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Abstract: For each § > 1 we construct a family Fg of metric measure spaces which is closed under the op-
eration of taking weak-tangents (i.e. blow-ups), and such that each element of F B admits a (1, P)-Poincaré
inequality if and only if P > S.
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1 Introduction

Background

The abstract Poincaré inequality was introduced in [11] in the study of quasiconformal homeomorphisms of
metric measure spaces where points can be connected by good families of rectifiable curves. The investigation
of PI-spaces, i.e. metric measure spaces equipped with doubling measures and which admit a (1, P)-Poincaré
inequality for some P € [1, o0), has been object of intensive research.

One trend of investigation has focused on the infinitesimal structure of such spaces. For example, Cheeger
[3] formulated a generalization of the classical Rademacher Differentiation Theorem which holds for PI-
spaces and showed that in such spaces the infinitesimal geometry of Lipschitz maps is rather constrained.
Moreover, this result has allowed to formulate a notion of analytic dimension and extend notions of differen-
tial geometry, like tangent and cotangent bundles, to a large class of nonsmooth spaces which includes Carnot
groups [12], spaces with synthetic Ricci lower bounds [19], some inverse limit systems of cube complexes [4],
and boundaries of certain Fuchsian buildings [2]. There are also more complicated examples which involve
gluing constructions [9, 11]. However, the infinitesimal geometry of all these examples is rather special, in the
sense that a generic tangent/blow-up is biLipschitz equivalent to a product of Carnot groups with an inverse
limit systems of cube complexes as in [4]. In general, little is thus known about the infinitesimal structure
of PI-spaces; nevertheless, recent progress on the topic has been achieved in [5], whose results imply that
a version of metric differentiation holds of PI-spaces, and that for a typical blow-up (Y, v) of a PI-space the
measure v admits a Fubini-like representation in terms of unit speed geodesics in Y.

Another line of investigation has focused on the study of the properties of the Poincaré inequality that
depend on the exponent P. For A > 0, a (1, P)-Poincaré inequality is stronger than a (1, P + A)-Poincaré in-
equality in the sense that the former implies the latter; moreover, one can use gluing constructions to produce
examples of spaces which admit a (1, P)-Poincaré inequality but not a (1, P-A)-Poincaré inequality for some
A > 0. Intuitively, in a space admitting a (1, P)-Poincaré inequality any pair of points can be connected by a
nice family of rectifiable curves, and the quality of these connections improves as P decreases.
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We mention two areas of research where understanding the exponent P is important. One is the study of
quasiconformal maps. For example in [18] it is shown that if ¢ : X — Y is quasiconformal, where X and Y
are metric measure spaces satisfying some regularity assumptions (in particular X is assumed to be Q-Ahlfors
regular), if X admits a (1, P)-Poincaré inequality for P € [1, Q], so does Y. However, in [18] it is also shown that
this is not the case if P > Q. A second area is the study of the regularity of minimizers and quasiminimizers of
the P-Dirichlet energy (see for instance [15, 16]); in this setting it is usually necessary to assume a (1, P — A)-
Poincaré inequality for some A > 0.

Given a doubling metric measure space (X, u) we denote by Ip;(X, u) the largest range of exponents P > 1
such that (X, y) admits a (1, P)-Poincaré inequality. An open question in analysis, even for metric spaces
which can be isometrically embedded in some Euclidean space, was whether Ip;(X, ) is an open ray of the
form (B, oc). This question was answered in the affirmative in [14].

Main Result

As remarked above, as of today there is only one known class of models for the infinitesimal geometry of
Pl-spaces, i.e. biLipschitz deformations of products of Carnot groups and inverse limit systems of cube com-
plexes as in [4]. At the same time a preliminary version of this paper appeared, B. Kleiner and the author have
found other examples [17] whose topological dimension can be arbitrary but whose analytic dimension is 1.

The lack of sufficiently many examples for the infinitesimal geometry of PI-spaces makes difficult even
to formulate reasonable conjectures about the infinitesimal geometric structure of such spaces. All the exam-
ples mentioned above and their blow-ups at generic points always admit a (1, 1)-Poincaré inequality; while at
a conference at IPAM (2013) we learned from Le Donne of a question of Keith about whether a (1, P)-Poincaré
inequality improves to a (1, 1)-Poincaré inequality by taking tangents. Specifically, it is easy to construct ex-
amples of (1, p)-PI spaces such that some tangent does not admit a (1, p—¢€)-Poincaré inequality. For example,
for p = 2 one can glue two copies of R? at the origin and take on each copy the Lebesgue measure. However,
in all known examples, at a.e. point all blow-ups admit a (1, 1)-Poincaré inequality.

In this work we answer Keith’s question in the negative and produce new models for the infinitesimal
geometry of a PI-space. In particular, in our examples it is not possible to improve the Poincaré inequality by
passing to tangents.

Theorem 1.1. Thereis a doubling metric space X such that, foreach P. € (1, oo) there exists a doubling measure
up, on X such that (X, up,) and any of its weak tangents admit a (1, P)-Poincaré inequality if and only if P > Pc.
The space X has Assouad-Nagata dimension 1, and there is a Lipschitz function 1 : X — R such that (X, up,)
has a unique differentiability chart (X, n) (i.e. the analytic dimension is 1).

An interesting feature of this example is that the measures {up_}p, can be taken mutually singular. The
existence of (1, 1)-Poincaré inequalities for mutually singular measures was observed recently [23] in con-
nection with the fact that Cheeger’s differentiation theorem does not determine a canonical measure class on
a metric space. In particular, in a PI-space there can be null sets which contain many differentiability points
of a Lipschitz function, even a common differentiability point for each countable collection of Lipschitz func-
tions.

Our examples are also of interest for two different reasons. One is that they show that there is not a strong
connection between the exponent in the Poincaré inequality and the underlying metric geometry of X: by
changing the measure class the optimal range of exponents for which the Poincaré inequality holds can be
arbitrarly prescribed.

Secondly, our examples are connected to an attempt to answer in the negative the question of whether
there are differentiability spaces (see [5] for details) whose infinitesimal geometry differs from that of PI-
spaces. Roughly speaking, this question asks whether a Poincaré inequality is necessary (this is sometimes
referred to as the “Pl-rectifiability” conjecture/question stated in [5]), at the infinitesimal level, to have a
Rademacher-like Theorem and a first-order calculus. The results in [5, 24] show that differentiability spaces
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share, on the infinitesimal level, similarities with PI-spaces. On the other hand, our examples allow to move
the range of exponents towards oo. The obstruction here is that degrading the range of exponents degrades
the doubling constant and so it is not possible to get rid of the Poincaré inequality while keeping the mea-
sure doubling and having first-order calculus. In a subsequent work [21] we have generalized the examples
discussed here to produce differentiability spaces which are PI-unrectifiable. For technical reasons, there we
work with cube-complexes of dimension 3 instead of using graphs.

In a [22] we also modify these examples to obtain PI-spaces whose analytic dimension can increase by
passing to tangents. Specifically, one can have PI-spaces which are purely 2-unrectifiable and have analytic
dimension 1, but at generic points there are tangents biLipschitz equivalent to R? with the Euclidean metric.

Recent interesting examples of spaces which admit (1, P)-Poincaré inequalities but not (1, P-A)-Poincaré
inequalities have been constructed in [6]: these examples show that the minimal P-weak upper gradient de-
pends on the choice of the exponent P (i.e. if one has a (1, P)-Poincaré inequality but not a (1, P-A)-Poincaré,
the minimal P-weak upper gradient and the minimal (P - A)-weak upper gradient can be different). One may
check that this is not the case for our examples; this is unavoidable in the context of having examples whose
properties are stable under passing to blow-ups as discussed in [25]. Note that the examples in [6] are rectifi-
able, and so do not provide new infinitesimal geometries.

Overview

We observed that to produce new examples for the infinitesimal geometry of PI-spaces one might consider
an inverse limit of square complexes where the gluing locus has 0 1-capacity [4, Example 11.13]. However,
such examples would have analytic and Assouad-Nagata dimension 2, and would not give access to the full
range of exponents P.. Moreover, the arguments in [4] would not carry over and one would have to resort to
modulus estimates.

We thus decided to obtain X as an asymptotic cone of a metric graph G so that the stability under blow-
up would be already built in the model. Note that one might also realize X as an inverse limit of a system of
metric measure graphs, but it would not satisfy the same axioms as the inverse systems in [4]. Specifically,
Axiom (2) in [4], i.e. the requirement that simplicial projections are open, would fail and the analysis in [4]
would not carry over.

In Section 2 we first explain how G is obtained from the graph G and then focus on the construction of G
and corresponding measure ug in function of some parameters. The choices for the weights on the measure
will produce the different measures up,. We then make a study of the shape of balls. Note that in passing
information from G to X we take advantage of a discretization procedure in [7].

We point out that the definition of G is somewhat technical and that the starting point of our research were
explorations of the geometry of G in C++ and Python. Specifically, it is not hard to translate Definition 2.30 into
a Graph class and then use Dijkstra’s shortest path algorithm to verify the results in Subsections 2.3 and 2.4.
To help the reader’s intution we have added informal Remarks 2.31, 2.32, 2.35 and 2.40 to give a friendlier
account of G.

In Section 3 we construct good quasigeodesics that connect pairs of points in G. For convenience, we
focus on the construction of walks. To help the reader we have added an informal discussion in Remark 3.3.

Section 4 contains the technical part of the paper. We establish modulus estimates to prove/disprove the
Poincaré inequality in G for a given choice of P. In this section we also recall the definition of modulus and a
“geometric” characterization of the Poincaré inequality in terms of random curves.

Some parts of the construction of random curves are rather technical so we provide an overview of our
approach at the beginning of Subsection 4.2, and have added informal Remarks 4.25 and 4.60.

In Section 5 we complete the proof of Theorem 1.1.
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Notational conventions

We use the convention a ~ b to say that a/b, b/a € [C™!, C] where C is a universal constant; when we want to
highlight C we write a ~¢ b. We similarly use notationslikea < band a ¢ b.Inthe following C often denotes
an unspecified universal constant (that can change from line to line) which can be explicitly estimated. We
use the notation E[¢] to denote the expectation of the random variable ¢. The notation B(A, r) denotes a ball
of radius R centred on the set A, i.e. the set of points p at distance < r from the set A.

2 Construction of the Example

2.1 Construction of X given the graph G

In this subsection we explain how to obtain the example X given the metric graph G, which is to be constructed
in the next subsection. More precisely, we will assume that (G, pg) is a doubling metric graph, where pg
restricts to a multiple of Lebesgue measure on each edge, and we will obtain (X, uy) taking asymptotic cones.
Note that the construction of G will automatically yield the following kind of “self-similarity”: there will be
distinguished scales o, = 8" such that, having fixed ¢ € G and p € G, for each s > 0 one can find n such that
B;(p, onR) contains an isometric copy Bs of B;(q, s).

The main point of this subsection is then Theorem 2.15 which links the range of exponents for which
the Poincaré inequality holds for an asymptotic cone (X, uy) of (G, ps) to the range of exponents for which
the Poincaré inequality holds for (G, p¢). As the set of asymptotic cones of G is closed under passing to tan-
gents 2.5, this will imply that the range of exponents for which (X, px) admits a Poincaré inequality is the
same for all its tangents.

A couple of notational remarks: we will often deal with balls of different spaces, and so at times we add
a subscript to them to distinguish the space to which they belong. Given a metric space X, we will use AX to
denote X with the metric rescaled by the factor A > 0.

Definition 2.1 (Asymptotic cone). An asymptotic cone of a metric measure space (X, p) is a measured
pointed Gromov-Hausdorff limit of a sequence of rescalings:

P G — :
( X Bxon An)) ) 2

where limp 00 An = oo, Note that Bx(pn, An) denotes a ball of radius A in X, that is a ball of radius 1 in ALX.
The set of asymptotic cones of (X, u) will be denoted by as-Con(X, p). Note that it would be more appropriate
to say that as-Con(X, p) is a set of equivalence classes of metric spaces under measure-preserving isometries,
but we will avoid such subtleties in the following discussion.

Definition 2.3. A weak tangent (Y, v, g) of a metric measure space (X, px) is a measured pointed Gromov-
Hausdorff limit of a sequence of rescalings:

AnX, S . SE— D 2.4)
< " Hx (BX(pn,Aﬁl)) "
where limy .- Ay = oo. The set of weak tangents of (X, uy) will be denoted by w-Tan(X, uy).

In the case of (G, ug) the fact that asymptotic cones exist and that the corresponding measures are dou-
bling with uniformly bounded doubling constants follows from a standard compactness argument.

Lemma 2.5. The set of asymptotic cones as-Con(G, ug) is closed under the operation of taking weak tangents,
i.e. whenever (X, uy, p) € as-Con(G, ug) one has w-Tan(X, ux) C as-Con(G, ug).



DE GRUYTER OPEN The Poincaré Inequality Does Not Improve with Blow-Up =— 367

Proof. On the metric level, the proof is straighforward using that one can approximate a weak tangent
(Y, uy, q) € w-Tan(X, uy) by rescaling an approximating sequence for (X, uy, p). There is, however, an is-
sue with normalization of balls which is addressed in the following lemma. O

From now on we will assume that (G, ) satisfies the following property, which we call the measure-
continuity of balls, which will be proved after we analyze the metric-measure structure of (G, ug). For the
moment we ask the reader to take the following Lemma (the proof is at the end of subsection 2.5) for granted
so that we can complete the construction.

Lemma 2.6 (Measure-continuity of balls). Let (X, i, p) € as-Con(G, ug) and consider a sequence of rescal-
ings:

A;llG7 m»pn — (X, u, p). 2.7)
\—v:_/
Then for each t = O one has:
lim v (Bg(pn, Ant)) = p (Bx(p, 1)) - (2.8)

Now we assume that (G, us) admits Poincaré inequalities and introduce the following notation for the
range of exponents for which the Poincaré inequality holds.

Definition 2.9 (Range of PI-exponents). Assume that (Y, v)isadoubling metric measure space which admits
Poincaré inequalities. We denote by Ipi(Y, v) the set of those g € [1, o0) such that (Y, v) admits a (1, g)-
Poincaré inequality. By [14] Ip;(Y, v) is either an open ray (gcyitic, o) or the whole [1, oo).

We will now use a discretization procedure of Gill and Lopez [7] that allows to compare PI spaces and
graphs. We rephrase their result in a slightly more general context, where there is more freedom in the choice
of the approximating graph; the proof is omitted being a straightforward generalization of their argument.

Theorem 2.10. Let H be a connected graph whose metric is a constant multiple of the length metric. For € > 0
and Cq > O consider a subset V of vertices of H which is an e-separated net and Cye-dense. Assume that for
some C1 > O there is a C;-biLipschitz embedding F : V — X such that F(V) is Cye-dense in X. Let ux be a
doubling measure on X with constant C,. Let ug be a doubling measure on H which restricts to a multiple of
arclength on each edge and such that one has, for some C3 > 0:

Hu (Ba(v, 1) =¢, ux (Bx(F(v),1))  (V(v,1r) € V x[g, 00)). (2.11)

Then Ipi(X, ux) C Ipi(H, ug); moreover, if Cx(P) denotes the constant of the (1, P)-Poincaré inequality in
(X, px), then the corresponding constant Cy(P) in (H, uy) satisfies:

Cy(P) < C(Co, Cq, C3, C3, Cx(P), €). (212)

Since we work with pointed measured Gromov-Hausdorff convergence we however need a local version
of Theorem 2.10.

Corollary 2.13. In Theorem 2.10, assume that V is not Coe-dense in the whole of H, but that V now lies in a
ball By(h, R) with R > 0 in which it is Coe-dense. Assume also that F(V) contains a Cie-dense set in a ball
Bx(x, C{'R). Furthermore, assume that X is geodesic. Then the conclusion of Theorem 2.10 holds replacing
(H, ug) with:

(BH(h, C'R), uy L By(h, C"lR)) , (2.14)

where C depends only on Cy, C1, C, and €.
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Proof. One can reduce this local case to the global one, Theorem 2.10, by recalling that if (X, u) is geodesic
and admits a (1, P)-Poincaré inequality with exponent C(P), there is a C;(C(P)) such that for each R > 0 the
metric measure space (B(x, R), uL_B(x, R)) admits a (1, P)-Poincaré inequality with constant C; (see [8]). [

We are now ready for the crucial result linking Poincaré inequalities on (G, pg) and (X, px). Note that in the
construction of G the vertices will get orders I € NU {0} and to each ! there will be associated a characteristic
scale 0; = 8! (note that scales go up in I! ¢, oo as | — oo) such that the set of vertices V, of order > [ form a
maximal o;-net in G. This implies that V; is 0;-dense in G and that each pair of vertices in V; is at a distance
> 0.

We will also use another property of G, a kind of self-similarity, that will follow immediately from its
construction. Having fixed ¢ € G and p € G, for each s > 0 we can find n > N(s) such that B;(p, onR)
contains an isometric copy Bs of B;(g, s) and such that the measures ug L Bs and pg L B;(q, s) agree up to
a multiple.

Theorem 2.15. Let (X, ux, p) € as-Con(G, ug); then:

Ipi(X, pux) = Ipi(G, ). (2.16)
Proof. Step 1: Ipi(X, ux) C Ipi(G, ug).
Let
A_lcy H—Gs — (X’ ’ ) (2.17)
"7 46 (Bolon, An)) P Hx-P
—_——

Vn

and assume that P € Ip;(X, uy), C(P) being the corresponding constant. Choose N(n) such that:

1z An <8 (2.18)
ON(n)

and pass to a subsequence such that limp—eo #Tnx exists. Therefore, up to rescaling the metric on X by a factor
in [1/8, 1] we can assume that:
(NG G Vi, Pn) — (X, iy, p); (219)
~——
Gn

note also that (X, uy) is geodesic being a limit of geodesic metric spaces. Fix €, R > 0; for n = Dy(R, €) we can
assume that the Gromov-Hausdorff distance between B, (pn, R) and Bx(p, R) is at most £. Now the vertices
of order = lin G form a maximal o;-net which becomes a maximal oloﬁl(n)-net in Gp; for each n we choose
N¢(n) < N(n) such that:

€< UNS(H)O‘R,l(n) < 8¢. (2.20)

Lett V(n; ) be the set of vertices of G, whose order in G is at least N¢(n) and which are contained in B, (pn, R).
Then V(n; €) is an e-separated net in B¢, (pn, R) and is also 8¢-dense there. Thus the cardinality of V(n; €) is
uniformly bounded in n and V(n; &) — W in the Hausdorff sense where W is a %e-separated net in Bx(p, R)
in which it is also 6e-dense. Therefore for n > Do(R, €) we find an L-biLipschitz map:

Fn:V(n;e) = W, (2.21)

where L does not depend on € or n. Now, as the cardinalities of V(n; €) and W are uniformly bounded, for n >
D1(R, €) we can assume that the sets V(n; £) and W have the same cardinality and write V(n; €) = {vf,‘")}a€ A
and W = {wa}qeq so that F n(vfx")) = wq foreach @ € A. We now use a variation on the argument of Lemma 2.6
(where we take balls not centred on the basepoints) to conclude that for each r € [e, R] one has:

Vn (BG,, e, R)) — px (Bx(Wa, R)) 5 2.22)
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so for n > D,(R, €) we can assume that:

Vn (BG,, (stn), R)) ~1+¢ Ux (Bx(Wa, R)) . (2.23)
We now apply Corollary 2.13 and find Ceyt = Ccyt(€) such that

(B, (®n, R/Ceut), v L Bg, (pn, R/ Ceur)) (2.24)
admits a (1, P)-Poincaré inequality with constant Cp; = C(C(P), €). By rescaling back we conclude that:

(BG(pn; GN(n)R/CCut)s HG l—BG(pl’ly GN(n)R/CCUt)) (2-25)

admits a (1, P)-Poincaré inequality with constant Cp;. Fix a basepoint ¢ € G. For each s > 0 we can find
n = D3(s) such that B;(pn, On(m)R/ Ceut) contains an isometric copy Bs of Bg(q, s) and such that the measures
UL Bs and ug L Bg(q, s) agree up to a multiple. Thus

(BG(C], S), HGI—B(G’ q,s)) (226)

admits a (1, P)-Poincaré inequality with constant Cpj; as Cp; does not depend on s we conclude by letting
S — oo,

Step 2: Ipi(G, pg) C Ipi(X, px).

This follows from the stability of the Poincaré inequality under measured pointed Gromov-Hausdorff
convergence, see [13]. O

2.2 Construction of G

Because of Theorem 2.15 we can focus on the construction of G with the goal of constructing measures pg
for which we can pin down exactly Ip;(G, pg). We start with choosing some parameters (for a more general
construction refer to the arXiv version [20]).

Definition 2.27 (Parameters, symbols and scales). Here are the parameters used in the construction:

(P1) The integer 8.
(P2) The set of symbols Symb, = {{0}, {#}}.
(P3) The set of symbols Symb, = {{0}, {0}}.

The symbol {@} will be called the end symbol and will be used as a “stop-letter” in labels attached to edges
of G. The symbol {#} which we will call the gluing symbol will be used to affect the dynamics by which G
is connected and to tune the range of exponents for which the Poincaré inequality holds. Finally, the symbol
{0} is introduced just to get Symb, have two distinct elements and so it does not deserve a name.

For k > 0 we finally introduce the scales o, = 8X.

We now introduce the labels for the edges of G.

Definition 2.28 (Labels and orders). Let A (resp. ©) denote the set of labels on Symb; (resp. Symb,), i.e. the
infinite strings A = {A(n)} (resp. 68 = {6(n)}) where A(n) € Symb; (resp. 8(n) € Symb,) and A(n) (resp. 6(n)) is
eventually the end symbol.

We now regard R as a graph whose vertices are the elements of Z; using the scales o) we associate to
each m € Z an order ord(m) by the formula:

{O ifm=0
ord(m) = (2.29)
max{k : oy divides |/m|} otherwise.

Note that if none of the {0} divides |m|, then by formula (2.29) ord(m) = 0 as we convene that the max over
an empty set of natural integers is O.
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We now define the graph G and introduce a specific terminology for some of its vertices.

Definition 2.30. Consider the graph R x A x @ and a vertex v = (m, A, 6). Recall that we regard R as a graph
whose vertices are the elements of Z and therefore RxA x @ is a countable union of disjoint graphs isomorphic
to R (with vertices the elements of Z and edges of the form [j,j + 1] for j € Z). Asvisavertex of R x A x ©
recall also that m € Z.

We say that the vertex v is a gluing point of order ¢ if ord(m) = t > 1 and at least some symbol in {A(j) }<
is not the gluing symbol. We say that v is a socket point of order ¢ if ord(m) = t and A(j) is the gluing symbol
for j < t. Note that a vertex with ord(m) = 1 is always a socket point.

The graph G is obtained from R x A x © by gluing pairs of vertices (m1, A1, 61), (M2, A2, 6>) € (Zx A x ©)?
if either on the following conditions (Gluing) or (Socket) holds:

Gluing:
e (mq, A4, 01), (m>, Ay, 6,) are gluing points;
®* My =My and91 = 92;
* A1) = A2()) for j # ord(m;);

Socket:
e (mq,Aq, 01), (my, Ay, 6,) are socket points;
* mp =my;

* A1) = A2(j) and 01(j) = 6,(j) for j # ord(m,).

Remark 2.31. The previous definition of G gives a precise mathematical account of the gluing scheme of ver-
tices, and we used it to define data structures representing finite subgraphs of G and their geodesics while
we were exploring the connectivity properties of G in C++ and Python. In this remark we give a more intuitive
description of G to help the reader’s intuition.

The first step in the construction is to take countably many graphs isomorphic to R (where the vertices
are the elements of Z) and index them by pairs (A, 6) € A x ©. These graphs are just lines, and we can think of
this union as a bunch of disjoint lines carrying labels and whose points can be represented by triples (t, A, 6)
where t is a “continuous” degree of freedom (the “horizontal direction”) and A and 0 are discrete degrees of
freedom. In order to keep the set of these lines countable we impose the restriction that labels A and 0 are
sequences of symbols that eventually end in the end symbol {0}.

The second step is to glue the lines together to obtain a connected graph. Intuitively we can think of
moving from a point (¢, A, 6) to a point (s, A’, 8’), and the task becomes to change t to s, A to A’ and 0 to
0. Changing t to s does not pose a challenge as one can travel along the horizontal direction. To change
A = {A(j)}jen we change each of the symbols A(j) at a time. We first focus on the case j > 1; then to change
A(j) to A’(j) it is sufficient to reach a gluing point (or a socket point if it happens that the first (j — 1) entries of
A are {4}) traveling along the horizontal direction a distance < ;. For the case j = 1 the situation is similar
but we always reach a socket point of order 1. Essentially the intuition is that changing A(j) is “easy”.

On the other hand, to change 6(j) to 8(j') we must reach a socket point w of order j. If j > 1 we cannot
just move horizontally, because the A-label of w is restricted to have its first (j — 1)-entries equal to the gluing
symbol {#}. Thus, socket points occur more sparsely, and unless we already have A(i) = {4} for all i < j we
must first modify some of the labels in {A(i)};. Essentially, the intuition is that changing 6(j) is “hard” and
this will pose an obstruction to the existence of Poincaré inequalities. Note however, that the maximal length
needed to reach a socket point of order j is still < oj.

Finally, for j = 1 socket points are not hard to reach as the restriction of their A-label becomes vacuous.
We classify them as “socket points” just because they can be used to change both A(1) and 6(1).

We make G a metric graph by considering the length metric where each edge has length 1. Points in G
are then equivalence classes [(t, A, )] of points (t, A, 8) € R x A x ©. The quotient map R x A x @ — G will
be denoted by Q. The Q-image of a gluing point (resp. a socket point) will be called a gluing point (resp. a
socket point) of G. Note that the projection R x A — R induces a 1-Lipschitzmap 7 : G — R.
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Remark 2.32. Continuing the informal discussion in Remark 2.31, we observe that the vertices of G can be
classified in 3 categories. Let v = [(m, A, 6)] be such a vertex. If ord(m) = j and if for i < j some A(i) does not
equal {4}, then v is a gluing point of order j and has valence 2 x # Symb, . If ord(m) = j and if for all i < j one
has A(i) = {#}, then v is a socket point of order j and has valence 2 x # Symb, x# Symb,. All the remaining
vertices are those corresponding to the case ord(m) = 0 and have valence 2. Finally note that G is a graph
where no edge starts and ends at the same point, simply because we never glue together two vertices (m, A, 6)
and (m’, A’, ') of R x A x © when m # m’. In particular, each inclusion R x {A} x {0} in G is an isometry.

To analyze the shape of balls in G the following definitions are useful.

Definition 2.33. To the sequence of scales {0} we associate the discretized logarithm Ig : [0, ) — N as

follows:

0 iflp| <o
Pl <o (2.34)

{maxk: oy <|p|} otherwise.

1g(p) = {

Note that each vertex v € G has the form [(k, A, 8)] where k € Z, and ord(k) will be called the order of v.

Remark 2.35. In analyzing the structure of G the scales o) will play a crucial role. A first immediate con-
sequence of the construction is that if v had order k and w has order k' then d(v, w') 2 0pyin(x ). Another
immediate consequence is that the set of vertices V; of order > [ is g;-dense in G; more succintly, V; is a
maximal o;-net.

2.3 Construction of walks

To analyze the metric structure of G and prove Poincaré inequalities we will work with walks instead of paths.

Definition 2.36 (Walks). A walk on G is a finite string on vertices and edges W = {wg e; wy - - - ; w;} where
w;_1 and w; are the endpoints of e; for 1 < i < L. In the following we will often suppress the edges from the
notation, i.e. simply write W = {wo w - - - w;}; we will also say that W is a walk from wg to w; and that [ is
the length of W, which we will denote by len W. The starting point str W of W is wy and the end point end W
of W is w;. Two walks W, W, with end W; = str W, can ba concatenated to obtain a walk W * W5.

We say that a walk W from x to y is geodesic if len W = d(x, y). This notion can be also extended to the
case in which x and / or y are not vertices of G. In this case a geodesic walk from x to y is a geodesic walk
from a vertex wy to a vertex wy such that:

dlx,wy) <1 (2.37)
dly,wy) <1 (2.38)
d(x,y) = d(x, wx) +len W + d(y, wy); (2.39)

note that (2.39) implies len W = d(wx, wy). A walk W = {wo w; - - - w;} is monotone increasing (resp. de-
creasing) if for 0 < i < I - 1 one has m(w;,1) > m(w;) (resp. m(wi,1) < m(w;)).

Remark 2.40. We have preferred to introduce walks because they are more convenient than parametrized
paths to describe the construction of quasigeodesics and random curves that we present later in the paper.
Specifically, the following Lemmas 2.41, 2.42, and 2.47 will be used to build quasigeodesics in Section 3 and
to prove the Poincaré inequality in Section 4.

In working with walks, it is important to keep track of the labels of their vertices and edges. Recall that,
except for countably many points of G, the fibre Q'(x) is a singleton; the points x for which #Q ' (x) > 1 are
either gluing points or socket points. Note also that if x is neither a gluing point nor a socket point, the labels
Ax € A and 6y € O are well-defined as x = [(n(x), A, 9)] for unique A = Ax and 6 = 6. In particular, if e is an
edge, all points in e, except possibly one of the vertices, have the same labels A and 6e.
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On the other hand, for gluing or socket points we can still say something about their labels. If x is a
gluing point of order k, then x is a vertex of G of the form [(71(x), A, 6)] where: 6 is uniquely defined, and A(l)
is uniquely defined for I # k. If x is a socket point of order k, then it is a vertex of G of the form [(n(x), A, 0)]
where: A(l) is the gluing symbol for I < k, A(l) is uniquely defined for | > k, and 6(l) is uniquely defined for
1 # k. Therefore, if x is either a gluing point or a socket point, at most one entry of each label A(I) and / or 6(I)
is not uniquely defined; in this case we will sometimes make an arbitrary choice and still write Ax(I) or 8x(1).

Finally, in connection with the valence of the vertices, note that if x is a gluing point Q% (x) has cardinality
#Symb, = 2, and if x is a socket point Q"!(x) has cardinality # Symb, x# Symb, = 4. Sometimes we will say
that A is the A-label of an edge or vertex and that 6 is the @-label of an edge or vertex.

In discussing walks that pass through socket points of G, it will be convenient to have defined a partial
order on the set of labels A as one must first modify the values of the label A to reach a socket pont. We say
that A < A if there are integers 1 < kq < k, such that: A(j) = 71(]') forj < ki and j > k,, and for some j € [kq, k>]
the entry A(j) is not the gluing symbol, and A(j) = {#} forj € [kq, k,]. Awalk W = {wg e; wy - - - e; w;} is label
nondecreasing (resp. nonincreasing) if for 1 < i < [ - 1 one has A¢,,, > A¢, (resp. Ae,,, < Ae,).

In the following lemma we construct walks that reach a gluing (or sometimes a socket point) moving only
horizontally. They will be used to change the value of the label A.

Lemma 2.41. Let (p, k) € G xN, and let (A, ) denote the labels of one of the edges e incident to p. Then there
is a constant C such that there are monotone walks W. and W-_ satisfying:

1. W. is a walk from p to v., where either v. is a gluing point if some {A(j) }\ is not the gluing symbol, or is a
socket point of order k;

2. +(n(vs) - n(p)) € [0y, Coyl;

3. len W € [0y, Coyl;

4. All edges in W. have the same labels (A, 6).

Proof. We just build W.. Because p is incident to an edge with label (A, ) we have p € Q(R x {A} x {8}),
and thus we can find a monotone increasing walk Wy C Q(R x {A} x {6}) which starts at p, has length
len Wy € [0y, 20%], and ends at a vertex wqy with ord(wg) = 0. There is a uniform constant C > 1 such that
the set R N [r(wo), m(wo) + Coy] contains an integer t with ord(t) = k. Let v, be the vertex of Q(R x {A} x {6})
which projects to t. Then, if all the symbols {A(j)}-1 equal {#}, v. is a socket point of order k; otherwise
v+ is a gluing point of order k. Let W; C Q(R x {4} x {6}) be a monotone increasing walk starting at wo and
ending at v.. Then W, is obtained by concatenating W, and Wj. O

In the following lemma we describe a walk to reach a socket point of a given order k. This walk has to satisfy
several technical assumptions that we need later in the paper. Some key properties are bounds on the length
(2), the fact that the 68-label is constant (3), and restrictions (7)—(8) on the time we move in a region where a
portion of the values of the A-label is {&}.

Lemma 2.42. Let (p, k) € G x N and let (A, 8) be the labels of an edge incident to p. Then there is a universal
constant C such that there are label nonincreasing monotone walks W.. and W- satisfying:

. W. is a walk from p to v., where v. is a socket point of order k such that A(v:; ) = A(p; D) for | > k;

. t(ni(v:) - n(p)) € oy, Coy) and len W. € [0y, Coyl;

. The O-label equals 6 along all the edges of W.;

. All the edges in W.|[0, 30,/2] have the same label (A, 0);

. There are (T{)1<jck-1 € NN [0, len W.] such that the map i — t; is strictly decreasing, T)_1 € [%, Coyl;
. The point wy, is either a gluing point or a socket point of order i;

. len W. - 1; € [0}, Cojl;

NSV A WN .
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8. Let e; be an edge of W; ifl € [0, Ty_1], Ae, = Ap; if 1 € (Ty41, Ti] Alegs j) = Alp;j) forj <iorj>k-1and
Aepj) ={M}fori+1<j<k-1;ifA € (11,len W:] A(e;;5) = {M} for 1 <j < k-1and Aley; j) = A(po; j) for
jz k.

Proof. We focus on building W, which will be built as a concatenation of walks w, Wi, Wias oo o, Wo.
Because p is incident to an edge with label (A, 8) we have p € Q(R x {1} x {0}), and thus we can find a
monotone increasing walk W ¢ Q([n(p), o) x {A} x {6}) of length len W ¢ [3%, 20y] which starts at p and
ends at a vertex v with ord(¥) = 0.
Let I = [71(¥), o0); in I we can find a sequence of integers:

tk—l Styps--<sty <t (243)

such that ord(t;) = i for i > 1 and ord(ty) = k, and for some universal constant C one has O < tg - t;_; < Coy.
To be explicit, let to be an integer of order k in [1(V) + 0y, (V) + 303 ] and let t; = ty — 0; fori > 1.
In the following we will let:
T; = ti - n(p), (2.44)

and we will introduce the auxiliary notation A®) for the label:

20) - {A(j) ifjzkorj<i (2.45)

{#} otherwise.

Let vi_; be the vertex of Q([7z(p), o) x {A} x {0}) with 71(v;_1) = t;_q; then we let Wy_; C Q([r(p), o) x
{A} x{6}) be a monotone increasing walk which starts at ¥ and ends in v;_;. We let wr, , = v;_; and note that
Vi1 is either a gluing or a socket point of order k — 1.

For i > 1 the walk W; is obtained from W;,; as follows. The (backward) inductive assumption is that
the last edge of W;,; has label (A% 9) and that the last vertex viz1 of W;,q is either a gluing or a socket
point of order i + 1. Note that then v;,; € Q([r1(p), oo) x {A(i)} x {6}); we now let v; denote the vertex of
Q([n1(p), oo) x {/l(i)} x {0}) with 71(v;) = ¢;. Therefore, by (2.45) v; is either a gluing or a socket point of order i.
The walk W; C Q([71(p), o) x {AV} x {6}) is then defined as a monotone increasing walk starting at v;,; and
ending in v;. We then let wr, = v;.

We complete the construction by producing Wy as follows; we let A© be the label such that:

{#} otherwise.

We then let vi = v be the vertex of Q([r1(p), oo) x {/\(0)} x {6}) such that n1(vg) = to. The walk Wy is then a
monotone increasing walk joining v to vo.
We now explain how each property in the statement of this Lemma holds:

(1) because v. = v is a socket point of order k as ord(to) = k and the label 2O has its first k - 1 entries equal
to {#};

(2) because we have len W < oy, len W; < o; fori > 1 and len Wy < 04;

(3) because the walks W, Wi_1, Wi_5, ..., Wo liein Q(R x A x {6});

(4) because of how W was constructed;

(5-7) because of how the t; where chosen;

(8) because of how the labels A®) were chosen.
O

The next Lemma 2.47 is proven like Lemma 2.42; the proof is omitted as it looks like the specular image of the
previous one. Note that this lemma is just the reverse situation in which we start from a socket point of order
k and we want to move away from it modifying the first k-entries of the A-label.
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Lemma 2.47. Let v € G be a socket point of order ko and let A be a label in A such that for k < kg one has
AD) = A forl > k, 1 # ko. Let 6 be a label in O such that 0,(j) = 6(j) for j # ko. Then there is a universal
constant C such that there are label non-decreasing monotone walks W, and W_ satisfying:

1. W:is awalk from v to a vertex p-: of order O such that Ap, = A and 0y, = 6;

2. +(n(p:) - n(v)) € [0k, Coy) and len Ws € [0y, Coyl;

3. All edges of W have O-label 6;

4. All the edges in W.|[len W. - g;./2, len W.] have the same labels;

5. There are (T;)1<j<k-1 C NN[O, len W] such that the map i — T; is strictly increasing, and T;_; € [0, len W.—
%1

6. The point wr, is either a gluing point or a socket point of order i;

7. 1; € loj, Cail;

8. Let e; be an edge of Ws; if 1 € [0, T1], Aley;j) = A(v;j) for j # ko and A(e; ko) = Alko); if 1 € (T, Tis1]
Mepj)=A() forj<iorj>k-1andAle;;j) = {M} fori<j<k-1;ifA € (T q,len We] Ae, = A

2.4 Comparison of balls and boxes

In the following it will be useful to replace balls by boxes because it is easier to estimate the measure of a box;
given a Borel set I C R, k € NU {0} and a finite set S; x S, C A x O, we define the box Box (I, S; x S3, k) as
follows:

{[(t, A,0)]eG:teland3@A,8) e Sy xS, :vl> kAW, 61) = (A(), é(z))} . (2.48)

The following lemma shows that boxes and balls are uniformly comparable.
Lemma 2.49. Letx = [(t,A,0)] € G and R > 0. Let M be the highest order of an integer m € [t - R, t + R]. If
M =1g(2R) let S(x, R) = {(A, 0)}. If M > 1g(2R) let Q) be the set of those labels (X', ') obtained from (A, 6) by

making (A(M), 6(M)) arbitrary, and let S(x, R) = Q. Then there is a universal constant C depending only on
(P1)-(P3) such that:

Box ([n(x) - R/2, m(x) + R/2] ,{(A, 6)},1g(R/C)) C B(x, R)
C Box ([n(x) - R, m(x) + R] , S(x, R),1g(2R)) .  (2.50)

Proof. If C is sufficiently large, using Lemmas 2.42, 2.47 we can find, for any label (4, 6) such that:

(A(, 6G)) = (4, 6)  (for j > 1g(R/C)), (2.51)
a path of length at most R/2 from x to a point X such that:
n(x) = n(x) (2.52)
% € QR x {A} x {6}); (2.53)
this implies the inclusion:
Box ([n(x) - R/2, m(x) + R/2] , {(A, 6)},1g(R/C)) C B(x, R). (2.54)

Let v be a geodesic from x to p € B(x, R); note that len 71(+) = len v and thus m(y(¢)) € [n(x) - R, n(x) + R]
for each t € dom . Therefore, if (A(p; k), O(p; k)) # (A(x; k), 6(x; k)), then 71(~y) passes through an integer t; of
order k. Assume that k < M and let tj; € [71(x) - R, 1(x) + R] have order M; as:

|tk = tml = 0%, (2.55)
we conclude that k < 1g(2R). Therefore the inclusion
B(x, R) c Box ([7(x) - R, m(x) + R] , S(x, R), 1g(2R)) (2.56)

follows. O



DE GRUYTER OPEN The Poincaré Inequality Does Not Improve with Blow-Up = 375

2.5 Construction of measures

We now turn to the construction of the measure u on G. One possibility is to take the pushforward under the
quotient map Q : R x A x ® — G of the measure which coincides with Lebesgue measure on each R x {A}.
For extra flexibility, in particular to produce mutually singular measures with different values of inf Ip;(X, u),
we need to choose the weights Weight = {wy,, w4}, Wio) } subject to the restrictions ws > 0 and wygy = 1.
The restriction ws > 0 is needed to ensure the doubling condition, while w oy =1 is needed as our labels
end eventually in {0}. Thus we have just two parameters w4, and w,; and in principle we might also set
Wioy =1 and be left with one parameter w (&) However, for extra flexibility, we allow w {0} € (0, o0).
For each A € A and 6 € © we denote by w(A), w(60) the associated weights:

W(A) = H W}t(n)’ (257)
n=1

W(e) = H We(n), (258)
n=1

where the products in (2.57-2.58) are actually finite. We also use the notation w((A, 0)) for the product
w()w(0).

Definition 2.59. We denote by u the measure on G which is the pushforward of the measure on R x A x 0
which coincides with w((A, 8))£* on each R x {(A, 6)}. Note that different choices of the weights in Weight
will produce mutually singular measures on the asymptotic cone X, compare [23].

The next lemma provides estimates on the measures of balls and boxes.

Lemma 2.60. Let S be a set of pairs of labels and k > 1; assume that whenever (A, 0), (X', 6) € S and (A, 6) #
(A, ), then (X', ') cannot be obtained from (A, 6) by modifying some of the first k-entries of A and/or 6. For
i=1,2letCqy,; = Zsesymb. Wws; then the measure of a box is given by:

M (BOx (I, S, k) = £1(I) x Cg,1Chw2 > ﬁ w(A(n), 6(n)). (2.61)
(A,0)€S n=k+1

In particular, if x = [(t, A, 0)]:

1 (B(x, R)) = R(Caw,1Cen,2)®® H w(A(n), 6(n))

AES(x,R) n=1g R+1

~ R1+10g8 Cgw,1+10gg Caw,2 Z H w(}l(n), G(H))

AeS(x,R) n=lg R+1

(2.62)

Proof. For each pair of labels (A, 0) let T;’% be the set of labels that can be obtained from (A, 6) by making the
first k entries of A and/or 0 arbitrary. We then compute as follows:

u@Box(1,S, k)= > > (Box(l, S, k)mQ(Rx{}\}x{é}))

A0S (A,peTy)

=Y Y sow(d)

A0S (A, ey

k oo
=0 > > TIw(Ge,80m) - TT w (@, o))

30 (k) n=1 =
A0S A, heTd, n=k+1

(2.63)

=L D x ChuaChwa Y. [[ waw, o)),

A,0)eS n=k+1
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which gives (2.61).
Now the first approximate equality in (2.62) follows from (2.61) and Lemma 2.49 by observing that for any
Co there is a C(Cy) such that:
1g(CoR) < 1g R + C(Co). (2.64)

Finally, the last approximate equality in (2.62) follows observing that if R > 1 one has g R ~ logg R. O
We can finally prove Lemma 2.6

Proof of Lemma 2.6. Using that n — v, (G) is lower semicontinuous if G is open and upper semicontinuous if
G is compact, it suffices to show that one has, uniformly in py, An:

4G (Bn, Ant) \ B(pn, An(t - €)))
1 (B(pn, Ant))

For s € (0, 1) let L(s) denote the set of labels (A, 6) of edges intersecting 0B(pn, An(1 — s)t). Note that s; < s;
implies L(s,) D L(s1). However, as:

< 0(e'?). (2.65)

An(1 - 8)t .3
An(1—gl/2)t = 2

for ¢ sufficiently small and s > €, any label (A, ) € L(s) \ L(£!/?) can differ from a label in L(¢'/2) only at the
j-th entry, where either:

(2.66)

je {lg(Z/\n(l —112)6), 1g2An(1 - £Y2)8) + 1} , (2.67)

or j = jo, where j, is some fixed integer > 1g(2A,(1 — £/2)¢) + 1 (this can occur if the ball B(pn, Ant) contains
a socket point of order greater than 1g(2A,t)). We thus obtain:

He (B(pny Ant) \ B(pn, An(t - 8)))
g (B(pn, Ant))

from which (2.65) follows. O

(2.68)

< (ng,l ng,2)3

3 Construction of good walks

In this section we prove the existence of good walks between points in G. These walks correspond to quasi-
geodesics which are used to build the families of curves used to prove Poincaré inequalities.
Let x,y € G; choose labels (Ay, 6x), (Ay, 8y) such that x = [(71(x), Ax, 6x)], y = [(n(¥), Ay, 6y)] and the
cardinality of the set:
NG, ) = {k : (A(K), 6:(0)) # (Ay (R), 6y(K)) } €8)

is minimal.
In the following C will denote a universal constant that can change from line to line and that can be
explicitly estimated.

Definition 3.2. Given x,y € G with d(x,y) > 1 a good walk W = {wg e; wy - -- ey wy } from x to y is a walk
having the following properties:

(GW1) len W < Cd(x, y);
(GWZ) d(WOy X)) d(WL’ J’) S [O’ 1);
(GW3) fori > 0 one has d(w;, x) 2 i/C.

Remark 3.3. Intuitively condition (GW1) forces the path corresponding to W to be a quasigeodesic. Condition
(GW2) forces W to start at a vertex adjacent to an edge containing x and end at a vertex adjacent to an edge
containing y. Finally (GW3) forces W to move away from x at a linear rate.
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In the following we will often use the following estimate.
Lemma 3.4. Iflgd(x,y) < maxN(x, y) then for each k € N(x, y) \ {maxN(x, y)} one haslgd(x, y) > k.
Proof. Let wo, wy be vertices of G with ord(wg) # ord(wy), then:

d(W(), W1) > |7T(W()) - ﬂ(Wl)‘ > Umin(ord(wo),ord(w1))' (35)

Take a geodesic walk W from x to y. Then there are w; , w;, € W such that w;, is either a gluing or a socket
point of order max N(x, y) and wj, is either a gluing or a socket point of order k; let W be a subwalk of W
joining wj, and w;,, and observe that:

len(W) = len(W) = d(wj,, wj,) 2 0. (3.6)
O

The following Theorem is the first part of the construction of good walks under the additional assumption
Ig d(x, y) = kmax = max N(x, y). Condition (GWA2) is just an estimate on the length of W. Condition (GWA1)
is less transparent. It establishes what happens along W as we change the values of 6 and A to reach y. If
k € maxN(x, y) and we need only to change A(k), then after a “critical” vertex wy, we will always move
through edges where either A(k) = A, (k) or A(k) = {4} (this second option occurs when we need to get closer
to a socket point of order j > k). If k € max N(x, y) and we need to change 6(k) (and possibly also A(k)), then
we need to pass through a “critical” vertex w, which is a socket point and after passing through it 6(k) will
remain equal to 6y (k). An important constraint is that the map k — s(k) is monotone increasing. Note that in
the case k ¢ N(x, y) and k < kmax we just define w, to be a (gluing) point along the walk so that (3.8) holds.

Theorem 3.7. Iflgd(x,y) = kmax = max N(x, y) there is a good walk W from x to y which has the following
additional properties:

(GWA1) If k € N(x,y) is such that 0x(k) = 0y(k), there is a distinguished gluing or socket point w, such
that each edge e preceding w, satisfies Ae(k) = Ax(k), and each edge e following w, satisfies either
Ae(k) = Ay(k) or Ae(k) = {#}. Moreover, in this case all edges e satisfy 0e(k) = Ox(k). If k € N(x,y) is
such that 0x(k) # 0y(k), there is a distinguished socket point w, such that each edge e preceding w
satisfies 0 (k) = 0x(k) and Ae(k) = Ax(k), and each edge e following w, satisfies 6e(k) = 6y (k) and either
Ae(k) = Ay(k) or Ae(k) = {#}. Moreover, the map k — s(k) is monotone increasing and the subwalk W, from
W) t0 We(y4q) Satisfies:

len Wk = Okl = d(Ws(k)’ Ws(k+1)); (38)

(GWA2) The walk W satisfies:
len W ~ max {|(x) - n(y)

. Ukmax } . (39)

Proof. Without loss of generality we can assume 71(x) < 71(y). If N(x, y) = @ then x, y lie in some Q(Rx{A}x{0})
and the construction of the walk is immediate. Let wq be the vertex of G satisfying m(wo) € [7(x), m(x) + 1),
(Awg, Ow,) = (Ax, 6x) (if the labels for wq or x are not unique, one can choose them so that equality holds.
Note that for a non-unique label (A, 6,) only one entry (A,(m), 8,(m)) is not uniquely determined). Order
the elements of N(x, y) increasingly:

ko < k]_ <eee < kq. (310)

Now either 6x(ko) = 6y (ko) or Ox(ko) # By (ko). The goal is to construct a walk W, of length comparable
to oy, which allows to change the ko-th entries of the labels. We build W, in two parts W,((;) and W,({:')).

We now consider the first case 6x(ko) = 8y (ko) which implies Ax(ko) # Ay(ko); by Lemma 2.41 we can find
a monotone increasing walk W,(;O) from wy to a gluing or a socket point V;(;) of order kg such that:

1. n(vi‘o)) € [n(wo) + 0y, (wo) + Cako];
2. all edges of W,((;) have the same labels (Aw,, Ow,);
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3. len W,E;) € [ok,, Coy, ]

WI((‘O) is the first part of th~e walk Wy and we let wyy ) = VE(;). Let Ay, be the label which agrees with Ay,
except at the ko-th entry Aw, (ko) = Ay(ko). The second part of the walk W,(:O) is a monotone walk of length

len W,(:O) € [1, oy, ] which terminates at a vertex of order 0 and whose edges have the same label (;\WO, Ow,).
We now consider the second case 6x(ko) # 8y (ko) which is slightly more complicated. By Lemma 2.42 we can
find a label-nonincreasing monotone walk W( ) from Wy to a socket point v( ) such that:

1. ﬂ(Vk )) ¢ [1(wo) + 0y, m(wo) + Coy, |-

2. ng)) has order kg and for I > kg one has (A(vi’o); 1), 9(V§(;); D) = (A(wg; D), B(wg; D).
3. len W,((;) € [ok,, Coy, .

W(’) is the first part of the walk W, and we let wy( ) =

By Lemma 2.47 we find a label-nondecreasing monotone walk W(+) from v( ) to a vertex v(+) of order zero
satisfying:
1. ﬂ(VE:;)) € [a(wo) + 0y, m(wo) + Coy,|.
2. Forl < ko one has (A({"; 1), 6(v{); 1) = (A(y; 1), 6(y; 1)) and for I > ko (A3 D), 6(vL5 1)) = (A(x; D), 6(x; D).
3. len WI((Z) S [Oko, CGkO].
4. All edges of W\ satisfy (Ae(ko), e (ko)) = (Ay(ko), By (ko).

The construction continues by induction on kj, i.e. suppose we have constructed the subwalks

Wigs -+ s Wy, ¢ which form the first part of W.The first part W(') of Wy, , is alabel-nonincreasing monotone

walk W( ) from v(+) to a socket point v of order kj,; such that

1. n(vi;)l) € [n(vg)) + 0%, 5 n(v“)) + Cokm}
2. v(") has order kj,; and for I > kj,; one has (A(vg(;)l; D, 6(v D)= (/t(v(+) D, 0(v(+) D).
3. len W( ) € loy,,, Coy,, |-

( )

)+1

By Lemma 2.47 we complete Wy, , by finding a label-nondecreasing monotone walk W,((:)l from vgjl toa

We then let wyg, ) =

vertex vgfl such that:

1. ﬂ(V;{JQI) € [n(v(’) )+ 0, s ﬂ(vk) )+ COkM}

2. For | < kj,; one has (A(v<+> D), e(v(+) ;D) = (A(y; D, 6(y; D) and for I > ki, (}t(v(+) D), e(v(+> ;D) =
(A D), 6(x; D).

3. len W,((]?l € [oy,,, Coy,, 1.

4. All edges of Wi satisfy (Ae(kj.1), e(kji1)) = (Ay(Kjs1), Oy(Kjin)-

When we reach j = g we have constructed the first part W) of the walk W. Property (GW3) is satisfied
because W is monotone increasing and the part of (GW2) concerning wy is also satisfied; the additional
condition (GWA1) is also satisfied on W(l), and needs only to be checked there because of the way in which
we construct the second part W® of the walk.

There are two cases to consider to complete the proof.

(Case 1): ﬂ(VE(:)) < 71(y); then VE:;) and y belong to Q(R x {A,} x {6y }). Therefore, W@ is constructed by taking
a geodesic walk in Q(R x {Ay} x {6y}) from vg) to y. We need only to prove (GW1) which is a consequence of
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(GWA2):

q
len W = Z(len WI((;) +len W,({:_')) +7(y) - n(vg(:))
=0
1 ) (311)
< CZ oy, + ny) - ”(qu )
j=0

< Coy, +n(y) - n(vg(;));
however, r1(x) < n(v}(‘q)) < 71(y) and so oy, < 71(y) — m(x) which implies:
len W < C(n(y) - n(x)) < Cd(x, y). (3.12)

As mis 1-Lipschitz and as W is monotone increasing, we have len W > a1(y) — 7(x) which completes the proof
of (GWA2).
(Case 2): n1(y) < rr(vgfq)); then vg;) and y belong to Q(R x {A,} x {6),}) and W@ is constructed by taking a

geodesic walk in Q(R x {A,} x {6y}) from vg) to y; note that W is monotone decreasing. Let:

w® - {zoy*+* yzZm =Wy}, (3.13)
where vy is the unique vertex satisfying (Ay, 8y) = (Ay,, 8v,) and n(vy) € [n(y), n(y) + 1). Note that:
n(x) < n(y) < m(vy) < Coy, + (x), (3.14)

and so

q
_ _ (=) (+) (+)y _
oy, =lenW = E (Ien Wki +len Wki )+ rr(vkq) n(y) G.15)
j=0 :

< Coy, < cd(x,y),

which establishes (GW1), (GWA2) and the part of (GW2) concerning w;.
If n(zm) = m(x) + Ok, /2 then (GW3) holds for some universal constant C. Otherwise, let my < m denote
the first integer so that:
m(zm,) < m(x) + akq/ 2; (3.16)

for i > mg we have d(zz, zm) < %, /2 as W is a monotone decreasing geodesic walk; thus:
d(z, X) 2 d(zm, X) = 0,/2 2 04, [2 - 1, (3.17)

and so (GW3) holds for some universal constant C (recall that kg = kmax). O

In the following theorem we complete the construction of good walks by analyzing the caselg d(x, y) < kmax =
max N(x, y); essentially this means that, as d(x, y) is less than Oy,..» oneis forced to choose a particular socket
or gluing point to change (Ax(kmax), Ox(kmax)) to (Ay(kmax), 0y (kmax)). Specifically, one should think about the
situation where d(x, y) is insignificant next to o;_, , which means that geodesics from x to y must pass near
a given gluing or socket point. The following condition (GWA3) essentially says that we can find a gluing
or socket point u;__ (which must be a socket point if Ox(kmax) # 8y(kmax)), then construct good walks Wy
and Wy from x to uy__and uy_ toy (respectively), which satisfy the conclusions of Theorem 3.7, and finally
obtain W concatenating Wy and Wy.

Theorem 3.18. Iflg d(x, y) < kmax = max N(x, y) then thereis a good walk W from x to y which has the following
additional property:
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(GWA3) If 6(x, kmax) = 0(y, kmax) there is a distinguished gluing or socket point u;__ € W of order kmax such
that each edge e preceding uy_. satisfies A(e; kmax) = A(x; kmax) and each edge following uy__ satisfies
A(e; kmax) = A(y; kmax). Moreover, in this case all edges e of W satisfy 0(e; kmax) = 0(x; kmax). On the other
hand, if 6(x, kmax) # 6(y, kmax) there is a distinguished socket point uy,__such that each edge preceding

satisfies (A(e; kmax), 0(€; kmax)) = (A(X; kmax), 6(e; kmax)) and each edge e following uy . satisfies

(A(e; kmax), 0(e; kmax)) = (A(y; kmax), O(y; kmax)). Moreover, W can be decomposed into consecutive walks

Wx and Wy where Wy is a good walk from x to uy_satisfying the conclusion of Theorem 3.7, and Wy is a

good walk from uy__ toy satisfying the conclusion of Theorem 3.7.

U

max

Proof. The construction in the cases Ox(kmax) = Oy(kmax) and Ox(kmax) # Oy(kmax) is essentially the same,
and we thus discuss only the latter case. The properties of the labels (A(e; kmax), 6(e; kmax)) follow from the
construction and Theorem 3.7.

Take a geodesic walk W from x to y. Note that there must be a socket point it € W of order kmax so that:

d(x, i) + d(@t, y) = d(x, y); (3.19)

moreover, let U denote the set of socket points of order kmax and let u;__ be an element of U at minimal
distance from x so that d(x, uy__ ) < d(x, @t) < d(x, y). Let k € N(x, uy__); then if k > kmax a geodesic walk W
from x to uy_, would pass through either a gluing or a socket point of order k and by Lemma 3.4 we would
have:

dx,uy,, ) =len W= o0y >d(x,y), (3.20)

yielding a contradiction. Hence k < kmax; note that (A(uy,_, ; kmax), O(u, . ; kmax)) can take any value, and
hence k < kmax; we can then take a geodesic walk from x to u;__ which must pass through either a gluing or
a socket point of order k, and we apply Lemma 3.4 to conclude that:

dix,uy, ) =lenW = oy. (3.21)

Thus we can apply Theorem 3.7 to obtain a good walk Wy from x to u;__ . Note that (3.20) implies that
(Aug,, 5D, Oy, s D) = (Ax; D), O(x; D)) for I > kmax; in particular, as kmax = max N(x, y), if k € N(uy__ ,y) we
have k < kmax. Let W be a geodesic walk from u,__ to y; then it must pass through either a gluing or a socket
point of order k and Lemma 3.4 implies:

d(y, ug,, ) =len W= oy; (3.22)

therefore, we can apply Theorem 3.7 to obtain a good walk Wy from u;
here that:

toy. For later reference, we also note

max

d(X, ukmax) + d(y’ ukmax) € [d(xi )’)’ 3d(X, Y)]- (3-23)
The walk W is obtained by concatenating Wy and Wy so that it satisfies (GWA3). Property (GW1) follows
observing that:
len W = len Wy +len Wy < C (d(x, uy,, ) + d(uy,,., ¥)) » (3.24)
and using (3.23) to conclude that:
len W < Cd(x, y). (3.25)

Property (GW2) holds because it holds for Wy and W,. We discuss property (GW3) in some cases. We will

denote by C; = 2 the constant in (GW3) provided by Theorem 3.7. In the following we use the notations

kgﬂix = max N(x, uy_, ) and kf%{;x =maxN(uy_ ,¥).

(Case 1):7(x) < m(uy, ) < n(y).
(Case 1,1): Wy and W)y are both monotone. Then W is monotone and (GW3) holds.

(Case 1,2): Wy isnot monotone and Wy is monotone. As in Theorem 3.7 we decompose Wy is a first part W,((m)
which is monotone, and a second part {zg, -+ , Zm = uy_, }. Then len Wy = 0,0 and d(z;, x) 2 jx(i)/C there
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jx(i) is the index / position of z; in the walk Wy, and C is a universal constant. Let w € W), and j,(w) denote
the position of w in Wy and j(w) the position in W. If j,(w) < 2 len Wy, then j(w) < 3 len Wy and so:

len W i(w
d(w, x) = d(w, zm = ukmax) 2 C1 S JB(TI)

(3.26)

If jy(w) > 21len Wy, then d(w, x) = d(w, uy_, ) - d(uy_,, , X); as Wy is monotone we have d(w, uy_, ) = jy(w)
and so:

d(w, x) = jy(w) - len Wy = ]’/(TW); (3.27)
thus 3
jw) =jy(w) +len Wy < Ejy(w), (3.28)
and so .
dlw, x) > ](TW) (3.29)
(Case 1,3): Suppose that Wy is monotone but Wy is not. As in Theorem 3.7 we decompose Wy, in a first part
Wy") which is monotone and a second part {zp, -+ , zm = vy}. On W)(,'") we obtain (GW3) as in (Case 1,1).
Note that:
len Wy ~ m(uy,, ) - (x) (3.30)
len Wy =len W™ + m = 0,¢) = d(ug,,Y)- (331)

Note that for each i we have d(z;, uj

max

) > nggx/cl- If (z;) = m(u) + Ukiﬁix/z we conclude that:

0,0
d(zi, ) 2 Mluty,,) = 700 + =2 2 d(x, ) + it ¥)
2 dx,y)

where in (*) we used (3.23) and where the constant in the lower bound can be explicitly estimated in terms of
Ci.
Suppose that n(z;) € |m(uy, ), m(uy,, )+ 00 / 2). Then any geodesic walk from x to z; must pass

through some socket point it € U, and we would also have k;{;X € N(@, y) so that:

(3.32)

d(x, z;) = d(it, x) + O 2 dx, ug,, )+ 00
2 dx, uy,, )+ duy,, ,y) 2 dx,y).

The bounds (3.32), (3.33) imply that (GW3) holds on {zo, - - - , zm} with a constant that can be computed in
terms of C;.

(3.33)

(Case 1,4): Wy and W), are both not monotone. The argument for (Case 1,3) can be adapted noting that
d(X, ukmax) = ng;x'

(Case 2): m(uy
values of 7.

) < (x) < ni(y). After reaching u;,_ , the walk W starts to move in the direction of increasing

max

(Case 2,1): Wy is monotone. There is a 6 > 0 depending only on (P2) so that 0;,4 = 30; for each [, and there
is a Cy depending on (P2) so that 0;,9 < Cyo; for each I. Let I = [lgd(x, uy_, )] and fix w € Wy.If j(w) < 0y,
we have that any walk from x to w must pass through a socket point of order kmax and so:

dw,x) 2d(x, u, )2 012 0L

(3.34)
> j(w).

Let j(w) > 01,¢; then d(w, x) = d(w, uy, ) - d(uy,,, , X); as Wy is monotone, d(w, uy_, ) = jy(w) and so:

d(w, x) = jy(w) - 7 2 jy(w); (3.35)
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but:
j(w) =jy(w)+len Wy <j,(w)+o
jw) ]y( ) x Siy(w) 1 (3.36)
f,]y(W)’

and so d(w, x) 2 j(w) where the constant in the lower bound can be estimated in terms of C;, Cg and 6.

ase 2,2): is not monotone. We decompose as U {zo, "+ ,zm = vy} and note that we can use
(Case 2,2): Wy is not tone. We d Wy as Wi v} and note that
(Case 2,1) on Wy. For {zg, -+ , zm = vy} one can adapt the argument used in (Case 1,3).

(Case 3): m(x) < m(y) < m(uy,, ). This case can be dealt with along the lines of (Case 2) except in the case
in which Wy, is not monotone, where a different estimate is required on the terminal part {zg, - , zm = vy }.
Any walk from x to z; must pass through socket points of orders kmax and k%x so that:

d(zi, x) 2 d(x, ug,,) + 0,0 ; (3.37)
but Wy is not monotone, which implies 0w = len Wy, which gives:
d(zi, x) 2 dx, wy,, ) +jy(z:); (3.38)

but d(x, uy,. ) 2 len Wy and j(z;) = len Wy + jy(w;) so that d(z;, x) 2 j(z;). O

4 The exponents for which the Poincaré inequality holds

4.1 Geometric characterizations of the Poincaré inequality

The proof of the Poincaré inequality will involve the construction of families of curves joining points in G.
Overall, we have preferred to avoid using the language of pencils of curves employed by [10, 26], and preferred
a probabilistic language. The rationale is that our construction is naturally modelled by Markov chains, a
fact that also occurrs in the examples [4]. Specifically, we will deal with measurable functions defined on
a probability space which take value in the set of (Lipschitz) curves on a metric space X; such maps will
be called random curves. To a random curve I" one can associate a measurable function defined on the
same probability space and which takes values in the space of Radon measures on X by I' — ||T'|| (the length
measure); such a map will be called a random measure. Finally, the maps to the end and starting points of T,
I' » endT and I — str I, produce random points in X. Here for a random point we just mean a measurable
function defined on a probability space which takes values in the set of points of X; alternatively, one can
think of a random point in terms of sampling points of X according to some probability measure P, which is
the law of the random point. In particular, as a random curve I" can be also thought in terms of choosing a
curve according to some probability law, the extremes of I" will be random points.
Finally, the support spt I" of a random curve I' is the set of edges that I crosses in positive measure with
positive probability:
sptI'= {e: Pr(|I']|(e) >0) >0} . (4.0)

To disprove the Poincaré inequality we will use the notion of modulus of families of curves, which we
now recall.

Definition 4.2. Let P > 1 and A be a family of locally rectifiable curves in the metric space X. We say that a
Borel function g : X — [0, oo] is admissible for A if for each v € A one has:

/ gdy| > 1. 4.3)

Having fixed a background measure v on X, we define the P-modulus of 4, modp(A), as the infimum of:

/ gfdv (4.4)
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where g ranges over the set of functions admissible for A. We will be mainly interested in modulus when A4 is
the family Ap,4 of locally rectifiable curves connecting two points p, g, and when v is of the form:

d(p, - d(q, -
uy = (ll(B(p(’pd(l)),_)))XB(p,Cd(p,q)) + M(B(q(,qd(;,')))XB(q,Cd(p,q))) M, (4.5)

where u is a doubling measure on X and C > 0. In this case we will use the notation modp(p, g; pﬁfz) for the
modulus of Ap 4 when the background measure is yﬁfé.

We finally recall the definition of the Riesz potential centred on p:

— d(p’ ')
Ho = W B, dip, MM

The following Theorem summarizes a geometric characterization of (1, P)-Poincaré inequalities. It com-
bines results of Heinonen-Koskela [11], Hajlasz-Koskela [8], Keith [13], and Ambrosio, Di Marino and Savaré [1],
and the proofis included just for the sake of completeness. Note that we will take Theorem 4.7 as the working
definition of the Poincaré inequality, and so we will not need to recall the usual definition of the Poincaré
inequality.

(4.6)

Theorem 4.7. Let (X, ) be a complete doubling metric measure space; then P € Ipi(X, ) if and only if one of
the following equivalent conditions holds:

1. There is a universal constant C such that for each pair of points p, q € X one has:
d(p, 9)" " modp(p, g; uiy) = C; 4.8)

2. Thereis auniversal constant C such that any pair of points p, q can be joined by a random curve I' satisfying:

Q
dE”(‘CF)”] < Cd(p, q). (4.9)
dUpq lLeqe)

Proof. The characterization of the Poincaré inequality in terms of (4.8) is due to Keith [13], who built on pre-
vious results of Heinonen-Koskela [10, 11], and Hajtasz-Koskela [8].

Step 1: (1) implies (2).

Consider the set A of locally rectifiable curves joining p to g; fix M large to be determined later and write
A = Agyit U Ajong U Agoods Where:

1. Ay consists of the locally rectifiable curves in A which meet X \ B({p, g}, Cd(p, q)) in positive length;
2. Ajong are the locally rectifiable curves in A \ Aqy;; which have length > Md(x, y);
3. Aggoq are the rectifiable curves in A \ (Aeyit U Ajong)-

We will now fix p}(ﬂ] as the background measure with respect to which we compute moduli; using the test func-

tions geyit = 0 on B{p, g}, Cd(p, q)) and gyt = oo elsewhere, and gjong = Md(p, q) on B{{p, q}, Cd(p, q))
and O elsewhere, we see that:

mOdp(Aexit) =0 (410)
d(p, q)
dp(A < . 11
mo P( long) ~ (Md(p, q))P (4 )
thus for M sufficiently large,
d(p, 9" 'modp(Ageoa) = C/2. (4.12)

Instead of computing modulus on Ag,,q We can compute it on the family of measures:

2g00d = {:H# Y€ Agood} (4.13)
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Applying the main result of [1] we get a probability 77 on Zg,0q such that, denoting by v = [, Sgooa 1 dn(n), we
get:

‘ dz/c) = mOdP(Zgood)_l/P§ (4.14)
g llLog0)
using (4.12) we conclude that:
d(”@ < dp, M. (4.15)
Dp.a Lo

Now, to each i € 40,4 We can associate a unique unit-speed curve ~ : [0, len~] — X such that 9(% = 1. Thus
71 becomes the law of a random curve I" with E[||T||] = v and then (4.9) follows from (4.15).

Step 2: (2) implies (1).

Take a random curve I’ satisfying (4.9) and let g be admissible for the curves joining p to q. Then:

1<E [/gduru} =/ng[HF||]

dE[|I]
< ”gHLP(y;CEI) % (4.16)
I dHpia legy)
S CHgHLP(HéC,L) : d(p’ Q)l/Q,
and (4.8) follows minimizing in g. O

4.2 Construction of Random curves

In this subsection we construct the ingredients to build the random curves used to verify the Poincaré in-
equality. This is the subsection where most of the technical work takes place. As we work with walks but
need to produce random curves, we define the Lipschitz path associated to a walk as follows.

Definition 4.17. To a walk W = {wge; wy ---e; w;} we can canonically associate a 1-Lipschitz map I'y :
[0,len W] — G by letting I'y|[l, I + 1] be a unit speed parametrization of the edge e;.

Our construction requires 3 building blocks, which are random curves that satisfy some constraints.
These random curves will then be concatenated in the next subsection. As an overview we offer the following
informal discussion:

¢ Theorem 4.23 associates to a monotone walk a random curve which gets “compressed” through a socket
point. This situation arises when a random curve I joining x to y must pass through a given socket point
§. In this case there will be a t; such that I'(t;) = § and so as t — ¢, the random point I'(t) gets closer to
¢. As there is a constraint on the labels of ¢ and as I' is Lipschitz, the set of possible labels of the random
point I'(¢) will shrink as ¢ approaches t. Intuitively, to prove a Poincaré inequality one must show that
this shrinkage is not too fast, otherwise one cannot satisfy (4.9).

¢ Theorem 4.35 associates to a monotone walk W, a random curve which moves “parallel” to Wy. This
situation arises when we have a random curve I" which can take a finite set of values which are all lifts
(compare Definition 4.18) of a given curve.

¢ Theorem 4.47 which explains how to “expand” a random curve so that as t increases the set of possible
labels for I'(t) increases. Note that this situation is already familiar in the classical Poincaré inequality. For
example, consider a random curve I"joining x and y with dom I" = [0, L] which is used to verify a Poincaré
inequality by proving (4.9). One expects that as t — L/2 the random point I'(t) can take a broader set of
values, leading to a more diffused probability measure. On the other hand, as t — O (resp. t — L) one
expects that the probability associated to I'(t) concentrates on x (resp. y).
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We now define a notion of lift for walks used in the subsequent constructions. The idea is that given points
wp and wy, satisfying m(wj) = m(wo) we can canonically lift a walk starting at wg to a walk starting at wy,.

Definition 4.18. Let W = {wg e; wy -+ e; w;} and wy, a point such that 7(wj) = m(wp). We construct a new
walk {w( e} w/ - - - ] w}} as follows. The vertex w}, , is adjacent to w} and is determined as follows. If w} is not
a socket point the requirement 7(w}, ;) = m(w;,1) uniquely determines wi, . Otherwise, assume that w} is a
socket point of order k and let e}, ; denote the edge between w; and w;, ;. We require that A(e, ;3 k) = A(e;.1; k)

and 0(e}, ; k) = 0(e;,1; k) for all k. We say that W’ is the lift of W starting at w; and we will denote it by w- W.

We now add some auxiliary definitions used in the constructions, e.g. when concatenating random
curves. The idea is that when we need to concatenate a random curve Iy to a random curve I'1 we need
the probability measures associated to end I'y and str I'; to be compatible. We thus introduce canonical prob-
abilities on subsets of 771(s) (where s € Z) determined by constraints on A and 6.

Definition 4.19. Let p € G a vertex with ord(p) = 0 and k € N. Let F(p, k) denote the set of those p’ € G
satisfying 71(p") = n(p) and (A, (1), 6,/ (1)) = (Ap(1), Op(D) for I > k. For k = O we let F(p, 0) = {p}. To F(p, k) we
can associate a canonical probability measure P, which can be also thought of as the law of a random point
in F(p, k). The probability P satisfies:

P(p/) _ W((Ap’a Gp’))
P@") " WAy, 8,))

(Yp,p’ € F(p, k). (4.20)

For p’ € F(p, k) denote by s(p’) the finite string of pairs {(Ap(j), 6p(j))};<; then:

P(p") = (Cw,1Cew,2) *W(s(®"). (4.21)

Given F(po, k), F(p1, k) we define a canonical map 7 : F(po, k) — F(p1, k) so that 7(p{) is the unique point
P} € F(p1, k) such that s(py) = s(p}). Note that 74Py = P;.

Let p € G a vertex and k € N. We denote by Fg(p, k) the set of those p’ € G satisfying n(p’) = n(p),
Ay = Ap and 0y, (1) = Op(1) for I > k. As above, to Fg(p, k) we associate a canonical probability P by requiring:

@) _ w(By)
Pp") ~ w(By)

(vp,p’ € Fo(p, K)). (4.22)

We now present the construction of a random curve which goes through a socket point ¢ in G if one has
a walk that passes through ¢. In the following, given a walk W = {wg e; wy - - - e; w;} we denote by W! the
reversed walk {wy, e;, wi_1, -+, €1, Wo}.

Theorem 4.23. Let Wy be a monotone walk. Let pg = str Wy, & = end Wy. Assume that:

(H1) ord(po) = 0 and £ is a socket point of order K = k;

(H2) len Wy € [0y, Cooy] and all edges of Wy have the same O-label 0;

(H3) There are (T{)1<i<k-1 € N N [0, len Wy] such that the map i — 7; is strictly decreasing, len Wy - 7; €
[oi, Coail, we, is either a gluing or a socket point of order i, and if | = T; + 1 one has Ale;;j) = {#} for
i<j<k-1;

(H4) If ws € W satisfies ord(ws) = k, then Ae, = Ae,,,;

(H5) For anedge e; of Wy one has the following: ift € [1, Tj_1]thenAe, = Ap,; ift € (Tiy1, Ti] then Ae, (D) = Ap, (1)
forl<iorlzk;ift € [Tq,len Wo] then Ae, (1) = Ap, (D) for L = k.

Fix Jout € N U {0} and let Py be the canonical probability on F(po; k — Jcut). Construct a random curve I as
follows: choose pj, € F(po; k — Jeut) according to Py and let I' =T )y Wor Then:

(C1) endT has law Py, where P is the canonical probability on Fo(&; k - Jeut);
(C2) sptI' c B(I'y, C10yy,,);



386 —— Andrea Schioppa DE GRUYTER OPEN

(C3) To each e € sptT there is associated a unique in(e) such that ni(e) = n(ejy()), where ey, is the in(e)-th
edge of Wy, and one has:

dE[||L|]

i e=c Culon Mo gy nelten W) T w(a(es j), 6es ) (4.24)

1 gw,
j=k

where Cq depends on Jeyt, Co, (P1)-(P3) and Weight.

Remark 4.25. While the hypotheses (H1) and (H2) are clear, we offer more motivation for (H3)—(H5). Condition
(H3) is an assumption on how fast the labels of A of the edges of W, approach A;. The point is that the entries
of A are switched to {#} in reverse order, from k - 1 to 1, and that switching A.(i) occurs at a distance from
¢ comparable to g;. In condition (H4) we assume that if we pass through a gluing or socket point of order
> k we do not use it to change A. Finally (H5) is a consistency condition for (H3): we change as few labels
as possible and after switching A(i) at w; we do not switch the value of A(i) again. Moreover, labels A(l) are
never changed for [ > k.

Concerning the conclusions, we point out that (C3) is the technical estimate quantifying that the “com-
pression” of I' is not too fast. This plays a crucial role in establishing the Poincaré inequality. Finally, note
that /.yt is an integer parameter chosen for convenience, i.e. to create some “space” between the length of W
and the maximum order of the entries of A and 0 that can differ from the corresponding values in Ap, and 8p,.

Proof. We prove (C1). Let &’ = end(p, - Wy); we use the notation wy, e; for the vertices, respectively the edges
of Wy; we use the notation w;, e for the corresponding edges and vertices of py - Wo. We note thatif ¢ > 7; + 1
(H3) implies that A(e}; 1) = {#} fori < I < k - 1. We thus conclude that A(¢’; 1) = {#} for I < k - 1; for I > k the
label A, coincides with that of A, and so we conclude that A(§ ;1) = A(&; ) for | > k. Therefore, ¢’ is a socket
point of order K. By (H2) all edges of W, have the same label 6, and this implies that all edges of p{, - W, have
the same label Bp(/). As (&) = n(£), we conclude that ¢’ is the point of Fg(¢; k — Jcyut) with label Opé and thus
(C1) follows.

We now prove (C2). Note that the i-th vertices w;, w} of Wy and pg - Wy have m(w;) = m(w}), and the
labels (A(w;), 8(w;)), (A(w}), 6(w})) and can differ only in the first k — Jcy entries. Hence (C2) follows from
Lemma 2.49.

We now prove (C3). First let e € spt I and assume that e = e € p, - Wo, e = €}’ € pg - Wo. As the path Wy
is monotone, [ = [ and there is a unique edge es of Wy, such that 7(e) = 7t(es). We can thus associate to e the
unique integer in(e) = s. We now turn to the proof of (4.24). For pg € A(po, k - Jcut) we will denote by e(pg; 1)
the I-th edge of py - W.

We now fix e € sptI"and assume that in(e) = s. We first consider the case s € [1, Ty_;]. Then by (H5) there
isaunique py € F(po; k—Jcut) such that e is the s-th edge of p(, - Wy. In this case by (H2)-(H3) Ig(len Wy —in(e))
is comparable to k up to a multiplicative constant depending on Cy. Assume now that s € (t;, Ti,1]; then e is
the s-the edge of p;, - Wy, if and only if:

ep(/) = 695 (4.26)
Apos) = Aesj) (1 <j<i) (4.27)
note also that in this case Ig(len Wy — in(e)) is comparable to i. Finally by (H3) if s € [11, len W] e is the s-th

egdge of p(, - Wy whenever pg € F(po; k — Jcut) satisfies 6, = fe. Note that in this case lg(len Wy - in(e)) is
comparable to 1. We can now put all this information together:

weight (E[[|T[[];€) = Y  {Po(po) : e(po; in(e)) = e, po € F(pos k = Jeud)}
~ Z{Po(p(’)) : 0 = 0c, A (e(posin(e)); j) = Ale;j) forj < lg(len W - in(e))}

k=Jeut ) lg(len Wy—in(e))
=~ C;‘I;gcut H w (96(])) Cé‘ilg,(llen Wo—in(e)) x H W(A(e;])).
j=1 j=1

(4.28)
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On the other hand,
weight(u; e) = H w (Aes ), 6(e; ) (4.29)
j=1
and so (4.24) follows by taking the quotient of (4.28) and (4.29). O

Corollary 4.30. Suppose that Wy satisfies the assumptions of Theorem 4.23 and let p € G. Assume that for
some Cy > 0 one has:

dist(p, sptI) =¢, 0. (4.31)
Then thereis a C1 = C1(Co, Jcut) Such that:
k
dE[|r|)||® 1 -
~¢; ) _WiayCaw,1) O-1- (4.32)
H Wy lrog,) ; -

Proof. By assumption (4.31) we have that on the edges of spt I':

S

B 6 ConrCana)™ T w (A3, 05 m)) (433)
n=k+1

We now obtain the following estimate using that Wy|[7;,1, len W] has a number of edges < o;:

! Q
dE[|r|]||® (dE[||1"||] ) iy .
S dup N + + =P |, xweight(u; e
H dﬂp LO(up) (»3Z i=k-1 ez ez d]lp |e d}l |e g (‘u )
in(e)€[0,7k-1) in(e)€lri1,7:)  in(e)€lr1,len W]

= Z (Caw,1Cew,2) ™ H w ((A(p; n), O(p; n))_1 weight(y; e)

e: n=k+1
in(e)e[0,74-1)

k*]. (o]
DIEDY (Wia) Caw, 1) U Can1 Caw2) ™ x T w (s n), 6(ps m)) ™" weight(u; e)
1

=1 e: —k+1
ine)elti, i) e

0 Wiay Cow ) ACaw1 Caw ) x [T w ((A(psn), 6(p; )" weight(y; e)

e: =k+1
in(e)€[ty,len W] =i

k
(WEIQ}CgW)I(Q_DUk-l-
-1

Q

(4.34)

In the following theorem we construct a random curve which moves “parallel” to a given walk W.

Theorem 4.35. Let W = {wg e; wy - --e; w;} be a monotone walk joining pg to p; where ord(p;) = O. Let P;
denote the canonical probability measure on F(p;; k).

To each py € F(po; k) we associate a walk W, as follows. We let wg = pg. Then, e} and (hence) w;,, are
determined by w; and €}_, as follows. First ni(e}) = ni(e;). If ord(w}) = O or w; is not a gluing or a socket point the
previous requirement uniquely determines e;. If w/ is either a gluing or a socket point of order > k we take the edge
e} satisfying the additional requirement (A(ej; ord(w;)), 6(ej; ord(w}))) = (A(e;; oxrd(w;)), B(e;; ord(wy))). If wi
is a socket point of order < k then e} is determined by the additional requirement that (/\e;, Gel{) = (Ae{,l , Gelgil).

Let T be the random curve determined by choosing py according to Py and letting I' = Wy, . Then the fol-
lowing holds:

(C1) endT has law Py;
(CZ) SptF - B(rw, C(Tk),'
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(C3) Fore c sptI one has:

dEd[UIFH] ‘e e = (ng,l ng,z)_k H w ((/\.e(}), 69(]))) -1 s (4-36)

j=k

where Cq depends on (P1)-(P3) and Weight.

Proof. Fix p; € F(po; k) and let e; denote the t-th edge of W and e; the t-th edge of W), . One has n(er) = n(ey);
moreover, the choice of behaviour at gluing and socket points implies that:

Ao 1), 0po; ) ifj<k
(Alet; ), O(ers ) ifj > k.

Thus, for e € spt T there are a unique t € N and a unique p; € F(po; k) such that e is the ¢t-th edge of Wpé. We
now prove (C1). Observe that the end point p/ of Wy, satisfies:

ﬂ(p/l) = ”(pl) (4.38)
AWos 1), 0(po; i) ifj<k
(Alp1; ), 6(p1;j)) otherwise.

Then, using the definition of the map 7 in Definition 4.19, we get p’ = 7(p{,) and so (C1) follows.

Statement (C2) is proven like in Theorem 4.23.

We now show statement (C3). Let e € sptI" and let (¢, p(,) be the unique pair such that e is the t-th edge
of Wpé. Then:

(Alet; ), B(et; ) = { (4.37)

AW’ ), 01;)) = { (4.39)

k
weight (E[|I'[]; €) = P(5) = (Cw,1Cew,2) H w ((A(pos 1), 003 1)) » (4.40)
j=1
and the result follows dividing (4.40) by weight(y; e). O

Corollary 4.41. Let W satisfy the assumptions of Theorem 4.35 and let p € G. Assume that for some Cy > O
one has:

dist(p, sptI') =¢, 0y, (4.42)
and that len W < Cy0y. Then thereis a C1 = C1(Cop) such that:
Q
Hd ELI] <c, O (4.43)
aup Lo,
Proof. By assumption (4.42) we have
d g -
W =y CannCan2)™ T (w5, 65 ) ™ (4.48)
n=k+1

on the edges of spt I'. Then for e € spt I' one has:
dE[|]
~1. (4.45)
dpp

On the other hand, len W < o0y and so:

len W Q
dE[|r|]||°® (dEMﬂu) dyp
_ x ——= weight(u; e)
H dup  |leg,) ; , Z. Z dpp du ETH

PoCFpoik) gisthe ¢
len W k (4'46)

=C(Co) Z Z (Caw,1Caw,2) H w ((A(pos ), 0(pos )
t=1 pleF(po;k) j=1

< Ok
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In the following theorem we assume that the walk is monotone increasing for concreteness; the same result
holds if the walk is monotone decreasing. The goal is to build a random curve which “expands” gaining access
to new labels. This is needed to get the estimate (4.9).

Theorem 4.47. Let W be a monotone increasing walk joining po to p; where ord(p;) = 0 and len W ¢
[ok/2, 0). Assume that all edges in W have the same label. Then there is a Cq which depends only on (P1)-
(P3) such that the following holds whenever ]y > Co. Let:

(Apos k = Jeut + 1), 0(pos; k = Jeut + 1)) = (S0, to), (4.48)

and choose (s1, t1) € Symb; x Symb, \{(so, to)}.
Choose by Lemma 2.42 a monotone increasing walk W(()new) from pg to a socket point & of order k — Jeyt + 1,
and which satisfies len W(()new) <len W. Let p1 € F(p1; k - Jeut + 1) be the point satisfying:

(Ap13)), 0(p13))) forj#k—Jeur+1

. (4.49)
(51,1t1) forj=k-Jeu+ 1.

(AB131), 0(B13))) = {

Using Lemma 2.47 obtain a monotone increasing walk Wgr}';‘”) from & to a point Py, such that A5, = Az,
0[,1/2 = 9131 and:

len W(ll}‘;‘”) <len W -1len W(new) (4.50)
Finally concatenate Wgr;gw) with a monotone increasing walk whose edges have constant label (A3, , 05, ) to ob-
tain a walk Wgnew) joining ¢ to p1 and satisfying:

len WP 1 1en W) = len W (4.51)

Construct a random curve as follows. Choose pj, € F(po; k — Jcut) using the probability Py. Then with prob-
ability:
(Caw,1 Caw,2) *w((s0, to)) (event EC?V) (4.52)

let I be the canonical path T, bW associated to pj,-W. For (s, t) # (So, to) let p} s bethepointin F(p1; k—Jcut+1)
such that:

A . A . /‘(po; ) e(pOa])) ifj#k_]cut"'l
ADY,s,6 1), 0(D1,5,65)) = ( (4.53)
( bt bt ) (s, 0) ifj=k—Jeut+1.
Then with probability:
(Cow,1Caw,2) "W ((s, 1)) (event E(new)) (4.54)
let T be the canonical path associated to the walk:
-1
po - WY * (ﬁll,s,t : (Wﬁnew))‘l) : (4.55)
Then the following hold:
(C1) endI haslaw PionF(p1; k — Jeut + 1);
(C2) sptI' C B(T'w, COpys1);
(C3) Let
ErW — ) EReY; (4.56)

(s,6#(s0,t0)

let 1Y denote I conditioned on E®Y and I™*") denote I' conditioned on E®*"). Then for each e € sptT
there is a unique in(e) € N such that ni(e) = ni(ey, () where ey, is the in(e)-th edge of W. If e € spt I’ (new)
one has:

dE[|T"*|]

i le=c, Con®w ;k”(e)c- 2Hw ((ACes ), 6(e; ) ™ (4.57)

j=k
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where
Ig(len W™ - ] <
T(e) - g(len Wy in(e)) ifmax(n(e)) < (&) 458)
lg(in(e) - len W(()“e"")) otherwise;
and if e € sptT®9 then:
d E[|| 7Y T . -
AENCZEM o~ (Co oo™ T w ((ACes ), O0es ) (4.59)

du o

where C1 depends on J¢yt, (P1)-(P3) and Weight.

Remark 4.60. Theorem 4.47 corresponds to the notion of “expanding” pencils of curves as discussed by
Heinonen and Semmes [10, 26]. However, here there is a substantial difference with previously known ex-
amples of PI-spaces, as we need to pass through a socket point in order to expand the random curve (or the
pencil). This process entails some degree of “compression” in the expansion, and this compression must be
controlled as it obstructs the Poincaré inequality.

Concretely, we want I to start in F(po; k — Jeut) and end in F(pq; k — Jeut + 1), where J; is an integer
parameter chosen for convenience, i.e. to create some “space” between the length of W and the maximum
order of entries of A or 6 which differ from the corresponding ones in Ap, and 6p,,. While to reach F(p1; k—Jcut)
we can just use a “parallel lift” (compare the definition of I'y, . using pg - W), to access points p1 € F(p1; k-
Jeut + 1) with (A5, (k = Jeut + 1), 05, (k = Jeut + 1)) # (Apo (k = Jeut + 1), Opo(k — Jeue + 1)) we will use the socket
point &.

Specifically, we build a path W(()new) * Wgnew) so that we reach from pq the point p; whose label is defined
in (4.49). In this way we can modify the (k — Jout + 1)-th entry of labels. This construction is then generalized
to an arbitrary starting point py € F(po; k - Jcut) by using (4.55).

Heuristically, the event E©Y means that we just follow a path ending in F(pq; k — Jcut) while the event
E™W) means that we pass through ¢. Then the technical part of the argument boils down in showing that if
the probability of E©) is chosen correctly one gets the estimates (4.57) and (4.59) which will be needed in
verifying the Poincaré inequality.

Proof. We first explain why the construction of the walks W(()new), Wgr}gw) and Wg“ew) can be carried out. If Cg is
sufficiently large, one can ensure that whenever J.y = Co, and if C is the constant appearing in Lemmas 2.42,
2.47, one has:

2Coyj,, <lenW, (4.61)
and thus one can construct W(()“ew) and Wg‘};w) satisfying:
len W(()“ew) +len Wgr}iw) <lenW. (4.62)

We now explain why the concatenation in (4.55) is well-defined. Note that W(()“ew) and (Wgnew))‘1 satisfy
the assumptions of Theorem 4.23; referring to the notation of Theorem 4.23, we have to set K = k where k is
now given by the integer k—Jcut+ 1 used in this Theorem; for W(()“ew) the value of J.,t now used in Theorem 4.23
is 0, while for (Wgn‘*w))‘1 the value of J.ut now used in Theorem 4.23 is 1. Now, Theorem 4.23 ensures that
both pg, - W(()new) and (P9 5 - W&“e""))’1 end at the point &’ € Fg(&; k — Jeut + 1) such that 8(pg; 1) = 6(¢’; 1) for
1 # k — Jeut + 1. Therefore, the concatenation in (4.55) is well-defined.

We now turn to the proof of (C1). Let py, = strI'; conditional on the event E©9 one has that end I' = D]
where p) is the point of F(p1; k — Jout + 1) satisying ()lp(/), Bpé) = (Api , 9171)' The probability of the event:

{steI = po) n EOD (4.63)
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is:

k_]Cth
ew,1Cqw,2) " ™ w 0s 1), 05 1))+ (Cow,1Cqw,2) "W ((So, to
(Caw,1Caw,2) ™ (Awh3 1), 8Pl 1) - (Caw, Ca,2)™ W ((S05 to)
n=1
k=Jeut+1
~ (Cawa Cg,2) 0 T w (A m), Ops m)) . (4.64)
n=1
Conditional on the event Egr}fw) one hasend T = p] ,, and the probability of the event
{strT = po} N EQEW (4.65)
is:
k*]cut
(ng,lcgw,z)_kHCUt H w ((A(pé); n), 9(176, Yl))) : (ng,l ng,Z)_lw ((S, t))
n=1
k~Jeut+1
= (CgW,lng,z)JHIMW1 H w ((A(ﬁll,s,t; n), 0P’ s.i3 n)). (4.66)
n=1

We thus conclude that (C1) holds

For (C2) we can apply the same argument as in Theorem 4.23.

We now prove (C3). The fact that in(e) is well-defined follows from the monotonicity of the walks W,
W(()new) and W(lnew). As all edges of W have the same label, for py € F(po; k - Jcut) one has that pg - W = Wy,
where Wpé is defined as in Theorem 4.35. Therefore, the estimate (4.59) on the Radon-Nikodym derivative of

E [HF (old) H} can be obtained from (4.36). Let now ¢, = in(e;) where e; is the last edge of W((J“ew). As remarked

above, the walk W(()new) satisfies the assumptions of Theorem 4.23. Thus, if e € spt ™) and in(e) < ty we can
apply (4.24) to get (4.57) with T(e) = Ig(len Wy —in(e)). On the other hand, also the path (Wgn"w))‘1 satisfies the
assumptions of Theorem 4.23. In this case the point end ™) avoids the sets of points p’, € F(p1; k—Jeut +1)
such that:

A1 k= Jeut + 1), 075 k = Jeut + 1)) = (S0, to); (4.67)
in applying Theorem 4.23 this can only introduce a multiplicative error lying in [(Cgw,1 ng,z)"l, Caw,1Caw,2]
in the estimate (4.24). Note also that if in(e) > t;, considering the reverse walk (Wgnew))’1, the integer in(e)
in (4.24) must be replaced with len W - in(e) and thus the proof of (4.57) is complete. O

Corollary 4.68. Let W be as in Theorem 4.47 and let p € G. Assume that for some C1 > O one has:

diSt(p, Spt F) =c, Ok- (469)
Then thereis a Cy = C5(Cq, Jeut) such that:
k
dE[T)1||® PEPNTE)
=c (W PS ng) Oj—1. (4.70)
S S Y

Proof. We first apply convexity of the Q-th power of the L%(u p) norm to get:

HdEHFu || pggtneny BTy o BT |
Do) uy dp LO(y) (4.71)
dE[reeoy | ° dE[rooy | ° .
< P(E(new)) Hd | + P(E(Old)) !1 I :
Hp 19(4,) Hp 19(u,)

let t; = in(e;) where e; is the last edge of W(()“ew). By assumption (4.69) we can apply Corollary 4.30 to
roew|[o, te]and riew)| [t, len W]. Similarly, by assumption (4.69) we can apply Corollary 4.41 to 9 Thys,
(4.70) follows substituting (4.32), and (4.43) in (4.71). O
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4.3 Proof of the Poincaré inequality

In this subsection we join the random curves constructed in Subsection 4.2 to prove the Poincaré inequality.

Definition 4.72. Given P > 1 we denote by Q the conjugate exponent P/(P — 1). Let I,..x denote the range of
exponents P > 1 such that there is a C = C(P) such that for each k € N one has:

k

- -1) O)-
> (WiayCon) @V < . (.73)
=1

Minding that oy = gk , We obtain:
-1
Ineck = (logg(w{.}ng,l) +1, oo) . (4.74)

Note that as P\, logg(wa}cgw,l) + 1 the constant C(P) * oo. Now w{l‘}ng,l =1+ wa} and thus varying
wa} we can prescribe I .« to be any open ray (a, oo) where a > 1.

Theorem 4.75. For P € I, the metric measure space (G, y) satisfies a (1, P)-Poincaré inequality, i.e. Lok C
Ip1(G, ).

Proof. We apply Theorem 4.7, i.e. for any pair of points (x, y) we show the existence of a random curve I'
satisfying:

sptI’ c B({x,y}, Cd(x, y)), (4.76)

H dE[T|] ||

d(px + py)

Sc, dx, y), (4.77)
LQ(HX‘*’Hy)
where C does not depend on x, y, and C(, does not depend on x, y but depends on Q. I' is built by concatenat-
ing curves obtained by using Theorems 4.23, 4.35, 4.47. We observe that if end I'y = str I’y the random curves
I'g, I'1, up to translating their domains, can be concatenated to obtain a random curve I'y * I';.

Step 1: First part of building "half" of a random curve joining X to Y.

Fix points x, y and assume that max N(x, y) < 1gd(x, y). This assumption will be removed in Step 2.
Using Theorem 3.7 we can choose a good walk from x to y satisfying (GWA1) and (GWA2). Welet K = 1g d(x, y).
We thus have a uniform constant Cq such that:

Coog 2len W (4.78)
d(x,w;) = Coli  (w; € W is the i-th vertex). (4.79)

For the moment let C be the maximum of the constants occurring at points (C2) of Theorems 4.23, 4.35, 4.47.
We can find C; = C(Cyp), J1 = J(Co) such that, if J > J; and W satisfies:

d(W, Wi) < C(Tlg i-J>» (480)

then one has:
d(w, x) = C7ti. (4.81)

We now subdivide W into subwalks { Wa}4c; (I is a finite set of integers), the idea being that W can be
thought of as a concatenation of the { W, }. More precisely, this can be formalized by using a strictly increasing
map a — Mg, and letting W, denote the part of W starting at the mq-th vertex wy,, and ending at the mg.1-th
vertex wm,,, . Note that we obtain an order relation < on { Wy} 4y where Wy < Wyyg.

Using the properties of the good walk constructed in Theorem 3.7 we obtain a J, such that there is a
decomposition of W into monotone subwalks { W} ,¢; having the following properties:
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(Decl) Foreachk € {J,,-+-,K} thereisa Wq = W,(f"p) satisfying the assumptions of Theorem 4.47 and:
dist(Wa, X) =c 0y; (4.82)

(Dec2) For each k ¢ N(x, y) such that 6x(k) # 0)(k), thereisa W, = W,((necw which can be decomposed into
subwalks Wy, W, which satisfy the following: one has end Wy = w = str Wy; moreover, for Jout 2 J> the
walks Wy and W;! satisfy the assumptions of Theorem 4.23 where & = w;

(Dec3) For each of the remaining walks W, there is a k such that:

len Wy < Coy (4.83)
dist(Wq, x) = Coy. (4.84)

T is constructed by concatenating curves I'y for each a € I. This is done inductively, and one starts by
letting I'1 = I'y, with probability 1. The next step depends on which of the conditions (Dec) is satisfied by
Wiasr:

Case of (Dec1). We have W,,1 = W,(f"p) and we know that end I'y is a random point in F(W,,, ; k — Jcut) whose
law is the canonical probability. We obtain I'y,; applying Theorem 4.47, so that end Iy, is a random point in
F(Wmg.,3 k = Jeut + 1) whose law is the canonical probability. Moreover, by (4.82) we can apply Corollary 4.68

to conclude that:
Q

k
¢, > (Wi Caw) @ Vo, (4.85)

LQ(}‘X) 1=1

dE[HFMlH]
dux

where C, is a uniform constant depending on the constants Cy, C1, C, Jo, J1, Jcut- Moreover, by the assump-
tion on P we have that there is a uniform constant C3 depending on C, and Q such that:

Q
<C Og. (486)

~L3

H dE[|I]
L)

dyx

Case of (Dec2). We have W,.q = W,Ene‘:k) and we know that end I'y is a random point in Fg(Wm,.,; k - Jeut)
whose law is the canonical probability. We apply Theorem 4.23 to build I'; from W,. We then take the canon-
ical probability on Fg(Wm,,,; k — Jcut) and use again Theorem 4.23 to build I from W{l. We obtain I'y.1 by
concatenating I'o and I" 1! subject to the following additional prescription; suppose that str Io= Do; then one
takes str I, = 7(pj) where T : F(Wm,,.; k = Jeut) = F(Wm,.,; k — Jeut) is the canonical map of Definition 4.19.
Note that:

sptlo nsptly = {wyp (4.87)

as the labels of the edges in sptIy and spt; have different k-th entries. Moreover, as & = Wy and
d(x, wgy) =c 0y, we can apply Corollary 4.30 to obtain the estimate:

Q k
~c, > (Wi Ca) @ Vo, (4.88)

H dE[||Fasa ]
LQ(HX) 1=1

dux

where C; is a uniform constant depending on the constants Cgy, C1, C, Jo, J1, Jcut.- Moreover, by the assump-
tion on P we have that there is a uniform constant C5 depending on C, and Q such that:

Q
<C . (489)

~L3

H dE[||I]
L)

dux

Case of (Dec3). We know that end I'y is a random point in F(Wi, ., ; k — Jcut) and that len Wy, < Coy. We build
I'y.1 by applying Theorem 4.35. In particular, the assumptions of Corollary 4.41 are also met an so we have:

Q
< c, Ok (490)

~L2

H dE[[|Ta+]]
LQ(PX)

dux

where C, is a uniform constant depending on the constants Cq, C1, C, Jo and J;.
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Note that by the choice of Cq, if spt 'y Nspt T B # @, then |a - B| < C4, where C, is a uniform constant. We
thus obtain that:

Q
dE[||l
H AENCIT < d, y) (4.91)
i |Logy,)
and that for some uniform C:
sptI" C B(x, Cd(x, y)). (4.92)

Step 2: Modifying Step 1 if maxN(x,y) >lgd(x,y).

In this case W is given by Theorem 3.18. If Ox(kmax) = 6y(kmax) the construction can proceed as in Step
1 because at uy_, there is no change of the 6-label.

We now discuss the modifications for the case Ox(kmax) # Oy(kmax). We first enlarge W at w; = uy_
by inserting 4 subwalks {Wi}?:o between w; and w;,;. Let M = lgd(x, uy__ ), and let e denote the edge of
W before u;__. We take W, to be a monotone geodesic walk whose edges have all the same label (Ae, 6e),
with len Wy = oy and d(Wo, x) > C;*o. For W, we take W' . Let now e denote the edge of W after ;.
Then W, is a monotone geodesic walk whose edges have all the same label (Ae, 0¢), with len W, = oy and
d(W5, x) = C1oy. For W3 we take W51,

One then proceeds as in Step 1, by subdividing W. The subdivision must satisfy the additional require-
ment that the {W;}}, are subwalks of the subdivision, and we have only to specify how to construct the
corresponding {I' ,-}13:0. On W, we apply Theorem 4.35 and Corollary 4.41 and obtain the estimate:

Q

<

dE[||T
H”'O” <c, Ou- (4.93)
LO(uy)

dux

Then I'; and I, are built by applying Theorem 4.23 and Corollary 4.30 to W, and W5 respectively. Note that
str I, is taken to be a random point in F(str Wg Ls M - Jout) whose law is the canonical probability. We build
I'1; by concatenating I'; and I';! with the additional prescription that if str I'; = p then str I', = 7(p)) where

T2 F(str W3 M = Jout) — F(str W51 M = Jout) (4.94)

is the canonical map of Definition 4.19. We thus obtain the estimate:

Q
,SC3 oM. (4.95)

H dE[|I'1]]
L)

dux

Finally, I'; is obtained by applying Theorem 4.35 and Corollary 4.41 to W5. We then have the estimate:

Q
< C, oM. (496)

~

H dE[|T5]]
L)

dux

With these modifications, one obtains (4.91), (4.92) where the constants have possibily worsened compared
toStep 1.

Step 3: building a random curve satisfying (4.76), (4.77).
Fix x, y € G at distance > 1. We choose a vertex z of order 0 satisfying:

‘d(z, X) - d(xz, y)‘ <1 (4.97)
’d(z, y) - d(xz,y)‘ <1; (4.98)

we then choose Jeyt,x and Jeut,y larger than J, of Step(s) 1, 2such that:

[Jeut,x —J2 <3 (4.99)
|]cut,y -J2| <3 (4.100)
lgd(z, x) - Jeut,x = lgd(z,y) - ]cut,y- (4.101)
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We then construct random curves I'y connecting x to F(z;1gd(z,x) — Jeut,x), and I'y connecting y to
F(z;1gd(z,y) - Jeut,y) using Steps 1,2. Note that (4.101) implies that end I'r and end I'y have the same law.
We can thus obtain I' by concatenating I'x and I', 1, Now (4.76) follows from (4.92) and (4.97), (4.98). On the
other hand, (4.77) follows from (4.91) and:

H dafo | HdEnrxH due  dENLYN)  duy |°
d(px + py) L2y +1y) dpx d(llx+lly) dpy  d(ux + py) LO(uy+1y)
HdEnm HdE[nryn] (4102)
A lrag) apy  lrog,)
SCQ d(X, }’)-

4.4 Lack of the Poincaré inequality

To show that a (1, P) Poincaré inequality does not hold if P is sufficiently small, we produce pairs of points
such that the modulus estimate (4.8) does not hold.

Lemma 4.103. Fix a constant Cq > 1; then there are constants M = M(Cyp), I = 1(Co) such that the following
holds. Let (A, 6) be labels such that A(j) = {#} for j < k + M. Let m € Z have order M + k and let R = 3Cy0y. In
the box

Byaa = Box ([m-R,m+R], (4, 6), k+1) (4.104)

select two points pg, p1 such that:

1. n(po) = m - oy and n(p1) = m + 0y;
2. APO = Apl;
3. 0(po;j) = 0(p1;))ifj # k+ M and O(po; k + M) # 0(p1; k + M).

Then there is a constant C1(Cgp, P) such that:

p-1
d(po,pl)P’lmodp(Po,P1,Ilp€,°;71 k- 1)PZ( ) (w{,}cg&,,l)"’l’l. (4.105)

Proof. Let & € By,q denote the socket point of label (A, 8) such that 7(¢) = m. Let - be a continuous curve
joining po to p;. Note that by possibly enlarging Co, we have d(po, p1) =¢, 0% and so for I(Co) sufficienlty
large, by Lemma 2.49 we have:

B({po, p1}, Cod(po, p1)) C Bpad- (4.106)

If M(Co) is sufﬁciently large, the only integer of order k + M contained in 71(By,q) is m. To estimate
modp(po; p1, l‘po pl) we need to produce an appropriate Borel function g. For the moment we let g = oo on
By,4 and then the case of interest becomes when v stays in By,aq; in particular, v must pass through a socket
point & € Fg(&;k + 1).

Let s € dom v be the first time when ~(s) € Fg(&; k + 1) and let v; = ~|[0, s]. Note that:

[m - 0.1, m] C mo ([0, s]); (4.107)

fori < klet t; = m - g; and let p; be the last time such that 7 o v1(g;) = t;. Let E(i) denote the set of edges
e € Byp,q such that r(e) C [t;, t;_1]. As there are no integers of order i in [t;, m] we conclude that the curve
~1|lei, 0i-1] passes through edges {eq, - -+ , e;} C E(i) such that:

(E(i),1) eq and ey, are adjacent, t; € 7i(eq1) and t;_, € ni(ep);
(E(D),2) 12 0;-0i1;
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(E(0),3) Aleasj) = {4} forj=1i;
(E(i),4) 6(eas ) = 0(po;j) forj > k+1.

We now complete the definition of g by defining g|By,q as follows: if e € E(i) for some i and (E(i),3) and
(E(i),4) hold, welet g = (k- 1)"X(0; - 0,_1)7}; otherwise, we let g = 0. We now obtain the following lower
bound:

k-1
/gdj'('ly 2 Z/XE(i)g s,
i=1

k-1 Qi1
> / Xew ((1)g(y (1) dT (4.108)
=1 Qi
k-1 _o
i-1 -
PN = oo

where we let o = 0.
Note now that 1 |[gy-1, 5] is at distance =¢, oy from pg, p1, where C; is a uniform constant. Therefore,
we have:
Ay,

| allowc, D =aiey CowaCan2) ™ T] w (Ao 6003 ) (4109)

j>k-1

note that g # 0 in Bj,q only on U;‘;ll E(i), and let E(i) denote the set of edges of E(i) satisfying (E(i),3) and
(E(i),4); as g vanishes on E(i) \ E(i), we have for some C;(Co, C2, P, M, I):

k-1

' 1
/gpdl"zgg?j)ol <o Z W(ng 1Caw,2) " Z H w(Ae(§), Be(7))
ecE(i)jsk-1
k 1

S Z W= 1)P 5 (a1 Caw,2) ™ x WHQT v i (4.110)

< 2 Oy a oL el

~C1 - (k—l)PUf {4} gw,1 )
from which (4.105) follows. O

Theorem 4.111. IfP <1 + logg(wa}cgw,l) then P ¢ Ipy(G, u). Thus, Ipee = Ipi(G, p).
Proof. We show that for any value of C, (1) in Theorem 4.7 fails. For any k > 1 we can find a bad box Bp,q

satisfying the assumptions of Lemma 4.103. Hence we find sequences of pairs of points (p(()k), p(lk)) € G? such
that:

P-1
0' o 1.3
d (p("),p(lk)) mOdP(p(()k)’p(lk)’V(fk)) W (k 1)P § : ( k) x (W{Q}Cg&/,l)k -

(4.112)
C < P-1 1 k-i
= — X (8 w P (o ,1) .
W{Q}Cg\}v,l(k_ 1)P g {4} ~ew
AsP<1+ logg(wa} Cqw,1), the rhs. of (4.112) goesto O as k * oo. O

Remark 4.113. Note that as wil*} Cgw,1 /* ecoonehasminIp;(G, u) — oo, i.e. therange of exponents for whicha
Poincaré inequality holds gets narrower and narrower. On the other hand, as WE;} Cew,1 \« 1, minIp((G, p) —
1 and thus the range of exponents for which the Poincaré inequality holds can be arbitrarily prescribed.
However, as either wa.} Cgw,1 goes to 1 or oo, the doubling constant of y; blows up.
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5 Putting all together

In this section we complete the proof of Theorem 1.1.

Proof of Theorem 1.1. The existence of the measures {yip_} p, follows combining Theorems 2.15, 4.75, 4.111 and
Remark 4.113.

The projection map 77 : G — R passes to the limit giving a 1-Lipschitz map 7 : X — R. The geodesic lines
of the form R x {1} x {6} pass to the limit and give a Fubini-like representation of the measure pp.. To this
Fubini representation one can associate a Weaver derivation D, i.e. a horizontal vector field as in [24].

The verification that (X, ) is a chart is standard and can be carried out in two ways. The first way uses a
Sobolev-space argument like Sec. 9 in [4]. The second uses D and the Stone-Weierstrass Theorem for Lipschitz
Algebras as in Example [27, Example 5E].

The claim about the Assouad-Nagata dimension follows because the graph G has Assouad-Nagata di-
mension 1 and the Assouad-Nagata dimension is stable in passing to asymptotic cones. O
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