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Abstract. We address the question whether there can be a physical
science of financial markets. In particular, we examine the argument
that, given the reflexivity of financial markets (i.e., the feedback mech-
anism between expectations and prices), there is a fundamental dif-
ference between social and physical systems, which demands a new
scientific method. By providing a selective history of the mutual cross-
fertilization between physics and economics, we reflect on the method-
ological differences of how models and theories get constructed in these
fields. We argue that the novel conception of financial markets as com-
plex adaptive systems is one of the most important contributions of
econophysics and show that this field of research provides the meth-
ods, concepts, and tools to scientifically account for reflexivity. We
conclude by arguing that a new science of economic and financial sys-
tems should not only be physics-based, but needs to integrate findings
from other scientific fields, so that a truly multi-disciplinary complex
systems science of financial markets can be built.

1 Introduction

Driven by the computerization of financial markets and research technologies, econo-
physics has been introduced in the early 1990s. Econophysics, as a distinct scientific
field of research, emerged as a reaction among physicists and some economists to the
failure of standard economic theory to realistically model the complex behavior of
financial systems. The early developments of the econophysics literature have been
focused on studying and extending a set of so-called “stylized facts,” many of them
previously identified in financial economics, which are defined as robust empirical
features that generalize across markets and asset classes. A rich diversity of econo-
physical models, such as agent-based, evolutionary and minority-game models and
model-driven theories of large price fluctuations, bubbles and market crashes have
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evolved over the last two decades. By illuminating the statistical properties of finan-
cial return distributions and their underlying social mechanisms, which can generate
systemic instabilities, econophysics has since then significantly advanced our under-
standing of financial markets.
However, a dominant criticism of the quantitative aspirations to build a physical

science of financial markets has emerged. This criticism is encapsulated in the claim
that “financial modeling is not the physics of markets,” as expressed by Emanuel
Derman, a prominent former Wall-Street “quant” and theorist [1]. Another well-
known practitioner, the hedge-fund manager and philosopher George Soros, who put
forward the concept of market reflexivity [2], argued that financial reflexivity – i.e.,
the positive feedback between expectations and prices that drive market dynamics –
demands a new version of the scientific method as physics cannot handle the com-
plexity of reflexive behavior.1

In this paper, we provide a methodological reflection on econophysics, which is
guided by the fundamental question whether there can be a physics of markets. This
higher-level methodological approach allows us to assess the theoretical contributions
of econophysics and identify the main challenges in building a new science of economic
or financial systems. In particular, by reflecting on the differences and similarities
between physical and social systems, respectively physics and economics, we exam-
ine whether econophysics is methodologically equipped to approach the problem of
reflexivity.
The paper is organized around three parts. Section 2 gives a brief overview of

the mutual cross-fertilization between physics and financial economics. This section
highlights how physics and economics methodologically diverged – as indicated by
the different uses that data and models have with respect to theorizing. It further
illustrates the methodological difference by comparing how physics and financial eco-
nomics approach the “excess volatility puzzle.” In Section 3, we consider how econo-
physics has contributed to an advanced understanding of economic and financial
systems. We present here the ideas of financial complexity and causality that flow
from econophysics. We consider the introduction of complexity and heterogeneity
to financial economics as one of the most important contributions of the relatively
new field of econophysics. By rendering idealized assumptions about representative
agents and the equilibrium state of financial markets empirically more realistic, econo-
physics has been able to account for the heterogeneity of economic agents and the
out-of-equilibrium and non-linear dynamics that characterize complex financial sys-
tems. In Section 4, we analyze how econophysics has provided a novel perspective on
complexity and causality, which allows for bottom-up and top-down causation. We
show that the econophysics view of complexity and causality allows one to quantita-
tively approach reflexivity in financial markets. We conclude by arguing that, while
econophysics has made considerable progress in, for example, reproducing many of the
stylized facts identified in financial data or elucidating the social or behavioral mecha-
nisms underlying market dynamics, it needs to reach beyond physics and integrate the
concepts, methods, and tools from other disciplines, so that a new multidisciplinary
complex systems science of financial markets can emerge.

2 Physics vs. finance

The mutual cross-fertilization between physics and economics has a long history start-
ing well before the emergence of econophysics in the mid 1990s. The history and evo-
lution of economics and physics, from the development of classical and neo-classical

1 The concept of reflexivity has its origins in sociology and philosophy. See [3–8].
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economics to econophysics, is punctuated by various collisions between these two
fields. In what follows, we provide a selective overview of the historical interaction
between physics and economics and finance, before we consider what distinguishes the
development of econophysics from other historical cases of inter-fertilizations between
these two fields [9–12].

2.1 A brief history of the cross-fertilization between physics and economics

Historically, one of earliest cases of the “physical attraction” [13] of economics was
the conceptual influence Isaac Newton’s Philosophiae Naturalis Principia Mathemat-
ics (1687) [14] exerted on Adam Smith’s Inquiry into the Nature and Causes of the
Wealth of Nations (1776) [15]. In particular, the notion of causative force, which was
novel at that time, inspired Smith to conceptualize the dynamics of an economic sys-
tem analogous to Newtonian physics. By the beginning of the 19th century, the notion
of social and economical laws, paralleling physical laws, became deeply entrenched in
economics.
In his Essai philosophique sur les probabilités, Pierre-Simon Laplace, for example,

showed in 1812 that certain social phenomena, which appear random, exhibit law-like
behavior and some predictability [16]. Amplifying this scientification of social phe-
nomena, Adolphe Quetelet, who studied birth and death rates, crimes and suicides,
even coined the term “Social Physics,” which aimed at identifying empirical regular-
ities in the asymptotic Normal distributions observed in social data [17]. (See Galam
et al. [18] and Galam [19] for a re-discovery and extension using agent-based models
and mapping to physical particle models.)
In the second half of the 19th century, the economists Alfred Marshall and Francis

Edgeworth imported the concept of equilibrium into economics, drawing on research
of Clerk Maxwell and Ludwig Boltzman, who described the macro-equilibrium ob-
served in gases as the result of a multitude of collisions of particles. By analogizing
economic activity with the interaction of gas particles, Marshall developed the notion
of the equilibrium state of the economy, which still forms the core of current main-
stream economics (we come back to this below).
Similarly to a thermodynamic description, which uses a mean-field representation

that abstracts from the heterogeneity of the particles and their various microstates,
equilibrium theory reduces the rich heterogeneity of economic agents to a single rep-
resentative agent or firm [20]. Interestingly, the idea of equilibrium, which started
to heavily dominate economics in the 1950s and now lies at the heart of the Dy-
namic Stochastic General Equilibrium (DSGE) models that central banks relay on,
was struggling to find acceptance by economists, who had an out-of-equilibrium con-
ception of the economy. However, the idea that economies achieve equilibrium states –
i.e., that total demand equals total supply or total consumption equals total output
and prices are stable – which was the result of a long maturation process, was sub-
sequently pushed to the methodological extreme in neo-classical economics. Whereas
equilibrium in physics is a descriptive feature of physical systems, equilibrium has a
normative status in economics; the rich and complex out-of-equilibrium and non-linear
dynamics of economic systems are tamed and forced to conform to a set of idealized
assumptions and theorems, which are couched in equilibrium terms. In other words,
rather than describing how economic or financial systems are, (financial) economics
strives to prescribe how they should behave [21,22].
Now, not only has economics been fertilized by physics, but also methods and

concepts from economics were transferred to physics. An important historical case, in
which the flow of concepts and methods between physics and economics has been re-
versed, is when the economist and philosopher Vilfredo Pareto described in his Cours
d’Economie Politique (1897) regularities in income distributions in terms of power



3190 The European Physical Journal Special Topics

laws [23]. As they are closely related to the concepts of scale invariance and univer-
sality, power laws have been later widely used in physics and the natural sciences
to describe the universal statistical signatures of event sizes such as distributions
of city sizes, earthquakes, avalanches, landslides, storms, commercial sales, or war
sizes. These distributions are not Gaussian, but “fat-tailed” or sub-exponential dis-
tributions. One very important insight, which follows from the nature of fat-tailed
distributions of event sizes, which power laws describe, is that the probability of
the observation of extreme events is not negligible. Whereas Gaussian distributions
attribute negligible likelihood to event sizes that are larger than a few standard devi-
ations from the mean, power law distributions provide more weight to these extreme
events, which have been documented in various physical systems [24–26]. As these
extreme events often control the long-term behavior and organization of complex sys-
tems, power laws became very attractive for physicists. However, despite their appeal,
it should also be cautioned that many reported power laws distributions turned out
to be of limited validity or spurious [27,28].
Another historically important phase in the historical mutual cross-fertilization

between economics and physics was Louis Bachelier’s attempt to model the apparent
random behavior of stock prices in the Paris stock market. In his PhD thesis Théorie
de la spéculation (1900) [29], Bachelier, who was a student of Poincaré, developed
the mathematical theory of diffusion and solved the parabolic diffusion equation five
years before Albert Einstein (1905) established the theory of Brownian motion [30].
The modeling of stock prices as stochastic processes – analogue to the random motion
of particles suspended in a gas or liquid – constitutes now one of the fundamental
pillars of physics and (financial) economics. Research on fluctuation phenomena in
statistical physics, on quantum fluctuation processes in quantum field theory, and on
financial time-series in finance is now based on the random walk models and their
mathematical sibling, the Wiener process.
The Geometric Random Walk model, which was introduced in economics by

Osborn [31] and Samuelson [32], uses the exponential of a standard random walk
and now constitutes the theoretical core of the most important theoretical constructs
in neo-classical finance and economics, such as Markowitz’ portfolio theory [33], the
Capital-Asset-Pricing model [34], and the Black-Scholes-Merton option-pricing model
[35,36]. The theoretical development of these models, which solidified into what has
become known as the neo-classical paradigm, resulted in the complete mathemati-
zation of economics and finance. Resting on the fundamental assumptions of equi-
librium, rational expectations, and utility maximization, the quantitative aspirations
of neo-classical finance and economics have been driven by the belief that is possi-
ble to model their theoretical foundations on physics. This “physics envy” [37] was
already inherent in Paul Samuelson’s Foundation of Economic Analysis [38], which
provided the theoretical framework of what became neo-classical economics, where
he adapted the deductive methodology of thermodynamics for economics. Building
on these earlier analogies between physics and economics, the economic and finance
literature that followed pushed the mathematization of the field to new extremes. Or-
ganized around a few parsimonious postulates and theorems, formalized neo-classical
finance and economics often devised analytically rigorous models that sacrifice real-
ism for mathematical elegance. Often, these models have generated predictions that
are essentially unfalsifiable. With respect to their validity, the models and theories of
neo-classical economics, although inspired by physics in the quest for the quantifica-
tion of economic phenomena, seemed to have methodologically diverged from what
has long been considered the “queen of science.” In the remainder of this section, we
briefly discuss the different uses data and models have with respect to theory-building
in physics, respectively to financial economics. We conclude this Section by briefly
presenting the evolution of econophysics.
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2.2 “Physics Envy”

Although neo-classical economics and finance have been influenced by the methodol-
ogy of physics of the 19th century and became axiomatized in the second half of the
20th century, there are substantial differences in the way these two disciplines build
and test models. While economics privileges models and theoretical principles over
empirical confirmation, data come first in physics and models come second [39]. Un-
derstanding the methodological difference between physics and (financial) economics,
which is manifested in the different ways models are constructed and falsified in these
fields, allows one to assess how physics-based approaches can improve scientific mod-
els and theories of financial markets.
Whereas economics can be characterized by an axiomatic and non-empirical

methodology [40], many physical models are inductively derived from data generated
through experiments or simulations.2 Model construction in economics and finance
is often guided by a top-down approach that prioritizes theoretical principles and
idealized assumptions, which go into the models. The emphasis on mathematics in
neo-classical economics has resulted in highly stylized financial and economic models,
which often omit the key characteristics of financial markets. Although many pos-
tulates of standard economic theory have been empirically falsified, many economic
models, which suffer from their unrealistic assumptions, have not been revised. By
contrast, many physical models are generally theoretically more minimal, data-driven,
and falsifiable. Furthermore, many physically founded models, which are constructed
in econophysics or behavioral finance and are methodologically inspired by statistical
physics or biology, are geared towards elucidating the mechanism underlying the phe-
nomenon to be explained or simulated from a collective or many-body perspective. In
contrast, economic theory is more interested in how robust individual characteristics
of the (representative) decision maker lead to different equilibria.
It is precisely the methodological difference between data-driven and model-based

theorizing that allows one to understand the emergence of econophysics and, further,
to assess its contributions. In one of the foundational papers of the field, Stanley
et al. [41] state that econophysics begins “empirically, with real data that one can
analyze in some detail, but without prior models.” While it is difficult to agree with
Stanley et al.’s implicit assumption of model-free or theory-free observations, econo-
physics can be nonetheless characterized in large part by the larger emphasis put on
data-dependency of its theories and models. However, early econophysics papers were
not empirical but more conceptual. Takayasu et al. [42] for example developed the
first agent-based model in order to provide an alternative to DSGE models by in-
corporating agents’ heterogeneous characteristics and the role of extended networks.
Bouchaud and Sornette [43] were interested in exploring beyond the ideal arbitrage
limit in continuous time using Ito calculus to more general situations amenable to the
functional integration techniques that have been developed in particle physics and
statistical physics.
How the standard approach differs from econophysics can be illustrated by so-

called “puzzles” in economic theory. When empirical observations do not conform
to the prediction generated by standard models of economics, economists often label
these anomalies “puzzles.” While the falsification process in physics would dictate to

2 However, it is important to note that characterizing physics in terms of experimenta-
tion is inadequate as some areas of physics, such as string theory, are often experimentally
impenetrable. Often, these areas in physics are highly theoretical and difficult if not impos-
sible to confirm empirically, at least in the foreseeable future. Furthermore, over the past
decades, economics witnessed the emergence of empirical approaches, such as experimental
or behavioral economics.
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reject the model on empirical grounds, the theoretical edifices of neo-classical eco-
nomics are getting improved so as to account for these anomalous economic phenom-
ena. In other words, data must conform to the normative nature of the mathematically
parsimonious and elegant models.3 One of the most famous anomalies in financial eco-
nomics is the so-called “excess volatility puzzle,” which Shiller [45,46] and LeRoy and
Porter [47] have unearthed in the 1980s. It refers to the empirical observation that
prices fluctuate too much when compared to their fundamental valuation.
It follows from the efficient market hypothesis (EMH) – which states that the tra-

jectory of stock prices instantaneously incorporates all available information – that
the observed price p(t) of a share or index is equal to the mathematical expectation,
conditional on all available information, of the present value p∗(t) of actual subse-
quent dividends accruing to that share. As this fundamental value p∗(t) is not known,
it has to be forecasted. For EMH, the observed price is equal to the forecasted price,
which can be written as

p(t) = Et[p
∗t], (1)

where Et refers to the mathematical expectation conditional on all public information
available at time t. As EMH asserts, only new information on the fundamental value
p∗(t), which was not available at the time of the forecast, might result in surprising
movements in the stock price. If follows from EMH that

p∗(t) = p(t) + ε(t), (2)

where ε(t)is a forecast error, which must be uncorrelated with any information at
time t as the forecast would otherwise not be optimal, respectively the market not
efficient. However, empirical observations of price behavior show that the volatility
of the realized price p(t) is much larger than the volatility of the fundamental price
p∗(t). This gives rise to the “excess volatility puzzle” as the empirical observation
conflicts with the theoretical predictions of the model (2), since, mathematically, the
volatility of p∗(t) obtained as the sum (2) cannot be smaller than the volatility of one
of its constituents p(t), given that ε(t) is uncorrelated with p(t).
However, when viewed through the lenses of the logic of physics, there is no “excess

volatility puzzle.” As physics operates with the concept of causality, the observed price
p(t) can be understood as following from fundamentals. In other words, p(t) should
be an approximation of p∗(t). Therefore, expression (2) should be replaced by

p(t) = p∗(t) + ε′(t), (3)

and there is no longer a volatility excess paradox. The observed realized volatility of
p(t), which is larger than the volatility of p∗(t), provides information on the price-
formation process, which is not optimal. The introduction of causality shows that the
observed price approximates the fundamental price, up to an error of appreciation of
the market. It follows from this that price moves have other causes than fundamental
valuations: there exists a noise element in the pricing process, which results in the
deviation of the observed price from its fundamentals. However, instead of explor-
ing the mechanisms underlying price fluctuations, most economists do not reject the
a priori assumptions of standard economic theory. The difference between (2) and
(3) captures this fundamental difference in modeling strategies in economics versus

3 MacKenzie [44] shows how financial models changed reality. For example, the practical
implementation of the Black-Scholes-Merton model by traders at the Chicago Board Options
Exchange rendered the model more realistic – until the crash of Oct. 1987 broke its validity,
requiring the introduction of the so-called “volatility smile” as a fudge to make it continue
working.
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physics. In its top-down approach, standard economic theory, such as EMH or ratio-
nal expectations, dictates that economic reality has to conform to the models because
the market is supposed to have had time to absorb all information and converge to
its optimal representation, the market price. This economic view assumes that all
nonlinearities and reflexive loops of infinite order are taken into account [48]. This
is the limit of perfect rationality and infinite effective computing power. In contrast,
the bottom-up physics-based approach is more myopic or time-dependent, examining
the underlying microscopic system in order to illuminate its aggregate or macroscopic
properties through a progressive construction process, which could be called “induc-
tive” [49]. It is not assumed that the investors have digested all available information
and have developed optimal strategies accounting for those of their peers in infinite
loops of reflexivity.
As the example of the excess volatility puzzle above shows, the bottom-up ap-

proach of physics, which introduces the concept of causality and imperfect markets,
can substantially advance our understanding of economic phenomena or systems. It
is precisely the observation that there are parallels between economic and physical
systems and that physics can contribute to their understanding that resulted in the
emergence of econophysics as a new and distinct field in the 1990s. We briefly discuss
in the next section the history of econophysics and what distinguishes it from other
historical cases of cross-fertilizations between physics and economics, before we ex-
amine in more detail what we consider the most important theoretical contribution
of econophysics.

2.3 The emergence of econophysics

The term econophysics – a synthesis of economics and physics – already encodes
the theoretical program of the field. Similar to “astrophysics,” “geophysics,” or “bio-
physics”, econophysics strives to model, predict, and explain economic phenomena by
applying tools and concepts from statistical and theoretical physics [50,51]. In this
section, we briefly identify the factors that have driven the evolution of econophysics.
Fuelled by the simultaneous computerization of financial markets and academic re-

search, the availability of high-frequency data made the application of physical meth-
ods and concepts specifically attractive. One of the most important insights flowing
from the last two decades of research in econophysics is that financial markets and
their dynamics can be understood as complex adaptive systems, from which a variety
of stylized facts emerge. Stylized facts – which represent robust and universal proper-
ties that can be identified across data sets from different markets and asset classes –
can be understood as emergent properties, which result from the complex and non-
linear interactions of the system’s components. Econophysics emerged from attempts
to describe these stylized facts, such as volatility clustering, the heavy-tailed nature
of return distributions, or the absence of linear correlations between returns [52–54],
in terms of statistical frameworks used in physics. This statistical physics approach
– which started in the 1960 with Mandelbrot [55–57], Fama [58,59] and Samuelson’s
[60] re-interpretation of modern portfolio theory using Paretian power laws and stable
Lévy distributions [13] 4 – consolidated in the 1990s into a new field, which promised
to statistically explain these universal patterns in financial data, which standard eco-
nomic theory fails to account for. The leptokurticity of financial distributions, which
was already unveiled by research in the 1960s following Mandelbrot’s foray in the
field and subsequent research by Fama himself, Cootner [62] and others, collides

4 A modern approach generalising Samuelson to the case of distributions of returns with
power law tails (not necessary in the Lévy law domain of attraction) was offered by Bouchaud
et al. [61].
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with standard economic theory, which is methodologically underpinned by Gaussian
assumptions. The fundamental pillars of finance theory, such as modern portfolio
theory, the Black-Scholes-Merton model of option pricing, CAPM, or value-at-risk,
are characterizing the distributions of financial returns within a Gaussian framework.
Because of its fundamental assumptions about a Gaussian world where markets are
efficient and in equilibrium and economic agents perfectly rational, standard economic
theory has invariably failed to account for extreme events in financial systems [63].
Econophysics’ promise to model, explain, and predict the non-Gaussian nature of fi-
nancial systems, their non-linearity and out-of-equilibrium dynamics, accelerated its
development during the 1990s.
However, it is important to note that the evolution of econophysics is radically dif-

ferent from the historical cases where physics was infused into (financial) economics.
Whereas in the cases we discussed in the previous section, the physical concepts,
methods, and tools have been translated into economics – i.e., the physics concepts
have been rendered economically meaningful – and integrated into the theoretical
framework, econophysics is a new approach to economic or financial systems, which
does not incorporate the theoretical foundations of standard economic theory. Econo-
physics has not simply integrated concepts and methods of statistical physics into
the framework of financial economics, but directly applied physics, its concepts and
methodologies to economic phenomena, often without building on the standard (neo-
classical) theories of financial economics [64]. In other words, econophysics is simply
an extension of the physical sciences, which has been motivated by the phenomenolog-
ical and conceptual similarity between physical and financial systems. Consequently,
the fact that econophysicists often filter out standard economic theory, a fact that also
concerns the sociological dynamics of these scientific fields, has generated some contro-
versies. While some econophysicists have expressed the desire to replace the theoreti-
cal edifice of neo-classical economics with econophysics, some economists claimed that
econophysists’s ignorance of standard economics theory resulted in a replication of
scientific results, which have already been well established in economics [65–67]. It has
been argued, for example, that complexity approaches, such as econophysics, are “jus-
tifying themselves by how they correspond with already-observed facts, rather than
by the new insights they provide” [68]. However, the fact that research in econophysics
often strives to identify and explain stylized facts in financial data by reproducing
the phenomenon to be explained with computer simulations should be considered
a positive contribution. Simulations almost never appear in the standard economic
literature5 as the often non-linear out-of-equilibrium and heterogeneous nature of the
phenomena to be modeled cannot be analytically solved by standard economic mod-
eling techniques, which follow the neo-classical dictum of simplicity, tractability and
conformity to theoretical principles such as rational expectations with well-defined
utility functions. By contrast, simulations have become deeply rooted in the practice
of physicists working on economic or financial systems as they allow them to simulate
algorithmically the behavior of the interacting components of the system under study.
In other words, simulations provide a way to “increase the range of phenomena that
are epistemically accessible to us” [72] and which the closed form solutions, demanded
by standard economic techniques, fail to model [32]. Whereas standard economic mod-
els are in most cases not concerned with underlying causal mechanism emphasizing
the transition from the micro-level to the macro-level, adopting the simulation meth-
ods used in physics enables econophysicists to build explanatory models of the target
system that clarify the self-organization processes at work. By reproducing the basic
mechanisms underlying stylized facts, econophysics is able to provide explanations of
the various macroscopic patterns and regularities observed in financial data. One can

5 A notable counter-example is e.g. Schelling’s model of segregation, from micro-motives
to macro-behaviors [69–71].
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consider these generative explanations, which provide micro-specifications of macro-
scopic patterns, as one of the unique features of econophysics [73].
Now, it is remarkable that econophysics is often methodologically defined. As a

cursory scan of some definitions given in relevant papers and textbooks reveals, char-
acterizations of econophysics often appeal to its techniques and methods (such as
statistical mechanics, power laws, scale invariance, etc.), rather than its theoretical
focus. For example, Mantegna and Stanley [51] write that the “word econophysics
describes the present attempts of a number of physicists to model financial and eco-
nomic systems using paradigms and tools borrowed from theoretical and statistical
physics” and the “characteristic difference [from the standard economic approach –
TH/DS] is the emphasis that physicists put on the empirical analysis of economic
data” (ibid.); Stanley et al. [41] state that the econophysics advances “in the spirit of
experimental physics”; and Burda et al. [74] define econophysics as a “a quantitative
approach using ideas, models, conceptual and computational methods of statistical
physics applied to economic and financial phenomena. “For our part, what we con-
sider the most central contribution of econophysics is that – as Stanley et al. [41]
write in their foundational paper – “economic systems are treated as complex sys-
tems.” Econophysics, in other words, provides a fundamental re-conceptualization of
economic systems. The defining feature of econophysics is thus less that it applies
the techniques of statistical mechanics to financial systems, but primarily the insight
that the dynamics of financial systems are best understood as emergent properties
of a complex adaptive system. This complexity approach to financial market is what
renders econophysics fundamentally different from standard economic theory. In fact,
its roots go back to the complexity approach applied to economics that was pro-
moted by the Santa Fe Institute created in 1984 under the particular push of the
Nobel economist K. Arrow together with two Nobel physicists P.W. Anderson and
M. Gellman [75]. The Santa Fe Institute has been pushing further the unifying concept
of “complex adaptive systems” [76,77], with a strong anchor in biological ecologies
and evolutionary selection. In contrast, econophysics is a direct descendant of the
more traditional statistical physics and experimental physics approach.
In the next section, we analyze the concept of complexity in econophysics in more

detail and explore what novel insights about the dynamics of financial markets flow
from it. In particular, we look at how econophysical complexity provides a new un-
derstanding of causality, before we conclude by examining whether econophysics can
methodologically account for the reflexive behavior that financial markets exhibit.

3 Complexity, causality, and reflexivity in econophysics

Viewing physical, biological, or social systems through the lens of complexity has rev-
olutionized many scientific fields over the last decades. The emerging new complexity
paradigm, which affected fields as diverse as physics, biology, ecology, or sociology, has
furnished explanations to phenomena such as symmetry-breaking, dis-equilibrium, or
spontaneous instabilities. Collective or macroscopic phenomena – such as these “crit-
ical” phenomena that conflict with the symmetry and equilibrium paradigms, which
have dominated physics and biology – are in a bottom-up way understood to be gen-
erated by the microscopic interactions of the component parts of a complex system.
The aggregate or global states of the system, however, are emergent properties and are
not reducible to a particular configuration of the constituents. What is particularly
interesting is that these macro-patterns or phenomena can be realized by different
systems, i.e., they sometimes exhibit, what physicists call, “universality.” Intuitively,
economic or financial systems are natural candidates for a complexity approach.
In particular, neo-classical economics with its emphasis on equilibrium states,
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homogeneity of economic agents, and Gaussian distributions, seems especially ripe
to transform via the complexity treatment. In the next section, we define a few con-
ceptual properties of complexity and consider briefly how they relate to financial
systems, before we examine in more depth how econophysics approaches complexity
methodologically.

3.1 Complexity

The study of out-of-equilibrium dynamics (e.g. dynamical phase transitions) and of
heterogeneous systems (e.g. glasses, rocks) has progressively made popular in physics
and then in its sisters branches (geology, biology, etc.) the concept of complex sys-
tems and the importance of systemic approaches: systems with a large number of
mutually interacting parts, often open to their environment, self-organize their inter-
nal structure and their dynamics with novel and sometimes surprising macroscopic
“emergent” properties. The complex system approach, which involves seeing inter-
connections and relationships, i.e., the whole picture as well as the component parts,
is nowadays pervasive in the control of engineering devices and business management.
It is also plays an increasing role in most of the scientific disciplines, including biol-
ogy (biological networks, ecology, evolution, origin of life, immunology, neurobiology,
molecular biology, etc.), geology (plate-tectonics, earthquakes and volcanoes, erosion
and landscapes, climate and weather, environment, etc.), economics and social sci-
ences (including cognition, distributed learning, interacting agents, etc.). There is a
growing recognition that progress in most of these disciplines, in many of the pressing
issues for our future welfare as well as for the management of our everyday life, will
need such a systemic complex system and multidisciplinary approach.
A central property of a complex system is the possible occurrence of coherent large-

scale collective behaviors with a very rich structure, resulting from the repeated non-
linear interactions among its constituents: the whole turns out to be much more than
the sum of its parts. Recent developments suggest that non-traditional approaches,
based on the concepts and methods of statistical and nonlinear physics coupled with
ideas and tools from computation intelligence, could provide novel methods into com-
plexity to direct the numerical resolution of more realistic models and the identifi-
cation of relevant signatures of impending catastrophes. In the following, we identify
a few key properties of complex systems that are particularly interesting when one
considers financial systems. Most definitions of complexity follow more or less Philip
Anderson’s classic formulation of complexity, which he gives in his seminal paper
“More Is Different” [78]:

The behavior of large and complex aggregates of elementary particles, it turns
out, is not to be understood in terms of a simple extrapolation of the properties
of a few particles. Instead, at each level of complexity entirely new properties
appear [. . . ].

Financial systems can be considered to qualify as complex systems as they are com-
posed of different levels of complexity that generate new and emergent properties.
Hormonally-induced changes in the endocrine system influence, for example, finan-
cial risk taking and decision making of individual traders [79] whereas traders are
socially affected by imitation and herding dynamics [80]. The resulting global dy-
namics of markets can in turn trigger collective trader behavior, which can cause
financial market crashes [81,82]. Each of these examples can be considered as an
emergent property of the underlying level of complexity. Financial systems can thus
be characterized as containing a large number of interdependent and mutually inter-
acting microscopic sub-units, which produce non-linear and stochastic dynamics from
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which novel macroscopic states or properties emerge. The following four properties
form the conceptual kernel of complexity relevant for econophysics [82,83]:

– Non-Linearity: Whereas in linear models the output is proportional to the
cause, non-linearity complicates the relation between output and cause [84,85].
Hence, linear extrapolations from microscopic properties to macroscopic phe-
nomena in non-linear systems are bound to fail. Furthermore, complex non-
linear systems exhibit positive and negative feedback [86]. Negative feedback
result when the fluctuations in the output of a system tend to be reduced com-
pared to the disturbances or changes in the input. Under negative feedbacks
the system is stable and tends to reverse to the mean. In contrast, positive
feedback occurs when a small change in the input of a system or a disturbance
of its parameter amplifies into large system-wide perturbations. While negative
feedback tends to stabilize the system by forcing it back into its equilibrium
state, positive feedback tend to destabilize the system and results in strongly
nonlinear oscillations, out-of-equilibrium dynamics, chaotic behavior, or even to
transient singular dynamics associated with changes of regimes. In the financial
context, positive feedback is interesting as higher (lower) prices, for example,
feed back into trader’s behavior, thereby accelerating the upward (downward)
price trajectory [80] into characteristic transient super-exponential trajectories
[87–89].

– Emergence: Emergence is a notoriously slippery concept. Minimally, macro-
scopic properties of a complex system can be characterized as emergent when
they are irreducible to the mutually interacting microscopic parts, which gener-
ate novel global phenomena on a higher level of complexity. In other words, the
aggregate or global phenomena or patterns transcend the dynamics, properties,
and configurations of the system’s sub-units. Concretely, the knowledge of the
microscopic laws does not predict the macro-behavior as many different micro-
scopic laws can lead to the same large-scale behavior while some apparently
innocuous changes actually lead to revolutionary alterations at the global level.
In that sense, financial markets can exhibit emergent behavior, which is not
shared by its constituents [90]. Before crashes, statistical signatures can be iden-
tified that result from the increasing global cooperativity and self-organization
of markets. A super-exponential accelerating price decorated by log-periodic os-
cillations reflecting large-scale volatility organization indicates that the market
as whole anticipates crashes before its individual parts do [73,91–95].
– Criticality: Criticality is another key characteristic of complex systems that
can be derived from the microscopic organization and long-range dependence
of the system elements. A complex system exhibits criticality when local in-
fluences propagate over long distances and it becomes exceedingly sensitive to
small perturbations, which can cause massive changes in the overall behavior.
A number of extreme events, such as market crashes, have been proposed to
belong to the class of critical phenomena. In the case of financial markets, this
criticality, which can be observed in the finite-time singular behavior of financial
prices before crashes [95], results from the high correlations and cooperation
between the system’s elements, such as traders, banks, etc. When the market
matures towards a so-called “critical point” leading to an unstable phase, a
small distortion might trigger a price collapse [86,91,92]. Applying and gen-
eralizing the physics of critical phenomena to financial systems has deepened
our understanding of market crashes and speculative bubbles, which cannot be
explained from the perspective of standard economic theory. When financial
systems undergo critical phase transitions, the origin cannot be traced to an
exogenous source such as arrival of major news – as post-mortem analyses have
revealed – but the critical state often arises endogenously.
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– Qualitative Universality [96]: The observation that complex systems, under cer-
tain conditions, exhibit universality was one of the factors that encouraged
physicists in their belief that econophysics could develop as a distinct scientific
field. Roughly speaking, universality refers to the fact that physical, biologi-
cal and social systems have similar properties that can be generalized across
many different system classes. Properties of a system are considered universal
when they can be described independently of the details of the microscopic
organization of its sub-units. While many descriptions of physical systems rely
on scale-dependent parameters, scale-invariant descriptions of its behavior –
which are often governed by power laws – begin to dominate when complex
systems enter a critical phase transition. A specialized and narrower definition
of universality is the concept of self-similarity, which in critical phenomena is
associated with the notion of universality classes characterized by identical ex-
ponents (or fractal dimensions). Studies on herding behavior amongst traders
have suggested that financial systems, when they approach a critical point, are
self-similar across scales [91,92].

Taken together, these characteristics form the core of the concept of complexity
around which most research in econophysics is organized. In some studies, these fea-
tures are explicitly defined, in others they are part of the theoretical background
that is assumed. What is important now is that these definitions of complexity entail
a novel conception of causality. This is very relevant as it allows one to tackle the
question whether econophysics is equipped with the methods and concepts required
to deal with the problem of reflexivity, which is endemic in social systems.

3.2 Causality

From the characterization of complex systems in terms of emergence follows that
emergent properties are irreducible to or not derivable from the lower levels of com-
plexity. When a complex system exhibits emergence, the higher macro-level, which
is the locus of emergent properties, exerts causal influence on the lower micro-level
substrate from which these novel features of the system have emerged. This causal
propagation of effects from higher to lower levels of complexity is often referred to
as “downward causation” or “macro-determination” – a term that originated in the
context of complex biological systems [97,98]. In physics, it is called “direct cascade”
in analogy with the cascade of energy from large to small scales in hydrodynamic
turbulence [99]. The existence of such a downward cascade, which collides with the
more standard micro to macro cascade, is the main reason for the lack of a generic
theory of complex systems. The renormalization group theory has solved essentially
the problem of the micro to macro cascade for a restricted class of statistical physics
systems [100]. But the occurrence of top-down influences and its interactions with the
bottom-up micro-macro cascade make system dynamics and organization much richer
and elaborate than we can presently fully fathom. Concretely, financial systems can
be considered to exhibit downward causation as the aggregate dynamics of markets
can causally influence the microscopic behavior of its individual sub-units [101]. For
example, phases of extreme market volatility induce a reaction by traders, which often
results in more volatile price behavior [102]. Markets can thus be described through
a macro-structure that causally affects all its micro sub-units.
In the context of financial systems, econophysics provides a useful theoretical

framework to model, explain, and predict the emerging statistical properties of the
aggregate level, which do not exist on the microscopic level. By contrast, standard
economic theory is epistemologically and methodologically simply not equipped to
fully handle the phenomenon of downward causation. The methodological reason for
this failure is the conceptual reductionism that is deeply engrained into standard
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economic theory. Many current macro-models in standard economics are built on the
assumption that the macro is fully reducible to the micro. This reductionist approach
in standard economic theory centers on the representative agent framework, which
gets rid off the heterogeneity of economic agents [64,103]. In the standard economic
literature, there “are no assumptions at the aggregate level, which cannot be jus-
tified, by the usual individualistic assumptions. This problem is usually avoided in
the macroeconomic literature by assuming that the economy behaves like an indi-
vidual” [104]. As a consequence of this conceptual reductionism, the methodology of
neo-classical economics and finance cannot model the connection between the micro-
level with the macro-level beyond the assumption that, roughly speaking, the macro
level obeys the same laws as the micro level. By equating the micro-level, which is
populated with diverse and heterogeneous economic agents and shaped by their mu-
tual non-linear interactions, to the macro-level, the standard economic framework
produces highly unrealistic models, which cannot capture the complex dynamics and
evolution of financial markets. In particular, the standard economic approach is ill-
suited to explain the occurrence of crises and systemic risks. In the build-up towards
the great 2008 crisis in the USA, this blindness was embodied by the claim that the
economy has transitioned into a new greater level of functioning, dubbed the “Great
Moderation”, while in reality this apparently improved performance was bought at
the cost of non-sustainable debt and financialization and the build-up of a virtual
world increasingly disconnected from the real economic world [105].
The epistemological reason for this breakdown of the standard economic model

has to do with the “positive” epistemology of economics, which Milton Friedman in-
troduced in 1953 and that still dominates neo-classical economics and finance today.
For Friedman, the ultimate criterion for the scientific validity of a scientific theory lies
in the quality of its predictions and not in the realism of its assumptions. Whereas
a prediction of a model or hypothesis can be falsified, the underlying theoretical
edifice is immune to falsification [106]. It is precisely this conception of a positive
scientific methodology that gave rise to the axiomatic and unfalsifiable paradigm of
neo-classical economics and finance to which the formation of econophysics reacted.
In the next section, we examine how econophysics approaches and models finan-

cial complexity. We then address the more fundamental issue of whether econophysics
can methodologically account for reflexivity. The problem of reflexivity in financial
markets, in turn, depends on how econophysics can link the micro-level and the
macro-level that characterize complex systems. We conclude by discussing briefly the
problem of reflexivity and how it relates to the econophysics conception of financial
markets as complex systems.

3.3 Reflexivity

Given that complex systems, which can be physical, biological or social in nature,
are characterized in terms of spontaneous dynamics and properties that emerge from
the non-linear interactions and interdependencies of the system’s sub-units, a funda-
mental question arises: what is the source that causes complex systems to behave in
this way?
In the context of financial systems, we have seen with the example of the “ex-

cess volatility puzzle” that the behavior of asset prices cannot simply be explained in
terms of changes in their fundamental values. There is a noise component in the pric-
ing mechanism associated with bounded rationality and out-of-equilibrium processes,
which the efficient market hypothesis fails to account for or, rather, hypothesizes
away by assuming perfect collective rationality. The question then becomes what is
the source of this noise in financial markets. The dynamics of price series cannot
be exclusively explained by external “forces” such as the arrival of news, as massive
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price changes often occur without the presence of any significant piece of informa-
tion [107,108]. This means that the evolution of financial markets is also subject to
endogenous influences, which originate from within the system. Self-organized critical-
ity, and more generally, complex system theory contend that systems with threshold
dynamics that are out-of-equilibrium slowly relax through a hierarchy of avalanches
of all sizes. Accordingly, extreme events are seen to be endogenous. In economics,
endogeneity versus exogeneity has been hotly debated for decades. A prominent ex-
ample is the theory of Schumpeter on the importance of technological discontinuities
in economic history. Schumpeter argued [109] that ”evolution is lopsided, discontinu-
ous, disharmonious by nature [ . . . ] studded with violent outbursts and catastrophes
[ . . . ] more like a series of explosions than a gentle, though incessant, transformation.”
Endogeneity versus exogeneity is also paramount in economic growth theory.
A useful explanation of the endogenous dynamics of markets is rooted in the con-

cept of reflexivity. Popularized by hedge-fund manager and philosopher George Soros,
reflexivity captures the fact that, in social or economic systems, expectations of par-
ticipants influence the evolution of the system, which, in turns, affects the behavior
of participants again [2,8]. Soros writes that “the participants’ view influence but do
not determine the course of events, and the course of events influences but does not
determine the participant’s view” [8]. The various positive and negative feedbacks,
which can be identified in financial system, reflects this financial reflexivity. Reflexive
phenomena can thus be characterized by the collision between downward causality
and bottom-up aggregation, as discussed above. The microscopic interactions of ele-
ments at the lower level (market participants such as traders, hedge funds, regulators,
etc.) generate a new macroscopic level of complexity, which, in turn, changes the dy-
namics and organization of the lower level.
Sharing a widely held view [1,37,110], Soros argues that the fact that financial

systems exhibit reflexivity, i.e., that a substantial part of market behavior has a re-
flexive or endogenous source, demands a scientific method, which is distinct from the
tradition of physics. It is argued that, because social systems – the class to which
financial markets belong – are fundamentally different from physical system, they are
not susceptible to methods borrowed from statistical or theoretical physics. Further-
more, Soros asserts that standard economic theory is “an axiomatic system based on
deductive logic, not empirical evidence” [8] and, consequently, it fails to account for
the reflexive behavior of financial systems. Based on the argument that one cannot,
analogously to physics, identify invariable and universal laws in social systems, Soros
then criticizes the “ill-fated attempt by economists to slavishly imitate physics” [8]. As
we have shown, the standard economic models, which rest on the assumptions of equi-
librium, perfect rationality, and efficient markets, indeed fail to account for the rich
reflexive dynamics that exist in financial markets. However, we assert that the prob-
lem lies less in the enslavement of financial economics by physics, but in the choices
of the physical and mathematical methods and concepts that are getting transferred
to economics. As the discussion of the evolution of neo-classical (financial) economics
above has shown, economists have been envying or imitating a kind of physics, which
was not sufficient to deal with the complexity of financial markets. It was precisely the
methodological and conceptual adoption of statistical and out-of-equilibrium physics
methods that opened up the possibility to detect the scale-invariant and universal
statistical regularities in financial systems that are fundamentally shaped by social
and technological forces.
In order to assess whether econophysics has the potential to enlighten the re-

flexive nature of financial systems, we dissect in the next section how econophysics
approaches the complexity of financial markets and address the question whether
reflexivity can be quantified.
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4 Modeling complex financial systems

An understanding of complex systems and of their non-linear dynamics and emergent
properties demands the comprehensive modeling of the link between the micro- and
macro-levels. However, we can identify in the econophysics literature two method-
ological currents that deal with these different levels of complexity: agent-based and
statistical econophysics. Whereas agent-based approaches aim at modeling the micro-
level of financial systems, i.e., the interaction between economic agents, statistical
approaches in econophysics are concerned with the macro-level, i.e., the aggregate
patterns and phenomena generated by the system’s sub-units. These different mod-
eling strategies, which Schinckus [111,112] has identified, are, for example, reflected
in two important survey papers by Chakraborti et al. [53,113], which are organized
around a review of econophysics research dealing with stylized facts and a survey
of research concerning agent-based models. In this section, we clarify the different
methodological motivations in modeling complexity in econophysics. We then con-
clude by evaluating whether econophysics can attack the problem of reflexivity.

4.1 Agent-based vs. statistical models in econophysics

The two different strategies of agent-based and statistical modeling approaches in
econophysics derive their theoretical foundations both from statistical mechanics and
theoretical physics. Agent-based models, which strive to model the microscopic di-
mension of financial systems, and statistical models, which aim at explaining the
macro-regularities or stylized facts that can be identified in financial data, are both
data-driven and involve theoretically minimal assumptions. What distinguishes these
modeling approaches, however, is their different emphasis on the nature and behavior
of economic agents.
Whereas agent-based approaches aim at integrating the learning and adaptive

features of market participants, statistical modeling often subdues the individual
characteristics of economic agents under the emergent collective organisation. Statis-
tical models often extract stylized facts from past financial time-series by using vast
amounts of high-frequency data on prices, volumes, and transactions. The statistical
descriptions of these empirical regularities often do not require the specification of
the underlying behavioral mechanisms. Obviously, the methodological distinction be-
tween the two modeling approaches is not as clear-cut as we present it here. However,
in the agent-based literature, we can find research that uses the “order ≡ particle”
analogy [113]. Inspired by reaction-diffusion models in physics, Bak et al. [114], for ex-
ample, simulate price variations on the basis of crowd behavior. The price dynamics,
represented as market orders, is mapped onto a model of diffusing and annihilat-
ing particles. While this early model has many unrealistic features, the simplicity of
the particle-representation inspired richer models based on detailed high-frequency
data analyses [115–117]. Often, however, these order models assume so-called “zero-
intelligent agents” [118], i.e., economic agents are modeled as particles without any
behavioral features. These “particles” obey statistical properties and generate the
stylized facts, which are known to exist in financial data, but, they do not have
the faculty of anticipation and of forming expectations. When it comes to realism,
this atomization of financial dynamics into collisions of unthinking particles can be
a drawback of some statistical econophysics models [112]. But it can also be an ex-
traordinary powerful approach for the characterization of the changing risk profiles
of financial markets and for predictions [116,117]. This zero-intelligence agent-based
model approach thus challenges researchers to identify where higher levels of intelli-
gence might impact the observed structure of financial markets.
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Agent-based techniques often compensate for this by enriching their models with
adapting, learning, and evolving agents. Similar to the formation of molecules or
crystals, these models strive to explain the macro-structures as emerging from the
microscopic behavior of a system’s heterogeneous components. This strategy results
in models of financial markets as adaptive complex systems that evolve in time.
Endowing the systems’ components with behavioral traits allows for more realistic
depictions of market dynamics. However, as LeBaron notes [119], agent-based mod-
els, which explain price actions in terms of simple behavioral rules that govern the
behavior of market participants, are themselves often exceedingly complex and it
can be difficult to isolate the factors responsible for generating the stylized facts. A
set of models, which are more faithful in their descriptions of the behavior of real
traders and markets, has, for example, introduced behavioral switching mechanisms.
These models often divide the population of market participants into two groups
– “fundamentalists” and “chartist” or “noise” traders – in order to explain market
instabilities, which can be observed in real markets. As these traders can switch be-
tween different strategies and states, many empirically observed phenomena such as
volatility clustering or herding behavior can be realistically reproduced with this class
of agent-based models [120–122]. While statistical models of financial data generate
empirically adequate descriptions, this modeling approach needs to be complemented
with agent-based modeling. Zhou and Sornette [123] provide, for example, an Ising-
model of agent’s opinions and how they react to external news. By incorporating
behaviorally realistic assumptions, which correspond to evidence in neurobiology and
behavioral finance, the model is able to reproduce certain stylized facts that result
from crowd behavior (see also the extension of Harras and Sornette [124] to account for
the spontaneous emergence of bubbles from over-learning by agents of random news).
Put more generally, agent-based models provide micro-foundations to the emergent
statistical macro-properties of markets and are able to integrate realistically the het-
erogeneous features of economic agents, such as the range of preferences, deviations
from rationality, and social dynamics such as herding or imitation, which give raise
to the stylized facts that statistical approaches seek to reproduce. However, the use of
agent-based models is still limited by the difficulties associated with their calibration
to empirical data [22].
Given the characterization of reflexivity provided above, it follows that any suc-

cessful attempt to model the reflexive behavior of market participants must span the
micro- as well as the macro-domains of markets. Modeling strategies that only target
one level at the expense of the other, seem to inhibit a deeper scientific understand-
ing of reflexivity. Furthermore, it does not do justice to the complexity of financial
markets to model solely the connection between their micro- and macro-dimensions.
Ultimately, complex systems such as markets are embedded in a wider context or
environment; they are part of a nested hierarchy of complexity [125]. In other words,
models of reflexivity need to capture additionally the entanglement between exoge-
nous and endogenous causes that influence the global behavior of the system [126]. We
now present recent attempts to model reflexivity quantitatively, before we conclude
the paper.

4.2 Quantifying reflexivity? Endogeneity vs. exogeneity

As it is evident from the discussion above, it is very difficult to scientifically track
complex systems, which involve a multitude of mutually and non-linearly interacting
parts from which new and surprising phenomena emerge. Complex systems, therefore,
demand a new multidisciplinary approach. Nonetheless, over the past two decades,
considerable scientific progress has been made by approaching Nature from a complex
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system science perspective. The complexity of these physical, biological, and social
systems has challenged the previous reductionist approach, which consists of decom-
posing the system into component parts, such that the detailed understanding of the
sub-units was believed to generate understanding of the system itself. By contrast,
complex systems science approaches the phenomenon through the interactions and
links between the sub-units and the system, thereby accounting for positive and neg-
ative feedback and downward causation.
Given the complexity of social systems, it has been argued that it is hard to bring

them under scientific control [1]. This is due to the fact that the laws or regularities
that govern their behavior are difficult to extract. It is also impossible to isolate so-
cial and economic systems and to experimentally manipulate them. In particular, the
phenomenon of reflexivity often seems “difficult to identify and impossible to quan-
tify” [8]. Ultimately, however, the quantification of the dynamics of financial markets,
including their reflexive behavior, is necessary if we want to advance our scientific un-
derstanding of financial systems. Only quantification, which allows for the prediction
and control of systems, generates a scientific understanding of the target phenom-
enon. A new science of financial systems, if it were to be effective, needs to be able to
quantify the reflexive dynamics that are intrinsic to markets. Before we conclude, we
show that is possible to quantitatively disentangle the phenomenon of financial re-
flexivity by way of the distinction between endogenous and exogenous factors, which
contribute to the dynamics of financial markets.
As already mentioned above, the Efficient Market Hypothesis (EMH) assumes that

markets almost instantaneously incorporate the flow of information and faithfully re-
flects it in prices. The “excess volatility puzzle,” amongst other empirical findings,
contradicts the main tenet of one of the pillars of standard economic theory. The EMH
asserts that, normally, the market efficiently absorbs exogenous shocks and converges
towards an equilibrium price, while endogenous processes are absorbed into the price-
formation process and disappear as part of the digestion of the exogenous information.
Consequently, markets, following the EMH, are only driven by exogenous inputs, and
not by endogenous dynamics. However, the reality of financial markets is radically
different as price volatility is too high as could be justified by shifts in the underlying
fundamental valuations. Furthermore, a variety of studies have refuted the EMH’s
assumptions that extreme events in financial systems are induced by the exogenous
negative impact of information [80,107,116,117]. Similarly to other complex systems,
such as fluctuations in turbulent flows, avalanche dynamics, or earthquakes, finan-
cial markets exhibit an endogenous dynamic that is very complex, whereas exogenous
forces, which drive the system, are often regular and steady [126,129]. In other words,
the behavior of markets is driven less by exogenous events and more by the endoge-
nous dynamics of trading activity itself. The circular loop between price and trading
– i.e., past price changes that feed on themselves – results in the erratic deviations
from fundamentals, which are otherwise puzzling for standard economic theory but
take a natural meaning when accepting the ubiquitous role of endogeneity.
In a series of studies, Sornette and collaborators have introduced measures of

the degree of reflexivity or endogeneity in financial systems and built a theoreti-
cal framework that allows one to disentangle exogenous from endogenous sources of
financial markets crashes [91,130–132]. In these studies, exogeneity refers to the exter-
nal “forces” that influence the evolution of the system whereas endogeneity captures
the self-reinforcing positive feedback processes within the system. Given the limited
space, we can provide here only a brief overview of this research to give an intuition
of the possible quantification of reflexivity. Combining statistical test of drawdowns
distributions (runs of losses) and Log-Periodic Power Law Singular (LPPLS)
detection techniques, Johansen and Sornette [133,134] showed that the extreme tails
of the distribution belong to a different population than the body, analogue to the
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different physics that describe distributions in the study of turbulent hydrodynamic
flows [135]. They then tested whether a LPPLS structure is present in the price tra-
jectory, which precedes these “outliers,” or “Dragon Kings” as Sornette [136] calls
them (see also [137]). The emergence of log-periodic power law singular features is
a qualifying signature of the endogenous dynamics, which might result in a mar-
ket crash. As Sornette and co-workers has extensively documented, bubbles manifest
themselves in super-exponential power-law accelerations in the price dynamics, which
is decorated by log-periodic precursors. In their study, Sornette and Johansen [134]
are able to identify two classes of market crashes: exogenously caused crashes that
are not preceded by a LPPLS price trajectory and for which an exogenous shock can
be identified, and crashes that are triggered endogenously by trading activity. The
later are roughly twice as frequent as the former. Viewing crashes in terms of the
endogenous dynamics of the market itself has important ramifications for our un-
derstanding of extreme event in financial systems. According to the view that most
market crashes have an endogenous source – i.e., the increased cooperativity and self-
organizing interactions between market participants – exogenous shocks only serve as
triggering factors [135]. In other words, identifying proximal causal factors of a crash
is often futile – as the extensive literature reflects, which presents diverse and often
conflicting evidence about the origins of crashes (see [138]) – as the crash results from
the maturation towards an intrinsically unstable phase.
In two more recent studies, our group has provided, for the first time, a quantifi-

cation of reflexivity that allows us to precisely measure the levels of endogenity in a
financial system [131,132]. For this, the so-called self-exciting Hawkes model is cali-
brated to financial market dynamics. This statistical model was initially developed to
model earthquake clustering. As the Hawkes process formalism is able to describe the
pattern of foreshocks and aftershocks, which result from the release of accumulated
stress between tectonic plates, it is adaptable to financial markets where different
regimes of volatility relaxation have been documented. For example, Sornette et al.
[139] have shown that the relaxation time of a volatility burst is different after a strong
exogenous shock compared with the relaxation of volatility after a peak with no iden-
tifiable exogenous source. They suggest that volatility can be understood in terms of
response functions of financial agents, which derive from their behavior. By applying
the Hawkes process analysis to E-mini S&P 500 futures, Filimonov and Sornette [131]
are able to measure the degree of reflexivity as the proportion of price moves due to
endogenous interactions to the total number of all price moves, which also include
the impact of exogenous news. The self-exciting Hawkes branching process – in which
each price changes may lead to an epidemic of other prices changes – allows one to
identify different classes of volatility shocks along the separation between endogenous
and exogenous dynamics. The Hawkes model has a key parameter, the “branching
ratio” “n,” – i.e., the fraction of endogenous events within the whole price-change
population – that enables the direct measurement of the level of endogeneity. In-
terestingly, this measure reproduces robust behavioral feature of increased herding
behavior at short time-scales in times of fear and panic. Filimonov and Sornette’s
[131] Hawkes process analysis of E-mini S&P 500 futures data from the period from
1998 to 2010 reveals a dramatic increase of endogeneity from 30% to 70–80% of trades
triggered by past trades, an effect they attribute to the rise of high-frequency and
algorithmic trading.
In a subsequent study on the endogeneity or reflexivity in commodity markets –

using a Hawkes self-excited conditional Poisson model on time-series of past price-
changes – Filimonov et al. [132] find that more than one out of two price changes is
triggered by another price change, indicating a self-reinforcing reflexive mechanism
underling the price time-series. Interestingly, Filimonov et al. [132] show that the level
of endogeneity does not depend on the intensity of the information about exogenous
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events, which, as they document, has remained relatively stable over the analyzed pe-
riod (second half of 20th century to first decade of 21st century). They further argue
that increased reflexivity leads to a slower convergence of prices towards fundamental
values, rendering the price formation process thereby less efficient. The study further
shows that high levels of endogeneity or reflexivity result in a larger sensibility of the
system to exogenous distortions. Endogenous feedback mechanisms in trading activ-
ity can amplify small initial shocks, which might, as it was the case with the May 6,
2010 flash crash, cascade into large crashes.
The studies on the endogenous versus exogenous sources of price volatility indicate

that, far from being unquantifiable, reflexive financial phenomena can be disentangled
and measured. This research seems to represent a first step towards the full quantifi-
cation of reflexivity, from which novel insight about trader behavior, the evolution of
bubbles, and the emergence of crashes will follow. While it is far from easy to get a
quantitative grip on reflexivity [140]6, physics already possesses the concepts, tools,
and methods needed to cope with reflexive phenomena. This has been shown in many
other scientific fields involving complex systems. In principle, it can be concluded that
the problem of reflexivity, as qualitatively described by Soros and many others, does
not seem to inhibit the development of a new science of financial markets.

5 Conclusion

Historically, the collisions between physics and (financial) economics have resulted
in the axiomatization of mainstream economics and gave rise to highly idealized
models, which tend to be detached from financial reality. Although we do not deny
that standard economic theory has generated deep insights into economic behavior,
the neo-classical theoretical edifice with its fundamental pillars of rational expec-
tations, efficiency, and equilibrium, nonetheless failed to deal with non-linear and
out-of-equilibrium dynamics of complex financial systems, which are comprised of a
myriad of heterogeneous agents interacting with each other. In particular, its failures
became apparent to many during and after the great 2008 financial crisis [63,142,143].
Over the last two decades, however, econophysics has substantially advanced the

scientific understanding of financial markets. The major contribution of econophysics
was, as we have argued above, to view financial markets as complex systems. Describ-
ing markets in terms of emergence, scale-invariance, universality, and other properties
of complexity, which we conceptually explicated above, allows one to better under-
stand how the microscopic level – which is populated with mutually interacting agents
that exhibit a diversity of behavioral traits, heterogeneous preferences and expecta-
tions – is linked with the macroscopic level of complexity, on which statistical regu-
larities and patterns, i.e., the so-called stylized facts, can be identified. Econophysics
has provided solid empirical foundations for the study of financial systems, which re-
sulted in the falsification of many a priori assumptions of standard economic models.
However, at the sociological level, the effectiveness of econophysics in the eyes of the
economic profession has been limited due to econophysicists’ disregard of standard
economic theory and their misplaced aspiration to completely replace it with econo-
physics without due attention to previous achievements.
Although analogizations between physical and financial systems and extrapo-

lations of concepts and methods of physics to (financial) economics can lead to
oversimplified and idealized models of markets, physical concepts and techniques
nonetheless provide a useful unifying framework to approach complexity. Contrary
to the criticism that financial markets cannot be rendered intelligible by using the

6 see [132,141] for recent technical developments and improvements.
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scientific method of physics, we argued that, by integrating the insights from com-
plex systems science, considerable progress has been made in the modeling of financial
market dynamics. In fact, contrary to many claims to the contrary, we have argued
that the problem of reflexivity does not demand a new scientific method. As we have
documented above, research that applies the Hawkes process model, which was mo-
tivated by physics (or more precisely geophysics), to financial systems represents one
of the first steps in the quantification of reflexive financial phenomena.
Nevertheless, it is difficult to argue that a new science of financial markets should

solely have physics-based foundations. Understood in terms of the research program
encoded in the term, econophysics, seems to be unnecessarily restrictive. At present,
the most exciting progress seems to be unraveling at the boundaries between finance
and the biological, cognitive, and behavioral sciences [144–146]. Recently, there have
been many attempts that have started to explore the notion that financial markets
are similar to ecologies, populated by species (traders, firms, etc.) that adapt and
mutate. Farmer [147], for example, proposed a theory that views markets as ecolo-
gies in which – analogous to the evolution of a biological species – better-adapted
strategies exploit old-strategies. Hommes [148] reviews the modeling of markets as
evolutionary systems in which the survival of different trading strategies can be com-
pared. Lo [149–151] proposed the “adaptive market hypothesis,” which characterizes
markets less in terms of efficiency, but rather in terms of competition and adaptation.
Sornette [22] introduced the “Emerging Intelligence Market Hypothesis”, according
to which the continuous actions of investors, which are aggregated in the prices, pro-
duce a “market intelligence” more powerful than that of most of them. The “collective
intelligence” of the market transforms most (but not all) strategies into losing strate-
gies, just providing liquidity and transaction volume. Evolutionary models are able
to explain most of the stylized facts documented in the econophysics literature (see
[113]). These evolutionary or biological approaches provide another exiting source of
inspiration for modeling financial reflexivity.
Concluding, econophysics should not be considered as isolated from other

complexity-based approaches in science. What generates the statistical phenomena or
patterns, which econophysics dissects with the tools of statistical physics, are funda-
mentally sociobiological systems. In other words, econophysics needs to reach beyond
physics and integrate the concepts, methods, and tools from other disciplines. There
can be a physics of financial markets, but the science we envision that helps to under-
stand, diagnose, predict, and control financial markets [152,153] needs to integrate
these fields into a complex systems science of financial markets.
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