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Abstract. Daily precipitation extremes and annual totals
have increased in large parts of the global land area over the
past decades. These observations are consistent with theo-
retical considerations of a warming climate. However, un-
til recently these trends have not been shown to consistently
affect dry regions over land. A recent study, published by
Donat et al. (2016), now identified significant increases in
annual-maximum daily extreme precipitation (Rx1d) and an-
nual precipitation totals (PRCPTOT) in dry regions. Here,
we revisit the applied methods and explore the sensitivity of
changes in precipitation extremes and annual totals to alter-
native choices of defining a dry region (i.e. in terms of arid-
ity as opposed to precipitation characteristics alone). We find
that (a) statistical artifacts introduced by data pre-processing
based on a time-invariant reference period lead to an over-
estimation of the reported trends by up to 40 %, and that
(b) the reported trends of globally aggregated extremes and
annual totals are highly sensitive to the definition of a “dry
region of the globe”. For example, using the same obser-
vational dataset, accounting for the statistical artifacts, and
based on different aridity-based dryness definitions, we find
a reduction in the positive trend of Rx1d from the originally
reported +1.6 % decade−1 to +0.2 to +0.9 % decade−1 (pe-
riod changes for 1981–2010 averages relative to 1951–1980
are reduced to −1.32 to +0.97 % as opposed to +4.85 % in
the original study). If we include additional but less homoge-

nized data to cover larger regions, the global trend increases
slightly (Rx1d: +0.4 to +1.1 % decade−1), and in this case
we can indeed confirm (partly) significant increases in Rx1d.
However, these globally aggregated estimates remain uncer-
tain as considerable gaps in long-term observations in the
Earth’s arid and semi-arid regions remain. In summary, ad-
equate data pre-processing and accounting for uncertainties
regarding the definition of dryness are crucial to the quan-
tification of spatially aggregated trends in precipitation ex-
tremes in the world’s dry regions. In view of the high rel-
evance of the question to many potentially affected stake-
holders, we call for a well-reflected choice of specific data
processing methods and the inclusion of alternative dryness
definitions to guarantee that communicated results related to
climate change be robust.

1 Introduction

Daily precipitation extremes are expected to increase over
large parts of the global land area roughly by 6–7 % per ◦C of
warming due to a higher atmospheric water-holding capacity
as specified by the Clausius–Clapeyron equation (Allen and
Ingram, 2002; Trenberth et al., 2003). Quantifying and pre-
dicting changes in precipitation characteristics due to climate
change is crucial for water availability assessments and adap-
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tation to climate change (IPCC, 2012; Greve et al., 2014).
On a global scale, daily precipitation extremes have been ob-
served to intensify (Donat et al., 2013a; Westra et al., 2013;
O’Gorman, 2015), consistent with global model simulations
(Fischer and Knutti, 2015), and coincide with a global-scale
increase in observed annual precipitation totals (Donat et al.,
2013a). However, there is little information to date on how
precipitation characteristics have changed in the past over
dry land areas and how they will change in the future. Donat
et al. (2016) investigated whether and to what extent daily
precipitation extremes (Rx1d) and annual precipitation to-
tals (PRCPTOT) have increased over the last 60 years us-
ing observational data. The authors identified rapid increases
in Rx1d over dry regions, which strongly outpace the corre-
sponding increases over wet areas, and found a similar pat-
tern for PRCPTOT.

The question whether precipitation extremes increase in
dry regions is highly relevant in the context of climate change
adaptation, as generally dry areas may be less prepared
to deal with precipitation extremes (Ingram, 2016). Conse-
quently, the recent report on increasing Rx1d in dry areas
was highlighted in major Science journals (including Nature
Tollefson, 2016, and Nature Climate Change Ingram, 2016)
and received a lot of media coverage1, which indicates the
importance of this topic for the scientific community, the
public and decision makers.

However, scrutinizing the findings by Donat et al. (2016)
reveals two major issues of concern: first, the applied sta-
tistical approach introduces two systematic biases that lead
to a substantial overestimation of the increase in PRCPTOT
and Rx1d of up to 40 % in dry regions. Wet regions, by con-
trast, are only affected to a limited degree due to an approx-
imate cancellation of errors in trend estimates. Second, the
definition of a dry region used in Donat et al. (2016) based
on PRCPTOT and Rx1d alone does only partly reflect the
water balance and thus water availability (for instance, it ig-
nores losses through evapotranspiration). Furthermore, defin-
ing dryness based on low Rx1d (Donat et al., 2016) takes a
decision on whether a region is dry or not based on only 1
day in the year. The chosen definitions thus induce consider-
able uncertainty in the reported results. If we test alternative
but well-established definitions of a “dry region” (based on
water supply and demand, either implicitly or explicitly; see
Köppen, 1900; Greve et al., 2014) and apply the appropriate

1http://www.huffingtonpost.com/entry/
global-warming-will-bring-extreme-rain-and-flooding-study-finds_
us_56e081c7e4b0860f99d796ab,
https://www.theguardian.com/environment/2016/mar/08/
hotter-planet-spells-harder-rains-to-come-study,
https://www.sciencedaily.com/releases/2016/03/160308105625.
htm,
http://phys.org/news/2016-03-global-world-driest-areas.html,
http://www.abc.net.au/news/2016-03-08/
climate-change-could-bring-more-rain-to-deserts-study/7229236,
http://www.asce.org/magazine/20160412-climate-change

statistical tools, we find strongly reduced trends and period
changes (1981–2010 averages relative to the 1951–1980 ref-
erence period) in PRCPTOT and Rx1d in the world’s dry re-
gions. An accurate quantification of trends and changes in
precipitation characteristics is of high relevance and a crucial
prerequisite in the context of making climate change adapta-
tion decisions (e.g. IPCC, 2014).

2 On data pre-processing based on a time-invariant
reference period

As a first step in the analysis of Donat et al. (2016), the
authors normalize the 60-year time series in the gridded
HadEX2 dataset (Donat et al., 2013a) for each grid point
with the sample mean of a 30-year reference period (1951–
1980), which is a widespread procedure in climate science.
However, this procedure artificially increases the mean of the
spatial distribution in the out-of-base period (1981–2010) in
all investigated time series, simply because variability in the
sample means inflates the signal in the latter period (Sip-
pel et al., 2015). To illustrate this point, consider two hy-
pothetical climate regions of the same size; in region one,
the mean of a precipitation quantity increases between two
periods (from 100 to 200 mm, say), for example due to a
few large extremes, whereas it decreases by exactly the same
amount in region two (i.e. from 200 to 100 mm). Conse-
quently, over the combined period the spatial average and the
spread of the two regions would be statistically indistinguish-
able. However, normalizing by the mean of the first time pe-
riod would imply that the spatial average across both regions
for the second period is 1.25 (the average of 0.5 and 2), i.e. a
spurious increase of 25 % between both periods. This issue
is illustrated in Fig. 1 for an artificial dataset that consists
of n= 104 time series (e.g. “grid cells”) that are drawn ran-
domly and independently from a generalized extreme-value
(GEV, Coles et al., 2001) distribution. The GEV distribution
provides an asymptotical limit model for maxima derived
from a sequence of random variables with a fixed block size
(Coles et al., 2001, e.g. Rx1d,), and is therefore appropriate
to illustrate this issue. Normalizing each time series in the ar-
tificial dataset by its mean in the first period yields a spatial
“reference period distribution” that is different from the spa-
tial “out-of-base period distribution” (and from the original
GEV distribution; Fig. 1a). In particular, this normalization
leads to increased spatial averages in the out-of-base period
(Fig. 1b). Furthermore, the normalization procedure induces
a considerable increase in the variance, skewness, and higher
statistical moments in the spatial distribution in the out-of-
base period (see e.g. Fig. 1a), which would be of relevance if
higher statistical moments (e.g. changes in spatial variance)
were studied. The reason for this difference lies in the fact
that the estimated sample means (of the reference period)
are statistically dependent to reference period time series, but
(virtually) independent to the time period that lies outside of
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Figure 1. Conceptual example of biases in the mean induced by normalization based on a fixed reference period. (a) Probability distributions
and their respective means for an artificial dataset of 104 grid cells each comprised of random variables sampled from a generalized extreme
value distribution (GEV; µ= 1, σ = 1, ξ = 0, sample size nref= 8 for illustration) distribution, and normalized following Donat et al. (2016)
with different reference periods. (b) Shift in the mean of spatially aggregated variables due to reference period normalization (nref= 30
following Donat et al., 2016, confidence intervals denote the 5th to 95th percentile). Code to reproduce this example is provided in the
Supplement.

the reference period (Zhang et al., 2005; Sippel et al., 2015).
It is worth noting that these biases can be understood analyti-
cally (Appendix A). The expected value1bias, defined as the
relative bias in the out-of-base period, can be well approxi-
mated for each grid cell with

1bias ≈
σ 2

µ2nref
, (1)

where µ, σ , and nref denote the time series’ mean, standard
deviation, and reference period length, respectively (Ap-
pendix A). Thereby, it can immediately be seen that the intro-
duced bias is systematically positive outside of the reference
period, and it is proportional to the ratio of σ 2

µ2 for any fixed
reference period length.

An additional statistical bias stems from the choice of the
world’s 30 % wettest and 30 % driest regions based on the
climatology of PRCPTOT and Rx1d in the reference pe-
riod (1951–1980). Because 30 years is fairly short to derive
a robust climatology of the tails of the precipitation distribu-
tion, the computed changes in wet and dry regions are dis-
torted by the “regression to the mean” phenomenon (Galton,
1886; Barnett et al., 2005). To illustrate this issue, recall the
conceptual two-region example quoted above, where varia-
tion between the two available time periods would be entirely
due to random causes. If any of the two periods would be
chosen to stratify the dataset in one dry and one wet region,
this would result in opposing changes (i.e. dry gets wetter,
wet gets drier) in the independent period. In other words, se-
lecting from the dry (wet) end of the spatial distribution in
one subset of the dataset, or “reference period”, will result
in a higher probability for wetter (drier) conditions in the re-
maining years if any type of random variation plays a role
(Table 1, and Fig. 2 for changes due to both statistical ef-

fects). Although random variations in 30-year averages are
not very large (cf. Fig. 3a and b and Fig. 3c and d), it is im-
portant to consider this effect as it is indeed noticeable in the
reported results (Table 1).

The chosen normalization approach combined with the
spatial point selection method results in a bias toward PRCP-
TOT and Rx1d increasing at a faster rate in dry regions com-
pared to wet regions. Over dry regions, both effects lead to
an overestimation of the trends in precipitation totals and ex-
tremes by +40.3 and +33.2 % (+32.9 and +40.4 % over-
estimation in the reported period changes from 1951–1980
to 1981–2010), respectively (Fig. 2, Table 1). In contrast,
in wet regions both errors roughly cancel each other out in
the case of extremes (increase by only +8.7 %) and lead to
a small underestimation of the increase in total precipita-
tion (−13.7 %). In summary, we find that the applied pre-
processing steps are crucial to accurately quantify changes
in precipitation extremes and annual totals. In the study un-
der scrutiny, if the dryness definition is kept, trends and pe-
riod increments are corrected to much lower values, but the
trends and period increments remain positive and significant
(see Fig. 2).

3 On the definition of a dry region

Climatological dryness is typically not determined by wa-
ter supply alone but also depends on atmospheric water de-
mand, i.e. the ability to evaporate water from the land surface
(Köppen, 1900). This means that “we cannot tell whether a
climate is moist or dry by knowing precipitation alone; we
must know whether precipitation is greater or less than po-
tential evapotranspiration”, as Charles Warren Thornthwaite
put it in a landmark paper (Thornthwaite, 1948); a statement

www.hydrol-earth-syst-sci.net/21/441/2017/ Hydrol. Earth Syst. Sci., 21, 441–458, 2017
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Figure 2. Normalization-induced biases on time series and trend estimates. (a, b) Time series, trends, and 30-year means of spatially
aggregated heavy precipitation (Rx1d) in (a) dry and (b) wet regions. (c, d) Time series, trends, and 30-year means of spatially aggregated
total precipitation (PRCPTOT) in (a) dry and (b) wet regions. Orange lines are taken from Donat et al. (2016) (ref. period: 1951–1980), black
lines are corrected for biases (ref. period: 1951–2010), and blue lines indicate a hypothetical 1981–2010 reference period.

that is indeed mirrored in present-day literature (e.g. Hulme,
1996; Cook et al., 2004; Feng and Fu, 2013; Greve et al.,
2014; Sherwood and Fu, 2014; Huang et al., 2015), and inter-
national reports (Middleton and Thomas, 1992; Millennium
Ecosystem Assessment, 2005; Adeel et al., 2005). Metrics
and indicators that are typically used to determine clima-
tological dryness and changes therein are derived from this
concept, e.g. the aridity index as the ratio of precipitation to
potential evapotranspiration (e.g. Hulme, 1996; Greve et al.,
2014; Milly and Dunne, 2016). However, in other studies dry
regions are defined based on monthly or annual precipita-
tion totals (Allan et al., 2010; Sun et al., 2012; Liu and Al-
lan, 2013). Donat et al. (2016) defined dry regions for the
PRCPTOT analysis based on low annual precipitation totals,
and dry regions for the Rx1d analysis are based on moderate
annual-maximum daily precipitation. Consequently, this lat-
ter definition takes a decision whether a region is dry or not
based on the precipitation amount of a single day per year.
Regions in northern Europe, such as parts of Scandinavia or
the Netherlands, fall in the “dry” class because of relatively
small annual-maximum daily precipitation (Fig. 3). Hence,
different notions of what constitutes a dry region can con-

trast each other, resulting in regions being dry in one defini-
tion and wet in another (e.g. parts of north-eastern Europe;
Fig. 3). These variations in dryness definitions consequently
induce uncertainties in the interpretation of changes in pre-
cipitation extremes and totals in the “world’s dry regions”.
These definition-related differences can be substantial – for
example, as much as 50.8 % (PRCPTOT) and 71.8 % (Rx1d)
of the “dry grid cells”, following the respective definitions
in Donat et al. (2016), are neither arid nor semi-arid (Ap-
pendix B, Fig. B1), and would thus not be considered dry
if a definition based on both water supply and atmospheric
demand were to be used.

To clarify this issue, we test the sensitivity of the reported
increases in Rx1d and PRCPTOT to the choice of dryness
definition by using a variety of different dryness definitions
(Fig. 3). Hence, we evaluate trends and period increments in
Rx1d and PRCPTOT in

1. regions that fall below the global 30 % quantile in
HadEX2 in the respective diagnostic (Rx1d or PRCP-
TOT), following Donat et al. (2016);

Hydrol. Earth Syst. Sci., 21, 441–458, 2017 www.hydrol-earth-syst-sci.net/21/441/2017/
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Figure 3. Different mask of the world’s dry and wet regions. (a)–(d) Dryness/wetness masks based on 1951–1980 and HadEX2 (a, b; see
Donat et al., 2016) and 1951–2010 (c, d; to avoid “regression to the mean” selection bias, see main text) for Rx1d (left panels) and PRCPTOT
(right panels). “NDNW” indicates neither dry nor wet areas, white inland areas indicate less than 90 % data availability in the HadEX2 dataset
and were not considered. (e, f) Dry regions based on the Köppen–Geiger classification as updated by Kottek et al. (2006) and data availability
in HadEX2. (g, h) Dry and transitional regions following Greve et al. (2014) and data availability in HadEX2.

2. dry regions (“B-climates”) from a traditional climate
classification based on temperature and precipitation
(Köppen, 1900; Kottek et al., 2006);

3. dry regions as identified from an aridity-based definition
of dryness (Greve et al., 2014);

4. dry and transitional regions combined from the latter
definition (Greve et al., 2014).

In addition, we test uncertainties related to the temporal cov-
erage of the dataset by relying on time series with at least
90 % coverage (cf. Donat et al., 2016) and furthermore also
analyse only time series without missing values (100 % cov-
erage).

Our results show that, if dry regions are defined
based on water availability (i.e. dry regions following ei-
ther Greve et al. (2014) or Köppen (1900)) and sta-
tistical artefacts are accounted for, in dry or dry and

www.hydrol-earth-syst-sci.net/21/441/2017/ Hydrol. Earth Syst. Sci., 21, 441–458, 2017
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Table 1. Statistical pre-processing uncertainties and biases in period increments and trend slopes.

World region Precipitation Ref. period Ref. period Period Bias Sen slope Bias Type of
characteristic (normalization) (region increment1 [%] [decade−1

] [%] bias
selection) [%]

Dry (HadEX2, Rx1d 1951–1980 1951–1980 4.85 40.4 0.016 33.3 2

30 % lowest Rx1d 1981–2010 1981–2010 1.29 –62.7 0.006 –50.0 3

Rx1day) Rx1d 1951–2010 1951–2010 3.45 0.0 0.012 0.0 4

Rx1d 1951–1980 1951–2010 3.97 15.1 0.014 16.7 5

Rx1d 1951–2010 1951–1980 4.33 25.3 0.014 16.7 6

Wet (HadEX2, Rx1d 1951–1980 1951–1980 2.09 2.2 0.007 8.7 2

Rx1d 1981–2010 1981–2010 2.09 2.2 0.007 –1.5 3

70 % highest Rx1d 1951–2010 1951–2010 2.04 0.0 0.007 0.0 4

Rx1day) Rx1d 1951–1980 1951–2010 2.41 18.1 0.008 16.0 5

Rx1d 1951–2010 1951–1980 1.73 −15.3 0.006 −4.8 6

Dry (HadEX2, PRCPTOT 1951–1980 1951–1980 6.32 32.9 0.020 40.4 2

30 % lowest PRCPTOT 1981–2010 1981–2010 3.38 –29.0 0.010 –29.5 3

PRCPTOT) PRCPTOT 1951–2010 1951–2010 4.76 0.0 0.015 0.0 4

PRCPTOT 1951–1980 1951–2010 5.74 20.8 0.019 27.5 5

PRCPTOT 1951–2010 1951–1980 5.34 12.2 0.017 14.9 6

Wet (HadEX2, PRCPTOT 1951–1980 1951–1980 0.83 –13.7 0.003 –13.6 2

70 % highest PRCPTOT 1981–2010 1981–2010 1.30 35.5 0.005 28.9 3

PRCPTOT) PRCPTOT 1951–2010 1951–2010 0.96 0.0 0.004 0.0 4

PRCPTOT 1951–1980 1951–2010 1.32 38.5 0.005 38.2 5

PRCPTOT 1951–2010 1951–1980 0.40 −58.6 0.002 −52.4 6

1 Period increment denotes the change in period means between 1981–2010 and 1951–1980. 2 Combination of “normalization” and “regression to mean” (RTM)
bias, “early” ref. period (i.e. following Donat et al., 2016). 3 Combination of “normalization” and “RTM” bias, “late” ref. period. 4 Ref. period covering the entire
temporal domain (no bias). 5 “Normalization” bias only. 6 “RTM” bias only. Bold indicates period increments and trend estimates based on the
1951–1980 reference period; italic indicates period increments and trend estimates based on the 1981–2010 reference period.

transitional regions combined, the trends reduce from
the originally reported 1.6 % decade−1 (2.0 % decade−1) to
+0.2 to +0.9 % decade−1 (+0.0 to +1.2 % decade−1) for
Rx1d (PRCPTOT), respectively (see Fig. 4). The uncertainty
range reflects the choice of the aridity mask used and the
temporal coverage of the time series considered (see Ta-
bles 2 and 3). Similarly, period changes between 1951–1980
and 1981–2010 would be reduced to −1.32 to +0.97 %
(+0.5 to +3.8 %) as opposed to +4.85 % (+6.3 %) for
Rx1d (PRCPTOT) in the original study. Although the trends
remain positive, based on a two-sided Mann–Kendall test, no
significant trends in Rx1d and PRCPTOT can be detected in
the world’s dry regions (Fig. 4). However, the coverage of the
world’s arid regions with long-term observational monitoring
data is rather sparse and largely confined to arid and semi-
arid regions in North America and Eurasia (Fig. 3), and thus
large uncertainties remain. A few of the data gaps in HadEX2
in arid and semi-arid regions can be filled with available
data from the less homogenized GHCNDEX dataset (Do-
nat et al., 2013b, Appendix B, Fig. B2). In the dry (Köp-
pen, 1900; Greve et al., 2014) and dry-transitional regions
(Greve et al., 2014) of this merged dataset, the magnitude
of the trends and period changes remains largely the same

for Rx1d (trends: +0.4 to +1.1 % decade−1; period changes:
−0.16 to +1.41 %), but with now more significant p values
due to a higher data coverage (Table 2). For PRCPTOT, the
HadEX2–GHCNDEX-merged dataset reveals on average in-
creased and significant trends (+0.6 % to +1.9 % decade−1)
and period changes (+1.7 to +5.1 %). The reported results
are consistent with earlier studies that report modest in-
creases in Rx1d and PRCPTOT in predominantly arid and
semi-arid subsidence regions based on model simulations
(Kharin et al., 2007; Fischer and Knutti, 2015), and in ob-
servations for individual subtropical regions such as Aus-
tralia or the Mediterranean (Westra et al., 2013; Lehmann
et al., 2015). If “the world’s dry regions” are defined based
on falling below a global 30 % threshold in Rx1d or PRCP-
TOT in the HadEX2 dataset (Donat et al., 2016), we indeed
confirm robust increases in both Rx1d and PRCPTOT. Thus,
the originally reported robust increases in both diagnostics
are highly sensitive to the definition of a “dry region”, and
appear to stem from regions with relatively moderate ex-
treme (Rx1d) or average (PRCPTOT) precipitation, such as
regions in northern Europe (Rx1d, Fig. 3) or north-eastern
Siberia (PRCPTOT, Fig. 3).
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Figure 4. (a)–(f) Time series, trends, and 30-year means of spatially aggregated heavy precipitation (Rx1d, a, c, e) and annual rainfall totals
(PRCPTOT, b, d, f) in dry regions following (a, b) the Köppen–Geiger classification (Kottek et al., 2006), (c, d) Greve et al. (2014), and
(e, f) dry and transitional regions combined (Greve et al., 2014). Red lines are drawn as reported in Donat et al. (2016) for comparison,
i.e. based on the 1951–1980 reference period and dryness defined as “moderate extreme precipitation” (Rx1d) and annual precipitation totals
(PRCPTOT). Grey and black lines are corrected for statistical artefacts (1951–2010 reference period), and dry regions are defined based on
aridity. Grey lines report 90 % complete time series, black lines report only data with 100 % complete temporal coverage. All p values are
given for two-sided (one-sided) Mann–Kendall trend tests.

4 Conclusions

Monitoring and an accurate quantification of trends in meteo-
rological risks in a rapidly changing Earth system is a prereq-
uisite to well-informed decision-making in the context of cli-
mate change adaptation (IPCC, 2014). In this context, short
reference periods that are defined on a subset of the avail-

able dataset for normalization or data pre-processing pur-
poses should be avoided, as this procedure inevitably intro-
duces biases (Zhang et al., 2005; Sippel et al., 2015). In the
present study under scrutiny, these statistical effects reduce
the reported trends and period changes by up to 40 %, but
the direction of the overall signal remains unchanged (i.e. in-
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creasing trends in Rx1d and PRCPTOT in regions of moder-
ate extreme precipitation and low annual totals, respectively).

Furthermore, the definition of a “dry region” induces con-
siderable uncertainty in quantifying changes in Rx1d and
PRCPTOT in such areas. If dryness is defined based on wa-
ter supply and demand (i.e. aridity), we find much smaller
trends and period increments in Rx1d and PRCPTOT, which
are almost exclusively positive but in many cases insignifi-
cant (Tables 2 and 3). Hence, overall we can confirm an in-
dication towards increases in both metrics in the world’s dry
regions. However, it is important to stress that many of the
world’s dry regions, such as large arid and semi-arid regions
in Africa, the Arabian Peninsula, and partly South Amer-
ica, are not covered by monitoring datasets that are avail-
able at present. This fact highlights the importance of consis-
tent, long-term monitoring efforts, data quality control, de-
velopment and maintenance of long-term datasets (Alexan-
der et al., 2006; Donat et al., 2013a, b), and also emphasizes
that the results reported here should be regarded as indicative
only for those arid regions where data are available.

In summary, understanding and disentangling ongoing
changes in precipitation characteristics in the world’s dry re-
gions remains a research priority of high relevance. In this
context, our paper demonstrates that (1) data pre-processing
can introduce substantial bias, and (2) trends and period
changes can be sensitive to the specific choice of dryness
definition that is used; therefore, we urge authors to be con-
siderate and specific regarding both choices and to consider
associated uncertainties.

5 Data availability

The gridded HadEX2 and GHCNDEX datasets that contain
Rx1d and PRCPTOT data used in this study are available for
download under the following URLs:

– HadEX2: http://www.climdex.org/gewocs/data/
hadex2_current.zip,

– GHCNDEX: http://www.climdex.org/gewocs/data/
ghcndex_current.zip.
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Appendix A: Analytical approximation of the expected
value for the normalization-induced bias

Assumptions and notation:

– Assume independent and identically distributed (i.e. sta-
tionary) variables Xt,i with mean given by E(X)=µ
and variance Var(X)= σ 2. Let the subscripts t and i
denote time and grid cell index, respectively. Note that
in real-world applications, the biases could be estimated
analytically by allowing for different sample means and
variances across space.

– Let toob be an arbitrary time step in the “out-of-base”
(independent) period, and tref an arbitrary time step in-
side the reference period. Let nref denote the length of
the reference period.

– Let 1bias=E(Xtoob,i
µ̂ref,i

)− 1 denote the relative change in-
duced by normalization by the mean of an independent
reference period (i.e. “normalization bias”, Xtoob,i is not
contained in µref,i).

Our objective is to find an analytical approximation
of the expected value for the artificially induced relative
change (1bias) by dividing a random variable Xtoob,i as de-
fined above by a sample mean estimated from different sam-
ples (“reference samples”) drawn from the same distribution

(µ̂ref,i =
1
n

nref∑
tref=1

Xtref,i , where E(µ̂ref,i)=µ), i.e.

1bias = E
(
Xtoob,i

µ̂ref,i

)
− 1≈ f (µ,σ,nref) . (A1)

Clearly, for large nref this quantity should go to 0. Because
Xt,i and µ̂ref,i are independent, we can write

1bias = E
(
Xt,i

)
E
(

1
µ̂ref,i

)
− 1= µE

(
1

µ̂ref,i

)
− 1. (A2)

If we substitute µ̂ref,i =µ(1+ εref,i), where E(εi)= 0,
Var(εi)= σ 2

µ2nref
(because εref,i =

µ̂ref,i
µ
− 1, and

E(µ̂ref,i)=µ and Var(µ̂ref,i)=
σ 2

nref
), and the subscript “ref”

has been dropped from εi for convenience, we get

1bias = µE
(

1
µ(1+ εi)

)
− 1= E

(
1

1+ εi

)
− 1. (A3)

A Taylor expansion around the function g(x)= 1
1+x at x= 0

yields

g(x)=
1

1+ x
= 1− x+ x2

− x3
+ x4
− x5
+ . . .. (A4)

We will see below that the convergence criterion εi < |1|
of the Taylor series is met in practically relevant cases, but
it should be noted that convergence cannot be ensured in

all theoretically conceivable cases. Using Taylor expansion,
1bias can be approximated, making use of the linearity of the
expectation operator E( ) and of the fact that E(εi)= 0 and
E(ε2

i )=Var(εi)= σ 2

µ2nref
by definition

1bias = E
(

1
1+ εi

)
− 1, (A5)

= E
(

1− εi + ε2
i − ε

3
i + ε

4
i − ε

5
i + . . .

)
− 1, (A6)

=
σ 2

µ2nref
−E

(
ε3
i

)
+E

(
ε4
i

)
−E

(
ε5
i

)
+ . . .. (A7)

This expression yields a sum over the central moments of
the distribution of εi’s. For a symmetric probability dis-
tribution (recall that εi denotes the deviations of the sam-
ple means in a reference period around the underlying true
mean), E(εki )= 0, where k is any uneven exponent k ∈N.
Equation (A7) then reduces to

1bias =
σ 2

µ2nref
+E

(
ε4
i

)
+E

(
ε6
i

)
+ . . .. (A8)

As long as εi < |1| is fulfilled, the quadratic term dominates
both Eqs. (A7) and (A8). The present analytical approxima-
tion (both Eqs. A7 and A8) provides the important insights
that

1. normalization with a “reference period sample mean”
leads to an artificial increase of spatial averages in the
out-of-base period, i.e. the bias is always positive in the
out-of-base period, 1bias> 0;

2. that 1bias∝ (
σ
µ

1
√
nref
)2, i.e. the square of the coefficient

of variation in the distribution of sample means (i.e.
cv[µ̂ref,i] =

σ
µ
√
nref

).

For any fixed nref, the amplitude of the normalization-
induced biases only depends on the square of the ratio σ

µ
.

We verify below numerically that this approximation works
well for random variables Xt,i drawn from

i. a Gaussian distribution;

ii. a GEV distribution with two different choices for the
shape parameter (ξ = 0, “Gumbel distribution”, and
ξ 6= 0).

A1 Gaussian distribution

Assume Xt,i ∼N (µ, σ 2), the distribution of the sam-
ple mean deviations from the true mean will follow
εi ∼N (0, σ 2

µ2nref
). If we substitute with εi = σ

µ
1
√
nref
Y , where

Y ∼N (0, 1) in Eq. (A8), the above expression reduces to

1bias =
σ 2

µ2nref
+

(
σ

µ

1
√
nref

)4

E
(
Y 4
)
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+

(
σ

µ

1
√
nref

)6

E
(
Y 6
)
+ . . .. (A9)

Because higher-order moments of a standard normal-
distributed random variable are well-known and can be
derived analytically (Johnson et al., 1994, i.e. E(Y 4)= 3,
E(Y 6)= 15), an analytical expression of the normalization-
induced bias becomes straightforward:

1bias ≈
σ 2

µ2nref
+ 3

(
σ

µ

1
√
nref

)4

+ 15
(
σ

µ

1
√
nref

)6

. (A10)

A comparison of Eq. (A10) (i.e. the first three terms in the
Taylor approximation) to numerical simulations shows that
the analytical approximation works well (Fig. A1a). Further-
more, the estimation of mean and standard deviation from
the empirical time series to calculate the expected value for
the biases is unbiased and shows surprisingly little variation
(Fig. A1b) even for a relatively small number of grid cells,
where random variation in stationary time series becomes
considerable (Fig. A1b).

However, one important caveat is that Eq. (A3) and the
subsequent approximation only works as long as εi < |1| is
fulfilled. How likely is a violation of this criterion? Nu-
merical simulations for nref= 30 appear to be very stable
for any µ

σ
> 0.8 in the Xt,i’s, i.e. corresponding roughly to

a Cv[µ̂ref,i] ≈ 0.2. For such a choice of Cv the chance of
|εi | ≥ 1 corresponds to a −5σ event with a probability of
roughly 1 to 3.5 million. Given that the observed µ

σ
ratios

are considerably larger than the values tested here even in
the driest regions of the world, we conclude that the approx-
imation can be used for the vast majority, if not all, practical
considerations.

A2 GEV distribution

We investigate whether in Eq. (A7) the higher-order terms in
the Taylor approximation can be ignored in practical appli-
cations, where an assumption of Gaussianity might not hold.
Here, we test this for the GEV distribution as an appropriate
model for annual maxima as investigated in the main paper
with two different choices for the distribution’s shape param-
eter (ξ ).

(i) Gumbel distribution

We first assume, in analogy to the paragraph above, inde-
pendent and identically distributed (i.e. stationary) random
variables drawn from a GEV distribution with zero shape pa-
rameter (“Gumbel distribution”, Xt,i ∼GEV(µ′, σ ′, ξ = 0),
where µ′, σ ′, and ξ = 0 denote the GEV’s location, scale,
and shape parameter, respectively; see, e.g., Johnson et al.,
1995). The expected values for mean (µ) and variance (σ 2)
of a GEV are given by µ=µ′+ σ ′γ , where γ denotes Eu-
ler’s constant.

Following Eq. (A7), we can readily derive an analytical ex-
pression for the expected value of the normalization-induced
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Figure A1. (a) Ratio of mean to SD vs. normalization-induced bias
in a Gaussian distribution for numerical simulations with various
mean values (dots), and the derived analytical approximation (black
line). The reference period length is taken as nref= 30, and numer-
ical simulations are conducted with n= 105 grid cells with each
60 time steps. (b) Analytical estimates of biases as calculated from
sample mean and sample standard deviation following Eq. (1) in
the main text (dark blue) for a given number of independent grid
cells (µσ = 1, nref= 30). For comparison, the magnitude of random
changes in stationary time series (i.e. empirical variation in the
quantity 1bias, following Eq. A1) with nref= 30 and nobase= 30
is shown in black. Error bars indicate the 5th to 95th percentile in
repeated numerical simulations.

bias:

1bias =
σ 2

µ2nref
−E

(
ε3
i

)
+E

(
ε4
i

)
−E

(
ε5
i

)
+ . . ., (A11)

=

 π
√

6nref

(
µ′

σ ′
+ γ

)
2

−E
(
ε3
i

)
+E

(
ε4
i

)
−E

(
ε5
i

)
+ . . .. (A12)

Here, we note again that the quadratic term dominates the
expression. If we make the simplifying assumption that the
sample means µ̂ref,i for nref= 30 follow (approximately) a
Gaussian distribution (the assumption is only needed for the
higher-order terms of the Taylor expansion), we can derive an
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analytical approximation for the normalization-induced bias
by insertion and in analogy to above:

1bias≈

 π
√

6nref

(
µ′

σ ′
+ γ

)
2

+

(
σ

µ

1
√
nref

)4

E
(
Y 4
)
+ . . . (A13)

≈

 π
√

6nref

(
µ′

σ ′
+ γ

)
2

+ 3

 π
√

6nref

(
µ′

σ ′
+ γ

)
4

. (A14)

Hence, we find that the magnitude of the bias estimates is
proportional to the ratio of scale to location parameter ( σ

′

µ′
)

for any fixed reference period length (but also the propor-
tionality to the square of the ratio of standard deviation to
mean remains, i.e. Eq. (1) (or Eq. A13) in the main text). The
analytical approximation can be verified by numerical simu-
lation using GEV-distributed random variables, and is found
to fit the data very well (Fig. A2a). Furthermore, an estima-
tor of the expected value of the biases by only estimating the
mean and standard deviation of empirical time series (i.e. us-
ing the first term in the Taylor approximation) can be derived
easily and is found to work reliable also for a small number
of independent grid cells (Fig. A2c).

(ii) GEV distribution with ξ 6= 0

Here, we test whether the analytical argument from above
can be extended to GEV distributions with ξ 6= 0. In prac-
tical applications of the GEV to observed maximum pre-
cipitation, a shape parameter of ξ ≈ 0.2 is often found
(Van den Brink and Können, 2011); therefore we test here
for Xt,i ∼GEV(µ′, σ ′, ξ = 0.2). The expected values for
mean (µ) and variance (σ 2) of a GEV, when 0>ε < 1, are

given by µ=µ′+ σ ′ 0(1−ξ)−1
ξ

and σ 2
= (σ ′)2

(g2−g
2
1)

ξ
, where

gk =0(1− kξ ), k= 1, 2, and 0(t) is the gamma function
(Johnson et al., 1995).

Hence, the (dominant) quadratic term in the Taylor ap-
proximation in Eq. (A7) reads

1bias ≈

(
g2− g

2
1
)

nrefξ
[
µ′

σ ′
+
0(1−ξ)−1

ξ

]2 . (A15)

The approximation works again very well in numerical
simulations (Fig. A2b), and shows that if ξ 6= 0, there is a
dependency on ξ , nref and again the ratio of σ ′

µ′
, which de-

termine the magnitude of the normalization-induced bias.
Please note that the approximation works similarly well for
random variables drawn from a GEV distribution with nega-
tive shape parameter (ξ =−0.2, not shown).

A3 Short remark on non-stationarity in the out-of-base
period

Many real-world precipitation time series show non-
stationarities due to climatic variations (O’Gorman, 2015)
that are typically diagnosed as relative changes in the pre-
cipitation amount. Hence, we can ask whether and how any
“real change in the expected value” outside the reference
period can be disentangled from the normalization-induced
bias. Given the analytical approximation above, we can show
that the highlighted normalization-induced bias scales non-
stationarities in the out-of-base period in a multiplicative
way.

Let c denote any change between the reference period ex-
pected value and some future period (e.g. assume one is in-
terested in global or latitudinal changes in a past and future
climatic period), i.e. such that E(Xtref,i )= cE(Xtoob,i ), then
the bias (1bias, after accounting for the “real change”) would
simply scale with the relative change (1 denotes the total
apparent change):

1= cE
(
Xt,i

µ̂ref,i

)
− 1, (A16)

= cE
(

1
1+ εi

)
− 1, (A17)

= c− 1︸ ︷︷ ︸
true change

+ c

 σ 2

µ2nref
−E

(
ε3
i

)
+E

(
ε4
i

)
−E

(
ε5
i

)
+ . . .︸ ︷︷ ︸

1bias

 . (A18)

From Eq. (A18), it is straightforward to see that for any
multiplicative changes in the expected value of the out-of-
base variables, the normalization-induced bias scales with
the change. Hence, this expression implies that to detect
the “true change c” between two periods, the normalization-
induced bias has to be accounted for:

c =
1+ 1

1+1bias
. (A19)
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Figure A2. (a) Ratio of location to scale parameter vs. normalization-induced bias in a GEV distribution for the analytical approxima-
tion (black line) and numerical simulations with various location parameter values (dots), with (a) zero shape parameter, and (b) ξ = 0.2.
Reference period length is taken as nref= 30, and numerical simulations are conducted with n= 105 grid cells with each 60 time steps.
(c) Analytical estimates of biases as calculated from sample mean and sample standard deviation following Eq. (1) in the main text (dark
blue) for a given number of independent grid cells drawn from a GEV distribution (µ

′

σ ′
= 1, ξ = 0, nref= 30). For comparison, the magnitude

of random changes in stationary time series (i.e. empirical variation in the quantity 1bias, following Eq. A1) with nref= 30 and nobase= 30
is shown in black. Error bars indicate the 5th to 95th percentile in repeated numerical simulations.
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Appendix B: Comparison between aridity-based and
precipitation-based definition of dryness
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Figure B1. Relationship between annual-maximum daily rainfall (Rx1d from HadEX2–GHCNDEX-merged dataset) and aridity (a), and
precipitation totals (PRCPTOT from HadEX2–GHCNDEX-merged dataset) and aridity (b). Potential evapotranspiration is taken from the
CRU-TS3.23 dataset (Harris et al., 2014).
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Figure B2. Available data in the HadEX2 dataset (Donat et al., 2013a) merged with GHCNDEX (Donat et al., 2013b).
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