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In recent years, developed societies have largely adopted smart systems operating on
the basis of information extracted from data. For infrastructure systems as well, structural
health monitoring (SHM) has long advocated a data-driven scheme for facilitating the
operation and maintenance of infrastructure. In materializing such a goal, this paper
demonstrates the procedures and outcomes of a SHM framework employed on an
unconventional structure, namely, the recently built “Kaeng Krachan” Elephant Shelter
at the Zurich Zoo, relying on a deployed set of Fiber Bragg Grating (FBG) strain sensors.
The structure comprises an 80-m span free-form timber-composite cupola, carried by a
post-tensioned reinforced concrete (RC) ring. FBG strain sensors are embedded into the
ring in close vicinity to critical regions, selected in collaboration with the design engineers.
The continuously acquired strain data are then exploited for extraction of performance
indicators, relying on implementation of output-only identification methodologies. To
this end, a non-parametric and a parametric output-only method, namely, a principal
component analysis (PCA) scheme versus a Vector AutoRegressive (VAR) model, are
employed and compared. Preconditioning of the predictive model is performed on the
“healthy,” or undamaged, state of the structure, and the misfit between model predictions
and subsequent measurements is exploited as a damage precursor. In this case, the VAR
scheme proves a more robust representation of the measured strains, when compared
against PCA, as a result of its inherent feature of memory.

Keywords: fiber Bragg grating, structural health monitoring, strain sensing, structural identification, damage
detection, principal component analysis, vector autoregressive models

1. INTRODUCTION

Following increasing technological advances in various engineering fields, today’s structures are also
enjoying their share in development. An upward trend is manifested in building larger, more com-
plex structures, which often forma signature of their urban environments. An important engineering
aspect of this increasing-complexity trend lies in the novel designs and construction approaches
adopted in this process. However, structural behavior is commonly computed and assessed on the
basis of numerical simulations, which inevitably rely on numerous simplifying assumptions. This in
turn results in reduced fidelity models, which often prove inadequate for performance assessment
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under extreme events or in a long-term scale. Within this con-
text, a well-established inspection and maintenance strategy is
crucial for enhancing our knowledge state regarding the actual
system performance and ensuring proper management of these
assets (Brownjohn, 2007). Toward such an end, monitoring strate-
gies are becoming widely applicable through fusion of emerging
affordable sensor technologies and suited computational strate-
gies (Aktan et al., 1997; Elgamal et al., 2003; Worden and Dulieu-
Barton, 2004; Robert-Nicoud et al., 2005; Farrar and Worden,
2007). An appropriately designed structural health monitoring
(SHM) framework allows tracking a structure from cradle-to-
grave, enabling extraction of metrics tied to structural perfor-
mance, and facilitating life-cycle assessment (Catbas and Aktan,
2002).

Current technologies permit deployment of dense sensor arrays
on large-scale civil structures, providing broad feedback in the
form of acceleration, tilt, strain, deformation, cracking, temper-
ature, and humidity, among others. In the field of strain measure-
ments in particular, fiber Bragg grating (FBG) strain sensors have
gained increased popularity in recent years due to a number of
advantageous features such as long-term stability, resistance to
harsh environments, mechanical fatigue resistance, potential to
be embedded, and multiplexing capabilities. FBG strain sensors
rely on the principle of refraction, according to which changes
in the refracted wavelength of light traveling through the optical
fibermay be translated into tensile or compressive strain (Kreuzer,
2006). This wavelength is affected not only by mechanical loading
but also by temperature variations that need to be appropriately
considered in ensuring measurement accuracy. A broad range of
commercial products is readily available for sensing and acqui-
sition in different environments/conditions (Klug and Woschitz,
2015). Fiber optic sensors (FOS) have generally been used for
various monitoring projects, although their emergence can be
considered quite recent within the structural engineering field.
An early review on FOS implementations for concrete structures
was presented by Merzbacher et al. (1996). A more recent review
was presented by Majumder et al. (2008). The use of FOS in civil
engineering is mostly found, but not limited to, in the monitor-
ing of bridges (Tennyson et al., 2001; Casas and Cruz, 2003; Li
et al., 2004; Chan et al., 2006), dams (Fuhr and Huston, 1993;
Kronenberg et al., 1997; Klug et al., 2014), rock-slide deformations
(Moore et al., 2010), piles and pipelines (Schmidt-Hattenberger
et al., 2003; Lee et al., 2004; Lee and Sohn, 2012), and many more.

Beyond acquisition, the accurate interpretation of the acquired
evidence of structural response is heavily dependent on our
understanding regarding the influences of externally acting
agents. In this sense, environmental agents and operational fac-
tors, such as temperature, humidity, wind, and traffic, form an
integral part of structural response. In fact, environmental vari-
ations may lead in pronounced shifts in structural properties,
which may be falsely attributed to damage. Therefore, in deriving
unbiased and robust diagnostic tools able to adequately track
structural condition, and notify of potentially irregular behavior,
the effects of these influential agents need to be appropriately
accounted for (Peeters and De Roeck, 2001; Peeters et al., 2001;
Sohn, 2007). In tackling this issue, a number of approaches have
been proposed for incorporating or discarding the operational

variability, mainly classified in two categories (i) output-only
methods, which aim at discarding the influence of operational
factors solely from response measurements, and (ii) input–output
methods, which aim at modeling the relationship between the
measured vibration data and/or the extracted features with respect
to measured operational conditions (Wenzel, 2009; Yuen and
Kuok, 2010; Spiridonakos and Chatzi, 2014a). In this work, focus
is shed on the first category of the aforementioned methods.

Exploiting output-only information, Yan et al. (2005) proposed
a feature extraction approach relying on principal component
analysis (PCA). The proposed framework succeeds in detection
of irregular response features, without necessitating dedicated
environmental information input, as this is indirectly taken into
account as an embedded (latent) variable set. The use of this
approach is limited to problems ranging from linear to weakly
non-linear response features, a shortcoming which may be over-
come via recombination of PCAwith non-linear kernel functions.
This enhanced variant, termed the kernel PCA (kPCA), may be
implemented for problems of higher complexity (Nguyen et al.,
2014a,b). An alternative to PCA is provided by models of the
AutoRegressive (AR) class, whichmay be output-only (simpleAR)
or input–output [AR with eXogenous input (ARX)], and their
variations. Models of this class have been exploited for determin-
ing the effect of temperature on the response and for, in turn,
extracting damage sensitive features (Nandan and Singh, 2011).
A recently proposed approach for extraction of normalized condi-
tion indicators lies in adoption of the polynomial chaos expansion
(PCE) method, which proves adept in describing stochasticity
propagation due to changing environmental conditions. The latter
may additionally be linked to independent component analysis
to extract and compress important information from structural
response data, as further explained in related works of the authors
(Spiridonakos and Chatzi, 2014a,b; Chatzi and Spiridonakos,
2015; Spiridonakos et al., 2016). Finally, following the reasoning
of a training and validation phase, which is commonly followed by
most aforementionedmethods, statistical pattern recognition and
machine learning algorithms, such as artificial neural networks
and support vector machines, have also been exploited for related
SHM applications (Bornn et al., 2009).

Despite availability of a number of SHM efforts in current
literature, only few instances of autonomous implementations are
met in running deployments (Sazonov et al., 2004; Rice et al.,
2010). In this work, the term autonomous is employed to signify
long-term monitoring networks and able to provide automated
diagnostics of structural performance. The primary driver to such
an end lies first and foremost in the identification of suitable
indicators, as discussed earlier. In a next step, these need to be
coupled with robust multivariate outlier statistics (Fassois and
Sakellariou, 2007a; Fassois and Kopsaftopoulos, 2013; Dervilis
et al., 2014, 2015), which offer a classification system for the type
of outliers detected and an informed warning, alleviating false
alarms.

This paper is focused on the primary feature of the autonomous
SHM framework, i.e., the extraction of an appropriate normalized
condition indicator. To this end, FBG strain sensors are adopted
as the enabling technology in order to measure the evolution
of strain in the concrete ring supporting the impressive canopy
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structure of the “Kaeng Krachan” Elephant Shelter at the Zurich
Zoo, in critical (hotspot) locations. In translating the collected
data into effective knowledge regarding the system’s operation in
an automatedmanner, two output-onlymethods have been imple-
mented herein. A condition indicator, relying on novelty detec-
tion, is extracted for each scheme and the respective performance
in tracking operational response is assessed. The finally derived
condition indicator aims to facilitate owners and engineers in
decision-making for operation and maintenance planning as well
as to provide an early warning mechanism for sudden damage,
irregularity, or deteriorating trends, should these occur during the
structure’s lifetime.

2. STRUCTURAL HEALTH MONITORING
FRAMEWORK

2.1. Case Study Description
The monitored structure is the “Kaeng Krachan” Elephant Shelter
of the Zurich Zoo, which was constructed between 2011 and 2014
and has been in operation since June 2014. It comprises a 6800m2

wooden free-form cupola that spans over 80m, of approximate
thickness of 90 cm and weight of 1000 tons, arguably the highlight
of this impressive structure. The cupola features 271 openings
with a surface area of approximately 2100m2 in total, which serve
as skylights. The roof is consisted of approximately 600 triple-layer
prefabricated flat panels, assembled on site, and bent to create
the desired geometry. The panel layers are nailed together via
use of more than 500,000 nails of 22 tons weight. An additional
500,000 screws of varying length up to 85 cm were utilized in
the installation of the remaining wooden components, as well as
the insulation layers (Zoo-Zürich, 2014). The completed structure
and a cross-section of the roof are given in Figure 1. The roof
is supported by a post-tensioned reinforced concrete ring that
follows the geometry of the roof. The ring beam is supported
by 4 pillar groups and a bearing wall section on the northern
side. Finally, an underground floor serves for cabling, ventilation,
heating, and maintenance.

2.2. Sensor Deployment and the
Monitoring System
In collaboration with the engineers, numerous features have been
monitored during the construction and operation phases via
adoption of various instruments. The measurements were then
analyzed and compared with the original design calculations.
Albeit the measurements conducted during construction do not
form the main concern of this paper, they do form part of
the overall implemented SHM framework and as such, will be
briefly elaborated upon herein. As observed in Figure 2, the post-
tensioned ring beam is supported by a group of pillars, which
comprise a permanent ground anchor carrying the horizontal
shear forces from the shell to the ground. The displacement and
rotation of these pillars were measured before and after this post-
tensioning procedure via use of tachymeter and tiltmeter devices.
Second, the vertical deflection of the roof was tracked as this
was lowered from its temporary support structure (an extended
system of steel scaffoldings) onto the ring beam, once again via
use of tachymeters and appropriatemini reflector prisms (Figure 3
right). In addition to the prisms placed on the roof, a Rayleigh
distributed fiber optic strain sensor was fixed to the roof beams
in order to observe changes in strain with a spatial resolution of
10mm, following several construction stages. Upon completion
of the structure, short-term ambient vibrationmeasurementswere
collected, in collaborationwith the Swiss Seismological Service, by
means of two broadband seismometers, placed on top of the roof
and on top of the ring beam, respectively. The natural frequencies
obtained through these ambient recordings were compared with
the modal parameters predicted by the design model. A good
correspondence was found between the observed quantities and
the design variables (see Figure 3), increasing confidence in the
design of this newly applied construction approach.

Themajor, and essentially the only continuous, structuralmon-
itoring component of this deployment relies on the use of FBG
strain sensors, which were embedded into 10 critical locations
of the concrete ring beam. The sensors are attached to the steel
reinforcement, by means of appropriate clamps, forming multi-
plexed chains of four sensors per section and serve the purpose

FIGURE 1 | Left: aerial view of the structure (Gomez, 2015); right: cross-section of the timber roof.
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FIGURE 2 | Top: plan view of a pillar group; left: cross-section and reinforcement drawing for a pillar.

of long-term monitoring of the strain evolution within criti-
cal post-tensioned concrete sections. Sections located at support
points have been selected as the more critical ones, where direct
feedback on strain was deemed as desirable. In addition to this
installation, MAGEBA AG operates a permanent deployment of
humidity sensors on the wooden cupola and temperature sensors
on the outer and inner side of the structure. The deployed FBG
sensors are Micronoptics embeddable os3600 strain sensors of a
20-cm active length. An example of such a sensor, mounted on
reinforcement bars, is given in Figure 4, along with the sensor
and DAQ unit locations. The nominal wavelength of each FBG
strain sensor was selected specifically, so that no overlapping

occurs within multiplexed chains when connected to the data
acquisition unit (DAQ). The deployment of the sensors and the
DAQ was performed in collaboration with MARMOTA AG and
Smartec SA. Due to the harsh construction site conditions and
the application of high-pressure self-compacting concrete, three of
the embedded sensor chains, namely, the ones at locations F1, F3,
and F9 were damaged. This is an inevitable reality when dealing
with field deployments and, since embedded, the sensors may
not be replaced after concreting. Nonetheless, the information
offered by the currently operating system proves sufficient for the
monitoring of structural condition, as elaborated in what follows.
The sensors at each location are directed to the underground floor
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FIGURE 3 | Deflection of the roof after lowering onto the ring beam. Left, calculated deflection; right, measured deflection.

FIGURE 4 | Left: permanent deployment of the Micronoptics embeddable FBG strain sensor os3600 on a reinforcement bar; right: technical drawing
indicating the position of sensors and the DAQ.

and subsequently collected via fiber optic cables at a central DAQ
unit. Static strain readings are obtained using a 1-Hz sampling
frequency and averaged every 5min to transmit to an ftp-server
shared and operated byMAGEBA AG. Although the models used
herein are output-only, i.e., directly based on structural response
measurements, a number of operational condition variables are
additionally measured, namely, ambient temperature, humidity
of the wooden roof, and force quantities for specific foundation
anchorages. The complete set of these measurements is readily
available to the client in a real-time manner through a graphi-
cal web interface. An additional feature of this system is that it

works autonomously, meaning that data acquisition, processing,
extraction of the condition indicator, and eventually notification
of engineers for anomalies are achieved without any human inter-
ference through the execution of scripts in a pipeline fashion in
regular intervals.

The FBG measurement campaign initiated in April 2013,
shortly before the post-tensioning of the ring tendons and has
been ongoing ever since. The results of this early stage monitoring
information are not presented further since they were not used to
train and validate the automated “smart monitoring” framework,
which is setup to run during the fully operational state. The period
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from September 2014 to March 2015 is herein reported, since
the structure is primarily subjected to operational loads within
this period and is free of other effects such as creep, shrink-
age, post-tensioning, and intermittent loadings tied to sequential
construction phases.

2.3. Basic Principles of FBG Sensing
Asdiscussed earlier in Section 1, FBG-based strain sensors operate
on the basis of the refractive properties of light and the reading
and decoding of these refracted wavelengths (Merzbacher et al.,
1996). Since the Bragg wavelength is affected both by mechanical
and temperature influences, the total wavelength shift initially
includes the mechanical and thermal strain that is induced on
the monitored structure and the thermal strain induced on the
sensor. One possibility to compensate such an effect relies on the
use of a second parallel fiber that is only subjected to temperature
change. A number of methods are already available for tempera-
ture compensation; the interested reader is referred to Majumder
et al. (2008). The thermal strain of the fiber should therefore be
compensated in order to obtain the true total strain, as specified
by the following equation (MicronOptics, 2014):

εtotal[µε]=106×
[
(∆λ/λ0)S − (∆λ/λ0)T

FG

]
+

(∆λ/λ0)T
ST

×CTET

(1)
where,

• λ0 is the zero measurement of strain or temperature sensing
FBG,

• ∆λ is the difference in wavelength in the strain or temperature
sensing FBG with respect to the zero measurement,

• FG, ST, and CTET are constant values defined by the producers.

A related point to consider is that the abovementioned formula
is based on theoretical derivations coupled with coefficients pro-
vided in the specifications of the manufacturer. For an optimal
result, and provided time allows, every individual sensor should
be tested a priori and their respective calibration coefficients
ought to be determined in dedicated laboratory environments in
ensuring a valid result interpretation. To such an end, Klug et al.
(2014) report work on the calibration of SYLEX SC-01 FBG strain
sensors for a monitoring project of expansion joints of a concrete
arch dam for both temperature and strain. The calibration was
conducted at the unique TU Graz fiber optic calibration facility
(Presl, 2009). The authors would like to note such a rigorous
calibration procedure was not feasible in this study, due to time
pressure. Nonetheless, this further attests to the robustness of the
developed monitoring scheme, since it additionally accounts for
this discrepancy.

2.4. System Identification and Extraction of
a Condition Indicator
The SHM methods adopted in this study exclusively rely on the
tracking of the FBG strain response of the structure, rendering
this an output-only scheme. This implies that environmental input
parameters, such as ambient temperature and humidity, are not
explicitly taken into account for identifying the structural model,
although in fact measured. At this point, it is worth noting that

in dense materials such as concrete, the thermal mass causes
heat to be absorbed and released in the structure. This causes a
lag (MPA, 2015) between the ambient and material temperature
cycles, which could, in turn, cause problems in formulating an
adequate regression model. As proven in what follows, this effect
needs to be considered in deriving effective predictive models.
A differentiation is therefore made between static and dynamic
output-only methods on the basis of their “memory” on past
structural response values.

Static methods assume that the input variables only have a
short-time effect on structural behavior (Rajagopalan et al., 2012),
whereas dynamic methods may account for the time evolution
(history) of the response and operating conditions (Deraemaeker
and Worden, 2012; Xia et al., 2015). It may be speculated in
advance that a dynamic model is more suitable for the application
investigated herein, since the heat stored within the concrete ring
and humidity trapped in the wooden roof are non-negligible fac-
tors affecting structural response. However, for the sake of com-
pleteness, a static anddynamic output-onlymethod is utilized, and
their performance is compared with modeling and predicting the
actual strain response of the structural system. The methods used
within this context are the PCA andVARmodels, which are briefly
overviewed in the following sections.

2.4.1. Principal Component Analysis
Principle component analysis is a statistical technique used to
project high-dimensional data sets of correlated observations onto
compact coordinate systems, thus resulting in a smaller group of
salient independent variables. If a set of N centered observations
xt ∈ R and t= 1, . . ., N is considered to correspond to the mea-
sured structural responses from the FBG strain sensors at various
locations of the concrete ring, the original data set xt may be
transformed into another set ofm variables yt as:

yt = T × xt (2)

where T is a m-by-k orthonormal rotation matrix, used for trans-
formation of the original coordinate system. The aforementioned
rotation is materialized via solution of an eigenvalue problem,
which results in estimation of a reduced number of principal com-
ponents (Jolliffe, 2002). The principal components are extracted
via diagonalization of the covariance matrix C, which reduces to
an eigenvalue problem that is then solved by means of singular
value decomposition:

C = UΣUT (3)

Equation (3) can be factorized as follows by selecting the highest
n1 eigenvalues of Σ.

C = [U1U2]
[
Σ1 0
0 Σ2

] [
UT

1
UT

2

]
(4)

where Σ1 denotes the submatrix of the highest n1 eigenvalues,
and U1 is the matrix of corresponding eigenvectors. Finally, the
orthonormal transformation of the original data can be achieved
by setting T =U1. The efficacy of the reduced projection may
be validated by re-mapping the selected components of yt back
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to the original domain, via use of the reduced matrix U1 and its
transpose as defined by the following equation:

x̂t = U1UT
1xt (5)

The remaining n2 eigenvalues and corresponding eigenvectors
U2 may be employed to calculate the misfit of the projected
valueswhen compared against the original data. The residual error
defined in equation (6) is adapted to this end, and herein serves as
the PCA-based normalized condition indicator. The precision of
the projection should be validated on a data set that is different to
the one used for training.

et = U2UT
2xt (6)

2.4.2. Vector AutoRegressive Models (VAR)
An extension to the univariate AutoRegressive model, VAR mod-
els are used for estimating a vector of current output variables on
the basis of a string of past values. Equation (7) describes such a
model.

xt+A1xt−1+A2xt−2+...+Anaxt−na = xt+
na∑
i=1

Aixt−i = wt (7)

In equation (7), wt is the vector series of independent identi-
cally distributed residual errors, which are assumed to follow a
normal distribution with zero mean and a diagonal covariance
matrix Σw, that is wt ~N (0, Σw). Ai with i= 1, 2, . . ., na, des-
ignate the Auto Regressive (AR) matrices, where na stands for the
model order.

By means of ordinary least squares, the AR matrices may be
straightforwardly estimated by reformulating the VARmodel into
a linear regression form. The model order may be na that can
be selected by means of different criteria, such as the residual
sum of squares and the Bayesian Information Criterion (BIC),
which appropriately weigh on the model’s predictive capability
(Lütkepohl, 2005).

The model’s one-step-ahead prediction is then obtained
according to equation (8).

x̂t|t−1 = −
na∑
i=1

Aixt−i (8)

The prediction error of the VAR model, which here effectively
serves as a normalized condition indicator, is given in equation
(9) and coincides with the residual error wt.

et = xt − x̂t|t−1 (9)

As in the case of the PCA approach, the model is validated by
implementation on a data set that is different to the one employed
during the training phase.

It should be noted that for the indicators derived from both
the PCA (residual error) and VAR (prediction error) schemes,
efficacy is assessed on the basis of goodness of fit of the error
distributions to a Gaussian-like distribution (with the Logistic
distribution employed for the VAR case).

2.4.3. Robust Outlier Detection
Upon formulation of such indicators, a number of approaches
may be implemented for outlier, or novelty, detection (Rousseeuw
and Hubert, 2013). As elaborated upon in Dervilis et al. (2014,
2015), a classic discordancy measure used in the previous stud-
ies is the Mahalanobis squared-distance (MSD), which might,
however, suffer from a multiple outlier “masking effect.” To this
end, robust computation of location and covariance estimation of
multivariate data may be exploited for investigation of inclusive
outliers. The minimum covariance determinant (MCD) (Hubert
andDebruyne, 2010) estimator or theminimumvolume enclosing
ellipsoid (MVEE) (Brunone et al., 2014) may be used in place
of the MSD criterion for enhancing performance. Additionally,
for indicators derived by means of time-series methods, such
as the VAR approach employed herein, a number of statistical
approaches for novelty detection are described in Fassois and
Sakellariou (2007b), relying on the (a) the residual variance, (b)
the residual uncorrelatedness, and (c) the likelihood function of
the observed data, given the estimated state. These methods adopt
formal statistical hypothesis testing procedures for establishing
a threshold of a statistically significant deviation between the
baseline (healthy) and current state. The abovementioned proce-
dures are herein referenced for reasons of completeness toward
a truly autonomous SHM framework, although they are so far
not implemented for the “Kaeng Krachan” Elephant Shelter. As
elaborated upon in the results section, the VAR model proves for
now capable of fully describing the observed response, render-
ing minimal outliers. As data aggregate, the authors will cross-
assess the previously listed outlier detection options for selecting
the most appropriate to be implemented on the running SHM
platform at the Zurich Zoo.

3. RESULTS

The results presented herein overview implementation of both
aforementioned models and performance is reported in terms
of model prediction capabilities. Results are demonstrated for
the second sensor from each chain at every location. These are
denoted as x·2, where x denotes the sensor location. Sensors
1, 3, and 9 are excluded since data transmission is lost due to
local effects, such as high-pressure concreting and cable damage.
Figure 5 illustrates themeasured strain time-series after the struc-
ture enters a fully operational state, starting from September 2014
until April 2015. It is evident that multiple gaps are present in
the acquired series of data, relating to power shortages as well as
various failures in the hardware/software of the measurement and
data-logging equipment, an issue which is at this stage rectified.
In order to side-step from any possible misfit, the estimation and
validation sets are selected from time regions where constant data
transmission has been achieved. The 1400 samples gathered in
the period from December 2014 to January 2015 are herein used
for training, whereas the 900 samples collected between February
2015 and March 2015 are utilized for validation.

3.1. Principal Component Analysis
In determining the number of principal components (PC) to
maintain in the model, singular value decomposition is applied
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FIGURE 5 | Strain evolution of the second sensor of each chain during the structure’s operational state.

FIGURE 6 | Normalized eigenvalues and percentage of explained variance of the estimation set.

on the covariance matrix C of the estimation set, with the result-
ing normalized eigenvalues and their respective percentage of
explained variance plotted in Figure 6. As observed in that figure,
the first and second PC explain 89 and 10.52% of the variance,
respectively; thus, already the first two eigenvalues capture more
than 99.5% of the variance characterizing the available strain
measurements. The remaining PCs do not bear a significant effect
and are thus neglected in the adopted PCA model.

By retaining only the first two principal components, the orig-
inal data are projected onto the PC space domain and the pro-
jection of both the estimation and the validation set is illustrated
in Figure 7. It is observed that the PCA projection is able to
follow the manifested trend at all sensor locations; however, the
details are not very well tracked. These details are attributed
to daily fluctuations in temperature, humidity, wind, and other
environmental factors, and the ability to follow thesemay prove of
utmost importance for a monitoring framework. The top plot in

Figure 8 illustrates the prediction error for sensor F2, for both the
estimation and validation data sets, along with the corresponding
distributions. The mean squared prediction error (MSPE) of the
validation set, for each sensor, is calculated as F2: 0.7513, F4:
0.1383, F5: 0.4185, F6: 0.3096, F7: 0.1471, F8: 0.3900, and F10:
1.4162. As observed in Figure 8, the estimation and validation
set prediction error seems to follow no specific distribution.
The lack of a Gaussian-like distribution indicates that the PCA
approach does not yield a suitable condition/damage index that is
informative of structural performance.

3.2. Vector Autoregressive Models
The order of the VAR model is selected on the basis of the BIC.
As observed in Figure 9, the BIC value stabilizes after a model
order of 10 and therefore this is retained as the implemented
order of the VAR model. A higher model order would not yield
an improved prediction at the cost of incurring an additional
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FIGURE 7 | PCA model performance in modeling strain for the estimation and validation data sets.

burden on computation. The one-step-ahead prediction perfor-
mance of a VAR (10) model is illustrated in Figure 10 both
for the estimation and validation data sets. Due to the dynamic
nature and inherent memory of this modeling approach, the daily
fluctuations of the signal, discussed in the previous section, are
now adequately captured. The MATLAB function “allfitdist” is
utilized for fitting a multitude of probabilistic distributions to
the prediction error data set, and the BIC is then employed to
return the optimal fit (Mathworks, 1998; Sheppard, 2012). The
prediction error time histories, again for the monitored strains
of sensor F2, and their corresponding distributions are plotted in
Figure 11 for both the estimation and validation set. The mean
squared prediction error (MSPE) of the validation set, for each
sensor, results significantly lower to the PCA equivalent, namely
F2: 0.0050, F4: 0.0062, F5: 0.0179, F6: 0.0167, F7: 0.0280, F8: 0.0086,
and F10: 0.0147. As observed therein, the prediction error of VAR

(10) follows a Logistic distribution with a location parameter that
results very close to zero. The distribution parameters are Logistic
(−1.44× 10−4, 0.16) for the estimation and Logistic (−0.21, 0.18)
for the validation set. Given the fact that the Logistic distribution
closely resembles a Gaussian distribution, only with a higher
kurtosis (Johnson et al., 1995), it is concluded that the FBG strain
measurements are adequately predicted by means of the VAR
(10) model and the calculated error norm may be employed as a
condition indicator within the proposed output-only continuous
monitoring framework.

4. DISCUSSION

This work presents an implementation of an autonomous
monitoring scheme on a novel 80m span wooden free-form
cupola, supported by a post-tensioned RC beam. The long-term
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FIGURE 8 | Top: PCA prediction error for the estimation (left) and validation set (right) of sensor F2. Bottom: histograms of the prediction error for each set.

FIGURE 9 | Evolution of the Bayesian information criterion (BIC) for increasing model order.

monitoring campaignwas planned and organized in collaboration
with the owner and design engineers. This study overviews the
set of methods and tools adopted, as well as the interpretation
of the acquired data streams into effective metrics for assessing
structural performance.

• To this end, FBG strain sensors were embedded into critical
locations in the post-tensioned RC ring, continually transfer-
ring information regarding structural condition.

• In efficiently handling this data, and for doing so in real-time,
two output-only models are investigated herein. The goal is to

come up with the so-called normalized condition indicators,
able to warn of anomalies or irregular behavior in support of
inspection/maintenance strategies.

• A static (PCA) and a dynamic (VAR) model are implemented,
revealing superiority of the VAR-type model, which may be
attributed to its inherent feature of memory. Once an adequate
model (predictor) is formulated on the basis of a training
data-set, the prediction error may be employed as a condition
indicator.

• In this early stage, the goodness of fit of the error distribution
in respect to a Logistic distribution is used to assess whether
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FIGURE 10 | VAR model performance in modeling strain for the estimation and validation data-sets.

response remains within regular limits. When further data are
aggregated, delivering more instances of outliers, more refined
outlier detection schemes will be investigated and accordingly
adopted.

Condition indicators of this form, extracted from automated
monitoring tools, may subsequently be coupled with standard
inspection schemes (e.g., visual inspection) in support of decision-
making processes. To this end, a number of tools exist able to
exploit information on the system’s state, which itself comprises

a stochastic variable, with a set of possible actions and obser-
vations for optimally managing infrastructure assets. The inter-
ested reader is referred to Straub and Faber (2005), Kim et al.
(2013), May et al. (2015), and Schöbi and Chatzi (2015). In a
next stage, the potential for damage localization will be explored
by exploiting the spatial distribution of the sensors along the
ring. This study reports the early results of an actual monitoring
campaign, aiming to serve as a reference for the fusion of data
acquisition techniques and appropriate processing tools toward
smart infrastructure management.
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FIGURE 11 | Top: VAR prediction error for the estimation (left) and validation set (right) of sensor F2. Bottom: histograms and fitted distribution of the
prediction error for each set.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

The authors would like to acknowledge the following
groups/entities and gratefully thank them for their contributions:
Zoo Zürich AG, Walt+Galmarini AG, MAGEBA AG, Marmota
AG, the IBK-Lab staff, and the further colleagues from the
Chair of Structural Mechanics of ETH Zürich, who assisted in
materializing this deployment. This research has been financially
supported by the Zoo Zürich AG and the Albert Lück-Stiftung.

NOMENCLATURE
∆ Shift in a certain value, e.g., temperature, Bragg wavelength, etc.

λ0 Initial (Zero) Bragg wavelength

Σ Diagonal submatrix containing eigenvalues

ε Strain measured by FBG sensors

xt Observed quantities (measurements)

yt Transformed quantities in PCA

C Covariance matrix (PCA)

CTE Coefficient of Thermal Expansion

e Prediction error

N Number of observations

T Orthonormal rotation matrix

U Eigenvectors
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