on
the attributes’ domains, we partition the set of attributes A into numeric
attributes A

num

, boolean attributes A
bool

, and enumerated attributes A
enum

:
An attribute a is numeric if dom(a) = N [ {?}; it is boolean if dom(a) =
{false, true,?}; otherwise, it is enumerated and dom(a) is finite. We may
write a

num

or a
bool

to emphasize that an attribute a is numeric or boolean,
respectively.

Semantics We first inductively define the satisfaction relation ` between
an access request q 2Q and a target:

q ` true

q ` a 2 D if q(a) 2 D
q ` ¬T if q 6` T
q ` T1 ^ T2 if q ` T1 and q ` T2 .
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A requirement T ) ' is applicable to an access request q iff q satisfies the
target T , i.e. q ` T . For example, the requirement (role= visitor)) ' is
applicable to all access requests that assign the value visitor to the subject
attribute role.

Let S = (R, E, re, L) be a resource structure. A path of S is an infinite
sequence of resources (r0, r1, · · · ) such that 8i � 0. (ri , ri+1) 2 E, and we
denote the set of all paths rooted at a resource r0 by S(r0). In Figure 6.6, we
inductively define the satisfaction relation |= between a resource structure,
a resource, and an access constraint. A resource structure S with an entry
resource re satisfies an access constraint ', denoted by S |= ', iff S, re |= '.

Definition 5. Let S be a resource structure, c a configuration for S, and
T ) ' a requirement. S configured with c satisfies T ) ', denoted by
S, c ç (T ) '), iff q ` T implies Sc,q |= ', for any access request q 2Q.

We extend ç to sets of requirements as expected. Given a set of require-
ments R = {T1) '1, . . . , Tn) 'n}, a resource structure S configured with
c satisfies R, denoted by S, c ç R, iff S, c ç (Ti ) 'i) for all i, 1 i  n.

We remark that resource structures can easily be represented using
standard Kripke structures [41] by mapping each resource to a Kripke state
and each resource attribute valuation to sets of atomic propositions. The
access constraints can be similarly mapped to standard CTL formulas by
translating attribute constraints into propositional logic. Note however
that while Kripke structures are often used to represent changes of, say,
a concurrent system’s state over time, resource structures model static
physical spaces.

6.3.2 Requirement Patterns
SPCTL can be directly used to specify global requirements. However, to il-
lustrate its use and expressiveness, we present the formalization of common
physical access-control idioms.

We have studied the requirements of an airport, a corporate building,
and a university campus to elicit the common structure of physical access-
control requirements. To distill the basic requirement patterns, we split
complex requirements into their atomic parts. Our analysis revealed four
common patterns, which we formalize below. The first pattern abstracts
positive requirements, which stipulate that the access-control system must
grant certain access requests. The remaining three patterns capture negative
requirements, which stipulate that the access-control system must deny
certain access requests.
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Pattern Shorthand Specification Intuitive Semantics

Permission T ) GRANT(') T ) EF ' '3

Prohibition T ) DENY(') T ) AG(¬') '
7

Blocking T ) BLOCK(', ) T ) AG(') AG(¬ )) '  
7

Waypointing T )WAYPOINT(', ) T ) A['R ]
'  

7

Figure 6.7: BELLOG Patterns: The entry resource in the intuitive semantics

is depicted using a gray rectangle. The arrows '
3�! 
�
'

7�! 
�

indicate
that there must (must not) exist a path from a '-space to a  -space along
which T -requests are granted.

We use the following terminology when describing requirements. Given
a target T , we call an access request q a T-request if q ` T , i.e. q satisfies
the target T . Given a resource structure S and an access constraint ',
we say that a subject can access a '-space of S if the subject can access a
physical space r0 of S such that S, r0 |= ', i.e. the space r0 satisfies the
access constraint '. Our patterns are summarized in Figure 6.7.

Permission The permission pattern abstracts requirements stating that
T -requests can access '-spaces from the entry resource. Permission require-
ments have the form T ) (EF '). The exists-future operator EF formalizes
that a '-space is reachable from the entry resource. For example, the
requirement R3 stipulating that employees can access the bureau between
8AM and 8PM is formalized as�

(role= employee)^ (8 time 20)
�
) EF (id= bur).

The target (role = employee) ^ (8  time  20) formalizes that this re-
quirement is applicable only to access requests made by visitors at times
between 8AM and 8PM. The access constraint EF(id= bur) is satisfied iff
the resource structure has a path from the entry resource to the bureau.
The requirements R1 and R4 of our running example are also instances of
the permission pattern.

Prohibition Dual to the permission pattern, the prohibition pattern cap-
tures requirements stating that T -access requests cannot access a '-space.
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Prohibition requirements have the form T ) AG(¬'). The operator AG

quantifies over all paths reachable from the entry resource. An exam-
ple taken from our airport requirements is: Passengers cannot access the
departure gate zones without a boarding pass. Another example is require-
ment R5, formalized as

(role 6= employee)) AG(¬ sec-zone) .

The target role 6= employee is satisfied by access requests that assign a
value other than employee to the attribute role. The access constraint
AG(¬ sec-zone) is satisfied if no path leads to a security zone.

Blocking The blocking pattern captures requirements stating that subjects
cannot access a  -space after they have accessed a '-space. Intuitively,
accessing a '-space blocks the subject from accessing  -spaces. At inter-
national airports, for example, passengers may not access departure gate
zones after they have accessed the baggage claim. Blocking requirements
have the form T ) AG(') AG(¬ )). The airport example is formalized
as:

(role= passenger)) AG

�
(zone= baggage-claim)

) AG ¬(zone= departure)
�

.

This requirement instantiates the blocking pattern: the target T is (role=
passenger), and the two access constraints  and ' are (zone = departure)
and (zone= baggage-claim).

Waypointing The waypointing pattern captures requirements stipulating
that subjects must first access a '-space before accessing a  -space. For
example, passengers cannot access an airport’s terminal before they have
passed through a security check. This is a negative requirement that restricts
how passengers can access the terminal. Waypointing requirements have
the form T ) (A['R ]). The globally-release operator AR quantifies over
all paths from the entry resource and formalizes that if  holds at some
point, then ' was valid at least once beforehand. The requirement R2
of our running example is an instance of the waypointing pattern and is
formalized as

(role= visitor)) A[(id= lob)R(id=mr)] .
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The target specifies that this requirement applies to all access requests made
by visitors. The access constraint is satisfied if all paths to the meeting
room go through the lobby.

The four idioms just described cover all the requirements that arose in
the case studies that we report on in Section 6.6.2. We remark though that
there are global requirements that are not instances of these four patterns.
For example, in corporate buildings, a subject must be able to access the
parking lot if he or she has access to an office. Although this requirement
cannot be expressed using the above patterns, it can be directly formalized
in SPCTL as follows:

true)
�
(EF(zone= o�ce))) (EF(id= parking-lot))

�
.

In general, as SPCTL supports all CTL operators, it can specify any branching
property expressible in CTL.

6.3.3 Generic Requirements
We now describe two commonly-used generic requirements.

Deny-by-default The deny-by-default principle stipulates that if an access
request can be denied without violating the requirements, then it should
be denied; cf. [79]. Security engineers often follow this principle to avoid
overly permissive local policies. To illustrate, consider our running example
and imagine that the role intern is contained in the domain of the attribute
role. The requirements given in Figure 6.3(b) do not prohibit an intern
from accessing, say, the meeting room. However, denying interns access to
the meeting room also complies with these requirements.

The following requirement, called deny-by-default, instantiates the
above principle: If no positive requirement is applicable to an access re-
quest, then only the entry space is accessible to the subject who makes such
a request. To formalize this requirement, we first define positive and nega-
tive requirements. Let c and c0 be two configurations for a given resource
structure S. A requirement T ) ' is positive if S, c ç (T ) ') and c vS c0

imply S, c0 ç (T ) '). A requirement T ) ' is negative if S, c ç (T ) ')
and c0 vS c imply S, c0 ç (T ) '). Intuitively, if a configuration satisfies
a positive (negative) requirement, then any more (less) permissive con-
figuration also satisfies the requirement. We remark that although not all
requirements are positive or negative, most real-world requirements are,
including all requirements specified in this paper.
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Let R be a set of requirements that contains only positive and negative
requirements, and let {T1 ) ', · · · , Tn ) 'n} be the set of all positive
requirements contained in R. The deny-by-default requirement for R is

(¬T1)^ · · ·^ (¬Tn)) AX (id= entry) .

Here we assume that L(re)(id) = entry, i.e. the entry resource re is labeled
with entry. Adding this requirement to our running example’s require-
ments would ensure that an intern cannot access, for example, the meeting
room. Note that if R contains no positive requirements, then the default-by-
requirement is true) AX (id= entry), which formalizes that all subjects
can only access the entry space.

Deadlock-freeness A deadlock-freeness requirement stipulates that there
are no deadlocks in a system, i.e. resources that a subject can access and
then never leave. For example, the meeting room of our running example
would be a deadlock if visitors could enter it, but never leave. As discussed
in our system model, local policies that introduce deadlocks are undesirable.

Formally, the deadlock-freeness requirement is defined as:

true) AG EX true .

This requirement applies to all access requests. The access constraint
AG EX true states that for any resource a subject can access, there is a
resource that the subject can access next. A resource structure S and a
configuration c satisfy this requirement iff for any access requests q 2Q,
Sc,q has no deadlocks.

6.4 Policy Synthesis Problem
We now define the policy synthesis problem. We show that this problem is
decidable but NP-hard.

6.4.1 Problem
Definition 6. The policy synthesis problem is as follows:

Input. A resource structure S and a set of requirements R.
Output. A configuration c such that S, c ç R, if such a configuration

exists, and unsat otherwise.

The synthesized configuration defines the local policies to be deployed
at the PEPs. Recall that a policy is extensionally defined as the set of access
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requests for which the PEP grants access. As such a set may, in general,
be infinite, one cannot simply output an extensional definition of the syn-
thesized configuration. We therefore define local policies intensionally by
constraints over subject and contextual attributes, expressed in the same
language that we specify requirement targets in Section 6.3. We remark
that policies and targets are often formalized with the same language;
cf. [36, 87]. The semantics of an intensional local policy P is then simply
the function that maps an access request q to grant if q ` P and to deny

otherwise. Figure 6.3 illustrates the input and output to the policy synthesis
problem for our running example.

An example of a local policy defined over the attributes role and time

is (role = visitor) ^ (8  time  20). This local policy grants all access
requests that assign the value visitor to the attribute role and a number
between 8 and 20 to the attribute time. Note that this local policy is also
the target of requirement R1.

6.4.2 Decidability
To show that the policy synthesis problem is decidable, we give a synthesis
algorithm, called S

cs

, that uses controller synthesis as a subroutine. In the
following, we first define the controller synthesis problem. We then show
how the algorithm S

cs

constructs the PEPs’ local policies by solving multiple
controller synthesis instances.

Controller Synthesis Problem Controller synthesis algorithms take as
input a description of an uncontrolled system, called a plant, along with
a specification, and output a controller that restricts the plant so that it
satisfies the given specification. In our setting, the plant is the resource
structure and the specification is an access constraint, i.e. a CTL formula
over resource attributes. The synthesized controller then defines which
PEPs must grant or deny the access request so that the access constraint is
satisfied. For simplicity, we do not define the controller synthesis problem
in its most general form. For our needs the following simpler definition
suffices.

Definition 7. The controller synthesis problem is as follows:

Input. A resource structure S = (R, E, re, L) and an access constraint
'.

Output. A set E0 ✓ E of edges such that (R, E0, re, L) |= ', if such an
E0 exists, and unsat otherwise.
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The controller synthesis problem can be reduced to synthesizing a mem-
oryless controller for a Kripke structure given a CTL specification. Deciding
whether a controller synthesis instance has a solution is NP-complete [8].
Systems such as MBP [23] can be used to synthesize controllers. For a
comprehensive overview of controller synthesis see [76].

Algorithm The algorithm S
cs

is based on two insights. First, for a given
access request q, we can use controller synthesis to identify which PEPs
must grant or deny q. In more detail, we can compute (R, E0, re, L) |=
'q, where 'q conjoins all access constraints of the requirements that are
applicable to q. The edges in E0 represent the PEPs that must grant q and
those in E \ E0 the PEPs that must deny q. A configuration can thus be
synthesized by solving one controller synthesis instance for each access
request. However, there are infinitely many access requests. Our second
insight is that we can construct a configuration by solving finitely many
controller synthesis instances. We partition the set Q of access requests
into 2|R| equivalence classes, where two access requests are equivalent if
the same set of requirements are applicable to them. Solving one controller
synthesis instance for one representative access request per equivalence
class is sufficient for our purpose.

The main steps of the algorithm S
cs

are given in Algorithm 1. The
algorithm iteratively constructs a configuration c as follows. Initially, it
sets all local policies to true (lines 2-3). The algorithm iterates over all
subsets R0 = {T1 ) '1, . . . , Ti ) 'i} of the requirements R (line 4). The
conjunction T = T1^· · ·^Ti^¬Ti+1^· · ·¬Tn constructed at line 5 is satisfied
by all access requests to which only the requirements contained in R0 are
applicable. The set {q 2Q | q ` T} is an equivalence class of access requests.
If this equivalence class is nonempty, i.e. 9q 2Q. q ` T , then c must grant
and deny all access requests contained in it in conformance with the access
constraints defined by R0. Lines 9-14 define how the algorithm S

cs

updates c.
First, it constructs the conjunction ' of the access constraints defined by
the requirement in R0. It then executes the controller synthesis algorithm,
denoted by cs, with the inputs S and '. If the algorithm cs returns unsat,
then the requirements are not satisfiable for the given resource structure,
and the algorithm S

cs

thus returns unsat. Otherwise, the algorithm cs

returns a set E0 ✓ E of edges. The algorithm updates the configuration c as
follows: for any edge in E\E0, the configuration is modified to deny access to
all requests in the equivalence class defined by R0. The algorithm terminates
when all subsets of the global requirements have been considered.
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Algorithm 1: The algorithm S
cs

for synthesizing policies using con-
troller synthesis. The controller synthesis algorithm, denoted cs(S,'),
outputs either a subset of E or unsat.

Input: Resource stricture S = (R, E, re, L), a set of requirements R
Output: A configuration c or unsat

1 begin
2 for e 2 E do
3 c(e) true

4 for R0 ✓ R do
5 T  T1 ^ · · ·^ Ti ^¬Ti+1 ^ · · ·^¬Tn, where
6 {T1) '1, . . . , Ti ) 'i}= R0 and
7 {Ti+1) 'i+1, . . . , Tn) 'n}= R \ R0

8 if 9q 2Q. q ` T then
9 ' '1 ^ · · ·^'i

10 if cs(S,') = unsat then
11 return unsat

12 else
13 for e 2 E \ cs(S,') do
14 c(e) c(e)^ (¬T )

15 return c

Theorem 15. Let S be a resource structure and R a set of requirements. If
S

cs

(S, R) = c then S, c ç R. If S
cs

(S, R) = unsat then there is no configuration
c such that S, c ç R.

We prove this theorem and give the complexity of S
cs

in Section 6.8.

Example To illustrate S
cs

, consider our running example and the require-
ments R2 and R5 formalized as follows:

R2 := (role= visitor)) (A[(id= lob) R (id=mr)])
R5 := (role 6= employee)) (AG ¬ sec-zone) .

Recall that dom(role) = {?,visitor, employee}, and hence the targets role =
visitor and role 6= employee are not equivalent.

To synthesize a configuration, the algorithm S
cs

executes the second
for-loop four times. Let the selected subset of requirements in the first



6.4 Policy Synthesis Problem 115

iteration be {R2,R5}. The conjunction T of the targets is (role = visitor)^
(role 6= employee), which is equivalent to (role = visitor). Hence, T is
satisfiable. The access constraint ' (see Algorithm 1, line 9) is then
(A[(id = lob) R (id = mr)]) ^ (AG ¬ sec-zone). A possible output by the
controller synthesis algorithm cs(S,') is E \ {(cor,bur), (out, cor)}. The
updated configuration c after the first iteration is therefore

c(e) =

8<: true^ role 6= visitor if e = (cor,bur)
true ^ role 6= visitor if e = (out, cor)
true otherwise .

Suppose the outputs to the remaining three controller synthesis instances
are cs(S,'{R2}) = E \ {(out, cor)}, cs(S,'{R5}) = E \ {(cor,bur)}, and
cs(S,';) = E, where 'X denotes the conjunction of the access constraints
of the requirements in X . The simplified configuration c returned by S

cs

is

c(e) =

8<: role= employee if e = (cor,bur)
role 6= visitor if e = (out, cor)
true otherwise .

Limitations The main limitation of the algorithm S
cs

is that the running
time is exponential in the number of requirements, rendering it imprac-
tical for nontrivial instances of policy synthesis. For example, while the
algorithm S

cs

takes 2 seconds to synthesize a configuration for our running
example, it does not terminate within an hour for our case studies, reported
in Section 6.6.2. We give a practical policy synthesis algorithm based on
SMT solving in Section 6.5.

6.4.3 NP-hardness
To show NP-hardness, we reduce propositional satisfiability to the policy
synthesis problem. It is easy to see that a propositional formula ' can
be encoded, in logarithmic space, as a target T' over Boolean attributes.
Consider the policy synthesis problem for the inputs S and {(T' ) false)},
where S is an arbitrary resource structure. If the output to this policy
synthesis instance is unsat then for some access request q, we have q ` T'.
Hence ' is satisfiable. Alternatively, the output to the policy synthesis
problem is a configuration c. Since for any access request q where q ` T'
we have Sc,q |= false, it is immediate that there is no access request q such
that q ` T'. Therefore, ' is unsatisfiable.
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6.5 Policy Synthesis Algorithm
In this section, we define our policy synthesis algorithm based on SMT
solving, called S

smt

. The algorithm takes as input a resource structure S, a
set R of requirements, and a set C of configurations. The set C is encoded
symbolically, as we describe shortly. The algorithm outputs a configuration c
such that S, c ç R, if there is such a configuration in C; otherwise, it
returns unsat. To synthesize a configuration c, the algorithm encodes the
question 9c 2 C . S, c ç R in a decidable logic supported by standard SMT
solvers. Due to its technical nature, we relegate a detailed description of
the encoding to the end of this section.

Our algorithm takes as input a set of configurations, and we refer to the
symbolic encoding of this set as a configuration template. The configuration
template enables us to restrict the search space: the algorithm confines
its search to the configurations described by the template. Our algorithm
S

smt

is sound, independent of the provided configuration template. Its
completeness, however, depends on the template. We show that one can
construct a template for which S

smt

is complete, but the resulting template
would, in practice, encode so many configurations that the resulting SMT
problem would be infeasible to solve. We therefore strike a balance between
the algorithm’s completeness and its efficiency: since real-world local
policies often have small syntactic representations, as demonstrated by our
experiments in Section 6.6, our policy synthesis tool starts with a template
that defines configurations with succinct local policies, and iteratively
executes S

smt

, increasing the template’s size in each iteration. It turns out
that in our case studies a small number of iterations is sufficient to synthesize
all local policies. Below, we describe the algorithm S

smt

’s components.

6.5.1 Configuration Templates
A configuration template assigns to each edge of the resource structure a
symbolic encoding of a set of local policies. To illustrate this encoding,
consider the set of local policies {true, role= employee, role 6= visitor}. We
symbolically encode this set for an edge, say (cor,bur), as a constraint over
subject and contextual attributes, as well as a control variable z(cor,bur):

C((cor,bur)) = (z(cor,bur) = 1 ) true) ^
(z(cor,bur) = 2 ) role= employee) ^
(z(cor,bur) = 3 ) role 6= visitor) .

(T1)

The control variable z(cor,bur) encodes the choice of one of three local policies
for the edge (cor,bur). Hence, for this example, the set of configurations
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defined by the configuration template contains 3|E| elements, where E is the
set of edges in the resource structure. Note that for a set of local policies
of size n (here n = 3), dlog ne propositional variables are sufficient for
representing each edge’s control variables. To avoid clutter, we will write
Cr0,r1

for C((r0, r1)).
We remark that configuration templates can be used to restrict the search

space of configurations to those that satisfy attribute availability constraints,
which restrict the set of attributes that PEPs can retrieve. Suppose that
only the side-entrance door of our running example is equipped with a
keypad. To account for this constraint, we will restrict the configurations
in the template to those that use the correct-pin attribute only in the local
policy of side entrance’s lock.

6.5.2 Algorithm
The main steps of S

smt

are given in Algorithm 2. We describe the algo-
rithm with an example: the input to the algorithm consists of the resource
structure and the requirements R2 and R5 of our running example, along
with the above configuration template C , which maps edges to the set of
local policies {true, role = employee, role 6= visitor}. The algorithm starts by
creating for each requirement a constraint that asserts the satisfaction of the
requirement in the resource structure, given the template. This constraint
is called  in the algorithm, and is expressed in the logic of an SMT solver.
This step is implemented by the subroutine ENCODE, defined in Figure 6.8.
To encode the satisfaction of access constraints, we follow the standard
model-checking algorithm for CTL based on labeling [57]; we explain this
encoding at the end of this section.

As an example, the result of ENCODE(S,R2, C), after straightforward
simplifications, is the following constraint:

 R2 := role= visitor) (¬C
out,cor

_¬C
cor,mr

) .

Here role is an attribute variable, originating from R2’s target, and C
out,cor

and C
cor,mr

are the symbolic encodings of the local policies for the edges
(out, cor) and (cor,mr), respectively. This constraint states that if the re-
quirement’s target role = visitor is satisfied, then one of the PEPs along the
path that starts at the entry resource and reaches the meeting room directly
through the corridor must deny access. Similarly, ENCODE(S,R5, C) returns
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Algorithm 2: The algorithm S
smt

for synthesizing policies using SMT
solving.

Input: A resource structure S = (R, E, r, L), a set {R1, · · · , Rn} of
requirements, a configuration template C

Output: A configuration c or unsat

1 begin
2 � true

3 for R 2 {R1, · · · , Rn} do
4   ENCODE(S, R, C)
5 � � ^ 
6 if (9~z.8~a. �) is sat then
7 M MODEL(9~z.8~a. �)
8 for e 2 E do
9 c(e) DERIVE(C(e),M)

10 return c

11 else
12 return unsat

the constraint:

 R5 := role 6= employee)
((¬C

out,cor

_¬C
cor,bur

)
^ (¬C

out,lob

_¬C
lob,cor

_¬C
cor,bur

)) .

This states that any access request that maps the attribute role to a value
other than employee must be denied by at least one PEP along the path to
the bureau that goes directly through the corridor, and moreover it must
be denied by at least one PEP along the path that passes through the lobby.

The conjunction of the constraints created for all the requirements is
called � in Algorithm 2. To check whether there is a configuration in C
that satisfies the requirements, the algorithm calls an SMT solver to find a
model for the formula 9~z.8~a. �. Here this is

9~z.8~a. ( R2 ^ R5) ,

where ~z and ~a consist, respectively, of all the control and attribute variables.
If� is unsatisfiable, then no configuration in C satisfies the requirements. In
this case, the algorithm returns unsat. If however the formula is satisfiable,
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ENCODE(S, T ) ', C) returns T ) ⌧(', re)

Rewrite rules ⌧(', r0) :

⌧(true, r0) ,! true

⌧(a 2 D, r0) ,!

8<: true if L(r0)(a) 2 D

false otherwise

⌧(¬', r0) ,! ¬⌧(', r0)

⌧('1 ^'2, r0) ,! ⌧('1, r0)^⌧('2, r0)

⌧(EX', r0) ,! 9r12E(r0).
�
Cr0,r1

^⌧(', r1)
�

⌧(AX', r0) ,! 8r12E(r0).
�
Cr0,r1

) ⌧(', r1)
�

⌧(E['1U'2], r0) ,! ⌧
U

(E['1U'2], r0,;)

⌧(A['1U'2], r0) ,! ⌧
U

(A['1U'2], r0,;)

Rewrite rules ⌧
U

(', r0, X ), with X ✓R :

⌧
U

(E['1U'2], r0, X ) ,! ⌧('2, r0)_
Ä
⌧('1, r0)^�

9r12E(r0)\X . Cr0,r1
^⌧

U

(E['1U'2], r1, X[{r0})
�ä

⌧
U

(A['1U'2], r0, X ) ,! ⌧('2, r0)_
Ä
⌧('1, r0)^�

8r12E(r0)\X . Cr0,r1
)⌧

U

(A['1U'2], r1, X[{r0})
�
^�

8r12E(r0)\X . ¬Cr0,r1

�ä
Figure 6.8: Encoding the satisfaction of a requirement T ) ' in a resource
structure S = (R, E, re, L), given a template C , into an SMT constraint. The
rewrite rules ⌧ reduce an access constraint ' and a resource r0 to an SMT
constraint. For a resource r0 2R, we write E(r0) for {r1 2R | (r0, r1) 2 E}.
The 9 and 8 quantifiers range over a finite domain. Therefore, the former
can be expanded as a finite number of disjunctions, and the latter as a finite
number of conjunctions.
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then the SMT solver returns a model of the formula, which instantiates
all the control variables (but not the attribute variables since they are
universally quantified). We refer to the SMT solver’s procedure that returns
such a model as MODEL in Algorithm 2. The model M generated by the SMT
solver in effect identifies the local policy for each edge e: by instantiating the
control variables in C(e), we obtain e’s local policy; see template T1. This
procedure is called DERIVE(C(e),M) in the algorithm. For our example, a
model M that satisfies 9~z.8~a. ( R2 ^ R5) maps z(cor,bur) to 2, z(out,cor) to
3, and all other control variables to 1. It is then evident from template T1
that, e.g., the local policy for the edge (cor,bur) is (role= employee).

Complexity Let S be a resource structure, R be a set of requirements,
and C be configuration template. The running time of the S

smt

algorithm
is determined by the size of the generated formula � and the complexity
of finding a model of �. The size of the formula � is in O(d · |R| · |R|),
where d is the size of the largest access constraint that appears in the
requirements, R is the set of requirements, and R is the set of resources
in S. The formula� is defined over Boolean control variables ~z and attribute
variables ~a. The number of control and attribute variables is dlog(|C |)e and
|A|, respectively. In the worst case, one must check all possible models
of the formula �, so finding a model of � is in O(2dlog(|C |)e+k·|A|), where
k is the largest domain that appears in the constraints. Note that such
domains are always finite. For example, time � 10 is a shorthand for
¬(time 2 {0, . . . , 9}). We conclude that the overall running time of the
algorithm S

smt

is in O(2dlog(|C |)e+k·|A| + d · |R| · |R|).

6.5.3 Soundness and Completeness
The algorithm S

smt

is sound.

Theorem 16. Let S be resource structure, R a set of requirements, and C a
configuration template. If S

smt

(S, R, C) = c then S, c ç R. If S
smt

(S, R, C) =
unsat, then there is no configuration c in C such that S, c ç R.

S
smt

’s completeness depends on the template C provided as input to
the algorithm. We show that one can construct a template for which
the algorithm is complete. A template C is complete for a given resource
structure S and set of requirements R if S

smt

(S, R, C) returns a configuration
whenever there is a configuration that satisfies the requirements. For the
algorithm’s completeness, it is in fact sufficient to start the algorithm with
a template CS,R that contains all the configurations that the algorithm
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based on controller synthesis, described in Section 6.8.1, may output. The
following theorem formalizes this observation.

Theorem 17. Given a resource structure S and a set R of requirements, the
configuration template CS,R is complete for S and R.

The number of configurations in CS,R is exponential in |E| and |R| (which
we prove in [1]). Hence this template, although complete, is not useful in
practice as it would overwhelm SMT solvers, rendering S

smt

ineffective. In
Section 6.6.1, where we explain our implementation in detail, we describe
a configuration template that works well for synthesizing configurations
for practically-relevant examples.

We conclude this discussion by pointing out that our synthesis algorithm
can be readily used to verify whether a candidate configuration c satisfies
a set R of global access-control requirements in a resource structure S.
Namely, if the configuration template input to S

smt

consists only of the
configuration c, then S

smt

returns c if S, c |= R; otherwise, the algorithm
returns unsat, which means that the configuration c does not satisfy R.

6.5.4 Encoding into SMT
We now explain Algorithm 2’s procedure ENCODE, which translates a re-
source structure S, a requirement R = (T ) '), and a configuration
template C , into an SMT constraint T ) ⌧(', re). The generated constraint
encodes that whenever the requirement T ) ' is applicable to an access
request q, i.e. q ` T , then ' must be satisfied for the entry resource re in
the structure Sc,q. Here, c is the configuration selected from the template C .
The constraint ⌧(', re) is generated using the rewrite rules ⌧ as defined in
Figure 6.8.

Given an access constraint ' and a resource r0, the rewrite rules ⌧
produce an SMT constraint ⌧(', r0) that encodes S, r0 |= '; see Figure 6.6.
The rewrite rules for access constraints of the form true, a 2 D, ¬', and
'1 ^ '2 are as expected. The rewrite rule for access constraints of the
form EX' encodes that the access constraint ' is satisfied at r0 if there is
an edge from r0 to some node r1 such that Cr0,r1

holds and S, r1 |= '. In
this rule, the constraint Cr0,r1

returns the symbolic encoding of the local
policies for the edge (r0, r1), and ⌧(', r1) returns the encoding of S, r1 |= '
as an SMT constraint. In contrast to EX, the rewrite rule for AX' access
constraints states that for any resource r1, such that (r0, r1) 2 E, if Cr0,r1

is
true then the constraint ⌧(', r1) is satisfied.

To encode the semantics of the connectives EU (AU), we use the until
rewrite rules ⌧

U

, which reduce an until construct E['1U'2] (A['1U'2]),
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a resource r0 2R, and a set of resources X ✓R to an SMT constraint. We
use the set of resources X to record for which resources the satisfaction
of the until access constraint has already been encoded. This is necessary
to guarantee the reduction system’s termination. The rule for access con-
straints of the form E['1U'2] encodes that either S, r0 |= '2, or S, r0 |= '1
and there is an edge from r0 to some node r1 such that Cr0,r1

holds and
S, r1 |= E['1U'2]. Here ⌧

U

(E['1U'2], r1, X [ {r0}) returns the encoding
of S, r1 |= E['1U'2]. Note that we add r0 to X to ensure that no resource
is revisited during EU-rewriting. Similarly, the rule for access constraints
A['1U'2] encodes that either S, r0 |= '2, or S, r0 |= '1 holds, for any out-
going edge to a node r1 we have S, r1 |= A['1U'2] and it has no outgoing
edges to nodes in X .

We illustrate our encoding with examples in Section 6.8. There, we also
prove that this rewrite system always terminates, and that the generated
SMT encoding of access constraints is correct.

6.6 Implementation and Evaluation
We report on an implementation of our policy synthesis algorithm, the
case studies we conducted to evaluate its efficiency and scalability, and our
empirical results.

6.6.1 Implementation
We have implemented a synthesizer that encodes policy synthesis instances
into the QF_LIA and QF_UA logics of SMT-LIB v2 [14] and uses the Z3 SMT
solver [37]. Our synthesizer is configured with configuration templates of
different sizes. The local policies defined by these configuration templates
are in disjunctive normal form. Namely, the local policies are defined as
a disjunction of clauses, each clause consisting of a conjunction of terms,
where each term is either an equality constraint for non-numerical attributes
(e.g. role = employee) or an interval constraint for numeric attributes (e.g.
t1  time t2). We denote by Ck the configuration template that defines
local policies with k clauses, each consisting of k terms. Note that the local
policies defined in the template Ck may refer to at most k2 attributes.

Our synthesizer implements the following procedure: it iteratively
executes S

smt

(S, R, C1), Ssmt

(S, R, C2), Ssmt

(S, R, C3), . . ., stopping with the
first call to S

smt

that returns a satisfying configuration, and returning this
configuration. By iterating over templates increasing in size, our synthesizer
generates small local policies, which is desirable for avoiding redundant
attribute checks. For the running example, for instance, our synthesizer’s
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output includes the constraint correct-pin only for the entrance gates’ local
policies, and does not include this check, e.g., for the office room’s policy.
A satisfying solution for each case study can be found in the configuration
template C3. This indicates that real-world local policies have concise
representations.

Note that our synthesizer may not terminate in a reasonable amount
of time if no configuration satisfies the global requirements for the given
resource structure. In our case studies, we used a simple iterative method
to pinpoint such unsatisfiable requirements: we start with a singleton set
of requirements, consisting of one satisfiable requirement, and iteratively
extend this set by one requirement. This helped us identify a minimal set
of conflicting requirements and revise problematic ones.

6.6.2 Case Studies
To investigate S

smt

’s efficiency and scalability, we have conducted case
studies in collaboration with KABA. We used real-world requirements and
resource structures, and used our tool to synthesize policy configurations
for a university building, a corporate building, and an airport terminal.
Our synthesizer and all data are publicly available1. Below, we briefly
explain the three case studies; relevant complexity metrics are summarized
in Table 6.1.

University Building We modeled the main floor of ETH Zurich’s computer
science building. This floor consists of 66 subspaces including labs, offices,
meeting rooms, and shared areas. The subspaces are labeled with four
attributes that indicate: the research group to which a physical space is
assigned, the physical space type (e.g., office, teaching room, or server
room), the room number, and whether the physical spaces belongs to a
secretary or a faculty member. Example requirements stipulate that a
research group’s PhD students can access all offices assigned to the group
except those assigned to the faculty members and secretaries. The policies
are defined over eight attributes.

Corporate Building We modeled an office space that consists of 20 sub-
spaces, including a lobby, meeting rooms, offices, and restricted areas such
as a server room, a mail room, and an HR office. The rooms are connected
by three corridors, and they are labeled with attributes to mark public areas
and employee-only zones. Access to these spaces is controlled by locks

1https://github.com/ptsankov/spctl

https://github.com/ptsankov/spctl
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University Corporate Airport
building building terminal

Complexity Requirements 14 10 15
metrics PEPs 127 41 32

Subspaces 66 20 13

Performance Synthesis time 10.32 25.30 1.92
Std. dev. 0.04 0.15 0.01

Table 6.1: Complexity metrics and policy synthesis times (in seconds) for
the three cases studies

that are equipped with smartcard readers and PIN keypads. These locks
are connected to a time server. Example requirements are that only the
postman and HR employees can access the mail room, and that between
noon and 1PM employees can access their offices without entering their
PIN. The policies are defined over four attributes.

Airport Terminal We modeled the main terminal of a major international
airport. The part of the terminal that we modeled includes subspaces such
as the boarding pass control, security, and shopping areas. We have used the
actual plan of the terminal, and considered 15 requirements, all currently
enforced by the airport’s access-control system. The area is divided into 13
subspaces, each labeled with zone identifiers (such as check-in and passport
control). Example requirements stipulate that no passenger can access
departure areas before passing through security, passengers with economy
boarding passes cannot pass through the business/first-class ticket-control
gates, and that only airport staff can access certain elevators.

6.6.3 Empirical Results
We ran all experiments on a Linux machine with a quad-code i7-4770 CPU,
32GB of RAM, running Z3 SMT v4.4.0. We present two sets of results: (1)
the synthesizer’s performance when used to synthesize the local policies
for the three case studies, and (2) the synthesizer’s scalability.

Performance We used our tool to synthesize the local policies for the
three case studies, measuring the time taken for policy synthesis. We report
the average synthesis time, measured over 10 runs of the synthesizer, in
the bottom two rows of Table 6.1. The reported synthesis time is the
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Figure 6.9: Scaling the number of PEPs

sum of the time taken for encoding the policy synthesis instance into SMT
constraints, the time for solving the generated SMT constraints, and the time
for iterating over the smaller templates for which the synthesizer returns
unsat. In all three case studies, our tool synthesizes the local policies in
less than 30 seconds. The standard deviation is under 0.2 seconds. This
indicates that synthesizing local policies is practical, and can be used for
real-world systems.

Scalability Experiments To investigate the scalability of our synthesis
tool, we synthetically generated larger problem instances based on the
corporate building case study. Although the case study originally consisted
of a single floor, we increased the number of the floors in the building.
We kept the same labeling for the newly added subspaces, so the original
requirements also pertain to the newly added floors. Based on this method,
we scaled the number of PEPs up to 670.

The time needed to synthesize local policies for different numbers of
PEPs is given in Figure 6.9. The results show that our tool can synthesize a
large number of local policies in a reasonable amount of time. For example,
synthesizing up to 600 local policies takes less than ten hours. The tool’s
performance can be further improved using domain-specific heuristics for
solving the resulting SMT constraints. Nevertheless, the tool already scales
to most real-world scenarios: protected physical spaces usually have less
than 500 PEPs.

6.7 Related Work
Physical Access Control The Grey project was an experiment in deploy-
ing a physical access-control system at the campus of Carnegie Mellon



126 6 Access Control Synthesis for Physical Spaces

University [16, 17]. As part of this project, researchers developed for-
mal languages for specifying policies and credentials, and also developed
techniques for detecting policy misconfigurations [18, 19]. The work on
credential management, such as delegation, is orthogonal to the specifi-
cation of the locks’ local policies. In contrast to their work on detecting
policy misconfigurations, we have developed a framework to synthesize
policies that are guaranteed to enforces the global requirements, avoiding
misconfigurations.

Several researchers have investigated SAT-based and model-checking
techniques for reasoning about physical access control [45, 47]. Similarly
to our work, these approaches model spatial constraints, and formalize
global requirements that physical access-control systems must enforce. The
authors of [45], for instance, model physical spaces using directed graphs
and formalize global requirements in first-order logic. Their goal is to
identify undesired denials due to blocked paths and unintended grants
to restricted zones using SAT solvers. In contrast to these verification
approaches, we develop a synthesis framework for generating correct local
policies.

Network Policy Synthesis The problems of configuring networks with
access-control and routing policies are related to the problem of construct-
ing local policies from global requirements. In the network problem domain,
one has an explicit resource structure defined by the network topology
and must enforce global requirements using local rules deployed at the
switches. Several synthesis algorithms for networks have been studied; e.g.
see [15, 54, 68, 70, 73, 75, 97]. The authors of [54] and [15], for example,
propose techniques for synthesizing local firewall rules that collectively
enforce global network requirements in a given network topology. These
approaches are sufficiently expressive for formalizing simple connectivity
constraints, such as which hosts can access which services in a network.
Similarly to our approach, recent techniques for synthesizing network con-
figurations, such as [68, 70, 75, 97], also leverage SAT and SMT solvers. In
addition to access-control constraints, these techniques also consider busi-
ness constraints, such as deployment cost and usability. However, none of
the above approaches for network synthesis supports branching properties,
which are necessary for specifying requirements such as those stipulating
that a fire-exit is reachable from any office room, as well as those that
instantiate our waypointing and blocking requirement patterns; see Sec-
tion 6.3.2 for examples. These requirements, which can be expressed in
our framework, are central to physical access control. Existing network
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policy synthesis algorithms, therefore, are not sufficiently expressive for
handling access-control requirements for physical spaces.

Policy verification has also been studied in the context of computer
networks; see e.g. [6]. However, this line of research is not concerned
with synthesis, which is our work’s main focus. We remark though that our
synthesis algorithm can be readily used for verifying the conformance of a
set of local policies to global access-control requirements; see Section 6.5.

Program Synthesis Program synthesis techniques, such as template-
based synthesis [7, 82, 84, 85], reactive program synthesis from temporal
specifications [32, 58, 69], and program repair techniques [29, 59], are
related to policy synthesis for physical spaces. Similarly to our SMT-based
algorithm, most of these synthesis frameworks also supplement the logical
specification with a template, and exploit SMT solvers to efficiently explore
the search space defined by the template. They cannot however express
the relevant access-control requirements we have considered, such as those
pertaining to branching properties. Our synthesis framework builds upon
these techniques, and extends them with support for specifications that are
needed for physical spaces.

Methods for synthesizing models of logical formulas, such as those in
linear-temporal logic or CTL, have been extensively studied in the litera-
ture [9, 32, 51, 52, 74, 76]. In Section 6.4, we have described a policy
synthesis algorithm based on CTL controller synthesis. This algorithm how-
ever comes at the expense of an exponential blow-up. Therefore, existing
CTL synthesis tools and algorithms cannot be readily applied to synthesize
attribute-based local policies in practice. Our efficient SMT-based algorithm
addresses this practical challenge.

6.8 Proofs
6.8.1 Correctness and Complexity of the Algorithm S

cs

Correctness We now prove the correctness of S
cs

.

Theorem 18. Let S be a resource structure and R a set of requirements. If
S

cs

(S, R) = c then S, c ç R. If S
cs

(S, R) = unsat then there is no configuration
c such that S, c ç R.

Proof. We prove the two implications by contradiction.
Assume that S

cs

(S, R) returns a configuration c. Suppose for the sake
of contradiction that S, c 6ç R. Then, by definition of ç, there is an access
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request q and a requirement T ) ' such that q ` T and Sc,q 6|= '. Given a
subset R0 ✓ R of the requirements, let TR0 = T1 ^ ...^ Ti ^¬Ti+1 ^ · · ·^¬Tn,
where {T1 ) '1, . . . , Ti ) 'i} = R0 and {Ti+1 ) 'i+1, . . . , Tn ) 'n} =
R \ R0. The constraint TR0 corresponds to the target computed at line 7 of
Algorithm 1. Let Rq = {(T ) ') 2 R | q ` T} be the set of all requirements
in R that are applicable to q. We have q ` TRq

(1). Furthermore, for any
R0 ✓ R where R0 6= Rq, we have q 6` TR0 (2). By definition of Sc,q, Sc,q
contains an edge e if e is an edge of S and q ` c(e). Algorithm 1 constructs
the configuration c by conjoining targets TR0 , where R0 ✓ R, to the local
policies c(e); see line 14. From (1) and (2) we conclude the following:
First, adding ¬TRq

to a local policy c(e) removes the edge e in Sc,q because
q 6` c(e)^(¬TRq

). Second, adding ¬TR0 to a local policy c(e), where R0 6= Rq,
does not remove the edge e in Sc,q because q ` c(e)^ (¬TR0) iff q ` c(e). It
is immediate that Sc,q contains those edges of S for which the target ¬TRq

is not conjoined to the local policy c(e). We conclude that Sc,q contains
the edges E0 = cs(S,'Rq

) (see line 13 of Algorithm 1), where 'Rq
conjoins

the access constraints of all requirements in Rq. By definition of controller
synthesis, we have (S, E0, r, L) |= 'Rq

. Since Sc,q = (R, E0, r, L), Sc,q |= 'Rq
.

We can now deduce that Sc,q |= ' because (T ) ') 2 Rq. But previously
we deduced that Sc,q 6|= '. Thus we have a contradiction, and there is no
access request q and requirement T ) ' such that q ` T and Sc,q 6|= '.
Therefore, S, c ç R.

Assume that S
cs

(S, R) = unsat. Suppose for the sake of contradiction
that there is a configuration c such that S, c ç R. From S

cs

(S, R) = unsat,
by definition of Algorithm 1, it follows that there is a subset R0 = {T1 )
'1, . . . , Tk ) 'k} ✓ R of the requirements and an access request q, such
that q ` T1^ · · ·^ Tk (1) and cs(S,'1^ · · ·^'k) = unsat (2). From (1), we
know that all requirements in R0 are applicable to q . Furthermore, since
S, c ç R, it must be that Sc,q |= 'i , for 1 i  k. We get Sc,q |= '1^ · · ·^'k.
From (2), by definition of controller synthesis, there is no resource structure
S0 = (R, E0, r, L), with E0 ✓ E, such that S0 |= '1 ^ · · ·^'k. Thus we have
a contradiction, and we conclude that there is no configuration c such that
S, c ç R.

This concludes our proof.

Complexity The running time of algorithm S
cs

is determined by the num-
ber of iterations of the loops, the complexity of checking the satisfiability
of the conjunction of targets (line 8), and the complexity of solving each
controller synthesis instance (line 10). The first loop is executed |E| times,
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where |E| is the number of edges, and the second loop is executed 2|R|

times. The second loop checks one satisfiability instance and one con-
troller synthesis instance. The complexity of checking satisfiability is in
O(2k·|A|) where k = |D

max

| for the largest set D
max

of values that appears in
the constraint T , and |A| is the number of attributes. Solving a controller
synthesis instance requires checking (R, E0, re, L) |= ' at most 2|E| times,
where E0 ✓ E and ' is a conjunction of access constraints. The problem
(R, E0, re, L) |= ' can be decided using the model checking algorithm for
CTL based on labeling, which is in O(|'| · (|R|+ |E0|)), where |'| is the size
of the access constraint ' [28]. The size of the largest access constraint
given as input to cs is in O(|d| · |R|), where d is the largest access constraint
that appears in the requirements R. The running time of S

cs

is therefore
O(2|R| · (2k·|A| + 2|E| · |R| · d · (|R|+ |E|))).

6.8.2 SMT Encoding
Example We illustrate the SMT encoding of an exists-until and an always-
until access constraint in Figure 6.10. The SMT encoding of the access
constraint E[(¬sec_zone)U(id= bur)] for the resource out formalizes that
the two PEPs (out, cor) and (cor,bur) grant access or the PEP (out,bur)
grants access. This guarantees the existence of a path that satisfies the
access constraint. The SMT encoding of A[(¬sec_zone)U(id = bur)] for the
resource out formalizes that the always-until constraint is satisfied along
any path that starts from the resource out. Since any path that start with
(out,bur, . . .) satisfies the access constraint, the SMT constraint imposes
no constrains on the PEP (out,bur). However, not all paths that start with
(out,cor, . . .) satisfy the access constraint. Concretely, the infinite path
(out,cor,out,cor, . . .) violates the access constraint. The SMT constraint
therefore formalizes that if there are paths starting with (out,cor, . . .), i.e.
the PEP (out, cor) grants access, then the PEP (cor,out) denies access. This
guarantees that the path violating the access constraint is not present in the
resulting resource structure. Note that, since we consider only deadlock-
free resource structures, the absence of the edge (cor,out) guarantees that
the resulting resource structure has the edge (cor,bur), and therefore all
paths starting with (out, cor, . . .) continue along resource bur.

Termination We first prove that the rewrite rules given in Figure 6.8
terminate.
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id= out

sec_zone= false

id= cor

sec_zone= false

id= bur

sec_zone= true

⌧
U

(E[(¬sec_zone)U(id= bur)],out,;) ,!
(C

out,cor

^ C
cor,bur

)_ C
out,bur

⌧
U

(A[(¬sec_zone)U(id= bur)],out,;) ,!
(C

out,cor

) (¬C
cor,out

))

Figure 6.10: Encoding exists-until and always-until access constraints using
SMT constraints.

Theorem 19. Let S = (R, E, r, L) be a resource structure. For any re-
source r0 2 R and access constraint ', the rewrite function ⌧(', r0) ter-
minates.

Proof. The proof proceeds by induction on the length of the access con-
strain '. Formally, we define the length of an access constraint ', denoted
by l('), as

l(true) = 1
l(a 2 D) = 1

l(¬') = 1+ l(')
l(EX') = 1+ l(')
l(AX') = 1+ l(')

l('1 ^'2) = 1+max(l('1), l('2))
l(E['1U'2]) = 1+max(l('1), l('2))
l(A['1U'2]) = 1+max(l('1), l('2))

where max(n1, n2) returns n1 if n1 � n2, otherwise it returns n2. Note that
l(')� 1 for any access constraint '.

Base Case For the base case, l(') = 1, the access constraint is of the
form true or a 2 D. The rewrite function ⌧ terminates in one step.

Inductive Step Assume that ⌧(', r0) terminates for any access constraint
' of length l(') k (H1). We prove that ⌧(', r0) terminates for any access
constraint of length l(') = k+ 1.
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• For the cases where the access constraint ' is of the form ¬'1, EX'1,
AX'1, the rewrite function ⌧(', r0) calls ⌧('1, r0). By induction,
⌧('1, r0) terminates because l('1) = k.
• The case where ' = '1 ^'2 also terminates because l('1) k and

l('2) k.
• For the cases where ' is of the form E['1U'2] or A['1U'2], we

need to show that ⌧
U

(', r0,;) terminates. We prove that ⌧
U

(', r0, X )
terminates for any set X ✓R by descending induction on the size of
the set X . For the base case, we have |X |= |R|. Then, ⌧

U

(', r0,R)
calls ⌧('1, r0) and ⌧('2, r0). By our inductive hypothesis (H1), both
⌧('1, r0) and ⌧('2, r0) terminate since l('1)  k and l('2)  k.
For the inductive step, assume that ⌧

U

(E['1U'2]), r0, X ) terminates
for any X ✓ R of size k  |X |  |R| (H2). Consider a set X 0 ✓ R
of size |X 0| = k � 1. Then, ⌧

U

(', r0, X ) calls the rewrite functions
⌧('1, r0), ⌧('2, r0), and ⌧

U

(', r1, X 0 [ {r0}), for r1 2 E(r0) \ X . The
rewrite function ⌧('1, r0), ⌧('2, r0) terminate by the inductive hy-
pothesis (H1). By the inductive hypothesis (H2), the rewrite function
⌧

U

(', r1, X 0 [ {r0}) terminates because |X [ {r0}|= k.
This completes our proof.

Correctness We now prove that the correctness of our SMT-based policy
synthesis algorithm. We start with several definitions. Our definitions are
similar to those used to describe the decision procedure for CTL satisfiability
given in [41]. Let '1 and '2 be two access constraints and S = (R, E, r, L)
be a resource structure. We assume that S does not contain deadlock
resources, i.e. for any resource r0 2R, the set E(r0) = {r1 2R | (r0, r1) 2
E} is nonempty. We call access constraints of the form A['1U'2] and
E['1U'2] eventuality constraints. We first define the derivation of a rooted
directed graph from S for a given access constraint '2 and root node r0 2R.
We call this graph an eventuality graph. We then give two conditions over
such eventuality graphs. The first condition is satisfied iff S, r0 |= A['1U'2],
while the second one is satisfied iff S, r0 |= E['1U'2].

We define the eventuality graph G(S, r0,'2) as the rooted directed
graph obtained by taking the node r0 and all nodes and edges along all
paths emanating from r0 up to and including the first node r1 such that
S, r1 |= '2; if there is no such node r1 along a path, then all nodes and edges
along the path are included in G(S, r0,'2). We call a node of G(S, r0,'2)
an interior node if it has successors; otherwise, we call it a frontier node.

We now define the two conditions. We say that an eventuality graph
G(S, r0,'2) fulfills A['1U'2] if



132 6 Access Control Synthesis for Physical Spaces

1. the graph is acyclic,
2. for any of its interior nodes r1 we have S, r1 |= '1, and
3. for any of its frontier nodes r2 we have S, r2 |= '2.

Note that for resource structures without deadlock resources, (1) implies
(3). We say that an eventuality graph G(S, r0,'2) fulfills E['1U'2] if

1. the graph contains a frontier node r2 such that S, r2 |= '2, and
2. there is a path from r0 to this frontier node r2 such that for any

interior node r1 along the path we have S, r1 |= '1.
From the CTL satisfiability decision procedure of [41], it follows that S, r0 |=
A['1U'2] iff G(S, r0,'2) fulfills A['1U'2], and S, r0 |= E['1U'2] iff
G(S, r0,'2) fulfills E['1U'2].

To prove the correctness of our SMT-based synthesis algorithm, we
first prove that ⌧ correctly encodes access constraint into SMT constraints.
Towards this end, Theorem 20 establishes that the SMT encoding is correct
for any access constraint and any singleton configuration template C = {c},
i.e. a template consisting of one configuration. To prove this theorem, we
give two lemmas (Lemma 12 and Lemma 13), which show that the rewrite
function ⌧

U

correctly encodes eventuality access constraints. Afterwards,
with Lemma 14 we lift the correctness of the access constraints’ encoding
to requirements. Finally, we restate and prove Theorem 16.

Theorem 20. Let S = (R, E, r, S) be a resource structure. For any configura-
tion c for S, resource r0 2R, access request q 2Q, and access constraint ',
we have

Sc,q, r0 |= ' iff q ` ⌧(', r0).

Proof. The proof proceeds by induction on the derivation of ⌧(', r0).

• For the case ' = true, we have ⌧(', r0) = true. We get Sc,q, r0 |= '
and q ` ⌧(', r0).

• For the case ' = (a 2 D), we have ⌧(', r0) = true if L(r0)(a) 2 D,
and ⌧(', r0) = false if L(r0)(a) 62 D. Recall that Sc,q, r0 |= (a 2 D) iff
L(r0)(a) 2 D. It is immediate that Sc,q, r0 |= ' iff q ` ⌧(', r0).

• For the case ' = ¬'0, we have ⌧(', r0) = ¬⌧('0, r0).

): Assume Sc,q, r0 |= '. We get Sc,q, r0 6|= '0. By induction, q 6`
⌧('0, r0). Therefore q ` ⌧(', r0).

(: Assume q ` ⌧(', r0). We get q 6` ⌧('0, r0). By induction, Sc,q 6|=
'0. Therefore Sc,q |= '.
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• For the case ' = '1 ^'2, we have ⌧(', r0) = ⌧('1, r0)^⌧('2, r0).

): Assume Sc,q, r0 |= '. Therefore Sc,q, r0 |= '1 and Sc,q, r0 |= '2.
By induction, q ` ⌧('1, r0) and q ` ⌧('2, r0), and therefore
q ` ⌧(', r0).

(: Assume q ` ⌧(', r0). Then q ` ⌧('1, r0) and q ` ⌧('2, r0).
By induction, Sc,q, r0 |= '1 and Sc,q, r0 |= '2, and therefore
Sc,q, r0 |= '.

• For the case ' = EX'0, we have ⌧(', r0) = 9r1 2 E(r0). (Cr0,r1
^

⌧('0, r1)).

): Assume Sc,q, r0 |= '. By definition of Sc,q, there is an edge
(r0, r1) in E such that q ` c((r0, r1)) (1) and Sc,q, r1 |= '0 (2).
Since C = {c}, we have Cr0,r1

= c((r0, r1)). From (1), we thus
get q ` Cr0,r1

. From (2), by induction, we get q ` ⌧('0, r1). It
follows that q ` ⌧(', r0).

(: Assume q ` ⌧(', r0). There is an edge r1 2 E(r0) such that q `
Cr0,r1

(1) and q ` ⌧('0, r1) (2). From (1), we get q ` c((r0, r1)),
and thus there is an edge (r0, r1) also in Sc,q. From (2), by
induction, we get S, r1 |= '0. Therefore, Sc,q, r0 |= '.

• For the case ' = AX'0, we have ⌧(', r0) = 8r1 2 E(r0).
�
Cr0,r1

)
⌧('0, r1)
�
.

): Assume Sc,q, r0 |= '. Then, for any edge (r0, r1) of Sc,q we have
Sc,q, r1 |= '0. Consider an edge (r0, r1) 2 E such that q ` Cr0,r1

.
From q ` Cr0,r1

, we know that (r0, r1) is also an edge in Sc,q.
Therefore, Sc,q, r1 |= '0. By induction, q ` ⌧('0, r1). We get
q ` ⌧(', r0).

(: Assume q ` ⌧(', r0). Then for any edge (r0, r1) 2 E, q ` Cr0,r1

implies q ` ⌧('0, r1). Consider an edge (r0, r1) of Sc,q. We know
that q ` Cr0,r1

, and thus q ` ⌧('0, r1). By induction, Sc,q, r1 |= '0.
Therefore Sc,q, r0 |= '.

• For the case ' = E['1U'2], we have ⌧(', r0) = ⌧U

(', r0,;). By
induction, for any resource r1 2R and any access request q 2Q we
have ^

i2{1,2}
Sc,q, r1 |= 'i iff q ` ⌧('i , r1).

By Lemma 13, we get Sc,q, r0 |= E['1U'2] iff q ` ⌧
U

(', r0,;).
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• For case ' = A['1U'2], have ⌧(', r0) = ⌧U

(', r0,;). By induction,
for any resource r1 2R and any access request q 2Q we have^

i2{1,2}
Sc,q, r1 |= 'i iff q ` ⌧('i , r1).

By Lemma 12, we get Sc,q, r0 |= A['1U'2] iff q ` ⌧
U

(', r0,;).
This concludes our proof.

Lemma 12. Let S = (R, E, r, S) be a resource structure, '1 and '2 be two
access constraints, and C = {c} be a configuration template. If for any resource
r1 2R and any access request q 2Q we have^

i2{1,2}
Sc,q, r1 |= 'i iff q ` ⌧('i , r1), (A1)

then for any resource r0 2R we have

Sc,q, r0 |= A['1U'2] iff q ` ⌧
U

(A['1U'2], r0,;).

Proof. Assume (A1). Given a set X ✓R of resources, we say that G(Sc,q, r0,'2)
is X -disjoint if no node of G(Sc,q, r0,'2) is contained in X . To avoid clutter,
we will write G[r0] for G(Sc,q, r0,'2). We prove that for any set X ✓R\{r0}
of resources,

G[r0] fulfills A['1U'2] iff q ` ⌧
U

(A['1U'2], r0, X ).
and G[r0] is X -disjoint

The proof proceeds by descending induction on the size of the set X .
Note that for the case X = ; we have G[r0] fulfills A['1U'2] iff q `
⌧

U

(A['1U'2], r0,;). This case proves the lemma because G[r0] fulfills
A['1U'2] iff Sc,q, r0 |= A['1U'2].

Before we start, we expand ⌧
U

(A['1U'2], r0, X ) to

⌧('2, r0)_ (6.1)Ä
⌧('1, r0) (6.2)

^
�
8r1 2 E(r0)\ X . ¬Cr0,r1

�
(6.3)

^
�
8r1 2 E(r0) \ X .(Cr0,r1

)
⌧

U

(A['1U'2], r1, X [ {r0}))
�ä

, (6.4)

as defined in Figure 6.8. To avoid clutter, we write, e.g., (6.3) is true for
q ` 8r1 2 E(r0)\ X . ¬Cr0,r1

.
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Base Case For the base case we have X =R \ {r0}.
): Assume G[r0] fulfills A['1U'2] and G[r0] is R \ {r0}-disjoint. From

R \ {r0}, G[r0] consists of a single node, r0. Furthermore, r0 is a
frontier node, and since G[r0] fulfills A['1U'2], we have Sc,q, r0 |=
'2. From (A1), we get q ` ⌧('2, r0). Since (6.1) is true, we get
q ` ⌧

U

(A['1U'2], r0,R \ {r0}).
(: Assume q ` ⌧

U

(A['1U'2], r0,R \ {r0}). Since the resource structure
Sc,q is deadlock-free, there is a resource r1 in E(r0)\ (R \ {r0}) such
that q ` Cr0,r1

. It follows that (6.3) is false. Therefore, it must be that
q ` ⌧('2, r0). By (A1), Sc,q, r0 |= '2. By definition of the eventuality
graph G[r0], we conclude that it consists of a single node, r0. It is
immediate that G[r0] fulfills A['1U'2] and that it is R\{r0}-disjoint.

Inductive Step Assume that for any set X ✓R\{r0} of size k  |X |< |R|,
G[r0] fulfills A['1U'2] and it is X -disjoint iff ⌧

U

(A['1U'2], r0, X ). We
show that this holds for any set X ⇢R \ {r0} with |X |= k� 1.

): Assume G[r0] fulfills A['1U'2] and it is X -disjoint.

Case 1: If Sc,q, r0 |= '2, then from (A1) we get q ` ⌧('2, r0). Since (6.1)
is true, it is immediate that q ` ⌧

U

(A['1U'2], r0, X ).
Case 2: If S, r0 6|= '2, then by (A1) we have q 6` ⌧('2, r0). Therefore,

(6.1) is false, so we need to show that (6.2), (6.3), and (6.4)
are all true:
⇤ Since G[r0] fulfills A['1U'2], we have S, r0 |= '1 because

r0 is an interior node. By (A1), we get q ` ⌧('1, r0), and
thus (6.2) is true.

⇤ If G[r0] has an edge (r0, r1), then it must be that the re-
source structure S has an edge (r0, r1) and q ` c((r0, r1));
otherwise, the edge (r0, r1) is removed from Sc,q. Further-
more, since C = {c}, C does not contain any control vari-
ables, and so Cr0,r1

= c((r0, r1)). Now, since G[r0] is X -
disjoint, we know that r0 does not have any successors
contained in X . Therefore, for any successor r1 of r0, we
have q 6` Cr0,r1

. We conclude that (6.3) is true.
⇤ Finally, consider an edge r1 2 E(r0) \ X such that q ` Cr0,r1

.
Since G[r0] fulfills A['1U'2] and r1 is a successor of r0, it
follows that G(Sc,q, r1,'2) also fulfills A['1U'2]. Further-
more, since G[r0] is X -disjoint, G(Sc,q, r1,'2) must be also
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X -disjoint. Furthermore, G(Sc,q, r1,'2) does not contain
the node r0 because G[r0] is acyclic. We conclude that
G(Sc,q, r1,'2) is X [ {r0}-disjoint and it fulfills A['1U'2].
By induction, we get q ` ⌧

U

(A['1U'2], r1, X[{r0}). There-
fore, (6.4) is true.

(: Assume q ` ⌧
U

(A['1U'2], r0, X ).

Case 1: If q ` ⌧('2, r0), then (6.1) is true. By (A1), Sc,q, r0 |= '2. It
is immediate that G[r0] consists of a single node, namely r0.
Therefore, G[r0] fulfills A['1U'2] and it is X -disjoint because
X ⇢R \ {r0}.

Case 2: If q 6` ⌧('2, r0), then (6.1) is false. Therefore, (6.2), (6.3),
and (6.4) must be true. From (6.2) and (A1), we have Sc,q, r0 |=
'1. Consider any node r1 2 E(r0) \ X such that q ` Cr0,r1

. Then,
r1 is a successor of r0 in the graph G[r0]. From (6.4), we get q `
⌧

U

(A['1U'2], r1, X [ {r0}). By induction, G(Sc,q, r1,'2) fulfills
A['1U'2] and it is X[{r0}-disjoint. Since r0 is an internal node,
S, r0 |= '1, and all subgraphs rooted at r0’s successors fulfill
A['1U'2], it follows that G[r0] fulfills A['1U'2]. Furthermore,
from (6.3) we know that r0 has no successors in X . Since
all subgraphs rooted at r0’s successors are X [ {r0}-disjoint, it
follows that G[r0] is X -disjoint.

This concludes our proof.

Lemma 13. Let S = (R, E, r, S) be a resource structure, '1 and '2 be two
access constraints, and C = {c} be a configuration template. If for any resource
r1 2R and any access request q 2Q we have^

i2{1,2}
Sc,q, r1 |= 'i iff q ` ⌧('i , r1), (A2)

then for any resource r0 2R we have

Sc,q, r0 |= E['1U'2] iff q ` ⌧(E['1U'2], r0,;).

Proof. Given a directed graph G = (R, E) and a subset X ⇢R of resources,
we define the projection of G on X as G|X = (X , {(r0, r1) 2 E | {r0, r1} ✓ X }).
We will write G[r0] for G(Sc,q, r0,'2). We prove by induction on the size
of the set X that for any {r0} ✓ X ✓R, we have

G[r0]|X fulfills E['1U'2] iff q ` ⌧
U

(E['1U'2], r0,R \ X ).
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Note that since G|R = G and⌧
U

(E['1U'2], r0,R\R) = ⌧
U

(E['1U'2], r0,;),
the case for X =R proves the lemma.

We first expand ⌧
U

(E['1U'2], r0,R \ X ) to

⌧('2, r0)_ (6.5)Ä
⌧('1, r0) (6.6)

^ 9r1 2 E(r0)\(R\X ).
�
Cr0,r1

^⌧
U

(E['1U'2], r1, (R \ X )[ {r0})
�ä

(6.7)

Base Case For the base case, we have X = {r0}.

): Assume that G(Sc,q, r0,'2)|{r0} fulfills E['1U'2]. The graph G[r0]|{r0}
consists of the single node r0. The node r0 is a frontier node, and
therefore it must be that Sc,q, r0 |= '2. By (A2), we have q ` ⌧('2, r0).
Then (6.5) is true and therefore q ` ⌧

U

(E['1U'2], r0,R \ {r0}).

(: Assume that q ` ⌧
U

(E['1U'2], r0,R \ {r0}). Since here X = {r0}
and S’s edge relation is irreflexive, we have E(r0) \ (R \ {r0}) = ;.
Therefore, (6.7) is false and it must be that q ` ⌧('2, r0). By (A2), we
have Sc,q, r0 |= '2. It is immediate that the graph G[r0]|{r0} consists
of the single node r0, and that it fulfills E['1U'2].

Inductive Step Assume that G[r0]|X fulfills E['1U'2] iff

q ` ⌧
U

(E['1U'2], r0,R \ X )

holds for any set {r0} ✓ X ⇢R of size 1 |X | k, for some k, 1 k < |R|.
We show that this also holds for any set {r0} ⇢ X ✓R of size |X |= k+ 1.

): Assume G[r0]|X fulfills E['1U'2].

Case 1: If Sc,q, r0 |= '2, then from (A2) we get q ` ⌧('2, r0). It is
immediate that q ` ⌧

U

(E['1U'2], r0,R \ X ).

Case 2: If Sc,q, r0 6|= '2, then from (A2) we get q 6` ⌧('2, r0). Since
G[r0]|X fulfills E['1U'2], r0 is an internal node and Sc,q, r0 |=
'1. By (A2), q ` ⌧('1, r0), and so (6.6) is true. Furthermore, r0
has a successor r1 with q ` Cr0,r1

such that r1 has a path to a node
rn with Sc,q, rn |= '2. We conclude that G(Sc,q, r1,'2)|(X\{r0})
fulfills E['1U'2]. By induction, since |X \ {r0}| = k � 1, we
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have q ` ⌧
U

(E['1U'2], r1,R \ (X \ {r0})). Since r0 2 X , from
R \ (X \ {r0}) = (R \ X )[ {r0} we conclude that (6.7) is also
true. We conclude that q ` ⌧

U

(E['1U'2], r0, X ).

(: Assume q ` ⌧
U

(E['1U'2], r0, X ).

Case 1: If q ` ⌧('2, r0), then from (A2) we get Sc,q, r0 |= '2. There-
fore the graph G[r0]|X consists of the single node r0 with Sc,q, r0 |=
'2. It is immediate that G[r0]|X fulfills E['1U'2].

Case 2: If q 6` ⌧('2, r0), then it must be that (6.6) and (6.7) are
true. From (6.6) and (A2), we get Sc,q, r0 |= '1. From (6.7), it
follows that r0 has a successor r1 with q ` Cr0,r1

such that q `
⌧

U

(E['1U'2], r1, (R\X )[{r0}). Since r0 2 X , we have (R\X )[
{r0}=R \ (X \ {r0}). By induction, G(Sc,q, r1,'2)|X\{r0} fulfills
E['1U'2], so there is a path from r1, . . . , rn in G(Sc,q, r1,'2)|X[{r0}
along nodes in X \ {r0} where Sc,q, rn |= '2 and Sc,q, ri |= '1 for
1  i < n. It is immediate that there is a path r0, r1, . . . , rn in
G[r0]|X such that Sc,q, rn |= '2 and Sc,q, ri |= '1 for 1  i < n.
Therefore G[r0]|X fulfills E['1U'2].

This concludes our proof.

Lemma 14. Given a resource structure S = (R, E, r, L), a set R = {T1 )
'1, . . . , Tn) 'n} of requirements, and a configuration template C = {c}, let
� = ENCODE(S, T1) '1, C)^ · · ·^ ENCODE(S, Tn) 'n, C). The constraint
8a. � is satisfiable iff S, c ç R.

Proof. Note that since C = {c}, the formula � contains no control variables,
i.e. it contains only attribute variables. Since there is a one-to-one mapping
from a valuation of the attribute variables ~a to an access request q, we
have 8~a. � iff 8q 2 Q. q ` �. We expand the constraint � to (T1 )
⌧('1, r)) ^ · · · ^ (Tn ) ⌧('n, r)). We get that 8~a. � iff for any access
request q 2Q, and for any requirement T ) ', q ` T implies q ` ⌧(', r).
By Lemma 20, q ` ⌧(', r) iff Sc,q, r |= '. We get 8~a. � iff for any access
request q 2Q, and for any requirement T ) ', q ` T implies Sc,q, r |= '.
By definition of ç, we get 8~a. � iff S, c ç R.

We now restate and prove Theorem 16.
Theorem 16. Let S be resource structure, R a set of requirements, and C a
configuration template. If S

smt

(S, R, C) = c then S, c ç R. If S
smt

(S, R, C) =
unsat, then there is no configuration c in C such that S, c ç R.
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Proof. Let C = {c1, . . . , cn}. The formula 9~z.8~a.� generated by Algorithm 2
is equivalent to the formula (8~a. �c1

) _ · · · _ (8~a. �cn
) where �ci

is the
formula obtained by grounding the control variables ~z in� with those values
that encode the configuration ci . Note that each formula �ci

is equivalent
to the one obtained when using a configuration template Ci = {ci}.

Assume that 9c 2 C . S, c ç R. By Lemma 14, 8~a. �ci
is satisfiable

for some ci in C . Therefore S
smt

(S, R, C) returns some configuration ci .
Assuming the DERIVE procedure correctly derives a configuration ci from a
model of 9~z8~a. �, then S

smt

(S, R, C) = ci for some ci such that 8~a. �ci
. By

Lemma 14, S, ci ç R.
Assume that ¬9c 2 C . S, c ç R. By Lemma 14, 8~a. �ci

is not satisfiable
for any ci in C . Therefore S

smt

(S, R, C) returns unsat.





Chapter 7

Conclusion

Access-control systems, like all other complex software artifacts, are chal-
lenging to get right: Their behavior is influenced by a number of different
components, making it difficult for security engineers to ensure that they
grant and deny access in compliance with all access-control requirements.
The correctness of access-control systems is nevertheless of utmost impor-
tance, especially in the presence of active adversaries whose goal is to
deliberately exploit unintended access decisions and abuse the protected
resources.

Automated techniques for verifying access-control systems offer a promis-
ing direction towards ensuring the correctness of access-control systems.
The key idea is to first formalize the behavior of both (i) all access-control
components, along with their interactions, that define how access decisions
are made and (ii) the adversary. Then, we must check whether the formal
specification satisfies all access-control requirements in the presence of
the adversary. Going further, program synthesis techniques enable the
automatic construction of low-level components directly from high-level
access-control specifications. This frees security engineers from the tedious
task of manually constructing low-level components, such as writing the
locks’ policies deployed at a physical access-control system.

In this thesis, we have investigated these promising directions and we
have developed techniques that address key problems and limitations of
existing formal access-control frameworks. Concretely, we presented an
access-control framework that can be used to (i) specify access-control
policies with authority delegation and policy composition, which are the
core policy idioms of modern access-control systems, (ii) verify the behavior
of access-control systems in the presence of an attacker who can cause
communication and component failures, and (iii) synthesize low-level
policies for access-control systems with multiple, distributed PEPs.

In addition to solving practical problems, the techniques presented in
this thesis reveal numerous interesting directions for future research. We
discuss these briefly below.

Verification Beyond the Policy Our fail-security analysis on real-world
access-control systems demonstrates that verifying the policy alone is insuf-
ficient. This is because, in practice, there are access-control components
other than the policy that often affect access decisions in surprising and
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unintended ways. We therefore see our fail-security analysis as a first step
towards investigating how components beyond the policy (in our case,
failure handlers) affect the PDP’s access decisions.

To extend security guarantees beyond the policy, further investigation
is needed to understand which components influence access decisions and
can be controlled by an adversary. Then, researchers must develop both
more expressive system models that take into account these components
and new attacker models. One interesting direction for future research is,
for example, to extend our system model to multiple communicating PDPs,
where PDPs themselves can fail. Furthermore, it would be interesting to
consider an attacker who can submit malformed credentials and attributes
to the PEP/PDP, and to use this attacker model to investigate whether
the PDP correctly implement the semantics of the policy language in the
presence of such unexpected inputs.

Synthesis for Access Control Our access-control synthesis algorithm is
a first step towards bringing automated program synthesis techniques to
the field of access control. This is an important connection to make, as it
enables leveraging years of research in program synthesis to solve practical
problems in access control.

Towards extending the expressiveness of our synthesis system, it would
be interesting to include support for soft constraints. Currently, our syn-
thesis framework returns any configuration that satisfies the high-level
access-control requirements. Soft constraints would enable security engi-
neers to specify their preference over local policies and let our synthesizer
return more preferred policies. Examples of soft constraints include shortest-
path constraints, which can be used to avoid long navigation paths, and
optimality constraints, which can be used to synthesize local policies that
avoid re-checking attributes that have been checked by other enforcement
points. Handling such constraints is important for large-scale access-control
systems in practice.

Towards making our synthesis system easier to use, it would be inter-
esting to investigate the synthesis of access-control policies from example
scenarios. Such scenarios are often easier to provide compared to writing
a complete formal specification of all access-control requirements. The
challenge here is to come up with an algorithm that synthesizes policies
that generalize well, i.e. that do not overfit to the provided examples. A
interactive-based approach would be helpful in dealing with the inherent
ambiguity of such an example-based access-control synthesis approach.
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To sum up, we believe that both verification and synthesis techniques
will be an integral part of the construction of next-generation access-control
systems. In this thesis, we developed novel access-controls models that
support current standards, such as XACML v3.0, we developed novel con-
cepts in access control, such as fail-security, and we investigated novel
approaches to constructing access-control systems in an automated manner.
We hope that these approaches will be extended further to help security
engineers in constructing access-control systems that are correct by design
while reducing the required engineering effort.
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