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Abstract. The Quantum Decision Theory, developed recently by the authors, is applied to clarify the role
of risk and uncertainty in decision making and in particular in relation to the phenomenon of dynamic
inconsistency. By formulating this notion in precise mathematical terms, we distinguish three types of
inconsistency: time inconsistency, planning paradox, and inconsistency occurring in some discounting ef-
fects. While time inconsistency is well accounted for in classical decision theory, the planning paradox is
in contradiction with classical utility theory. It finds a natural explanation in the frame of the Quantum
Decision Theory. Different types of discounting effects are analyzed and shown to enjoy a straightforward
explanation within the suggested theory. We also introduce a general methodology based on self-similar
approximation theory for deriving the evolution equations for the probabilities of future prospects. This
provides a novel classification of possible discount factors, which include the previously known cases (expo-
nential or hyperbolic discounting), but also predicts a novel class of discount factors that decay to a strictly
positive constant for very large future time horizons. This class may be useful to deal with very long-term
discounting situations associated with intergenerational public policy choices, encompassing issues such as
global warming and nuclear waste disposal.

PACS. 89.65.-s Social and economic systems – 89.70.Hj Communication complexity – 89.75.-k Complex
systems – 03.67.Hk Quantum communication

1 Introduction

The concept of risk is widely used in economics, finance,
psychology, as well as in everyday life. Respectively, there
exist several definitions of risk and different ways of eval-
uating it. In any application, the notion of risk is always
related to the necessity of taking decisions under uncer-
tainty. It is impossible to achieve optimal results in any
science without correct decisions, leading to optimal con-
sequences following from the taken decision. This is why
the notion of risk and the problem of its evaluation has,
first of all, to be understood in the frame of decision the-
ory. It is precisely the aim of the present paper to formu-
late a novel approach for taking into account the risk in
decision making and to demonstrate in concrete examples,
related to temporal effects in making decisions, that this
new approach is free of defects and paradoxes plaguing
the application of standard decision theory.

Classical decision theory is based on expected util-
ity theory, which was advanced by Bernoulli [1] and
was shaped into a rigorous mathematical theory by von
Neumann and Morgenstern [2]. In this theory, a decision
maker chooses between several lotteries, or gambles, each
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being composed of a set of outcomes, equipped with a
probability measure. Initially [2], the probabilities were as-
sumed to be objective. Savage [3] extended utility theory
to the case of subjective probabilities. Savage’s generaliza-
tion has been demonstrated to be tremendously flexible in
representing the attitude of decision makers towards risk
and uncertainty. Starting with Pratt [4] and Arrow [5],
different measures of risk have been proposed. Extensions
and modern developments are covered, e.g., in [6–8].

Notwithstanding a remarkable breadth of successful
applications, classical decision theory, when applied to real
humans, leads to a variety of paradoxes that remain un-
solved in its framework. The first such anomaly was de-
scribed by Allais [9], which is now known as the Allais
paradox. Other well known paradoxes are Ellsberg’s para-
dox [10], Kahneman-Tversky’s paradox [11], the conjunc-
tion fallacy [12,13], the disjunction effect [14], and Rabin’s
paradox [15]. These and other paradoxes are reviewed in
references [16,17].

There has been many attempts to modify expected
utility theory in order to get rid of the paradoxes that
plague its application to the processes involving decision
making of real human beings. One of these approaches is
the cumulative-prospect theory or reference-point theory
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[18], which assumes that decision making is not based on
the absolute evaluation of payoffs but depends on a ref-
erence point that is specific to the present state of the
decision maker. Because the reference point is shifted as
a result of the consequences emerging from a first deci-
sion, the subsequent decision performed, according to the
reference-point theory, is therefore sensitive to the differ-
ence between subsequent payoffs rather than to the abso-
lute payoff deriving solely from the second decision.

One of the main problems encountered when using
reference-point theory is that the reference point of a de-
cision maker is not uniquely defined: for a similar pay-
off history, each decision maker can possess (and actually
does possess) his/her own specific reference point, which
is generally unobservable. Moreover, reference-point the-
ory is more suited to address those anomalies that arise
in gambles involving at least two-steps, in which the ref-
erence point can be expected to be shifted after each out-
come. But, the majority of paradoxes appear in single-
step gambles, where reference-point theory is not appli-
cable. In the hope of explaining the paradoxes mentioned
above, many other variants of the so-called non-expected
utility theories have been suggested. A review of a va-
riety of such non-expected utility theories can be found
in Machina [19–21]. A rigorous analysis of these theories
has been recently performed by Safra and Segal [22], who
concluded that the non-expected utility theories cannot
explain all paradoxes. Though it is possible to invent a
modification of utility theory that will fit one or a few
paradoxes, the problem is that many others will remain
unexplained at best, or new inconsistencies will arise at
worst.

The basic difficulty in taking into account and evalu-
ating risk, when deciding under uncertainty, is that the
usual approaches assume that decision makers are ratio-
nal. However, real human beings are only partially ratio-
nal [23], as is well documented by numerous empirical data
in behavioral economics and neuroeconomics [24–27]. Risk
is always related to emotions. But how could one describe
emotions within a quantitative framework suitable for de-
cision making?

A new approach to decision making, called Quan-
tum Decision Theory (QDT), has been advanced in ref-
erences [16,17,28]. The main idea of this approach is to
take into account that realistic decision-making problems
are composite, consisting of several parts intimately inter-
connected, intricately correlated, and entangled with each
other. Several intended actions can interfere with each
other, producing effects that cannot be simply measured
by ascribing a classical utility function. The complexity
involved in decision making reflects the interplay between
the decision maker’s underlying emotions and feelings and
his/her attitude to risk and uncertainty accompanying
the decision making process. In order to take account
of these subtle characteristics in the most self-consistent
and simple way, we suggest to use the mathematical tech-
niques based on the quantum theory of measurement of
von Neumann [29] and developed by other authors (see,
e.g., Refs. [30,31]). This is the reason for referring to this

new approach under the name Quantum Decision Theory
(QDT). It is important to stress that we do not assume
that human brains are quantum objects. It should just be
understood that we use the techniques of complex Hilbert
spaces, as a convenient mathematical toolbox that pro-
vides a parsimonious and efficient description of the com-
plex processes involved in decision making.

In our previous papers [16,17,28], we formulated the
mathematics of QDT and showed that this approach
provides a straightforward explanation of practically all
known paradoxes of classical decision making. However,
we have not yet considered the class of so-called dynamical
inconsistencies that arise in decisions (under risks and/or
uncertainty) that compare different time horizons. The
aim of the present paper is to analyze this class of incon-
sistency in the frame of QDT, explaining those effects that
have remained unexplained in the standard theory.

Our theory should not be confused with the approach
that is called “quantum probabilities from decision the-
ory”, where one attempts to derive the rule of defining
the probability in quantum mechanics from classical deci-
sion theory. To be more precise, let us recall that proba-
bilities enter quantum mechanics via the Born rule, ac-
cording to which the probability of each outcome of a
measurement is prescribed by the squared amplitude of
the corresponding term in the given quantum-mechanical
state [32]. Deutsch [33] argued that the Born rule could
be derived from the notion of rational preferences of stan-
dard classical decision theory. This argument was recon-
sidered by Wallace [34–36] who showed that the Deutsch
way of reasoning, first, necessarily requires the Everett [37]
many-word interpretation of quantum mechanics and, sec-
ond, needs additional assumptions that have nothing to do
with classical decision theory. A very detailed analysis of
the Deutsch-Wallace arguments has recently been given by
Lewis [38], who has persuasively demonstrated that there
are several serious drawbacks in the Deutsch-Wallace pic-
ture. First of all, the Everett many-word interpretation
has its own problem related to its basic assumption that,
after each measurement, the observer branches into a num-
ber of successors living in different words. The number
of such branches is not well defined and even can be in-
finite. According to Lewis [38], “the number of branches
associated with an outcome is unknowable, undefined, and
uncountable, and hence branch-counting rules are simply
unusable”. Lewis also showed that there are other gaps
in the mathematics of Deutsch and Wallace, which inval-
idate the proof that the Born rule could be derived form
classical decision theory [38].

In our theory, we adopt the quantum-mechanical rules
as its very foundation, never trying to derive them from
some other assumptions. The mathematics we employ is
in complete agreement with the von Neumann axiomat-
ics [29]. Using the techniques of quantum theory, we de-
velop the quantum decision theory that can be applied to
real alive beings.

The theory of quantum measurement considers only
passive quantum systems subject to a measurement pro-
cedure imposed by an external observer. A principal
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difference is that our theory describes an active deci-
sion maker. Mathematically, an active decision maker is
characterized by his/her own strategic states describing
his/her main personal preferences. In contrast, in quan-
tum measurements performed over a passive system, there
is no preferred quantum states, and any basis can be em-
ployed.

Moreover, our approach is completely different from
the theory of quantum games, suggested by Meyer [39]
(see the review articles [40,41]). What is common for both
these theories is merely the use of the quantum theoret-
ical techniques, but their mathematical structure is very
different. The general setup of a quantum game is as fol-
lows. One considers a passive quantum system (gamble
source), several observers (players), and an external ma-
chine (judge). The system is prepared in a quantum state.
The machine acts on this state entangling it. Each of the
players in turn acts on the resulting entangled state by a
unitary transformation. In this process, the players can ex-
change information between themselves and with the ma-
chine. Then the machine again acts on the obtained state
disentangling it and producing the final product state. The
payoffs are calculated according to the classical rule with
additive probabilities, hence, there is no interference in
this final stage. This scheme can be considered as a vari-
ant of quantum computation and communication. Con-
trary to this scheme, in our approach, we consider only
a single decision maker and not several ones. Of course,
the single decision maker can represent a group of people
that act as a single person. There is no passive quantum
system, but the decision maker represents himself/herself
an active system acting according to quantum rules. The
decision maker does not produce unitary transformations
on the given states. There are no external judges or ma-
chines. Since the calculations are made by quantum rules,
this involves nonadditive quantum probabilities and the
related interference terms that are of crucial importance
for the analysis of what constitutes the optimal decision.
Thus, the overall structure of our theory is principally dif-
ferent from the setup of quantum games.

In Section 2, we provide a brief summary of the archi-
tecture of QDT that is needed for our analysis. Section 3
dissects the three classes of dynamic inconsistency (time
inconsistency, planning paradox and discounting effects)
and applies QDT to them. Section 4 presents a quanti-
tative formulation of the dynamics of prospects, in which
hyperbolic discounting is derived from simple principles.
Section 5 concludes. Let us stress once more that the dy-
namic effects have not been treated in our previous arti-
cles [16,17,28].

2 Quantum decision theory

In this section, we give a brief formulation of the theory
to be used. We follow the scheme of references [17,28],
employing Dirac’s notation [32,42] for the states belonging
to the Hilbert spaces. To be precise, we recall below the
basic definitions and axioms of QDT.

2.1 Main definitions

Definition 1. Action ring. The set of intended actions
An, enumerated with an index n, forms an action ring

A = {An : n = 1, 2, . . . , N}. (1)

The ring is equipped with the binary operations, namely
the addition and multiplication: for each Am and An be-
longing to A, Am + An and AmAn also belong to A.
The addition is associative, so that A1 + (A2 + A3) =
(A1+A2)+A3, and reversible, in the sense that A1+A2 =
A3 yields A1 = A3 − A2. The multiplication is distribu-
tive, A1(A2 + A3) = A1A2 + A1A3, and idempotent,
AnAn = A2

n = An. But, generally, it is not commutative,
so that AmAn does not necessarily equal AnAm when m
and n are different. There exists an empty action, such
that An0 = 0An = 0. Two actions Am and An are dis-
joint when AmAn = AnAm = 0.

Definition 2. Action modes. The elements of the action
ring, the actions, can be composite

An =
Mn⋃

μ=1

Anμ (Mn > 1), (2)

being composed of several representations, called modes,
labelled by μ. Different modes are assumed to be disjoint,

AnμAnν = δμνAnμ,

where δμν is the Kronecker delta. An action is composite
if Mn > 1, in the other case, it is simple.

Definition 3. Action prospects. A more complex structure
is an action prospect

πj =
⋂

n

Ajn (Ajn ∈ A), (3)

which is a conjunction of several actions. The prospect is
composite if it includes composite actions, while it is sim-
ple if all actions in (3) are simple. Generally, the number
of factors in the intersection can be different, depending
on the definition of the prospects. Since the products of
actions pertaining to the ring, by the ring structure, also
pertain to the ring, then the prospects are also members
of the same ring.

Definition 4. Elementary prospects. A prospect is called
elementary if all actions in its definition (3) are simple, be-
ing represented by single modes. The elementary prospects

eα =
N⋂

n=1

Ainμn (4)

are labelled by the binary multi-index

α = {in, μn : n = 1, 2, . . . , N}α.

The set {α} has cardinality card{α} =
∏N

n=1Mn. All ele-
mentary prospects are disjoint with respect to each other,

eαeβ = δαβeα.
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Here and in what follows, the cardinality N is the same
as in Definition 1.

Definition 5. Prospect lattice. A particular family of
prospects composes a prospect lattice

L = {πj : j = 1, 2, . . . , NL}, (5)

where the binary operations ≥ and ≤ are assumed to be
defined, ordering the prospects so that, for each pair πi

and πj , either πi ≥ πj or πi ≤ πj . For a while, it is suffi-
cient to keep in mind that the prospects can be ordered.
The explicit ordering procedure will be prescribed below
in Definition 16.

Definition 6. Mode states. To each mode Anμ there cor-
responds a complex function

|Anμ〉 : A → C (6)

called the mode state. The fact that each mode is idem-
potent and different modes are disjoint is expressed
through the orthonormality condition for the scalar prod-
uct 〈Anμ|Anν〉 = δμν .

Definition 7. Mode space. The closed linear envelope

Mn = Span{|Anμ〉 : μ = 1, 2, . . . ,Mn}, (7)

spanning all mode states, equipped with a scalar product,
is the mode space. This is a Hilbert space of dimensionality
dimMn = Mn.

Definition 8. Basic states. To each elementary
prospect (4), there corresponds a complex function

|eα〉 = |Ai1μ1Ai2μ2 . . . AiN μN 〉 =
N⊗

n=1

|Ainμn〉, (8)

called a basic state. Since an elementary prospect (4) is
a conjunction of single modes, and different modes are
disjoint with each other, this is expressed as the orthonor-
mality condition for the scalar product 〈eα|eβ〉 = δαβ .

Definition 9. Mind space. The closed linear envelope

M = Span{|eα〉 : α ∈ {α}} =
N⊗

n=1

Mn, (9)

spanning all basic states, endowed with a scalar product,
is the mind space. This is a Hilbert space of dimensionality
dimM =

∏N
n=1Mn.

Definition 10. Prospect states. To each prospect (3),
there corresponds a complex function |πj〉 belonging to
the mind space M. Because the prospects, generally, are
composite, they are not necessarily normalized and or-
thogonal to each other.

Definition 11. Strategic states. In the mind space (9),
there exist fixed reference states |ψs〉 ∈ M, which char-
acterize the features typical of a given decision maker.
These states are orthonormal, such that 〈ψs|ψs′〉 = δss′ .

But they do not necessarily form a basis. The existence
of the strategic states is the principal point distinguishing
QDT from the usual theory of quantum measurements.

Definition 12. Mind strategy. The collection of all strate-
gic states |ψs〉, equipped with their weights ws, forms the
mind strategy

Σ = {|ψs〉, ws : s = 1, 2, . . . , S}, (10)

where
S∑

s=1

ws = 1, 0 ≤ ws ≤ 1. (11)

The mind strategy describes the decision-maker character,
his/her main beliefs and principles, according to which
he/she makes decisions.

Definition 13. Prospect operators. Each prospect state
|πj〉 defines the prospect operator

P̂ (πj) = |πj〉〈πj |, (12)

where 〈πj | is the Hermitian conjugate to |πj〉. The
prospect operators, by definition, are self-adjoint. The
family of all prospect operators forms the involutive bi-
jective algebra

P = {P̂ (πj) : πj ∈ L}.
This algebra is analogous to the algebra of local observ-
ables in quantum theory.

Definition 14. Operator averages. The average of a
prospect operator (12) is the sum

〈P̂ (πj)〉 =
S∑

s=1

ws〈ψs|P̂ (πj)|ψs〉 (13)

of its matrix elements over the strategic states.

Definition 15. Prospect probability. The probability of a
prospect πj ∈ L is the average

p(πj) = 〈P̂ (πj)〉 (14)

of the prospect operator (12), with the normalization con-
dition

NL∑

j=1

p(πj) = 1, (15)

where the summation is over the whole prospect lattice L.

Definition 16. Prospect ordering. A prospect π1 is indif-
ferent to a prospect π2 if and only if their probabilities
coincide,

p(π1) = p(π2) (π1 = π2) (16)

and a prospect π1 is preferred to π2 if and only if

p(π1) > p(π2) (π1 > π2). (17)

The ordering of prospects through the relation between
their probabilities defines the explicit ordering in the
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prospect lattice (5). The prospect π∗ with the largest
probability p(π∗) = supj p(πj) is called optimal.

Definition 17. Partial probabilities. The probability

p(πjeα) = 〈P̂ (eα)P̂ (πj)P̂ (eα)〉 (18)

of a conjunction prospect πjeα defines the partial proba-
bility of realizing an elementary prospect eα when deciding
on the prospect πj . The partial probabilities are normal-
ized as ∑

j,α

p(πjeα) = 1, (19)

where the sum is over all πj ∈ L and all eα.

Definition 18. Attraction factor. The variable

q(πj) =
∑

α�=β

〈P̂ (eα)P̂ (πj)P̂ (eβ)〉 (20)

quantifies the attractiveness of the prospect πj for a deci-
sion maker with respect to risk, uncertainty, and biases. It
arises due to the interference between the intended actions
of a given prospect πj , which occurs during the decision
process.

Definition 19. Attraction ordering. The prospects are or-
dered with respect to their attractiveness for a decision
maker. A prospect π1 is more attractive than a prospect π2

if and only if
q(π1) > q(π2). (21)

The prospects π1 and π2 are equally attractive if and
only if

q(π1) = q(π2). (22)

The impact in decision making of emotions and feelings,
which are known to be important and practically insepa-
rable from logical deliberation [43], are quantified by the
attraction factor. The ordering of prospects with respect
to their attractiveness, quantified by the attraction fac-
tor (20), is a principal ingredient of QDT.

Definition 20. Attraction conditions. The distinction be-
tween more or less attractive prospects is formalized by
the following rule. A prospect π1 is more attractive than
a prospect π2, when it is connected with:

(a) more certain gain;
(b) less certain loss;
(c) higher activity under certainty;
(d) lower activity under uncertainty.

These characteristics describe the aversion of a decision
maker to risk, uncertainty, and presumed loss.

2.2 A few theorems

The above definitions constitute the basis of
QDT [16,17,28]. They allow us to derive the follow-
ing theorems proved in reference [17], which will be
needed below.

Proposition 1 (Prospect probability). The probability of
a prospect πj ∈ L is

p(πj) =
∑

α

p(πjeα) + q(πj), (23)

where the summation is over the elementary prospects eα.

Proposition 2 (Attraction alternation). The sum of all
attraction factors (20) is equal to zero:

NL∑

j=1

q(πj) = 0, (24)

where the summation is performed over all πj ∈ L.

Proposition 3 (Preference criterion). A prospect π1 ∈ L
is preferred to a prospect π2 ∈ L if and only if

∑

α

[p(π1eα) − p(π2eα)] > q(π2) − q(π1). (25)

Remark. From the form of prospect probability (23), to-
gether with condition (19) and property (24), it is immedi-
ately seen that the normalization condition (15) is always
valid.

These theorems imply that the probability of taking a
given decision is controlled by the levels of attraction of
the different competing prospects, thus emphasizing the
emotional component of the decision process. Indeed, the
choice of a specific prospect among several alternatives
depends not solely on its value given by the first term
in the right-hand side of equation (23), but also on its
attractiveness quantified by the attraction factor (20). In
classical decision theory, only values measured by a utility
function are considered, but emotions and feelings are not
taken into account. In QDT, the later are embodied in the
new ingredients, the attraction factors.

Two essential characteristics distinguish QDT from
classical utility theory:

(i) QDT is a probabilistic theory, in which each prospect
is associated with its probability, which has a sub-
jective component captured by the attraction factor.
The prospect probability can be measured experimen-
tally, by interpreting it as a relative frequency, that
is, it corresponds to the relative ratio of decision mak-
ers accepting the given prospect. This probabilistic
framework accounts for the observations that, under
the same conditions, different people endowed with a
priori the same preferences may make different deci-
sions. In contrast, classical utility theory is determin-
istic, with its prescription to the decision maker forc-
ing him/her to accept the unique alternative which
corresponds to the maximal expected utility.

(ii) In addition to the payoff values, QDT takes also into
account the attractiveness of the analyzed prospects,
quantified by their attraction factors (20). These at-
traction factors are absent in utility theory. Therefore,
a partial reduction of QDT to classical decision theory
is obtained by setting the attraction factor to zero.
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2.3 Binary mind

To make the structure of the theory clearer, it is instruc-
tive to consider the particular case of a binary mind. This
case is also of intrinsic interest because the majority of
paradoxes can be treated and explained in this specific
frame.

The binary mind corresponds to considering only two
actions, while each of them can possess a number of rep-
resentation modes. Let these actions be

A =
M1⋃

j=1

Aj , B =
M2⋃

μ=1

Bμ. (26)

Hence, there are two mode spaces

M1 = Span{|Aj〉 : j = 1, 2 . . . ,M1},
M2 = Span{|Bμ〉 : μ = 1, 2 . . . ,M2}. (27)

The mind space is the tensor product of these two mode
spaces

M = M1 ⊗M2, (28)

hence its name “binary”. This should not be confused with
the dimensionality dimM = M1M2 of the binary mind,
which can be large.

The elementary prospects (4) are ejμ = AjBμ, and the
basic states (8) become

|ejμ〉 = |AjBμ〉 ≡ |Aj〉 ⊗ |Bμ〉. (29)

The action prospects (3) can be constructed as πj = AjB,
and the conjunction prospects as πjejμ = AjBμ. Accord-
ing to equation (23), the prospect probabilities are

p(πj) =
M2∑

μ=1

p(AjBμ) + q(πj). (30)

One can draw the following analogies between the quan-
tities of QDT presented above, and those of classical util-
ity theory. The set B of modes Bμ corresponds to the
set of payoffs. Complementing this set by the related
weights pj(Bμ) defines a lottery Lj. The weights pj(Bμ)
can be expressed in terms of the conditional probabilities:
pj(Bμ) = p(Aj |Bμ). This defines the probability of get-
ting payoff Bμ in lottery Lj. The analog of the expected
utility is the sum

M2∑

μ=1

p(AjBμ) =
M2∑

μ=1

p(Aj |Bμ)p(Bμ), (31)

where p(Bμ) is a normalized measure of the payoff Bμ.
With QDT, it is possible to explain all paradoxes

emerging in classical decision making [16,17]. To give an
idea how this is done, we present here a brief account of
the resolution of Allais’ paradox [9]. Allais’ paradox can
be described with a binary mind, as defined above. For the
sake of brevity, we survey only the mathematical structure
of this paradox, omitting the interpretations related to

psychological features (see Refs. [16,17] for in-depth anal-
ysis). A detailed description of the mathematical structure
of the Allais paradox can be found in reference [17].

One considers two actions as in equation (26), with
M1 = 4 and M2 = 3 and the mind dimensionality
dimM = M1M2 = 12. The experiment, demonstrating
Allais’ paradox, is organized in such a way that the bal-
ance condition

p(A1Bμ) + p(A3Bμ) = p(A2Bμ) + p(A4Bμ) (32)

holds for all μ = 1, 2, 3. The goal is to compare the
prospects πj = AjB for different j. Allais’ paradox is that
most human decision makers prefer the prospect π1 to π2,
and π3 to π4 which, due to the balance condition (32),
leads to a contradiction. The fact that π1 is preferred to
π2 translates in the language of QDT into the inequality
p(π1) > p(π2). The fact that prospect π1 looks more at-
tractive (less uncertain, less risky) than π2 implies that
q(π1) > q(π2). Using (30), this leads to

3∑

μ=1

[p(A2Bμ) − p(A1Bμ)] < q(π1) − q(π2). (33)

The fact that π3 is preferred to π4 translates in the lan-
guage of QDT into p(π3) > p(π4). The larger attraction of
π3, compared with π4, implies that q(π3) > q(π4). Again
using (30), this gives

3∑

μ=1

[p(A3Bμ) − p(A4Bμ)] > q(π4) − q(π3). (34)

Then, using the definitions of Section 2.1 and Proposi-
tion 2 on the property of attraction alternation, invok-
ing the balance condition (32), and combining inequali-
ties (33) and (34), we get

−|q(π3) − q(π4)| <
3∑

μ=1

[p(A2Bμ) − p(A1Bμ)

< |q(π1) − q(π2)|. (35)

Classical decision theory corresponds to the limit of zero
attraction factors (q(π1) = q(π2) = q(π3) = q(π4) = 0).
In this case, the two inequalities (35) result in a contra-
diction, since the sum in the middle cannot be larger than
zero and, at the same time, smaller than zero. Within
QDT, this contradiction does not arise. Actually, within
QDT, Allais’ paradox is explained from the interplay be-
tween the attraction factors of different prospects.

3 Dynamic inconsistency

We now use the framework of QDT to study dynamic in-
consistency, which has not been treated in our previous
articles. In economics, time inconsistency refers, roughly
speaking, to a situation when the preference of a decision-
maker changes over time, in such a way that what is pre-
ferred at one point in time is inconsistent with what is
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preferred at another point in time. In fact, there are nu-
merous variants of dynamic inconsistency. By being pre-
cise, one can distinguish three broad classes of dynamic
inconsistency: (i) time inconsistency, (ii) planning para-
dox, and (iii) discounting effects. We now examine each
one in turn.

3.1 Time inconsistency

Time inconsistency is well epitomized by the Strotz’s
phrase [44]: “the optimal plan of the present moment is
generally one which is not obeyed, or that the individ-
ual’s future behavior will be inconsistent with his opti-
mal plan”. Various examples of this inconsistency have
been described in the literature [45–47]. Kydland and
Prescott [46] went so far as saying that the rational choice
for future times “is not an appropriate tool for economic
planning” and that “the application of optimal control
theory is equally absurd”.

The origin of time inconsistency is rather straightfor-
ward. When an individual makes a plan for the far future,
he/she cannot be conscious of all the detailed circum-
stances that will arise in that future. New information is
likely to appear and, in addition, the already available in-
formation may be open for re-evaluation. Since the future
situation is likely to be different, it will require making a
decision that is likely to differ from the current decision.
The current decision for the future action then turns out
to be sub-optimal when the future becomes the present.

There is no real paradox in this time inconsistency
and its solution can be readily obtained: when making a
decision for the distant future, it is necessary to try to
predict future changes and include these forecasts in the
decision making process. This recipe was suggested for in-
stance by Strotz [44] who gave, as an example, the behav-
ior of Odysseus when his ship was approaching the Sirens.
Wishing to hear the Sirens’ songs (short-term gratifica-
tion) but mindful of the possible delayed danger (falling
prey to the Sirens), he ordered his men to close their ears
with beeswax and to bind him to the mast of the ship. He
also ordered his men not to heed his cries while they would
pass the Sirens. In that way, Odysseus limited his future
agency and binded himself to a restriction (to the mast) to
survive the long-term consequences of his decision. Other
numerous example are known, related to pension savings,
health insurance, and so on. When making plans for the
far future, one tries to anticipate the obstacles that may
arise and one imposes restrictions and commitments that
oppose the change of decision that would result other-
wise due to time inconsistency. With the imposed com-
mitments, time inconsistency disappears and the present
decision becomes the optimized one for the future state.
As experiments show [48], even rats possess the ability of
making decisions that take into account an estimation of
future events. We conclude that both the origin and the
solution for time inconsistency are well understood and
do not require invoking additional concepts for their in-
terpretation.

3.2 Planning paradox

Consider a situation in which an individual makes a plan
for a short future period of time, such that no novel
information will become available and the individual him-
self/herself does not change over that period. In the ab-
sence of any new information and of any change, the de-
cision should be unchangeable as well. The invariance of
the decision in that sense is referred to as the principle of
dynamic consistency in classical decision theory.

However, it often happens that the decision maker does
change the plan, for not apparent reason. A stylized ex-
ample of this type of planning paradox is a smoker who
plans to stop smoking tomorrow, while enjoying the plea-
sure of smoking today. Making this plan, he/she promises
to stop smoking, understanding well that he/she will forgo
future pleasures, for the anticipation of higher health ben-
efits. The next day, while the plan and the utility result-
ing from its consequences have not changed, it is often
observed that the human beings change their plan, and
continue smoking.

3.2.1 Mathematical formulation of planning paradox
and its resolution

Such a behavior poses a real paradox within expected util-
ity theory. Let us formulate this paradox in precise math-
ematical terms. When deciding to stop smoking in a plan,
one keeps in mind the following intended actions:

– planning to stop smoking tomorrow (A1);
– planning to continue smoking tomorrow (A2);
– wishing to have good health (B1);
– paying little attention to health (B2).

The decision to stop smoking in reality corresponds to the
following intended actions:

– stop smoking in reality (A3);
– continue smoking in reality (A4);
– wishing to have good health (B1);
– paying little attention to health (B2).

The related four action sets are Xj = {AjBμ : μ = 1, 2},
with j = 1, 2, 3, 4. Following utility theory, and ascribing
probabilities to these actions, one gets the corresponding
lotteries Lj = Lj(Xj). Note that the utility functions of
the actions A1B and A3B, where B = B1 + B2, are the
same when expressed for tomorrow, since the two actions
of stopping smoking become equivalent. Similarly, the util-
ity functions tomorrow of the actions A2B and A4B are
equal, since continuing smoking is the same action, with
the same consequences. Therefore, the expected utilities
of the lotteries L1 and L3 are equal: U(L1) = U(L3).
And analogously, U(L2) = U(L4). But many individuals
prefer L1 to L3, which implies that, for these individu-
als, U(L1) > U(L3). The same individuals also choose L4

over L2, which implies that U(L2) < U(L4). This leads to
a contradiction violating the principle of dynamic consis-
tency of classical decision making.
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Let us now show how this paradox can be explained
within QDT. As above, we need to consider the intended
actions Aj , with j = 1, 2, 3, 4 and the set {Bμ}. In addi-
tion, the decision of stopping smoking in reality is accom-
panied by the following intended actions:

– getting pleasure from smoking (C1);
– having no pleasure from smoking (C2);
– agreeing to suffer because of addiction (D1);
– refusing to suffer from addiction (D2).

These additional intentions reflect emotional feelings of
the decision maker, which are not taken into account in
classical utility theory.

The prospects that need now to be compared are

π1 = A1B, π2 = A2B

(
B =

⋃

μ

Bμ

)
(36)

and
π3 = A3BCD, π4 = A4BCD, (37)

where

B = B1 +B2, C = C1 + C2, D = D1 +D2.

The value of quitting smoking, either today or tomorrow,
has the same determined value. Respectively, the value
of continuing smoking is also determined, being the same
either today or tomorrow. In both these cases, the util-
ity of stopping smoking is larger than that of continuing
smoking, which can be expressed as the inequality

∑

μ

p(A1Bμ) >
∑

μ

p(A2Bμ). (38)

In QDT, the attraction factors are taken into account,
which model the subjective emotions associated with dif-
ferent actions. Since the health benefits are evident, stop-
ping smoking in a plan seems to be more attractive than
to continue smoking. This looks easy, since the associated
pain is not yet felt but the risk for health, associated with
the continuation of smoking, seems evident. This is why
to stop smoking in a plan is more attractive than to con-
tinue smoking. Then the corresponding attraction factors
obey the inequality q(π1) > q(π2). In contrast, continuing
smoking unconditionally amounts to abandon oneself to
the pleasure of addiction, which is preferred in general to
the failure of not abiding to a plan to abandon smoking,
given that the health benefits are felt to be uncertain. One
can summarize these emotions by saying that continuing
smoking in reality is more attractive than stopping smok-
ing. This is formulated mathematically by the inequality
q(π4) > q(π3) for the corresponding attraction factors.
Summarizing, we have

q(π1) > q(π2), q(π4) > q(π3). (39)

Writing the prospect probabilities according to equa-
tion (30), and taking into account the above discussion,

shows that, in reality, the probability of continuing smok-
ing becomes larger than that of stopping smoking when

∑

μ

[p(A1Bμ) − p(A2Bμ)] < q(π4) − q(π3). (40)

Then it is implied immediately that the prospect π1 is pre-
ferred to π2, while π4 is preferred to π3. As for other para-
doxes, the absence of contradiction in QDT results from
the existence of the attraction factors, which are absent in
classical utility theory. We have shown that the attraction
factors derive intrinsically from the Hilbert space struc-
ture of the theory that accounts for interference between
prospects. Putting the attraction factors to zero recovers
the inconsistency associated with the planning paradox.
As QDT is a probabilistic theory, the above conclusion
that p(π1) > p(π2) and p(π4) > p(π3) does not mean that
no individual can stop smoking. The general subjective
preferences embodied in the attraction factors only tell us
that the majority of them will not be able to quit smoking.

3.2.2 Generalization to two-step games

To show that the explanation proposed by QDT is gen-
eral, let us consider another example of the planning para-
dox, with two-step gambles. In two-step gambles, decision
makers are typically confronted sequentially with two suc-
cessive gambles, with probabilities 1/2 to gain or to loose
in each of them. Before playing the first gamble, partici-
pants are asked to make a planned choice as whether they
would take the second gamble, provided the first one is
either won or lost. Then the first gamble is played. After
experiencing the actual results of the first gamble, deci-
sion makers are asked to make a final choice regarding the
second gamble, whether they accept it or not.

A number of experiments have been performed to test
the dynamic consistency in the frame of such two-step
gambles [49–51]. The experiments showed that the final
choices of the participants were frequently inconsistent
with their plans, even when the anticipated and experi-
enced outcomes were identical. These inconsistencies are
found to occur in a systematic direction: anticipating a
gain in the first gamble, decision makers planned to take
the second gamble – but after experiencing the gain, some
of them changed their minds and rejected the second gam-
ble. And, anticipating a loss in the first gamble, the par-
ticipants planned to restrain from the second gamble –
however, experiencing the actual loss, they often changed
their plans and accepted the second gamble. Attempts
were made [49,51] to explain this inconsistency within the
framework of the reference-point theory [18], arguing that,
after the first gamble, the reference point of the decision
makers has been shifted. In the introduction Section 1,
we have already discussed the weakness of the reference-
point approach. These are the ambiguity in defining both
the reference point as well as the shift. And, what is more
important, the reference-point theory can be applied only
to two-step or multi-step gambles. It is not applicable to
single-step gambles. But there are numerous cases where
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the planning paradox occurs in single-step gambles, such
as in the above example of the smokers planning to stop
smoking. In an earlier publication [52], the authors men-
tioned that the planning paradox in two-step gambles
could be related to quantum effects. Below, we provide
a concrete proof in the frame of QDT, by showing how
the planning paradox in two-step games finds a natural
resolution.

The mathematical structure of the two-step gambles of
the type described in references [49–51] can be reduced to
a structure that is similar to, though slightly more com-
plicated than, the structure underlying the case described
in the previous Section 3.2.1. The two-step game proceeds
as follows. The first gamble is obligatory and cannot be
refused while the second gamble can be rejected. Specifi-
cally, the following alternatives are offered to the decision
maker.

– Assuming an anticipated gain (C1) or loss (C2) in the
first gamble, the second gamble can be accepted (A1)
or rejected (A2), with the chances of winning (B1) or
loosing (B2) being equal.

– After experiencing a realized gain (C3) or an actual
loss (C4) in the first gamble, the second gamble can
be accepted (A1) or rejected (A2), with the chances of
winning (B1) or to loose (B2).

The planning stage, before playing the first game, is char-
acterized by the four prospects

π1 = A1BC1, π2 = A2BC1,

π3 = A1BC2, π4 = A2BC2, (41)

where B = B1 + B2. After having played the first game,
the decision maker faces the four new prospects

π5 = A1BC3, π6 = A2BC3,

π7 = A1BC4, π8 = A2BC4. (42)

The four prospects in the planning stage form two binary
lattices:

L1 = {π1, π2}, L2 = {π3, π4}. (43)

The four prospects available after playing the first game
form the two other binary lattices

L3 = {π5, π6}, L4 = {π7, π8}. (44)

Analogously to conditions in Section 3.2.1, it is assumed
that the utility of accepting or rejecting the second gamble
does not depend on whether the first gamble is assumed
to be won or lost in the planning stage or actually won or
lost in reality. This means that

∑

μ

p(A1BμC1) =
∑

μ

p(A1BμC3),

∑

μ

p(A1BμC2) =
∑

μ

p(A1BμC4). (45)

Next, we model the subjective beliefs and emotions com-
monly observed in humans by specifying the attraction
factors of each prospect. Many human beings share the
gambler’s fallacy [53], in which an observed deviation from
an expected fair chance of winning or losing is expected to
be followed by a reversal. In other words, playing a gamble
with equal chances to win or to loose, humans often expect
that, after winning one gamble, the chance to win a second
gamble is reduced. Reciprocally, after loosing one gamble,
the odds to win the next gamble are felt to increase. One
can say that, after winning a gamble, a fear to loose the
next gamble appears. However, this fear is less intense in
imagination than in reality. That is, the perceived risk in
the planning stage is weaker than after the realized gain
of the first game, since an imaginary gain or loss is less
certain than the real one. This makes the prospect π1 of
accepting the second gamble, after an anticipated gain in
the first gamble, more attractive than the prospect π5 of
really accepting the second gamble after an actual gain in
the first gamble. This translates into

q(π1) > q(π5). (46)

Similarly, after loosing in the first gamble, the expecta-
tion to win in the second gamble increases, but less in
imagination than following a realized win, hence

q(π3) < q(π7). (47)

We thus obtain the probabilities of the prospects π1 and
π5 as

p(π1) = p(A1B1C1) + p(A1B2C1) + q(π1),

p(π5) = p(A1B1C3) + p(A1B2C3) + q(π5). (48)

Similarly, the probabilities of the prospects π3 and π7 are

p(π3) = p(A1B1C2) + p(A1B2C2) + q(π3),

p(π7) = p(A1B1C4) + p(A1B2C4) + q(π7). (49)

Comparing these probabilities, with taking account of con-
ditions (45), we get

p(π1) − p(π5) = q(π1) − q(π5),

p(π7) − p(π3) = q(π7) − q(π3). (50)

From equation (46), we obtain p(π1) > p(π5), that is, the
first prospect is preferred to the fifth prospect, π1 > π5:
individuals choose to play the second game more often
when they do not know the outcome of the first game but
expect a gain, than after the gain is realized. From equa-
tion (47), we see that p(π7) > p(π3), hence the seventh
prospect is preferred to the third one, π7 > π3: individu-
als choose more often to play the second game after losing
the first game than when imagining that they could lose
before playing the first game. Thus, no contradiction arises
within QDT.

We again emphasize that the preference for one
prospect at the expense of a second prospect does not
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imply that all decision makers choose it, but only that
the fraction of decision makers preferring that prospect is
larger than the fraction of decision makers choosing the
second prospect. Depending on the gain prizes and on the
loss amounts, the resulting differences between the cor-
responding prospect probabilities may be small. For ex-
ample, in the experiment of Barkan and Busemeyer [51]
on the planning paradox, the probabilities, measured as
the average fractions of decision makers taking the corre-
sponding alternatives are as follows. In the planning stage
before playing the first game, one has

p(π1) = 0.60, p(π2) = 0.40,

p(π3) = 0.63, p(π4) = 0.37. (51)

After the gain or loss of playing the first game are known,
the probabilities of the different prospects are

p(π5) = 0.53, p(π6) = 0.47,

p(π7) = 0.69, p(π8) = 0.31. (52)

This gives

p(π1) − p(π5) = 0.07, p(π7) − p(π3) = 0.06. (53)

Thus, while the planning paradox is clear, not all indi-
viduals follow it, justifying the probabilistic framework of
QDT. Moreover, as is seen from the above equations, the
difference between the compared prospect probabilities is
rather small, lying on the boundary of statistical errors.

Concluding this section, the planning paradox has
been explained away by taking into account the impact
of subjective beliefs and emotions in decision making via
the attraction factor defined by expression (20). We stress
also that the proposed framework remains valid both for
single-step as well as for multistep gambles.

3.3 Discounting effects

Generally, the term discounting addresses the problem of
translating values from one time period to another. The
larger the discount rate, the more weight the decision
maker places on costs and benefits in the near term over
costs and benefits over the long term. Depending on the
specification of the problem, it is possible to distinguish
several discounting effects, that we analyze in turn.

3.3.1 Value discounting

According to classical utility theory, the costs and benefits
of an action can be evaluated by means of its utility, or
its value to the decision maker. The benefits of an action
are, for instance, to receive an amount of money or any
other useful object at a given time. When an action x
is made at time t, it has a utility u(x, t). Assume, we
start our analysis at time zero, t = 0, when the action
utility is u(x, 0). But the same action at a later time t

is u(x, t), which may be different. The difference comes
from the obvious understanding that what we get earlier
we can start using earlier, hence, it is more useful than
what we would get later, having less time for its use. A
typical example is provided by the time value of money.
An amount x of money received at time t = 0 has a value
u(x, 0). This money can bring a profit, increasing, after
the period of time tn to the amount x(1 + r)tn , where r
is an interest rate for a unit time interval. Therefore, the
value of money x today is larger than the value of the
same amount of money after time tn. Hence, it is natural
to prefer x now, instead of x at a future time tn.

In QDT, this preference for a receipt now rather than
delayed can be framed in the following decision making
procedure. We consider the intended actions of getting an
amount of money now (A1) or, the same amount, some-
times later (A2). The different possible ways of using this
money are described by a set {Bμ} of intended actions Bμ.
One makes a choice between the prospects

πj = AjB, B ≡
⋃

μ

Bμ (j = 1, 2). (54)

The prospect probabilities are

p(π1) =
∑

μ

p(A1Bμ) + q(π1),

p(π2) =
∑

μ

p(A2Bμ) + q(π2). (55)

The fact that an amount of money now gives more pos-
sibilities than the same amount received later means that

∑

μ

p(A1Bμ) >
∑

μ

p(A2Bμ). (56)

In addition, getting something later is more uncertain,
hence, q(π1) > q(π2). Then it is evident that π1 > π2.

While the conclusion is the same as in classical util-
ity theory, what QDT brings additionally is the break-
down of the time value into an objective component (the
sums of probabilities in (56) quantifying the investment
and consumption opportunities) and a subjective compo-
nent q(π) quantifying the emotional cost of various degrees
of delaying.

3.3.2 Event uncertainty

Certain paradoxes arise because the problems are not well-
posed or are too ill-defined with some features remaining
unspecified or vague. Consider the typical example where
one has to choose between 50 dollars now or a signifi-
cantly larger amount, say 100 dollars, in a year. Proposing
a larger amount in the future is supposed to account for
the discounting effect of the previous subsection. Indeed,
given that a given amount now is always preferred to the
same amount in the future (assuming a normal growing
economy), as explained in the previous subsection, one can
expect to find some larger amount tomorrow that would
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be as attractive as the proposed sum today. The ratio of
the two sums defines the discount factor of a given individ-
ual, which quantifies the value of his/her time preference.
The example comparing $50 now to $100 in a year im-
plicitly considers that the rational discount factor cannot
be less than 1/2, or in other words, the interest rate that
would provide dividends to an investment of $50 cannot
be larger than 100%, so that the sum of $100 in a year
should be more attractive than the sum of $50 received
immediately. It turns out that it is often observed that in-
dividuals prefer to get $50 now instead of $100 in a year.
This seems a priori quite puzzling.

In fact, there is no real mystery, even within classi-
cal utility theory: because of the formulation of the prob-
lem, the related probabilities are not defined. And de-
cision makers intuitively understand that the receipt of
$50 now is rather certain, while the sum of $100 in a
year is not certain at all. That is, one compares the lot-
tery L1 = {0, 0; $50, 1; $100, 0} with the lottery L2 =
{0, 1 − p; $50, 0; $100, p}, where p is not known. It can
be perceived to be small because of many reasons, e.g.,
lack of trust in the commitment to deliver $100 in a year
due to uncertainties associated with the possible death,
bankruptcy or simply default of the counter party, or un-
certainty in the survival of the decision maker who would
not be in a position to enjoy the receipt of $100 in a
year. Therefore, the expected utility of the first lottery
is U(L1) = u($50), while that of the second lottery is
U(L2) = (1 − p)u(0) + pu($100). For sufficiently small
p 
 1, it happens that U(L1) > U(L2), justifying the
preference of L1 to L2. The effect is referred to in the
literature as “uncertainty aversion”.

In QDT, this effect is easily described in the same way
as in Section 3.3.1. One compares the prospects of getting
$50 now (π1) or $100 in a year (π2). The smaller proba-
bility of the second prospect implies inequality (56). The
process of waiting is related to anxiety [54], making the
delayed event of getting money less attractive. And, by
definition, the second prospect is less attractive since it is
more uncertain. That is, q(π1) > q(π2). The immediate
result is that π1 > π2.

It is interesting to compare the two explanations. In
classical utility theory, the preference for $50 now instead
of $100 in a year is accounted for by uncertainty aversion,
translating into a small subjective probability for the $100
payoff to happen. In QDT, the uncertainty aversion is em-
bodied automatically into the attraction factor q(π), while
the normal discounting effects associated with different
opportunities are included in the objective probabilities∑

μ p(AjBμ).

3.3.3 Preference reversal

A standard problem in classical decision theory is revealed
by a dynamic-inconsistency paradox associated with the
inversion of preferences, in which money versus time pref-
erences are inverted as the time horizon is changed. To
specify the problem, let us consider the following setup.
There is a choice between $50 now and $100 in a year.

As discussed in Section 3.3.2 above, individuals almost al-
ways prefer $50 now. But when there is a choice between
$50 in ten years and $100 in eleven years, human beings
usually prefer $100 in eleven years. This reversal of pref-
erence occurs notwithstanding the fact that the time dif-
ference between ten and eleven years is exactly the same
as between zero and one, so that a pure rational discount-
ing mechanism would predict the same consistent choice
of the smaller amount at the earlier time. This reversal
is usually associated with a trait characterizing human
beings, called hyperbolic value discounting or generalized
hyperbolic discounting [55–60], such that the near events
are characterized by larger discount rates than the events
in a more distant future. The problem is that this explana-
tion unavoidably leads to time inconsistency since, when
the decision maker reconsiders the same choice after ten
years, he/she again would prefer $50 today to $100 in a
year, thus again reversing the previous preference he/she
expressed ten years earlier.

The preference-reversal paradox finds a natural ex-
planation within QDT, since its formulation in terms of
prospects implies that choices considered at different times
and planned for at different future instants of time are ac-
tually different prospects, even though they are associated
with equivalent actions. To be more precise, a correct def-
inition of a prospect πj depends on the point in time t0
when it is considered, as well as on the point in time t for
which it is planned to be realized. That is, strictly speak-
ing, a prospect is a function πj(t, t0). With this specifi-
cation, the above setup can be formalized as follows. Let
the prospects of getting $50 or $100 correspond to the
notations π1 and π2, respectively. At time t0 = 0, there
are four prospects. One is the prospect π1(0, 0) of getting
$50 now. Another is the prospect π2(1, 0) of getting $100
in a year. The third prospect is π1(10, 0) of getting $50
in 10 years. And the fourth prospect π2(11, 0) is getting
$100 in 11 years. As discussed above, the odds of getting
$50 now are more certain than those of getting $100 in a
year, hence

π1(0, 0) > π2(1, 0). (57)

At the same time, both prospects of getting $50 in ten
years or $100 in eleven years seem almost equally uncer-
tain. However, the stake in the latter case is larger, which
results in the preference

π2(11, 0) > π1(10, 0). (58)

After time elapses to the decision at the point in time
t0 = 10, two new prospects become available. One is the
prospect π1(10, 10) of getting $50 at this moment of time
and another, π2(11, 10) of getting $100 one year later after
t0 = 10. Using the same arguments, one has

π1(10, 10) > π2(11, 10). (59)

There is no contradiction between the above decisions,
since different prospects are compared.
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4 Prospect dynamics

4.1 Definition of the discount factor

The evolution of probabilities in classical decision theory
are usually characterized by Markov equations [52,61]. To
determine how the probability of a given prospect in QDT
evolves as a function of time, let us consider a prospect
πj(t, t0) of deciding at time t0 for the planned realiza-
tion at a later time t. The corresponding prospect state is
|πj(t, t0)〉. Using the definitions of Section 2.1, the corre-
sponding prospect operator is

P̂ (πj(t, t0)) = |πj(t, t0)〉〈πj(t, t0)|. (60)

The prospect probability is defined by the average (13),
which we denote

pj(t, t0) ≡ 〈P̂ (πj(t, t0))〉. (61)

We may assume that the mind strategy defined by equa-
tion (10), which characterizes a given decision maker, does
not change during the time during which the decisions are
made. In other words, the same decision maker is con-
sidered. Then, the prospect probability varies in time as

d

dt
pj(t, t0) =

〈
d

dt
P̂ (πj(t, t0))

〉
. (62)

Let us define the decay rate αj(t, t0) of the prospect state
|πj(t, t0)〉 through the equation

d

dt
|πj(t, t0)〉 = −αj(t, t0)|πj(t, t0)〉. (63)

The decay rate αj(t, t0) accounts for the possible disap-
pearance of opportunities as the future unfolds. The above
equation is the definition of the decay rate. Since the latter
depends on time, this definition does not necessarily imply
that the time evolution of the prospect state is exponen-
tial. And the following consideration will show that, really,
there can occur different types of the time evolution.

Accomplishing the differentiation in the right-hand
side of equation (62) yields

d

dt
pj(t, t0) = −γj(t, t0)pj(t, t0), (64)

where
γj(t, t0) ≡ 2Re[αj(t, t0)] (65)

can be called the “probability discount rate.” Integrating
equation (64) gives the prospect probability

pj(t, t0) = pj(t0, t0)fj(t, t0), (66)

with the discount factor

fj(t, t0) ≡ exp
{
−

∫ t

t0

γj(t′, t0)dt′
}
, (67)

obeying the initial value condition fj(t0, t0) = 1. Equa-
tions (66) and (67) define the probability of a prospect,

evaluated at an initial time t0, which is to be realized at
the instant of time t.

In the economic literature, the simplest and standard
assumption is to assume a constant discount rate, corre-
sponding to an exponential discount factor. As reviewed
by Cochrane [62], the exponential discount factor can be
generalized into the concept of the stochastic discount fac-
tor which, by capturing the macro-economic risks under-
lying each security’s value, provides a consistent pricing
of all assets. Different models, such as the Capital As-
set Pricing Model, multifactor models, term structure of
bond yields, and option pricing can be derived as different
specifications of the discount factor.

4.2 First-principle construction of discount rate

Here in contrast, rather than deriving the form of the
discount factor that corresponds to a specific economic
model, we construct, by using general symmetry require-
ments, the possible generic functional dependencies that
the discount factor can take to describe the value of de-
layed payoffs. For this, we use the self-similar approxima-
tion theory [63–69]. The idea is to start from an expansion
of the discount rate valid for short time, that is believed to
be generally valid. Then, particular conditions are imple-
mented to construct the functional forms that can be nat-
urally associated with the initial expansion. The deriva-
tion of the corresponding discount factor proceeds through
three successive steps. First, to improve the convergence
property of a perturbative sequence, control functions, de-
fined by an optimization procedure, are introduced. This
idea forms the foundation of the optimized perturbation
theory [68,69]. The second pivotal idea is to consider the
successive passage from one approximation to the next
one as a dynamical evolution on the manifold of approx-
imants, which is formalized by the notion of group self-
similarity. The third principal point is the introduction of
control functions in the course of rearranging perturba-
tive asymptotic expansions by means of algebraic trans-
forms. We use the variant of the self-similar approximation
theory [63–69] employing the self-similar factor approx-
imants [70–74], based on the property that the control
parameters entering the self-similar factors can be com-
pletely defined from a given asymptotic expansion by the
so-called accuracy-through-order matching method. This
approach was shown to be essentially more accurate than
the method of Padé approximants [75]. Moreover, the lat-
ter method, as is well known, does not allow a unique re-
construction of the sought function, but results in a whole
table of approximants for each given approximation order.
Contrary to this, the factor approximants are uniquely de-
fined. In addition to providing reconstruction with a very
good accuracy of rational functions, as the Padé method
does, the method of factor approximants determines irra-
tional and transcendental functions with excellent preci-
sion [70–74]. These approximants also allow one to recon-
struct a wide class of functions exactly.

In its applications to the construction of the functional
dependence of the discount factor, we proceed as follows.
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First, we note that, in full generality, the probability dis-
count rate γj(t, t0) can be positive as well as negative.
This is because the prospect probabilities are normalized
according to condition (15). Consequently, if there are di-
minishing probabilities, then there should exist increasing
probabilities in order that normalization (15) be always
valid. For instance, if the probability of getting some-
thing attractive, like money, diminishes with time, then
the probability of getting nothing, respectively, increases.
Therefore, in what follows, it is sufficient to consider only
decreasing probabilities, related to getting something ap-
pealing, keeping in mind that there exist as well their
increasing counterparts defined through the normaliza-
tion (15). The condition, that the probability discount rate
γj(t, t0) is a nonincreasing function of time, reads

d

dt
γj(t, t0) ≤ 0. (68)

To go further, we assume that the rate γj(t, t0) is an ana-
lytic function of t in the vicinity of the initial time t = t0.
This means that the expansion

γj(t, t0) � γj

k∑

n=0

an(t− t0)n, (69)

where γj ≡ γj(t0, t0) is the spot rate and a0 = 1, is valid
for asymptotically small t− t0 → 0. The upper limit k of
the summation can be taken to infinity.

Then, the method of self-similar factor approxi-
mants [70–74] mentioned above is used to construct the
general class of functions corresponding to the expan-
sion (69). This amounts to extrapolate the asymptotic se-
ries (69), valid for small t− t0, to the region of all t > t0.
Extrapolating, by means of the self-similar factor approx-
imants [70–74], the asymptotic series (69) under condi-
tion (68) gives

γj(t, t0) = γj

(
1 +

t− t0
tj

)−nj

, (70)

where tj is a time scale and nj ≥ 0. We stress the non-
trivial nature of the construction of the function (70) by
the self-similar factor approximants, which makes appear
the exponent nj . This exponent plays a key role in struc-
turing the form of the discount factor.

4.3 Four classes of discount factors

Four types of discount factors are predicted, corresponding
to the four different sets:

(i) nj = 0;
(ii) 0 < nj < 1;
(iii) nj = 1; and
(iv) 1 < nj .

(i) nj = 0. The discounting function (67) is the simple
exponential

fj(t, t0) = exp{−γj(t− t0)}. (71)

This type of discount factor is standard in the value-
discounting problems. We may notice that reparametriz-
ing equation (71) with the substitution δ ≡ exp(−γj)
yields an equivalent expression fj(t, t0) = δt−t0

j .

(ii) 0 < nj < 1. The discounting function (67) takes the
form

fj(t, t0) = exp

{
− γjtj

1 − nj

[(
1 +

t− t0
tj

)1−nj

− 1

]}
.

(72)
At short times t− t0 < tj , the expression fj(t, t0) reduces
approximately to the pure exponential form. However, for
large times, such that t � t0, tj , this fj(t, t0) is approxi-
mated by the function

fj(t, t0) � exp

{
− γjtj

1 − nj

(
t

tj

)1−nj
}
, (73)

called the stretched exponential (see, e.g., Chap. 6 of
Ref. [76]). Stretched exponential relaxation of a macro-
scopic variable to an equilibrium is well-known in physics,
such as in “complex” fluids [77], glasses [78–82], porous
media, semiconductors, etc., a law known under the name
Kohlrausch–Williams–Watts law [78,81]. The stretched-
exponential decay of the discount factor as a function of
time reflects a decay slower than exponential of the time
value of future payoffs. An even slower decay is found for
the next case.

(iii) nj = 1. The discounting function (67) reads

fj(t, t0) =
1

[1 + (t− t0)/tj ]γjtj
. (74)

This recovers the postulated form associated with so-
called generalized hyperbolic discounting or, simply, hy-
perbolic discounting function [55–59], which seems to ac-
count better for the observed time-preference of human
beings than the standard exponential form (71).

(iv) nj > 1. Equation (67) leads to

fj(t, t0) = exp
{
− γjtj
nj − 1

[
1 − 1

(1 + (t− t0)/tj)nj−1

]}
.

(75)
At short times, fj(t, t0) is again well-approximated by an
exponential form. However, at large times, when t− t0 �
tj , the factor fj(t, t0) tends to a non-zero limit

lim
t→∞ fj(t, t0) = exp

(
− γjtj
nj − 1

)
. (76)

This is in contrast with the previous cases (71) to (74) and
with the standard assumption that fj(t, t0) tends to zero
at large times because individuals do not care for events
that are very-very far in the future. This new regime
is a priori unexpected and surprising, because it implies
that payoffs or costs that are very far in the future still
contribute a finite amount to the likelihood of a given
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prospect. In common terms, according to (75) leading
to (76), extremely far ahead outcomes are not discounted
to zero, but provide a finite input to the effective utility
of the decision maker. While providing perhaps the most
dramatic rupture with standard discounting and decision
making theory, we believe that the form (75) leading to
the bizarre result (76) is actually formalizing an important
element of decision making. Specifically, very low to zero
discount rates are presently being discussed for analyz-
ing intergenerational public policy choices [83–85]. These
policies encompass issues such as global warming and nu-
clear waste disposal. Nuclear waste disposal, in particu-
lar, involves time scales up to millions of years over which
mankind will have to continue to monitor and watch the
long-lived radionuclides resulting from the burning of nu-
clear fuel in nuclear plants. The ongoing challenge is to
characterize distant future costs or benefits in a way that
is relevant for policy makers, who must evaluate trade-offs
today.

4.4 Prospect-dependent discount rates

In full generality, different intended actions can be charac-
terized by different discount functions. Even if, for simplic-
ity, the same discount function is employed, then different
actions can have different decay rates γj or different time
scales tj . This can lead to a reversal of natural preferences.

For example, let a prospect π1 be preferred to π2, if
they are realized at the initial time t0, so that for their
probabilities the following inequality holds:

p1(t0, t0)
p2(t0, t0)

> 1. (77)

But, if these prospects are planned to be realized at a later
time t, then their probabilities form the ratio

p1(t, t0)
p2(t, t0)

=
p1(t0, t0)f1(t, t0)
p2(t0, t0)f2(t, t0)

. (78)

It may happen that at some moment of time trev, their
probabilities reverse, so that for t > trev,

p1(t, t0)
p2(t, t0)

< 1 (t > trev), (79)

which implies preference reversal. This phenomenon,
known as “time inconsistency” in the literature, is usu-
ally associated with non-exponential discount factors. It
may also occur with exponential discount factors, when
the discount rate is different from the risk-adjusted return
on saving (see, e.g., Chap. 15 in Ref. [6]). Within QDT,
time reversal can also occur for the exponential discount
factor when the discount rates of two prospects are dif-
ferent. The reversal time in the case of the exponential
discounting (71) is

trev = t0 +
1

γ1 − γ2
ln
p1(t0, t0)
p2(t0, t0)

, (80)

which exists for γ1 > γ2. In the case of the hyperbolic
discounting (74), with γjtj = 1, the reversal time reads as

trev = t0 +
p1(t0, t0) − p2(t0, t0)

γ1p2(t0, t0) − γ2p1(t0, t0)
, (81)

which exists under the condition

γ1

γ2
>
p1(t0, t0)
p2(t0, t0)

. (82)

Recall that the initial time t0 corresponds to the planning
time when the decision maker evaluates a prospect that is
assumed to be realized at the point in time t ≥ t0. Thus,
the planning time t0 is also a variable, which shifts when
the decision-maker re-evaluates his/her plans. As a con-
sequence, there is no preference-reversal paradox within
QDT, as explained in Section 3.3.3.

5 Conclusion

We have presented a novel approach to decision making,
based on the mathematical techniques of complex Hilbert
spaces over a lattice of composite prospects. Such tech-
niques are typical for the theory of quantum measure-
ments, which explains the name “Quantum Decision The-
ory” (QDT). We stress that this does not presuppose that
decision makers are assumed to be quantum objects. The
employed mathematical methods are just the most con-
venient tool for taking into account such notions as risk
and uncertainty which have strong emotional effects in
decision making. QDT makes it possible to explain the
paradoxes appearing in the application of classical util-
ity theory to decision making. In the present paper, we
have analyzed the stylized effects and paradoxes, associ-
ated with dynamic aspects of decision theory, such as time
inconsistency, planning paradox, value discounting, event
uncertainty, and preference reversal. These temporal ef-
fects have not been considered in our previous articles on
QDT [16,17,28] and the treatment offered here is original.
We have also suggested a constructive approach for deriv-
ing the evolution equations for the prospect probabilities.
The derived discount functions provide a novel classifica-
tion of possible discount factors, which include the pre-
viously known cases (exponential or hyperbolic discount-
ing), but also predicts a novel class of discount factors that
can be applied for very long-term discounting situations.

One of the basic conclusions of QDT is the necessity of
taking into account not merely the utility of the considered
prospects, as in classical utility theory, but also the at-
tractiveness of the related alternatives. This is accounted
for by the attraction factor, whose appearance is due to
the use of the quantum techniques. The attraction factor
characterizes the level of attractiveness of each prospect
with regard to the risk and uncertainty associated with
the choice among the related alternatives. In that way, the
attraction factor is a new measure of risk in decision mak-
ing. Mathematically, its appearance is caused by the use of
quantum rules in defining the prospect probabilities. And
its meaning is the characterization of the perceived level of
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risk associated with emotions and subconscious processes
that influence decision making. In brief, we can say that
the physics of risk in decision making, described by the
attraction factor, embodies the existence of subconscious
feelings, emotions, and biases.

The notion of risk is met in many applications, such as
economics, finance, psychology, and so on. In all these ap-
plications, it is always connected with the process of taking
decisions. Therefore, to elucidate the physics of risk, one
needs, first of all, to understand its meaning in decision
making. Without such an understanding, it is impossible
to properly employ this notion in applications to other
fields. As we have shown, the evaluation of risk presents
two sides. In addition to a first contribution, measured,
e.g., through the risk-aversion coefficients [4,5] and the
lottery dispersion, it is necessary to take into account its
subjective part caused by emotions. A principal result of
our theory is that, despite the subjectivity of the emo-
tional side of risk, it is possible to naturally take it into ac-
count in a logical and mathematically self-consistent way.
Our QDT is the first mathematically rigorous realization
of the old Bohr idea [86] that mental human processes can
be described by techniques of quantum theory.

Obviously, taking correct decisions is of paramount im-
portance. This is why the developed theory can find nu-
merous applications. Several illustrations have been an-
alyzed in the present paper. We have concentrated our
attention here on temporal effects, related to time incon-
sistency, which have not been considered in our previous
articles.
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