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We prove convergence rates of explicit finite difference schemes for the linear advection and wave equation
in one space dimension with Hölder continuous coefficient. The obtained convergence rates explicitly
depend on the Hölder regularity of the coefficient and the modulus of continuity of the initial data. We
compare the theoretically established rates with the experimental rates of a couple of numerical examples.
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1. Introduction

Propagation of acoustic waves in a heterogeneous medium plays an important role in many applications,
for instance in seismic imaging in geophysics and in the exploration of hydrocarbons (Ikelle & Amundsen,
2005; Biondi, 2006). This wave propagation is modeled by the linear wave equation:

1

c2(x)
∂2

ttp(t, x)−Δp(t, x) = 0, (t, x) ∈ DT , (1.1a)

p(0, x) = p0(x), x ∈ D, (1.1b)

∂tp(0, x) = p1(x), x ∈ D, (1.1c)

where DT := [0, T ] × D, D ⊂ R
d , augmented with boundary conditions. Here, p is the acoustic pressure

and the wave speed is determined by the coefficient c2 = c2(x) > 0. The coefficient c encodes information
about the material properties of the medium. As an example, the coefficient c represents various geological
properties when seismic waves propagate in a rock formation. It is well known that the linear wave equation
(1.1) can be rewritten as a first-order system of partial differential equations by defining v(t, x) := ∂tp(t, x)
and u(t, x) := ∇p(t, x), resulting in

1

c2(x)
∂tv(t, x)− div(u(t, x)) = 0, (1.2a)

∂tu(t, x)− ∇v(t, x) = 0, (t, x) ∈ DT ,

v(0, x) = p1(x), x ∈ D, (1.2b)

u(0, x) = ∇p0(x), x ∈ D. (1.2c)

© The author 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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ROUGH COEFFICIENTS 1587

The above system (1.2) is strictly hyperbolic (Gustafsson et al., 1995) with wave speeds given by
±c. Under the assumption that the coefficient c2 ∈ C0,α ∩ L∞(D) for some α > 0 and that it is uniformly
positive on D, i.e., there exist constants c, c > 0 such that

0 < c ≤ c2(x) ≤ c, ∀x ∈ D, (1.3)

and that the initial data p0 ∈ H1(D) and p1 ∈ L2(D), one can prove existence of a unique weak solution
p ∈ C0([0, T ]; H1(D)) with ∂tp ∈ C0([0, T ]; L2(D)) following classical energy arguments for linear
partial differential equations. See, for instance, Lions & Magenes (1972, Chapter III, Theorems 8.1 and
8.2). A smoother coefficient c and more regular initial data p0, p1 result in a more regular solution (Lions
& Magenes, 1972).

Even though equations (1.1) and (1.2) are linear, analytical solution formulae are in general not
available due to the possibly complex geometry of the domain D, the heterogeneity of the coefficient,
or boundary conditions. Consequently, solutions have to be approximated numerically. Among the most
popular methods for the linear wave equation with inhomogeneous coefficient c are finite difference
methods and finite element methods for which an extensive stability and convergence analysis is avail-
able (Gustafsson et al., 1995; Larsson & Thomee, 2003; Kreiss & Lorenz, 2004). A key question is
the rate at which numerical schemes converge to the exact solution as the discretization parameter goes
to zero or the computational effort increases, since this allows us to estimate the computational work
needed to get a certain desired quality of the approximation. If the underlying solution of the equation
is smooth, this generally depends on the order of the truncation error which is determined by the order
of the spatial and temporal discretization, that is, the order of the underlying difference operators (for
finite difference schemes) or the dimension of the polynomial approximation spaces (for finite element
methods). The smoothness of the solution again depends on the regularity of the coefficient and the initial
data for the equation. If the coefficient c and the initial data p0, p1 are smooth, say Ck(D) or Hs(D) for
some large enough Sobolev exponent s, then by regularity results for the linear wave equation (Lions &
Magenes, 1972), the solution is also smooth, i.e., it belongs to Hs(DT ) and the finite difference (resp. finite
element) discretizations converge at the order of the underlying difference operators (resp. polynomial
approximation spaces).

1.1 Rough coefficients

As noted above, the regularity of the solution to the wave equation (1.1) and the resulting (high) rate of
convergence of numerical approximations rely on the smoothness of the coefficient c. Accordingly, most
of the numerical analysis literature on the wave equation assumes a smooth coefficient c. However, this
assumption is not always realized in practice. As noted before, the wave equation is heavily used to model
seismic imaging in rock formations and other porous media (for instance, oil and gas reservoirs). Such
media are very heterogeneous with sharp interfaces, strong contrasts and aspect ratios (Ikelle & Amund-
sen, 2005). Furthermore, the material properties of such media can only be determined by measurements.
Such measurements are inherently uncertain. This uncertainty is modeled in a statistical manner by rep-
resenting the material properties (such as rock permeability) as random fields. In particular, log-normal
random fields are heavily used in modeling material properties in porous and other geophysically relevant
media (Ikelle & Amundsen, 2005; Fouque et al., 2007). Thus, the coefficient c is not smooth, not even
continuously differentiable, see Fig. 1 for an illustration of coefficient c, where the rock permeability
is modeled by a log-normal random field (the figure represents a single realization of the field). Closer
inspection of the coefficients obtained in practice reveals that the material coefficient c is at most a Hölder
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1588 F. WEBER

continuous function, that is, c ∈ C0,α for some 0 < α < 1. No further regularity can be assumed on the
coefficient c representing material properties of most geophysical formations.

Given the above discussion, it is natural to search for numerical methods that can effectively and
efficiently approximate the acoustic wave equation with rough (merely Hölder continuous) coefficients.
In particular, one is interested in designing numerical methods that can be rigorously shown to converge
to the underlying weak solution. Furthermore, one is also interested in obtaining a convergence rate for
the discretization as the mesh parameters are refined. We remark that the issue of a convergence rate is
not just of theoretical significance, it has, for example, profound implications on calculating complexity
estimates for Monte Carlo and Multilevel Monte Carlo methods (see Mishra et al., 2016) to solve the
random (uncertain) PDE that results from considering the material coefficient as a random field (as is
done in engineering practice).

A search through the literature revealed that there are not many results available concerning conver-
gence rates for linear hyperbolic partial differential equations with rough coefficients. Jovanović et al.
(1987) prove convergence rates for finite difference approximations of the hyperbolic problem

∂2
ttu −

2∑
i,j=1

∂xi

(
aij∂xj u

)
+ au = f , in (0, T)× D,

under the assumption that the solution u lies in the Sobolev space Hλ((0, T) × D) and the coefficients
aij(x) ∈ Wλ−1,∞(D), a(x) ∈ Wλ−2,∞(D), with 2 < λ ≤ 4. It is shown that the approximations converge
at rate Δxλ−2 in the energy norm (a discrete version of the H1-norm). In Jovanović (1992) this result is
extended to coefficients aij(x) ∈ Wλ−1,2(D), a(x) ∈ Wλ−2,2(D).

Another related work is the article by Jovanović & Rohde (2005), where the authors establish error
estimates for finite volume approximations of linear hyperbolic systems in multiple space dimensions for
initial data with low regularity, however, under the assumption that the coefficients are smooth.

A survey of the available results on finite difference methods for hyperbolic equations whose coef-
ficients and initial data have low regularity can be found in Chapter 4 of the book by Jovanović & Süli
(2014).

Given this paucity of available results, we aim to contribute to the theory with the current paper. Since
our ultimate goal is proving convergence rates for multidimensional wave e quations, we will start by
analyzing rates for linear hyperbolic systems in one space dimension, in particular, we will consider the
linear advection equation

∂tu(t, x)+ ∂x(a(x)u(t, x)) = 0, (t, x) ∈ [0, T ] × D, (1.4)

and the linear wave equation

1

a(x)
∂2

ttp(t, x)− ∂2
xxp(t, x) = 0, (t, x) ∈ [0, T ] × D, (1.5)

in one space dimension where the spatially heterogeneous coefficient a is positive and uniformly bounded,
but has only little regularity, specifically, we assume a ∈ C0,α(D), for some 0 < α ≤ 1. We require the
initial data u0 for the transport equation to be Hölder continuous with exponent γ > 0, and for the wave
equation, we assume that the derivatives ∂tp and ∂xp have moduli of continuity in L2.

These equations can be seen as prototype models for equation (1.1) above for a := c2.
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Equation (1.4) also appears as a model for transport of pollutants in heterogeneous media (see, for
example, Mendoza & McAlary, 1990; Elfeki et al., 2012). Moreover, these two models are related to
mixing in turbulent flow (Dimotakis, 2005).

In a first part (Section 2), we study the properties of equation (1.4) under the assumption that a is
Hölder continuous, and propose a simple upwind scheme for the numerical approximation. We show that
this scheme is stable under a linear Courant-Friedrichs-Lewy (CFL)-condition and converges, and then
prove a convergence rate of the scheme in L1(D) and L2(D) depending explicitly on the Hölder regularity
of the coefficient a and the initial data. To prove the rate, we show that the numerical approximations
are approximately Hölder continuous in time, and use a variant of S. N. Kružkov’s doubling of variables
technique (Kružkov, 1970) combined with a type of Grönwall inequality for the L2-case. We conclude
the section with a couple of numerical experiments that confirm that the rates are indeed quite low, but
higher than the theoretically established rate. This may indicate that our estimate is not sharp.

In the second part (Section 3), we show that the techniques from Section 2 can be used to establish
a convergence rate for an upwind finite difference scheme for the first-order reformulation (1.2) of the
linear wave equation (1.5) in one space dimension for Hölder continuous coefficient a, but under slightly
stronger assumptions on the initial data, or given that the solution has a known modulus of continuity.
Again, we conduct a couple of numerical experiments, and observe that the experimental rates are close
to the theoretically derived ones. We conclude by summarizing the results and suggesting further research
directions in Section 4.

2. Transport equation with Hölder continuous coefficient

The purpose of this section is to investigate the properties of the linear advection equation in one space
dimension,

∂tu(t, x)+ ∂x(a(x)u(t, x)) = 0, (t, x) ∈ DT , (2.1a)

u(0, x) = u0(x), x ∈ D, (2.1b)

on the domain DT := (0, T ] × D, for some finite time T > 0, a finite interval 0 ∈ D ⊂ R, periodic
boundary conditions and u0 ∈ L1(D) a given initial data. Alternatively, we could consider D = R and
compactly supported initial data u0 ∈ L1(R). We consider coefficients a ∈ L∞(D)which are positive and
bounded away from zero, that is

a ≥ a(x) ≥ a > 0, ∀ x ∈ D, (2.2)

as well as Hölder continuous, a ∈ C0,α(D), for some exponent α > 0. As we will see in the following, it
is more convenient to work with the variable w := a(x)u instead of u and the equation it satisfies,

∂t

(
w(t, x)

a(x)

)
+ ∂xw(t, x) = 0, (t, x) ∈ DT , (2.3a)

w(0, x) = w0(x) := a(x)u0(x), x ∈ D. (2.3b)

We assume that the initial data w0 are Hölder continuous C0,γ∞(D) for some γ∞ > 0:

|w0|C0,γ∞ (D) := sup
x 
=y∈D

|w0(x)− w0(y)|
|x − y|γ∞ ≤ C < ∞. (2.4)
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1590 F. WEBER

We note that this implies in particular for any x ∈ D

sup
|h|≤σ

|w0(x + h)− w0(x)| ≤ C σ γ∞ .

We will see that some solution properties can also be obtained under the slightly weaker assumption∫
D

sup
|h|≤σ

|w0(x + h)− w0(x)|p dx ≤ σ pγp . (2.5)

In the following, we investigate to what extent the exponents α, γp influence the regularity of the solution
w at a time t > 0 and the convergence rate of the finite difference scheme

D+
t wn

j

aj
= −D−

x wn
j , 1 ≤ j ≤ ND, 0 ≤ n ≤ NT

as the mesh is refined.

2.1 Regularization of the coefficient

Since the coefficient a is not differentiable, it is possible that the solution w is not differentiable in the
classical sense either, and only weak solutions to equation (2.3a) can be defined. By a weak solution to
(2.3), we mean a function w = w(t, x) ∈ C0,γ (DT ) for some γ > 0 satisfying (2.3) in the distributional
sense, that is, for all smooth, periodic in x, test functions ϕ ∈ C∞(DT ),∫

DT

w

a
∂tϕ dx dt +

∫
DT

w ∂xϕ dx dt +
∫

D

w0(x)

a
ϕ(0, x) dx =

∫
D

w(T , x)

a
ϕ(T , x) dx.

To deal with the possible nondifferentiability of the solution, we will in a first step regularize the coefficient
a by convolving it with a smooth test function ωδ ∈ C∞

0 (R), given as

ωδ(x) = 1

δ
ω

(
x

δ

)
, (2.6)

where δ > 0 small enough, ω ∈ C∞
0 (R) is an even function with the properties

0 ≤ ω ≤ 1, ω(x) = 0 for |x| ≥ 1,
∫

R

ω(x) dx = 1.

We choose δ so small that ωδ is compactly supported in D. Then we consider the solution wδ of the
equation

∂t

(
wδ(t, x)

aδ(x)

)
+ ∂xwδ(t, x) = 0, (t, x) ∈ DT , (2.7a)

wδ(0, x) = wδ
0(x) := (w ∗ ωδ)(x), x ∈ D, (2.7b)

aδ(x) := (a ∗ ωδ)(x), x ∈ D. (2.7c)
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The coefficient aδ is smooth and therefore in particular Lipschitz continuous, and hence we can define
classical solutions to (2.7) in a standard way, using the method of characteristics: we let η solve the
ordinary differential equation

d

dt
η(t, x0) = aδ(η(t, x0)), (t, x0) ∈ DT ,

η(0, x0) = x0, x0 ∈ D. (2.8)

wδ is constant along the characteristics η since

d

dt
wδ(t, η(t, x0)) = ∂tw

δ(t, η(t, x0))+ d

dt
η(t, x0)∂xwδ(t, η(t, x0))

= aδ(η(t, x0))

(
∂twδ(t, η(t, x0))

aδ(η(t, x0))
+ ∂xwδ(t, η(t, x0))

)
= 0.

Thus the solution at time t > 0 is given by

wδ(t, η(t, x0)) = wδ
0(x0).

Therefore, if the initial data are in L∞(D), the solution will be essentially bounded at any later time. Using
this, we can derive Hölder continuity of the solution in time and space:

Lemma 2.1 Assume that the coefficient a in (2.7) is bounded, i.e., it satisfies (2.2), and that w0 is Hölder
continuous with exponent γ∞, as in (2.4). Then wδ will be Hölder continuous in space and time with
exponent γ∞ for any time t > 0, independently of δ > 0. In particular, we have

sup
x,t∈DT ,|h|≤σ

|wδ(t, x)− wδ(t + h, x)|
hγ∞

≤ aγ∞‖w0‖C0,γ∞ ,

sup
x,t∈DT ,|h|≤σ

|wδ(t, x + h)− wδ(t, x)|
hγ∞

≤
(

a

a

)γ∞
‖w0‖C0,γ∞ .

Proof. We consider the characteristics equation (2.8) once more and note that it is independent of the
initial data w0 of w. Hence any initial data will be propagated along the same characteristics, and we have
for the difference ŵ := wδ

1 − wδ
2 corresponding to initial condition ŵ0 := wδ

0,1 − wδ
0,2

ŵ(t, η(t, x0)) = ŵ0(x0)

with η defined in (2.8). In particular, taking wδ
2,0 := wδ

1(h, ·) for some h > 0 (the case h < 0 is analogous),
and omitting the index 1, this implies

‖wδ(t, ·)− wδ(t + h, ·)‖L∞ ≤ ‖wδ
0 − wδ(h, ·)‖L∞ .
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1592 F. WEBER

The characteristics equation (2.8) implies for any x ∈ D,

x = η(h, xx
0) = xx

0 +
∫ h

0
aδ(η(s, xx

0)) ds

for some xx
0. By the assumption on the boundedness of aδ (2.2), we can bound xx

0 from above and below:

x − ha ≤ x −
∫ h

0
aδ(η(s, xx

0)) ds = xx
0 ≤ x, (2.9)

and thus for any x ∈ D

|wδ
0(x)− wδ(h, x)| = |wδ

0(x)− wδ
0(x

x
0)|

≤ sup
y∈[x−ah,x]

|wδ
0(x)− wδ

0(y)|

≤ |wδ
0|C0,γ∞ aγ∞hγ∞

≤ |w0|C0,γ∞ aγ∞hγ∞

by the assumption on the initial data. Taking the supremum over all x ∈ D, we obtain

‖wδ(t, ·)− wδ(t + h, ·)‖L∞ ≤ aγ∞‖w0‖C0,γ∞ hγ∞ ,

and thus the Hölder continuity in time. To prove the Hölder continuity in space, we note that, by the
characteristics equation (2.8) and the positivity of the coefficient aδ , we have

wδ(x + h, t) = wδ(x, τ x),

for some τ x < t such that

x + h = x +
∫ t

τx
aδ(η(s, x)) ds (2.10)

(the characteristics starting at (τ x, x) and passing through (t, x + h)). This allows us to bound τ x from
below:

h =
∫ t

τx
aδ(η(s, x)) ds ≥ (t − τ x)a

and therefore

τ x ≥ t − ha−1. (2.11)
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This estimate is independent of x and δ. Hence

|wδ(x, t)− wδ(x + h, t)| = |wδ(x, t)− wδ(x, τ x)|
≤ sup

τ∈[t−ha−1,t)

|wδ(x, t)− wδ(x, τ)|

≤ ‖w0‖C0,γ∞

(
a

a

)γ∞
hγ∞ ,

which yields the Hölder continuity in space. �

Remark 2.2 We note that the estimates in Lemma 2.1 are independent of δ > 0 and the Hölder coefficient
α of a. Moreover, if D is bounded, or the initial data w0 have compact support, this Lemma implies that
wδ has a modulus of continuity in time,

ν
p
t (w

δ(t, ·), σ) := sup
|h|≤σ

∫
D

|wδ(t + h, x)− wδ(t, x)|p dx ≤ Cσ pγp , (2.12)

and a modulus of continuity of the same order in space:

νp
x (w

δ(t, ·), σ) := sup
|h|≤σ

∫
D

|wδ(t, x + h)− wδ(t, x)|p dx ≤ Cσ pγp (2.13)

with γp = γ∞ for all p ∈ [1, ∞).

Remark 2.3 (Entropy identity) Subtracting a constant k from equation (2.7a) and then multiplying by a
regularized version of the sign function, we obtain the L1-norm conservation property of the equation:

∫
D

|wδ(t, x)− k|
aδ(x)

dx =
∫

D

|wδ
0(x)− k|
aδ(x)

dx. (2.14)

Similarly, by multiplying with sgn(wδ − k)|wδ − k|p−1, 1 ≤ p < ∞, we obtain conservation of Lp-norms:

∫
D

|wδ(t, x)− k|p
aδ(x)

dx =
∫

D

|wδ
0(x)− k|p
aδ(x)

dx. (2.15)

The moduli of continuity of Lemma 2.1 and Remark 2.2 are independent of δ > 0, which implies that
the sequence of solutions {wδ}δ>0 is relatively compact in Lp, p ∈ [1, ∞) (by Kolmogorov’s compactness
theorem (Holden & Risebro, 2011, Theorem A.5)), and due to the compact embedding of the Hölder
spaces C0,β1(DT ) ⊂⊂ C0,β2(DT ) for β2 < β1 and bounded domains, also relatively compact in C0,γ (DT ),
for any γ < γ∞, and thus the limit function w := limδ→0 wδ ∈ Lp(DT )∩C0,γ∞(DT ), p ∈ [1, ∞) is a weak
solution of (2.3) with the same moduli of continuity in space and time. Moreover, the limit w satisfies
the entropy identities (2.14) and (2.15).
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1594 F. WEBER

2.2 Approximation by an upwind scheme

In order to compute numerical approximations to (2.3), we chooseΔx > 0 such that ND := |D|/Δx ∈ N

and discretize the spatial domain by a grid with gridpoints xj+1/2 := (j + 1/2)Δx, j ∈ {0, 1, . . . , ND} and
cell centers xj := jΔx, 1 ≤ j ≤ ND. Furthermore, we let

0 < Δt := θΔx ≤ Δx

a
(2.16)

and set tn := nΔt, 0 ≤ n ≤ NT , where NT is such that tNT = T . We define the averaged quantities

aj = 1

Δx

∫ xj+1/2

xj−1/2

a(x) dx, 1 ≤ j ≤ ND, (2.17)

and

w0
j = 1

Δx

∫ xj+1/2

xj−1/2

w0(x) dx, 1 ≤ j ≤ ND. (2.18)

Moreover, we denote, for a function σ : DT → R, its approximation by σ n
j ≈ σ(tn, xj), j = 0, . . . , ND,

n = 0, . . . , NT defined on the grid,

D+
t σ

n
j := 1

Δt
(σ n+1

j − σ n
j ), D±

x σ
n
j = ± 1

Δx
(σ n

j±1 − σ n
j ), Dc

xσ
n
j = 1

2Δx
(σ n

j+1 − σ n
j−1). (2.19)

Then we define approximations wn
j by

D+
t wn

j

aj
= −D−

x wn
j , 1 ≤ j ≤ ND, 0 ≤ n ≤ NT . (2.20)

Letting un
j := wn

j /aj, this is equivalent to

D+
t un

j = −D−
x (aju

n
j ), 1 ≤ j ≤ ND, 0 ≤ n ≤ NT ,

which will yield an approximation to the solution u(t, x) of equation (2.1).

2.2.1 Estimates on the numerical approximation.

Lemma 2.4 (Properties of the upwind scheme (2.20)) The approximations wn
j , 1 ≤ j ≤ ND, n = 0, . . . , NT

defined by the numerical scheme (2.20) have the following properties:

(i) Maximum principle:

sup
1≤j≤ND ,1≤n≤NT

|wn
j | ≤ sup

1≤j≤ND

|w0
j |. (2.21)
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ROUGH COEFFICIENTS 1595

(ii) Discrete entropy inequality in L1:

|wn+1
j − k|

aj
− |wn

j − k|
aj

+ Δt

Δx

(|wn
j − k| − |wn

j−1 − k|) ≤ 0. (2.22)

Discrete entropy inequality in L2:

|wn+1
j − k|2

aj
− |wn

j − k|2
aj

+ Δt

Δx

(|wn
j − k|2 − |wn

j−1 − k|2) ≤ 0. (2.23)

(iii) Bound on the discrete L1 and L2-norms:

Δx
ND∑
j=1

|wn
j |

aj
≤ Δx

ND∑
j=1

|w0
j |

aj
, (2.24)

Δx
ND∑
j=1

(wn
j )

2

aj
≤ Δx

ND∑
j=1

(w0
j )

2

aj
, (2.25)

for all n = 1, . . . , NT .

Proof. Writing (2.20) as

wn+1
j

aj
=
(

1 − ajΔt

Δx

)
wn

j

aj
+ ajΔt

Δx

wn
j−1

aj
:= H(wn

j−1, wn
j ), (2.26)

and taking the CFL-condition (2.16) into account, we immediately see that wn+1
j /aj is a convex combina-

tion of wn
j /aj and wn

j−1/aj, and thus the approximations satisfy the maximum principle (2.21). To obtain
the discrete version (2.22) of a Kružkov entropy inequality for the quantities wn

j , we denote

a ∧ b = min{a, b} and a ∨ b = max{a, b},

and compute for a constant k ∈ R,

H(wn
j−1 ∨ k, wn

j ∨ k)−H(wn
j−1 ∧ k, wn

j ∧ k)

=
(

1

aj
− Δt

Δx

)
(wn

j ∨ k − wn
j ∧ k)+ Δt

Δx
(wn

j−1 ∨ k − wn
j−1 ∧ k)

=
(

1

aj
− Δt

Δx

)
|wn

j − k| + Δt

Δx
|wn

j−1 − k|

= |wn
j − k|
aj

− Δt

Δt

(|wn
j − k| − |wn

j−1 − k|). (2.27)
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1596 F. WEBER

Moreover, we note that by (2.26) and thanks to the CFL-condition (2.16),

H(wn
j−1 ∨ k, wn

j ∨ k) ≥ H(wn
j−1, wn

j ) = wn+1
j

aj
,

H(wn
j−1 ∨ k, wn

j ∨ k) ≥ H(k, k) = k

aj
,

thus

H(wn
j−1 ∨ k, wn

j ∨ k) ≥ wn+1
j ∨ k

aj
,

and similarly

H(wn
j−1 ∧ k, wn

j ∧ k) ≤ wn+1
j ∧ k

aj
.

Combining this with (2.27), we obtain (2.22). Now we simply need to multiply the expression (2.22) by
Δx, sum it over j = 1, . . . , ND and set k = 0 to obtain the bound on the discrete L1(D)-norm of wn

j (2.24).
To prove the L2-entropy inequality, we note that the difference scheme (2.20) is equivalent to

D+
t

(
wn

j − k
)

aj
= −D−

x

(
wn

j − k
)

(2.28)

for any constant k ∈ R, and then multiply both sides of equation (2.20) by (wn
j − k). Subsequently, we

use that

ab = 1

2
(a2 + b2 − (a − b)2), a, b ∈ R, (2.29)

once for the left-hand side and once for the right-hand side to get (we write ŵn
j := wn

j −k for convenience)

1

2aj

(
(ŵn+1

j )2 + (ŵn
j )

2 − (ŵn+1
j − ŵn

j )
2
) = (ŵn

j )
2

aj
+ Δt

2Δx

(−(ŵn
j )

2 + (ŵn
j−1)

2 − (ŵn
j − ŵn

j−1)
2
)
.

Rearranging terms and using (2.28) for the difference ŵn+1
j − ŵn

j , this reads

(ŵn+1
j )2

2aj
= (ŵn

j )
2

2aj
+ Δt

2Δx

(−(ŵn
j )

2 + (ŵn
j−1)

2
)+ Δt

2Δx

(
ajΔt

Δx
− 1

)
(ŵn

j − ŵn
j−1)

2

from which the claim follows using the CFL-condition (2.16). Summing the discrete L2-inequality over
j and using induction over n, we furthermore obtain (2.25). �
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Thanks to the linearity of the transport equation, we obtain the following corollary of Lemma 2.4:

Corollary 2.5 Let wn
j denote the approximations computed by the scheme (2.20), (2.18) for initial

data w0 ∈ L1(D) ∩ L2(D) ∩ L∞(D) and vn
j another approximation computed by (2.20) for initial data

v0 ∈ L1(D) ∩ L2(D) ∩ L∞(D). Then we have

sup
1≤j≤ND

|wn
j − vn

j | ≤ sup
1≤j≤ND

|w0
j − v0

j | ≤ ‖w0 − v0‖∞,

Δx
∑

j

a−1
j |wn

j − vn
j | ≤ Δx

∑
j

a−1
j |w0

j − v0
j | ≤ ‖(w0 − v0)/a‖L1(D),

Δx
∑

j

a−1
j |wn

j − vn
j |2 ≤ Δx

∑
j

a−1
j |w0

j − v0
j |2 ≤ ‖(w0 − v0)/

√
a‖2

L2(D)
, (2.30)

for all 1 ≤ n ≤ NT .

Proof. This follows from the fact that the differences rn
j := wn

j − vn
j satisfy (2.20) due to the linearity of

the scheme, together with Lemma 2.4. �

Defining the piecewise constant approximations

wΔx(t, x) := wn
j , (t, x) ∈ [tn, tn+1)× [xj−1/2, xj+1/2), (2.31)

this corollary enables us to show that the piecewise constant function wΔx has a modulus of continuity in
time:

Lemma 2.6 The piecewise constant functions wΔx defined in (2.31) have a modulus of continuity in time
if the initial data w0 satisfy (2.5) for p = 1:

sup
|h|≤σ

∫
D

|wΔx(t + h, x)− wΔx(t, x)| dx ≤ C(σ +Δx)γ1 (2.32)

or (2.5) for p = 2:

sup
|h|≤σ

∫
D

|wΔx(t + h, x)− wΔx(t, x)|2 dx ≤ C(σ +Δx)2γ2 . (2.33)

If the initial data are Hölder continuous with exponent γ∞, the solution is approximately Hölder
continuous in time with the same exponent, i.e.,

sup
|h|≤σ

‖wΔx(t + h, x)− wΔx(t, x)‖L∞ ≤ C(σ +Δx)γ∞ .
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1598 F. WEBER

Proof. We observe that

wk
j = (

1 − λaj

)
wk−1

j + λajw
k−1
j−1

= (
1 − λaj

) {(
1 − λaj

)
wk−2

j + λajw
k−2
j−1

}+ λaj

{(
1 − λaj−1

)
wk−2

j−1 + λaj−1wk−2
j−2

}
= · · · =

j∑
�=j−k

λk
�,jw

0
� ,

where we have denoted λ := Δt/Δx and λk
�,j is inductively defined as follows:

Definition 2.7 We let s� := λa� and v� = (1 − λa�) for all � ∈ Z. Then we define λk
�,j recursively by

λk
�,j =

⎧⎪⎨⎪⎩
1, � = j, k = 0,

0, k + � < j or � > j,

s�λ
k−1
�,j−1 + v�λ

k−1
�,j , otherwise.

(2.34)

Remark 2.8 An explicit expression for the coefficients λk
�,j for the third case is given by

λk
j−�,j =

j∏
n=j−�+1

sn

∑
mi≥0,∑l+1

i=1 mi=k−�

vm1
j · ... · v

m�+1
j−� .

Claim 2.9 The coefficients λk
�,j satisfy

k∑
�=j−k

λk
�,j = 1 (2.35)

and λk
�,j ≥ 0.

Proof. Equation (2.35) follows by induction and using that v� + s� = 1 for any � ∈ Z. That the λk
�,j are

non-negative follows from the CFL-condition (2.16). �

Thus we have∫
D

|wΔx(kΔt, x)− wΔx(0, x)| dx = Δx
∑

j

|wk
j − w0

j |

= Δx
∑

j

∣∣∣∣ j∑
�=j−k

λk
�,jw

0
� − w0

j

∣∣∣∣
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≤ Δx
∑

j

j∑
�=j−k

λk
�,j|w0

� − w0
j |

≤ Δx
∑

j

j∑
�=j−k

λk
�,j max

j−k≤m≤j
|w0

m − w0
j |

= Δx
∑

j

max
j−k≤m≤j

|w0
m − w0

j |

≤
∫

D
sup

|h|≤(k+1)Δx
|w0(x + h)− w0(x)| dx

≤ C(Δxk)γ1 ,

where we used Claim 2.9 for the first inequality and the third equality, and the assumption on the initial
data (2.5) in the last inequality. Similarly, we compute in the L2-setting,

∫
D

|wΔx(kΔt, x)− wΔx(0, x)|2 dx = Δx
∑

j

|wk
j − w0

j |2

= Δx
∑

j

∣∣∣∣ j∑
�=j−k

λk
�,jw

0
� − w0

j

∣∣∣∣2

≤ Δx
∑

j

j∑
�1=j−k

j∑
�2=j−k

λk
�1,jλ

k
�2,j|w0

�1
− w0

j ||w0
�2

− w0
j |

≤ Δx
∑

j

j∑
�1=j−k

j∑
�2=j−k

λk
�1,jλ

k
�2,j max

j−k≤m≤j
|w0

m − w0
j |2

= Δx
∑

j

max
j−k≤m≤j

|w0
m − w0

j |2

≤
∫

D
sup

|h|≤(k+1)Δx
|w0(x + h)− w0(x)|2 dx

≤ C(Δxk)2γ2 .

Then applying Corollary 2.5, we conclude. The approximate Hölder continuity in time follows in a very
similar way, instead of summing over j, we take the maximum over all j. �

Remark 2.10 If w0 has bounded variation, obtaining that the solution has bounded variation, and so
L1-moduli of continuity in time and space are much easier. Similarly, if the initial data have a modulus
of continuity of γ2 = 1 in L2, obtaining a rate is easier. The argument is similar to the one which will be
outlined for the linear wave equation in Section 3, but less technical.
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1600 F. WEBER

2.3 A convergence rate in L1

In this section, we will prove a rate of convergence in L1 of the numerical scheme to the limit of solutions
of (2.7) as δ → 0. Our approach is based on the doubling of variables technique developed by Kružkov
(1970) for nonlinear scalar conservation laws. The reason why we take this approach is the possible
nondifferentiability of the solutions with which the doubling of variables technique can deal well. For
this purpose, we use the test function ωδ from (2.6), let 0 < ν < τ < T and ε0, ε1 > 0 such that
0 < 2ε0 < min{ν, T − τ } and Δt,Δx < min{ε0, ε1}, and define the function Ω : D2

T → R by

Ω(t, s, x, y) = 1[ν,τ)(t)ωε0(t − s)ωε1(x − y). (2.36)

We note that the (smooth) solution to (2.7) satisfies∫
DT

( |wδ(s, y)− k|
aδ(y)

∂sΩ + |wδ(s, y)− k|∂yΩ

)
dy ds = 0, (2.37)

whereas the approximations wΔx satisfy, by the discrete entropy inequality (2.22)∫
DT

( |wΔx(t, x)− �|
aΔx(x)

D−
t Ω + |wΔx(t, x)− �|D+

x Ω

)
dx dt ≥ 0, (2.38)

where we have denoted

aΔx(x) = aj, x ∈ [xj−1/2, xj+1/2).

Theorem 2.11 Let a ∈ C0,α(D) satisfy (2.2). Denote w := limδ→0 wδ the solution of (2.3) and wΔx the
numerical approximation computed by scheme (2.20) and defined in (2.31). Assume that the initial data
w0 ∈ L1(D) and are Hölder continuous with exponent γ∞ > 0. Then wΔx(t, ·) converges to the solution
w(t, ·), 0 < t < T , at (at least) the rate

‖(w − wΔx)(t, ·)‖L1(D) ≤ CΔx(γ∞α)/(γ∞α+2−γ∞) + C‖(w0 − wΔx(0, ·))‖L1(D), (2.39)

where C is a constant depending on a, a, ‖a‖C0,α and T , but not on Δx.

Proof. Inserting wΔx(t, x) for k and wδ(s, y) for � in (2.37) and (2.38), integrating the respective equations
over (t, x) ∈ DT and (s, y) ∈ DT , respectively, and adding up, we have (for convenience, we will omit
writing the arguments of wΔx = wΔx(t, x), wδ = wΔx(s, y), aδ = aδ(y) and aΔx = aΔx(x) in the following)

∫
D2

T

(
|wΔx − wδ|

(
D−

t Ω

aΔx
+ ∂sΩ

aδ

)
+ |wΔx − wδ| (D+

x Ω + ∂yΩ
))

dz ≥ 0, (2.40)

where dz := dx dy dt ds. We have

D−
t Ω = D−

t 1[ν,τ)(t)ωε0(t −Δt − s)+ 1[ν,τ)(t)D
−
t ωε0(t − s)

= D−
t 1[ν,τ)(t)ωε0(t −Δt − s)− 1[ν,τ)(t)D

+
s ωε0(t − s), (2.41)
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so that we can rewrite equation (2.40) as

A + B + D + E :=
∫

D2
T

|wΔx − wδ|
aΔx

1[ν,τ)(t)ωε1
(
∂sωε0 − D+

s ωε0

)
dz

+
∫

D2
T

|wΔx − wδ|
aΔxaδ

1[ν,τ)(t)ωε1∂sωε0

(
aΔx − aδ

)
dz

+
∫

D2
T

|wΔx − wδ|1[ν,τ)(t)ωε0
(
∂yωε1 + D+

x ωε1

)
dz

+
∫

D2
T

|wΔx − wδ|
aΔx

ωε1ωε0(t − s −Δt)D−
t 1[ν,τ)(t) dz

≥ 0. (2.42)

We note that

D−
t 1[ν,τ)(t) = 1

Δt
1[ν,ν+Δt)(t)− 1

Δt
1[τ ,τ+Δt)(t), (2.43)

which means that we can rewrite (2.42) as

1

Δt

∫
D2

T

|wΔx − wδ|
aΔx

ωε1ωε0(t − s −Δt)1[τ ,τ+Δt)(t) dz

≤ 1

Δt

∫
D2

T

|wΔx − wδ|
aΔx

ωε1ωε0(t − s −Δt)1[ν,ν+Δt)(t) dz + A + B + D. (2.44)

We begin by estimating the term A. To do so, we note that

∂sωε0 − D+
s ωε0 = 1

Δt

∫ Δt

0
(ξ −Δt)∂ssωε0(t − s + ξ) dξ (2.45)

and that

1

Δt

∫ Δt

0

∫
D2

T

|wΔx − wδ(t, y)|
aΔx

1[ν,τ)(t)ωε1(ξ −Δt)∂ssωε0(t − s + ξ) dz dξ = 0, (2.46)

because |wΔx−wδ(t,y)|
aΔx

1[ν,τ)(t)ωε1(ξ − Δt) is constant with respect to s and ωε0(t + ξ − ·) is compactly
supported in the domain. Therefore we can rewrite the term A as

A = 1

Δt

∫ Δt

0

∫
D2

T

(|wΔx − wδ| − |wΔx − wδ(t, y)|)
aΔx

1[ν,τ)(t)ωε1(ξ −Δt)∂ssωε0(t − s + ξ) dz dξ , (2.47)
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1602 F. WEBER

and bound in the following way, using triangle inequality,

|A| ≤ 1

Δt

∫ Δt

0

∫
D2

T

|wδ − wδ(t, y)|
aΔx

1[ν,τ)(t)ωε1 |ξ −Δt|∣∣∂ssωε0(t − s + ξ)
∣∣ dz dξ

≤ 1

Δta

∫ Δt

0

∫ τ

ν

∫
DT

|wδ − wδ(t, y)| dy |ξ −Δt|∣∣∂ssωε0(t − s + ξ)
∣∣ ds dt dξ

≤ 1

Δta

∫ Δt

0
|ξ −Δt|

∫ τ

ν

sup
s∈[t−ε0,t+2ε0]

∫
D

|wδ − wδ(t, y)| dy
∫ T

0

∣∣∂ssωε0(t − s + ξ)
∣∣ ds dt dξ

≤ CΔt

a ε2
0

∫ τ

ν

sup
s∈[t−ε0,t+2ε0]

∫
D

|wδ − wδ(t, y)| dy dt

≤ CΔtT

a ε2−γ∞
0

, (2.48)

where we have used Lemma 2.1 for the last inequality. We proceed to estimating the term B:

B :=
∫

D2
T

|wΔx − wδ|
aΔxaδ

1[ν,τ)(t)ωε1∂sωε0

(
aΔx − aδ

)
dz.

Similarly, to the case of term A, we use that∫
D2

T

|wΔx − wδ(t, y)|
aΔxaδ

1[ν,τ)(t)ωε1∂sωε0

(
aΔx − aδ

)
dz = 0.

Thus subtracting this from B, we can bound term B using triangle inequality,

|B| ≤
∫

D2
T

|wδ − wδ(t, y)|
aΔxaδ

1[ν,τ)(t)ωε1 |∂sωε0 |
∣∣aΔx − aδ

∣∣ dz

≤ 1

a2

∫
D2

T

|wδ − wδ(t, y)|1[ν,τ)(t)ωε1 |∂sωε0 |
(∣∣aΔx − aδ(x)

∣∣+ ∣∣aδ(x)− aδ
∣∣) dz

≤ ‖aΔx − aδ‖∞ + sup|x−y|≤2ε1
|aδ(x)− aδ(y)|

a2

∫
D2

T

|wδ − wδ(t, y)|1[ν,τ)(t)ωε1 |∂sωε0 | dz

≤ C
Δxα + δα + εα1

a2

∫ τ

ν

sup
s∈[t−ε0,t+ε0]

∫
D

|wδ(s, y)− wδ(t, y)| dy
∫ T

0
|∂sωε0 | ds dt

≤ C
Δxα + δα + εα1

a2
ε
γ∞−1
0

≤ C
δα + εα1

ε
1−γ∞
0

, (2.49)

since we assumed Δx < ε1. We continue to bound term D. First, we observe that

∂yωε1 + D+
x ωε1 = ∂yωε1 − D−

y ωε1 = 1

Δx

∫ Δx

0
(Δx − ξ)∂yyωε1(x − y + ξ) dξ (2.50)
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and that

1

Δx

∫ Δx

0
(Δx − ξ)

∫
D2

T

|wΔx − wδ(s, x)|1[ν,τ)(t)ωε0∂yyωε1(x − y + ξ) dz dξ = 0,

since ωε1 is compactly supported. Thus, we can estimate D by

|D| ≤ 1

Δx

∫ Δx

0
|Δx − ξ |

∫
D2

T

|wδ − wδ(s, x)|1[ν,τ)(t)ωε0
∣∣∂yyωε1(x − y + ξ)

∣∣ dz dξ

≤ 1

Δx

∫ Δx

0
|Δx − ξ |

∫ τ

ν

∫ T

0
sup

|h|≤2ε1

∫
D

|wδ(s, y)− wδ(s, y + h)|ωε0
∫

D

∣∣∂yyωε1

∣∣ dy dx ds dt dξ

≤ C
Δx

ε2
1

∫ τ

ν

∫ T

0
sup

|h|≤2ε1

∫
D

|wδ(s, y)− wδ(s, y + h)| dxωε0 ds dt

≤ C
Δx T

ε
2−γ∞
1

. (2.51)

It remains to relate the terms forming E to the L1-norm of the differences wδ(t, ·)− wΔx(t, ·). We have

E2 := 1

Δt

∫
D2

T

|wΔx − wδ|
aΔx

ωε1ωε0(t − s −Δt)1[τ ,τ+Δt)(t) dz

= 1

Δt

∫ τ+Δt

τ

∫ T

0

∫
D2

|wΔx − wδ|
aΔx

ωε1 dx dyωε0(t − s −Δt) ds dt

and can rewrite

‖(wΔx − wδ)/aΔx‖L1(D)(τ ) = 1

Δt

∫
D2

T

|wΔx(τ , x)− wδ(τ , x)|
aΔx

ωε1ωε0(t − s −Δt)1[τ ,τ+Δt)(t) dz,

so that∣∣∣E2 − ‖(wΔx − wδ)/aΔx‖L1(D)(τ )

∣∣∣
=
∣∣∣∣ 1

Δt

∫
D2

T

ωε11[τ ,τ+Δt)(t)
1

aΔx

(|wΔx − wδ| − |wΔx(τ , x)− wδ(τ , x)|)ωε0(t − s −Δt) dz

∣∣∣∣
≤ 1

Δta

∫
D2

T

ωε11[τ ,τ+Δt)(t)ωε0(t − s −Δt)
(|wΔx − wΔx(τ , ·)| + |wδ − wδ(τ , x)|) dz

≤ 1

Δta

∫
[0,T ]2

1[τ ,τ+Δt)(t)ωε0(t − s −Δt)
∫

D
|wΔx − wΔx(τ , ·)| dx dz

+ 1

Δta

∫
D2

T

ωε11[τ ,τ+Δt)(t)ωε0(t − s −Δt)
(|wδ − wδ(τ , y)| + |wδ(τ , y)− wδ(τ , x)|) dz
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≤ 1

Δta

∫ τ+Δt

τ

sup
|h|≤2ε0

∫
D

|wΔx − wΔx(t + h, ·)| dx dt

+ 1

Δta

∫
[0,T ]2

1[τ ,τ+Δt)(t)ωε0(t − s −Δt)
∫

D
|wδ − wδ(τ , ·)| dx ds dt

+ 1

Δta

∫
D2
ωε1 |wδ(τ , y)− wδ(τ , x)| dx dy

≤ Cεγ∞0 + Cεγ∞1 . (2.52)

In a similar way, defining

E1 := 1

Δt

∫
D2

T

|wΔx − wδ|
aΔx

ωε1ωε0(t − s −Δt)1[ν,ν+Δt)(t) dz

= 1

Δt

∫ ν+Δt

ν

∫ T

0

∫
D2

|wΔx − wδ|
aΔx

ωε1 dx dyωε0(t − s −Δt) ds dt

we obtain ∣∣∣∣E1 − ‖(wδ
0 − wΔx(0, ·))/aΔx‖L1

∣∣∣∣ ≤ C(εγ∞1 + ε
γ∞
0 + νγ∞). (2.53)

Thus, combining the estimates (2.42), (2.48), (2.49) and (2.51)–(2.53), we have

‖wΔx − wδ‖L1(τ )

≤ C‖wδ
0 − wΔx(0, ·)‖L1 + C

(
ε
γ∞
1 + ε

γ∞
0 + νγ∞ +Δtεγ∞−2

0 + (δα + εα1 )ε
γ∞−1
0 +Δxεγ∞−2

1

)
.

We let δ → 0,

‖wΔx − w‖L1(τ ) ≤ C
(
‖w0 − wΔx(0, ·)‖L1 + ε

γ∞
1 + ε

γ∞
0 + νγ∞ +Δtεγ∞−2

0 + εα1 ε
γ∞−1
0 +Δxεγ∞−2

1

)
.

(2.54)
We choose in this last expression ν = 3ε0, ε1 = ε

1/α
0 and ε1 = Δx1/(αγ∞+2−γ∞) to obtain the rate. �

Remark 2.12 Note that the above lemma implies a rate of convergence in L1(D) of at least
min{α, (γ∞α)/(γ∞α+2−γ∞)} for the variable uΔx = wΔx/aΔx.

2.4 A convergence rate in L2

The main ideas for proving a rate of convergence in L2 are similar to those in Section 2.3, an additional
tool involved is a type of Grönwall inequality, moreover the whole procedure is a bit more technical. We
start by noting that the (smooth) solution to (2.7) satisfies∫

DT

( |wδ(s, y)− k|2
aδ(y)

∂sΩ + |wδ(s, y)− k|2∂yΩ

)
dy ds = 0, (2.55)
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whereas the approximations wΔx satisfy, by the discrete entropy inequality (2.23),

∫
DT

( |wΔx(t, x)− �|2
aΔx(x)

D−
t Ω + |wΔx(t, x)− �|2D+

x Ω

)
dx dt ≥ 0. (2.56)

Then we can prove

Theorem 2.13 Let a ∈ C0,α(R) satisfy (2.2). Denote w the solution of (2.3) obtained as the limit as
δ → 0 in (2.7) and wΔx the numerical approximation computed by scheme (2.20) and defined in (2.31).
Assume that the initial data w0 ∈ L1(D) are Hölder continuous with exponent γ∞ > 0. Then wΔx(t, ·)
converges to the solution w(t, ·), 0 < t < T , at (at least) the rate

‖(w − wΔx)(τ , ·)‖L2(D) ≤ CΔx(γ∞α)/(γ∞α+2−γ∞) + C‖w0 − wΔx(0, ·)‖L2(D), (2.57)

where C is a constant depending on a, a, ‖a‖C0,α and T , but not on Δx.

Proof. As in the L1-case, we insert wΔx(t, x) for k and wδ(s, y) for � in (2.55) and (2.56), and integrate
the respective equations over (t, x) ∈ DT and (s, y) ∈ DT , respectively. Then adding up, we have (for
convenience, we will again omit writing the arguments of wΔx = wΔx(t, x), wδ = wΔx(s, y), aδ = aδ(y)
and aΔx = aΔx(x) in the following)

∫
D2

T

(
|wΔx − wδ|2

(
D−

t Ω

aΔx
+ ∂sΩ

aδ

)
+ |wΔx − wδ|2 (D+

x Ω + ∂yΩ
))

dz ≥ 0, (2.58)

where dz := dx dy dt ds. By (2.41), we can rewrite equation (2.58) as

A + B + D + E

:=
∫

D2
T

|wΔx − wδ|2
aΔx

1[ν,τ)(t)ωε1
(
∂sωε0 − D+

s ωε0

)
dz

+
∫

D2
T

|wΔx − wδ|2
aΔxaδ

1[ν,τ)(t)ωε1∂sωε0

(
aΔx − aδ

)
dz

+
∫

D2
T

|wΔx − wδ|21[ν,τ)(t)ωε0
(
∂yωε1 + D+

x ωε1

)
dz

+
∫

D2
T

|wΔx − wδ|2
aΔx

ωε1ωε0(t − s −Δt)D−
t 1[ν,τ)(t) dz

≥ 0, (2.59)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/37/3/1586/2670057 by ETH
 Zürich user on 09 M

arch 2022



1606 F. WEBER

and by (2.43), this is equivalent to

1

Δt

∫
D2

T

|wΔx − wδ|2
aΔx

ωε1ωε0(t − s −Δt)1[τ ,τ+Δt)(t) dz

≤ 1

Δt

∫
D2

T

|wΔx − wδ|2
aΔx

ωε1ωε0(t − s −Δt)1[ν,ν+Δt)(t) dz + A + B + D. (2.60)

We start with the term A. To do so, we use again (2.45) and that, similarly to (2.46), it holds,

1

Δt

∫ Δt

0

∫
D2

T

|wΔx − wδ(t, y)|2
aΔx

1[ν,τ)(t)ωε1(ξ −Δt)∂ssωε0(t − s + ξ) dz dξ = 0. (2.61)

Hence we can rewrite the term A as

A = 1

Δt

∫ Δt

0

∫
D2

T

(|wΔx − wδ|2 − |wΔx − wδ(t, y)|2)
aΔx

1[ν,τ)(t)ωε1(ξ −Δt)∂ssωε0(t − s + ξ) dz dξ , (2.62)

and bound in the following way, using triangle and Cauchy–Schwarz inequality,

|A| ≤ 1

Δt

∫ Δt

0

∫
D2

T

|wδ − wδ(t, y)||2wΔx − wδ − wδ(t, y)|
aΔx

1[ν,τ)(t)ωε1 |ξ −Δt|∣∣∂ssωε0

∣∣ dz dξ ,

≤ 1

Δt

∫ Δt

0

∫ τ

ν

∫ T

0
|ξ −Δt|

(∫
D2

|wδ − wδ(t, y)|2
aΔx

ωε1 dx dy

) 1
2

×
[(∫

D2

|wΔx − wδ(t, y)|2
aΔx

ωε1 dx dy

) 1
2

+
(∫

D2

|wΔx − wδ|2
aΔx

ωε1 dx dy

) 1
2
]∣∣∂ssωε0

∣∣ ds dt dξ

≤ C
2Δt

ε2
0

∫ τ

ν

sup
s∈[t−2ε0,t+2ε0]

(∫
D2

|wδ − wδ(t, y)|2
aΔx

ωε1 dx dy

) 1
2

sup
s∈[t−2ε0,t+2ε0]

(∫
D2

|wΔx − wδ|2
aΔx

ωε1 dx dy

) 1
2

dt

≤ C
Δt

√
aε2−γ∞

0

∫ τ

ν

sup
s∈[t−2ε0,t+2ε0]

(∫
D2

|wΔx − wδ|2
aΔx

ωε1 dx dy

) 1
2

dt.

We denote

κ(t) =
∫ T

0

∫
D2

|wδ(s −Δt, y)− wΔx(t, x)|2
aΔ(x)

ωε1ωε0 dx dy ds

and observe that∫ τ

ν

sup
s∈[t−2ε0,t+2ε0]

(∫
D2

|wΔx(t, x)− wδ(s, y)|2
aΔx(x)

ωε1 dx dy

)1/2

dt

≤
∫ τ

ν

{
sup

s∈[t−2ε0,t+2ε0]

(∫
D2

|wδ(t, y)− wδ(s, y)|2
aΔx

ωε1 dx dy

)1/2
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+
(∫

D2

|wΔx − wδ(t, y)|2
aΔx

ωε1 dx dy

)1/2}
dt

≤ CTεγ∞0 +
∫ τ

ν

(∫
D2

|wΔx(t, x)− wδ(t, y)|2
aΔx

ωε1 dx dy

)1/2

dt

≤ CTεγ∞0 +
∫ τ

ν

{(∫ T

0

∫
D2

|wΔx(t, x)− wδ(s −Δt, y)|2
aΔx

ωε1ωε0 dx dy ds

)1/2

+
(∫ T

0

∫
D2

|wδ(t, y)− wδ(s −Δt, y)|2
aΔx

ωε1ωε0 dx dy ds

)1/2}
dt

≤ CTεγ∞0 +
∫ τ

ν

√
κ(t) dt. (2.63)

Therefore, the term A can be bounded as

|A| ≤ C
Δt

ε
2−γ∞
0

{
ε
γ∞
0 +

∫ τ

ν

√
κ(t) dt

}
. (2.64)

We proceed to estimating the term B:

B :=
∫

D2
T

|wΔx − wδ|2
aΔxaδ

1[ν,τ)(t)ωε1∂sωε0

(
aΔx − aδ

)
dz.

We again use that

∫
D2

T

|wΔx − wδ(t, y)|2
aΔxaδ

1[ν,τ)(t)ωε1∂sωε0

(
aΔx − aδ

)
dz = 0,

which admits us to rewrite the term B and estimate as follows:

|B| ≤
∫

D2
T

|wδ − wδ(t, y)||2wΔx − wδ − wδ(t, ·)|
aΔxaδ

1[ν,τ)(t)ωε1 |∂sωε0 |
∣∣aΔx − aδ

∣∣ dz

≤ 1

a

∫ τ

ν

∫ T

0

∫
D2

|wδ − wδ(t, y)||2wΔx − wδ − wδ(t, ·)|
aΔx

ωε1 |∂sωε0 |
(∣∣aΔx − aδ(x)

∣∣+ ∣∣aδ(x)− aδ
∣∣) dz

≤ 1

a

(
‖aΔx − aδ‖∞ + sup

|x−y|≤2ε1

|aδ(x)− aδ(y)|
)

×
∫ τ

ν

∫ T

0

∫
D2

|wδ − wδ(t, y)||2wΔx − wδ − wδ(t, ·)|
aΔx

ωε1 |∂sωε0 | dz
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1608 F. WEBER

≤ C
Δxα + δα + εα1

a

∫ τ

ν

∫ T

0

∫
D2

|wδ − wδ(t, y)||2wΔx − wδ − wδ(t, ·)|
aΔx

ωε1 |∂sωε0 | dz

≤ C
Δxα + δα + εα1

a3/2

∫ τ

ν

sup
s∈[t−ε0,t+ε0]

(∫
D2

|wδ − wδ(t, y)|2ωε1 dx dy

)1/2

× sup
s∈[t−ε0,t+ε0]

(∫
D2

|wΔx − wδ|2
aΔx

ωε1 dx dy

)1/2 ∫ T

0
|∂sωε0 | ds dt

≤ C
Δxα + δα + εα1

ε
1−γ∞
0

∫ τ

ν

sup
s∈[t−ε0,t+ε0]

(∫
D2

|wΔx − wδ|2
aΔx

ωε1 dx dy

)1/2

dt

≤ C
Δxα + δα + εα1

ε
1−γ∞
0

(
ε
γ∞
0 +

∫ τ

ν

√
κ(t) dt

)
, (2.65)

where we have used (2.63) for the last inequality. We continue to estimate the term D. We have
using (2.50)

D =
∫

D2
T

|wΔx − wδ|21[ν,τ)(t)ωε0
(
∂yωε1 + D+

x ωε1

)
dz

= 1

Δx

∫ Δx

0

∫
D2

T

|wΔx − wδ|21[ν,τ)(t)ωε0(Δx − ξ)∂yyωε1(x − y + ξ) dz dξ

= 1

Δx

∫ Δx

0

∫
D2

T

(|wΔx − wδ|2 − |wΔx − wδ(s, x)|2) 1[ν,τ)(t)ωε0(Δx − ξ)∂yyωε1(x − y + ξ) dz dξ .

Hence we can estimate the term D by

|D| ≤ 1

Δx

∫ Δx

0

∫ τ

ν

∫
DT

∫
D

|wδ − wδ(·, x)||2wΔx − wδ − wδ(·, x)|ωε0 |Δx − ξ |∣∣∂yyωε1

∣∣ dz dξ

≤ 2
∫ Δx

0

∫ τ

ν

sup
|h|≤2ε1

(∫
DT

|wδ(·, x + h)− wδ(·, x)|2ωε0 dx ds

) 1
2

× sup
|h|≤2ε1

(∫
DT

|wΔx − wδ(·, x + h)|2ωε0 dx ds

) 1
2
∫

D

∣∣∂yyωε1

∣∣ dy dt dξ

≤ C
Δx

ε
2−γ∞
1

∫ τ

ν

sup
|h|≤2ε1

(∫
DT

|wΔx − wδ(·, x + h)|2ωε0 dx ds

) 1
2

dt.

We have ∫ τ

ν

sup
|h|≤2ε1

(∫
DT

|wΔx(t, x)− wδ(s, x + h)|2ωε0 dx ds

)1/2

dt
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≤
∫ τ

ν

{
sup

|h|≤2ε1

(∫
DT

|wδ(s, x)− wδ(s, x + h)|2ωε0 dx ds

)1/2

+ sup
|h|≤2ε1

(∫
DT

|wΔx(t, x)− wδ(s, x)|2ωε0 dx ds

)1/2}
dt

≤ Cεγ∞1 +
∫ τ

ν

(∫
DT

|wΔx(t, x)− wδ(s, x)|2ωε0ωε1 dx dy ds

)1/2

dt

≤ Cεγ∞1 +
∫ τ

ν

{(∫
D

∫
DT

|wδ(s, x)− wδ(s −Δt, y)|2ωε0ωε1 dx dy ds

)1/2

+
(∫

D

∫
DT

|wΔx(t, x)− wδ(s −Δt, y)|2ωε0ωε1 dx dy ds

)1/2}
dt

≤ C(εγ∞1 + ε
γ∞
0 )+ Ca

∫ τ

ν

√
κ(t) dt, (2.66)

and consequently,

|D| ≤ C
Δx

ε
2−γ∞
1

(
ε
γ∞
1 + ε

γ∞
0 +

∫ τ

ν

√
κ(t) dt

)
. (2.67)

Summing up, equation (2.60) becomes

1

Δt

∫ τ+Δt

τ

κ(t) dt ≤ 1

Δt

∫ ν+Δt

ν

κ(t) dt + M1 + M2

∫ τ

ν

√
κ(t) dt, (2.68)

where

M1 = C

(
Δt

ε
2−2γ∞
0

+ δα + εα1

ε
1−2γ∞
0

+ Δx

ε
2−2γ∞
1

+ Δx εγ∞0

ε
2−γ∞
1

)
, M2 = C

(
Δt

ε
2−γ∞
0

+ δα + εα1

ε
1−γ∞
0

+ Δx

ε
2−γ∞
1

)
.

We choose ν and τ such that τ/Δt, ν/Δt ∈ N, i.e., ν = N1Δt and τ = N2Δt for some N1, N2 ∈ N and
notice that

∫ (k+1)Δt

kΔt

√
κ(t) dt ≤ Δt

√
1

Δt

∫ (k+1)Δt

kΔt
κ(t) dt := Δt Xk .

Hence we can rewrite equation (2.68) as

X2
N2

≤ X2
N1

+ M1 +ΔtM2

N2−1∑
i=N1

Xi.

Now we use the following simple adaption of Dragomir (2003, Theorem 5, page 4):
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1610 F. WEBER

Lemma 2.14 Let X0 ∈ R≥0, Xk ≥ 0, k = 1, . . . , N for some N ∈ N satisfy

X2
k ≤ X2

0 + C1 + C2

k∑
i=0

Xi, (2.69)

for all k ∈ {1, . . . , N}, for some C1, C2 ≥ 0. Then

Xk ≤ X0 +√
C1 + C2k.

Using this lemma with C1 = M1 and C2 = ΔtM2, we obtain the estimate

XN2 ≤ XN1 +√
M1 +ΔtM2(N2 − N1) = XN1 +√

M1 + TM2. (2.70)

Next, we relate the L2-norm of the difference (wδ − wΔx)(τ ) to XN2 . Indeed,∣∣∣‖(wδ − wΔx)/
√

aΔx‖L2(τ )− XN2

∣∣∣
≤
(

1

Δt

∫ τ+Δt

τ

∫
DT

∫
D

|wδ(τ , x)− wδ(s −Δt, y)|2
aΔx

ωε1ωε0 dz

)1/2

≤ C(εγ∞0 + ε
γ∞
1 ).

In a similar way, we can show∣∣∣‖(wδ
0 − wΔx(0, ·))/√aΔx‖L2 − XN1

∣∣∣ ≤ C(εγ∞0 + ε
γ∞
1 + νγ∞),

and therefore, with (2.70),

‖wδ − wΔx‖L2(τ ) ≤ C
(
‖wδ

0 − wΔx(0, ·)‖L2 + ε
γ∞
1 + ε

γ∞
0 + νγ∞ +√

M1 + TM2

)
.

Letting δ → 0 and inserting the definitions of M1 and M2, this is

‖w − wΔx‖L2(τ ) ≤ C

(
‖w0 − wΔx(0, ·)‖L2 + ε

γ∞
1 + ε

γ∞
0 + νγ∞ + Δt1/2

ε
1−γ∞
0

+ ε
α/2
1

ε
1/2−γ∞
0

+ Δx1/2

ε
1−γ∞
1

+ Δx1/2 ε
γ∞/2
0

ε
1−γ∞/2
1

+ Δt

ε
2−γ∞
0

+ εα1

ε
1−γ∞
0

+ Δx

ε
2−γ∞
1

)
.

Now we can choose ν = 3ε0, ε0 = εα1 and ε1 = Δx1/(αγ∞+2−γ∞) to balance the errors and finally
obtain (2.57). �

Proof of Lemma 2.14. Define Yk := X2
0 + C1 + C2

∑k
i=0 Xi. Then by (2.69), X2

k ≤ Yk . Moreover,
subtracting the expression for Yk−1 from the expression for Yk , we have

Yk − Yk−1 = C2Xk ≤ C2

√
Yk ≤ C2

(√
Yk +√

Yk−1

)
.
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Since Yk − Yk−1 = (
√

Yk − √
Yk−1)(

√
Yk + √

Yk−1), we can divide both sides of the above equation by√
Yk + √

Yk−1 to obtain

√
Yk −√

Yk−1 ≤ C2.

Using induction over k, we obtain

√
Yk ≤ √

Y0 + C2k.

Hence

Xk ≤ √
Yk ≤ √

Y0 + C2k = √
X0 + C1 + C2k,

by the definition of Yk . Using that
√

a2 + b2 ≤ |a| + |b|, this proves the claim. �

2.5 Experimental rates for the advection equation

In this section, we run a few numerical experiments to compare the theoretically established rates with
experimentally observed ones. As a model coefficient a, we choose a sample (single realization) of a
log-normally distributed random field, which was generated using a spectral Fast Fourier Transform
(FFT) method (Pardo-Iguzquiza & Chica-Olmo, 1993; Chiles & Delfiner, 1997; Ravalec et al., 2000;
Müller et al., 2013) from a given covariance operator ĉ which we assume to be log-normal, so that the
covariance operator completely determines the law of ĉ. It is easy to check that this coefficient a is
uniformly positive, bounded from above and Hölder continuous with exponent 1/2. See Fig. 1 for an
illustration of the coefficient. For the function w0, we choose the product of the Lipschitz continuous hat

Fig. 1. The coefficient a used for the numerical experiments for the transport equation (2.3).
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1612 F. WEBER

function

h(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + 2(x − 1/2), x ∈ [0, 0.5),

1 − 2(x − 1/2) x ∈ [0.5, 1),

1 + 2(x − 3/2), x ∈ [1, 1.5),

1 − 2(x − 3/2), x ∈ [1.5, 2),

with a modification of the Weierstrass function for different parameters γ :

f γ (x) =
∞∑

n=1

2−γ n cos(2nπx), γ ∈ (0, 1), (2.71)

that is, we add a constant f0 > 0 such that f γ becomes strictly positive, and truncate f γ after N = 400
terms,

f̃ γ (x) =
400∑
n=1

2−γ n cos(2nπx)+ f0, α ∈ (0, 1), (2.72)

and define w0,γ (x) = h(x)̃f γ (x). It can be shown that (2.71) is nowhere differentiable, but Hölder continu-
ous with exponent γ . As a computational domain, we take D = [0, 2] with periodic boundary conditions.
We run experiments up to time T = 1 with CFL-number θ = 0.4/a with initial data w0,γ for γ = 1/2, 1/4, 1/8

and for w0,0(x) := h(x).
To approximate the coefficient, we interpolate (2.72) and a on a grid with mesh widthΔx = 2−14 and

average it to obtain an approximation on the coarser grids. The reference solution has been computed
on a grid with Nx = 214 mesh points. We have used the following approximation for the numerical
convergence rate

rm = 1

Nexp − 1

Nexp−1∑
k=1

log Em
Δxk

− log Em
Δxk−1

log 2
, m = 1, 2, (2.73)

where Δxk = 2−kΔx0 and Em
Δxk

, the relative distance of the approximation with gridsize Δxk to the
reference solution in the discrete Lm-norm, that is,

Em
Δxk

= 100 ×
∑Nx

j=1 |uΔxk (T , xj)− uΔxref (T , xj)|m∑Nx
j=1 |uΔxref (T , xj)|m

. (2.74)

We used Δx0 = 1/16 (Nx,0 = 32) and Nexp = 6. In Fig. 2, we have plotted the Weierstrass function
and the reference solution for Hölder exponent γ = 1/2. Interestingly, the variable w seems to be much
smoother at time T = 1 than initially, and is also much smoother than the variable u. This is probably
due to the diffusion in the scheme. In Table 1 the experimentally observed rates are computed for initial
data w0,γ and w0,0 for γ = 2−k , k = 2, 4, 8. We notice that the experimental rates for this example are
low, but better than what we obtain from the theoretical estimates. This can be due to the fact that we
compute the errors with respect to a reference solution computed by the same scheme. Moreover, other
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ROUGH COEFFICIENTS 1613

Fig. 2. Left: Approximation of Weierstrass function (2.72) for γ = 1/2. Right: Approximation of (2.3) by scheme (2.20) at time
T = 0 and T = 1, Nx = 214, γ = 1/2.

Table 1 Experimental rates

γ r1
u r1

w r2
u r2

w

1 0.6018 0.5598 0.6468 0.5829
1/2 0.5170 0.4554 0.5400 0.4996
1/4 0.4412 0.3816 0.4678 0.4356
1/8 0.4550 0.3970 0.4810 0.4484

examples of initial data might give lower rates. However, we do not know whether the rates (2.39) and
(2.57) are sharp.

3. A convergence rate for the wave equation in one space dimension

The techniques from the last section can be used to prove a rate of convergence for approximate solutions
to the acoustic wave equation in one space dimension with rough coefficient under some assumptions.
Defining u := ∂xp and v := ∂tp, the second-order wave equation

1

a(x)
∂2

ttp(t, x)− ∂2
xxp(t, x) = 0, (t, x) ∈ DT ,

DT := [0, T ] × D, where D = [dL, dR], −∞ < dL < dR < ∞, can be rewritten as

∂tu(t, x)− ∂xv(t, x) = 0,

1

a(x)
∂tv(t, x)− ∂xu(t, x) = 0, (t, x) ∈ DT . (3.1)

For simplicity, let us assume that D = [0, 2] with periodic boundary conditions.
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1614 F. WEBER

3.1 Numerical approximation of (3.1) by a finite difference scheme

In order to compute numerical approximations to (3.1), we choose Δx > 0 and discretize the spatial
domain by a grid with gridpoints xj+1/2 := (j + 1/2)Δx, j ∈ {0, 1, . . . , Nx}, where Nx ∈ N is such that
NxΔx = |D|. Similarly, let Δt denote the time step and tn = nΔt with n = 0, 1, . . . , N denote the nth
time level with NΔt = T .

We define the averaged quantities

aj = 1

Δx

∫ xj+1/2

xj−1/2

a(x) dx, j = 1, . . . , Nx, (3.2)

and

(
u0

j , v0
j

) = 1

Δx

(∫ xj+1/2

xj−1/2

u0(x) dx,
∫ xj+1/2

xj−1/2

v0(x) dx

)
, j = 1, . . . , Nx. (3.3)

We recall (2.19) and define approximations to (3.1) by the finite difference scheme:

D+
t un

j = Dc
xvn

j + Δx

2
D+

x D−
x un

j , (3.4a)

D+
t vn

j

aj
= Dc

xun
j + Δx

2
D+

x D−
x vn

j , j ∈ Z, n = 1, . . . , N , (3.4b)

with the time step Δt being chosen such that the CFL-condition,

2Δt max
j

{
max

{
2aj + 1, aj/4 + 5/4

}} ≤ Δx (3.5)

is satisfied.
Moreover, for any k, l ∈ R, we define the discrete entropy (energy) function and flux

ηn
j := |un

j − k|2
2

+ |vn
j − �|2
2aj

, qn
j := −(un

j − k)(vn
j − �).

Furthermore, we will for technical reasons need the following difference quotients: we denote for
γ ∈ (0, 1] and a discrete quantity σ n

j defined on the grid,

D±
γ ,tσ

n
j = ∓σ

n
j − σ n±1

j

Δtγ
, D±

γ ,xσ
n
j = ∓σ

n
j − σ n

j±1

Δxγ
, Dc

γ ,xσ
n
j = σ n

j+1 − σ n
j−1

2Δxγ
. (3.6)

When γ = 1, the above-defined quantities reduce to the usual finite differences (2.19). The scheme (3.4)
satisfies the following properties:

Lemma 3.1 Assume a ∈ C0,α(D) and u0, v0 ∈ L2(D). Then the numerical approximations un
j and vn

j

defined by (3.4), (3.2) and (3.3) have the following properties:

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/37/3/1586/2670057 by ETH
 Zürich user on 09 M

arch 2022



ROUGH COEFFICIENTS 1615

(i) Discrete entropy inequality:

D+
t η

n
j + Dc

xqn
j ≤ Δx (Δt −Δx)

2
D−

x

(
D+

x

(
un

j − k
)

D+
x

(
vn

j − l
))

+ Δx

4
D+

x D−
x

((
un

j − k
)2 + (

vn
j − l

)2
)

. (3.7)

(ii) Bounds on the discrete L2-norms:

Δx
∑

j

(
(un

j )
2 + 1

aj
(vn

j )
2

)
≤ Δx

∑
j

(
(u0

j )
2 + 1

aj
(v0

j )
2

)
≤ ‖u0‖2

L2 + ∥∥a−1/2v0

∥∥2

L2 . (3.8)

(iii) For any function w = w(x), define the L2 modulus of continuity in space as γ if,

ν2
x (w, σ) := sup

δ≤σ

∫
R

|w(x + δ)− w(x)|2 dx ≤ C σ 2γ . (3.9)

If we also assume that the initial data u0 and v0 have moduli of continuity in L2(D),

ν2
x (u0, σ) ≤ Cσ 2γ , ν2

x (v0, σ) ≤ C σ 2γ ,

for some γ > 0, the approximations satisfy,

Δx
∑

j

(∣∣D+
γ ,tu

n
j

∣∣2 + 1

aj

∣∣D+
γ ,tv

n
j

∣∣2) ≤ C,

Δx
∑

j

(∣∣Dc
γ ,xun

j

∣∣2 + ∣∣Dc
γ ,xvn

j

∣∣2 + Δx2

4
(
∣∣D+

γ ,xD−
x un

j

∣∣2 + ∣∣D+
γ ,xD−

x vn
j

∣∣2)) ≤ C, (3.10)

for all n = 0, . . . , NT , where C is a constant, depending on a and the initial data u0 and v0.

Proof. By linearity, it is sufficient to prove (3.7) for k = l = 0. We shall use the following identities

un
j D+

t un
j = 1

2
D+

t

(
un

j

)2 − Δt

2

(
D+

t un
j

)2
, (3.11)

un
j D+

x D−
x un

j = 1

2
D+

x D−
x

(
un

j

)2 − 1

2

((
D−

x un
j

)2 + (
D+

x un
j

)2
)

, (3.12)

D−
x

(
D+

x un
j D+

x vn
j

) = (
D+

x D−
x un

j

)
Dc

xvn
j + (

D+
x D−

x vn
j

)
Dc

xun
j , (3.13)

un
j Dc

xvn
j + vn

j Dc
xun

j = Dc
x

(
un

j vn
j

)− Δx2

2
D−

x

(
D+

x un
j D+

x vn
j

)
. (3.14)
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1616 F. WEBER

Multiplying (3.4a) by un
j and (3.4b) by vn

j , we get

1

2
D+

t

(
un

j

)2 − Δt

2

(
D+

t un
j

)2 = un
j Dc

xvn
j + Δx

4
D+

x D−
x

(
un

j

)2

− Δx

4

((
D−

x un
j

)2 + (
D+

x un
j

)2
)

1

2aj
D+

t

(
vn

j

)2 − Δt

2aj

(
D+

t vn
j

)2 = vn
j Dc

xun
j + Δx

4
D+

x D−
x

(
vn

j

)2

− Δx

4

((
D−

x vn
j

)2 + (
D+

x vn
j

)2
)

.

Adding these two equations

D+
t η

n
j = Dc

x

(
un

j vn
j

)− Δx2

2
D−

x

(
D+

x un
j D+

x vn
j

)
+ Δx

4
D+

x D−
x

((
un

j

)2 + (
vn

j

)2
)

− Δx

4

((
D−

x un
j

)2 + (
D+

x un
j

)2 + (
D−

x vn
j

)2 + (
D+

x vn
j

)2
)

+ Δt

2

⎡⎢⎢⎣(Dc
xvn

j + Δx

2
D+

x D−
x un

j

)2

+ aj

(
Dc

xun
j + Δx

2
D−

x D+
x vn

j

)2

︸ ︷︷ ︸
K

⎤⎥⎥⎦.

We can estimate K as follows:

K ≤ 1

2

((
D−

x un
j

)2 + (
D+

x un
j

)2 + aj

(
D−

x vn
j

)2 + aj

(
D+

x vn
j

)2
)

+Δx
(
D+

x D−
x un

j Dc
xvn

j + ajD
+
x D−

x vn
j Dc

xun
j

)+ Δx2

4

((
D+

x D−
x un

j

)2 + aj

(
D+

x D−
x vn

j

)2
)

≤ (
D−

x un
j

)2 + (
D+

x un
j

)2 + aj

(
D−

x vn
j

)2 + aj

(
D+

x vn
j

)2

+Δx
(
D+

x D−
x un

j Dc
xvn

j + ajD
+
x D−

x vn
j Dc

xun
j

)
= (

D−
x un

j

)2 + (
D+

x un
j

)2 + aj

(
D−

x vn
j

)2 + aj

(
D+

x vn
j

)2

+ΔxD+
x

(
D−

x un
j D−

x vn
j

)+Δx
(
aj − 1

)
D+

x D−
x vn

j Dc
xun

j

≤ (
D−

x un
j

)2 + (
D+

x un
j

)2 + aj

(
D−

x vn
j

)2 + aj

(
D+

x vn
j

)2

+ΔxD+
x

(
D−

x un
j D−

x vn
j

)
+ 1

2

∣∣aj − 1
∣∣ ((∣∣D+

x vn
j

∣∣+ ∣∣D−
x vn

j

∣∣)2 + 1

4

(
D−

x un
j + D+

x un
j

)2
)
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≤ ΔxD+
x

(
D−

x un
j D−

x vn
j

)+
(

1 + 1

4

∣∣aj − 1
∣∣) (D−

x un
j

)2 +
(

1 + 1

4

∣∣aj − 1
∣∣) (D+

x un
j

)2

+ (
aj + ∣∣aj − 1

∣∣) (D−
x vn

j

)2 + (
aj + ∣∣aj − 1

∣∣) (D+
x vn

j

)2
.

This implies that

D+
t η

n
j + Dc

xqn
j ≤ Δx (Δt −Δx)

2
D−

x

(
D+

x un
j D+

x vn
j

)
+ Δx

4
D+

x D−
x

((
un

j

)2 + (
vn

j

)2
)

+ 1

2

((
1 + 1

4

∣∣aj − 1
∣∣)Δt − Δx

2

) (
D−

x un
j

)2

+ 1

2

((
1 + 1

4

∣∣aj − 1
∣∣)Δt − Δx

2

) (
D+

x un
j

)2

+ 1

2

((
aj + ∣∣aj − 1

∣∣)Δt − Δx

2

) (
D−

x vn
j

)2

+ 1

2

((
aj + ∣∣aj − 1

∣∣)Δt − Δx

2

) (
D+

x vn
j

)2
.

If Δt satisfies the CFL-condition (3.5), the four last terms above are nonpositive and (3.7) follows. The
L2 bound (3.8) also follows upon summing over j and multiplying by Δx.

By the linearity of the equation, (3.8) also holds for the difference of two approximations computed
by (3.4a) and (3.4b), thus in particular for D+

γ ,tu
n
j and D+

γ ,tv
n
j . Hence, using the handy equality

∑
j

(∣∣D+
t un

j

∣∣2 + 1

a2
j

∣∣D+
t vn

j

∣∣2)

=
∑

j

(∣∣Dc
xun

j

∣∣2 + ∣∣Dc
xvn

j

∣∣2 + Δx2

4

(∣∣D+
x D−

x un
j

∣∣2 + ∣∣D+
x D−

x vn
j

∣∣2)), (3.15)

the CFL-condition (3.5), (3.8) implies

Δx
∑

j

( (
D+
γ ,tu

n
j

)2 + 1

aj

(
D+
γ ,tv

n
j

)2
)

(3.16)

≤ Δx
∑

j

((
D+
γ ,tu

0
j

)2 + 1

aj

(
D+
γ ,tv

0
j

)2
)

≤ max{1, a}Δx
∑

j

((
D+
γ ,tu

0
j

)2 + 1

a2
j

(
D+
γ ,tv

0
j

)2

)

= max{1, a}ΔxΔt2−2γ
∑

j

( (
Dc

xu0
j

)2 + (
Dc

xv0
j

)2
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1618 F. WEBER

+ Δx2

4

(
D+

x D−
x u0

j

)2 + (
D+

x D−
x v0

j

)2
)

≤ max{1, a}Δx θ 2−2γ
∑

j

( (
Dc
γ ,xu0

j

)2 + (
Dc
γ ,xv0

j

)2

+ Δx2

4

((
D+
γ ,xD−

x u0
j

)2 + (
D+
γ ,xD−

x v0
j

)2
))

≤ 2θ 2−2γ max{1, a}Δx
∑

j

( (
D+
γ ,xu0

j

)2 + (
D+
γ ,xv0

j

)2
)

=: C(α, u0, v0),

where we have set θ = Δt/Δx. Applying (3.15) once more, we also obtain the second equation in (3.10),

Δx
∑

j

((
Dc
γ ,xun

j

)2 + (
Dc
γ ,xvn

j

)2 + Δx2

4

((
D+
γ ,xD−

x un
j

)2 + (
D+
γ ,xD−

x vn
j

)2
))

= θ 2γ−2Δx
∑

j

((
D+
γ ,tu

n
j

)2 + 1

a2
j

(
D+
γ ,tv

n
j

)2

)
≤ C(α, u0, v0). (3.17)

�

Defining

uΔx(t, x) = un
j , (t, x) ∈ [tn, tn+1)× [xj−1/2, xj+1/2), (3.18a)

vΔx(t, x) = vn
j , (t, x) ∈ [tn, tn+1)× [xj−1/2, xj+1/2), (3.18b)

aΔx(x) = aj, x ∈ [xj−1/2, xj+1/2), (3.18c)

we have that a subsequence of (uΔx, vΔx)Δx>0 converges weakly to a weak solution of (3.1). If γ = 1,
equation (3.10) implies that u and v have an L2-modulus of continuity of γ = 1 in space and time, and
therefore by Ladyzhenskaya’s theorems of interpolation of finite difference approximations (Ladyzhen-
skaya, 1985, Lemmas 3.1 and 3.2, Theorem 3.2) we get a strongly convergent subsequence to limit
functions u, v ∈ H1(DT ) ∩ Lip([0, T ]; L2(D)). The limit functions satisfy the entropy inequality

∂tη(u − k, v − �, a)+ ∂xq(u − k, v − �) ≤ 0, in the sense of distributions, (3.19)

where

η(u, v, a) := u2

2
+ v2

2a
, q(u, v) := −uv, (3.20)

which follows from (3.8) in the limitΔx → 0. They are therefore unique among solutions satisfying the
entropy inequality (thanks to the linearity of the equation, we can insert another solution (̃u, ṽ) for (k, �)).
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3.2 Convergence rate for the one-dimensional wave equation

In the last section, we showed that the numerical scheme (3.4) converges to the weak solution of the
one-dimensional wave equation. However, the key question is the rate at which the approximate solutions
converge to the exact solution as the mesh is refined, i.e.,Δx → 0. The answer to this question is provided
in the following theorem,

Theorem 3.2 Let a ∈ C0,α(D) satisfy ∞ > a ≥ a(x) ≥ a > 0 for all x ∈ D. Denote by (u, v) the
solution of (3.1) and (uΔx, vΔx) the numerical approximation computed by the scheme (3.4) and defined
in (3.18). Assume that the initial data u0, v0 ∈ L2(D) and that u, v, uΔx, vΔx have moduli of continuity

ν2
x (u(t, ·), σ) ≤ C σ 2γ , ν2

x (v(t, ·), σ) ≤ C σ 2γ ,

ν2
x (uΔx(t, ·), σ) ≤ C σ 2γ , ν2

x (vΔx(t, ·), σ) ≤ C σ 2γ . (3.21)

Then the approximation (uΔx(t, ·), vΔx(t, ·)) converges to the solution (u(t, ·), v(t, ·)), 0 < t < T , and we
have the estimate on the rate

‖(u − uΔx)(t, ·)‖L2(D) + ‖(v − vΔx)(t, ·)/a‖L2(D)

≤ C
(‖u0 − uΔx(0, ·)‖L2(D) + ‖(v0 − vΔx(0, ·))/a‖L2(D) +Δx(αγ )/(2(αγ+1−γ ))), (3.22)

where C is a constant depending on c and T , but not on Δx.

Remark 3.3 If the initial data u0, v0 have moduli of continuity

ν2
x (u0, σ) ≤ Cσ 2, ν2

x (v0, σ) ≤ Cσ 2,

it follows from Lemma 3.1 that u, v have moduli of continuity in space and time with γ = 1.

Proof. We let φ ∈ C2
0((0, T)× D) and define

ΛT (u, v, k, �,φ) :=
∫

DT

((
(u − k)2

2
+ (v − �)2

2a

)
∂tφ − (u − k)(v − �)∂xφ

)
dx dt. (3.23)

The above definition is similar to the one used in Section 2.4—an adaptation of the Kružkov doubling of
variables technique (Holden & Risebro, 2011) in our current L2 setting. We will use special test functions
in ΛT : we recall the definition of the mollifier ωε in (2.6) and define for some 0 < ν < τ < T ,

ψμ(t) := Hμ(t − ν)− Hμ(t − τ), Hμ(t) =
∫ t

−∞
ωμ(ξ) dξ .

We define Ω : D2
T → R by

Ω(t, s, x, y) = ψμ(t)ωε0(t − s)ωε1(x − y). (3.24)
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We choose ν and τ such that 0 < ε0 < min{ν, T − τ } and 0 < μ < min{ν − ε0, T − τ − ε0}. We note
that

∂tΩ + ∂sΩ = ∂tψ
μωε1ωε0 , ∂xΩ + ∂yΩ = 0.

We assume without loss of generalityΔx ≤ min{ε1, ε0, ν}. By the entropy inequality (3.19), we have for
the solution (u, v) of (3.1) that ΛT (u, v, uΔx(s, y), vΔx(s, y),φ) ≥ 0 for all (s, y) ∈ DT and test functions
φ ∈ C2

0((0, T)× D). By (3.7), we have on the other hand that∫
DT

((
(uΔx − u(t, x))2

2
+ (vΔx − v(t, x))2

2a

)
D−

s φ − (uΔx − u(t, x))(vΔx − v(t, x))Dc
yφ

)
dy ds

≥
∫

DT

(vΔx − v(t, x))2
(

1

2a
− 1

2aΔx

)
D−

s φ dy ds

− Δx2

2
(θ − 1)

∫
DT

(
D+

y (uΔx − u)D+
y (vΔx − v)

)
D+

y φ dy ds

+ Δx

4

∫
DT

(D+
y (vΔx − v(t, x))2 + D+

y (uΔx − u(t, x))2)D+
y φ dy ds, (3.25)

where D−
s φ and D+

y φ are defined by

D±
s φ(s, y) = ∓φ(s, y)− φ(s ±Δt, y)

Δt
, D±

y φ(s, y) = ∓φ(s, y)− φ(s, y ±Δx)

Δx
. (3.26)

AddingΛT (u, v, uΔx(s, y), vΔx(s, y),φ) ≥ 0 and (3.25), choosingΩ as a test function and integrating over
DT (we abbreviate dz := dy ds dx dt), we obtain∫

D2
T

(
(uΔx − u)2

2
+ (vΔx − v)2

2a

) (
∂tΩ + D−

s Ω
)

dz︸ ︷︷ ︸
A

−
∫

D2
T

(uΔx − u)(vΔx − v)
(
∂xΩ + Dc

yΩ
)

dz︸ ︷︷ ︸
B

≥
∫

D2
T

(vΔx − v)2
(

1

2a(x)
− 1

2aΔx(y)

)
D−

s Ω dz︸ ︷︷ ︸
D

+ Δx2

2
(θ − 1)

∫
D2

T

D−
y

[
D+

y (uΔx − u)D+
y (vΔx − v)

]
Ω dz︸ ︷︷ ︸

E

− Δx

4

∫
D2

T

((vΔx − v(t, x))2 + (uΔx − u(t, x))2)D−
y D+

y Ω dz︸ ︷︷ ︸
F

. (3.27)
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We rewrite the term A as

A =
∫

D2
T

η(u − uΔx, v − vΔx, a)(∂tΩ + D−
s Ω) dz

=
∫

D2
T

η(u − uΔx, v − vΔx, a)∂tψ
μωε1ωε0 dz︸ ︷︷ ︸

A1

+
∫

D2
T

η(u − uΔx, v − vΔx, a)ψμ ωε1

(
∂tωε0 + D−

s ωε0

)
dz︸ ︷︷ ︸

A2

.

The term A1 can be written as

A1 =
∫

D2
T

η(u − uΔx, v − vΔx, a)ωμ(t − ν)ωε1ωε0 dz −
∫

D2
T

η(u − uΔx, v − vΔx, a)ωμ(t − τ)ωε1ωε0 dz.

Introducing λ as

λ(t) =
∫ T

0

∫
D2
η (uΔx(s, y)− u(t, x), vΔx(s, y)− v(t, x), a(x))

× ωε1(x − y)ωε0(t − s) dy dx ds,

(3.28)

we have that

A1 =
∫ T

0
λ(t)ωμ(t − ν) dt −

∫ T

0
λ(t)ωμ(t − τ) dt,

so that (3.27) implies

∫ T

0
λ(t)ωμ(t − ν) dt + |A2| + |B| + |D| + |E| + |F| ≥

∫ T

0
λ(t)ωμ(t − τ) dt. (3.29)

Our task is now to overestimate |A2|, |B|, |D|, |E| and |F|.
To estimate the term A2, we recall (2.45) and observe that (cf. (2.46))

1

Δt

∫ T

0

∫ Δt

0
η(u(t, x)− uΔx(t, y), v(t, x)− vΔx(t, y), a)(ξ −Δt)∂ssωε0(t − s + ξ) dξ ds = 0,
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1622 F. WEBER

since all the terms in the integrand except ∂ssωε0(t − s + ξ) are independent of s. Therefore, subtracting
this term from A2, we obtain,

A2 = 1

2Δt

∫
D2

T

∫ Δt

0
(uΔx(t, y)− uΔx)(2u − uΔx − uΔx(t, y))ψμ ωε1 (ξ −Δt)∂ssωε0(t − s + ξ) dξ dz︸ ︷︷ ︸

A2,1

+ 1

2Δt

∫
D2

T

∫ Δt

0

1

a
(vΔx(t, y)− vΔx)(2v − vΔx − vΔx(t, y))ψμ ωε1 (ξ −Δt)∂ssωε0(t − s + ξ) dξ dz︸ ︷︷ ︸

A2,2

.

We will outline the estimates for the term A2,1, the term A2,2 is estimated similarly. By the triangle and
Hölder’s inequality

|A2,1| ≤ 1

2Δt

∫
D2

T

∫ Δt

0
|uΔx(t, y)− uΔx(s, y)|(|u(t, x)− uΔx(s, y)| + |u(t, x)− uΔx(t, y)|)

× ψμ ωε1 |ξ −Δt| |∂ssωε0(t − s + ξ)| dξ dz

≤ 1

2Δt

∫ Δt

0

∫ T

0

∫ T

0

(∫
D2

|uΔx(t, y)− uΔx(s, y)|2ωε1 dy dx

)1/2

×
{(∫

D2
|u(t, x)− uΔx(s, y)|2ωε1 dy dx

)1/2

+
(∫

D2
|u(t, x)− uΔx(t, y)|2ωε1 dy dx

)1/2}
× ψμ |ξ −Δt| |∂ssωε0(t − s + ξ)| ds dt dξ

≤ 1

2Δt

∫ Δt

0

∫ T

0
sup

0≤s≤T
|t−s|<2ε0

(∫
D2

|uΔx(t, y)− uΔx(s, y)|2ωε1 dy dx

)1/2

×
{

sup
0≤s≤T

|t−s|<2ε0

(∫
D2

|u(t, x)− uΔx(s, y)|2ωε1 dy dx

)1/2

(3.30)

+
(∫

D2
|u(t, x)− uΔx(t, y)|2ωε1 dy dx

)1/2}
× ψμ |ξ −Δt|

∫ T

0
|∂ssωε0(t − s + ξ)| ds dt dξ

≤ C

Δt ε2−γ
0

∫ Δt

0

∫ T

0

{
sup

0≤s≤T
|t−s|<2ε0

(∫
D2

|u(t, x)− uΔx(s, y)|2ωε1 dy dx

)1/2

+
(∫

D2
|u(t, x)− uΔx(t, y)|2ωε1 dy dx

)1/2}
ψμ |ξ −Δt| dt dξ
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ROUGH COEFFICIENTS 1623

≤ CΔt

ε
2−γ
0

∫ Δt

0

∫ T

0

{
sup

0≤s≤T
|t−s|<2ε0

(∫
D2

|u(t, x)− uΔx(s, y)|2ωε1 dy dx

)1/2

+
(∫

D2
|u(t, x)− uΔx(t, y)|2ωε1 dy dx

)1/2}
ψμ dt,

where we used the moduli of continuity for uΔx, viz. (3.21), in the penultimate inequality and thatΔt ≤ ε0.
Furthermore, in a similar way as we did for the advection equation in (2.63), one can show that

∫ T

0
sup

0≤s≤T
|t−s|<ε0

(∫
D2

|uΔx(s, y)− u(t, x)|2 ωε1 dy dx

)1/2

ψμ dt

≤ CTεγ0 +
∫ T

0

(∫ T

0

∫
D2

|uΔx(s, y)− u(t, x)|2 ωε1ωε0 dy dx ds

)1/2

ψμ dt (3.31)

using the triangle inequality and similarly

∫ T

0
sup

0≤s≤T
|t−s|<ε0

(∫
D2

1

a
|vΔx(s, y)− v(t, x)|2 ωε1 dy dx

)1/2

ψμ dt

≤ CTεγ0
a

+
∫ T

0

(∫ T

0

∫
D2

1

a
|vΔx(s, y)− v(t, x)|2 ωε1ωε0 dy dx ds

)1/2

ψμ dt. (3.32)

Using λ, cf. (3.28), (3.30) can be bounded as

∣∣A2,2

∣∣ ≤ CΔt ε2γ−2
0 + CΔt

ε
2−γ
0

∫ T

0

√
λ(t) ψμ dt

and so, using a similar argument for the term A2,1

|A2| ≤ CΔt ε2γ−2
0 + CΔt

ε
2−γ
0

∫ T

0

√
λ(t) ψμ dt. (3.33)

In order to bound the term B, we use

∂xΩ + Dc
yΩ = −1

4Δx

∫ Δx

0
(ξ −Δx)2

[
∂yyyΩ(t, s, x, y − ξ)+ ∂yyyΩ(t, s, x, y + ξ)

]
dξ

= 1

4Δx

∫ Δx

0
(ξ −Δx)2

[
∂xxxΩ(t, s, x, y − ξ)+ ∂xxxΩ(t, s, x, y + ξ)

]
dξ
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1624 F. WEBER

and that

1

4Δx

∫ Δx

0

∫
D2

T

(ξ −Δx)2 (uΔx − u(t, y)) (vΔx − v(t, y))

× [
∂xxxωε1(x − y + ξ)+ ∂xxxωε1(x − y − ξ)

]
ωε0ψ

μ dξ dz = 0,

since all the terms in the integrand, except
[
∂xxxωε1(x − y + ξ)+ ∂xxxωε1(x − y − ξ)

]
, are independent of

x. We subtract this term from B and add and subtract the term

1

4Δx

∫ Δx

0

∫
D2

T

(ξ −Δx)2 (uΔx − u(t, y)) (vΔx − v(t, x))

× [
∂xxxωε1(x − y + ξ)+ ∂xxxωε1(x − y − ξ)

]
ωε0ψ

μ dξ dz,

so that

B = 1

4Δx

∫ Δx

0

∫
D2

T

(ξ −Δx)2 (u(t, y)− u(t, x)) (vΔx − v(t, x))

× [
∂xxxωε1(x − y + ξ)+ ∂xxxωε1(x − y − ξ)

]
ωε0ψ

μ dξ dz

+ 1

4Δx

∫ Δx

0

∫
D2

T

(ξ −Δx)2 (uΔx − u(t, y)) (v(t, y)− v(t, x))

× [
∂xxxωε1(x − y + ξ)+ ∂xxxωε1(x − y − ξ)

]
ωε0ψ

μ dξ dz

:= B1 + B2.

We start by bounding B1,

|B1| ≤ 1

4Δx

∫ Δx

0

∫
D2

T

(ξ −Δx)2|u(t, y)− u(t, x)| |vΔx − v(t, x)|

× |∂xxxωε1(x − y + ξ)+ ∂xxxωε1(x − y − ξ)|ωε0ψμ dξ dz

≤ 1

4Δx

∫ Δx

0

∫
DT

(∫
DT

|u(t, y)− u(t, x)|2ωε0 dy ds

)1/2

×
(∫

DT

|vΔx − v(t, x)|2ωε0 dy ds

)1/2

(ξ −Δx)2

× |∂xxxωε1(x − y + ξ)+ ∂xxxωε1(x − y − ξ)|ψμ dx dt dξ

≤ 1

4Δx

∫ Δx

0

∫ T

0
sup
x s.t.|x−y|≤3ε1

(∫
DT

|u(t, y)− u(t, x)|2ωε0 dy ds

)1/2

× sup
x s.t.|x−y|≤3ε1

(∫
DT

|vΔx − v(t, x)|2ωε0 dy ds

)1/2

(ξ −Δx)2
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ROUGH COEFFICIENTS 1625

×
∫

D
|∂xxxωε1(x − y + ξ)+ ∂xxxωε1(x − y − ξ)| dxψμ dt dξ

≤ C

ε1
3−γΔx

∫ Δx

0

∫ T

0
sup
x s.t.|x−y|≤3ε1

(∫
DT

|vΔx − v(t, x)|2ωε0 dy ds

)1/2

(ξ −Δx)2ψμ dt dξ

≤ CΔx2

ε1
3−γ

∫ T

0
sup
x s.t.|x−y|≤3ε1

(∫
DT

|vΔx − v(t, x)|2ωε0 dy ds

)1/2

ψμ dt,

where we have used that ωε1 is compactly supported in [−ε1, ε1], and where C is a constant depending on
the L2-norms and the moduli of continuity of the initial data and on T . Using that (cf. (3.31) and (2.66))

∫ T

0
sup
x s.t.|x−y|≤3ε1

(∫
DT

|uΔx(s, y)− u(t, x)|2 ωε0 dy ds

)1/2

ψμ dt

≤ CTεγ1 +
∫ T

0

(∫ T

0

∫
D2

|uΔx(s, y)− u(t, x)|2 ωε1ωε0 dy dx ds

)1/2

ψμ dt, (3.34)

and analogously,

∫ T

0
sup
x s.t.|x−y|≤3ε1

(∫
DT

|vΔx(s, y)− v(t, x)|2 ωε0 dy ds

)1/2

ψμ dt

≤ CTεγ1 +
∫ T

0

(∫ T

0

∫
D2

|vΔx(s, y)− v(t, x)|2 ωε1ωε0 dy dx ds

)1/2

ψμ dt, (3.35)

for B1, we obtain the estimate

|B1| ≤ CΔx2

ε
3−2γ
1

+ CΔx2

ε
3−γ
1

∫ T

0

√
λ(t) ψμ dt. (3.36)

Similarly,

|B2| ≤ 1

4Δx

∫ Δx

0

∫
D2

T

(ξ −Δx)2|uΔx − u(t, y)| |v(t, y)− v(t, x)|

× |∂xxxωε1(x − y + ξ)+ ∂xxxωε1(x − y − ξ)|ωε0ψμ dξ dz

≤ CΔx2

ε
3−γ
1

∫ T

0

(∫
DT

|vΔx(s, y)− v(t, y)|2ωε0 dy ds

)1/2

ψμ dt.

Using (3.35), we find, as for B1,

|B2| ≤ CΔx2

ε
3−2γ
1

+ CΔx2

ε
3−γ
1

∫ T

0

√
λ(t) ψμ dt, (3.37)
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1626 F. WEBER

and therefore

|B| ≤ CΔx2

ε
3−2γ
1

+ CΔx2

ε
3−γ
1

∫ T

0

√
λ(t) ψμ dt. (3.38)

We proceed to bound the term D. Observing that∫
D2

T

(v(t, x)− vΔx(t, y))2
(

1

2a(x)
− 1

2aΔx(y)

)
D−

s Ω dz = 0,

we can rewrite D as

D =
∫

D2
T

(
(v(t, x)− vΔx(t, y))2 − (v(t, x)− vΔx(s, y))2

)( 1

2a(x)
− 1

2aΔx(y)

)
D−

s Ω dz.

Noting that,

D−
s Ω(t, s, x, y) = 1

Δt

∫ Δt

0
∂sΩ(t, s − ξ , x, y) dξ , (3.39)

this becomes

D = 1

Δt

∫
D2

T

∫ Δt

0
(2v(t, x)− vΔx(t, y)− vΔx(s, y))

× (vΔx(t, y)− vΔx(s, y))
aΔx(y)− a(x)

2a(x)aΔx(y)
∂sΩ dξ dz,

which can be bounded by

|D| ≤ 1

2aΔt
sup

|x−y|<ε1
|a(x)− aΔx(y)| (3.40)

×
∫

D2
T

∫ Δt

0

1

c
|2v(t, x)− vΔx(t, y)− vΔx(s, y)| |vΔx(t, y)− vΔx(s, y)| |∂sΩ| dξ dz

≤ C(ε1 +Δx)α

2a ε0
sup

t∈(0,T)
ν2

t (vΔx(t, ·), ε0)
1/2

×
∫ T

0
sup

0≤s≤T
|t−s|<ε0

(∫
D2

1

a
|vΔx(t, y)− v(s, x)|2 ωε1 dy dx

)1/2

ψμ dt

≤ C(ε1 +Δx)α

2aε1−2γ
0

+ C(ε1 +Δx)α

2aε1−γ
0

∫ T

0

√
λ(t) ψμ dt,

where we have used (3.32) for the last inequality. For the term E, we note that it can be written

E = Δx2

2
(θ − 1)

∫ T

0

∫
DT

D−
y

[
D+

y uΔxD+
y vΔx

] ∫
D
ωε1(x − y) dx ωε0ψ

μ dy ds dt,
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so that

E = Δx2

2
(θ − 1)

∫ T

0

∫
DT

D−
y

[
D+

y uΔxD+
y vΔx

]
ωε0ψ

μ dy ds dt, (3.41)

= Δx3

2
(θ − 1)

∫ T

0

∫ T

0

∑
j

D−
y

[
D+

y uΔx(s, xj)D
+
y vΔx(s, xj)

]
ωε0ψ

μ ds dt.

= 0.

In order to estimate the term F, we use that

D+
x D−

x φ(x) = 1

2Δx2

∫ 0

−Δx

∫ Δx

0
φ′′(x + η + ξ) dξ dη, (3.42)

and that

1

8Δx

∫ 0

−Δx

∫ Δx

0

∫
D2

T

((vΔx − v(t, y))2 + (uΔx − u(t, y))2)∂2
xxωε1(x − y − η − ξ) ωε0ψ

μ dz dξ dη = 0,

since all the terms in the integrand, but ∂2
xxωε1(x − y − η− ξ) are independent of x. We subtract this term

from F to find

F = 1

8Δx

∫ 0

−Δx

∫ Δx

0

∫
D2

T

(v − v(t, y))(v + v(t, y)− 2vΔx)∂
2
xxωε1(x − y − η − ξ) ωε0ψ

μ dz dξ dη︸ ︷︷ ︸
F1

+ 1

8Δx

∫ 0

−Δx

∫ Δx

0

∫
D2

T

(u − u(t, y))(u + u(t, y)− 2uΔx)∂
2
xxωε1(x − y − η − ξ) ωε0ψ

μ dz dξ dη︸ ︷︷ ︸
F2

.

The integrals F1 and F2 are estimated in the same way, therefore we outline only the estimate of F1.

|F1| ≤ 1

8Δx

∫ 0

−Δx

∫ Δx

0

∫
D2

T

|v − v(t, y)|(|v − vΔx| + |v(t, y)− vΔx|
)|∂2

xxωε1 |ωε0ψμ dz dξ dη

≤ 1

8Δx

∫ 0

−Δx

∫ Δx

0

∫ T

0
sup
x s.t.|x−y|≤3ε1

(∫
DT

|v − v(t, y)|2ωε0 dy ds

)1/2

×
{

sup
x s.t.|x−y|≤3ε1

(∫
DT

|v − vΔx|2ωε0 dy ds

)1/2

+
(∫

DT

|v(t, y)− vΔx|2ωε0 dy ds

)1/2}
×
∫

D
|∂2

xxωε1 | dxψμ dt dξ dη
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1628 F. WEBER

≤ CΔx

ε
2−γ
1

∫ T

0

{
sup
x s.t.|x−y|≤3ε1

(∫
DT

|v − vΔx|2ωε0 dy ds

)1/2

+
(∫

DT

|v(t, y)− vΔx|2ωε0 dy ds

)1/2}
ψμ dt.

Using (3.35), we find

|F1| ≤ CΔx

ε
2−2γ
1

+ CΔx

ε
2−γ
1

∫ T

0

√
λ(t)ψμ dt,

and therefore

|F| ≤ CΔx

ε
2−2γ
1

+ CΔx

ε
2−γ
1

∫ T

0

√
λ(t) ψμ dt. (3.43)

Referring to (3.29), we have established the following bounds

|A2| ≤ C

(
Δx

ε
2−2γ
0

+ Δx

ε
2−γ
0

∫ T

0

√
λ(t) ψμ dt

)
,

|B| ≤ C

(
Δx2

ε
3−2γ
1

+ Δx2

ε
3−γ
1

∫ T

0

√
λ(t) ψμ dt

)
,

|D| ≤ C

(
εα1

ε
1−2γ
1

+ εα1

ε
1−γ
0

∫ T

0

√
λ(t) ψμ dt

)
,

|E| = 0,

|F| ≤ C

(
Δx

ε
2−2γ
1

+ Δx

ε
2−γ
1

∫ T

0

√
λ(t) ψμ dt

)
,

where we have used that Δt = CΔx and Δx ≤ ε1. Hence,∫ T

0
λ(t)ωμ(t − τ) dt ≤

∫ T

0
λ(t)ωμ(t − ν) dt + C

(
Δx

ε
2−2γ
0

+ Δx2

ε
3−2γ
0

+ εα1

ε
1−2γ
0

+ Δx

ε
2−2γ
1

)
︸ ︷︷ ︸

M1

+ C

(
Δx

ε
2−γ
0

+ Δx2

ε
3−γ
1

+ ε1
α

ε
1−γ
0

+ Δx

ε
2−γ
1

)
︸ ︷︷ ︸

M2

∫ T

0

√
λ(t) ψμ dt.

Sending μ to zero, we find

λ(τ) ≤ λ(ν)+ M1 + M2

∫ τ

ν

√
λ(t) dt.
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With an application of a Grönwall type inequality (Dragomir, 2003, Chapter 1, Theorem 4) we obtain
the estimate

λ(τ) ≤
(√

λ(ν)+ M1 + (τ − ν)M2

)2

≤ 2
(
λ(ν)+ M1 + T 2M2

2

)
. (3.44)

By the triangle inequality, we have∣∣∣∣(∫
D

∫
DT

|uΔx(s, x)− u(t, y)|2 ωε1ωε0 dx ds dy

)1/2

− ‖u(t, ·)− uΔx(t, ·)‖L2(D)

∣∣∣∣
≤
(∫

D

∫
DT

|uΔx(s, x)− uΔx(t, y)|2 ωε1ωε0 dx ds dy

)1/2

≤
(∫

D2
|uΔx(t, x)− uΔx(t, y)|2 ωε1 dx dy

)1/2

+
(∫

DT

|uΔx(t, x)− uΔx(s, x)|2 ωε0 ds dx

)1/2

≤ C (εγ0 + ε
γ

1 ), (3.45)

and similarly∣∣∣∣(∫
D

∫
DT

1

a(x)
|vΔx(t, x)− v(s, y)|2 ωε1ωε0 dx ds dy

)1/2

− ‖(v − vΔx)(t, ·)/a‖L2(D)

∣∣∣∣
≤ C (εγ0 + ε

γ

1 ). (3.46)

Moreover,

‖(u − uΔx)(ν, ·)‖L2(D) + ‖(v − vΔx)(ν, ·)/a‖L2(D)

≤ ‖uΔx(ν, ·)− uΔx(0, ·)‖L2(D) + ‖(vΔx(ν, ·)− vΔx(0, ·))/a‖L2(D)

+ ‖u0 − uΔx(0, ·)‖L2(D) + ‖(v0 − vΔx(0, ·))/a‖L2(D)

+ ‖u(ν, ·)− u0‖L2(D) + ‖(v(ν, ·)− v0)/a‖L2(D)

≤ C(ν +Δt)γ + ‖u0 − uΔx(0, ·)‖L2(D) + ‖(v0 − vΔx(0, ·))/a‖L2(D). (3.47)

Write

e(τ ) = ‖(u − uΔx)(τ , ·)‖L2(D) + ‖(v − vΔx)(τ , ·)/a‖L2(D).

Thus, combining (3.44)–(3.47), the definition of M1 and M2 and some basic calculus inequalities, we
obtain

e2(τ ) ≤ C

(
e2(0)+ ε

2γ
1 + ε

2γ
0 + Δx

ε
2−2γ
0

+ εα1

ε
1−2γ
0

+ Δx2

ε
4−2γ
0

+ Δx4

ε
6−2γ
1

+ ε2α
1

ε
2(1−γ )
0

+ Δx2

ε
3−2γ
1

+ Δx

ε
2−2γ
1

+ Δx2

ε
4−2γ
1

)
. (3.48)
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Hence, choosing ε1 = ε
1/α
0 and ε1 = Δx1/(2(γ α+1−γ )),

e(τ ) ≤ C
(
e(0)+Δx(αγ )/(2(αγ+1−γ ))). �

Remark 3.4 We note that for γ = 1, this reduces to a rate of Δx1/2 independently of α.

3.3 Numerical examples

Next, we shall compare the above-derived convergence rates with the ones obtained in practice. To this
end, we implement the finite difference scheme (3.4) and test it on a set of numerical test cases. For
all the test cases, we use the interval D = [0, 2] as the computational domain with periodic boundary
conditions. We use again the sample of a log-normally distributed random field from Section 2.5 as a
material coefficient a (cf. Fig. 1). We compute approximations at time T = 1 and test the scheme in
this setting with different choices of initial data. We only test the case that the initial data v0, u0 have a
moduli of continuity γ = 1, for which we could show in Lemma 3.1 that the solutions have the same
moduli of continuity. In this case, Theorem 3.2 predicts a rate of convergence of 1/2. Specifically, we run
experiments with initial data

v0,1(x) = sin(2πx), u0,1(x) = cos(2πx), (3.49)

and with

v0,2(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 − 2(x − 1/2), x ∈ [0, 0.5)

−1 + 2(x − 1/2) x ∈ [0.5, 1),

−1 − 2(x − 3/2), x ∈ [1, 1.5),

−1 + 2(x − 3/2), x ∈ [1.5, 2),

u0,2(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + 2(x − 1/2), x ∈ [0, 0.5)

1 − 2(x − 1/2) x ∈ [0.5, 1),

1 + 2(x − 3/2), x ∈ [1, 1.5),

1 − 2(x − 3/2), x ∈ [1.5, 2)

(3.50)

(note that v0,2 = −u0,2). As a third set of initial data we take v0,3 = v0,2 and for u0,3 we take the composition
of 30 random hat functions on [0, 2], i.e.,

u0,3 =
30∑

j=1

hj(x),

where hj is given by

hj(x) =

⎧⎪⎨⎪⎩
0, x ∈ [0, x0] ∪ (x2, 2],
q x−x0

x1−x0
, x ∈ (x0, x1],

q x2−x
x2−x1

, x ∈ (x1, x2],

where q ∼ U(−1, 1), x0 ∼ U(0, 1), x1 ∼ U(x0, 2) and x2 ∼ U(x1, 2) are samples of uniformly distributed
random variables. The initial data u0,3 and v0,3 are pictured in Fig. 3 on the left, and the approximation of
the linear wave equation by scheme (3.4) at time T = 1 on the right (on a grid with 214 points).

The above-chosen initial data have moduli of continuity of γ = 1 in L2 since they are con-
tained in H1([0, 2]). We ran Nexp = 6 experiments for each set of initial data for mesh resolutions
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Fig. 3. Left: Initial data u0,3 and v0,3; Right: Solution at time T = 1 for initial data u0,3, v0,3.

Table 2 Experimental rates, r2
u is the rate

for u, r2
v the rate for v and r2

p the rate for p

r2
u r2

v r2
p

u0,1, v0,1 0.8715 0.6968 0.9170
u0,2, v0,2 0.7424 0.7542 0.9214
u0,3, v0,3 0.5992 0.5868 0.9503

Δx = 2−5, . . . , 2−10 (i.e., Nx = 26, . . . , 211) and compute errors and rates as in (2.74), (2.73) for m = 2
against a reference solution computed on a grid with 214 points. The obtained rates for the three sets of
initial data are displayed in Table 2.

We observe that the rates are higher than the 1/2 which the theory predicts, but not by much, as
the example with initial data u0,3, v0,3 shows. Moreover, we are testing self-convergence, so the actual
convergence rate could be slower. We have also computed convergence rates for the approximation of p,
which we computed by integrating the approximation of v with a forward Euler scheme, i.e.,

pn+1
j = pn

j +Δt vn
j ,

for which we have not proved any theoretical results. We observe that the rate for this variable is higher,
close to 1, which is probably due to the fact that p has more regularity than v and u, as it can be written
as an integral of either of those.

4. Conclusions

Acoustic waves that propagate in a heterogeneous medium, for instance an oil and gas reservoir, are
modeled using the linear wave equation (1.1) with a variable material coefficient c. Standard finite
difference and finite element approximations converge to the solution as the mesh is refined. A rate
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of convergence for these approximations can be obtained based on the assumption that the underlying
solution is smooth enough. This requires enough smoothness of the material coefficient (wave speed).

However in many practical situations of interest such as seismic wave imaging and hydrocarbon
exploration, the material coefficient is not smooth, not even continuously differentiable. Moreover, the
material coefficient (rock permeability) is usually modeled by a log-normal random field. Path-wise
realizations of such fields are at most Hölder continuous. Thus, the design of numerical schemes that
can approximate wave propagation in Hölder continuous media is a necessary first step in the efficient
solution of the underlying uncertain PDE with a log-normal distributed material coefficient (Mishra et al.,
2016). We are not aware of rigorous numerical analysis results for discretizations of the wave equation
with such rough coefficients apart from the works (Jovanović et al., 1987; Jovanović, 1992; Jovanović &
Süli, 2014) which require the coefficient to be in Ws,2(D) for some s ∈ (1, 3].

The current paper is therefore an attempt to design robust numerical approximations for the one-
dimensional transport and the wave equation with rough, i.e., only Hölder continuous coefficients. For
low enough Hölder exponent, this regularity requirement is less than the one in Jovanović et al. (1987),
Jovanović & Süli (2014) and Jovanović (1992), and also our assumptions on the regularity of the solution
are weaker. However, our results (so far) restrict to the one-dimensional case.

We propose upwind finite difference approximations and show that these approximations converge
as the mesh is refined. Furthermore, we establish rigorous convergence rates of these approximations.
The obtained rates explicitly depend on the Hölder exponent of the material coefficient, as well as the
modulus of continuity in L1 or L2 of the initial data. The rates of convergence are obtained by a novel
adaptation of the Kružkov doubling of variables technique from scalar conservation laws to our L2 linear
system setting. In particular, we prove that for coefficients which are Hölder continuous with exponent
α and initial data that are Hölder continuous with exponent γ the solution of the transport equation, and
its approximation have the same Hölder regularity and the approximations converge with rate at least
(γ α)/(γ α + 2 − γ ) in L1 and L2 (cf. Theorems 2.11 and 2.13). For the wave equation, we could show
that if the initial data have a modulus of continuity of γ = 1 in L2, then the solution will inherit it. In
this case, the finite difference approximations converge at rate of at least 1/2. The numerical experiments
demonstrate the near sharpness of this rate. We also show rates of convergence under the assumption that
the numerical approximations have lower moduli of continuity; however, in this case, we cannot prove
that the numerical approximations actually inherit those.

We conclude with a brief discussion on possible limitations and future extensions of our methods:

• We consider finite difference discretizations in the current paper. The formal order of accuracy of
our three-point finite difference schemes is 1. One can argue that analogous to linear hyperbolic
systems with smooth coefficients, one can obtain higher rates of convergence by designing schemes
with a larger stencil (a higher formal order of accuracy). We find that prospect unlikely to hold in
practice on account of the lack of smoothness of the coefficient. Furthermore, the irregularities of the
coefficient are not localized. Hence, one cannot expect any localization of singularities in the solution
and its derivatives. This is in marked contrast to nonlinear systems of conservation laws, where
discontinuities such as shocks and contact discontinuities separate smooth parts of the flow. Thus,
high-resolution finite difference schemes perform better than low order schemes for conservation
laws. Such a situation does not hold for wave propagation in a rough medium. We expect that the
low-order schemes presented here are not only simple, but also optimal in this case.

• We present the analysis only in one space dimension and for uniform grids. The extension of the finite
difference scheme to the two- and three-dimensional wave equation is straightforward; however, it
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is not easy to show that the solution computed in this way has a modulus of continuity, which is
fundamental to obtaining convergence rates using our technique. In fact, we do not know currently if
the approximations do have a modulus of continuity. Obtaining more insight into the regularity of the
approximations is one of the objectives of our current research efforts. We would furthermore like to
extend the method and convergence analysis to unstructured grids.

• The numerical experiments for the transport equation (Section 2.5) suggest that the rate from Theorem
2.11 may not be sharp. Consequently, we plan to experiment more in order to find out if the rate is
sharp or not, and otherwise try to improve the estimate.

• We restrict ourselves to acoustic wave propagation in rough media in this paper. However, elastic
wave propagation also involves media with material properties that lead to rough, Hölder continuous
coefficients. The extension of these methods to such problems will be considered in a forthcoming
paper. Another possible direction of research would be to prove a rate of convergence for numeri-
cal methods that approximate electromagnetic wave propagation in heterogeneous media. Possible
extensions to nonlinear wave equations, and discontinuous and time-dependent coefficients will also
be considered.
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