mzuriCh ETH Library

Influence of different abstractions
on the performance analysis of
distributed hard real-time systems

Journal Article

Author(s):

Perathoner, Simon; Wandeler, Ernesto; Thiele, Lothar; Hamann, Arne; Schliecker, Simon; Henia, Rafik; Racu, Ravzan; Ernst, Rolf;
Gonzalez Harbour, Michael

Publication date:
2009

Permanent link:
https://doi.org/10.3929/ethz-b-000012770

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Design Automation for Embedded Systems 13(1-2), https://doi.org/10.1007/s10617-008-9015-1

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000012770
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s10617-008-9015-1
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Des Autom Embed Syst (2009) 13: 2749
DOI 10.1007/s10617-008-9015-1

Influence of different abstractions on the performance
analysis of distributed hard real-time systems

Simon Perathoner - Ernesto Wandeler - Lothar Thiele -
Arne Hamann - Simon Schliecker - Rafik Henia -
Razvan Racu - Rolf Ernst - Michael Gonzalez Harbour

Received: 1 February 2008 / Accepted: 4 April 2008 / Published online: 26 April 2008
© Springer Science+Business Media, LLC 2008

Abstract System level performance analysis plays a fundamental role in the design process
of hard real-time embedded systems. Several different approaches have been presented so
far to address the problem of accurate performance analysis of distributed embedded sys-
tems in early design stages. The existing formal analysis methods are based on essentially
different concepts of abstraction. However, the influence of these different models on the
accuracy of the system analysis is widely unknown, as a direct comparison of performance
analysis methods has not been considered so far. We define a set of benchmarks aimed at the

S. Perathoner (X)) - E. Wandeler - L. Thiele
Computer Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland
e-mail: perathoner @tik.ee.ethz.ch

E. Wandeler
e-mail: wandeler @tik.ee.ethz.ch

L. Thiele
e-mail: thiele@tik.ee.ethz.ch

A.Hamann - S. Schliecker - R. Henia - R. Racu - R. Ernst
Institute of Computer and Communication Network Engineering, TU Braunschweig, Braunschweig,
Germany

A. Hamann

e-mail: hamann @ida.ing.tu-bs.de
S. Schliecker

e-mail: schliecker@ida.ing.tu-bs.de
R. Henia

e-mail: henia@ida.ing.tu-bs.de

R. Racu
e-mail: racu@ida.ing.tu-bs.de

R. Ernst
e-mail: ernst@ida.ing.tu-bs.de

M. Gonzalez Harbour

Grupo de Computadores y Tiempo Real, Universidad de Cantabria, Santander, Spain
e-mail: mgh@unican.es

@ Springer

mailto:perathoner@tik.ee.ethz.ch
mailto:wandeler@tik.ee.ethz.ch
mailto:thiele@tik.ee.ethz.ch
mailto:hamann@ida.ing.tu-bs.de
mailto:schliecker@ida.ing.tu-bs.de
mailto:henia@ida.ing.tu-bs.de
mailto:racu@ida.ing.tu-bs.de
mailto:ernst@ida.ing.tu-bs.de
mailto:mgh@unican.es

28 S. Perathoner et al.

evaluation of performance analysis techniques for distributed systems. We apply different
analysis methods to the benchmarks and compare the results obtained in terms of accuracy
and analysis times, highlighting the specific effects of the various abstractions. We also point
out several pitfalls for the analysis accuracy of single approaches and investigate the reasons
for pessimistic performance predictions.

Keywords Performance analysis - System abstraction - Benchmarking

1 Introduction

One of the major challenges in the design process of hard real-time embedded systems is to
accurately predict performance characteristics of the final system implementation in early
design stages. Reliable predictions on end-to-end delays of events, memory demands and
resource usages are essential to guarantee that the designed system meets all given perfor-
mance requirements before time and resources are invested for the actual implementation of
the system. In addition, an accurate and fast performance analysis is necessary to drive the
design space exploration and thus support important design decisions.

The system level performance analysis of modern embedded systems is generally a
difficult task as the architectures are increasingly heterogeneous, parallel and distributed.
Complex input event streams, resource sharing, interferences among tasks and indepen-
dent scheduling decisions of the distributed computing and communication nodes make the
analysis process challenging even for apparently simple systems.

The need for reliable and accurate performance predictions in early design stages as well
as the mentioned challenges of the analysis have driven research for many years. Most of
the approaches for performance analysis proposed so far can broadly be divided into the two
main classes of analytic techniques and simulation based methods. There are also stochastic
methods for performance analysis which we will however not consider in this context. The
main advantage of simulation is the large modelling scope, as various dynamic and complex
interactions can be taken into account. However, most simulation based performance estima-
tion methods suffer from insufficient corner case coverage. To determine guaranteed perfor-
mance limits, analytic methods must be adopted. These methods provide hard performance
bounds, but they are typically not able to model complex interactions and state-dependent
behavior, which can lead to pessimistic (but still correct) analysis results.

Several models and methods for formal performance analysis have been presented so
far; they are based on essentially different abstraction concepts. The first idea was to extend
well-known results of the classical scheduling theory to distributed systems. This implies
the consideration of the delays caused by the use of shared communication resources, which
cannot be neglected. This combined analysis of processor and bus scheduling is often re-
ferred to as holistic scheduling analysis. The first approach in this direction was made by
Tindell and Clark in [21] where the authors combine fixed priority (FP) preemptive schedul-
ing on the processing resources of a distributed system with time division multiple access
(TDMA) scheduling on the interconnecting communication bus. In [23] Yen and Wolf pre-
sented an analysis approach for distributed systems that considers data dependencies and in
[14] Pop et al. took into account also control dependencies. Later several holistic analysis
techniques for various other combinations of input event models, resource sharing policies
and communication arbitration have been investigated, see e.g. [15].

A more general approach to extend the concepts of classical scheduling theory to hetero-
geneous distributed systems was presented by Richter et al. in [17]. In contrast to holistic

@ Springer

Influence of different abstractions on the performance analysis 29

methods that extend classical scheduling analysis to special classes of distributed systems,
this approach applies existing analysis techniques in a modular manner: the single mod-
ules of a distributed system are analyzed with classical algorithms and the local results
are propagated among the system through appropriate interfaces relying on a limited set of
event stream models. Several extensions of this performance analysis framework have been
worked out [6].

A completely different modular performance analysis approach that does not rely on
classical scheduling theory was presented by Thiele et al. in [20]. The method uses Real-
Time Calculus which extends the basic concepts of Network Calculus [7] to analyze the
flow of event streams through a network of computation and communication resources. This
method is not restricted to a few classes of input event models, but can model any event
stream using the abstraction of arrival curves. A similar abstraction, the so-called service
curves, permit to model any availability of computation or communication resources. Also
for this approach various extensions have been presented [22].

While the previously mentioned formal performance analysis methods provide hard up-
per bounds for the worst-case performance and hard lower bounds for the best-case perfor-
mance of a system, there are also approaches that determine the exact worst-case and best-
case results. For instance timed automata models can be used for exact scheduling analysis
[2]. Hendriks and Verhoef have presented an approach for the analysis of distributed systems
based on model checking of timed automata networks in [5].

The set of available abstractions for performance analysis of distributed embedded sys-
tems is not limited to the methods cited above. The various approaches are very heteroge-
nous in terms of modelling scope, modelling effort, tool support, accuracy and scalability.
There is a lack of literature on their classification and comparison. In particular, it is very
difficult for a designer to determine which performance analysis method is most suitable for
a given system.

A direct comparison of performance analysis methods is difficult because several im-
portant aspects of the abstractions can only hardly be quantified. This is the case, for in-
stance, for scalability. Moreover, the modelling scopes of the various approaches do only
partially intersect. This means that an abstraction often allows to model scenarios that are
not covered by other abstractions. Nevertheless, the comparison of different abstractions
for performance analysis is necessary because it permits to highlight the specific effects of
the various analysis methods and it helps to determine modelling difficulties and analysis
pitfalls. In addition, the comparison of different approaches serves to better understand the
relation between models and analysis accuracy as well as to improve analysis methods by
combining ideas and abstractions. Such a comparison based on a set of characteristic bench-
mark problems is not available so far, despite of its essential importance for any future work
on performance analysis methods for distributed embedded systems.

The contributions of this work can be described as follows:

e We define a set of benchmarks for the evaluation of abstractions for performance analysis
of distributed embedded systems.

e We apply different abstractions to the benchmarks and compare the results obtained in
terms of accuracy and analysis times.

e We point out several pitfalls for the different abstractions and investigate the reasons for
pessimistic analysis results.

@ Springer

30 S. Perathoner et al.

2 Comparison methodology

Comparing different abstractions for performance analysis of distributed embedded systems
is not trivial, as the various approaches are incompatible for various reasons. First of all
there are differences with respect to the analyzable performance metrics. For instance most
abstractions focus on the analysis of timing properties like end-to-end delays of events or
response times of tasks, while only some of the approaches can also handle other perfor-
mance metrics like buffer occupancy and resource usage. Moreover, there are substantial
differences with respect to the modelling power of the various abstractions. There are many
different system characteristics that can be taken into account by some approaches but not
by others. Hierarchical scheduling, blocking times or multiple events per task activation are
just a few examples of numerous system properties that differentiate the modelling scope of
the various abstractions.

In this work we focus on systems in the intersection of the various modelling scopes,
in order to highlight the specific effects of the abstractions. We also intentionally keep the
benchmarks small with the purpose to isolate the influence of different system characteris-
tics and expose specific analysis difficulties of the various abstractions. In order to produce
meaningful evaluations, we do not restrict the analysis problems to a single system configu-
ration but repeat the performance analysis for changing values of relevant parameters in the
systems.

Furthermore we would like to point out that this work is not intended as competition
between performance analysis methods. Apart from the fact that such a competition could
hardly be fair given the large heterogeneity of the modelling capabilities, we underline that
our main motivation is not the ranking of analysis approaches but rather the detection and
investigation of analysis difficulties.

3 Benchmark problems

In this section we present a set of benchmark problems that we will use for the evaluation
of different abstractions for performance analysis. Some of the described benchmark prob-
lems were discussed, among others, at the ARTIST2 Workshop on Distributed Embedded
Systems 2005.!

Every problem is tailored to a particular analysis issue and consists of a simple system
architecture (involving only few event streams, tasks and resources) and a performance char-
acteristic to determine. The set of proposed benchmarks is by far not exhaustive, since there
are lots of system configurations that lead to challenging analysis problems. However, our
work defines several orthogonal analysis issues aimed at the evaluation of abstractions for
performance analysis of distributed systems.

For the sake of simplicity we propose benchmarks with constant task execution times. We
would like to point out that this choice is made in order to permit an easier interpretation of
the analysis results, but is not strictly necessary, since all the analysis abstractions described
in Sect. 4 can handle variable task execution times, typically specified as intervals [BCET,
WCET]. Furthermore, in the described benchmarks the input streams are fully asynchronous
and the buffering of events does not affect the performance of the system, i.e. we consider
unbounded and infinitely fast buffers.

1 http://www.tik.ee.ethz.ch/~leiden05/.

@ Springer

http://www.tik.ee.ethz.ch/~leiden05/

Influence of different abstractions on the performance analysis 31

CPU1
T @ o7

CPU2

M»@%’@
[13) %4@

I1: periodic (P = 60ms)
Input streams 12: periodic (P = 5ms)
13: periodic (P = [60..110]ms)

Resource sharing CPU1: FP preemptive, CPU2: FP preemptive
Execution times T1: 35ms, T2: 2ms, T3: 4ms, T4: 12ms

priority T1: high, priority T2: low

Scheduling parameters priority T3: low, priority T4: high

Fig. 1 Specification of benchmark 1

3.1 Benchmark 1: Complex activation pattern

The intention of this benchmark specification is to compare the behavior of different analysis
abstractions with respect to a complex task activation pattern. By complex we mean an
activation pattern that cannot be described by one of the so-called standard event models
like periodic activation, periodic activation with jitter or periodic activation with burst (see
Sect. 4.2.1 for more details on standard event models).

Figure 1 depicts the topology of the system. Three periodic event streams are processed
by four tasks running on two CPUs that implement preemptive fixed priority scheduling.
The performance characteristic to determine is the worst-case response time of task T3 as
function of the period of stream I3. The activation pattern of task T3 is not periodic anymore,
since task T1 can preempt task T2. In particular, the output behavior of task T2 is complex,
i.e. cannot be precisely described by a standard event model. Thus, we expect pessimistic
analysis results for abstractions relying on standard event models.

3.2 Benchmark 2: Variable feedback

The purpose of this benchmark specification is to confront the different analysis abstrac-
tions with a feedback loop and the consequent correlations among the activation times of
the involved tasks. The system architecture is shown in Fig. 2. A periodic event stream 12
is processed serially by three tasks running on two CPUs and forming a feedback loop.
Besides, CPU2 processes also a second periodic event stream I1 of higher priority. The per-
formance metric to determine is the worst-case delay from 12 to O2. In order to vary the
correlation among the task activation times in the feedback loop, the execution time of task
T3 is gradually increased. We expect pessimistic analysis results for abstractions that do not
take into consideration such correlations among task activations.

@ Springer

32 S. Perathoner et al.

o wlle
CPU1

@—-DID—'@*DID—

O

Input streams I1: periodic (P = 100ms)

p 12: periodic (P = 5ms)
Resource sharing CPU1: FP preemptive, CPU2: FP preemptive
Execution times T1: 2ms, T2: 2ms, T3: [2..22]ms, T4: 1ms

priority T1: high, priority T2: low

Scheduling parameters priority T3: high, priority T4: low

Fig. 2 Specification of benchmark 2

Input stream I1 periodic with burst (P = 10ms, J = [0..50]ms)
Resource sharing CPU1: FP preemptive
Execution times T1: 1ms, T2: 4ms, T3: 4ms

Scheduling parameters 1) priority T1: high, priority T3: low

2) priority T1: low, priority T3: high

Fig. 3 Specification of benchmark 3

3.3 Benchmark 3: Cyclic dependencies

The intention of this specification is to examine the capability of different performance
analysis methods to deal with cyclic dependencies.

Figure 3 represents the system to analyze. A periodic event stream with bursts is
processed by a sequence of three tasks running on two resources. On CPU1 a preemptive
fixed priority scheduler is used to schedule the tasks T1 and T3. The performance charac-
teristic to determine is the worst-case delay from I1 to O1 for increasing values of the input
jitter and in two different scenarios. In scenario 1 T1 has higher priority than T3. In scenario
2 T3 has higher priority than T1, which means that there is a cyclic dependency among
the two tasks (T1 indirectly triggers T3, however T3 preempts T1). We expect this cyclic
dependency to make the analysis difficult for compositional system abstractions.

@ Springer

Influence of different abstractions on the performance analysis 33

CPU

[B—{IIT @ D)

[2>—{IT

Input streams I1: periodic (P = 80ms)
p 12: periodic (P = 50ms)
Resource sharing CPU: FP preemptive
Execution times T1: [15..30]ms, T2: 20ms, T3: 10ms

priority T1: high,

Scheduling parameters priority T2: medium, priority T3: low

Fig. 4 Specification of benchmark 4

CPU

(D=

100ms, J = 20ms)
150ms, J = 60ms)

I1: periodic with jitter (P

Input streams 12: periodic with jitter (P

Execution time T: [25..60]ms

Fig. 5 Specification of benchmark 5

3.4 Benchmark 4: Data dependencies

The purpose of this benchmark specification is to clarify the ability of different analysis
approaches to handle systems with data dependencies among tasks. The system specified
below was first presented as example in [23] by Yen and Wolf. Figure 4 depicts the topology
of the system. Two periodic event streams are processed by three tasks on a CPU that imple-
ments preemptive fixed priority scheduling. The data dependency is given by the execution
sequence T2-T3. The performance characteristic to determine is the worst-case delay from
12 to O2 as function of the execution time of T1. For this benchmark we expect pessimistic
analysis results for abstractions that do not take into consideration data dependencies among
tasks.

3.5 Benchmark 5: Multiple inputs with OR-activation

The intention of this benchmark specification is to compare the different abstractions with
respect to the combination of multiple event streams for the activation of tasks. We consider
a simple system consisting of a task with two inputs in OR-combination, i.e. each event on
both input streams activates the task. The system architecture is shown in Fig. 5.

Task T is triggered by the events of two periodic streams with jitter, which are queued up
in a shared FIFO buffer. The performance metric to determine is the worst-case delay from

@ Springer

34 S. Perathoner et al.

I1 to Ol as function of the execution time of task T. Since the sum of the two event streams
cannot be accurately represented with a standard event model, we expect loose performance
bounds for abstractions relying on these models.

4 Abstractions for performance analysis

In this section we briefly describe four different abstractions for formal performance analysis
of distributed embedded systems in early design stages.

4.1 Holistic scheduling—the MAST approach

Rather than a specific performance analysis method, holistic scheduling is a collection of
techniques for the analysis of distributed embedded systems. The common principle is to ex-
tend concepts of the classical scheduling theory to distributed systems, integrating the analy-
sis of processor and communication infrastructure scheduling. Every technique is tailored
towards a particular combination of input event model, resource sharing policy and commu-
nication arbitration. The resulting large and heterogeneous collection of analysis methods
makes it rather difficult to use holistic scheduling analysis in practice. This problem was
relieved with the release of the Modelling and Analysis Suite for Real-Time Applications
(MAST) [4] that aggregates several holistic analysis techniques. MAST is an open model
for the description of event-driven real-time systems, together with a set of open source tools
that enables the designer of a real-time application to verify its timing behavior.

The MAST suite includes schedulability analysis tools for the analysis of single proces-
sor and distributed systems with fixed priority, earliest deadline first (EDF) or EDF within
priorities scheduling. The toolset includes offset-based schedulability analysis techniques
[11, 12], optimized priority assignment, automatic calculation of blocking delays caused
by mutual exclusion synchronization and sensitivity analysis. All the techniques include
analysis capabilities for arbitrary deadlines, handling of input and output jitter and differ-
ent variations of the scheduling policies, such as preemptive and non-preemptive, polling
servers, sporadic servers, etc.

In MAST a real-time system is modelled as a set of transactions. Each transaction is
represented through a graph that models the event flow among the activities executed by the
system. The external events triggering the transactions can be of different kinds: periodic,
unbounded aperiodic, sporadic, bursty, or singular (arriving only once). The execution of an
activity generates an event that may in turn trigger other activities. Internal events may have
timing requirements associated with them.

Figure 6 shows one of the key aspects of the MAST model, which is the separate mod-
elling of the execution platform, the software modules, and the transactions that define a
particular configuration or mode of the real-time system. This separation simplifies the use
of the model in a component-based design process and separates the description of over-
head parameters such as processor, network and driver overheads from the actual application
model.

Using a UML tool it is possible to describe a real-time view of a system by adding
appropriate real-time classes and objects [9]. The application design is linked with the real-
time view to get a full description of the system including its timing requirements. The
corresponding MAST model can then be automatically extracted from the UML description.

The MAST suite is available as open source software.’

2http://mast.unican‘es.

@ Springer

http://mast.unican.es

Influence of different abstractions on the performance analysis 35

Platform
Processing | _
Software Modules Resomrcs -
Rgzl:lﬁges Scheduler
) . 4
S Operation Scheduling _ -
T Server | — —
\ —
\ - N
5 - > — 5| Scheduling
Event Event Parameters
Activityr—
!
Event !

Handler
—» Event
Real-time situation Timing ~
Requirement | - Reference

Fig. 6 Elements of the MAST model

4.2 Compositional analysis approaches

The basic idea of compositional analysis approaches is visualized in Fig. 7. Compositional
system level analysis alternates local component analysis and output event model propaga-
tion. More precisely, in each global iteration of the compositional system level analysis, lo-
cal analysis is performed for each component to derive the output event models. Afterwards,
the calculated output event models are propagated to the connected components, where they
are used as input event models for the subsequent global iteration. Obviously, this iterative
analysis represents a fix-point problem [17]. For the case that after an iteration all calculated
output event models stay unmodified, convergence is reached and the last calculated task
response times are valid. This holds for analysis techniques that do not contain a state in the
analytical model, otherwise not only unchanged output event models, but also steady inter-
nal state has to be considered as convergence criterion. In the case where no convergence is
reached, no statement can be made about the analyzed system.

In the following sections we will shortly introduce two compositional analysis method-
ologies, namely SymTA/S (Sect. 4.2.1) and MPA-RTC (Sect. 4.2.2). Both methods differ in
the way local component analysis is performed, as well as how event models are represented
and propagated between dependent components.

4.2.1 The SymTA/S approach

The system level performance analysis approach SymTA/S? (Symbolic Timing Analysis for
Systems) is based on the principles of compositional system level analysis.

At the component level SymTA/S uses formal analysis techniques based on the busy win-
dow technique proposed by Lehoczky [8]. SymTA/S can therefore directly reuse scheduling
analysis techniques from real-time research, and does not need to adapt these techniques
to a specific model. Currently, SymTA/S offers local analysis techniques for FP scheduling
(preemptive and non-preemptive), TDMA, Round Robin, EDF, CAN, and ERCOSek.

3 http://www.symta.org.

@ Springer

http://www.symta.org

36 S. Perathoner et al.

Fig. 7 Compositional system

. | environment model |
level analysis

ri

map to input
event model

v

| local analysis I-I'I

v

schedulability?

YES

infeasible
configuration

derive output
event model

convergence!

SymTA/S uses so-called standard event models as interface to couple local component
analyses according to the compositional system level analysis methodology. Standard event
models are described by three parameters P, J and D. A periodic event model has one
parameter P and states that each event arrives exactly every P time units. This simple model
can be extended with the notion of a jitter J, leading to the event model periodic with jitter.
In this model events occur periodically on the long term, but their actual arrival instant
can jitter around the ideal periodic arrival within an interval of size J. If the jitter is larger
than the period, then two or more events can occur at the same time, leading to bursts.
To describe such a bursty event stream, the model periodic with jitter is extended with a
parameter D that captures the minimum distance between the arrival times of events within
a burst. Standard event models capture only key timing aspects of event streams but ignore
more detailed stream properties. They therefore represent a simple interface for the coupling
of heterogeneous performance analysis techniques.

In order to enable the performance analysis of distributed systems with feedback between
two or more components, SymTA/S uses a so-called starting point generation to determine
initial input event models for all components. Basically the external event models are prop-
agated along all task chains until an activating event model is available for each task. Since
the scheduling of tasks on a shared resource does not change the periods of the involved
event streams and cannot decrease their maximum jitter, the starting point generation is
safe. More details about starting point generation and output event model calculation can be
found in [16].

The end-to-end latency along task chains is calculated by a simple sum over the local
worst case response times. While this allows an easy composition of the local analysis re-
sults, it leads to an overestimation of end-to-end delays in the presence of bursty event
streams, because the worst-case interference is assumed for each task along the chain and
this is generally not realistic. In recent work this has been ameliorated by considering the
pipelined execution of multiple events [18].

feasible
configuration

@ Springer

Influence of different abstractions on the performance analysis 37

Q

#events #bytes

Bu

Fig. 8 Examples of arrival and service curves

4.2.2 Modular performance analysis with real-time calculus

Modular Performance Analysis with Real-Time Calculus (in short called MPA-RTC) [19]
is a framework for performance analysis of distributed embedded systems that has its roots
in network calculus [7]. MPA-RTC analyzes the flow of event streams through a network of
computation and communication resources in order to derive performance characteristics of
the system.

Event stream model

Event streams are described using a pair of arrival curves a*(A), a'(A) € RZ%, A e R0
which provide an upper and a lower bound on the number of events in any time interval of
length A. Figure 8(a) shows an example pair of arrival curves. If R[s,) denotes the number
of events that arrive in the time interval [s, ¢) , then the following inequality is satisfied:

al(t—s)<R[s,1)<a“(t—s) Vs<t

where @' (0) = &“(0) = 0. This abstraction is much more general than standard event mod-
els: any event stream can be modelled by an appropriate pair of arrival curves.

Resource model

In a similar way, resource streams are described using a pair of service curves S“(A),
B'(A) e R=%, A ¢ R0 which provide an upper and a lower bound on the available ser-
vice in any time interval of length A. Figure 8(b) shows an example pair of service curves.
The service is expressed in an appropriate unit, for instance number of cycles for computing
resources or bytes for communication resources. If C[s, ¢) denotes the number of processing
or communication units available from the resource over the time interval [s,) , then the
following inequality holds:

Bt —s) <Cls,1) <p“(t—s) Vs<t.
Any resource availability can be modelled by an appropriate pair of service curves. The

described abstraction treats the resource usage as first class citizen of the analysis approach
and makes it modular also in terms of resource composition.

@ Springer

38 S. Perathoner et al.

Fig. 9 Periodic event stream x>=P

with jitter x:=0
L0 x:=0 L
@ N req++ L2
x<=P x<=J x<=P

Performance components and Real-Time Calculus

Performance components are the basic building blocks to construct a performance model
of a system. They model the processing of an event stream by an application process that
is running on a shared resource, e.g. a computing or a communication subsystem. In the
MPA-RTC framework an incoming event stream, represented as a pair of arrival curves o
and a*, is processed by a resource with availability 8’ and 8*. On its output, the component
generates an outgoing stream of processed events, represented by a pair of arrival curves
o and o' Resources left over by the component are made available again on the resource
output and are represented by a pair of service curves "and ,8”/. Outgoing arrival and ser-
vice curves are determined from incoming arrival and service curves according to equations
defined by Real-Time Calculus [3].

Performance components are combined to form performance models of distributed em-
bedded systems. Scheduling policies on shared resources can be modelled by the way per-
formance components are linked and resource streams are distributed among them. Possible
resource sharing mechanisms are FP, EDF, TDMA and generalized processor sharing (GPS).
Global performance characteristics such as end-to-end delays are determined by propagat-
ing the local analysis results through the system. MPA-RTC is available in form of a free
Matlab toolbox.*

4.3 Timed automata based analysis

Timed automata [1] are a popular formalism for the specification and analysis of real-time
systems. Timed automata can be applied for the schedulability analysis of event driven sys-
tems [10]. In this work we focus on a performance analysis approach for distributed em-
bedded systems presented by Hendriks and Verhoef in [5], which relies on formal verifica-
tion of timed automata networks by means of reachability analysis using the Uppaal model
checker.’

Modelling the environment

Several timed automata models have been presented for different event stream types. For
instance, Fig. 9 shows a timed automaton that models a periodic event stream with period P
and jitter J < P.

Modelling the system

Each hardware resource is modelled by a separate automaton. Several different resource
sharing strategies can be modelled with appropriate timed automata. For instance, Fig. 10
depicts a timed automaton that models a CPU executing two tasks and implementing pre-
emptive fixed priority scheduling.

4http://www.mpa.ethz.ch/thtoolbox.
5http://www.uppaal.com.

@ Springer

http://www.mpa.ethz.ch/Rtctoolbox
http://www.uppaal.com

Influence of different abstractions on the performance analysis 39

x<D x==D
y:=0 A\ req_T2--, x:=0

Y

req_T1>0 req_T2>0 and req_T1==0 req_T1>0
hurry! hurry! hurry!
x:=0, D:=WCET_T2 x:=0

pre_T1 y<=WCET_T1 x<=WCET_T1

x==WCET_T1
y==WCET_T1 x==D req_T1--
req_TI--, req_T2--
D+=WCET_T1

Fig. 10 Preemptive FP resource with two tasks

Performance analysis

The models of the various system components are aggregated into a timed automata net-
work. The key idea for the modelling of distributed systems is to use global variables and
channels for the interaction of the different automata. The performance of the system is de-
rived by formal verification of properties of the timed automata network. For instance, to
ensure that the maximum backlog of a certain task does not exceed a given value b, it is
sufficient to verify the following property with Uppaal:

AG (req <b)

where ‘AG’ stands for ‘always generally’ (= invariantly) and req is the global variable that
counts the activation requests of the corresponding task. It is also possible to derive the exact
maximum backlog by finding the smallest b that satisfies the above property. This is done
by using a binary search strategy.

The verification of end-to-end delays is done using particular timed automata models for
event stream generators that are synchronized with the system output over a global channel
and can keep track of the amount of time that elapses between the generation of an event
and its output from the system. For a detailed explanation of the corresponding models we
refer the reader to [5].

5 Analysis results

In this section we present the results obtained by applying the formal performance analysis
methods described in Sect. 4 to the benchmarks of Sect. 3. We compare the performance
bounds obtained and discuss differing results and analysis pitfalls. The models adopted are
available online.® For their analysis we have used the RTC Toolbox v1.0, SymTA/S vl1.1,
Uppaal v4.0.3 and MAST v1.3.6, respectively.

f’http://www.tik.ee.ethz‘ch/~leiden05/index2.html#publications.

@ Springer

http://www.tik.ee.ethz.ch/~leiden05/index2.html#publications

40 S. Perathoner et al.

Fig. 11 Analysis results for the 55
WCRT of T3 in benchmark 1 —#— MPA-RTC === Timed automata (exact)
—o— SymTA/S Simulation [10s]

£
504

45

401

Worst-case response time T3 [ms]

35 T T T T T T T T T
60 65 70 75 80 85 90 95 100 105 110

Period I3 [ms]

We also include the results obtained by a simple SystemC simulation. For periodic input
streams with jitter/burst the simulator generates events as early as possible (at the beginning
of the jitter interval) with a probability of 5%, as late as possible (at the end of the jitter
interval) with a probability of 5% and uniformly distributed over the jitter interval with a
probability of 90%. This is done in order to increase the corner case coverage of the sim-
ulation with respect to a fully uniform event distribution. The time length of the simulated
system execution is indicated in brackets in the graphs.

For additional benchmarking results and details about the simulation tool used we refer
the reader to [13].

5.1 Benchmark 1: Complex activation pattern

In this experiment we evaluate the accuracy of the different formalisms when the event
patterns significantly deviate from the patterns of standard event models that are used in
SymTA/S. For this purpose, we tap the event stream between the tasks T2 and T3 in the
system of Fig. 1, where a distortion of the periodic event pattern occurs due to the influence
of task T1. Figure 11 shows the analysis results for the worst-case response time of task T3.”
The performance values derived with timed automata models are verified through model
checking and represent the exact worst-case response time of task T3.

The graph shows that the compositional analysis approaches provide pessimistic predic-
tions for the worst-case response time of task T3 and it points out that there is a remarkable
difference between the results obtained by SymTA/S and MPA-RTC. This can be explained
by the different event models adopted by the two abstractions. While MPA-RTC accurately
models the complex output pattern of T2 by an appropriate pair of arrival curves, SymTA/S
approximates the output of T2 by a periodic event stream with burst.

Figure 12 shows the effect of the two different event models on the analysis accuracy
for P;3 = 65 ms. The worst-case response time of T3 is given by the maximum horizontal
distance between the worst-case resource availability (dashed curve) and the worst-case exe-
cution demand (solid curves). The graph shows that the approximation adopted by SymTA/S
leads to an overestimated response time of task T3. Interestingly, however, the conservative

7The MAST tool does not support the analysis of local response times in the current release and was thus not
considered for this analysis problem.

@ Springer

Influence of different abstractions on the performance analysis 41

350 T T
']
300]
4, 7
7
P /\
250 pid delay A
- MPA-RTC
'
- -
7
& 200 / i
o '
E e
- -
150 + g
£ 7
O o 1
'
100 | s B |
7 u
r e — OMPA-RTC
50
= 7 u
S0 AN " OSymTAs
- delay
7 SymTA/S
0
0 50 100 150 200 250 300 350 400
A [ms]

Fig. 12 Influence of different event models on the analysis of the WCRT of T3 for Pj3 = 65 ms

results of SymTA/S disappear when the whole task chain from 12 to O2 is considered. This
is because the adopted path analysis detects that the total worst-case delay from 12 to O2 is
smaller than the sum of the two single worst-case delays. For the worst-case delay 12-02 all
considered methods determine the exact performance results.

5.2 Benchmark 2: Variable feedback

In benchmark 2 depicted in Fig. 2 the behavior of the feedback stream 12-O2 depends
strongly on the execution time of task T3, as task T3 may preempt task T4 and thus affect
its response time. In particular, increasing the worst-case execution time of T3 at a constant
rate causes the correlation effects between T1 and T2 to vary in a periodic manner.

This effect is shown in Fig. 13 by the exact values of the worst-case delay 12-O2 deter-
mined with the analysis approach based on timed automata. The graph shows that also the
MAST tool provides the exact worst-case performance values for all the parameter configu-
rations of the specified system. However, the compositional analysis approaches MPA-RTC
and SymTA/S do recurrently overestimate the exact performance of the system and provide
pessimistic predictions for several parameter values. A closer analysis of the behavior of the
feedback loop reveals that this overestimation happens for those parameter configurations
that lead to the worst-case delay 12-O2 without a full preemption of task T2 on CPU1. Since
the compositional abstractions do not take into consideration the correlation between the ac-
tivation times of T1 and T2, the corresponding analysis methods have no means to recognize
the missing or partial preemption and suppose that a full preemption is possible in the worst
case, which leads to pessimistic performance predictions.

5.3 Benchmark 3: Cyclic dependencies

In the first scenario of the specification depicted in Fig. 3 task T1 has higher priority than
task T3 and thus there is no cyclic dependency in the system. However, correlation effects
as described for benchmark 2 are present. For instance, depending on the input stream prop-
erties, it may happen that task T3 is not preempted by task T1. Such correlations are not
fully exploited by all analysis abstractions, as described above. While the timed automata

@ Springer

42 S. Perathoner et al.

40
—B— MPA-RTC === Timed automata (exact)

35 4 —0— SymTA/S Simulation [10s]

—8— MAST

Worst case delay 12-O2 [ms]

2 4 6 8 10 12 14 16 18 20 22

Execution time T3 [ms]

Fig. 13 Analysis results for the worst case delay 12-0O2 in benchmark 2

model permits to determine the exact worst-case latencies of the system, other formal analy-
sis methods like MPA-RTC and SymTA/S slightly exceed the exact performance results and
their pessimism grows with increasing input jitter values, as shown in Fig. 14.

The poor performance predictions of the MAST tool have another cause. Holistic analy-
sis methods compute the worst-case delay not referred to the actual release time of an event
which varies within the jitter interval, but referred to the ideal periodic release time. In other
words, the release jitter is considered already part of the delay and thus the predicted worst-
case end-to-end latency cannot be smaller than the maximum input jitter. This explains why
the pessimism of the predictions provided by MAST increases for increasing values of the
input jitter. Unfortunately this deviation with respect to the other analysis abstractions cannot
be simply adjusted after the analysis, since the actual release instant leading to the worst-case
performance is generally unknown. However, we would like to point out that the different
interpretation of latency adopted by MAST in the presence of input jitter can be useful in
other settings. For instance in a system where the activation jitter of a task is caused by a
low resolution clock it is more appropriate to refer the deadline for the response time of the
task to the real activation request rather than to the actual activation instant.

The graph in Fig. 14 also shows that simulation can in general not be used to guarantee
hard performance bounds: for some input configurations the corner-cases leading to the
worst-case performance are missed by the executed simulation.

In scenario 2 T3 has higher priority than T1 and thus there is a cyclic dependency: the
output behavior of T1 depends on the CPU availability left over by the activity of T3 while
at the same time the activity of T3 depends on the output behavior of T1. For holistic system
abstractions this dependency does not make the analysis more difficult and Fig. 15 shows
that the performance predictions provided by MAST do not differ more significantly from
the exact values than in the previous scenario (note the different scaling of the ordinate axes).
However, for compositional abstractions the cyclic dependency complicates the analysis
process. Both MPA-RTC and SymTA/S use a fixed-point calculation to handle it, but the
graph shows that this leads to overly pessimistic performance predictions.

@ Springer

Influence of different abstractions on the performance analysis 43

65
—8— MPA-RTC === Timed automata (exact)

—o— SymTA/S —%— Simulation [10s]

60
55
5o | & MaAST
45
40
35 1
30 1
25 1

Worst case delay I1-O1 [ms]

0 5 10 15 20 25 30 35 40 45 50

Worst-case jitter I1 [ms]

Fig. 14 Analysis results for the worst case delay I11-O1 in benchmark 3 (scenario 1)

175

—8— MPA-RTC === Timed automata (exact)
150 4~ SymTA/S —%— Simulation [10s]
—o— MAST

Worst-case delay 11-O1 [ms]

0 : : : : : : : : :
0 5 10 15 20 25 30 35 40 45 50

Worst-case jitter 11[ms]

Fig. 15 Analysis results for the worst case delay I11-O1 in benchmark 3 (scenario 2)

5.4 Benchmark 4: Data dependencies

Figure 16 represents the analysis results obtained applying the different abstractions to
benchmark 4 specified in Fig. 4. The chart shows that MPA-RTC and SymTA/S largely
overestimate the worst-case delay 12-02, while MAST determines the exact worst-case per-
formance of the system. The overly pessimistic performance prediction of the former two
approaches results from the disregard of data dependencies in the system. In particular, the
activation times of the tasks T2 and T3 are not independent. The data dependency forces

@ Springer

44 S. Perathoner et al.

180
—#— MPA-RTC === Timed automata (exact)
160 1 —o— SymTA/S Simulation [10s]
—o—
140 1 MAST y
g
= 1207
Q
o
. 1004
z‘; |
g 80k
3
Z 60
=
= L e e
404
20 4

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Execution time T1 [ms]

Fig. 16 Analysis results for the worst case delay 12-O2 in benchmark 4

the two tasks to be executed in a fixed order and imposes a temporal offset between their
activation.

Let us consider, for instance, the system configuration with an execution time of 15 ms
for T1. It is simple to verify that in this configuration T1 can only preempt either T2 or T3,
but not both in a single execution and also T2 cannot preempt T3. Hence, the worst-case
latency 12-02 is 45 ms. However, MPA-RTC and SymTA/S ignore the data dependencies
between T2 and T3 and consider their activation times as independent. Thus, they suppose
a worst-case response time of 35 ms for T1 and 45 ms for T2 and estimate the worst-case
latency 12—-O2 with 80 ms, the sum of the two delays. In contrast, the MAST tool implements
offset based analysis methods, that are designed to detect and exploit data dependencies
among tasks in order to determine tighter performance bounds.

5.5 Benchmark 5: Multiple inputs with OR-activation

As for the previous benchmarks the exact performance results have been determined with the
analysis approach based on timed automata. However, for the OR-activation it was necessary
to create a more involved model than the one described in Sect. 4.3. The problem is that
in order to analyze the latency I[1-O1 in the system depicted in Fig. 5 the activations of
T caused by the input streams 11 and I2 must be distinguishable and the FIFO order of
events in the shared buffer must be respected. Hence, the activation buffer can no longer
be represented by a counter variable and must be modeled explicitly. Figure 17 shows the
timed automaton used to model the activation buffer. Basically, the automaton has a location
for every possible buffer state. In the current benchmark the backlog of T does not exceed
3 activation requests and thus the automaton has only 16 locations. However, the number
of locations grows exponentially with the maximum backlog: for an OR-activated task with
m inputs and a maximum backlog of n activation requests, an automaton with m::il_l +1
locations is required. Therefore, in general, this way of modeling the OR-activation involves
an impractical modeling and verification effort.

Figure 18 shows the analysis results for the worst-case delay I1-O1 determined with the
different abstractions. The graph shows that the two compositional analysis approaches pro-

@ Springer

Influence of different abstractions on the performance analysis 45

writel? write2?

writel?

BUFFER _too_small

Fig. 17 TA model for the activation buffer in benchmark 5

vide different results: MPA-RTC determines the exact performance of the system for all the
considered parameter values whereas SymTA/S is more conservative for certain parameters.
As for benchmark 1 the difference originates from the different event models adopted by the
two abstractions. The combination of the two event streams I1 and 12 can be accurately mod-
eled by MPA-RTC, whereas it is approximated with a standard event model in SymTA/S.
The more pessimistic performance predictions of MAST are again related to the different
interpretation of jitter for the input streams, as described in Sect. 5.3. The chart shows also
that the simulation adopted underestimates the worst-case performance of the system for
several parameter configurations.

5.6 Analysis times

In this subsection we report the measured analysis times for all the considered benchmarks.
Table 1 sums up the minimum, median and maximum analysis time for each performance
analysis tool and benchmark. The values show that most of the considered abstractions per-
mit a fast performance analysis for all the specified benchmarks. However, the analysis ap-
proach based on model checking of timed automata networks forms an exception, as in two
benchmarks it suffers from very long verification times. For instance in the first scenario of
benchmark 3 the maximum running time of the Uppaal model checker is more than a hun-
dred times larger than the analysis times of the other methods. Especially in the presence of
large jitters the state space of the timed automata models grows considerably and leads to
long analysis times.

@ Springer

46 S. Perathoner et al.

200

—#- MPA-RTC === Timed automata (exact)
—o— SymTA/S —¥- Simulation [100s]
—o— MAST

Worst-case delay [1-O1 [ms]

25 30 35 40 45 50 55 60
Execution time T [ms]

Fig. 18 Analysis results for the worst case delay I11-O1 in benchmark 5

Table 1 Analysis times in seconds

Bl B2 B3(1) B3(2) B4 B5
MPA-RTC min 0.60 0.03 0.01 0.04 0.03 0.01
med 1.06 0.04 0.01 0.15 0.05 0.01
max 19.72 0.08 0.04 0.30 0.20 0.05
SymTA/S min 0.05 0.03 0.03 0.03 0.06 0.01
med 0.09 0.05 0.06 0.34 0.09 0.01
max 1.50 0.23 0.09 0.80 0.31 0.01
MAST? min - <0.5 <0.5 <0.5 <05 <05
med - <0.5 <0.5 <0.5 <05 <05
max - <0.5 <0.5 <0.5 <0.5 <0.5
Timed aut 2P min 18.0 <05 <05 <0.5 <0.5 <05
med 34.5 <0.5 1.0 <0.5 <0.5 <0.5
max 60.5 <0.5 52.0 5.5 <0.5 <0.5
Simulation® min 1.0 <0.5 0.5 0.5 <0.5 <0.5
med 1.0 <0.5 0.5 0.5 <0.5 <0.5
max 1.0 <0.5 0.5 0.5 <0.5 <0.5

4For MAST, Timed automata and Simulation we have timed the analysis duration by hand since the corre-
sponding tools do not support automatic measuring of the analysis time. For these methods a ‘<0.5’ in the
table stands for a value below the measuring accuracy of 0.5 seconds

YFor the analysis approach based on timed automata the analysis times are referred to one single step of
binary search

Another interesting observation is that in some cases there is a remarkable difference
between the minimum, median and maximum analysis time. This shows that in general

@ Springer

Influence of different abstractions on the performance analysis 47

the analysis times of the different approaches may depend highly on the particular system
parameters.

6 Discussion

The results of Sect. 5 show that the accuracy of the performance predictions determined
with each abstraction varies considerably for the different benchmarks. The only exception
is given by the analysis approach based on timed automata, which provides the exact perfor-
mance predictions for all the considered benchmarks. However, we would like to point out
that the exact results are often paid for by a large analysis effort, i.e. may require long (or
potentially unbounded) verification times. Thus, considering not only the achieved accuracy,
but also the necessary analysis times, we can state that none of the considered abstractions
performed best in all the benchmarks.

Nevertheless, the results permit to give some indications on which abstractions are more
appropriate than others for the analysis of a certain performance characteristic in a given sys-
tem. For instance the benchmarks 1 and 5 indicate that the approximation of complex event
streams with standard event models can be inappropriate for precise performance predic-
tions at a local level. Benchmark 3 emphasizes that at the current state systems with cyclic
dependencies represent a serious pitfall for the accuracy of compositional analysis methods.
The benchmarks 2 and 4 indicate that holistic analysis approaches are generally more appro-
priate than modular abstractions in the presence of correlations among task activations and
data dependencies. On the other hand, holistic analysis methods are less appropriate for the
analysis of timing properties that are referred to the actual release time of an event within a
large jitter interval, as described in the interpretation of the results obtained for benchmark 3
and 5. Overall, it is advisable for a system designer to use at least two different performance
analysis methods, to prevent stepping in one of the mentioned analysis pitfalls.

Moreover, the results show that for the benchmarks considered simulation often provides
more accurate results but these results are not necessarily correct (i.e. valid performance
bounds), as the underestimation of the worst-case performance in the benchmarks 3 and
5 shows. While in general this might be tolerable for soft real-time systems, it is not for
systems with hard real-time requirements.

We would also like to emphasize that most of the encountered pitfalls for analytic tech-
niques are not related to system characteristics that are conceptually impossible to integrate
in the respective abstraction. Rather, the analysis difficulties point out aspects that have not
yet been considered for the corresponding methods. In this sense poor analysis results in-
dicate potential research directions for the improvement of the single performance analysis
approaches.

Furthermore, there are also questions that the proposed set of small benchmarks cannot
answer. For instance it would be very useful to analyze larger systems with the aim to exam-
ine the scalability of the different abstractions with respect to analysis accuracy and analysis
times. It could also be interesting to consider the combination of several system properties
that have been isolated in the single benchmarks.

7 Conclusions

We defined a set of benchmarks for the evaluation and comparison of abstractions for per-
formance analysis. We applied a number of system level performance analysis methods

@ Springer

48 S. Perathoner et al.

to the benchmarks and examined the results in terms of accuracy and analysis times. We
pointed out several analysis pitfalls for the different analysis abstractions and investigated
the reasons for pessimistic performance predictions. We showed that the analysis results of
different approaches are remarkably different even for apparently basic distributed systems
and that the choice of an appropriate analysis abstraction matters. Moreover, we showed
that the analysis accuracy of the various approaches depends highly on the particular system
characteristics and that none of the analysis methods performed best in all cases. Hence, the
problem to provide accurate performance predictions for general systems is still far from
solved, despite the availability of promising formal analysis approaches.

Acknowledgements This research has been supported by the Swiss National Science Foundation (SNF)
under the project Modular Performance Analysis of Distributed Embedded Real-Time Systems (grant 200020-
116594), by the Plan Nacional de I 4+ D + I of the Spanish Government under the THREAD project (grant
TIC2005-08665-C03) and by the Artist2 Network of Excellence (EU grant IST-004527).

References

—_

Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126(2):183-235
2. Behrmann G, David A, Larsen KG, Hakansson J, Pettersson P, Yi W, Hendriks M (2006) UPPAAL 4.0.
In: Proc of the 3rd int conference on the quantitative evaluation of systems. IEEE Computer Society, Los
Alamitos, pp 125-126
3. Chakraborty S, Kiinzli S, Thiele L (2003) A general framework for analysing system properties in
platform-based embedded system designs. In: Proc of 6th design, automation and test in Europe, pp 190—
195
4. Gonzdlez Harbour M, Gutiérrez Garcia JJ, Palencia Gutiérrez JC, Drake Moyano JM (2001) MAST:
Modeling and analysis suite for real time applications. In: Proc of 13th Euromicro conference on real-
time systems. IEEE Computer Society, Los Alamitos, pp 125-134
5. Hendriks M, Verhoef M (2006) Timed automata based analysis of embedded system architectures. In:
Workshop on parallel and distributed real-time systems
6. Henia R, Hamann A, Jersak M, Racu R, Richter K, Ernst R (2005) System level performance analysis—
the SymTA/S approach. IEE Proc Comput Digit Tech 152(2):148-166
7. Le Boudec JY, Thiran P (2001) Network calculus: a theory of deterministic queuing systems for the
Internet. Springer, New York
8. Lehoczky J (1990) Fixed priority scheduling of periodic task sets with arbitrary deadlines. In: Proc of
the real-time systems symposium, pp 201-209
9. Medina JL, Gonzdlez Harbour M, Drake JM (2001) MAST real-time view: a graphic UML tool for
modeling object-oriented real-time systems. In: Proc of the 22nd real-time systems symposium. IEEE
Computer Society, Los Alamitos, pp 245-256
10. Norstrom C, Wall A, Yi W (1999) Timed automata as task models for event-driven systems. In: Proc of
the 6th int conference on real-time computing systems and applications. IEEE Computer Society, Los
Alamitos, p 182
11. Palencia JC, Gonzélez Harbour M (1999) Exploiting precedence relations in the schedulability analysis
of distributed real-time systems. In: Proc of the 20th real-time systems symposium. IEEE Computer
Society, Los Alamitos, pp 328-339
12. Palencia Gutiérrez JC, Gonzilez Harbour M (1998) Schedulability analysis for tasks with static and dy-
namic offsets. In: Proc of the 19th real-time systems symposium. IEEE Computer Society, Los Alamitos
13. Perathoner S, Wandeler E, Thiele L (2006) Evaluation and comparison of performance analysis methods
for distributed embedded systems. Technical report 276, Computer Engineering and Networks Labora-
tory, ETH Zurich, March 2006
14. Pop P, Eles P, Peng Z (2000) Performance estimation for embedded systems with data and control de-
pendencies. In: Proc of the 8th int workshop on hardware/software codesign. ACM Press, New York, pp
62-66
15. Pop T, Eles P, Peng Z (2002) Holistic scheduling and analysis of mixed time/event-triggered distributed
embedded systems. In: Proc of the 10th int symposium on hardware/software codesign. ACM Press,
New York, pp 187-192
16. Richter K (2004) Compositional performance analysis. PhD thesis, Technical University of Braun-
schweig

@ Springer

Influence of different abstractions on the performance analysis 49

17.

18.

19.

20.

21.

22.

23.

Richter K, Jersak M, Ernst R (2003) A formal approach to MpSoC performance verification. IEEE
Comput 36(4):60-67

Schliecker S, Ernst R (2008) Compositional path latency computation with local busy times. Technical
report TR-08-01, Institute of Computer and Communication Network Engineering, Technische Univer-
sitdt Braunschweig, Germany, January 2008

Thiele L, Chakraborty S, Gries M, Maxiaguine A, Greutert J (2001) Embedded software in network
processors—models and algorithms. In: Proc of the Ist int workshop on embedded software. Springer,
Berlin, pp 416-434

Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-time systems.
In: Proc int symposium on circuits and systems, vol 4, pp 101-104

Tindell K, Clark J (1994) Holistic schedulability analysis for distributed hard real-time systems. Mi-
croprocess Microprogram—Euromicro J 40:117-134 (Special Issue on Parallel Embedded Real-Time
Systems)

Wandeler E, Thiele L (2005) Characterizing workload correlations in multi processor hard real-time
systems. In: Proc of the 11th real time on embedded technology and applications symposium. IEEE
Computer Society, Los Alamitos, pp 46-55

Yen TY, Wolf W (1995) Performance estimation for real-time distributed embedded systems. In: Proc of
the 1995 int conference on computer design. IEEE Computer Society, Los Alamitos, pp 6471

@ Springer

