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Abstract

Bayesian inference enables the fusion of heterogeneous information and the reduction of epistemic uncertainty
for solving inverse problems. Physical models, expert knowledge and experimental data are statistically interpreted
in order to learn about the unknown model parameters. The prior and the posterior probability distribution
represent the uncertainty of the unknowns before and after the analysis. Bayes’ theorem governs the update
from the prior to the conditional posterior which reflects the achieved gain of information.

Characterizing the posterior distribution poses the main challenge in Bayesian data analysis. Since only
very simple problems admit analytical solutions, most often one has to compute the posterior numerically. This
formidable task is accomplished by means of Markov chain Monte Carlo techniques. The large number of forward
model runs that is thereby required prohibits computational inference in many fields of application. In civil,
mechanical and aerospace engineering this holds especially true.

The goal of this doctoral dissertation is to develop new approaches to the Bayesian probabilistic analysis
in complex and realistic engineering applications. A unified framework for inverse problems under epistemic
uncertainty and aleatory variability is elaborated to that end. Hamiltonian Monte Carlo is used as an efficient
sampling algorithm that overcomes the associated computational difficulties. Moreover, completely novel methods
for posterior computation are presented and investigated.

Zusammenfassung

Bayessche Inferenz erlaubt die Miteinbeziehung heterogener Informationen und die Reduktion epistemischer
Unsicherheiten beim Lösen inverser Probleme. Physikalische Modelle, Expertenwissen und Messdaten werden
statistisch ausgewertet, um auf die unbekannten Modellparameter zurückzuschließen. Die Prior- und die Posterior-
Wahrscheinlichkeitsverteilung repräsentieren die Unsicherheit der Unbekannten vor und nach der Analyse. Der
Übergang vom Prior in den bedingten Posterior erfolgt nach dem Lehrsatz von Bayes und spiegelt den erzielten
Informationsgewinn wieder.

Das Charakterisieren der Posterior-Verteilung stellt die größte Herausforderung der Bayesschen Datenanalyse
dar. Weil nur denkbar einfache Probleme analytische Lösungen besitzen, muss man den Posterior meistens
numerisch berechnen. Markov-Ketten-Monte-Carlo-Verfahren werden zur Bewältigung dieser schwierigen Aufgabe
eingesetzt. Die große Anzahl der dafür erforderlichen Vorwärtsmodellläufe verhindert die rechnergestützte Inferenz
in vielen Anwendungsgebieten. Dies gilt insbesondere im Bauingenieurwesen und Maschinenbau sowie in der
Luft- und Raumfahrttechnik.

Ziel dieser Doktorarbeit ist es, neue Methoden zur Bayesschen Wahrscheinlichkeitsanalyse in komplexen und
realistischen Ingenieuranwendungen zu entwickeln. Ein einheitliches Rahmenkonzept für inverse Probleme unter
epistemischer Unsicherheit und aleatorischer Variabilität wird zu diesem Zweck ausgearbeitet. Um den damit
verbundenen Rechenaufwand zu verringern, wird ein effizienter Hamiltonscher Monte-Carlo-Algorithmus verwen-
det. Darüber hinaus werden völlig neuartige Ansätze zur Berechnung der Posterior-Wahrscheinlichkeitsverteilung
vorgestellt und untersucht.
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Chapter 1

Overview

1.1 Motivation
The increasing sophistication of computer simulations for predicting the behavior of physical systems

necessitates the specification of a growing number of model parameters. This motivates the engagement in
both forward and inverse uncertainty quantification. One can represent the degree as to which the model input
parameters are not precisely known as a probability distribution. Either this may reflect a lack of knowledge
about the true parameter value or a natural variability of the input realizations. The stochasticity in the model
parameters then induces randomness in the model predictions, the quantification of which is the chief goal of
uncertainty forward propagation.

While uncertainty propagation deals with the characterization of the model response for a given input
distribution, inverse uncertainty quantification aims at the indirect determination of the actual distribution of
the uncertain inputs with experimental measurements of the outputs. In Bayesian inverse problems the epistemic
uncertainty of the constant but unknown forward model parameters is translated into the prior distribution and
probabilistically updated. The resulting posterior distribution encodes the reduced level of epistemic uncertainty
that remains after integrating the information yielded by the data. Point estimates of the parameters and
predictive distributions of future outcomes can then be derived.

The Bayesian approach to inverse problems does not only allow for improving one’s knowledge about the
fixed yet unknown parameters and growing one’s confidence in the predictions, it also measures the uncertainty
in the model input estimation and output prediction. Therefore it gains advantage over deterministic solutions to
inverse problems. A limitation of the approach is that it lacks the possibility to manage the aleatory uncertainty
of genuinely random quantities that vary during the experimentation. Nuisance variables that merely complicate
the analysis or aleatory variables whose distribution is of inferential interest are examples of such quantities.
They are incorrectly treated as constants in current practice.

In addition to the unanswered question of how aleatory variability might be handled, another limiting factor
of Bayesian inversion is the expense of computing the posterior distribution numerically. One of the very few
serviceable tools for that purpose is Markov chain Monte Carlo sampling. This technique suffers from the
absence of a clear convergence criterion and the autocorrelation of the obtained posterior samples. It demands
an excessive number of serial forward model runs which may easily exceed the available computational budget.
This prompts researchers and practitioners to implement advanced sampling algorithms and to find completely
new solutions.

1.2 Contribution
The fact that aleatory variability is ignored, the need for more efficient sampling schemes and the lack of

fundamental alternatives form obstacles to Bayesian inverse problems in complex applications. In this dissertation
it is tried to overcome these difficulties. The core contributions are concisely summarized as follows.

1) A unifying framework for the management of aleatory uncertainty in inverse problems is developed.

2) Hamiltonian Monte Carlo is promoted for efficient posterior exploration in high-dimensional spaces.

3) Novel approaches for computational Bayesian inference and posterior characterization are proposed.

4) Complex inverse problems from structural, mechanical and also hydrological engineering are solved.
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First, the developed framework in 1) allows one to master inverse problems in the presence of epistemic
uncertainty and aleatory variability. Unknown parameters can be identified along with the distribution of
aleatory variables. Second, in 2) the computational cost of sampling high-dimensional posteriors is drastically
reduced by Hamiltonian Monte Carlo. This is a general-purpose Markov chain Monte Carlo method which
proves especially beneficial to the previously devised framework for inversion under polymorphic uncertainty.
Third, spectral Bayesian inference is proposed as a radically different technique for computing the posterior
density in 3). It rests on spectral likelihood expansions and enables semi-analytic and sampling-free Bayesian
inference. Another recently emerged method based on optimal transportation theory is also investigated and
compared to spectral inference.

A wide range of practical engineering problems can be addressed with the new methodological developments.
On the one hand, simple problems with simulated data serve for prototyping and benchmarking purposes.
Bayesian inversion under multiple types of uncertainty and Hamiltonian Monte Carlo are both applied to
the estimation of the material variability throughout an ensemble of structural elements. The inverse heat
conduction problem posed by calibrating the thermal properties of a composite material with temperature
measurements is used to demonstrate the newly devised schemes of inference. On the other hand, in 4) some
more interesting problems involving real data and realistic models are solved. This includes the NASA Langley
multidisciplinary uncertainty quantification challenge, the probabilistic assessment of structural masonry, and
the Bayesian calibration of a hydrological urban drainage simulator.

The methodological progress achieved and the real problems solved are the main outcomes of this doctoral
research work. They have led to four journal publications [1–4], an equal number of conference papers [5–8] and
five other presentations [9–13]. The most important contributions [1–4, 8] are contained as individual chapters
later on in the dissertation. Postprints of the finally accepted and already published articles [1–4] after scholarly
peer review and before the copyediting and typesetting are provided. The conference paper [8] is supplemented
with three additional graphics whose inclusion was originally prevented by the template and page limit.

1.2.1 Journal papers
[1] J. B. Nagel and B. Sudret. “Bayesian Multilevel Model Calibration for Inverse Problems Under Uncertainty

with Perfect Data”. In: Journal of Aerospace Information Systems 12.1 (2015), pp. 97–113. doi: 10.2514/
1.I010264.

[2] J. B. Nagel and B. Sudret. “A unified framework for multilevel uncertainty quantification in Bayesian
inverse problems”. In: Probabilistic Engineering Mechanics 43 (2016), pp. 68–84. doi: 10.1016/j.
probengmech.2015.09.007.

[3] J. B. Nagel and B. Sudret. “Hamiltonian Monte Carlo and Borrowing Strength in Hierarchical Inverse
Problems”. In: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil
Engineering 2.3, B4015008 (2016), pp. 1–12. doi: 10.1061/AJRUA6.0000847.

[4] J. B. Nagel and B. Sudret. “Spectral likelihood expansions for Bayesian inference”. In: Journal of
Computational Physics 309 (2016), pp. 267–294. doi: 10.1016/j.jcp.2015.12.047.

1.2.2 Conference proceedings
[5] J. B. Nagel and B. Sudret. “Probabilistic Inversion for Estimating the Variability of Material Properties: A

Bayesian Multilevel Approach”. In: 11th International Probabilistic Workshop (IPW11). Ed. by D. Novák
and M. Vořechovský. Brno, Czech Republic: Litera, 2013, pp. 293–303. doi: 10.3929/ethz-a-010034843.

[6] J. B. Nagel and B. Sudret. “A Bayesian Multilevel Framework for Uncertainty Characterization and
the NASA Langley Multidisciplinary UQ Challenge”. In: 16th AIAA Non-Deterministic Approaches
Conference (SciTech 2014). Reston, Virginia, USA: American Institute of Aeronautics and Astronautics
(AIAA), 2014. doi: 10.2514/6.2014-1502.

[7] J. B. Nagel and B. Sudret. “A Bayesian Multilevel Approach to Optimally Estimate Material Properties”.
In: 2nd International Conference on Vulnerability and Risk Analysis and Management and 6th International
Symposium on Uncertainty Modeling and Analysis (ICVRAM & ISUMA 2014). Ed. by M. Beer, S.-K. Au,
and J. W. Hall. Reston, Virginia, USA: American Society of Civil Engineers (ASCE), 2014. Chap. 151,
pp. 1504–1513. doi: 10.1061/9780784413609.151.

[8] J. B. Nagel, N. Mojsilovic, and B. Sudret. “Bayesian Assessment of the Compressive Strength of Structural
Masonry”. In: 12th International Conference on Applications of Statistics and Probability in Civil
Engineering (ICASP12). Vancouver, Canada: University of British Columbia, 2015. doi: 10.14288/1.
0076072.
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1.2.3 Other presentations
[9] J. B. Nagel and B. Sudret. “Bayesian Multilevel Model Calibration for Inversion of “Perfect” Data in

the Presence of Uncertainty”. In: MascotNum Workshop on Computer Experiments and Meta-models for
Uncertainty Quantification (MascotNum 2014). Zürich, Switzerland, April 2014.

[10] J. B. Nagel and B. Sudret. “PCE-Metamodeling for Inverse Heat Conduction”. In: 1st Pan-American
Congress on Computational Mechanics (PANACM 2015). Buenos Aires, Argentina, April 2015.

[11] J. B. Nagel and B. Sudret. “Optimal Transportation for Bayesian Inference in Engineering”. In: Inter-
national Symposium on Reliability of Engineering Systems (SRES 2015). Hangzhou, China, October
2015.

[12] J. B. Nagel and B. Sudret. “Spectral Likelihood Expansions and Nonparametric Posterior Surrogates”. In:
SIAM Conference on Uncertainty Quantification (SIAM UQ 2016). Lausanne, Switzerland, April 2016.

[13] J. B. Nagel and B. Sudret. “Nonparametric posterior surrogates based on spectral likelihood expansions
and least angle regression”. In: European Congress on Computational Methods in Applied Sciences and
Engineering (ECCOMAS Congress 2016). Crete Island, Greece, June 2016.

1.3 Outline
An overview of the doctoral thesis and its structure is now given. The document is basically divided into

three parts. It starts with basic introductions to uncertainty quantification and Bayesian inference in Part I.
The key contributions of the research work in form of the most important publications are compiled in Part II.
Some further unpublished investigations as well as a detailed hydrological case study are conducted in Part III.
A short overview of how the main topics and the associated publications are organized in parts and chapters is
tabulated below. Detailed chapter summaries follow directly thereafter.

Part I Chapter 2 Uncertainty quantification
Chapter 3 Bayesian inference

Part II

Chapter 4 Aleatory variability [2]
Chapter 5 Hamiltonian Monte Carlo [3]
Chapter 6 NASA Langley challenge [1]
Chapter 7 Structural masonry [8]
Chapter 8 Spectral Bayesian inference [4]

Part III Chapter 9 Optimal transportation
Chapter 10 Hydrological model calibration

1.3.1 Elementary introductions
The thesis starts with two introductory chapters on uncertainty quantification and Bayesian inference in

engineering problems. This material provides the necessary background information as well as complementary
perspectives on the more advanced developments that follow. Forward and inverse problems are discussed within
the framework of probabilistic uncertainty quantification. State-of-the-art techniques for the computational
forward and backward propagation of uncertainty are reviewed.

An introduction to uncertainty quantification with a clear focus on probabilistic methods and forward
propagation is provided in Chapter 2. The quantitative characterization of the response distribution of a
mechanical model due to randomness in the input parameters, e.g. material properties, object geometry,
environmental loads or operating conditions, is the classical example problem. Monte Carlo simulation, Taylor
series expansions and more global metamodeling techniques are presented in this context. The latter includes
stochastic spectral methods such as polynomial chaos expansions which are used throughout the whole dissertation.
Non-intrusive computations based on a linear least squares minimization problem and its ordinary least squares
solution are concentrated on. The curse of dimensionality as well as the hope for sparsity are discussed.

Chapter 3 contains an elementary introduction to the Bayesian data analysis of engineering systems. This
offers a principled way of quantifying and reducing epistemic parameter uncertainties. Experimental data that
are only indirectly associated to the actual quantities of interest are analyzed to that end. An example is the
determination of actually uncertain properties of a material with measurements of its behavior under certain
test conditions. Basic inferential principles founded on the likelihood function as well as the prior and the
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posterior distribution are introduced. More advanced topics such as evidence-based model comparison and some
practical issues related to the parametrization of statistical models are also covered. Conventional approaches to
computational Bayesian inference based on random sampling or mathematical optimization are surveyed, e.g.
Markov chain Monte Carlo and variational inference. The convenient calculation of the extremely large or small
quantities that typically arise in Bayesian computations is discussed. Bayesian inverse problems are dealt with
in greater detail together with related issues such as the quantification of model prediction error.

1.3.2 Aleatory variability
While the Bayesian solution to inverse problems satisfactorily accounts for epistemic types of uncertainty, it

does not allow for the incorporation of aleatory types. Two examples of this form of uncertainty are the stochastic
variation of the environmental or operating conditions over time and the randomness within an ensemble of
structural elements due to manufacturing tolerances. This is a major limitation and motivates the research
question of how to deal with aleatory input variability in Bayesian inverse problems. The answer to the question
is a core topic in the dissertation and occupies two chapters at the very least.

A hierarchical framework for managing heterogeneous types of uncertainty in Bayesian inverse problems is
proposed in Chapter 4. The formulation rests on multilevel models that interrelate different system components
through deterministic simulators and conditional probability distributions. It allows one to reduce the epistemic
uncertainty of unknowns that are fixed yet unknown and to identify the distribution of quantities that vary
throughout a series of experiments. Random measurement noise and aleatory nuisance variables are taken into
account at the same time. All available sources of information such as experimental data and expert knowledge
can be harnessed and optimally combined. This is especially important in civil engineering applications where
information is scarce and uncertainty dominates. The framework is demonstrated and its computational
challenges are identified through estimating the material variability across equally manufactured structural
elements. Inference can be either based on a low-dimensional formulation with an integrated likelihood function
or on a high-dimensional variant with many unknowns.

After the framework for Bayesian inversion under epistemic and aleatory uncertainty has been elaborated,
specialized solvers have to be implemented for computing the posterior efficiently. In Chapter 5 we propose
Hamiltonian Monte Carlo in order to cope with the practical difficulties of high-dimensional Bayesian multilevel
modeling. As a member from the extended Markov chain Monte Carlo family, the algorithm explores the
posterior in a sampling-based manner. The idea is to embed the space of the unknown parameters in an auxiliary
space and to perform the Markovian updates in such a way that they mix well in the original space of interest.
This principle is inspired by systems and concepts from classical and statistical mechanics, i.e. Hamiltonian
dynamics and the Boltzmann distribution. It calls for derivatives of the log–posterior density and the forward
model. Hamiltonian Monte Carlo is shown to be a highly efficient solver for inverse problems under uncertainty
and variability. It drastically outperforms a random walk Metropolis algorithm in a benchmark problem with
more than hundred unknowns. The posterior can be sampled almost independently.

1.3.3 Computational methods
Beyond the treatment of aleatory variability in inverse problems, the development of novel methods for

computational Bayesian inference is another central theme of the thesis. Although Hamiltonian Monte Carlo
is an attractive algorithm, it does not overcome the principal limitations of sampling techniques in general.
Fundamental alternatives to Markov chain and sequential Monte Carlo are thus needed. Two entirely different
approaches to compute the posterior distribution numerically are developed and investigated. They are based on
approximations of the posterior probability density function or correspondingly distributed random variables.
The identification of the thermal properties of a composite material with inclusions poses a comparably simple
inverse heat conduction problem that serves testing and demonstration purposes.

Spectral Bayesian inference is developed in Chapter 8 as a completely new and pretty elegant technique
for posterior computations. The main idea is to decompose the likelihood function into a converging series of
orthogonal polynomials. If orthogonality is defined with respect to the prior weight, this spectral likelihood
expansion has some surprisingly interesting properties. It gives rise to a nonparametric representation of the
normalized posterior density and enables semi-analytic and sampling-free inference. The model evidence as
well as the posterior moments are related to the expansion coefficients from which they can be easily extracted.
Posterior uncertainty propagation through general computational models can be accomplished based on prior
polynomial chaos expansions. It is proposed to compute the expansion coefficients by a discrete linear least
squares projection. A perturbation-theoretic interpretation of the orthogonal series expansion of the posterior
suggests a change of the reference density from the prior to an auxiliary weight function. This improves the
accuracy and efficiency of the spectral method dramatically. The advantages and shortcomings of spectral
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Bayesian inference are highlighted by reference to classical distribution fitting and the inverse heat conduction
problem.

Another approach to computational Bayesian inference that was recently devised by Prof. Youssef Marzouk
and his group at MIT is investigated in Chapter 9. It is based on the translocation of probability mass from the
prior to the posterior measure. A function of random variables distributed according to the prior is constructed
in such a way that the transformed variables follow the posterior. One can establish a connection between
variational Bayesian inference and this transport-based formulation. This permits to compute the posterior
by solving an optimization problem with an information-theoretic optimality criterion. The random variable
transformation is parametrized through multivariate polynomials up to a certain degree. After the computation
of a suitable transform, one can draw independent and equally weighted samples from the posterior. This
compelling feature distinguishes the approach from conventional sampling techniques.

1.3.4 Practical applications
A number of inverse problems involving real data and forward models are solved with the previously developed

methods towards the end of the thesis. This can be seen as a justification and appreciation of the more formal
developments, but should not hide the fact that it actually motivated some of them in the first place. Spectral
Bayesian inference for instance originated in the context of the NASA Langley multidisciplinary uncertainty
quantification challenge. The initial intention to use a polynomial approximation of the log–likelihood function
in conjunction with Markov chain Monte Carlo sampling has evolved into the idea for a spectral likelihood
expansion which renders further posterior sampling completely unnecessary.

Chapter 6 is the outcome of participating in the NASA Langley uncertainty quantification challenge in
2013–2014. The challenge contained a set of interlinked uncertainty quantification problems from the domain of
aerospace engineering. In this chapter the calibration sub-problem is interpreted and solved in the developed
framework of Bayesian multilevel modeling. A black-box model describing the behavior of a miniature civilian
aircraft under adverse flight conditions and associated data were provided by NASA. The primary goal was the
reduction of epistemic uncertainty of the model parameters that are fixed yet unknown and the identification of
the hyperparameters that determine the distribution of the aleatory variables. Due to some peculiarities of the
problem statement related to a zero-noise or perfect data condition, the likelihood function only arises as the
solution to a secondary uncertainty forward propagation problem. For that reason it cannot be evaluated exactly.
A statistical approximation of the likelihood based on Monte Carlo simulation and kernel density estimation is
therefore proposed. Employing this biased and noisy likelihood estimator for sampling the posterior via Markov
chain Monte Carlo alters the Metropolis–Hastings transition kernel. The induced modifications on the posterior
level are investigated and mitigated by means of partial data augmentation.

Bayesian multilevel modeling also facilitates problem-solving in structural masonry. A hierarchical approach
to assess the compressive strength of masonry walls is presented in Chapter 7. Many current methods suffer
from their homogeneous treatment of the composite material or simply fail in uncertainty quantification. Other
standardized methods overpredict the compressive strength to an alarming extent. The devised approach
allows one to improve the accuracy of the predictions and assess their quality. It models structural masonry
heterogeneously and quantifies the arising uncertainties consistently. System-level data related to the masonry
wall specimens and component-level data of the brick units and mortar are analyzed jointly. The experimental
data were collected in a series of compressive tests performed by Dr. Nebojsa Mojsilovic and his students in the
laboratories of the Institute of Structural Engineering (IBK) at the ETH Zürich. After the calibration of the
unknown parameters and hyperparameters, one can probabilistically predict the compressive strength based on
measurements of the constituent ensembles used.

Another real-world problem is solved in Chapter 10 where a hydrological urban drainage simulator is calibrated.
Epistemic parameter uncertainties are reduced while random measurement noise and systematic modeling errors
are anticipated and statistically identified. This allows for a thorough treatment of the emerging sources of
error and uncertainty in the dynamical simulation of water systems. It also suggests the possibility for model
correction. The catchment area of Adliswil, a municipality located around the river Sihl at the southern end of
the city Zürich, is studied during a rainfall event. Experimental data and training runs of the simulator were
provided by the Swiss Federal Institute of Aquatic Science and Technology (Eawag) in Dübendorf. Advanced
techniques for dimension reduction, surrogate modeling and stochastic sampling are combined to this effect.
Principal component analysis allows us to reduce the output dimensionality of the deterministic simulator that
predicts a whole times series. Sparse polynomial chaos expansions are subsequently used in order to emulate
the input-output relationship the forward model defines. The posterior distributions of two different Bayesian
models are sampled via Markov chain Monte Carlo techniques and compared with each other.
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Chapter 2

Uncertainty quantification

Modern engineering and scientific computing stimulate each other in a fruitful way. This synergy has led to a
number of great discoveries and breakthroughs, e.g. the Monte Carlo method [1] and the Kalman filter [2, 3].
Due to the steady increase and availability of computer capacities on the one hand and algorithmic advances on
the other hand, progress in computational science and engineering is nowadays made at an unprecedented pace.
Mature programming environments and ready-made software packages are available for a variety of dedicated
tasks, e.g. for finite element analysis and multiphysics simulation. The necessary processing power and computing
time are provided by personal computers or high-performance computing clusters. More and more complex
systems can be simulated in an ever-increasing level of detail. This trend continues to the present day.

The accurate simulation of large-scale systems typically hinges on the knowledge of a great number of physical
parameters. In practice they are hardly known exactly, though. Even if all parameters of a certain model
could be specified somehow, this would not necessarily shield from systematic errors and guarantee satisfactory
predictions. Inadequacies are immanent in all physical models to some degree, e.g. due to missing physics or
unresolved scales. The investigation of different sources and levels of inaccuracy and imprecision in numerical
simulations is therefore suggested. This is the objective of uncertainty quantification (UQ) [4, 5].

In a wider sense, UQ deals with all uncertainties of computer simulations within an academic or industrial
context. One certainly encounters various quite different sources of error in scientific computing [6, 7]. These
include but are not limited to parameter uncertainty [8, 9], numerical inaccuracy [10–12] and measurement noise
[13–15]. While the two latter types of errors are treated in statistical and numerical analysis, UQ concentrates
on the first-mentioned type in a narrower sense. With this ambition, UQ has recently emerged as an active
research field at the intersection of statistics, applied mathematics, computer science and engineering.

In engineering applications, one commonly distinguishes between epistemic uncertainty and aleatory variability
[16]. The former refers to a lack of knowledge of the analyst, whereas the latter relates to a natural randomness of
the system. In statistical inference, frequentist and Bayesian interpretations of probability differ in the way they
address these uncertainties [17–19]. On the one hand, probabilities are only employed for describing objective
frequencies. On the other hand, they are also utilized for representing subjective ignorance. While it is enjoyable
to reflect and dispute about such a categorization, with good reason one may wonder whether it is really helpful
or rather creates confusion. Taking a pragmatic point of view and declining the related philosophical debates,
the use of probability theory for either uncertainty is a common modeling choice in UQ.

While the fundamentals of UQ are therefore well-established in principle, the actual challenge is the complexity
of modern engineering problems. The system under study is often composed of different interacting components,
each of which may be already complex taken only by itself. A complete model of this system usually consists of
numerous deterministic and stochastic sub-models of the physics and uncertainty involved. Abstractly one may
speak of the “model universe” [20] or “theoretical world” [21] that embodies all assumptions and idealizations of
that overall model. In Fig. 2.1 it is attempted to illustrate this conception. The goal of UQ then becomes the
quantitative analysis and global management of uncertainty throughout the integrated system.

In a real-case scenario, the workflow typically involves a whole chain of intertwined UQ analyses. Broadly
speaking, these tasks can be divided into forward UQ, i.e. characterizing the model outputs, and inverse UQ, i.e.
learning about the model inputs. See Fig. 2.2 for a visualization. In uncertainty propagation [22, 23] one tries to
find the full distribution of model outputs for given input uncertainties. This includes reliability analysis [24, 25]
where one focuses on the computation of the failure probability, e.g. that the system output exceeds a certain
threshold. While these are forward UQ problems, parameter identification [26, 27] and data assimilation [28, 29]
belong to inverse UQ. Given noisy observations of the system output, the goal is the experimental estimation of
unknown system parameters or dynamical states.

9



Uncertainty quantification

Figure 2.1: Model universe.

Figure 2.2: Forward and inverse problems.

There are also some intermediate UQ tasks that concentrate on understanding the input-output relationship
that the model establishes. By mimicking this relation or exploiting its structure one can accelerate forward
as well as inverse UQ problems. Surrogate modeling [30, 31] aims at an approximation of the model that is
both easy to interpret and cheap to evaluate. Similarly, model reduction [32, 33] subsumes techniques that try
to simplify the model while a reasonable degree of accuracy is maintained. In sensitivity analysis [34, 35] one
compares and ranks the importance of different inputs with respect to their effect on the outputs. This allows
one to identify the most and least influential parameters. While many of the activities in between forward and
inverse UQ are worthwhile by themselves, they still need to be seen in the bigger picture of risk analysis [36, 37]
and decision making [38, 39].

The remainder of this introductory chapter is organized as follows. Some fundamentals of uncertainty
propagation are reviewed in Section 2.1. A discussion about local methods such as Taylor series approximations
follows in Section 2.2. This eventually motivates global surrogate modeling approaches based on orthogonal
polynomials in Section 2.3. Least squares minimization techniques for computing function approximations are
subsequently presented in Section 2.4. Multivariate model outputs are considered in Section 2.5. Issues related
to high-dimensionality and sparsity are finally discussed in Section 2.6.

2.1 Uncertainty propagation
We now focus on probabilistic uncertainty propagation. The goal is to quantify the influence of input

parameter uncertainty on the predictions of an engineering model [40, 41]. By representing the uncertain
inputs as random variables with a prespecified probability distribution, the problem becomes to characterize the
corresponding output distribution. After a short intermezzo with slightly more technical probability theory, only
a basic familiarity with elementary statistics is required. Introductions for an engineering target audience can be
found in [42–44].

2.1.1 Engineering model

In the context of UQ, a model of an engineering system is a mathematical representation or computational
simulation of the relevant physical processes. For given input parameters x ∈ Dx from the domain Dx ⊆ RM
with M ∈ N>0, the model predicts an output of interest ỹ ∈ R. A single response quantity is considered here for
the sake of simplicity. The extension to multivariate outputs is straightforward, though. Accordingly, the model
can be thought of as a scalar-valued function

M : Dx → R

x 7→ ỹ =M(x).
(2.1)

Many different types of such predictive models are encountered in engineering problems. This includes simple
analytic expressions as well as numerical solutions of the governing equations. Especially in the latter case, the
model symbolized in Eq. (2.1) is often treated as a black-box, i.e. it is only evaluated in a pointwise manner. Its
internal structure may be not known, too complex or simply not considered explicitly. The only requirement is
that the model is available in an executable form.
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2.1.2 Input distribution
Provided that the simulator captures the main characteristics of the system well in general, one can calculate

the output ỹ =M(x) for arbitrary input values x ∈ Dx. This allows for an accurate forecast in case the input
parameters best describing a scenario are exactly known. In other circumstances the inputs are uncertain, e.g.
owing to a lack of knowledge or a natural variability. Then one can represent them as a random vector

X ∼ π(x). (2.2)

For the time being, we assume that the density function π(x) of the input distribution in Eq. (2.2) is already
given. It is remarked that the systematic specification of this density with output measurements is indeed the
core subject in this thesis. An introduction to the reduction of epistemic uncertainty is provided in Chapter 3.
The quantification of aleatory variability is the thematic priority of Chapters 4 and 5.

The input distribution is often characterized through its first statistical moments, e.g. its mean vector
µX = E[X] and covariance matrix ΣX = Cov[X]. These moments are assumed to be well-defined and finite
throughout the dissertation. They are given as

µX = E[X] =
∫
Dx

xπ(x) dx, (2.3)

ΣX = E
[
(X − µX) (X − µX)>

]
=
∫
Dx

(x− µX) (x− µX)> π(x) dx. (2.4)

The mean and covariance in Eqs. (2.3) and (2.4) are often taken as measures of the location and dispersion of
the input distribution, e.g. they indicate the typical value and the variation of the uncertain inputs.

2.1.3 Probability theory
Rigorous probability theory is often perceived as somewhat counterintuitive by practitioners of calculus-

based probability. Random variables are actually functions, integration is introduced before differentiation and
the conditional expectation is a prerequisite for the conditional distribution. In order to clarify some of the
fundamental notions that are behind Eq. (2.2) and that are used throughout the whole thesis, we dare a brief
review of probability spaces, random variables, expectation values and density functions.

Let us consider a probability space (Ω,F ,P). The triplet consists of a sample space Ω of random outcomes, a
σ-field F ⊆ 2Ω and a probability measure P : F → [0, 1]. A random vector on (Ω,F ,P) with values in Dx is a
measurable function X : (Ω,F) → (Dx,B(Dx)). This means that X−1(B) = {ω ∈ Ω|X(ω) ∈ B} ∈ F for all
B ∈ B(Dx) in the Borel σ-algebra B(Dx) on Dx. The random vector induces a so-called image law or probability
distribution on (Dx,B(Dx)) by

PX(B) = P ◦X−1(B). (2.5)

One can write (Ω,F ,P) X−→ (Dx,B(Dx),PX) in order to summarize this basic probability setup. Note that only
spaces and mappings have been introduced as yet.

A quantity of interest (QoI) is a scalar-valued Borel function h : (Dx,B(Dx)) → (R,B(R)). It defines a
R-valued random variable h(X) = h ◦X with a distribution Ph = PX ◦ h−1. The expectation value of this
random variable is defined as the Lebesgue integral

E[h(X)] =
∫
Ω

h(X(ω))P(dω) =
∫
Dx

h(x)PX(dx) =
∫
R

h′Ph(dh′). (2.6)

Similarly, the integration of vector-valued functions is treated in componentwise manner. It is remarked
that the probabilities in Eq. (2.5) can be expressed as expectation values of the form as in Eq. (2.6) by
PX(B) = E[IB(X)] =

∫
B
PX(dx). Here, IB : Ω→ {0, 1} is the indicator function of the set B with IB(x) = 1 if

x ∈ B and IB(x) = 0 if x /∈ B.
A probability density function (PDF) of PX with respect to the Lebesgue measure is any measurable function

π : Dx → R+ for which the expectation E[h(X)] can be written as

E[h(X)] =
∫
Dx

h(x)PX(dx) =
∫
Dx

h(x)π(x) dx. (2.7)

Similar to Eq. (2.7), also the probabilities PX(B) can be rewritten in a way involving the density function as
PX(B) =

∫
B
π(x) dx. Note that PDFs are only implicitly defined via these integral relations.
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Assuming that the random variable X has the image law PX with a PDF π(x), the relevant expectation
values in Eq. (2.6) can be determined as per Eq. (2.7). That all is behind Eq. (2.2). In sum, a PDF is a
convenient way to specify a whole probability distribution. Hence, we use this PDF-oriented language and
notation throughout the thesis.

2.1.4 Output distribution
In uncertainty propagation one tries to quantify the distribution of the model outputs that results from the

randomness in the inputs. The simulator is therefore treated as a measurable function or QoIM : (Dx,B(Dx))→
(R,B(R)). One considers the response random variable defined by

Ỹ =M(X). (2.8)

This setup is summarized as (Ω,F ,P) X−→ (Dx,B(Dx),PX) M−−→ (R,B(R),PỸ ). An illustration of uncertainty
forward propagation is provided in Fig. 2.3. The input distribution PX and the push-forward measure
PỸ = PX ◦M−1 therein are characterized by their probability densities. The response distribution can be
complex, which is exemplified by two different modes. A short look at Fig. 3.2 allows one to catch a glimpse at
uncertainty backpropagation already.

Similar as for the moments of the inputs in Eqs. (2.3) and (2.4), the output distribution is often simply
summarized by the mean µỸ = E[M(X)] and the variance σ2

Ỹ
= Var[M(X)] of the random variable in Eq. (2.8).

Herein, their existence and finiteness is always presumed. These moments are respectively given as

µỸ = E[M(X)] =
∫
Dx

M(x)π(x) dx, (2.9)

σ2
Ỹ

= E
[
(M(X)− µỸ )2

]
=
∫
Dx

(M(x)− µỸ )2
π(x) dx. (2.10)

For simple problems where the random response is unimodal and not too far from being Gaussian, the mean and
variance in Eqs. (2.9) and (2.10) can be taken as measures of the location and scale. Summarizing the shape of
more complex distributions may very well require higher moments such as skewness and kurtosis, though. When
the output distribution is multimodal such as in Fig. 2.3, the first statistical moments are difficult to interpret.
In this case the distribution can be meaningfully characterized through its full density only.

Figure 2.3: Forward uncertainty propagation.

2.1.5 Monte Carlo simulation
An appealingly simple approach to compute the first moments of the output distribution is Monte Carlo (MC)

simulation. For K ∈ N>1 representative input samples X = (x(1), . . . ,x(K)), which are independently drawn
from the input distribution in Eq. (2.2), one has to compute the corresponding responses Y = (ỹ(1), . . . , ỹ(K))>.
Here, ỹ(k) =M(x(k)) are realizations of the random variable in Eq. (2.8) for k = 1, . . . ,K. The moments in
Eqs. (2.9) and (2.10) can then be estimated via the sample approximations

µỸ = 1
K

K∑
k=1

ỹ(k), σ2
Ỹ

= 1
K − 1

K∑
k=1

(
ỹ(k) − µỸ

)2
. (2.11)

This is a universal and solid approach to characterize the response distribution. Because the MC estimates
in Eq. (2.11), provided that at least the first two and four moments respectively exist, enjoy input dimension–
independent convergence rates of the statistical sampling errors with the number of random samples, they
are often used in high-dimensional problems. Especially for problems of low and moderate dimension, other
alternatives might be superior. A local method based on a Taylor expansion of the model and more global
metamodeling techniques are discussed in Sections 2.2 and 2.3, respectively.
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2.2 Taylor approximation
In the error analysis of physical experiments, one should always quantify the influence of measurement

uncertainties on the final results [13–15]. In this context one is often interested in a simple function of the
observed data. A commonly encountered method of error propagation is then based on a low-order Taylor
approximation of this function. This approach is certainly appealing in simple cases. In principle, one may also
contemplate it for the uncertainty propagation through general engineering models. That is at the basis of the
stochastic perturbation method [45]. A few introductory remarks are provided hereafter.

Given that the modelM(x) is sufficiently differentiable, one can approximate it through a truncated Taylor
series around a value x0 ∈ Dx from its domain. Since the approximation will be only accurate in some
neighborhood of the expansion point, one chooses the mean value µX = (µX1 , . . . , µXM )> in Eq. (2.3). The
second-order Taylor approximation ofM(x) about this point x0 = µX is then given as

M(x) ≈M(µX) +
M∑
i=1

∂M
∂xi

∣∣∣∣
µX

(xi − µXi) + 1
2

M∑
i,j=1

∂2M
∂xi∂xj

∣∣∣∣
µX

(xi − µXi)(xj − µXj ). (2.12)

With this, one can find the corresponding second-order approximation of the expected value µỸ = E[M(X)] of
the model output in Eq. (2.9). A simple calculation yields

µỸ ≈M(µX) + 1
2

M∑
i,j=1

∂2M
∂xi∂xj

∣∣∣∣
µX

Cov[Xi, Xj ]. (2.13)

For independent inputs with Cov[Xi, Xj ] = 0 whenever i 6= j, the approximation simply becomes µỸ ≈
M(µX) + 1

2
∑M
i=1

∂2M
∂x2
i
|µXVar[Xi]. Similarly, the first-order approximation of the model output variance

σ2
Ỹ

= Var[M(X)] in Eq. (2.10) can be written as

σ2
Ỹ
≈

M∑
i,j=1

∂M
∂xi

∣∣∣∣
µX

∂M
∂xj

∣∣∣∣
µX

Cov[Xi, Xj ]. (2.14)

The well-known law of error propagation σ2
Ỹ
≈
∑M
i=1(∂M∂xi |µX )2 Var[Xi] is a consequence of independent inputs.

Of course, one could calculate Taylor approximations of higher order than in Eqs. (2.12) to (2.14).
On the downside, these formulas are only accurate in very simple situations, e.g. for unimodal input

distributions for which the expected value indeed indicates most of the probability mass and for models that are
very smooth over the typical input variation. The applicability of the method is also limited due to the necessity
to compute partial derivatives. All things considered, local Taylor series approximations do not establish a
reliable and viable alternative to more global attempts.

2.3 Surrogate modeling
Another approach is to construct a global surrogate or metamodel of the simulator in the vein of a response

surface [46, 47]. The metamodel is built so as to emulate or mimic the behavior of the original model over its
whole domain. Typically it is cheap to evaluate and can therefore supersede the full model in analyses that
require many model runs, e.g. uncertainty propagation, sensitivity analysis and parameter estimation. This
renders the analysis of systems possible where using the simulator is ruled out due to the incurred computational
cost. Of course, this only works subject to the condition that the cost of computing a sufficiently accurate
surrogate does not exceed the available budget either.

Widespread classes of metamodels are based on polynomial chaos expansions [48, 49], Gaussian process
models [50, 51], artificial neural networks [52, 53] and support vector machines [54, 55]. Traditionally these
emulator types have been developed and publicized in different scientific communities and disciplines. While the
two first-mentioned techniques are mainly used in engineering and statistics, respectively, the two last-mentioned
ones are rooted in machine learning. Nowadays they are used in a more cross-disciplinary and problem-oriented
manner. Polynomial chaoses [56, 57], Gaussian processes [58, 59] and neural networks [60, 61] are used in
numerous different ways for parameter estimation. Each approach certainly has its own advantages and the
performance depends on the specific problem at hand. One can combine different techniques in order to improve
the efficiency [62–65].

In the following we concentrate on polynomial chaos–based metamodels. Even though the theoretical
foundations date back to the first half of the last century [66, 67], this type of stochastic spectral expansion
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was popularized only during the last decades in the context of stochastic finite elements [68, 69]. Technically
speaking, a random variable is expanded with respect to a number of basis random variables. We approach the
topic from the perspective of function approximation [70, 71]. This matches more closely how the surrogate
model is used after its construction in practice, i.e. it approximates function values for more or less arbitrarily
chosen inputs.

We start with a scalar-valued model M : Dx → R as in Eq. (2.1). It maps inputs x ∈ Dx to outputs
ỹ =M(x) ∈ R. In the vector-valued case one would treat each component separately. Alternatively, one could
make use of a non-canonical basis representation of the model output space and subsequently consider the
coefficients individually. This is further elaborated on in Section 2.5.

2.3.1 Spectral expansions
Let us consider attractive spaces for the simulator. Given a weight function w : Dx → R+, one may try to

justify or simply assume that the modelM∈ L2
w(Dx) belongs to the function space

L2
w(Dx) =

u : Dx → R|
∫
Dx

u2(x)w(x) dx <∞

 . (2.15)

This is a Hilbert space with an inner product 〈·, ·〉w and an associated norm ‖·‖w. For any two elements
u, v ∈ L2

w(Dx) these are defined as

〈u, v〉w =
∫
Dx

u(x)v(x)w(x) dx, ‖u‖w = 〈u, u〉1/2w . (2.16)

It now seems natural to seek for a Hilbert basis with respect to which one can expand vectors. Let {Ψi}i∈N>0

be a complete orthonormal set of vector space elements Ψi ∈ L2
w(Dx). Thus for all i, j ∈ N>0 one has

〈Ψi,Ψj〉w = δij , where δij is the Kronecker delta. As an element of the space in Eq. (2.15) the model can be
expanded with respect to the orthonormal basis {Ψi}i∈N>0 . This so-called spectral expansion is given as

M =
∞∑
i=1

aiΨi, (2.17)

ai = 〈M,Ψi〉w. (2.18)

In practice one has to truncate the infinite series in Eq. (2.17) and approximate it by a finite number of
summands. One therefore considers the projection ofM onto the subspace PP = span({Ψi}i≤P ) spanned by
the first P ∈ N>0 basis vectors {Ψi}i≤P . This projection is given as

MP (x) =
P∑
i=1

aiΨi(x). (2.19)

The truncation error or residual rP (x) = M(x) −MP (x) =
∑∞
i=P+1 aiΨi(x) is orthogonal with respect to

the subspace PP ⊂ L2
w(Dx). This means that 〈rP , uP 〉w = 〈uP , rP 〉w = 0 for all uP ∈ PP which is denoted

as rP ⊥PP . One can characterize the residual in the respective Hilbert space norm. The norm ‖rP ‖w, or
equivalently its square ‖rP ‖2w =

∑∞
i=P+1 a

2
i , is minimized over the subspace PP and converges to zero for P →∞.

To make this explicit we write

‖rP ‖2w = inf
uP∈PP

‖M− uP ‖2w , lim
P→∞

‖rP ‖2w = 0. (2.20)

A geometric interpretation of the subspace projection in Eq. (2.19) is provided in the familiar-looking
Fig. 2.4. The model M = a1Ψ1 + a2Ψ2 + a3Ψ3 therein is an element of a three-dimensional function space
P3 = span({Ψ1,Ψ2,Ψ3}). Its projection onto the two-dimensional subspace P2 = span({Ψ1,Ψ2}) is M2 =
a1Ψ1 + a2Ψ2. The residual is simply the difference r2 =M−M2 = a3Ψ3 between the true function and its
approximation. One has the orthogonality r2⊥P2.

In uncertainty analysis one often equates the positive weight function w(x) = π(x) with the probability
density of the inputs in Eq. (2.2). This adds a probabilistic interpretation. Elements u, v ∈ L2

π(Dx) define
random variables u(X) and v(X) with finite variance. The inner product in Eq. (2.16) is an expectation value in
the sense that 〈u, v〉π = E[u(X)v(X)]. By analogy with Eq. (2.17), the output in Eq. (2.8) can be expanded in
terms of basis random variables {Ψi(X)}i∈N>0 asM(X) =

∑∞
i=1 aiΨi(X). This is called a stochastic spectral

expansion at times.
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Figure 2.4: Orthogonal projection.

2.3.2 Polynomial approximations
Now we assume that the random input variables are independent, i.e. their density factorizes into π(x) =

π1(x1) . . . πM (xM ). The space L2
π(Dx) = {u : Dx → R|E[u2(X)] < ∞} ∼= L2

π1
(Dx1) ⊗ . . . ⊗ L2

πM (DxM ) is
then isomorphic to the tensor product of the Hilbert spaces L2

πi(Dxi) = {ui : Dxi → R|E[u2
i (Xi)] < ∞}

for i = 1, . . . ,M . They have the inner products 〈ui, vi〉πi = E[ui(Xi)vi(Xi)] for ui, vi ∈ L2
πi(Dxi). For two

elements u = u1 ⊗ . . .⊗ uM and v = v1 ⊗ . . .⊗ vM of the Hilbert space tensor product one thus has 〈u, v〉π =
〈u1, v1〉π1

. . . 〈uM , vM 〉πM . If the spaces L2
πi(Dxi) have bases {ψ(i)

αi }αi∈N then {ψ(1)
α1 ⊗ . . . ⊗ ψ

(M)
αM }α1,...,αM∈N

forms a basis of L2
π(Dx).

Before constructing a basis of L2
π(Dx) this way, convenient bases of the L2

πi(Dxi) function spaces are discussed.
Polynomials that are orthogonal with respect to inner products whose weight function corresponds to common
probability densities often constitute such bases. Those polynomials are intimately related to the distributional
moments. One starts by considering a family of polynomials {ψ(i)

αi (xi)}αi∈N in a single input variable xi ∈ Dxi .
Here, αi ∈ N is the polynomial degree. The orthogonality relation is 〈ψ(i)

αi , ψ
(i)
βi
〉πi = δαiβi‖ψ

(i)
αi ‖2πi . Four

well-known distributions and their associated orthogonal polynomials are listed in Table 2.1. The uniform
distribution is linked to the Legendre polynomials. Their first six members {Pα(x)}5α=0 up to degree five in a
single variable x ∈ [−1, 1] are shown in Fig. 2.5.

Table 2.1: Orthogonal polynomials.

Distribution Support Polynomials
Gaussian (−∞,∞) Hermite
Uniform [−1, 1] Legendre
Beta [−1, 1] Jacobi
Gamma [0,∞) Laguerre

Figure 2.5: Legendre polynomials.

Such polynomials often constitute a complete set in L2
πi(Dxi) [72–74]. A notable exception is the lognormal

distribution for which one has to take care of some subtleties related to moment determinacy [75]. This distribution
is not uniquely determined by its sequence of moments, i.e. other genuinely different distributions feature the
same moments. The corresponding polynomials are not dense in the full space of mean-square integrable
functions. They form a set of elements that is orthogonal but not complete, i.e. span({ψ(i)

αi }αi∈N) ( L2
πi(Dxi).

Intuitively this becomes clearer by realizing that the linear hull of the polynomials is at most the intersection of
different function spaces in which the polynomials are orthogonal.

In this situation one has to consider a slightly less general case, e.g. mean-square integrability is replaced
by the stronger assumption that the model is actually in the subspace spanned by the polynomials. One may
also argue that only the model’s projection onto the respective subspace is considered in this case, i.e. the
orthogonal complement is simply discarded. Similar arguments can be evoked when constructing a finite number
of polynomials that are orthogonal with respect to a distribution that is empirically known by its first few

15



Uncertainty quantification

moments only [76–78]. Another obvious possibility to bypass the problem is to transform the lognormal to a
normal distribution by taking the natural logarithm.

Speaking of parameter transformations, it may very well be necessary to reparametrize the problem either
way. This happens so as to guarantee that the inputs have convenient bounds and probability distributions, e.g.
the standard types that are compiled in Table 2.1. A related discussion on probabilistic model parametrizations
is found in Section 3.5. Uniform distributions with arbitrary bounds can be linearly transformed into πi(xi) =
U(xi | − 1, 1) with U(xi | − 1, 1) = 1/2 for xi ∈ [−1, 1] and U(xi | − 1, 1) = 0 otherwise. Similarly, Gaussians
with arbitrary mean and variance can be shifted and scaled into a standard normal πi(xi) = N (xi |0, 1) =
exp(−x2

i /2)/
√

2π with mean µXi = 0 and variance σ2
Xi

= 1. We assume that our parameters are already of such
a standard form.

Having univariate polynomials {ψ(i)
αi (xi)}αi∈N for each variable xi, multivariate polynomials in x are con-

structed via tensorization. We introduce a multi-index α = (α1, . . . , αM ) ∈ NM for bookkeeping purposes. Then
a set of multivariate polynomials {ψα(x)}α∈NM is given through

ψα(x) =
M∏
i=1

ψ(i)
αi (xi). (2.21)

In this construction, the orthogonality of the multivariate polynomials carries over from the univariate ones.
This is verified by 〈ψα, ψβ〉π = δαβ‖ψα‖2π = δα1β1 . . . δαMβM ‖ψ

(1)
α1 ‖2π1

. . . ‖ψ(M)
αM ‖2πM .

The polynomials defined in Eq. (2.21) are complete in L2
π(Dx). In the vein of Eqs. (2.17) and (2.18), the

expansion of the model with respect to the multivariate polynomial basis {ψα(x)}α∈NM is given as

M =
∑
α∈NM

aαψα, (2.22)

aα = 〈M, ψα〉π/‖ψα‖2π. (2.23)

The stochastic spectral version of Eqs. (2.22) and (2.23) is a certain polynomial chaos expansion (PCE)
Ỹ =M(X) =

∑
α∈NM aαψα(X) of the random variable in Eq. (2.8). Note that one can normalize the basis

elements {ψα}α∈NM and linearly order them according to their multi-index α.
An ordering scheme of some type can also facilitate the truncation of the series in Eq. (2.22) as in Eq. (2.19).

In a quite natural way one can impose restrictions on the total degree ‖α‖1 =
∑M
i=1|αi| of the polynomials in

Eq. (2.21). A finite number of terms is obtained by keeping only the ones with a total degree equal to or smaller
than a certain p ∈ N. These are the terms indexed by α ∈ Ap in Ap =

{
α ∈ NM : ‖α‖1 ≤ p

}
. The cardinality

P of this set is dependent on the input dimensionality M and the maximal degree p through

P =
(
M + p
p

)
= (M + p)!

M ! p! . (2.24)

The fast growth of the total number of terms P in Eq. (2.24) can be ascribed to the curse of dimensionality.
That issue is further discussed in Section 2.6. By retaining only the terms {Ψα}α∈Ap in the expansion the best
polynomial approximation of total degree p is given by

MP =
∑
α∈Ap

aαΨα. (2.25)

Using a polynomial basis has some appealing advantages. In the first place it is easy to understand and
interpret, e.g. the contributing terms can be classified according to their polynomial degrees and multivariate
structure. One can distinguish between low-order and high-order terms or identify individual contributions and
mutual interactions of input variables. Furthermore, one could argue that many physical laws and models lend
themselves to polynomial approximations, e.g. think about Taylor expansions as in Section 2.2.

For intents of uncertainty quantification it is convenient that the coefficients of polynomial expansions are
related to the statistical moments in Eqs. (2.9) and (2.10). One has for instance

µỸ = a0‖ψ0‖π, σ2
Ỹ

=
∑

α∈NM\{0}

a2
α‖ψα‖2π. (2.26)

The constant expansion term determines the expected value µỸ = E[M(X)] in Eq. (2.26). So do the remaining
terms for the variance σ2

Ỹ
= Var[M(X)].
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2.4 Discrete least squares
After merely representing the simulator in terms of basis functions in Eqs. (2.17) and (2.22), one has to

actually compute the expansion coefficients in Eqs. (2.18) and (2.23). A straightforward approach is to perform
the involved integrals explicitly. We discuss an alternative method that is based on the characterization of the
subspace projections in Eqs. (2.19) and (2.25) as the minimizers of the residual norm in Eq. (2.20). In order to
highlight the analogy of the formulations, this continuous least squares property is revisited before its natural
discretization is discussed. A linear least squares minimization problem [79] arises that way.

Let us assume that we have a set of linearly independent basis functions {ψj(x)}j≤P , i.e. no basis function is
a linear combination of the others. They are used in the ansatzMP (x) =

∑P
j=1 ajψj(x) ∈ span({ψj(x)}j≤P )

for finding the best approximation of the simulatorM(x) in that it minimizes the residual. To this effect, the
coefficient vector a = (a1, . . . , aP )> is chosen such that

a = arg min
a?∈RP

∫
Dx

(
M(x)−

P∑
j=1

a?jψj(x)
)2

π(x) dx. (2.27)

The unique minimum of this continuous least squares problem is then obtained when the partial derivatives
∂‖M−MP ‖2π/∂aj′ = 0 are zero for j′ = 1, . . . , P . This results in the continuous normal equations

P∑
j=1

aj

∫
Dx

ψj(x)ψj′(x)π(x) dx =
∫
Dx

M(x)ψj′(x)π(x) dx. (2.28)

If one chooses orthogonal basis functions, the system of equations can be easily solved for the coefficients aj′ .
This exactly yields the orthogonal projections aj′ =

∫
DxM(x)ψj′(x)π(x) dx/

∫
Dx ψ

2
j′(x)π(x) dx.

A discretization of the continuous case is based on a finite number K ≥ P of model runs. They are performed
for a representative sample of input values that is called the experimental design

X = (x(1), . . . ,x(K)). (2.29)

We consider the scenario that these inputs are independently sampled from the input probability distribution,
i.e. πX (x(1), . . . ,x(K)) = π(x(1)) . . . π(x(K)). Afterwards one has to compute the corresponding responses
Y = (M(x(1)), . . . ,M(x(K)))>. The design matrix A ∈ RK×P is composed as

A =

1 ψ2(x(1)) . . . ψP (x(1))
...

...
. . .

...
1 ψ2(x(K)) . . . ψP (x(K))

 . (2.30)

For k = 1, . . . ,K and l = 1, . . . , P this Vandermonde-like matrix has the entries Ak,l = Ψl(x(k)). Since one
typically has a constant term with ψ1(x) = 1, the elements of the first column of the design matrix in Eq. (2.30)
are equal to one. For the computed model outputs one can now establish the equations

M(x(1))
...

M(x(K))

 =

1 ψ2(x(1)) . . . ψP (x(1))
...

...
. . .

...
1 ψ2(x(K)) . . . ψP (x(K))



a1
a2
...
aP

+

 rP (x(1))
...

rP (x(K))

 . (2.31)

In more compact notation one can write Eq. (2.31) as Y = Aa+ rP . The vector rP = (rP (x(1)), . . . , rP (x(K)))>
gathers the differences rP (x(k)) =M(x(k))−MP (x(k)) between the model and its best approximation over the
whole input domain.

It is now tempting to ask for the M̂P (x) =
∑P
j=1 âjψj(x) ∈ span({ψj(x)}j≤P ) that best approximates the

response data Y over the discrete points in the experimental design X rather than the full space Dx. Therefore
consider the system Y = Aâ+ rP,K , where the residual vector rP,K = (rP,K(x(1)), . . . , rP,K(x(K)))> collects
the differences rP,K(x(k)) = M(x(k)) − M̂P (x(k)). The coefficients â = (â1, . . . , âP )> are chosen such that
‖rP,K‖22 = r2

P,K(x(1)) + . . .+ r2
P,K(x(K)) is minimal. That describes the discrete least squares problem

â = arg min
a?∈RP

‖Y −Aa?‖22. (2.32)
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This is the discrete companion of Eq. (2.27). Just as Eq. (2.28) was obtained, we zero the partial derivatives
∂‖Y −Aâ‖22/∂âj′ = 0 for j′ = 1, . . . , P in order to derive the discrete normal equations

A>Aâ = A>Y. (2.33)

If one assumes that the columns of A are linearly independent, i.e. A>A is positive-definite and therefore
invertible, then the unique ordinary least squares (OLS) solution is

â = (A>A)−1A>Y. (2.34)

Notice that one can write the gradient conditions in Eq. (2.33) as A>(Y −Aâ) = 0. Geometrically interpreted
this means that rP,K ⊥ col(A), i.e. the residual vector rP,K = Y − Aâ is orthogonal to the column space
col(A) = {Aa? : a? ∈ RP } of the design matrix A. Sometimes one defines the hat matrix H = A(A>A)−1A>.
It projects Y onto the column space by Ŷ = HY = A(A>A)−1A>Y = Aâ, where â is from Eq. (2.34).

The abovementioned projection gives indeed just the approximations Ŷ = (M̂P (x(1)), . . . ,M̂P (x(K)))> of
how the model responds to the experimental design X . Yet, the exact values are known anyway. For arbitrary
inputs values x ∈ Dx the emulation of the original simulatorM(x) is based on

M̂P (x) =
P∑
j=1

âjψj(x). (2.35)

2.4.1 Prediction errors
At this point one ought to give particular attention to various kinds of prediction errors [80, 81]. Notwith-

standing that minimizing the empirical residual norm in Eq. (2.32) is a plausible way of proceeding, it does not
necessarily warrant accuracy of the metamodel in Eq. (2.35) for unseen input data. There are certainly various
ways of quantifying the predictions errors. A short overview of a few related concepts is provided now. Since
the terminology is inconsistent throughout the literature in various fields, one always has to specify the error
measure under consideration clearly.

Let us denote the surrogate model that was obtained for a specific experimental design X by M̂XP (x). The
generalization error of this predictor is defined as the expectation value under the input distribution

Err
[
M̂XP

]
= E

[(
M(X)− M̂XP (X)

)2
]

=
∫
Dx

(
M(x)− M̂XP (x)

)2
π(x) dx. (2.36)

This is exactly the error that we tried to minimize. One may define the expected generalization error by
additionally averaging over the distribution of the experimental design

Err
[
M̂P

]
= EX

[
Err

[
M̂XP

]]
. (2.37)

This can be interpreted as an error of the procedure or rule of computing a predictor rather than of a specific
predictor itself. One can also define the expected prediction error at a single point x0 ∈ Dx as

Err
[
M̂P (x0)

]
= EX

[(
M(x0)− M̂XP (x0)

)2
]

= Bias2X
[
M̂XP (x0)

]
+ VarX

[
M̂XP (x0)

]
. (2.38)

The classical trade-off between the estimation bias BiasX [M̂XP (x0)] = EX [M̂XP (x0)]−M(x0) and the variance
VarX [M̂XP (x0)] = EX [(M̂XP (x0)− EX [M̂XP (x0)])2] has emerged here.

The generalization error in Eq. (2.36) measures the inaccuracy of a single approximation in a weighted sense
over the model input space. This is a quantity we would like to know once we have a metamodel at hand. In
contrast, the errors in Eqs. (2.37) and (2.38) provide statistical information about the approximation method
with respect to the sampling distribution of the experimental design. These are quantities whose minimization is
targeted in the design of efficient metamodeling algorithms.

After the computation of several metamodels, e.g. of various orders and with different experimental designs,
the ones that generalize poorly can be separated out in a validation step. This usually requires additional
simulations which the metamodeling predictions can be checked against. In Chapter 8 a discussion of leave-
one-out cross validation in the present linear context is found. It allows one to cross-validate the metamodeling
procedure against points in the experimental design without further simulations. This can guide the practical
computation and selection of such metamodels that satisfactorily generalize beyond the experimental design.
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2.4.2 Relation to linear regression
It is interesting to note that the residual error minimization for function approximation is formally evocative of

statistical linear regression [82]. These two problems are different in nature, though. The function approximation
problem deals with nonparametric approximations to completely unknown and possibly complex functions.
It features an experimental design with random inputs and noise-free simulations. On the contrary, classical
regression is concerned with simple models that are assumed to represent the truth and have a well-known
parametric form. It is a statistical estimation problem involving fixed covariates and noisy observations. The
linear statistical model is discussed in Section 3.6.2 later on. Under some standard assumptions related to the
measurement errors, the maximum likelihood estimate indeed coincides with the least squares minimizer. Hence,
the extremization objective and its solution are technically identical for both the function approximation and
the parameter estimation problem.

However, other results from linear regression theory, e.g. statements regarding the unbiasedness of the
estimator of the coefficient vector, cannot be transferred. Since this is often neglected, the latter thought shall
be engrossed a bit. The bias of a statistical estimator is the difference between the expectation value of this
estimator under its sampling distribution and the true value. Let us denote the expectation value of the OLS
solution in Eq. (2.34) over the population distribution of the experimental design by EX [â]. With Eq. (2.31) we
immediately see that

EX [âX ] = EX [(A>A)−1A>Y] = EX [(A>A)−1A>(Aa+ rP )] = a+ EX [(A>A)−1A>rP ]. (2.39)

Here, all quantities but the true projection coefficient a depend on the design over which the expectation is taken.
The corresponding index has been dropped for notational convenience. In the context of function approximation
with a random experimental design, the bias of the OLS estimate â is thus given as BiasX [â] = EX [â]− a =
EX [(A>A)−1A>rP ]. It is dependent on the vector of residual errors rP = Y −Aa which is not quite the same
as rP,K = Y −Aâ. Thus the bias can only vanish asymptotically in the limit P →∞ such that E[r2

P (X)]→ 0.
For finite P < ∞ it is zero only if it happens thatM(x) =MP (x) =

∑P
j=1 ajψj(x) ∈ span({ψj(x)}j≤P ) for

which one has rP = 0.

2.4.3 Relation to Monte Carlo integration
The matrix A>A in Eqs. (2.33) and (2.34) plays a crucial role in least squares regression and its statistical

design [83, 84]. It is the symmetric and positive-semidefinite Gramian matrix of the columns of the design matrix
A = (A1,A2, . . . ,AP ). For j, j′ = 1, . . . , P the entries of the Gramian are A>j Aj′ .

If the columns of the design matrix are empirically orthogonal in the sense that for all j 6= j′ one has
A>j Aj′ =

∑K
k=1 ψj(x(k))ψj′(x(k)) = 0, then the Gramian matrix becomes diagonal

A>A =

A
>
1 A1 . . . A>1 AP

...
. . .

...
A>PA1 . . . A>PAP

 =


∑K
k=1 ψ

2
1(x(k)) . . . 0
...

. . .
...

0 . . .
∑K
k=1 ψ

2
P (x(k))

 . (2.40)

For the components of â = (A>A)−1A>Y one then finds âj =
∑K
k=1 ψj(x(k))M(x(k))/

∑K
k=1 ψ

2
j (x(k)) for

j = 1, . . . , P . This means that the coefficients are estimated independently from each other, in the sense that
the estimate âj for a certain j does not at all depend on the inclusion of further terms ψj′(x) with j′ 6= j.

Moreover, in the case that the experimental design is randomized, this perfectly corresponds to the MC
estimate of the orthogonal projection. Even for finite experimental designs with K <∞, a relation between least
squares minimization and numerical integration is thus established in the event that empirical orthogonality is
fulfilled. In the more general case the two procedures yield different results.

2.5 Multivariate output
Now we consider vector-valued models M : Dx → RN that map inputs x ∈ Dx to multiple outputs

ỹ = M(x) ∈ RN with N ∈ N>0. Each component of the output vector ỹ = (ỹ1, . . . , ỹN )> is predicted as
ỹi =Mỹi(x) ∈ R for i = 1, . . . , N by a function of all inputs denoted asMỹi : Dx → R. In explicit notation
this can be written as

ỹ =

 ỹ1
...
ỹN

 =

Mỹ1(x)
...

MỹN (x)

 . (2.41)
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One should distinguish between the predicted output ỹ ∈ RN as an element in the vector space RN and the
predicting modelMỹi ∈ L2

π(Dx) which is assumed to be an element of the function space L2
π(Dx). Accordingly,

for i = 1, . . . , N one can represent, project and approximate eachMỹi separately with the theory and methods
previously discussed.

One can also represent the model outputs ỹ ∈ RN with respect to another basis of the model output space.
Let {φi}Ni=1 be an orthonormal basis of the Euclidean vector pace RN which is different from the standard
reference system {ei}Ni=1. As an alternative to the naturally suggested representation ỹ =

∑N
i=1 ỹiei, the model

responses can be expanded as

ỹ =
N∑
i=1

z̃iφi. (2.42)

Here, z̃ = (z̃1, . . . , z̃N )> is the coordinate vector of the output relative to the alternative basis, where each
coordinate is given as z̃i = ỹ>φi = ỹ · φi for i = 1, . . . , N . As a function of the uncertain model parameters,
each z̃i =Mz̃i(x) is predicted by the corresponding scalar-valued functionMz̃i ∈ L2

π(Dx).
Thus far, the canonical representation in Eq. (2.41) has been merely reformulated in Eq. (2.42). Even though

the two formulations before and after the change a basis are technically equivalent, they may differ in their
eligibility for signal compaction [85, 86]. If the output dimension is high, it is inconvenient at the very least
to have to treat multiple outputs individually. Moreover, different model outputs are often redundant to some
degree anyhow. This motivates to consider bases where the essential features of the model are captured by just a
few dominant terms. Such considerations are especially important against the backdrop of the following section.

2.6 Curse of dimensionality
High-dimensionality forms an obstacle to the analysis of many complex systems. That is widely agreed, even

though the degree as to which it applies is strongly dependent on the academic field. The so-called curse of
dimensionality [87, 88] very generally refers to difficulties in the characterization of high-dimensional objects with
discrete information. Various different manifestations of this problem are related to the volume and geometry of
high-dimensional spaces. They play a major role in much of machine learning [89, 90], learning theory [91, 92]
and multivariate statistics [93, 94].

Examples that are often used to illustrate the immense volume and the counterintuitive behavior of Euclidean
norms and distances in high-dimensional spaces include the following. The volume of a hypersphere with fixed
radius, e.g. a unit hypersphere embedded into a unit hypercube whose volume is always one, drops to zero. Most
of the volume of a high-dimensional sphere is located in a thin shell underneath its surface, rather than in the
interior. Similarly, most of the probability mass of a multivariate Gaussian distribution concentrates around a
shell distant from the expected value, rather than in the bell. In one, two and three space dimensions, data
points on a regular grid occupying a unit interval, square and cube are shown in Fig. 2.6, respectively. In order
to ensure a consistent coverage of the space, the sample size has to grow exponentially with the dimensionality.
Vice versa, uniform data with a fixed sample size quickly become isolated.

Figure 2.6: Curse of dimensionality.

The empty space phenomenon immediately shows up in UQ problems for the experimental design in
Eq. (2.29). Training sets with a fixed sample size fail to representatively cover the input space. A sufficient
coverage would require an exploding number of training runs and is therefore computationally infeasible.
The curse of dimensionality manifests also in Eq. (2.24) which obstructs the expansion of high-dimensional
functions in terms of high-order polynomials. Yet another instantiation of the problem is in Eq. (2.41) where all
high-dimensional model outputs must be considered individually.

Confronted with this seemingly hopeless situation, one may contemplate surrender. But fortunately there is
the blessing of sparsity, i.e. real-world problems in high-dimensional ambient spaces often feature characteristic
low-dimensional sub-structures that are hidden at the first sight. By uncovering such essential patterns of
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information one can break or at least try to smother the curse. Given a real data set with many features,
techniques for data dimensionality reduction can be applied [95]. Given an engineering model, a subset of
important directions in the multi-dimensional input space can be identified [96]. Another type of sparsity can be
sought after directly in the representation of a signal [97]. A hypothetical basis that already contains the actual
signal would precisely require that one term. Even though this case is improbable, sparse recovery methods can
be applied in contexts where a favorable basis is known.

The solution of complex engineering problems in the UQ domain often requires to use a combination of
methods for tackling high-dimensionality at the various modeling levels. An example can be found in Chapter 10
wherein a hydrological simulator with a collapsed input space will be analyzed. Also the dimension of the
simulator response will be reduced. After that a regularized least squares problem will be solved that seeks
sparsity in the functional basis expansion.
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Chapter 3

Bayesian inference

The preceding chapter covered the issue of how parameter uncertainties impact on the model predictions.
We now answer the reverse question of how measured output data can inform about the model parameters and
reduce their uncertainty. Bayesian inference establishes a probabilistic framework that allows one to coherently
quantify uncertainties with due regard to all available information. It is based on the transition of a prior into a
posterior probability distribution reflecting the learning process. The prior and the posterior represent the state
of knowledge or level of epistemic uncertainty before and after incorporating the experimental data.

Bayesian probability encompasses a whole range of philosophical attitudes, mathematical developments and
computational tools for statistical data analysis. Even nowadays it is instructive and occasionally entertaining
to have a look into the classical literature [1, 2]. Refreshingly original perspectives are also formulated in [3,
4]. More technical expositions of Bayesian experiments are found in the lesser known textbook [5] or in more
contemporary introductions to mathematical statistics [6, 7] and its measure-theoretical foundations [8, 9]. The
monograph [10] exclusively addresses conditional distributions that are of particular importance in Bayesian
inference. Modern introductions strongly emphasize practical and computational aspects [11, 12].

The popularity of the Bayesian approach is explained by its power to quantify and reduce uncertainties in
complex problems. Parameter estimation [13, 14] and data assimilation [15, 16] are a few prototypical tasks.
They are important for applications in social [17, 18], physical [19, 20] and engineering sciences [21, 22]. Complex
problems, where uncertainty [23–25] and physical modeling [26, 27] take place at multiple system levels, can be
solved with Bayesian methods. Interesting examples can be found in Chapters 6, 7 and 10 of the thesis.

For the sake of completeness it is remarked that Bayesian probability is not limited to statistical problems
only. Another trendy application is indeed probabilistic numerics [28, 29]. Numerical algorithms can be endowed
with a probabilistic interpretation in a way that allows one to quantify the confidence in the computed solutions
[30]. In this regard, Bayesian quadrature [31, 32] itself is applicable to Bayesian computations [33, 34].

This introductory chapter on Bayesian inference is structured in the following way. The foundations of
statistical modeling are introduced in Sections 3.1 and 3.2, where the likelihood function and the prior distribution
are discussed. Inference based on the posterior is subsequently explained in Section 3.3. The question of the
model evidence and some of its ramifications are dealt with in Section 3.4. Some practical issues related to the
model parametrization are expounded in Section 3.5. Bayesian inverse problems are addressed afterwards in
Section 3.6. The numerical computation of the posterior distribution is dissected in Section 3.7.

3.1 Likelihood function
In the following, the unknown parameters of a statistical model are denoted as x = (x1, . . . , xM )> ∈ RM .

The number of unknowns is denoted as M ∈ N>0 which is in line with the notation of the preceding chapter. It
is aimed at the statistical identification of the unknown system parameters with N ∈ N>0 real measurements
y = (y1, . . . , yN )> ∈ RN of related observables. In order to draw inferences from the data y about the unknowns
x, one has to establish the connection between them. Therefore one constructs a probabilistic model π(y |x)
that explains the randomness of the data for given parameter values. This is often denoted as

Y |x ∼ π(y |x). (3.1)

This equation actually may involve fully known covariates, i.e. explanatory control variables or experimental
conditions. They are omitted here for the sake of notational convenience. In a way the unknowns x index the
data distribution, while the actually acquired data are interpreted as a random realization Y = y generated
from Eq. (3.1) for the true values of the unknowns.
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It is remarked that while the form of π(y |x) is seemingly simple, it embodies a variety of assumptions and
simplifications that are made during the modeling process. Even the notions of true parameter values and a
data generating mechanism can be seen as conceptualizations. Examples of how such statistical data models can
be constructed in connection with inverse modeling are discussed in Section 3.6.

The likelihood function plays a key role in frequentist and Bayesian inference [35, 36]. For the obtained and
therefore fixed observations y, it is defined as

L(x) = π(y |x). (3.2)

Hence, the likelihood emerges from evaluating the conditional density in Eq. (3.1) as a function of the unknowns
x. In maximum likelihood estimation (MLE) the unknown parameters are estimated as

x̂MLE = arg max
x∈RM

L(x). (3.3)

The point estimator maximizes the likelihood function in Eq. (3.2) over the admissible parameter values. A weak
point of the MLE in Eq. (3.3) is that it does not allow for quantifying the unavoidable statistical uncertainty.
This motivates Bayesian inference which is capable of doing so.

3.2 Prior distribution
The Bayesian approach to inference and prediction builds on probabilistic reasoning. This way it allows

for a more thorough information processing and uncertainty analysis. Involving a subjective interpretation of
probability, randomness is not only attributed to the data y as in Eq. (3.1), but also to the unknowns x. The
modeler’s and analyst’s ignorance regarding the true parameter values before analyzing the data is represented
as a random vector

X ∼ π(x). (3.4)

Here, π(x) is called the prior density. Instead of merely acknowledging the fact that the parameter values are not
known, their epistemic uncertainty is modeled as a probability distribution. The true values are then considered
a realization X = x of the random vector in Eq. (3.4). Note that the randomness does not refer to draws in a
frequentist sense, but to a lack of knowledge in a Bayesian sense. As detailed in Section 3.3, the analyst can
update his or her knowledge by conditioning on the realized data. Beforehand it is necessary to construct an
appropriate prior distribution.

The selection of the prior distribution is of utmost practical importance in Bayesian inference. It is in fact
the most controversial aspect. On the one hand, the prior allows one to incorporate qualitative and quantitative
information other than the data. Beyond physical constraints, this includes heterogeneous sources such as expert
knowledge, previous experiments and published literature. On the other hand, this raises the question of how
to encode such information into a probability distribution. Similar to the assumptions and compromises that
have to be made in order to formulate a probabilistic data model as in Eq. (3.1), the determination of the prior
parameter model in Eq. (3.4) can be understood as a modeling choice. As such, it may be subject to various
guiding principles.

Very generally, one may classify Bayesian priors according to the way they are chosen, the information they
convey and the function they fulfill. For a start, one may distinguish between priors that are more subjective, i.e.
elicited on the basis of one’s own or someone else’s personal belief [37, 38], or more objective, i.e. constructed
according to some formal rules [39, 40]. The latter includes the maximum entropy principle [41, 42]. Subjective
and objective prior distributions are sometimes also called informative and uninformative, respectively. More
generally, these terms can be used in order to characterize the prior with respect to its information content.
Real prior distributions may occupy a wide spectrum that ranges from more subjective or informative to rather
objective or uninformative. There are also more or less functional priors that serve certain purposes. They are
chosen for mere mathematical convenience or their regularization properties. Conjugacy [43], robustness [44] and
sparsity [45–47] can be for instance achieved by choosing appropriate priors.

In engineering practice, one often designates a well-known family of distributions as candidate priors. The
corresponding parameters are then set so as to mirror the uncertainty as faithfully as possible. Uniform
distributions are often chosen for parameters that can be bounded from above and below, e.g. due to physical
constraints. Gaussian or lognormal distributions are often used for parameters that are unbounded or strictly
positive, respectively.
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3.3 Posterior distribution
All things considered, Bayesian modeling rests on the marginal distribution π(x) of the unknown parameters

in Eq. (3.4) and the conditional distribution π(y |x) of the observational data in Eq. (3.1). Consequentially the
unknowns and the data are represented as jointly distributed random vectors

(Y ,X) ∼ π(y,x) = π(y |x)π(x). (3.5)

This is a complete probability model of the Bayesian experiment. The true parameters and the actual data are
regarded as a realization (Y ,X) = (y,x) of the joint random variables in Eq. (3.5). While the outcome of the
data y is observed, the true parameters x remain unobserved.

Now one can synthesize the prior information and the observed data in order to estimate the unknowns. In
particular, one proceeds by conditioning on the realized data. Given the likelihood function in Eq. (3.2) and the
prior density in Eq. (3.4), the posterior density follows from Bayes’ law

π(x|y) = L(x)π(x)
Z

, (3.6)

Z =
∫
RM

L(x)π(x) dx. (3.7)

The normalizing constant Z is usually called the model evidence or marginal likelihood. It will be further
examined in Section 3.4. In the same fashion as the prior represents the uncertainty about the unknowns before
analyzing the data, the posterior in Eq. (3.6) summarizes the reduced uncertainty afterwards.

In Fig. 3.1 the functioning of Bayesian updating is illustrated for a single quantity of interest (QoI). The
prior is transited into the posterior density, which is paralleled by a reduction of the epistemic uncertainty and a
higher degree of probability mass localization. For the sake of clarity, both the prior and the posterior density
in the sketch are Gaussian. In most but the simplest cases, however, the posterior is a complex probability
distribution that may exhibit strong non-normalities and a multiplicity of modes. Multivariate posteriors often
contain linear correlations and complex dependencies between the variables involved.

Figure 3.1: Bayesian inference.

Now all information is contained in the posterior probability density function. As opposed to the determination
of the prior where the question was how to encode information into a probability density, the question here
becomes how to decode it from the posterior. A natural way is to evaluate conditional expectation values and
regular probabilities given the data. The expectation of a certain QoI h : RM → R under the posterior can be
written as

E[h(X)|y] =
∫
RM

h(x)π(x|y) dx. (3.8)

Most relevant quantities follow thereby from considering appropriate QoIs. For instance, with the indicator
function h = IB of a set B ∈ B(RM ) one obtains the posterior probability of the event X ∈ B as

PX |Y (B |y) =
∫
B

π(x|y) dx. (3.9)

This completes the characterization of the posterior probability distribution. Possibilities to further analyze and
summarize the posterior are discussed below.
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3.3.1 Posterior summaries
Very often one is interested in the first statistical moments of the posterior. They serve as brief summaries of

the possibly complex probability distribution. The expected value and covariance matrix are given as

E[X |y] =
∫
RM

xπ(x|y) dx, (3.10)

Cov[X |y] =
∫
RM

(x− E[X |y])(x− E[X |y])> π(x|y) dx. (3.11)

The posterior mean in Eq. (3.10) is often taken as a point estimate of the unknown parameter vector, whereas
the covariance in Eq. (3.11) is regarded as a measure of the statistical uncertainty. An alternative for point
estimation is the maximum a posteriori (MAP) estimate. It maximizes the posterior density over the admissible
parameter values. Simply put, this is just the mode

x̂MAP = arg max
x∈RM

π(x|y). (3.12)

For interval estimation one usually specifies credible regions that accumulate a certain high percentage of the
total posterior mass. The probability that such sets indeed contain the true parameter values is determined
according to Eq. (3.9).

Bayesian point estimation can be more formally understood within a decision-theoretic framework [48, 49].
A Bayes estimator minimizes/maximizes the expected value of a certain loss/utility function under the posterior
distribution. The posterior mean in Eq. (3.10) is the Bayes estimator for a quadratic risk function. Technically
speaking, MAP estimation in Eq. (3.12) does not establish a proper Bayes estimator. It can be understood as a
limit of such, though.

In the multivariate case, the joint posterior may contain dependencies between the components of x. Although
the presence or lack of such structures gives deep insight into the problem at hand, one may want to disregard
them for the moment and focus on the posterior marginals. For a specific parameter xi with i ∈ {1, . . . ,M} one
integrates the posterior over the remaining unknowns x∼i = (x1, . . . , xi−1, xi+1, . . . , xM )> in order to obtain

π(xi |y) =
∫

RM−1

π(x|y) dx∼i. (3.13)

This summarizes the accumulated information on the parameter xi. Since one-dimensional posterior marginals
can be visualized nicely, they are often plotted as graphical summaries of the joint posterior.

3.3.2 Predictive distributions
In the same way as the prior π(x) informs about x, i.e. the distribution represents a subjective uncertainty

rather than a sampling frequency, our expectations on the data y before seeing them are summarized by

π(y) =
∫
RM

π(y |x)π(x) dx. (3.14)

This is called the prior predictive density. The model evidence in Eq. (3.7) actually stems from evaluating the
prior predictive density at the real data. After analyzing the data y, one can similarly predict the future outcome
y′ in a replication of the experiment.

It is often assumed that the observed and the future data are conditionally independent. This means that
π(y,y′ |x) = π(y |x)π(y′ |x). The probabilistic data model in Eq. (3.1) can then be adjusted to as yet unobserved
data Y ′ ∼ π(y′ |x), e.g. by resetting the covariates. One could simply use π(y′ |x̂) for predicting the future data,
where x̂ is some point estimate of the parameters that comes from an analysis of the old data. This, however,
ignores the statistical estimation uncertainty. It is therefore advisable to average over the posterior so as to
derive the posterior predictive density

π(y′ |y) =
∫
RM

π(y′ |x,y)π(x|y) dx =
∫
RM

π(y′ |x)π(x|y) dx. (3.15)

The second equality is a direct consequence of the conditional independence π(y′ |x,y) = π(y′ |x). Similar to the
unconditional data predictions in Eq. (3.14), the distribution in Eq. (3.15) predicts new data given the already
observed ones.
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3.3.3 Information gain
It is interesting to look at the Bayesian update from an information-theoretic point of view [50, 51]. This is

of paramount importance for Bayesian optimal design [52, 53] and the definition of least-informative reference
priors [54, 55]. A more specific perspective on the pervasive concepts of “information” and “uncertainty” and
their embodiment in probability distributions is entailed hereby [56, 57].

Intuitively one may think of information as the complement of uncertainty. More formally it can be interpreted
as the reduction of uncertainty − log π(x) that results from receiving the outcome X = x of a random variable
X ∼ π(x). Note that this does not describe a Bayesian learning procedure. The Shannon entropy quantifies
the potential information gain or average surprisal E[− log π(X)] of this communication process [58, 59]. This
way it rigorously measures the degree of unpredictability or uncertainty that is inherent in a whole probability
distribution. The entropy of the continuous prior density π(x) is defined as

HS(π(·)) = −
∫
RM

log(π(x))π(x) dx. (3.16)

Likewise one can define the information entropy HS(π(·|y)) of the posterior density π(x|y). Notice that the
differential entropy in Eq. (3.16) may become negative and is not invariant under a change of variables. Actually,
these undesirable properties have arisen due to the transfer of the original definition from discrete to continuous
random variables.

A relative entropy concept that works equally well in the discrete and the continuous case is the Kullback–
Leibler (KL) divergence [60, 61]. It measures the additional entropy that is introduced when using an approximate
or distorted distribution in place of the true reference one. While the actual events follow the reference, they are
incorrectly expected according to the approximation. The additional uncertainty of predicting the posterior
π(x|y) as the reference with the prior π(x) as the approximation can be defined as

DKL(π(·|y)‖π(·)) =
∫
RM

log
(
π(x|y)
π(x)

)
π(x|y) dx = −

∫
RM

log(π(x))π(x|y) dx−HS(π(·|y)). (3.17)

The cross-entropy HC(π(·|y), π(·)) = −
∫
RM

log(π(x))π(x|y) dx measures the total uncertainty of using the
prior instead of the true posterior. Hence, the relative entropy in Eq. (3.17) is the additional uncertainty
DKL(π(·|y)‖π(·)) = HC(π(·|y), π(·))−HS(π(·|y)). It is a non-negative and transformation-invariant measure of
the difference between two probability distributions in terms of their entropy contents. Moreover, the divergence
is asymmetric by construction and attains zero if and only if π(x|y) = π(x).

Following these remarks, one can interpret the KL divergenceDKL(π(·|y)‖π(·)) as a measure of the uncertainty
reduction that comes along with the passage from the prior to the posterior. This may be seen as the amount of
information brought by the data in turn. It is worth mentioning here that this measure of the information gain
is never negative, no matter of how the distributions look like, and regardless of whether the divergence from the
prior to the posterior or from the posterior to the prior is considered.

3.4 Model evidence
In this section we briefly address the basics of multi-model inference [62–64]. This subsumes Bayesian model

comparison, selection and averaging that are important when there is an abundance of models available for
predicting the data [65–67]. Although these issues are not the main topics of this dissertation, they are revelatory
about the probabilistic rationale of single-model parameter calibration.

Sometimes a whole set of L ∈ N>1 candidate models H = {H1, . . . ,HL} with densities π(y |xH,H) as
in Eq. (3.1) possibly explain the data. As in Eq. (3.4), each model H ∈ H has its own tuning parameters
xH ∈ RMH with MH ∈ N>0 whose prior uncertainty is represented by π(xH |H). Consequentially, prior
predictive distributions of the form as in Eq. (3.14) can be constructed as

π(y |H) =
∫

RMH

π(y |xH,H)π(xH |H) dxH. (3.18)

The actual data y can be used in order to estimate the unknowns xH for each model separately. Posteriors
π(xH |y,H) as in Eq. (3.6) arise in that context. One can advance probabilistic reasoning to the next higher
level by considering model uncertainty. A discrete probability distribution π(H) is assigned over the candidate
models H ∈H. This distribution characterizes the prior plausibility of the hypothesis that H is the true model.
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Conditioning on the collected data y results in the corresponding posterior probabilities of the hypothesized
models

π(H|y) = π(y |H)π(H)∑
H′∈H π(y |H′)π(H′) . (3.19)

The role of the likelihood function is filled by the conditional density in Eq. (3.18) which, for fixed data, is
evaluated as a function of the model. According to Eq. (3.7) this is exactly the H-specific evidence ZH = π(y |H).

Beyond revealing the significance of the single-model posterior normalization constant for multi-model
inference, this also highlights the relative character of Bayesian probabilities in general. They are conditional on
the modeling assumptions made and have to be assessed with respect to the alternative hypotheses tested. In
the single-model case, the continuous posterior in Eq. (3.6) weighs possible parameter values given one specific
statistical model. In the multi-model case, the discrete posterior in Eq. (3.19) compares statistical models against
a number of predefined candidates.

Model comparison and model selection can be based on Eqs. (3.18) and (3.19). The posterior mode
Ĥ = arg maxH∈H π(H|y) is the best model as suggested by the data and the prior information. Bayes factors
are often used for hypothesis testing and pairwise model comparison [68, 69]. For two models, say H1 and H2,
they are defined as the marginal likelihood odds

B1,2 = π(y |H1)
π(y |H2) =

∫
R
MH1 π(y |xH1 ,H1)π(xH1 |H1) dxH1∫

R
MH2 π(y |xH2 ,H2)π(xH2 |H2) dxH2

. (3.20)

This measures the evidence of H1 with respect to the alternative model H2. In case of a uniform prior with
π(H1) = π(H2), the Bayes factor in Eq. (3.20) equals the posterior odds B1,2 = π(H1 |y)/π(H2 |y).

Bayesian model selection provides an automatic implementation of Occam’s razor, i.e. the common sense that
simple models should be preferred over complex ones if they equally well explain the data. This is sometimes
interpreted as a formal justification of parsimony as a principle. Note that simplicity here does not primarily
refer to the intricacy of the mathematics or solely to the number of the parameters involved. Rather it relates to
the predictive spread of the models over their parametric prior uncertainty. The prior predictive distributions in
Eq. (3.18) have to integrate to one

∫
RN

π(y |H) dy = 1. Hence, models H for which the predictions according to
π(y |H) occupy larger proportions of the data space RN have a tendency to lower evidences [70, 71]. In this
sense, complex models are naturally penalized on the evidence level ZH. This obviates the need for an ad hoc
discrimination on the prior level π(H).

A more quantitative understanding of Occam’s razor in the context of Bayesian model selection is obtained
as follows. Bayes’ rule π(xH |y,H) = Z−1

H π(y |xH,H)π(xH |H) can be plugged into the definition of the
KL divergence DKL(π(·|y,H)‖π(·|H)) between the posterior and the prior in Eq. (3.17). By solving for the
log-evidence one easily derives

logZH =
∫

RMH

log(π(y |xH,H))π(xH |y,H) dxH −DKL(π(·|y,H)‖π(·|H)). (3.21)

The first term in Eq. (3.21) is the posterior expectation of the log-likelihood and therefore favors models that fit
the data well [72, 73]. The second term is the relative entropy that penalizes complex models for which the
uncertainty reduction is high [74, 75].

With a model-specific posterior distribution of the unknown parameters π(xH |y,H), one can base predictions
of future data on an adapted model as in Eq. (3.15). However, in the multi-model context one has a number of
H-specific predictive distributions

π(y′ |y,H) =
∫

RMH

π(y′ |xH,H)π(xH |y,H) dxH. (3.22)

One way to predict new data is to simply use the predictive distribution π(y′ |y, Ĥ) of the MAP model Ĥ.
Another more coherent way would be Bayesian model averaging [76, 77], where the distribution of future data is
expressed as the posterior-weighted average

π(y′ |y) =
∑
H∈H

π(y′ |y,H)π(H|y). (3.23)

The distribution in Eq. (3.23) is actually a mixture of the components π(y′ |y,H) in Eq. (3.22). This fully
acknowledges both the parameter estimation and the model selection uncertainty.
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3.5 Model parametrization
The parametrization of Bayesian models and their reparametrization are issues of high practical relevance.

Sometimes a model features a more or less natural parametrization, which our notation actually suggests so far.
In other cases it may be dictated by the goal of the analysis. Very often, however, there are various equivalent
ways of parametrizing the problem and it may not be clear which one is favorable. In any case, it may be
convenient to solve a problem not directly but after a suitably chosen transformation. This could either apply
to the parameters [78] or to the data [79, 80]. Since such issues are often left aside, in this section we shortly
discuss parameter transformations and some related invariance principles.

We will come across a parametrization issue in Section 3.6.2, where the residual model could be either
parametrized by the variance or a standard deviation. Moreover, parameter transformations will be important
for Chapter 8 in the context of standardized prior distributions and their associated orthogonal polynomials.
Some of the material will be also relevant for Chapter 9 in the context of finding a transformation between two
given density functions.

Consider a model reparametrization based on a sufficiently well-behaved one-to-one parameter transformation
T : RM → RM with x̃ = T (x) and x = T −1(x̃). If X ∼ π(x) is distributed according to the prior, the density
of the transformed random variable X̃ = T (X) ∼ πT (x̃) can be written as the change of variables

πT (x̃) = π(T −1(x̃)) |detJT −1(x̃)|. (3.24)

Here, the Jacobian matrix is denoted as JT −1 = dT −1/dx̃. The transformation of the prior density in Eq. (3.24)
is defined such that one can write a general prior expectation E[h(X)] as the integration by substitution

E[h(X)] =
∫
RM

h(x)π(x) dx =
∫
RM

h(T −1(x̃))πT (x̃) dx̃. (3.25)

The transformation of the posterior density can be obtained in a condition-then-transform or transform-then-
condition fashion. Similar to Eq. (3.24), one can write this density as

πT (x̃|y) = π(T −1(x̃)|y) |detJT −1(x̃)| = L(T −1(x̃))π(T −1(x̃))
Z

|detJT −1(x̃)| = L(T −1(x̃))πT (x̃)
Z

. (3.26)

Analogous to Eq. (3.25), the transformation in Eq. (3.26) is such that one can write a general posterior expectation
E[h(X)|y] as either of the integrals

E[h(X)|y] =
∫
RM

h(x)π(x|y) dx =
∫
RM

h(T −1(x̃))πT (x̃|y) dx̃. (3.27)

The principles of Bayesian model reparametrization are now fully established. While Eqs. (3.24) and (3.26)
represent the transformation of the instrumental densities, the invariance of the relevant expectations is warranted
by Eqs. (3.25) and (3.27). In practice, after performing the analysis for the transformed variables, one can
back-transform accordingly. However, given certain rules of how to construct prior distributions or how to report
point estimates, the results are not generally invariant under parameter transformations.

3.5.1 Invariant priors
Occasionally one may want to define an uninformative prior that reflects a general state of ignorance regarding

the true parameter values, i.e. not any admissible value x is favored over others. A typical example is a uniform
prior distribution over a bounded support that only discriminates between values inside and outside of the
bounds. If π(x) is such an uninformative prior, then it is interesting to note that after a transformation in
Eq. (3.24) the prior πT (x̃) may be actually informative, i.e. it gives undue preference to certain values of x̃. In
this sense, if the same recipe of constructing uninformative priors is applied to the parameters x and x̃ = T (x)
separately, then one obtains genuinely different Bayesian models. The priors π(x) and π̃(x̃) chosen that way
and the respective posteriors π(x|y) = Z−1L(x)π(x) and π̃(x̃|y) = Z̃−1L(T −1(x̃))π̃(x̃) are not just different
versions of one another modulo the parameter transformation T .

However, one may select priors based on certain invariance principles [81], e.g. Jeffreys prior [82] is based on
reparametrization invariance. The form of the prior remains unaltered under a change of variables. If π(x) and
π̃(x̃) are independently chosen as this invariant prior, then one has π̃(x̃) = πT (x̃) = π(T −1(x̃)) |detJT −1(x̃)|
for the transformation T in Eq. (3.24). As a result of this, the posterior π(x|y) = Z−1L(x)π(x) is the same as
π̃(x̃|y) = Z−1L(T −1(x̃))πT (x̃) up to the change of variables π̃(x̃|y) = πT (x̃|y) in Eq. (3.26).
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3.5.2 Invariant estimators
One can investigate the behavior of point estimators under parameter transformations. If the same principle

of estimating x and x̃ is independently applied before and after the transformation, it is natural to ask for the
relationship between x̂ and ˆ̃x. An estimation procedure is called reparametrization invariant if one has that
x̂ = T −1(ˆ̃x). In a non-Bayesian context, this is a property of the maximum likelihood estimates

x̂MLE = arg max
x∈RM

L(x), ˆ̃xMLE = arg max
x̃∈RM

L(T −1(x̃)). (3.28)

In a Bayesian context, applying the same estimation principle to π(x|y) and πT (x̃|y) generally leads
to different point estimates, even if the parameter transformation is accounted for. Due to the Jacobian
determinant detJT −1(x̃), unlike as in Eq. (3.28), the posterior mode is not transformation invariant. One has
x̂MAP 6= T −1(ˆ̃xMAP) for

x̂MAP = arg max
x∈RM

π(x|y), ˆ̃xMAP = arg max
x̃∈RM

π(T −1(x̃)|y) |detJT −1(x̃)|. (3.29)

Since the unconditional expectation operator as well as the conditional expectation do not commute with a
nonlinear transformation E[T (X)|y] 6= T (E[X |y]), neither the posterior mean establishes an invariant estimator.
This means x̂ 6= T −1(ˆ̃x) with

x̂ = E[X |y], ˆ̃x = E[X̃ |y] = E[T (X)|y]. (3.30)

Note that these transformation behaviors are not properties of the posterior, but of the Bayesian point
estimates in Eqs. (3.29) and (3.30). One could make analogous statements when applying these estimation
principles, i.e. maximizing the density and taking the expected value, to the priors π(x) and πT (x̃) as well.

3.6 Inverse problems
Inverse modeling is discussed next. This challenging class of problems is important in many areas of science

and engineering. Comprehensive overviews on inverse problems from a traditionally deterministic perspective are
found in [83, 84]. Inverse problems can be also looked at from a more statistical and Bayesian viewpoint [85, 86].
Notable fields in which classical inverse problems are studied include geophysics [87, 88] as well as earth sciences
in general [89, 90], Moreover, inverse problems are important in imaging science [91, 92], scattering theory [93,
94], heat transfer [95, 96] and engineering mechanics [97–99]. Even though the terminology generally differs, a
classical inverse problem in engineering sciences is finite element updating [100–102]. At the moment, Bayesian
inverse problems receive considerable attention also from the applied mathematics community [103, 104].

An inverse problem is posed whenever quantities that cannot be observed directly are determined based on
measurements of related quantities. The quantities that interest focuses on and the ones that can be observed
are only indirectly connected through a deterministic model. A problem is called well-posed after Hadamard if
existence, uniqueness and stability of a solution are given. Physical forward problems are often well-posed in
this sense. However, inverse problems are typically ill-posed, i.e. a solution may be neither existent nor unique,
moreover, it may not be continuously dependent on the data. Therefore, such problems have to be regularized
[105–107]. Treating an inverse problem in a Bayesian frame and imposing a prior distribution might be viewed
as a certain regularization procedure [108].

The function M : RM × RD → RN that relates the variables x ∈ RM and d ∈ RD with M,D ∈ N>0 to
the observables ỹ =M(x) ∈ RN is called the forward model. It is often nonlinearly dependent on the input
parameters. Here, x represents the unknowns as before, while d represents the controllable or at least well-known
experimental conditions. Sometimes they are absorbed into the definition of the functionM, however, we denote
them here explicitly for the sake of clarity. Actual measurements y of the model outputs are then interpreted as
the sum

y =M(x,d) + ε (3.31)

of the forward model responseM(x) at the true parameter values and a residual ε ∈ RN . The latter represents
measurement noise and prediction errors. In statistical inversion, the residual term is modeled as a random
vector E. In order to explain the observed data in Eq. (3.31), one thinks of a specific realization E = ε. A
common residual model is based on a Gaussian distribution

E ∼ N (ε|0,Σ). (3.32)
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Neglecting a systematic bias for the moment, here the residuals are centered around 0. The symmetric and
positive-definite covariance matrix Σ characterizes the random errors. It may depend in some form Σ = Σ(d)
on the experimental conditions. With the Gaussian residual in Eq. (3.32), the data in Eq. (3.31) is actually seen
as realization Y = y of the random variable

Y |x ∼ N (y |M(x,d),Σ). (3.33)

Thus, the data are Gaussianly distributed around the model prediction M(x) at the true parameter values.
Corresponding to the data model in Eq. (3.33), for the likelihood function in Eq. (3.2) one finds

L(x) = 1√
(2π)N det(Σ)

exp
(
−1

2 (y −M(x,d))>Σ−1 (y −M(x,d))
)
. (3.34)

Maximizing the likelihood in Eq. (3.34) as in Eq. (3.3) leads to a point estimate x̂MLE = arg maxx∈RM L(x)
only. In Bayesian inversion one quantifies the statistical estimation uncertainty more thoroughly. The true
values of the unknowns are thought of as a realization X = x of a random vector X ∼ π(x) as in Eq. (3.4). A
priori, the marginal distribution π(x) gathers the information about the true parameters. The data are regarded
as a realization Y = y of the random vector

Y =M(X,d) +E. (3.35)

Here, the residual E in Eq. (3.35) is commonly assumed to be statistically independent from the unknowns X.
With the likelihood L(x) and the prior π(x), the posterior density π(x|y) ∝ L(x)π(x) as in Eq. (3.6) quantifies
the uncertainty of the unknown parameters a posteriori.

The principle of Bayesian inverse problems is illustrated in Fig. 3.2. Contrary to the forward uncertainty
quantification problem discussed in Section 2.1 and visualized in Fig. 2.3, the epistemic uncertainty of the
unknown but constant parameters is not propagated through the model, but reduced by analyzing a limited
number of noisy output measurements. A more exhaustive framework for inverse uncertainty quantification is
presented in Chapters 4 and 5, where the variability in the data is backpropagated through the model so as to
infer the distribution of aleatory input variables that vary throughout the experiment.

Figure 3.2: Inverse uncertainty quantification.

After having established the posterior distribution of the unknown parameters one is typically interested in
making predictions. In a straightforward way, a point estimate x̂ may be used in order to predict the system
response ỹ′ =M(x̂,d′) under untested conditions d′ ∈ RD. Analogous to Eqs. (2.9) and (2.10), one may be
also interested in the propagated posterior uncertainty, e.g. the mean response and the covariance matrix

E[M(X,d′)|y] =
∫
RM

M(x,d′)π(x|y) dx, (3.36)

Cov[M(X,d′)|y] =
∫
RM

(M(x,d′)− E[M(X,d′)|y])2
π(x|y) dx. (3.37)

While Eqs. (3.36) and (3.37) take account of the remaining parameter uncertainty, they leave the output and
measurement errors aside. Those are incorporated into the posterior predictive distribution

π(y′ |y) =
∫
RM

N (y′ |M(x,d′),Σ′)π(x|y) dx. (3.38)

New data y′ can be predicted for various conditions d′ and residual covariances Σ′ this way. Note that the
independence of the errors π(ε, ε′) = N (ε|0,Σ)N (ε′ |0,Σ′) is implicitly assumed in Eq. (3.38).
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3.6.1 Multiple experiments
Sometimes it is meaningful to consider a number of similar experiments. Even though the vector notation

employed thus far implicitly permits their analysis already to some degree, e.g. see the matrix form of linear
regression in the next section, it is revelatory to treat them in a more explicit fashion. Let us assume that a
number of n ∈ N>0 different experiments are conducted, in each of which the collected data are explained with a
vector-valued forward model as yj =M(x,dj) + εj . The unknowns x are constant throughout the experiments,
whereas the experimental conditions dj and covariances Σj may very well differ for j = 1, . . . , n. Assuming that
the data in each experiment are conditionally independent given the unknowns, one has the data model

Y1, . . . ,Yn |x ∼
n∏
j=1
N (yj |M(x,dj),Σj). (3.39)

In connection with various types of model prediction errors and uncertainties, some generalizations of the
described setup are discussed in Section 3.6.3. Against this background, Eq. (3.39) is rewritten asY1

...
Yn

 |x ∼ N

y1

...
yn

 |
M(x,d1)

...
M(x,dn)

 ,

 Σ1 . . . 0N×N
...

. . .
...

0N×N . . . Σn


 . (3.40)

For the corresponding likelihood function one has L(x) =
∏n
j=1N (yj |M(x,dj),Σj). The Bayesian update to

the posterior density π(x|y1, . . . ,yn) ∝ L(x)π(x) and all further analyses proceed as normal.

3.6.2 Linear regression
In order to get a feel for inverse problems as discussed previously, we consider Bayesian linear regression.

This can be viewed as the prototype of a linear inverse problem and often has a simple solution, i.e. when the
prior and the likelihood are conjugate to each other. Details can be found in many references for Bayesian
inference [109, 110] and regression analysis [111, 112]. Following a discussion of the linear model with known
error variance, the natural extension with an unknown variance is investigated.

3.6.2.1 Known variance

In linear regression, the measured variables ỹ ∈ RN are linearly dependent on a vector of unknown coefficients
x ∈ RM . The predictor-dependent design matrix A ∈ RN×M establishes this relation through ỹ = Ax. A
general linear regression model of the form as in Eq. (3.31) is thus written as

y = Ax+ ε. (3.41)

The actual observations y are represented as a noisy version of the model outputs. As in Eq. (3.32), the noise is
often modeled with a Gaussian distribution. We consider spherical errors with a diagonal covariance matrix of
the form Σ = σ2IN , where IN is the N ×N identity matrix. They are jointly distributed according to

π(ε) = N (ε|0, σ2IN ). (3.42)

The probabilistic data model as in Eq. (3.33) is thus given as Y |x ∼ N (y |Ax, σ2IN ) and the likelihood function
in Eq. (3.34) follows as L(x) = N (y |Ax, σ2IN ).

As for the prior, one imposes a Gaussian distribution with a mean vector µ0 and a covariance matrix Σ0 on
the regressors. This is done by setting

π(x) = N (x|µ0,Σ0). (3.43)
Again, the unknowns and the errors are treated as independent from one another. Given the linear-normal model
in Eqs. (3.41) to (3.43), one can easily show that the posterior π(x|y) ∝ L(x)π(x) of the regression coefficients
is the normal distribution

π(x|y) = N (x|µ1,Σ1), with
{

Σ1 =
(
Σ−1

0 + σ−2A>A
)−1

,

µ1 = Σ1
(
Σ−1

0 µ0 + σ−2A>y
)
.

(3.44)

Some useful intuition about the problem can be obtained from Eq. (3.44). On the one hand, in the
limit of vanishing prior knowledge, i.e. Σ−1

0 can be neglected, the classical results µ1 = (A>A)−1A>y and
Σ1 = σ2(A>A)−1 are obtained. On the other hand, for σ2 →∞ one simply has µ1 = µ0 and Σ1 = Σ0, i.e. the
prior knowledge dominates.
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3.6.2.2 Unknown variance

A straightforward extension to the linear regression model with known variance is based on the inference
of the error variance as an additional unknown. One considers an error model π(ε|σ2) = N (ε|0, σ2IN ) with a
covariance matrix of the form Σ = σ2IN . The errors for different response variables are uncorrelated and share
the same variance just as in Eq. (3.42). Unlike before, however, the variance σ2 is now treated as uncertain and
associated with a prior distribution π(σ2). The latter forms a marginal of the joint prior π(x, σ2) which is not
necessarily the product π(x, σ2) = π(x)π(σ2). A statistical model Y |x, σ2 ∼ N (y |Ax, σ2IN ) gives rise to the
likelihood function L(x, σ2) = N (y |Ax, σ2IN ). The posterior π(x, σ2 |y) ∝ L(x, σ2)π(x, σ2) is then taken as
the basis for the identification of the unknowns (x, σ2). One may extract π(x|y) and π(σ2 |y) from the posterior
by an appropriate marginalization as in Eq. (3.13). Before this formulation is simplified by using a conjugate
prior for the variance σ2, it is remarked that one may just as well assign a prior to the unknown standard
deviation σ. See Section 3.5 for a discussion on related parametrization issues.

Similar to the precursory model with known variance, Bayesian linear regression with unknown variance
possesses an explicit posterior presentation under a certain prior distribution. This conjugate prior has the
hierarchical structure π(x, σ2) = π(x|σ2)π(σ2). The marginal prior of the variance σ2 > 0 is an inverse gamma
distribution π(σ2) = IG(σ2 |α0, β0) = Γ−1(α0)βα0

0 (σ2)−α0−1 exp(−β0/σ
2). Here, Γ is the gamma function

and α0, β0 > 0 are the shape and scale parameters of the distribution, respectively. The conditional prior
of the unknown coefficients x is a normal distribution π(x|σ2) = N (x|µ0, σ

2Σ0) with the mean µ0 and the
σ2-dependent covariance matrix σ2Σ0. All in all, the joint prior is the normal inverse gamma distribution

π(x, σ2) = N (x|µ0, σ
2Σ0) IG(σ2 |α0, β0) = NIG(x, σ2 |µ0,Σ0, α0, β0). (3.45)

Given this prior, a straightforward calculation yields the posterior density π(x, σ2 |y) ∝ L(x, σ2)π(x, σ2) in
a closed form. In particular, the posterior can be analytically expressed as

π(x, σ2 |y) = NIG(x, σ2 |µ1,Σ1, α1, β1), with



Σ1 =
(
Σ−1

0 +A>A
)−1

,

µ1 = Σ1
(
Σ−1

0 µ0 +A>y
)
,

α1 = α0 + N

2 ,

β1 = β0 + 1
2
(
y>y + µ>0 Σ0µ0 − µ>1 Σ1µ1

)
.

(3.46)

The posterior π(x, σ2 |y) = π(x|σ2,y)π(σ2 |y) = N (x|µ1, σ
2Σ1) IG(σ2 |α1, β1) in Eq. (3.46) is of the same

normal inverse gamma shape as the prior in Eq. (3.45).

3.6.3 Model uncertainties
In many experimental situations, at least some of the simplifying assumptions made cannot actually be

justified. This concerns the idealizations formalized in Eqs. (3.31) to (3.33). While the inverse theory established
so far focuses on epistemic parameter uncertainties, it woefully neglects various other forms of uncertainty. The
treatment of parametric variability is indeed the main topic of Chapters 4 and 5. Bayesian probability lends
itself to an analysis of other sources of uncertainty and error, too. A non-exhaustive synopsis of related methods
is provided below. They are based on a refined representation and parametrization of the relation between
forward model predictions and real measurement data.

There is indeed a plethora of methods for representing and handling error or uncertainty in the context
of predictive modeling. This includes multiplicative errors in the model outputs y = M(x,d) · (1 + ε) and
errors-in-variables, i.e. the experimental conditions are only inexactly measured [113–115]. We do not further
delve into these issues, but rather focus on additive measurement and modeling errors.

3.6.3.1 Random error calibration

It seems to be overly optimistic to start from the premise that the covariance matrix Σ in Eq. (3.32)
is prespecified before the data analysis. In order to relax this limiting assumption, one can parametrize
the error model conveniently and infer its parameters as additional unknowns during data analysis [116–
118]. A simple example of this type of error calibration was already encountered in Section 3.6.2. Let the
error model π(ε|θ) = N (ε|0,Σ(θ)) be parametrized by a possibly multivariate parameter vector θ. Note
that this could encompass correlation parameters. Eliciting a prior π(x,θ) and constructing a likelihood
L(x,θ) = N (y −M(x)|0,Σ(θ)) allows for conditioning on the data via π(x,θ |y) ∝ L(x,θ)π(x,θ). The way
the likelihood is written signalizes that the formulation can be generalized beyond Gaussian errors. A caveat is
that the approach may require a fair bit of data, though.
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3.6.3.2 Predictive model correction

While the error calibration as discussed above allows one to account for random sources of uncertainty, e.g.
measurement noise, it disregards systematic inadequacies of the forward model [119, 120]. The question of model
discrepancy is certainly tricky, though. It concerns the model building process as a whole. Let us consider an
experimental scenario where the available predictive model shows considerable deficits but cannot be substituted
with a better model. Moreover, the data are too few to learn alternative predictive models, but they are still
numerous enough to awaken the hope for an in-depth error analysis. In this borderline situation, that lies exactly
in between more model-centered uncertainty quantification and purely data-based machine learning, one can try
to detect and quantify the modeling errors by comparing the predicted system outputs to real data. In turn,
this can serve as a guide to model correction.

In the following, the multi-experiment setup from Section 3.6.1 is generalized in order to account for model
discrepancy. As a first step, the discrepancy is either treated as an unknown constant or a random variable. In
the next step, it is formulated as an unknown or even random function of the experimental conditions. Some of
the mathematical details are omitted for the sake of readability. This concerns a few standard independence
assumptions and the subtleties of certain basis representations.

To begin with, the simplest extension is grounded on thinking of the model discrepancy as an unknown constant
δ ∈ RN . Accordingly, for j = 1, . . . , n the actual measurements are represented as the sum yj =M(x,dj)+δ+εj
of the forward model response, the unknown offset and the random errors. It is remarked that the unknown δ is
fixed throughout all experiments. The data are then probabilistically described by

Y1, . . . ,Yn |x, δ ∼
n∏
j=1
N (yj |M(x,dj) + δ,Σj). (3.47)

The corresponding likelihood function L(x, δ) follows easily. One proceeds by imposing a prior π(x, δ) = π(x)π(δ)
and learns the unknowns (x, δ) via the Bayesian update π(x, δ |y1, . . . ,yn) ∝ L(x, δ)π(x, δ). Statistical
identifiability or the lack thereof could be relevant issues at that.

Another representation of model error in various experiments is a number of random variables ∆j ∼
N (δj |µ∆,Σ∆). For a clear exposition, these variables are assumed to be Gaussian with unknown mean µ∆
and known covariance Σ∆. They take on different values ∆j = δj in each experiment. Accordingly, the data are
represented as yj =M(x,dj) + δj + εj . The discrepancy term now randomly varies across the experiments.
Conditionally on the unknowns (x,µ∆), the data are the sum of independent Gaussian variables and follow

Y1, . . . ,Yn |x,µ∆ ∼
n∏
j=1
N (yj |M(x,dj) + µ∆,Σj + Σ∆). (3.48)

Inference of the unknowns proceeds as for the related model in Eq. (3.47). The likelihood function L(x,µ∆)
results from Eq. (3.48) and the joint prior is specified as π(x,µ∆) = π(x)π(µ∆). Hence, the posterior is
π(x,µ∆ |y1, . . . ,yn) ∝ L(x,µ∆)π(x,µ∆). Note that the identification of the mean value µ∆ typically requires
more than just a single experiment.

An advanced approach is to treat the systematic model discrepancy as an unknown function δ : RD → RN .
It represents the model bias δ(d) as a function of the experimental conditions d ∈ RD. For this reason, the
error in an experiment j ∈ {1, . . . , n} is a fixed yet unknown value δ(dj) rather than a random outcome. The
data are consequentially modeled as yj =M(x,dj) + δ(dj) + εj . Here, the discrepancy term effectively absorbs
the systematic error components of the model predictions such that zero-mean errors are justified. The goal
of the analysis is now to identify both the unknown model parameters as well as the discrepancy function. A
prior model of the unknown function that is sloppily denoted as π(δ(·)) has to be established, e.g. by using an
appropriate basis representation [121, 122] with prior distributions for the unknown coefficients. The likelihood
function L(x, δ(·)) would rest on the statistical model

Y1, . . . ,Yn |x, δ(·) ∼
n∏
j=1
N (yj |M(x,dj) + δ(dj),Σj). (3.49)

A Bayesian analysis then informs about the unknowns (x, δ(·)). Letting π(x, δ(·)) = π(x)π(δ(·)) the posterior is
π(x, δ(·)|y1, . . . ,yn) ∝ L(x, δ(·))π(x, δ(·)). After the calibration, one can eventually use the corrected model
predictions ỹ′ = M(x̂,d′) + δ̂(d′) in the interpolation regime, i.e. within the range of tested experimental
conditions. The extrapolation beyond this range requires a good deal of courage and caution, though. Notice
that the forward modelM(x,d) is not corrected as a function of the unknowns x, which are fixed across the
experiments. The model correction δ(d) rather relates toM(x,d) as a function of the covariates d, while the
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parameter x attains its most plausible value. Bear in mind that data must be collected for various different
experimental conditions in order to meaningfully characterize the structural error.

One could treat model discrepancy also as a random function, e.g. as an unknown realization of a stochastic
process with priorly unknown hyperparameters. In an original formulation [123–125] and its multivariate
generalizations [126, 127] both the simulatorM(x,d) and the discrepancy function δ(d) are nonparametrically
represented as realizations of Gaussian processes. At the same time it is conditioned on the observational data
and the experimental design. The hyperparameters of the mean m : RD → RN and the covariance function
c : RD ×RD → RN×N are unknown themselves and therefore endowed with priors. In a rather vague manner
this is hinted at by writing π(m(·)) and π(c(·, ·)). Given the unknowns (x,m(·), c(·, ·)), finite collections of
random variables are jointly normal under the aforementioned modeling assumptions. So are the dataY1

...
Yn

 |x,m(·), c(·, ·) ∼ N


y1

...
yn

 |
M(x,d1)

...
M(x,dn)

+

m(d1)
...

m(dn)

 ,

Σ1 + c(d1,d1) . . . c(d1,dn)
...

. . .
...

c(dn,d1) . . . Σn + c(dn,dn)


 .

(3.50)

This can be compared to Eqs. (3.40) and (3.49). With the likelihood function L(x,m(·), c(·, ·)) that arises from
Eq. (3.50) and the prior distribution π(x,m(·), c(·, ·)) = π(x)π(m(·))π(c(·, ·)) one can construct the posterior
π(x,m(·), c(·, ·)|y1, . . . ,yn) ∝ L(x,m(·), c(·, ·))π(x,m(·), c(·, ·)). The obtained results can be subsequently used
for correcting model predictions and quantifying their uncertainty. This is elegant in theory and important
in practice [128]. It allows for Bayesian model validation [129, 130] and for a coherent management of the
uncertainties emerging from measurement errors, model inadequacies and a limited number of simulator runs
[131]. On the downside, the approach is quite complex and identifiability may very well become a problem [132,
133]. Sufficiently numerous data subject to different experimental conditions have to be available.

3.6.3.3 Model class comparison

After the consideration of the uncertainties and discrepancies of a single predictive model, one can also assess
the relative plausibilities of multiple alternative models. The evidence framework of Section 3.4 is eminently
suitable for this kind of job. A number L ∈ N>1 of different Bayesian models H = {H1, . . . ,HL} is considered.
They are referred to as model classes in common parlance. Each H ∈H is characterized by a forward model
MH with DH ∈ N>0 control variables dH ∈ RDH and MH ∈ N>0 unknown parameters xH ∈ RMH , a prior
distribution π(xH |H) and an error model π(εH |θH,H). The latter depends on model-specific parameters θH
and might be associated with a prior π(θH |H). The plausibilities of different model classes can then be assessed
by reference to their model evidences ZH in Eq. (3.18). More generally, when a model prior π(H) is available,
the model posterior distribution π(H|y) ∝ ZHπ(H) in Eq. (3.19) provides the basis for data-informed model
class comparison, selection and averaging.

In inverse modeling, the outlined way of evaluating model classes can be deployed for comparing and selecting
forward models [134–136]. Averaging over the model classes quantifies the prediction uncertainty in this context
[137, 138]. It is worth noting that random error models can undergo the same procedure, too. For instance, one
might be interested in different error correlation structures [139].

3.7 Bayesian computations
Posterior densities of very simple problems can sometimes be derived analytically. In the linear-Gaussian

examples in Section 3.6.2 the posterior densities had the explicit expressions in Eqs. (3.44) and (3.46). This is a
rare exception rather than a rule. Most often, the posterior density in Eq. (3.6) does not have such a closed-form
solution. One therefore contents oneself with computational approximations of a few hand-picked characteristics
of the full posterior. These typically take the form of the integrals in Eqs. (3.7) and (3.8) [140, 141].

Despite the restriction to posterior summaries only, computational Bayesian inference is still a challenging
problem. Roughly speaking, any convenient algorithm oughts to master the difficulty that one only has limited
access to the full posterior. For one thing, the posterior density cannot be evaluated directly, one can only
compute the likelihood function for certain parameter values individually. Even if the densities of the prior or
some auxiliary distribution can be calculated and sampled, this is a major constraint that all attempts have to
cope with. For another thing, the computational budget may limit the number of calls to the likelihood which,
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in turn, necessitates to select the corresponding parameter values wisely. This is especially important in inverse
problems where the forward model needs to be run once for each likelihood evaluation.

Before presenting the most widespread approaches to computational Bayesian inference, i.e. random sampling
and mathematical programming, it is remarked that researchers have recently devised a whole battery of new and
creative alternatives. Among others, this includes hybrid schemes combining sampling and optimization [142, 143],
importance sampling–based methods based on implicit transformations and Jacobian weights [144–147], rejection
sampling–related techniques inspired by subset simulation for rare event estimation in structural reliability
[148–150] and conditional expectation–focused polynomial chaos expansion filters [151–154]. In addition, a
linear least squares technique for computing the actual posterior density along with the model evidence and
the conditional expectations is presented in Chapter 8. Yet another novel approach based on random variable
transformations is investigated in Chapter 9.

3.7.1 Markov chain Monte Carlo
An important class of algorithms for Bayesian inference rests on Markov chain Monte Carlo (MCMC)

sampling [155]. The basic idea here is to construct a Markov chain that is suitable for sampling from the posterior
distribution and for estimating conditional expectations accordingly. This only needs pointwise evaluations
of the unnormalized posterior density and thus dispenses from computing the marginal likelihood. MCMC
algorithms are therefore sufficient for single-model parameter estimation, though, for multi-model inference one
has to search for more suitable methods [156–158].

Most MCMC techniques are based on the original Metropolis–Hastings (MH) algorithm [159, 160]. Since
more detailed introductions are also found in most chapters of Part II, only a short summary of the algorithm is
given. An ergodic Markov chain (X(1),X(2), . . .) over the prior support whose invariant distribution equals the
posterior is realized as follows. The chain is initialized at a certain point x(1) ∈ RM , e.g. the prior expected value
or a random draw from the prior. Given the current state of the Markov chain x(t), one samples a candidate
state x(?) from an auxiliary proposal distribution p(x(?) |x(t)). This may depend on the current state. The
proposed state is then accepted as the new state x(t+1) = x(?) with the probability

α(x(t),x(?)) = min
(

1, π(x(?) |y) p(x(t) |x(?))
π(x(t) |y) p(x(?) |x(t))

)
. (3.51)

Otherwise the proposal is rejected and the chain remains in its state x(t+1) = x(t). It is worth pointing out that
the MH acceptance in Eq. (3.51) calls for posterior ratios, hence, only unnormalized densities have to be known.
The acceptance step is tantamount to a correction required for sampling the posterior by drawing only from the
proposal. After a total number of iterations T ∈ N>0 deemed sufficiently high, the conditional expectation in
Eq. (3.8) can be approximated as

E[h(X)|y] ≈ 1
T

T∑
t=1

h(x(t)). (3.52)

The MH updating scheme specified above defines an appropriate Markov chain transition kernel. One can
write the general probability of acceptance of a newly proposed state given x(t) as

α(x(t)) =
∫
RM

α(x(t),x(?)) p(x(?) |x(t)) dx(?). (3.53)

The probability of rejection is consequently given as 1− α(x(t)). Let δx(t) denote the Dirac point mass at the
current state. With Eqs. (3.51) and (3.53) the MH transition density from x(t) to x(t+1) can be written as

K(x(t),x(t+1)) = α(x(t),x(t+1)) p(x(t+1) |x(t)) + (1− α(x(t))) δx(t)(x(t+1)). (3.54)

It is easy to show that transition kernels of the form as in Eq. (3.54) satisfy microscopic time reversibility
π(x(t) |y)K(x(t),x(t+1)) = π(x(t+1) |y)K(x(t+1),x(t)). Macroscopic reversibility then automatically follows

π(x(t+1) |y) =
∫
RM

π(x(t) |y)K(x(t),x(t+1)) dx(t). (3.55)

Hence, the target posterior is the invariant distribution of the Markov chain. Together with the ergodicity of the
Markov chain, Eq. (3.55) lays the foundation for the approximation in Eq. (3.52).

Because the MH algorithm provides a basis for sampling arbitrary probability distributions, it has played a
pivotal historical role for computational Bayesian inference. Notwithstanding the above, it also suffers from some
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major problems. These involve the serial correlation of the obtained posterior sample as well as the associated
decrease in efficiency when compared to an independent sampling. The tuning of the proposal distribution is
a tedious task that often requires trial and error. It should be added that it is not possible to unequivocally
diagnose the convergence of the simulation and to stop it accordingly. Heuristic checks can be performed at the
most, e.g. restarting the algorithm with various initializations and comparing the obtained results. Regardless of
the convergence rate that is dimension-independent in theory, the abovementioned issues cause severe problems
in practice. Successfully checking, tuning and executing the algorithm is quite an art. That a high number of
likelihood evaluations are needed during these procedures makes matters even worse.

In the context of inverse modeling, where a call to the likelihood function triggers a run of the forward
simulator, a straightforward way to accelerate Bayesian inversion via MCMC is the deployment of cheap
surrogates. This includes metamodels based on polynomial chaoses [161, 162], Gaussian processes [163, 164] or
neural networks [165, 166]. This possibility was already mentioned in Section 2.3. More generally, one can use a
vast array of advanced MCMC samplers, e.g. adaptive variants [167, 168] or particle-based annealing/tempering
schemes [169, 170]. A highly efficient gradient-driven MCMC sampler that performs updates in an augmented
variable space is implemented in Chapter 5.

3.7.2 Variational inference
In this section we briefly discuss the basics of variational Bayesian (VB) inference [171]. Traditionally

VB techniques were developed in probabilistic machine learning [172], but they can be also used for inverse
problems [173–176]. VB inference establishes a deterministic alternative to stochastic MCMC sampling, where
the posterior is computed in an optimization procedure. In particular, a member from a parametric family of
distributions is chosen such that its resemblance to the target posterior is maximized.

In order to assess the closeness or distinctness of distributions, one has to decide on a formal means to
compare them. The KL divergence that was already encountered in Eq. (3.17) is often chosen to that end.
In the present context, it is thought of as a non-negative measure of the difference between two probability
distributions that attains zero in the case of perfect coincidence. Since the KL divergence is non-symmetric, it is
not a distance metric in the strict sense, though. The KL divergence DKL(q‖π(·|y)) of the target π(·|y) from a
candidate density q is

DKL(q‖π(·|y)) =
∫
RM

log
(

q(x)
π(x|y)

)
q(x) dx = logZ −F(q). (3.56)

As one can easily see, the divergence in Eq. (3.56) is the difference between the constant log-evidence logZ and
the so-called free energy

F(q) =
∫
RM

log
(
L(x)π(x)
q(x)

)
q(x) dx. (3.57)

If q = π(·|y) would exactly equal the posterior, one would have DKL(q‖π(·|y)) = 0 and F(q) = logZ. More
generally one has DKL(q‖π(·|y)) ≥ 0 and the free energy establishes a lower bound of the model evidence
through logZ ≥ F(q). It is instructive to further decompose the free energy in the two ways

F(q) =
∫
RM

log(L(x)π(x)) q(x) dx+HS(q) =
∫
RM

log(L(x)) q(x) dx−DKL(q‖π). (3.58)

The first part of Eq. (3.58) happens to contain the Shannon entropy HS(q) = −
∫
RM

log(q(x)) q(x) dx, which we
came across in Eq. (3.16) once before. The second equation is the variational variant of Eq. (3.21) according to
which the Bayesian update can be interpreted as a compromise between the goodness of the fit to the data and
the closeness to the prior, as measured by

∫
RM

log(L(x)) q(x) dx and DKL(q‖π) =
∫
RM

log(q(x)/π(x)) q(x) dx,
respectively.

Given a parametric family Q of probability densities, one can try to find the density q ∈ Q that best
approximates the posterior q ≈ π(·|y) in the KL sense. In the light of Eq. (3.56), minimizing the relative entropy
DKL(q‖π(·|y)) is equivalent to maximizing the free energy F(q). This means

q = arg min
q?∈Q

DKL(q?‖π(·|y)) ⇔ q = arg max
q?∈Q

F(q?). (3.59)

That criterion minimizes the entropy gain or information loss that is incurred by using a parametric approximation
of the posterior. All in all, a stochastic optimization problem has to be solved, in the sense that the extremum
of an expectation under the candidate distribution is sought.
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Notice that, as opposed to DKL(q‖π(·|y)) in Eq. (3.56), the free energy F(q) in Eq. (3.57) does not depend
on the model evidence Z. Thus it can be evaluated and maximized without the need of computing the evidence.
Also note that the asymmetry of the KL divergence motivates the choice of minimizing DKL(q‖π(·|y)) rather
than DKL(π(·|y)‖q) =

∫
RM

log(π(x|y)/q(x))π(x|y) dx which involves intractable posterior expectations. The
reverse choice indeed leads to yet another algorithm [177].

Classically, in VB inference one considers factorized candidate distributions based on the mean field approxi-
mation [178]. This formulation can be enriched through copulas for representing multivariate dependencies [179,
180]. One may also contemplate the use of Gaussian mixture distributions [181, 182]. No matter what family
of distributions is considered, the conditional expectation in Eq. (3.8) is, after the minimization in Eq. (3.59),
evaluated as the correspondent average over the best posterior approximation

E[h(X)|y] ≈
∫
RM

h(x) q(x) dx. (3.60)

One may obtain corresponding results analytically for some simple QoIs. More frequently, the approximation in
Eq. (3.60) has to be computed in a sampling-based procedure.

3.7.3 Laplace approximations
By running the algorithm longer and longer and drawing more and more samples, MCMC allows one to

compute all relevant posterior summaries exactly in principle, i.e. it is asymptotically exact. In contrast, VB
inference is an approximate method in that the achievable accuracy is limited by the used class of candidate
distributions. If the actual posterior is similar to a Gaussian density, e.g. roughly unimodal, smooth and
symmetric, it makes sense to approximate it accordingly. This could happen within the variational inference
framework or, alternatively, by using Laplace approximations. The approach only requires the computation of
the global maximum of the log–posterior density and the local second-order partial derivatives.

The normal approximation is sometimes motivated by results in asymptotic theory. Especially for well-
specified data models it is sensible to study the asymptotic behavior of the posterior distribution in the large
data sample limit from a frequentist point of view. Under suitable regularity conditions one can show asymptotic
consistency of point estimators and asymptotic normality of the posterior distribution, see [183–185] for instance.
Such results are sometimes referred to as the “Bayesian law of large numbers” and the “Bayesian central
limit theorem”. They provide theoretical insights and suggest Laplace approximations of the posterior. These
approximations are based on the asymptotic analysis of integrals [186–189] and can be applied to the probability
integrals of Bayesian inference [190–192] as well as uncertainty and reliability analysis [193–195].

Let us define T (x) = log(L(x)π(x)) = logL(x) + log π(x) as the logarithm of the unnormalized posterior
density. We assume that this function is at least twice continuously differentiable at a point x0 ∈ RM and then
consider its second-order Taylor approximation about that point. This approximation is given as T (x) ≈ T (x0) +
J(x0)(x− x0) + 1

2 (x− x0)>H(x0)(x− x0). Here, J(x0) = ∂T (x)/∂x>|x0 = (∂T/∂x1(x0), . . . , ∂T/∂xM (x0))
is the gradient row-vector and H(x0) = ∂2T (x)/∂x∂x>|x0 with entries Hi,j(x0) = ∂2T/∂xi∂xj(x0) for
i, j = 1, . . . ,M is the Hessian matrix of second-order partial derivatives. The corresponding Taylor series
approximation around the posterior mode x0 = x̂MAP = arg maxx∈RM T (x), which is assumed to be the unique
global maximum with a vanishing gradient J(x̂MAP) = 0 and a generalized observed Fisher information matrix
−H(x̂MAP) that is positive definite, is then given as

T (x) ≈ T (x̂MAP) + 1
2(x− x̂MAP)>H(x̂MAP)(x− x̂MAP). (3.61)

Based on Eq. (3.61) one can calculate approximations of the posterior density π(x|y) in Eq. (3.6), the model
evidence Z in Eq. (3.7) and certain conditional expectation values E[h(X)|y] of the form as in Eq. (3.8). First
of all, the so-called Laplace approximation of the posterior density π(x|y) = Z−1 exp(T (x)) is

π(x|y) ≈ exp(T (x̂MAP))
Ẑ

exp
(

1
2(x− x̂MAP)>H(x̂MAP)(x− x̂MAP)

)
= N (x|x̂MAP,−H−1(x̂MAP)). (3.62)

That is a multivariate Gaussian density π(x|y) ≈ N (x|µ,Σ) = exp(− 1
2 (x− µ)>Σ−1(x− µ))/

√
(2π)M det(Σ)

with mean µ = x̂MAP and covariance matrix Σ = −H−1(x̂MAP). Based on Laplace’s method for integrals, the
approximation of the model evidence Z =

∫
RM

exp(T (x)) dx is given as the Gaussian integral

Z ≈ exp(T (x̂MAP))
∫
RM

exp
(

1
2(x− x̂MAP)>H(x̂MAP)(x− x̂MAP)

)
dx

= exp(T (x̂MAP))
√

(2π)M det(−H−1(x̂MAP)) = Ẑ.

(3.63)
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This is the factor Ẑ needed for the normalization of the distribution kernel in Eq. (3.62). The approximation in
Eq. (3.63) is accurate if the posterior is strongly concentrated around its mode, such that the integral value is
virtually dominated by the integrand at that point and its immediate vicinity.

The posterior expectation E[h(X)|y] =
∫
RM

h(x)L(x)π(x) dx/
∫
RM
L(x)π(x) dx of a strictly positive and

twice differentiable QoI h : RM → R+ can be approximated by using Laplace’s method separately for the
numerator and denominator. To that end, we define Ť (x) = log(h(x)L(x)π(x)) = log h(x) + logL(x) + log π(x)
and assume that this function has a unique maximum at x̂max = arg maxx∈RM Ť (x). With a second-order Taylor
expansion Ť (x) ≈ Ť (x̂max) + 1

2 (x − x̂max)>Ȟ(x̂max)(x − x̂max) around the point x̂max, where Ȟ(x̂max) =
∂2Ť (x)/∂x∂x>|x̂max denotes the Hessian, we obtain the fully exponential approximation

E[h(X)|y] =
∫
RM

exp(Ť (x)) dx∫
RM

exp(T (x)) dx
≈ exp(Ť (x̂max))

exp(T (x̂MAP))

√
det(−Ȟ−1(x̂max))
det(−H−1(x̂MAP)) . (3.64)

Note that the strict positivity of h(x) is required for the logarithm. Sometimes, one can add a large constant
c > 0 to the function, such that q(x) = h(x) + c is positive. The posterior expectation in Eq. (3.64) is then
obtained from the approximation of E[q(X)|y] by subtraction E[h(X)|y] = E[q(X)|y]− c.

Practically speaking, Laplace approximations merely call for locating the posterior mode and for computing
the Hessian matrix of the unnormalized log-density at the mode. The mean of the normal approximation is
then simply given by the posterior mode and the covariance matrix is the negative inverse Hessian. Numerical
optimization and differentiation replace the original Bayesian integration problem. This is only slightly more
difficult than simple MLE or MAP estimation and one can choose between a variety of standard optimizers,
some of which approximate the Hessian anyhow, e.g. the Newton–Raphson method for optimization.

The procedure yields good approximations to posterior distributions that are roughly bell-shaped, i.e.
unimodal and symmetric or at least strongly peaked and dominated by such a mode. Multimodal, highly skewed
or heavy-tailed distributions cannot be captured well in general, though. Note that for a finite sample size
the validity of the discussed normal approximation depends on the chosen parametrization. As opposed to
variational inference where a global divergence measure is minimized, the Laplace approximation solely rests on
local information such as the posterior mode and the curvature of the unnormalized log–posterior density. The
Laplace approximation is thus generally easier to obtain. However, it can produce misleading results even in
cases where variational inference with Gaussian candidates would still provide reasonable approximations, e.g.
think of a double-peaked posterior with a dominating flat mode that accumulates most of the total probability
mass and a peaked one that contains negligible mass but maximizes the density.

There are ways to widen the scope of applicability Laplace’s method, that seems to be restricted to certain
simple distributions only. These include Gaussian mixture approximations of multimodal distributions where
modes, covariances and relative weights are computed for each mode [196], and iterative strategies for handling
non-Gaussian mode shapes [197]. Beyond that, one can also use Laplace’s method for obtaining a first crude
posterior approximation in quick way. Once this approximation is at one’s disposal, it can be refined at one’s
discretion. This could happen via importance sampling or a Metropolis–Hastings algorithm initialized at the
posterior mode and driven by independent proposals sampled from the obtained approximation.

3.7.4 Log-likelihood function
A quite practical issue in Bayesian inference concerns the log-likelihood function logL(x), i.e. the natural

logarithm of the likelihood L(x). For both analytical and numerical approaches to statistical inference, it may be
more convenient to work with the log-likelihood instead of the likelihood directly. This is due to the properties
of the logarithm, i.e. strictly monotonic and smooth, and the typical structure of the likelihood, e.g. products
with many factors. For instance, the likelihood and its logarithm may take the form

L(x) =
N∏
i=1

π(yi |x), logL(x) =
N∑
i=1

log π(yi |x). (3.65)

Note that individual likelihood terms π(yi |x) often contain exponentials anyway, e.g. as in the case of a Gaussian
distribution. Beyond that, this happens whenever a member of the exponential family is used.

In frequentist inference one often tries to maximize the likelihood as in Eq. (3.3). Since the logarithm
is monotonically increasing, this is equivalent to maximizing the logarithm, i.e. x̂ = arg maxx∈RM L(x) =
arg maxx∈RM logL(x). For finding the extrema one would have to zero the derivative of Eq. (3.65) with respect
to the unknowns. Now, the explicit differentiation of a sum is easier than of a product, which is why the
log-likelihood is preferable in an analytical analysis.
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From a numerical perspective, taking the logarithm in intermediate steps of the computations may prevent
from over- and underflow. If data are numerous and the likelihood in Eq. (3.65) contains many terms, the
calculation in finite-precision floating-point arithmetic may easily suffer from that problem. A remedy is to use
a common scaling factor. The problem can also be mitigated by performing the necessary manipulations as
long as possible on the log-scale while hoping that problematic terms neutralize each other. In MCMC-based
Bayesian inference one can defer the final exponentiation until the MH acceptance in Eq. (3.51) by

α(x(t),x(?)) = min
{

1, exp
(

log π(x(?) |y) + log p(x(t) |x(?))− log π(x(t) |y)− log p(x(?) |x(t))
)}

. (3.66)

When the likelihood is based on Gaussian distribution as in Eq. (3.34) with known covariance matrix Σ,
the normalization factor ((2π)N det(Σ))−1/2 could be omitted from the MH acceptance probability. Otherwise,
in case the covariance matrix and its determining parameters are arguments of the likelihood function, the
log-determinant of the covariance matrix is usually calculated using a Cholesky factorization Σ = LL> as
log det(Σ) = log det(LL>) = 2

∑M
i=1 logLii. Here, L is a lower triangular matrix. This avoids the aforementioned

numerical issues.
For the computation of the Bayes factor in Eq. (3.20) one typically deploys a reasonable scaling factor. Let

LH1(xH1) = π(y |xH1 ,H1) and LH2(xH2) = π(y |xH2 ,H2) denote the likelihood functions of two competing mod-
els. One only needs a vague idea about the maximal values of the log-likelihoods ΥH1 ≈ maxxH1

(logLH1(xH1))
and ΥH2 ≈ maxxH2

(logLH2(xH2)) in order to calculate the Bayes factor as

B1,2 = ZH1

ZH2

= exp (ΥH1 − ΥH2)
∫
R
MH1 exp(log(LH1(xH1))− ΥH1)π(xH1 |H1) dxH1∫

R
MH2 exp(log(LH1(xH2))− ΥH2)π(xH2 |H2) dxH2

. (3.67)

Of course, this normalization/renormalization procedure is not limited to Bayes factors. It can facilitate the
numerical computation of other likelihood-based integrals, too.
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Chapter 4

Multilevel uncertainty quantification in
Bayesian inverse problems
Original publication
J. B. Nagel and B. Sudret. “A unified framework for multilevel uncertainty quantification in Bayesian inverse
problems”. In: Probabilistic Engineering Mechanics 43 (2016), pp. 68–84. doi: 10.1016/j.probengmech.2015.
09.007

Abstract
In this paper a unified probabilistic framework for solving inverse problems in the presence of epistemic and

aleatory uncertainty is presented. The aim is to establish a flexible theory that facilitates Bayesian data analysis in
experimental scenarios as they are commonly met in engineering practice. Problems are addressed where learning
about unobservable inputs of a forward model, e.g. reducing the epistemic uncertainty of fixed yet unknown
parameters and/or quantifying the aleatory uncertainty of variable inputs, is based on processing response
measurements. Approaches to Bayesian inversion, hierarchical modeling and uncertainty quantification are
combined into a generic framework that eventually allows to interpret and accomplish this task as multilevel model
calibration. A joint problem formulation, where quantities that are not of particular interest are marginalized
out from a joint posterior distribution, or an intrinsically marginal formulation, which is based on an integrated
likelihood function, can be chosen according to the inferential objective and computational convenience. Fully
Bayesian probabilistic inversion, i.e. the inference the variability of unobservable model inputs across a number of
experiments, is derived as a special case of multilevel inversion. Borrowing strength, i.e. the optimal estimation
of experiment-specific unknown forward model inputs, is introduced as a means for combining information in
inverse problems. Two related statistical models for situations involving finite or zero model/measurement error
are devised. Multilevel-specific obstacles to Bayesian posterior computation via Markov chain Monte Carlo
are discussed. The inferential machinery of Bayesian multilevel model calibration and its underlying flow of
information are studied on the basis of a system from the domain of civil engineering. A population of identically
manufactured structural elements serves as an exemplary system for examining different experimental settings
from the standpoint of uncertainty quantification and reduction. In a series of tests the material variability
throughout the ensemble of specimens, the entirety of specimen-specific material properties and the measurement
error level are inferred under various uncertainties in the problem setup.

4.1 Introduction
Main characteristics and challenges of inverse problems in engineering sciences subsume the following issues.

Firstly, the ever-growing complexity of physical modeling increases the computational expense of deterministic
forward simulations. Secondly, uncertainty is omnipresent and calls for an adequate mathematical formalism of
representation and management. Thirdly, since data are commonly scarce or prohibitively expensive to acquire,
the available information has to be carefully handled. An abstract inverse problem statement thus reads as
follows. By analyzing a limited amount of data the endeavor is to optimally learn about unknown forward model
inputs that are subject to epistemic uncertainty and aleatory variability. This includes deducing fixed albeit
unknown forward model parameters as well as hyperparameters that determine the distribution of variable model
inputs. Such a universal formulation describes a class of inverse problems that has hardly been satisfactorily
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solved yet. Our goal is therefore to develop a rigorous and extensive framework for formulating and solving
such inverse problems in support of data analysis for engineering systems. The focus of this research is on
experimental situations as they are typically encountered in this field. We emphasize aspects of uncertainty
quantification and information accumulation. In order to establish a sound conceptional and computational basis
for solving those problems one has to complement ideas and techniques that have been developed in different
academic disciplines and scientific communities so far. This involves inverse modeling, Bayesian statistics and
uncertainty quantification. In the following we will shortly survey relevant theories and practices.

In the first place we rely on the Bayesian approach to classical inverse problems [1, 2]. When a physical
theory or a computational solver relates physical parameters to measurable quantities, i.e. the forward model,
classical inversion is the process of reasoning or inferring unknown yet physically fixed model parameters from
recorded data [3, 4]. Bayesian inference establishes a convenient probabilistic framework to accomplish this
conventional type of parameter estimation and data assimilation. At least since the advent of the personal
computer it is nowadays widely used in engineering applications [5, 6]. The stochastic paradigm provides a
natural mechanism for the regularization of ill-posed problems, however, it requires the specification of a prior
and a noise model. Hierarchical inversion is an extension of the classical framework that allows to set parameters
of the prior and the noise model in a data-informed manner [7, 8]. While epistemic uncertainty is naturally
incorporated, a shortcoming of these types of parameter estimation is that they do not account for aleatory
variability.

In the second place hierarchical statistical models serve as the main tool for the analysis of complex systems.
Those are systems that are hierarchically organized at multiple nested layers. Prominent instances include
random and mixed effects models [9]. Historically those models were developed in social and biological sciences
e.g. for purposes of educational research [10, 11] and pharmacokinetics/dynamics [12, 13]. Some recent reviews
about the methods that were developed in these fields can be found in [14, 15]. Hierarchical modeling can be
viewed from a more frequentist [16, 17] or a more Bayesian perspective [18, 19]. At the present day it is mature
area of research that establishes sort of an overarching theme in modern multidisciplinary statistics. Dedicated
chapters can be found in numerous standard references for Bayesian modeling and inference [20, 21]. A general
observation is that hierarchical models may be complex in their probabilistic architecture whereas only little
forward modeling takes place.

In the third place we respect the uncertainty taxonomy that is prevalent in risk assessment and decision
making. According to this classification one distinguishes between epistemic and aleatory uncertainty [22,
23]. On one side, epistemic uncertainty refers to the ignorance or lack of knowledge of the observer and
analyst. By taking further evidence this type of uncertainty is reducible in principle. On the contrary, aleatory
uncertainty or variability refers to a trait of the system under consideration. It is a structural randomness of
irreducible character. Uncertainties can be accounted for in distinct mathematical frameworks and especially the
representation of ignorance is the subject matter of ongoing debates [24, 25]. Graphical statistical models such
as Bayesian probability networks establish a powerful and widespread tool of uncertainty characterization [26,
27]. In risk-based decision making Bayesian belief networks have been adopted for their strength and flexibility
in uncertainty modeling [28, 29] and their elegant mechanisms of information aggregation [30, 31].

In the fourth place probabilistic inverse problems constitute a challenging class of inverse problems that is
of theoretical and practical relevance alike. While classical inversion is concerned with estimating uncertain
yet physically fixed parameters in a series of experiments, i.e. identifying an epistemically uncertain quantity,
probabilistic inversion deals with inferring the distribution of such forward model inputs that vary throughout
the experiments, i.e. quantifying their aleatory variability. Previously established approaches to this interesting
type of problems with latent/hidden variable structure subsume various approximate solutions. A frequentist
technique that is premised on the simulation of an explicitly marginalized likelihood is proposed in [32]. There
are also attempts to compute approximate solutions based on variants of the expectation-maximization algorithm
within a linearized Gaussian frame [33] or with the aid of Kriging surrogates [34]. A methodological review of
this school of probabilistic inversion is found in [35]. These methods are only partly Bayesian and suffer from
the deficiency of providing mere point estimates.

The potential of hierarchical models as instruments of statistical modeling and uncertainty quantification
have barely been acknowledged for the purposes of inversion in a classical sense. Hierarchical and probabilistic
inversion are first steps towards preparing the Bayesian framework for the treatment of more realistic experimental
scenarios. These approaches do not fully exhaust the inferential machinery of hierarchical models and the
probability logic of Bayesian networks, though. In this contribution we thus aim at bridging that gap by
developing a coherent Bayesian framework for managing uncertainties in such undertakings. By drawing on
the statistical theory of hierarchical models, we cast inversion under parameter uncertainty and variability as
Bayesian multilevel calibration. This embeds a joint and a marginal problem formulation of Bayesian inference
under uncertainty, both of which can be numerically solved with plain vanilla or specialized Markov chain Monte
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Carlo methods.
This new formulation of multilevel inversion is especially well-adapted to the challenges that engineers are

frequently faced with. It naturally allows for sophisticated uncertainty modeling which comprises both epistemic
and aleatory uncertainty. The inclusion of the former is straightforward whereas the introduction of the latter is
an extension to classical parameter estimation. It also promotes a pervasive “blackbox” point of view on the
forward model. While this is inevitable in many complex applications, it is not readily compliant with traditional
hierarchical models. Previously established strategies of enhanced uncertainty quantification, e.g. hierarchical
and probabilistic inversion, emerge as special cases of the proposed general problem formulation. This also offers
the opportunity to cope with probabilistic inversion within a fully Bayesian setting. Beyond these extensions
some fundamentally new possibilities are suggested. Based on the probabilistic calculus of multilevel models, we
develop a novel formulation of multilevel inversion in the zero-noise and “perfect” data limit. The statistical
effect of “borrowing strength” or “optimal combination of information” is transferred and applied to inverse
problems.

The article is organized as follows. In Section 4.2 we will elaborate a general Bayesian framework for the
treatment of uncertainty and variability in inverse problems. This is followed by a discussion about Bayesian
inference in the context of multilevel inversion in Section 4.3. Thereafter Section 4.4 will provide an extension of
the framework that will allow for handling “perfect” data. Probabilistic inversion and borrowing strength will be
placed in context in Sections 4.5 and 4.6, respectively. Dedicated Bayesian computations based on Markov chain
Monte Carlo are reviewed in Section 4.7. Lastly in Section 4.8 we will conduct a selection of numerical case
studies, where by considering various experimental situations and uncertainty setups the very potential and the
computational challenges of the devised modeling paradigm will become transparent.

4.2 Bayesian multilevel modeling
Due to the lack of a unified terminology, we define a hierarchical or multilevel model as “an overall system

model that is hierarchically composed of deterministic and stochastic submodels”. Important types of submodels
comprise physical models of the deterministic system components (Section 4.2.1), prior descriptions of parameter
uncertainty and variability (Section 4.2.2) and residual representations of forward model prediction errors
(Section 4.2.3). From these submodels we will assemble a generic Bayesian multilevel model (Section 4.2.4). This
will represent the overall system under consideration including its deterministic and probabilistic aspects.

4.2.1 Forward model: Deterministic subsystem
A so-called forward model is a mathematical representation of the physical system or phenomenon under

investigation. More formally the forward model is a function

M : Dm ×Dx ×Dζ ×Dd → Dỹ
(m,x, ζ,d) 7→ ỹ =M(m,x, ζ,d),

(4.1)

that maps inputs (m,x, ζ,d) ∈ Dm × Dx × Dζ × Dd from its domain to outputs ỹ ∈ Dỹ from its codomain.
Forward model arguments (m,x, ζ,d) constitute physical parameters, while its responses ỹ are predictions of
observable quantities.

We distinguish between four different types of forward model inputs. They differ in their (un)certain nature
when a number of experiments is carried out. There are fixed albeit unknown model parameters m ∈ Dm that
are subject to epistemic uncertainty, two different types of inputs x ∈ Dx and ζ ∈ Dζ that are subject to aleatory
variability and well-known experimental conditions d ∈ Dd.

4.2.2 Prior model: Input uncertainty
Forward model inputs d constitute perfectly known conditions that prevail during experimentation. In line

with this they are deterministic arguments of the forward model. Experimental conditions may differ throughout
the experiments, i.e. each of the experiments i = 1, . . . , n is conducted being subject to an experiment-specific
condition di.

Proper forward model parameters m are constant throughout the experiments i = 1, . . . , n, yet they have
unknown values. In Bayesian fashion the available prior or expert knowledge about the true parameter values is
represented as a random variable or vector

M ∼ πM (m). (4.2)
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The Bayesian prior distribution πM (m) quantifies a subjective degree of plausibility or belief about the true
parameter values m. This is the Bayesian account for epistemic uncertainty. The uncertainty is reducible in the
sense that Bayesian data analysis gives rise to a posterior probability model.

Forward model inputs ζ are subject to a form of variability that is well-known, e.g. it could be ascertained in
previous experiments or due to prior considerations. Rather than being constant throughout the experiments
i = 1, . . . , n, these variable inputs take on experiment-specific realizations ζi, all of which are unknown. The
corresponding Bayesian prior representation is as mutually independent random variables

Zi ∼ fZ(ζi; θZi), for i = 1, . . . , n. (4.3)

Distributions fZ(ζi; θZi) specify prior knowledge about the experiment-specific unknowns that is of structural
quality. They are prescribed by well-known hyperparameters θZi ∈ DθZ , e.g. shape, scale and dependency
parameters, that possibly differ across the experiments. Due to stochastic independence, the appropriate joint
Bayesian prior model follows as

(Z1, . . . ,Zn) ∼
n∏
i=1

fZ(ζi; θZi). (4.4)

This is a Bayesian conception of aleatory variability, i.e. an uncertainty that is of structural nature. Hereinafter
this probability model will also be referred to as prescribed uncertainty. It is irreducible in the sense that
by Bayesian data analysis of the experiments i = 1, . . . , n “past” realizations ζi can be inferred in principle,
whereas the knowledge about “future” realizations ζi′ in further experiments i′ = n+ 1, . . . , n+ n′ cannot be
improved. “Future” realizations still feature a structural uncertainty Zi′ ∼ fZ(ζi′ ; θZi′ ) that is prescribed by
hyperparameters θZi′ ∈ DθZ .

Another Bayesian notion of a similar type allows to account for forward model inputs x that are subject
to a sort of variability which itself is unknown. For 1 = 1, . . . , n these variables take on experiment-specific
realizations xi, neither of which are known. Bayesian prior modeling is build upon conditionally independent
random variables

(Xi |ΘX = θX) ∼ fX |ΘX (xi |θX), for i = 1, . . . , n. (4.5)

The conditional probability distribution fX |ΘX (xi |θX) represents a structural kind of prior knowledge about
the experiment-specific unknowns. Its determining hyperparameters θX ∈ DθX , e.g. location, dispersion and
correlation parameters, themselves are fixed yet unknown. Hence these hyperparameters are priorly modeled as
a random vector

ΘX ∼ πΘX (θX). (4.6)

The Bayesian prior distribution πΘX (θX) constitutes the subjective prior belief or available prior knowledge
about the true hyperparameter values. In the statistical literature hyperprior elicitation is exhaustively discussed
especially for variance hyperparameters [36–38]. Consequently the joint distribution of the unknowns of this
prior model is given as

(X1, . . . ,Xn,ΘX) ∼
(

n∏
i=1

fX |ΘX (xi |θX)
)
πΘX (θX). (4.7)

The joint prior distribution of experiment-specific realizations follows by marginalizing Eq. (4.7) over the
hyperparameters θX . Then one has

(X1, . . . ,Xn) ∼
∫
DθX

(
n∏
i=1

fX |ΘX (xi |θX)
)
πΘX (θX) dθX . (4.8)

This is a form of exchangeability [39, 40] that realizes some “similarity” of the intermediate variables, i.e. the
joint distribution of the sequence (X1, . . . ,Xn) equals the one of (Xτ(1), . . . ,Xτ(n)) for any index permutation
τ : {1, . . . , n} → {1, . . . , n}. In the present form Eq. (4.8), exchangeability establishes another Bayesian approach
to aleatory variability. Unlike the prescribed uncertainty in Eq. (4.4), this form of uncertainty is partially
reducible in the sense that the “fuzziness” inherent in Eq. (4.8) can be reduced by learning about θX in “past”
experiments i. “Past” realizations xi can also be inferred, however, even if the hyperparameters θX would
be known, the realizations xi′ of “future” experiments i′ would still carry the structural prior uncertainty
Xi′ ∼ fX |ΘX (xi′ |θX).

In short, on the one hand we have parametric priors πM (m) and πΘX (θX) that in Eqs. (4.2) and (4.6)
embody knowledge about global unknowns m and θX . On the other hand we have structural priors fZ(ζi; θZi)
and fX |ΘX (xi |θX) that encapsulate structural prior knowledge about the problem, and that for i = 1, . . . , n
establish the prior model of experiment-specific unknowns xi and ζi through Eqs. (4.4) and (4.8).

60



Multilevel uncertainty quantification in Bayesian inverse problems

4.2.3 Residual model: Output imperfection
Besides a representation of forward model input uncertainty and variability, an integral constituent of statistical

approaches to inversion is a residual representation of forward model output discrepancy or imperfection. Due to
measurement errors, numerical approximations and general inadequacies, even if all inputs (m,xi, ζi,di) were
perfectly known, predictions ỹi = M(m,xi, ζi,di) are expected to deviate from real observations yi. These
imperfections can be accounted for by a statistical data model

yi = ỹi + εi =M(m,xi, ζi,di) + εi, for i = 1, . . . , n, (4.9)

where residual terms εi ∈ Dε are assumed to be realizations of random variables Ei ∼ fE(εi; Σi). Commonly
one employs normal distributions fE(εi; Σi) = N (εi; 0,Σi) with mean 0 and possibly experiment-specific,
symmetric and positive-semidefinite covariance matrices Σi. Consequently, through a change of variables whose
Jacobian determinant equals one, observations are viewed as outcomes yi of random variables

(Yi |M = m,Xi = xi,Zi = ζi) ∼ fE
(
yi −M(m,xi, ζi,di); Σi

)
, for i = 1, . . . , n. (4.10)

For given values of the direct forward model inputs (m,xi, ζi,di), data are viewed as random variables
(Yi |m,xi, ζi) with conditional distributions f(yi |m,xi, ζi) = fE(yi−M(m,xi, ζi,di); Σi). Note that f(yi |m,
xi, ζi) = f(yi |m,xi, ζi,θX) is independent of θX .

The specification of the residual model, i.e. quantifying the parameters of Σi, is an essential part of calibrating
the forward model and the experimental apparatus. In many experimental situations a model of the prediction
error is not known a priori, though. Nevertheless, the structure of the prediction error model can be selected
[41] and its parameters can be introduced as unknown hyperparameters that undergo calibration [42]. This
also includes systematic forward model deviations [43, 44]. Moreover one could treat the form of the forward
modelM itself as uncertain/random [45, 46] and select the most plausible class via Bayesian model selection
[47, 48]. By adding another layer of uncertainty on top of the outlined setup and at a higher associated cost,
the aforementioned principles of assessing structural and parametric forward model uncertainty can be readily
applied in multilevel models [49].

Based on random variable transformations, in Section 4.4 we will extend the framework by a model for
analyzing “perfect” observations ỹi = M(m,xi, ζi,di) in the zero-noise limit |εi| → 0. This mathematical
formulation will explain the variability in the data exclusively by a Bayesian prior model of input variability as
outlined in the preceding Section 4.2.2.

4.2.4 Multilevel model: Overall system
We start from the premise that if not denoted or stated otherwise, random vectors and variables are

(conditionally) independent, e.g. the global forward model parameters M and the hyperparameters ΘX are
understood to be priorly independent. Thus π(m,θX) = πM (m)πΘX (θX) applies for their joint prior
distribution. Note that this is not a necessity of the formulation, though. Moreover, we strictly reserve
conditional notation for the stochastic dependency of random variables on outcomes of other random variables,
e.g. the aleatory variables (Xi |θX) are conditionally dependent on realizations ΘX = θX . The stochastic
variables (Yi |m,xi, ζi) are conditioned on random outcomes M = m, Xi = xi and Zi = ζi, nonetheless they
depend on deterministic quantities di and Σi, too. Similarly the aleatory variables Zi are dependent on θZi in
a way that is not explicitly indicated. In order to keep track of all stochastic and deterministic relations the
index i serves as a bookkeeping mark.

Deterministic aspects of the system are covered by the forward model Eq. (4.1). Parametric priors in Eqs. (4.2)
and (4.6) and structural priors in Eqs. (4.3) and (4.5) represent input uncertainty and variability. The model
Eq. (4.10) condenses basic assumptions regarding the prediction error. Altogether those submodels are combined
into a greater model of the whole system. The overall probability model is summarized as

(Yi |m,xi, ζi) ∼ fE
(
yi −M(m,xi, ζi,di); Σi

)
, (4.11a)

M ∼ πM (m), (4.11b)
Zi ∼ fZ(ζi; θZi), (4.11c)

(Xi |θX) ∼ fX |ΘX (xi |θX), (4.11d)
ΘX ∼ πΘX (θX). (4.11e)

Adopting a subjectivist viewpoint, this complex probability model Eq. (4.11) formalizes degrees of belief of how
the data have been realized in the experiments i = 1, . . . , n. According to our previous definition it is a generic
Bayesian multilevel model. An intuitive representation of this multilevel model is provided by a directed acyclic
graph (DAG) [26, 27] such as shown in Fig. 4.1.
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Figure 4.1: DAG of the generic multilevel model. Vertices symbolize known ( ) or unknown ( ) quantities, while directed
edges represent their deterministic ( ) or probabilistic ( ) relations. Global parameters (m, θX) are subject to
epistemic uncertainty, whereas experiment-specific realizations (〈xi〉, 〈ζi〉) are subject to aleatory variability. Known
quantities comprise the data 〈yi〉 just as well as experiment-specific knowns (〈θZi〉, 〈di〉, 〈Σi〉) located at different levels
of the hierarchy.

4.3 Inference in multilevel models
We will now discuss statistical inference. In particular we will demonstrate how conditioning on the observables

and marginalization out nuisance are elegant inferential tools of Bayesian multilevel inversion. A pivotal joint
problem formulation will be devised. Afterwards an intrinsically marginal problem variant will be presented in
Section 4.3.1.

In the following 〈qi〉 denotes a sequence 〈qi〉1≤i≤n = (q1, q2, . . . , qn). Summarizing the available paramet-
ric and structural prior knowledge in Eqs. (4.11b) to (4.11e), the joint prior of the entirety of unknowns
(m, 〈xi〉, 〈ζi〉,θX) factorizes as

π
(
m, 〈xi〉, 〈ζi〉,θX

)
=
(

n∏
i=1

fX |ΘX (xi |θX)
)(

n∏
i=1

fZ(ζi; θZi)
)
πΘX (θX)πM (m). (4.12)

This prior depends only on the collection of experiment-specific hyperparameters 〈θZi〉. With the model of single
observations in Eq. (4.11a) one can formulate a conditional distribution for the total data 〈yi〉. For given values of
the unknowns (m, 〈xi〉, 〈ζi〉) this yields the product f(〈yi〉|m, 〈xi〉, 〈ζi〉) =

∏n
i=1 fE(yi −M(m,xi, ζi,di); Σi).

It depends on experiment-specific knowns (〈di〉, 〈Σi〉).
With that said, one can derive the joint posterior of the totality of unknowns (m, 〈xi〉, 〈ζi〉,θX) by conditioning

on the acquired data 〈yi〉. By virtue of Bayes’ theorem one obtains

π
(
m, 〈xi〉, 〈ζi〉,θX |〈yi〉

)
= 1
C

(
n∏
i=1

fE
(
yi −M(m,xi, ζi,di); Σi

))
π
(
m, 〈xi〉, 〈ζi〉,θX

)
. (4.13)

This posterior Eq. (4.13) is implicitly dependent on experiment-specific knowns (〈θZi〉, 〈di〉, 〈Σi〉). It is the
central object in Bayesian multilevel model calibration.

The model evidence C is the total probability of the realized data 〈yi〉, given the underlying multilevel model.
When introducing the notation d〈qi〉 = dq1 dq2 . . . dqn one can write this as

C =
∫
Dm

∫
Dnx

∫
Dn
ζ

∫
DθX

(
n∏
i=1

fE
(
yi −M(m,xi, ζi,di); Σi

))
π
(
m, 〈xi〉, 〈ζi〉,θX

)
dm d〈xi〉d〈ζi〉dθX . (4.14)

For the Bayesian computations that will be reviewed in Section 4.7, the factor of proportionality C does not
have to be computed explicitly. For that reason it will be occasionally omitted from now on.

One may define a likelihood in order to write the joint posterior Eq. (4.13) in the familiar textbook-form
π(unknowns|data) ∝ L(unknowns; data)π(unknowns). Regarded as a function of the unknowns (m, 〈xi〉, 〈ζi〉),
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the joint likelihood evaluates the densities in Eq. (4.10) for the collected data 〈yi〉 by

L
(
m, 〈xi〉, 〈ζi〉; 〈yi〉

)
=

n∏
i=1

fE
(
yi −M(m,xi, ζi,di); Σi

)
. (4.15)

Apart from its functional arguments and the data it also depends on the total number of experiment-specific
knowns (〈di〉, 〈Σi〉). It does not depend on θX , though.

Subsequent to formulating the joint posterior Eq. (4.13) the marginal of the quantities of interest (QoI) is
obtained by integrating out nuisance [50, 51]. For instance, given that (m,θX) are declared QoI and the latent
variables (〈xi〉, 〈ζi〉) are considered nuisance, the correspondingly marginalized posterior becomes

π
(
m,θX |〈yi〉

)
=
∫
Dnx

∫
Dn
ζ

π
(
m, 〈xi〉, 〈ζi〉,θX |〈yi〉

)
d〈xi〉d〈ζi〉. (4.16)

Similarly, provided that hidden variables (〈xi〉, 〈ζi〉) are proclaimed QoI and (m,θX) are deemed nuisance
parameters, appropriately marginalizing the posterior distribution gives

π
(
〈xi〉, 〈ζi〉|〈yi〉

)
=
∫
Dm

∫
DθX

π
(
m, 〈xi〉, 〈ζi〉,θX |〈yi〉

)
dm dθX . (4.17)

4.3.1 Marginalized formulation
A common scenario is that inferential interest focuses on the global parameters (m,θX). In this particular

case, instead of marginalizing the joint posterior distribution Eq. (4.13) as in Eq. (4.16), based on an integrated
likelihood function one can formulate an inherently marginal problem [52–54]. One therefore constructs a
marginalized observation model

(Yi |m,θX) ∼ f(yi |m,θX), for i = 1, . . . , n, (4.18a)
(M ,ΘX) ∼ π(m,θX) = πM (m)πΘX (θX). (4.18b)

The marginalized model consists of the prior distribution Eq. (4.18b) of the QoI (m,θX) and the probability
model Eq. (4.18a) of the observations yi. By integrating out the aleatory variables (xi, ζi) in the following way,
one can obtain the marginal distributions of the observations

f(yi |m,θX) =
∫
Dx

∫
Dζ

fE
(
yi −M(m,xi, ζi,di); Σi

)
fX |ΘX (xi |θX) fZ(ζi; θZi) dxi dζi. (4.19)

These distributions are conditional on (m,θX) and dependent on (θZi ,di,Σi). Following this, one can easily
formulate an integrated or marginalized likelihood. Evaluated for the actual data 〈yi〉 and seen as a function of
the QoI (m,θX) this version of the likelihood reads as

L
(
m,θX ; 〈yi〉

)
= f

(
〈yi〉|m,θX

)
=

n∏
i=1

f(yi |m,θX). (4.20)

It is the likelihood function corresponding to the case of eliminating all intermediate unobservables (〈xi〉, 〈ζi〉)
with Eq. (4.19) on the likelihood rather than on the posterior level. Note that frequentist inference of (m,θX)
could be based on this integrated likelihood formulation. Fully Bayesian inference, however, proceeds by
formulating the corresponding posterior distribution. With the prior Eq. (4.18b) and the likelihood Eq. (4.20),
the posterior is obtained on grounds of Bayes’ law

π
(
m,θX |〈yi〉

)
= 1
C
L
(
m,θX ; 〈yi〉

)
π(m,θX). (4.21)

One can easily derive that the normalizing constant C equals Eq. (4.14) and show that the posteriors Eqs. (4.16)
and (4.21) are identical. This means that, as far as the inference of (m,θX) is concerned, the two problem
formulations Eqs. (4.11) and (4.18) are equivalent. Those problem formulations pose different numerical obstacles,
though. In Section 4.7 we will discuss Bayesian computations and their multilevel-related issues.
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4.3.1.1 Monte Carlo integration

In Eq. (4.20) the marginalized likelihood L(m,θX ; 〈yi〉) is a product of integrals f(yi |m,θX). Most often it
is not possible to perform the marginalization in Eq. (4.19) analytically. Still it can be approximately computed
through deterministic or stochastic schemes of numerical integration.

The density f(yi |m,θX) can be evaluated for arbitrary arguments yi and for fixed values (m,θX) . A
simple numerical means to that end rests upon stochastic integration via the Monte Carlo (MC) method

f̂(yi |m,θX) = 1
K

K∑
k=1

fE

(
yi − υ̃(k)

i ; Σi

)
, with


x

(k)
i ∼ fX |ΘX (x(k)

i |θX),

ζ
(k)
i ∼ fZ(ζ(k)

i ; θZi),

υ̃
(k)
i =M(m,x

(k)
i , ζ

(k)
i ,di)

 for k = 1, . . . ,K. (4.22)

For k = 1, . . . ,K forward model inputs x(k)
i and ζ(k)

i are independently sampled from their population dis-
tributions fX |ΘX (x(k)

i |θX) and fZ(ζ(k)
i ; θZi), respectively. In turn responses υ̃(k)

i =M(m,x
(k)
i , ζ

(k)
i ,di) are

computed accordingly. For evaluating L(m,θX ; 〈yi〉) as a function of the unknowns (m,θX), one has to simulate
Eq. (4.22) for the observations yi that were taken in the experiments i = 1, . . . , n. Thus a simple MC-based
estimator of the marginalized likelihood is given as

L̂
(
m,θX ; 〈yi〉

)
=

n∏
i=1

f̂(yi |m,θX). (4.23)

The stochastic simulator Eq. (4.23) may be costly and numerically inefficient in terms of the number of runs
K of the deterministic model. It should be understood as an instructive proof for the feasibility of computing
the marginal posterior Eq. (4.21). In practice more advanced simulators, e.g. based on importance sampling, can
be applied in similar fashion [55, 56]. More generally speaking, any method for computing the model evidence in
classical Bayesian inference is applicable [57].

4.4 Zero-noise and “perfect” data
In Section 4.2.3 the residual model was introduced as a representation of the discrepancy between model

predictions and measurements. This conditional model had equipped the data space Dỹ with a probability
measure. As a consequence, in Eq. (4.11a) observations were regarded as yi = ỹi + εi with a random outcome
εi. However, experimental situations may occur where direct access to

ỹi =M(m,xi, ζi,di), for i = 1, . . . , n (4.24)

is granted, e.g. due to noise-free measurements and a “sufficiently accurate” forward model [58]. The data
〈ỹi〉 is then only explained by uncertainty of the forward model inputs as described in Section 4.2.2, without
being subject to prediction errors. Hereafter we will refer this scenario as to involve “perfect” data [59, 60]. A
statistical model that is appropriate for “perfect” data can be formulated as

(Ỹi |m,θX) ∼ f(ỹi |m,θX), for i = 1, . . . , n, (4.25a)
(M ,ΘX) ∼ π(m,θX) = πM (m)πΘX (θX). (4.25b)

As before, Eq. (4.25b) embodies the available prior knowledge about the unknowns (m,θX). Conditional
random variables in Eq. (4.25a) are constructed by forward uncertainty propagation as follows. The independent
input uncertainties (Xi |θX) ∼ fX |ΘX (xi |θX) and Zi ∼ fZ(ζi; θZi), that are defined for given (θX ,θZi), are
propagated through the forward model M, while the inputs (m,di) are fixed. The density of the resulting
random variables (Ỹi |m,θX) =M

(
m, (Xi |θX),Zi,di

)
at ỹi ∈ Dỹ is found as

f(ỹi |m,θX) =
∫
Dx

∫
Dζ

δ
(
ỹi −M(m,xi, ζi,di)

)
fX |ΘX (xi |θX) fZ(ζi; θZi) dxi dζi, (4.26)

where δ denotes the Dirac delta distribution. This endows the response space Dỹ with a proper probability model.
Inspecting Eqs. (4.19) and (4.26) reveals that the marginal model Eq. (4.18) approaches the “perfect” data
model Eq. (4.25) in the zero-noise limit ‖Σi‖ → 0. With the distributions f(ỹi |m,θX), that are conditioned on
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(m,θX) and dependent on experiment-specific knowns (di,θZi), one can formulate the corresponding likelihood
function as

L
(
m,θX ; 〈ỹi〉

)
= f

(
〈ỹi〉|m,θX

)
=

n∏
i=1

f(ỹi |m,θX). (4.27)

For given data 〈ỹi〉 it is viewed as a function of the unknowns (m,θX) that also depends on (〈θZi〉, 〈di〉). As
usual Bayesian data analysis proceeds by conditioning on the data 〈ỹi〉. With the prior Eq. (4.25b) and the
likelihood Eq. (4.27) the posterior follows through Bayes’ rule

π
(
m,θX |〈ỹi〉

)
= 1
C̃
L
(
m,θX ; 〈ỹi〉

)
π(m,θX). (4.28)

The factor of proportionality C̃ in the posterior density Eq. (4.28) is given as the marginal probability density of
the effectively acquired data 〈ỹi〉. It thus writes C̃ =

∫∫
L(m,θX ; 〈ỹi〉)π(m,θX) dm dθX .

4.4.1 Kernel density estimation
The likelihood function L(m,θX ; 〈ỹi〉) in Eq. (4.27) is grounded on probability densities f(ỹi |m,θX).

Likelihood evaluations therefore require forward uncertainty propagation Eq. (4.26). In the majority of cases
this complicated problem can only be approximately solved. A possible approach is to use MC uncertainty
propagation in combination with kernel density estimation (KDE) [61].

Let KH(ỹ) = |H|−1/2K(H−1/2ỹ) be the scaled kernel that is defined by a kernel function K and the
symmetric and positive-definite bandwidth matrix H. A KDE of the density f(ỹi |m,θX) in Eq. (4.26) as a
function of ỹi and for fixed values of (m,θX) is given as

f̂(ỹi |m,θX) = 1
K

K∑
k=1
KH

(
ỹi − υ̃(k)

i

)
, with


x

(k)
i ∼ fX |ΘX (x(k)

i |θX),

ζ
(k)
i ∼ fZ(ζ(k)

i ; θZi),

υ̃
(k)
i =M(m,x

(k)
i , ζ

(k)
i ,di)

 for k = 1, . . . ,K. (4.29)

Analogously to Eq. (4.22), for k = 1, . . . ,K forward model inputs x(k)
i and ζ(k)

i are randomly drawn from their
parent distributions fX |ΘX (x(k)

i |θX) and fZ(ζ(k)
i ; θZi) and responses υ̃(k)

i =M(m,x
(k)
i , ζ

(k)
i ,di) are computed.

Subsequently the sample (υ̃(1)
i , . . . , υ̃

(K)
i ) serves as a proxy for the distribution f(ỹi |m,θX). Estimating

L(m,θX ; 〈ỹi〉) is based on evaluating the KDE in Eq. (4.29) for arguments (m,θX) and for the observations
ỹi corresponding to experiments i = 1, . . . , n. On these grounds, the likelihood function L(m,θX ; 〈ỹi〉) is
approximated as

L̂
(
m,θX ; 〈ỹi〉

)
=

n∏
i=1

f̂(ỹi |m,θX). (4.30)

Similarly to Eq. (4.23) this is an expensive statistical estimation program that involves forward uncertainty
quantification and tends to require a high number K of calls to the forward code. Further challenges intrinsically
related to computing the posterior Eq. (4.28) of the “perfect” data model will be discussed in Section 4.7.

4.5 Probabilistic inversion
The introduced Bayesian multilevel model Eq. (4.11) acts as a toolkit for statistical model building. It forms

some kind of superstructure that embeds a variety of stochastic inverse problems as special cases. In this section
we will show how different well-known types of inverse problems are obtained by omitting global parameters
and/or experiment-specific variables accordingly.

Classical or simple Bayesian inversion is concerned with the estimation of fixed yet unknown parameters m
of the physical simulator [3, 4]. The related DAG is pictured in Fig. 4.2(a). In this context the term “simple”
merely refers to the degree of sophistication of the input uncertainty model. As a matter of fact classical inversion
may not be a simple problem at all. It typically calls for a high number of forward solves. The engineering
community therefore relies on customized strategies in order to ameliorate the computational burden to Bayesian
inference in real-case problems. This includes the employment of polynomial chaos expansions as forward model
substitutes [62–64], advanced stochastic simulation techniques [65, 66] and forward model reduction methods [67,
68].

Probabilistic inversion features a more elaborate two-level representation of input uncertainty [69, 70]. Rather
than aiming at an unknown constant m, inference concentrates on the hyperparameters θX that determine the
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variability of 〈xi〉 through fX |ΘX (xi |θX). A DAG belonging to probabilistic inversion is depicted in Fig. 4.2(b).
Building upon probabilistic inversion one may have variable inputs 〈ζi〉, the distributions of which fZ(ζi; θZi)
are prescribed by 〈θZi〉. Unless experiment-specific realizations of those variables are of inferential interest,
they act as additional nuisance parameters impeding the inference of the QoI. The correspondingly extended
DAG is provided in Fig. 4.2(c). Of course, more complex modeling scenarios can be envisaged. An application
example where inference targets both parameters of the type m and θX , in the presence of additional nuisance
parameters 〈ζi〉, can be found in [59, 60].

(a) Simple inversion. (b) Probabilistic inversion. (c) Additional nuisance.

Figure 4.2: Various DAGs. Simple inversion, i.e. the estimation of an unknownm, is visualized in (a), whereas (b) shows a
DAG of probabilistic inversion, i.e. the inference of θX that governs the variability of experiment-specific xi. An upgrade
of probabilistic inversion, where a prescribed uncertainty has been introduced in nuisance variables ζi, is depicted in (c).

The problem that we call probabilistic inversion shall not be confused with the identically named problem of
finding an input distribution of a forward model given its output distribution [71, 72]. Commonly engineering
applications do not allow to exercise this type of uncertainty backpropagation. The amount and structure of
the data being available do not permit to fully specify a response distribution while expert knowledge refers to
physical parameters instead.

At this point we have a closer look at probabilistic inversion. It results from removing the forward model
inputs m and 〈ζi〉 from the overall system Eq. (4.11) and from declaring θX as QoI and 〈xi〉 as nuisance
variables. For the sake of completeness we summarize the associated multilevel model as

(Yi |xi) ∼ fE
(
yi −M(xi,di); Σi

)
, (4.31a)

(Xi |θX) ∼ fX |ΘX (xi |θX), (4.31b)
ΘX ∼ πΘX (θX). (4.31c)

Joint Bayesian inference is accomplished by conditioning on the realized data 〈yi〉. Up to a normalization factor,
according to Bayes’ law the posterior density is given as

π
(
〈xi〉,θX |〈yi〉

)
∝

(
n∏
i=1

fE
(
yi −M(xi,di); Σi

))( n∏
i=1

fX |ΘX (xi |θX)
)
πΘX (θX). (4.32)

Equivalent to integrating out nuisance 〈xi〉 from the joint posterior Eq. (4.32) as in Eq. (4.16), one can base
inference of θX on an inherently marginal problem formulation [32, 35]. Similar to Eqs. (4.19) and (4.20) the
marginalized likelihood function for that case is derived as

L
(
θX ; 〈yi〉

)
= f

(
〈yi〉|θX

)
=

n∏
i=1

∫
Dx

fE
(
yi −M(xi,di); Σi

)
fX |ΘX (xi |θX) dxi. (4.33)

With the marginalized likelihood function Eq. (4.33) and the marginal prior distribution Eq. (4.31c), the unscaled
version of the marginal posterior reduces to

π
(
θX |〈yi〉

)
∝ L(θX ; 〈yi〉)πΘX (θX). (4.34)

Exemplary comparisons of the numerical efficiency for sampling joint posteriors of the form Eq. (4.32) and
marginal posteriors of the form Eq. (4.34) are found in [69, 70].
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Approximate two-stage approaches have been proposed for inferring aleatory parameter variability in inverse
problems, e.g. the context of random fields [73–76]. In the first stage n separate inverse problems are solved,
i.e. for each experiment i = 1, . . . , n an estimator x̂i of the realization xi is computed. As a second step the
hyperparameters θX are identified by statistical analysis of the estimates 〈x̂i〉. However, two-stage methods
suffer from the dependence on a sufficient amount of data available for both of the stages and their tendency to
overestimate second-order central moments [14, 15]. Those issues are due to a fundamental inconsistency in
treating epistemic and aleatory uncertainty.

Classical inverse problems are sometimes phrased within a hierarchical frame [7, 8]. Formally this is a
special case of probabilistic inversion with n = 1. The intermediate unknowns x1 are commonly the QoI in
this type of hierarchical inversion. Their prior π(x1) =

∫
fX |ΘX (x1 |θX)πΘX (θX) dθX decomposes into a

conditional distribution fX |ΘX (x1 |θX) and a marginal one πΘX (θX). However, other than in probabilistic
inversion, Eq. (4.31b) is not interpreted as aleatory variability. Instead it can be viewed as leaving the prior
for x1 incompletely specified [7], i.e. relaxing the assumption of a parametric prior π(x1; θX) = fX |ΘX (x1 |θX)
for a specific value θX . Alternatively Eq. (4.32) suggests that the prior hyperparameters θX can be estimated
along with x1. The prior in this case is given as π(x1,θX) = fX |ΘX (x1 |θX)πΘX (θX). For solving ill-posed
problems this can be seen as an automatic determination of the regularization parameters [8].

4.6 Combination of information
In the preceding Section 4.5 we declared the hyperparameters θX as QoI and latent quantities 〈xi〉 as

nuisance. When this choice is reversed, i.e. proclaiming 〈xi〉 as the QoI and treating θX as nuisance, then
the Bayesian multilevel model Eq. (4.31) allows for an optimal type of inference [77]. This effect is sometimes
referred to as optimal combination of information or borrowing strength. To our best knowledge, it has been
pointed out for the first time in [78]. As we will see, the term “optimal” has to be understood with respect to
the total amount of information processed, e.g. the acquired data and the available parametric and structural
prior knowledge. Optimal combination of information seems to be largely understudied in inverse problems with
missing data structure. By taking the marginal viewpoint of Eq. (4.34), the additional advantages that the joint
formulation Eq. (4.32) offers are often overlooked.

Based on the hierarchical model Eq. (4.31), in this section we will show how to “borrow strength” in inverse
problems. The optimal inference of a specific xi0 for some i0 ∈ {1, . . . , n} is demonstrated. We pursue three
different estimation programs in order to investigate how inferring xi0 can be accomplished by wholly or only
partially utilizing the informational resources. In Section 4.6.1 we will present a simple Bayesian updating
approach, in respect to which the principle and mechanism of borrowing strength is emphasized by means of
multilevel inference in Section 4.6.3. Beforehand we will devise a sequential filtering approach in Section 4.6.2
that will serve as an illustration of the underlying flow of information.

4.6.1 Simple updating
In this first approach, inference of xi0 will be solely based on the single observation yi0 , the informational

content of fE(yi0 −M(xi0 ,di0); Σi0), the structural prior fX |ΘX (xi0 |θX) and the parametric prior πΘX (θX).
Utilizing the prior information one can formulate a Bayesian prior distribution for xi0 . By marginalizing over
the hyperparameters θX this reads as

π(xi0) =
∫
DθX

fX |ΘX (xi0 |θX)πΘX (θX) dθX . (4.35)

This compound distribution represents the uncertainty that xi0 priorly carries. Ensuing from the prior Eq. (4.35),
analyzing the piece of data yi0 is accomplished by constructing the corresponding posterior. It is proportional
to π(xi0 |yi0) ∝ fE(yi0 −M(xi0 ,di0); Σi0)π(xi0). We remark that the approach is formally reminiscent of
hierarchical inversion as discussed in Section 4.5.

While the observation yi0 that is directly associated to xi0 has been analyzed, the evidence that 〈y 6=i0〉 carry
about θX , and in turn about xi0 , has not yet been taken into consideration. Put another way, the hierarchical
problem structure has been respected by formulating Eq. (4.35), however, it has only been partially exploited for
learning about the QoI xi0 .

4.6.2 Sequential filtering
For the second estimation scheme, which will be based on sequential updating, we introduce the simplifying

notation 〈q 6=i0〉 = (q1, . . . , qi0−1, qi0+1, . . . , qn). In a first step probabilistic inversion is accomplished by

67



Multilevel uncertainty quantification in Bayesian inverse problems

estimating θX with the data 〈y 6=i0〉. Similarly to Eq. (4.35), the resulting posterior π(θX |〈y 6=i0〉) can be
translated into a mixture distribution

π
(
xi0 |〈y 6=i0〉

)
=
∫
DθX

fX |ΘX (xi0 |θX)π
(
θX |〈y 6=i0〉

)
dθX . (4.36)

It represents the uncertainty in xi0 following the analysis of 〈y 6=i0〉 but prior to analyzing yi0 . Thereupon
the second stage of the filtering program consists in utilizing Eq. (4.36) as a Bayesian prior for inferring
xi0 by inverting yi0 . Bayesian updating yields the posterior distribution π(xi0 |〈y 6=i0〉,yi0) ∝ fE(yi0 −
M(xi0 ,di0); Σi0)π(xi0 |〈y 6=i0〉).

Information-wise, the estimation of θX has been initially based on the data 〈y 6=i0〉, its conditional distributions
fE(yi −M(xi,di); Σi) for i 6= i0, the structural knowledge fX |ΘX (xi |θX) and the parametric prior πΘX (θX).
While inheriting the obtained information about θX by means of Eq. (4.36), the observation yi0 has been
eventually inverted for xi0 .

4.6.3 Multilevel inversion
A full hierarchical analysis constitutes the third type of estimation. By formulating the joint posterior

Eq. (4.32) of the collectivity of unknowns (〈xi〉,θX) and marginalizing over nuisance (〈x 6=i0〉,θX), the posterior
distribution of the QoI xi0 can be written as

π
(
xi0 |〈yi〉

)
=
∫
Dn−1
x

∫
DθX

π
(
〈xi〉,θX |〈yi〉

)
d〈x6=i0〉dθX , (4.37)

where d〈x6=i0〉 = dx1 . . . dxi0−1 dxi0+1 . . . dxn. Note that when the joint posterior Eq. (4.32) is computed, other
marginals than Eq. (4.37) can be extracted similarly.

In terms of estimating xi0 , the structure of the posterior Eq. (4.37) reveals that all the different pieces of
information have been “optimally” combined during a joint learning process. From an informational point
of view, the total data 〈yi〉, their conditional distributions fE(yi −M(xi,di); Σi), the structural knowledge
fX |ΘX (xi |θX) and the hyperprior πΘX (θX) have been completely synthesized. This implies that inferring
xi0 “borrows” information encoded in the observations 〈y 6=i0〉. A DAG-based visualization of the underlying
flow of information is provided in Fig. 4.3. The deeper reason for borrowing strength to happen is the partial
reducibility of the uncertainty model Eq. (4.8), i.e. the exchangeability of aleatory variables 〈xi〉.

Figure 4.3: Optimal combination of information. A Bayesian network representation of probabilistic inversion is shown.
Known ( ) and unknown ( ) quantities are related by probabilistic ( ) relations. The “upstream” ( ) and “downstream”
( ) flow of information towards a specific xi0 is indicated. This is a form of borrowing strength.

4.7 Bayesian computations
Generally Bayesian posteriors feature an analytic closed-form expression only on a rare occasion. Specifically

this applies to posteriors of the form Eqs. (4.13), (4.21) and (4.28). Notwithstanding the above, posteriors
can be explored by means of Markov chain Monte Carlo (MCMC) [79, 80]. Principally this readily refers to
posteriors stemming from multilevel inversion. The Metropolis-Hastings (MH) algorithm and the Gibbs sampler
are prototypical MCMC techniques. In Section 4.7.1 we will review the MH algorithm and discuss classical
MCMC key issues in Section 4.7.2. Additional computational key challenges posed by Bayesian multilevel model
calibration will be discussed in Section 4.7.3. Some more sophisticated MCMC samplers that are suitable in a
multilevel-context are surveyed in Section 4.7.4.
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4.7.1 The Metropolis-Hastings algorithm
MCMC is based on constructing an ergodic Markov chain such that its invariant distribution equals the

posterior. Let π(q) be the prior and π(q |〈yi〉) the posterior density of some QoI q. A Markov chain with
equilibrium distribution π(q |〈yi〉) is generated by initializing at q(0) and repetitively proceeding as follows.
Given a state q(t) that the Markov chain has taken on in some iteration, in the following iteration a candidate
state q(?) ∼ P (q(?) |q(t)) is randomly sampled from a proposal distribution P (q(?) |q(t)). In the MH correction
step the proposed state is approved as the new state q(t+1) = q(?) of the Markov chain with probability

α
(
q(?), q(t)

)
= min

(
1, π(q(?) |〈yi〉)P (q(t) |q(?))
π(q(t) |〈yi〉)P (q(?) |q(t))

)
. (4.38)

Otherwise the proposal will be rejected, i.e. the Markov chain remains in its state q(t+1) = q(t) of the preceding
iteration. It is important to note that due to the MH acceptance probability Eq. (4.38), the algorithm calls
for the computation of posterior ratios only. Thus for MCMC sampling the scale factors in Eqs. (4.13), (4.21)
and (4.28) can be dropped and only unscaled posterior densities have to be evaluated.

Random walk Metropolis sampling rests upon local proposals, e.g. candidate states are sampled from a
Gaussian distribution q(?) ∼ N (q(?); q(t),Σq) that is centered around the current state q(t). The covariance
matrix Σq determines the “stepsizes” of the algorithm. Independence MH sampling is based on nonlocal
proposals whose distribution q(?) ∼ P (q(?)) is independent of q(t), e.g. sampling candidate states from the prior
q(?) ∼ π(q(?)) or from some suitable approximation of the posterior q(?) ∼ π̂(q(?) |〈yi〉).

4.7.2 Classical key challenges
The performance of MCMC methods is governed by the mixing properties of the underlying Markov chain,

i.e. the speed of convergence of the Markov chain towards the targeted posterior. As to which degree MCMC
samples are autocorrelated has a determining influence on the convergence speed and their quality as posterior
representatives. Hence MCMC algorithms are designed and tuned in pursuit of rapid mixing. Depending on the
specific problem at hand, this may be a tricky business which requires to employ and combine sophisticated
and highly specialized sampling schemes. Typically MCMC sampling calls for a high number of program
iterations which in turn demands a high number of forward model runs for evaluating the likelihood function in
the MH correction Eq. (4.38). Beyond that, careful convergence diagnostics are of particular importance for
MCMC methods. One has to assess when the Markov chain has reached its stationary distribution, i.e. when
it has lost any dependence on its initialization. Even though there are advanced convergence test [81, 82], e.g.
Gelman-Rubin diagnostics for multiple over-dispersed chains [83, 84], we remark that from a pessimistic point
of view any convergence diagnostic is heuristics [85]. Furthermore MCMC suffers from difficulties in exploring
high-dimensional and multimodal posteriors.

4.7.3 Multilevel-related challenges
Multilevel posteriors can be readily sampled by means of classical MCMC techniques as they are commonly

applied in “simple” Bayesian inversion. However, on top of the classical bottlenecks that were discussed above,
one is faced with multilevel-specific MCMC challenges. The posteriors Eqs. (4.13) and (4.21), which are appertain
to the joint and the marginal variant of multilevel calibration, are different in nature. Accordingly, sampling
these posteriors pose different computational burdens. The former requires a sampling scheme that performs
efficiently in high-dimensional parameter spaces, whereas the latter suffers from computing the integrated
likelihood Eq. (4.20). Similarly the posterior Eq. (4.28) of the “perfect” data model imposes forward uncertainty
quantification for the computation of the likelihood Eq. (4.27).

Likelihood functions of the form Eqs. (4.23) and (4.30) suffer from another severe difficulty. It is well-known
that statistical estimations of the likelihood ratio introduce an additional random component into the Markov
chain transition kernel [86, 87]. Consequently the steady-state distribution of the chain may be modified.
Therefore free parameters of the algorithm have to be chosen endeavoring high posterior fidelity, i.e. the degree
as to which the induced long-run distribution conforms with the true posterior [59, 60].

4.7.4 Advanced MCMC samplers
Summarized Bayesian multilevel model calibration requires an enormous number of forward model runs.

Therefore in the statistical literature a wide range of advanced MCMC techniques, dedicated to posterior
exploration in classical hierarchical models, have been devised. Some enhanced Gibbs sampling methods in this
context are reviewed in [79] and references therein. However, in view of engineering problems they may not

69



Multilevel uncertainty quantification in Bayesian inverse problems

meet the challenges those applications usually pose. This is due to the inescapable “blackbox” character of the
forward solver and nonconjugacy. Generally not all of the parameters will have full conditionals of a standard
form that can be easily sampled. Despite that this paper does not focus on computational facets of uncertainty
quantification, a short outlook on potentially efficient MCMC implementations is given.

Data augmentation is a powerful MCMC technique that aims at enhancing the numerical efficiency of posterior
computation by introducing missing data as auxiliary variables [88, 89]. Note that the joint posterior Eq. (4.13)
can be seen as an augmented form of the marginal one in Eq. (4.21). Thus data augmentation naturally emerges
in the context of Bayesian multilevel inversion. It has been beneficially applied for solving multilevel inverse
problems within the domain of aerospace engineering [59, 60]. Vice versa, there are dedicated MCMC schemes for
directly computing marginalized posteriors of the form Eq. (4.21), e.g. MC within Metropolis sampling [55, 86]
or pseudo-marginalization [90]. The Hamiltonian Monte Carlo (HMC) algorithm is a sampler whose performance
is remarkably efficient in high-dimensional parameter spaces and for highly correlated posteriors [91, 92]. Since
multilevel models are higher-dimensional and correlated by definition, the HMC is a promising MCMC candidate
in this context. Yet the HMC still occurs to be highly underacknowledged in Bayesian inference in general and
for hierarchical models in particular.

4.8 Numerical case studies
In order to illustrate the power and versatility of the devised framework we conduct a selection of computer

experiments. This shall be seen as a proof of concept and benchmark of the proposed methodology in the context
of engineering applications. A system of identically designed structural components functions as the basis for
probing a range of experimental scenarios. Specifically we deal with an ensemble of simply supported beams that
are tested in a series of three-point bending experiments. By multilevel analysis of measured beam deflections we
highlight how different inferential goals, e.g. probabilistic inversion, residual calibration or optimal combination
of information, can be achieved in the presence of material variability and uncertainties in the experimental
setup. Keeping deterministic modeling simple and intuitive will allow us to focus on uncertainty quantification
aspects that are the essential subject matter of this research. Incidentally we learn about the computational
obstacles that must be overcome when aiming at “real-world” applications.

The forward problem will be shortly introduced in Section 4.8.1. Around this submodel, that covers the
deterministic features of the system, Bayesian multilevel models will be built to capture uncertainty and variability.
Probabilistic inversion, i.e. deducing the material variability throughout an ensemble of similar specimens, will be
tackled in Section 4.8.2. The subsequent Section 4.8.3 will deal with residual model calibration. In Section 4.8.4
the impact of prescribed uncertainties in the test conditions will be investigated. In Section 4.8.5 borrowing
strength will be utilized in order to ideally estimate the material characteristics of a single specimen by using
information obtained from the other specimens.

4.8.1 Mechanical model
The system under consideration is an ensemble of identically manufactured beams i = 1, . . . , n with well-

known lengths Li and rectangular cross sections with widths bi and heights hi. Yet the completed beams are
only similar in the sense that we assume variability in the elastic moduli Ei across the ensemble, e.g. due to
slight irregularities in the fabrication process. For each single beam i the Young’s modulus Ei is assumed to be
constant along the main beam axis. The deflections ṽi(si,j) of a simply supported beam i under a concentrated
point load Fi at midspan can be easily derived in Euler-Bernoulli beam theory. For positions si,j along the beam
axis with 0 ≤ si,j ≤ Li/2 and j = 1, . . . , ni the deflections follow as

ṽi(si,j) = Fisi,j
48EiIi

(
3L2

i − 4s2
i,j

)
, for 0 ≤ si,j ≤ Li/2, (4.39)

where the moment of inertia is given as Ii = bih
3
i /12. Likewise a symmetric expression holds for positions si,j

along the main axis with Li/2 ≤ si,j ≤ Li. A single simply supported beam is visualized in Fig. 4.4.
Together with its symmetric counterpart, the algebraic formula Eq. (4.39) constitutes the deterministic

submodel of the system under consideration. When a load Fi is applied to a beam i with physical dimensions
li = (Li, bi, hi) and an elastic modulus Ei, these relations predict the deflections ṽi = (ṽi(si,1), . . . , ṽi(si,ni)) at
positions si = (si,1, . . . , si,ni). We denote this as

ṽi =M(Ei, Fi, li, si). (4.40)
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Figure 4.4: A simply supported beam.

When beam deflections are measured in three-point bending tests for each member i = 1, . . . , n in the population,
multilevel inversion allows for optimal data analysis in experimental situations where the inputs of Eq. (4.40)
are subject to uncertainty.

4.8.2 Probabilistic inversion
We begin with Bayesian probabilistic inversion, on the basis of which we demonstrate how one can quantify

the material variability within the ensemble of beams in a series of bending tests. A numerical experiment is
therefore set up as follows. We consider a number of n = 100 beams with well-known dimensions Li = 1 m
and bi = hi = 10 cm. Beams are subjected to concentrated loads Fi = 30 kN that are applied at midspan. For
i = 1, . . . , 100 Young’s moduli Ei are independently sampled from a lognormal distribution LN (Ei |µE , σE)
with mean µE = 15 GPa and standard deviation σE = 3 GPa. This corresponds to a coefficient of variation
cE = 20 %. After having set up the experiment, the hyperparameters θE = (µE , σE) as well as beam-specific
moduli Ei will be treated as unknowns. At ni = 3 positions si = (si,1, si,2, si,3) with si,1 = 25 cm, si,2 = 50 cm
and si,3 = 75 cm beam deflections ṽi = (ṽi(si,1), ṽi(si,2), ṽi(si,3)) are computed according to Eq. (4.39). In order
to take measurement uncertainty and forward model imperfection into account, we perturb the predictions
ṽi with noise terms εi = (εi,1, εi,2, εi,3). Those terms are independently sampled from Gaussian distributions
N (εi; 0,Σi) with Σi = σ2

i I3 and σi = 0.1 mm. Eventually vi = ṽi + εi represent the pseudo data that will
become analyzed with respect to the QoI θE = (µE , σE).

In many circumstances expert knowledge about the QoI θE is available prior to analyzing the data. This
knowledge can be accounted for by eliciting a suitable prior distribution π(θE). Herein we employ a proper
Bayesian prior π(θE) = π(µE)π(σE) with independent marginals. As measured in units of GPa those marginals
are given as uniform distributions π(µE) = U(0, 100) and π(σE) = U(0, 30). This is supposed to represent an
experimental situation where one cannot elicit informative priors, nonetheless one is confident enough to assign
this weakly informative and flat prior with its upper and lower bounds.

Ultimately probabilistic inversion can be summarized as the estimation of the QoI θX ≡ θE with the
deflection measurements 〈yi〉 ≡ 〈vi〉. Beam-specific Young’s moduli 〈xi〉 ≡ 〈Ei〉, that are not of immediate
inferential interest, are considered nuisance to that end. Experimental conditions 〈di〉 ≡ 〈(Fi, li, si)〉, that the
experiments where subject to, and prediction error models 〈Σi〉 are assumed to be known. The distributions
fX |ΘX (xi |θX) ≡ LN (Ei |µE , σE) and πΘX (θX) ≡ π(θE) represent the available structural and parametric
prior knowledge, respectively. The emerging posterior will be of the form π(θX |〈yi〉) ≡ π(θE |〈vi〉). It can be
directly sampled or accessed via the QoI-marginals of the joint posterior π(〈xi〉,θX |〈yi〉) ≡ π(〈Ei〉,θE |〈vi〉). A
DAG corresponding to probabilistic inversion is provided in Fig. 4.2(b).

4.8.2.1 MCMC

Generally we employ a joint rather than a marginal problem formulation. For the fidelity reasons that were
discussed in Section 4.7.3 this allows for exact posterior computation where an approximation is only introduced
in as much as MCMC sampling is concerned. Moreover a joint posterior features a richer structure which will
provide new insights into multilevel inversion. All computations will be serially done on a contemporary Intel
Xeon CPU.

The joint posterior π(〈Ei〉,θE |〈vi〉) is sampled by means of a blockwise random walk Metropolis algorithm.
A practical problem of random walk samplers in high dimension is to carefully tune the proposal distribution.
For complex multivariate posterior distributions this is a cumbersome procedure that poses severe difficulties.
However, in multilevel inversion one can advantageously exploit the “symmetry” of the problem in the latent
variables. Assuming that separate inverse problems i with 1 ≤ i ≤ n are not severely ill-posed, latent variables of
the same uncertainty type are expected to behave similarly in the sense that their marginal posteriors resemble
one another. Moreover, due to the indirectness of borrowing strength, their mutual correlations are expected
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to be rather small. Along these lines the “effective dimensionality” is lower than the number of unknowns
suggests. This discussion motivates that MCMC updates are done in blocks 〈Ei〉 and (µE , σE). We find that
with Gaussian jumping distributions the algorithm can be easily tuned in such a way that blockwise acceptance
rates range between 20 % and 40 %. Avoiding lengthy convergence times in high-dimensional problems requires
smart initialization, too. Again we proceed by exploiting the structure of the multilevel system. The block 〈Ei〉 is
initialized with solutions of separate inverse problems, while two-stage estimates are used in the hyperparameter
block (µE , σE).

In order to assure duly completed posterior exploration we perform a number of convergence checks. The
algorithm is initialized in regions of the parameter space that had not been visited before and the convergence
behavior of the Markov chain is monitored. We detect that the chain eventually reaches the same posterior
modes again. In Fig. 4.5 trace plots of a converging Markov chain are shown for its µE and σE components.
They have been initialized at µ(0)

E = 50 GPa and σ(0)
E = 15 GPa, i.e. in the middle of their priorly admissible

intervals. While the mean hyperparameter µE directly converges as shown in Fig. 4.5(a), we observe a different
behavior for the spread hyperparameter σE . From Fig. 4.5(b) it can be seen that the latter chain tends to higher
values prior to attraction towards the posterior mean. For the given initialization this is a systematic effect that
indicates a posterior correlation in the hyperparameters (µE , σE). Eventually the Markov chain converges within
ca. 400 MCMC iterations. Apart from such visual inspections we generally rely on Gelman-Rubin diagnostics for
parallel chains [83, 84].
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Figure 4.5: Trace plots of a converging Markov chain. For n = 100 the converging Markov chain is shown for µE in
(a) and for σE in (b). Being initialized at µ(0)

E = 50 GPa and σ(0)
E = 15 GPa the Markov chain converges within ca. 400

MCMC iterations. In equilibrium the Markov chain samples the posterior around its mean.

In Fig. 4.6 the MCMC sample autocorrelations are plotted for the QoI (µE , σE) and for an intermediate
variable Ei with i = 1. It can be seen how the autocorrelation function (ACF) drops until it becomes
indistinguishable from zero. This behavior governs the quality of the sample as a posterior representative.
Especially the ACF of Ei shown in Fig. 4.6(c) motivates more efficient updating schemes in future research.
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Figure 4.6: Sample autocorrelation functions. For a run with n = 100 the MCMC sample autocorrelation function is
plotted for µE in (a), for σE in (b) and for E1 in (c). The sample autocorrelation determines the effective MCMC sample
size.
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4.8.2.2 Results: Posterior marginals

We analyze the data 〈vi〉1≤i≤100 as well as its subconfigurations 〈vi〉1≤i≤10, 〈vi〉1≤i≤20 and 〈vi〉1≤i≤50. This
allows to assess how the number of experiments n influences the identification of the QoI. For each of the runs
N = 107 MCMC iterations are performed. As a general rule we discard the initial 1% of the total number of
iterations of each Markov chain as a burn-in period. The total algorithm runtime adds up to t = 3.85 h for
n = 10 and to t = 4.66 h for n = 100. The resulting posterior marginals of µE and σE are shown in Fig. 4.7. A
statistical summary of these marginals can be found in Table 4.1, where the mean, mode, standard deviation (SD)
and coefficient of variation (CV) are listed. With increasing number of processed experiments n, Bayesian point
estimates (mean, mode) approach the true values µE = 15 GPa and σE = 3 GPa while measures of estimation
uncertainty (SD, CV) expectedly decrease.
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Figure 4.7: Posterior marginals of the QoI. Corresponding to various numbers of experiments n, the marginal posterior
densities of µE and σE are shown in (a) and (b), respectively. For increasing n, the posterior uncertainty in estimating
the QoI θE = (µE , σE) with µE = 15 GPa and σE = 3 GPa steadily decreases.

Table 4.1: Summary of the QoI posterior marginals.

µE [GPa] [ ] σE [GPa] [ ]
Mean Mode SD CV Mean Mode SD CV

n = 10 15.98 15.43 2.06 0.13 4.73 3.54 3.55 0.75
n = 20 15.48 15.36 0.74 0.05 3.18 2.90 0.65 0.20
n = 50 15.20 15.17 0.46 0.03 3.17 3.08 0.37 0.12
n = 100 15.02 15.00 0.30 0.02 3.02 2.97 0.24 0.08

4.8.2.3 Results: Two-dimensional posteriors

Showing posterior marginals may hide possibly existing dependency structures or the lack thereof. Those
constitute a substantial result of Bayesian data analysis, though. Hence Fig. 4.8 shows two-dimensional posteriors
where interesting correlation properties were discovered. The two-dimensional posterior of (µE , σE) is plotted in
Fig. 4.8(a). According to the posterior probability model these two parameters are correlated with a linear Pearson
coefficient of correlation rµE ,σE = 0.40. Note that these parameters were assumed to be independent in accord
with their prior model. The joint posterior Eq. (4.32) can also feature a correlation between hyperparameters
and experiment-specific parameters. In Figs. 4.8(b) and 4.8(c) the two-dimensional posteriors of (µE , Ei) and
(Ej , Ei) with i = 50 and j = 75 are imaged.

4.8.3 Residual calibration
There are situations where the strong assumption of known residual variances Σi = σ2

i I3 is somewhat
restrictive. Thus we generalize multilevel inversion as in Section 4.8.2 by treating σE ≡ σi as a global unknown.
In units of mm the corresponding parametric prior is set to a uniform distribution π(σE) = U(0, 0.5). Otherwise
the experimental setup of probabilistic inversion is used.

The standard deviation σE of the residual model N (εi |0, σ2
EI3) is introduced as an extra unknown in the

model Eq. (4.31) and in the posterior Eq. (4.32). Consequently the joint prior is given as π(〈Ei〉, µE , σE , σE) =
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Figure 4.8: 2D posteriors of (µE , σE), (µE , E50) and (E75, E50). The two-dimensional posteriors of (µE , σE), (µE , E50)
and (E75, E50) are shown. Being priorly independent the components µE and σE are seen to be correlated a posteriori.
The linear Pearson coefficient of correlation amounts to rµE ,σE = 0.40.

π(σE)π(µE)π(σE)
∏n
i=1 LN (Ei |µE , σE). For the joint likelihood function one has L(〈Ei〉, σE ; 〈vi〉) =

∏n
i=1N (vi

|M(Ei, Fi, li, si), σ2
EI3). Brought together this leads to a joint posterior density that has the shape π(〈Ei〉, µE , σE ,

σE |〈vi〉) ∝ L(〈Ei〉, σE ; 〈vi〉)π(〈Ei〉, µE , σE , σE).
We sample from this posterior by appending a block for the additional unknown σE in the MCMC updating

scheme. In order to assess the influence of the amount of data on the final results, independent runs are performed
for n = 10, 20, 50 and 100. In Fig. 4.9 the relevant posterior marginals for the inference of the residual model
σE are shown. A short summary of the these marginals is provided in Table 4.2. The higher the number of
analyzed experiments n, the better the true value σE = 0.1 mm has been revealed. This proves that one can
indeed estimate the parameters of the prediction error model in the context of multilevel calibration. If this is
not of interest for its own sake, it still avoids the requirement of perfect knowledge of the error variance. In
addition we observed that introducing an uncertainty in the residual model hardly affects the inference of the
QoI in probabilistic inversion.
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Figure 4.9: Posterior marginals of σE . The marginal posterior
of σE is shown for different numbers of data n.

Table 4.2: Summary of the σE -marginals.

σE [10−5 m] [ ]
Mean Mode SD CV

n = 10 11.00 10.23 1.90 0.17
n = 20 8.68 8.38 1.01 0.12
n = 50 10.65 10.50 0.77 0.07
n = 100 9.97 9.90 0.50 0.05

4.8.4 Uncertain conditions
In the following we describe an experimental situation where the inference of the QoI θE is hampered by

additional uncertainties in the experimental conditions. Experimental conditions are formally treated as nuisance
parameters with prescribed uncertainties. More specifically, we do not assume that the loads Fi are perfectly
known anymore. In contrast, we assume that they are ζi-type variables, i.e. they are uncertain yet they follow
a known distribution. This represents a well-known situation where the loads Fi that the testing machine
actually applies can only be imprecisely adjusted. In fact, while a targeted load in each experiment is chosen, the
physically realized load Fi may be uncertain. This is accounted for by a prescribed distribution N (Fi; µFi , σ2

Fi
)

where µFi is the targeted load and σFi represents the degree of uncertainty that is inherent to the test machinery.
The setup for conducting a numerical experiment is similar to the one specified in Section 4.8.2. For

n = 50 beams we set the beam dimensions li and measurement positions si as before. Elastic moduli Ei are
randomly drawn from LN (Ei |µE , σE) as previously detailed. In contrast to plain probabilistic inversion, for
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i = 1, . . . , n experiment-specific loads Fi are independently sampled from normal distributions N (Fi; µFi , σ2
Fi

)
with µFi = 30 kN and σFi = 3 kN. This equates to a coefficient of variation cFi = 10 %. Note that such a high
degree of uncertainty is unlikely to be encountered in a real-case experiment. It is used here to accentuate the
results presented below, though. The realized loads Fi will be treated as unknowns whereas the hyperparameters
θFi = (µFi , σFi), i.e. the targeted load and its uncertainty, will be treated as knowns. In accordance with
Eq. (4.39) synthetic measurements vi = ṽi +εi are generated again. The prior distribution π(θE) = π(µE)π(σE)
is also chosen as previously stated.

The problem of probabilistic inversion under additional prescribed nuisance reads as follows. The hyperpa-
rameters θX ≡ θE are the QoI whereas experiment-specific unknowns 〈xi〉 ≡ 〈Ei〉 and 〈ζi〉 ≡ 〈Fi〉 are considered
nuisance. With measurements 〈yi〉 ≡ 〈vi〉 the QoI can be inferred. Experimental-specific knowns consist of the
hyperparameters 〈θZi〉 ≡ 〈θFi〉, the experimental conditions 〈di〉 ≡ 〈(li, si)〉 and the residual covariances 〈Σi〉.
Parametric Bayesian prior knowledge is given by πΘX (θX) ≡ π(θE) whereas fX |ΘX (xi |θX) ≡ LN (Ei |µE , σE)
and fZ(ζi; θZi) ≡ N (Fi; µFi , σ2

Fi
) are structural prior distributions. Within a joint approach a posterior of the

form π(〈xi〉, 〈ζi〉,θX |〈yi〉) ≡ π(〈Ei〉, 〈Fi〉,θE |〈vi〉) arises. Eventually one is interested in the QoI-marginals
π(θX |〈yi〉) ≡ π(θE |〈vi〉) only. A DAG corresponding to this experimental situation is shown in Fig. 4.2(c).

4.8.4.1 Results: Hyperparameters

We sample the joint posterior π(〈Ei〉, 〈Fi〉,θE |〈vi〉) where nuisance variables 〈Fi〉 are explicitly accounted for.
In a blockwise manner MCMC sweeps are accomplished for (µE , σE), 〈Ei〉 and 〈Fi〉 which constitute different
blocks. Blockwise proposal distributions are again adjusted in order to obtain acceptance rates in between 20 %
and 40 %. Each Fi in the block 〈Fi〉 is initialized at F (0)

i = µFi , i.e. the structural prior mean. Other than that
initialization, convergence checks and burn-in are accomplished as before. For N = 107 MCMC iterations the
total computation time amounts to t = 7.18 h. The resulting posterior marginals of µE and σE can be seen in
Fig. 4.10. A statistical summary is provided in Table 4.3 where the mean, mode, SD and CV of the marginals
are itemized.
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Figure 4.10: Posterior marginals of the QoI. The marginal posteriors of µE and σE are provided in (a) and (b),
respectively. Three experimental scenarios are investigated: the proper treatment of the additional uncertainty, an
idealized situation where one would precisely know the loads, and the case of a parsimonious model where the uncertainty
remains unrecognized.

Table 4.3: Summary of the QoI posterior marginals.

µE [GPa] [ ] σE [GPa] [ ]
Mean Mode SD CV Mean Mode SD CV

Proper treatment 15.47 15.41 0.51 0.03 3.17 3.05 0.46 0.14
Oracle scenario 15.16 15.13 0.47 0.03 3.26 3.15 0.39 0.12
Ignorance scenario 15.65 15.60 0.52 0.03 3.61 3.51 0.43 0.12

We try to assess the impact of the uncertainty that had been introduced in the loads Fi on the estimation of
the QoI θE = (µE , σE). To that end we pursue the following two strategies. First of all we estimate the QoI
while treating the realized loads Fi as if they were part of the experiment-specific knowns di. This “what-if”
or “oracle” scenario actually describes the hypothetical situation that we met in plain probabilistic inversion.
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It does not describe the realistic scenario of uncertain conditions ζi that we are actually investigating. Yet
this way of proceeding sheds light on how the prescribed uncertainty in the loads affects the inference of the
QoI. For N = 107 and t = 4.33 h the results to probabilistic inversion are added to Fig. 4.10. With respect to
this idealized situation, one can reassess the previous results of properly treating the loads as uncertain. The
introduction of the uncertainty in the loads had actually shifted the posterior modes and raised the level of
estimation uncertainty accordingly.

Second of all we investigate the case that the uncertainty N (Fi; µFi , σ2
Fi

) in the applied loads Fi is simply
disregarded. Either it has not been recognized by mistake or it has been intentionally dropped by making
simplifying assumptions in favor of a parsimonious model. Rather than treating the loads as belonging to the
unknowns ζi, we erroneously treat them as such experimental conditions d≈i that only approximately describe
the prevailing conditions di. While the data has been created under di, data analysis is carried out under d≈i .
This describes a situation where the experimenter targets a load F≈i = µFi , but the testing machine actually
realizes Fi. If this uncertainty N (Fi; µFi , σ2

Fi
) is not accounted for or not recognized at all, the analyst will

accomplish inference under the spurious assumption that the loads had taken on their targeted values F≈i
during experiment execution. For N = 107 and t = 3.75 h the resulting posteriors are added to Fig. 4.10. Our
interpretation is that dropping the uncertainty of Fi corrupts the estimation of the QoI and results in misleading
estimates of posterior uncertainty, whereas the proper treatment of all uncertainties yields results that are closer
to the idealized “oracle” scenario.

4.8.4.2 Results: Intermediate variables

Sampling the joint posterior π(〈Ei〉, 〈Fi〉,θE |〈vi〉) of the entirety of unknowns provides further interesting
insights. Apart from the QoI-marginals one can examine the posterior model of experiment-specific loads Fi,
notwithstanding that they are considered nuisance. Fig. 4.11 contains two different posteriors involving some
Fi. In Fig. 4.11(a) the posterior marginal of a pinpoint load Fi is shown for i = 23. The identification of
specifically applied loads Fi is subject to rather high levels of posterior uncertainty. This is an issue of statistical
identifiability. When both Ei and Fi are uncertain and various combinations of these can explain the observation
vi equally well, then those combinations (Ei, Fi) cannot be distinguished a posteriori. Of course, the reason is
that only the ratio Fi/Ei in Eq. (4.39) can be identified. It is therefore interesting to investigate the posterior
correlation between the load Fi and the modulus Ei of an experiment i. The two-dimensional posterior of
(Ei, Fi) for i = 20 that is shown in Fig. 4.11(b) serves as an example. Posterior mass is assigned to suitable
parameter constellations (Ei, Fi) that well-explain the measurement vi. As expected the posterior is strongly
correlated with a linear coefficient of correlation rF20,E20 = 0.99.
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Figure 4.11: Posteriors of intermediate variables. In (a) the posterior marginal of F23 and its structural prior
N (F23; µF23 , σ

2
F23 ) with µF23 = 30 kN and σF23 = 3 kN are shown. The posterior is centered around the actual

value F23 = 27.24 kN. The two-dimensional posterior of (F20, E20) with rF20,E20 = 0.99 is shown in (b).

4.8.5 Borrowing strength
As pointed out in Section 4.6, Bayesian multilevel modeling allows for “optimal combination of information”

or “borrowing strength”. Here we demonstrate this inferential mechanism and investigate its underlying flow of
information for the previous application example. The Bayesian model of probabilistic inversion Eq. (4.31) is
considered. However, as opposed to probabilistic inversion we declare experiment-specific elastic moduli 〈Ei〉 as
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the QoI whereas the hyperparameters θE are considered nuisance. Herein we highlight the optimal inference of a
single Ei0 for some i0 ∈ {1, . . . , n}.

The experimental setup is similar to the one described in Section 4.8.2. For n = 50 beams, elastic moduli Ei
are randomly sampled from LN (Ei |µE , σE). Beam dimensions li, measurement positions si and the applied
loads Fi are chosen as before. With Eq. (4.39) beam deflections ṽi are predicted. Synthetic data vi = ṽi + εi are
generated by perturbing the predictions ṽi with noise. For this purpose noise terms εi are independently sampled
from Gaussian distributions N (εi; 0,Σi). We choose Σi = σ2

i I3 with σi = 0.1 mm for i 6= i0 and σi0 = 0.1 cm.
The latter describes a comparably large deviation that differs from the setup of Section 4.8.2. This choice serves
the purpose of clearly illustrating the inferential mechanism of optimal combination of information.

Eventually optimal combination of information reads as the following problem. With noisy data 〈yi〉 ≡ 〈vi〉
an experiment-specific xi0 ≡ Ei0 has to be ideally estimated, i.e. taking all available sources of information
into account. The hyperparameters θX ≡ θE as well as 〈x 6=i0〉 ≡ 〈E6=i0〉 are considered nuisance to that
end. Experiment-specific knowns are 〈di〉 ≡ 〈(Fi, li, si)〉 and 〈Σi〉. The resultant posterior will be of the form
π(xi0 |〈yi〉) ≡ π(Ei0 |〈vi〉). Subsequent to formulating the joint posterior π(〈xi〉,θX |〈yi〉) ≡ π(〈Ei〉,θE |〈vi〉),
the QoI-marginals can be easily extracted. Other than that, the experimental setup of probabilistic inversion is
adopted. Thus the experiment can be visualized by the DAG in Fig. 4.2(b), too.

4.8.5.1 Results: Information accumulation

We conduct simple updating, sequential filtering and multilevel inversion for estimating Ei0 , as introduced in
Section 4.6. First of all we start with the simple Bayesian updating approach that was introduced in Section 4.6.1.
By the method of composition we draw K = 105 samples (E(1)

i0
, . . . , E

(K)
i0

) from the mixture prior π(Ei0)
that corresponds to Eq. (4.35). With this sample the mixture prior can be evaluated as the corresponding
one-dimensional KDE with Gaussian kernel functions. The posterior π(Ei0 |vi0) results from conditioning on the
piece of data vi0 . This univariate posterior is explored in N = 105 MCMC iterations for which the program
execution time amounts to t = 5.86 h. The final result of this simple updating approach is shown in Fig. 4.12(a).

Second of all we conduct the sequential Bayesian filtering program that was proposed in Section 4.6.2. In
N = 107 MCMC iterations that take t = 3.95 h, probabilistic inversion for estimating θE is executed with
the data 〈v6=i0〉. MCMC samples from the resultant posterior π(θE |〈v6=i0〉) are used to sample the compound
distribution π(Ei0 |〈v 6=i0〉) in Eq. (4.36) via the composition method. Subsequently a lognormal fit to these
samples acts as the prior for Ei0 . This prior and the arising posterior distribution π(Ei0 |〈v6=i0〉,vi0) are plotted
in Fig. 4.12(b). In t = 0.01 h of execution time N = 105 MCMC samples of the univariate posterior were sampled.
By comparison of the two posteriors in Fig. 4.12, the shrinkage of the posterior uncertainty from π(Ei0 |vi0)
to π(Ei0 |〈v 6=i0〉,vi0) becomes apparent. Both posteriors follow from conditioning on the data vi0 , they update
different priors π(Ei0) and π(Ei0 |〈v 6=i0〉), though. In the first place this proves that Bayesian priors are a valid
source of information. Moreover, this principally shows how learning about Ei0 can be indirectly supported by
the evidence that 〈v6=i0〉 contains with regard to θE .
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(a) Simple updating.
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Figure 4.12: Bayesian updating and filtering. The mixture prior π(Ei0 ) and the posterior π(Ei0 |vi0 ) of simple updating
are shown in (a). Sequential filtering is based on the more informative mixture prior π(Ei0 |〈v6=i0〉) and the corresponding
posterior π(Ei0 |〈v6=i0〉, vi0 ) that are given in (b).

Lastly we perform Bayesian multilevel analysis as described in Section 4.6.3. Sampling the joint posterior
π(〈Ei〉,θE |〈vi〉) allows to straightforwardly extract samples from its marginal π(Ei0 |〈vi〉) in Eq. (4.37). This
is accomplished in t = 4.57 h for N = 107 algorithm iterations. The posterior and the previous inferential
distributions relevant for Ei0 are plotted in Fig. 4.13. In addition to that Table 4.4 recapitulates the different
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approaches. Results are also provided from a second series of runs that were independently carried out on top
of the first one. The motivation is to show that borrowing strength is a not a random but a systematic effect.
The accumulation of information concerning Ei0 manifests in the progressively decreasing uncertainty in the
distributions. At every stage of the estimation plan, a certain proportion of the available information has entered
the analysis and has been translated into a gain of knowledge related to Ei0 . Only the multilevel posterior
π(Ei0 |〈vi〉) entirely aggregates the available information.

elastic modulus Ei0 [GPa]

p
ro
b
a
b
il
it
y
d
en

si
ty

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25
π(Ei0 )
π(Ei0 |〈v 6=i0〉)
π(Ei0 |vi0 )
π(Ei0 |〈v 6=i0〉, vi0 )
π(Ei0 |〈vi〉)
true value

(a) Summary of the 1st series.
elastic modulus Ei0 [GPa]

p
ro
b
a
b
il
it
y
d
en

si
ty

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25
π(Ei0 )
π(Ei0 |〈v 6=i0〉)
π(Ei0 |vi0 )
π(Ei0 |〈v 6=i0〉, vi0 )
π(Ei0 |〈vi〉)
true value

(b) Summary of the 2nd series.

Figure 4.13: Accumulation of information. In (a) and (b) the estimations of Ei0 are summarized for two series of runs.
The true values are Ei0 = 13.96 GPa and Ei0 = 16.35 GPa in the 1st and 2nd series, respectively. Uncertainties in
identifying these values reflect the amount of information processed in simple updating, sequential filtering and multilevel
inversion.

Table 4.4: Posterior summaries of estimating Ei0 .

1st series: Ei0 [GPa] [ ] 2nd series: Ei0 [GPa] [ ]
Mean Mode SD CV Mean Mode SD CV

Simple updating 15.23 14.31 2.38 0.16 19.02 17.30 3.93 0.21
Sequential filtering 14.82 14.32 1.83 0.12 16.58 16.07 2.03 0.12
Multilevel inversion 14.75 14.37 1.79 0.12 16.47 16.12 1.85 0.11

The assumption of well-known loads Fi may be overly optimistic in experimental practice. As done in
Section 4.8.4 one could attach an additional prescribed uncertainty to those model inputs. In doing so we expect
similar results accompanied by a weakening of borrowing strength. Furthermore we expect an indirect form
of borrowing strength also to occur for the inputs of a prescribed uncertainty type. Actually the prescribed
uncertainty model does not permit for learning about a specific Fi0 by borrowing strength directly from 〈v 6=i0〉.
However, by optimally estimating Ei0 also learning Fi0 would be indirectly strengthened.

4.9 Conclusion and outlook
Bayesian multilevel model calibration has been developed as a consistent and comprehensive framework

for managing uncertainties in inverse problems. At the core of the such problems a forward model relates
physical parameters to observable quantities. This deterministic model has been surrounded by a probabilistic
representation of uncertainty, variability and error. For this purpose classical Bayesian inversion, hierarchical
statistical models and the predominant epistemic/aleatory conception of uncertainty have been utilized. The
inferential rationale of multilevel inversion, based on the conditioning, marginalization and transformation of
probability measures, has become transparent by laying the research focus on aspects of uncertainty quantification
and information accumulation. Fully Bayesian probabilistic inversion and borrowing strength have been suggested.
Furthermore we have originally elaborated on the “perfect” data limit. Our developments were driven by the
challenges of engineering applications and they ultimately allow for optimal data analysis in intricate situations
where evidence is scarce and uncertainty prevails.

An ensemble of structural elements of the same type, for all of which virtual tests are performed and pseudo
data are gathered, served as the basis for investigating a variety of experimental scenarios. The amenities of
Bayesian multilevel inversion were demonstrated by exercising inference in the chosen example applications
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under realistic uncertainty configurations. Probabilistic inversion, i.e. the identification of material variability
throughout a population of specimens, was accomplished and it was investigated how the amount of data
influences the estimation uncertainty . The constraints of perfectly known residual variances and experimental
conditions were loosened. In this context we calibrated the forward model prediction error and we studied how
the objective of probabilistic inversion is impeded by additional uncertainties in the experimental conditions.
Optimal combination of information, i.e. the ideal inference of specimen-specific properties, has been introduced
as a byproduct of the joint formulation of multilevel inversion. Especially in the engineering community this
is an aspect that is often overlooked. We examined the underlying inferential mechanisms and we identified
the computational obstacles, e.g. costly evaluations of the marginalized likelihood function or the curse of
high-dimensionality.

In conclusion, innovative techniques must be developed in order to overcome these difficulties for solving
“real-world” problems. Future research therefore includes the following items. For the marginal problem,
numerically efficient and acceptably accurate approximations of the integrated likelihood have to be developed.
Advanced MCMC techniques, that are custom-tailored for the specific structure of multilevel posteriors, have to
be devised for the joint problem. In this connection a numerical study involving HMC is in progress. For both
the marginal and the joint variant of multilevel inversion, the application of dedicated metamodeling techniques
promises drastic speedups. It will also be interesting to study the applicability and performance of optimal
transportation approaches [93, 94] to classical Bayesian inference in the context of multilevel estimation. Another
research question concerns the role of multimodality and severe ill-posedness of separate inverse problems in
Bayesian multilevel inversion.
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Hamiltonian Monte Carlo in
hierarchical inverse problems
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J. B. Nagel and B. Sudret. “Hamiltonian Monte Carlo and Borrowing Strength in Hierarchical Inverse Problems”.
In: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering 2.3,
B4015008 (2016), pp. 1–12. doi: 10.1061/AJRUA6.0000847

Abstract
Bayesian approaches to uncertainty quantification and information acquisition in hierarchically defined inverse

problems are presented. The techniques comprise simple updating, staged estimation and multilevel model
calibration. In particular the estimation of material properties within an ensemble of identically manufactured
structural elements is considered. It is shown how inferring the characteristics of an individual specimen can
be accomplished by exhausting statistical strength from tests of other ensemble members. This is useful in
experimental situations where evidence is scarce or unequally distributed. Hamiltonian Monte Carlo is proposed
in order to cope with the numerical challenges of the devised approaches. The performance of the algorithm is
studied and compared to classical Markov chain Monte Carlo sampling. It turns out that Bayesian posterior
computations can be drastically accelerated.

5.1 Introduction
Bayesian inference establishes a flexible framework for solving inverse problems. Given measured responses

of a forward model, it allows for reducing epistemic uncertainty of unknown parameters [1, 2] and, within the
context of hierarchical modeling, for quantifying the aleatory uncertainty of unobservables [3, 4]. The latter type
of problem is often encountered in social science or biological statistics. Yet it is of great interest for engineering
applications, too. It allows one to study the natural variability of physical parameters that cannot be directly
measured. This involves the variability of material properties as a result of the unavoidable uncertainties in the
manufacturing process or due to spatial and temporal changes in the environmental conditions [5, 6].

In the recent literature a number of approaches have been devised that aim at fitting the hyperparameters of
the aleatory distribution of forward model inputs [7–9]. These approaches build upon the marginalization of
varying inputs at the level of the likelihood function. This way of proceeding typically leads to low-dimensional
estimation problems where the major difficulty lies in computing the integrated likelihood. The joint inference
of the distributional hyperparameters and the experiment-specific realizations of the variables constitutes a
higher-dimensional problem [10–12]. Even though the marginalized and the joint problem variants are equivalent
with regard to hyperparameter calibration, the former formulation does not allow for the estimation of realizations
of the variable parameters. To this effect one has to rely on the joint problem formulation.

In this paper the joint parameter/hyperparameter inference is studied in view of reducing the uncertainty in
the parameters. The goal is to demonstrate the advantages of this formulation and to overcome its computational
difficulties. First, we investigate borrowing strength [13] as a means of information aggregation in inverse
problems. This statistical mechanism allows for an optimal estimation of individual material properties within a
specimen ensemble. We prove that this is valuable in experimental situations where uncertainty is dominant and
information is heterogeneous. Indeed these are characteristics of problems in civil engineering. Specifically the
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system under consideration is an ensemble of identically manufactured beams that are individually tested in a
series of experiments. A situation is considered where evidence is unevenly distributed throughout the ensemble
members, i.e. the properties of some members can be measured with high accuracy whereas others are poorly
informed by the data. Second, in order to alleviate problems of Markov chain Monte Carlo (MCMC) [14, 15]
for posterior exploration in high-dimensional parameter spaces, we propose Hamiltonian Monte Carlo (HMC)
[16]. The latter is an advanced MCMC technique that allows for gradient-assisted posterior computation with
auxiliary variables. We show that HMC is ideally suited and extremely efficient for borrowing strength in inverse
problems.

The main part of the paper is structured in the following way. Stochastic inversion and multilevel modeling are
reviewed first. On this basis, borrowing strength and information accumulation are investigated. An introduction
to HMC sampling is provided after that. In order to study the proposed methods, a numerical experiment with
simulated data is conducted. Concluding remarks are given in the end.

5.2 Multilevel inversion
Inversion is the inference of model parameters from noisy and limited data and is often formulated as statistical

estimation. This formulation encompasses a wide range of problems. Parameter estimation [1, 2] aims at inferring
unknown parameters x ∈ Rm of a physical forward modelM. This model predicts the outcomeM(x,di) of
i = 1, . . . , n experiments under known experimental conditions di. The discrepancy between predictions and
real data yi is accounted for by a statistical model yi =M(x,di) + εi. Here the residuals εi ∼ fEi(εi) capture
measurement errors, numerical approximations and model inadequacies. A widespread probabilistic formulation
rests on independent Gaussian distributions fEi(εi) = N (εi |0,Σi) with covariance matrices Σi. In Bayesian
inversion the prior distribution π(x) quantifies the epistemic parameter uncertainty of the quantities of interest
(QoI) x before the data are analyzed. With the likelihood function L(x) =

∏n
i=1 fEi(yi−M(x,di)) the posterior

probability density follows through Bayes’ law π(x|〈yi〉) ∝ L(x)π(x). Here the data from all experiments are
denoted as 〈yi〉 = (y1, . . . ,yn). The posterior represents the knowledge about the unknown parameter vector
after conditioning on the data. Apart from exceptional cases the posterior has no analytically closed form, thus
more often than not the challenge lies in sampling the posterior by means of MCMC [14, 15].

Another type of inverse problem arises when variations in the data yi are not only attributed to different
conditions di and random residuals εi, but also as a consequence of naturally varying forward model inputs
xi. Throughout the experiments i = 1, . . . , n those inputs take on unobservable realizations of conditionally
independent random variables (xi |θX) ∼ fX |ΘX (xi |θX). This conditional distribution represents aleatory
variability. Data are then represented as yi =M(xi,di)+εi. Prior to data analysis the distribution π(θX) encodes
the epistemic uncertainty of the hyperparameters θX . The described experimental situation is summarized as
the hierarchical model

(yi |xi) ∼ fEi(yi −M(xi,di)), (5.1a)
(xi |θX) ∼ fX |ΘX (xi |θX), (5.1b)

θX ∼ π(θX). (5.1c)

In Fig. 5.1 this model is visualized as a directed acyclic graph (DAG). Here nodes represent known or unknown
quantities while directed edges represent probabilistic or deterministic relations.

Probabilistic inversion [7–9] is the problem of estimating the unknown hyperparameters θX that are the
QoI. A likelihood for this class of problems can be obtained by the marginalization L(θX) =

∏n
i=1
∫
fEi(yi −

M(xi,di)) fX |ΘX (xi |θX) dxi. The posterior π(θX |〈yi〉) ∝ L(θX)π(θX) results from Bayes’ theorem. In
practice the integrated likelihood can be computed through stochastic integration [17] or Laplace’s method [18].
Multilevel inversion [12, 19] is the joint estimation of all unknowns (〈xi〉,θX) by conditioning on all knowns
〈yi〉. The corresponding joint posterior distribution is given as

π(〈xi〉,θX |〈yi〉) ∝
(

n∏
i=1

fEi(yi −M(xi,di))
)(

n∏
i=1

fX |ΘX (xi |θX)
)
π(θX). (5.2)

On the one side, the posterior Eq. (5.2) offers the possibility to pool information. Individual realizations xi can
be optimally inferred. This is known as optimal combination of information or simply as borrowing strength
[13]. In the subsequent section this possibility is investigated. On the downside, the high-dimensionality of the
parameter space is a serious challenge that may necessitate advanced MCMC sampling schemes. The number
of parameters in the vector determines the dimensionality of the parameter space. Let l and m denote the
dimensions of the spaces of the unknowns θX and xi, respectively. Then the posterior in Eq. (5.2) involves a
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Figure 5.1: DAG of the multilevel model.

(l +m · n)-dimensional parameter space, i.e. the dimension grows linearly with the sample size n. Unfortunately
this means that the computational cost increases with the number of experiments conducted. In order to
ameliorate this situation, HMC is later proposed as an efficient means to explore joint posteriors of the form
Eq. (5.2).

5.3 Combination of information
Information-wise the estimation of the unknowns in Eq. (5.1) can be based on the observed data yi,

the Bayesian prior π(θX), the structural knowledge fX |ΘX (xi |θX) and the information encapsulated in
fEi(yi−M(xi,di)). Now we focus on the optimal inference of an individual parameter xi0 for some i0 ∈ {1, . . . , n}.
Instead of merely inverting the observation yi0 for the corresponding xi0 , we solve the joint multilevel problem.
As it turns out, in doing so one can obtain more information about xi0 than what is contained in yi0 . One can
indirectly learn from the data 〈y 6=i0〉 = (y1, . . . ,yi0−1,yi0+1, . . . ,yn) that were collected in different experiments.
This is beneficial in the event of that the tests in experiment i0 are less informative, e.g. the associated data yi0
are less numerous or subject to a higher degree of measurement uncertainty. In order to demonstrate the effect
and to understand its underlying information flow, we pursue the following three strategies for the inference of
xi0 .

5.3.1 Simple updating
In this first approach inference of xi0 is based on the data yi0 , the structural knowledge fX |ΘX (xi0 |θX) and

the prior π(θX). By marginalizing the joint prior π(xi0 ,θX) = fX |ΘX (xi0 |θX)π(θX) over the hyperparameters
θX , the prior distribution of xi0 is written as

π(xi0) =
∫
fX |ΘX (xi0 |θX)π(θX) dθX . (5.3)

This compound probability distribution represents the uncertainty of xi0 prior to data analysis. Simple updating
of the prior π(xi0) by conditioning on yi0 leads to the posterior π(xi0 |yi0). While the observation yi0 has
entered the analysis of xi0 , the data 〈y 6=i0〉 have been neglected. In other words, the hierarchical problem
structure has been recognized but it has not yet been fully utilized. In constructing the prior Eq. (5.3) it has been
acknowledged that information about θX carries information about xi0 . However, the uncertainty in θX has
not been reduced with further data 〈y 6=i0〉. This simple updating approach establishes a m-dimensional inverse
problem that is considered isolated from the remainder of the considered system, i.e. if other realizations xi
with i 6= i0 are of inferential interest, analogous yet separate inverse problems have to be solved. A DAG-based
visualization of the described situation is provided in Fig. 5.2. The flow of information towards xi0 moves along
the conditional relationships.

5.3.2 Staged estimation
In the second approach the additional data that were disregarded above can be processed. Initially the

hyperparameters θX are inferred by probabilistic inversion of the data 〈y 6=i0〉. The posterior π(θX |〈y 6=i0〉)
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Figure 5.2: Simple updating.

obtained in this first step can be translated into the distribution

π(xi0 |〈y 6=i0〉) =
∫
fX |ΘX (xi0 |θX)π(θX |〈y 6=i0〉) dθX . (5.4)

It represents the uncertainty of xi0 following the analysis of 〈y 6=i0〉 but prior to analyzing yi0 . In a subsequent
parameter estimation step π(xi0 |〈y 6=i0〉) can be interpreted as a prior. The result of conditioning on yi0 is a
posterior distribution π(xi0 |〈y 6=i0〉,yi0). In a sequential way the estimation of xi0 has been based on the total
number of data 〈yi〉. In the first stage the posterior of θX can be equivalently computed as the solution to a l-
dimensional inference problem with a marginalized likelihood or as the marginal of the (l+m ·(n−1))-dimensional
multilevel posterior π(〈x 6=i0〉,θX |〈y 6=i0〉). The second stage involves m-dimensional Bayesian updating of xi0 .
The prior in Eq. (5.4) that is used in the second step contains a lower degree of uncertainty with respect to xi0
than the one in Eq. (5.3). In this sense it is a “better” prior. The staged approach is visualized in Fig. 5.3 where
initial probabilistic inversion is shown on the left, i.e. information accumulates at θX . The subsequent updating
step is shown on the right, i.e. information about xi0 is extracted.

Figure 5.3: Staged estimation.

5.3.3 Multilevel inversion
Multilevel analysis of xi0 is accomplished by constructing the joint posterior π(〈xi〉,θX |〈yi〉) in Eq. (5.2)

and subsequently integrating out nuisance. Since inferential attention is not focused on the parameters 〈x 6=i0〉
and hyperparameters θX , those are marginalized out. The corresponding marginal of xi0 is

π(xi0 |〈yi〉) =
∫
· · ·
∫
π(〈xi〉,θX |〈yi〉) dθX d〈x 6=i0〉, (5.5)

where the simplifying notation d〈x6=i0〉 = dx1 . . . dxi0−1dxi0+1 . . . dxn is used. For estimating xi0 the available
information has been processed as a whole. Most notably the data 〈y 6=i0〉 have been utilized for reducing the
posterior uncertainty of xi0 . In practice, if the (l+m ·n)-dimensional posterior π(〈xi〉,θX |〈yi〉) is computed via
an appropriate sampler, the marginal π(xi0 |〈yi〉) can be easily extracted by considering the corresponding xi0 -
components only. The integral in Eq. (5.5) does not have to be computed explicitly. This way also other posterior
marginals are obtained as a side product. Notwithstanding that the hyperparameters θX and realizations xi
other than xi0 are not of immediate interest, they are incidentally inferred. In Fig. 5.4 a DAG-based illustration
of the flow of information that governs the inference of xi0 is shown. We remark that staged estimation and
multilevel inversion formally resemble the Bayesian variants of filtering and smoothing [20], respectively, i.e.
concepts from data assimilation in dynamical systems.
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Figure 5.4: Multilevel inversion.

5.4 Hamiltonian Monte Carlo
In this section we shortly introduce the principles of Hamiltonian Monte Carlo or hybrid Monte Carlo (HMC)

that was originally introduced in [16]. More comprehensive introductions can be found in [21–23]. HMC sampling
allows one to obtain a widely decorrelated posterior sample by suppressing the diffusive random walk behavior
of standard MCMC techniques. This is realized by embedding the parameter space in a higher-dimensional
phase space and sampling from an appropriately defined auxiliary distribution that allows to extract the desired
posterior as a marginal. The formulation draws on the Hamiltonian formalism of classical mechanics. More
specifically it is inspired by a fictional classical particle moving in a potential well that is proportional to
the negative log-density of the posterior. Candidate states are proposed following a dynamical simulation in
the augmented state space. In doing so the search in the parameter space is guided by first-order derivative
information from the posterior density. It allows for nonlocal MCMC moves that span whole regions of the
parameter space that carry significant posterior probability mass.

HMC was originally developed for computational approaches to theoretical particle physics [16], where it
accelerates the stochastic simulation of high-dimensional integrals [24]. Afterwards the potential for statistical
applications was recognized [25]. Currently HMC has attracted greater attention in statistically and mathemati-
cally oriented scientific communities. Numerous extensions and generalizations have been proposed in the recent
literature [26–29]. Notably there is the powerful yet costly Riemannian manifold HMC [30, 31]. HMC and its
enhanced variants are applied in an increasing number of studies [32–34].

However, HMC-like algorithms are still widely underacknowledged for engineering problems down to the
present day. Applications in structural dynamics and finite element modeling form exceptions [35, 36]. Likewise
this holds for hierarchical statistical models. Although the software package Stan [37] offers an adaptive
HMC-variant [38] for classical hierarchical models, i.e. without physical forward modeling, we are only aware of
a very few studies wherein HMC is investigated [39, 40]. A semi-separable Hamiltonian for Riemannian manifold
HMC sampling is proposed in [39]. Re-parametrizations of hierarchical models [41] in the context of HMC
sampling are discussed in [40].

5.4.1 The MH algorithm
The principle of MCMC sampling is the construction of an ergodic Markov chain over the prior support

that has the posterior as its stationary distribution. A prototypical class of MCMC techniques is based on the
Metropolis-Hastings (MH) algorithm [42, 43]. More general introductions can be found in [14, 15].

Let π0(q) be the prior and π1(q) ∝ L(q)π0(q) the posterior of the unknown quantities q = (q1, . . . , qd) ∈ Rd.
The MH algorithm is started at an initial state q(0) from the prior domain. Then it realizes a Markov chain with a
long-run distribution π1(q) by repeatedly proceeding as follows. For a state q(t) of the Markov chain in iteration
t, a candidate state q(?) ∼ P (q(?) |q(t)) is sampled from an instrumental jumping distribution P (q(?) |q(t)). This
proposal is then accepted as the new state with probability

α
(
q(?) |q(t)

)
= min

{
1, π1(q(?))P (q(t) |q(?))
π1(q(t))P (q(?) |q(t))

}
. (5.6)

In this case the new state in iteration t+ 1 is q(t+1) = q(?). In case of rejection the chain remains in its state
q(t+1) = q(t). The Markov chain transition kernel defined this way is easily seen to satisfy detailed balance with
respect to the posterior. This is a sufficient condition for leaving the posterior invariant. An appealing feature of
the MH correction Eq. (5.6) is that it only calls for evaluations of the unscaled posterior density. Moreover it
gives ample scope for the design of efficient proposal distributions P .
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A common MCMC updating scheme is the random walk Metropolis (RWM) sampler. It is based on local
proposals that are sampled from a Gaussian distribution N (q(?) |q(t),Σq) with mean q(t) and covariance matrix
Σq. This leads to the classical diffusive random walk behavior. Note that for this symmetric proposals the
acceptance probability in Eq. (5.6) reduces to α = min{1, π1(q(?))/π1(q(t))}. Optimal scalings of the RWM in
high-dimension are investigated in [44, 45].

5.4.2 Effective sample size
Due to the Markovian updates MCMC samples are generally autocorrelated. The autocorrelation governs

the quality of the MCMC sample with respect to posterior expectations µg = E[g(q)] =
∫
g(q)π1(q) dq of

a function of interest g : Rd → R [46, 47]. Under certain conditions one can show that the Markov chain
q(0), q(1), q(2), . . . satisfies a central limit theorem [48, 49]. For a large number of iterations N →∞ the sample
means ḡ = N−1∑N

t=1 gt with gt = g(q(t)) approach a Gaussian distribution N (ḡ |µḡ, σ2
ḡ) with mean µḡ = µg

and asymptotic variance

σ2
ḡ =

σ2
g

N

(
1 + 2

∞∑
s=1

ρs

)
=
σ2
g

N
τint =

σ2
g

Neff
. (5.7)

Here the variance σ2
g = Var[gt] and the lag-s autocorrelation ρs = Cov[gt, gt+s]/σ2

g are statistical moments
with respect to the stationary distribution. The integrated autocorrelation time in Eq. (5.7) is defined as
τint = 1 + 2

∑∞
s=1 ρs. Based on this one can define an effective sample size Neff = N/τint which quantifies an

equivalent number of independent draws from the posterior featuring the same standard error σḡ = σg/
√
Neff as

the autocorrelated MCMC sample of size N . In this sense τint and Neff are measures of the imprecision and
effectiveness of simulating µg as ḡ, respectively. Note that with the projection g : q 7→ qj for j ∈ {1, . . . , d} these
considerations straightforwardly apply to each posterior marginal.

5.4.3 Systems from classical physics
By analogy with two systems from classical physics, i.e. Newtonian and statistical mechanics [50, 51], the

basic machinery of HMC is now outlined. We consider a hypothetical classical system with canonical coordinates
(q,p), i.e. the positions q ∈ Rd and conjugate momenta p ∈ Rd. Statistical QoI q are identified with positions of
the system and momentum variables p are additionally introduced. The Hamiltonian of the system is given as

H(q,p) = V (q) + T (p), (5.8)

where V (q) and T (p) are the potential and kinetic energy, respectively. The potential energy in Eq. (5.8) is
defined as

V (q) = − log (L(q)π0(q)) , (5.9)

where π0(q) and L(q) are the prior density and the likelihood function, respectively. The kinetic energy term in
Eq. (5.8) is defined as

T (p) = p>M−1p

2 , (5.10)

where M is some symmetric and positive-definite mass matrix. Often it is a multiple M = mId of the identity
matrix Id or of the general diagonal form M = diag(m1, . . . ,md).

As a first analogy to classical physics one considers Hamiltonian dynamics [50]. The evolution of the system
in fictitious time τ is then governed by Hamilton’s equations of motion (EoM)

dq
dτ = ∂H

∂p
,

dp
dτ = −∂H

∂q
. (5.11)

The governing differential equations in Eq. (5.11) determine the system trajectory over time. This dynamics
satisfies time reversibility (invariance of the dynamics under the transformation (τ,p) 7→ (−τ,−p)), energy
conservation (dH/dτ = 0) and preservation of the phase space volume (Liouville’s theorem).

As a second analogy to classical physics one considers the distribution of the canonical ensemble from
statistical mechanics [51]. The fictitious temperature and the Boltzmann constant are set to one. Then the
frequency distribution of the positions and the momenta is the Boltzmann distribution

Π1(q,p) = 1
Z

exp(−H(q,p)) = L(q)π0(q)
Z

exp
(
−p
>M−1p

2

)
. (5.12)
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Here the normalizing constant Z is the canonical partition function. It does not have to be explicitly known for
HMC sampling. By construction, i.e. due to the definitions in Eqs. (5.8) to (5.10), the joint distribution Eq. (5.12)
has the formΠ1(q,p) = π1(q)π1(p). It features the posterior π1(q) ∝ exp(−V (q)) = L(q)π0(q) as its q-marginal.
Moreover the p-marginal of Eq. (5.12) is a multivariate Gaussian π1(p) ∝ exp(−T (p)) = exp(p>M−1p/2) with
covariance matrix M . The partition function Z absorbs the normalization factors of π1(q) and π1(p).

5.4.4 The HMC algorithm
The core idea of HMC is to realize an ergodic Markov chain over the 2d-dimensional configuration space of the

classical system that was defined above. This chain is constructed in such a way that it features Eq. (5.12) as its
stationary distribution, with the posterior as a marginal. After the HMC algorithm is initialized at a certain q(0)

one iteratively applies the following Markovian transition. Given the current positions q(t) of the Markov chain
at iteration t, the corresponding momenta are directly sampled from the distribution π1(p(t)) = N (p(t) |0,M).
The system configuration (q(t),p(t)) is then evolved over some arbitrary time interval, after which it has reached
a new configuration (q(?),p(?)). Following this, the updated position q(?) is the new state q(t+1) of the Markov
chain in iteration t + 1, i.e. acceptance by default. Since we are only interested in positions, the auxiliary
momentum p(?) is discarded. Time reversibility, the conservation of energy and the preservation phase space
volume are important dynamical properties of the EoM in Eq. (5.11). Based on the latter two properties one
can show that the transition defined above leaves the Boltzmann distribution Eq. (5.12) invariant [23].

The abovementioned ideal HMC updating scheme avoids the symmetric and strongly localized proposals of
RWM-type algorithms. Properly tuned the dynamical transitions may cover wide regions of the position space
that accumulate significant posterior mass. It can be extremely efficient for sampling high-dimensional and
strongly correlated posterior distributions. This makes HMC a promising candidate sampler for hierarchical
models that are higher-dimensional and correlated per definition.

In practice idealized HMC updating based on exactly solving the EoM cannot be accomplished. Instead
one has to resort to numerical simulations of Hamiltonian dynamics based on suitable integrators [52, 53]. A
standard choice is the leapfrog time-stepping scheme [54], but note that also other symplectic integrators could
be used [55]. The system is evolved from its configuration at time τ1 into the one at τ2 > τ1 by an iterative
computation of the position and momentum variables

q(τ + ∆τ) = q(τ) + ∆τM−1p(τ + 1
2∆τ), (5.13a)

p(τ + 3
2∆τ) = p(τ + 1

2∆τ)−∆τ ∂V
∂q

(q(τ + ∆τ)). (5.13b)

Starting from (q(τ1),p(τ1)) ≡ (q(t),p(t)) the momentum p(τ1 + 1
2∆τ) = p(τ1)− 1

2∆τ ∂V∂q (q(τ1)) is computed in
a half step. Thereafter alternating full steps are done for the positions and momenta according to Eq. (5.13).
Finally a half step is taken from p(τ2 − 1

2∆τ) to p(τ2) = p(τ2 − 1
2∆τ)− 1

2∆τ ∂V∂q (q(τ2)). At the end the system
has evolved into (q(τ2),p(τ2)) ≡ (q(?),p(?)). This way the computation over the time interval τ2 − τ1 = L∆τ
has been discretized into a discrete number of steps L with a finite stepsize ∆τ . A visualization of this time
integration scheme is provided in Fig. 5.5. The full and half steps of the time evolution of the system are shown.

Figure 5.5: Leapfrog time stepping.

An appealing property of the leapfrog is that it approximates Hamiltonian dynamics in a way that exactly
maintains time reversibility and volume preservation. The total energy is approximately conserved with an
error that asymptotically is of the order O(∆τ2). This introduces a characteristic scale of the stepsize that is
related to stable trajectories. In order to compensate for the introduced approximation of Hamiltonian dynamics,
candidate configurations (q(?),p(?)) are accepted with probability

α
(
p(?), q(?) |p(t), q(t)

)
= min

{
1, exp

(
H
(
p(t), q(t)

)
−H

(
p(?), q(?)

))}
. (5.14)

91



Hamiltonian Monte Carlo in hierarchical inverse problems

This is plain vanilla Metropolis correction in the 2d-dimensional phase space for a symmetric proposal distribution
[23]. Volume preservation and time reversibility of the leapfrog integration are the properties that ensure the
symmetry in the proposals. Strictly speaking one would have to negate the momenta at the end of the trajectory,
however, those are disregarded anyhow. Due to Eq. (5.14) the acceptance rate depends on the degree as to
which energy conservation is violated. The combined transition satisfies detailed balance with respect to the
Boltzmann distribution Eq. (5.12). Thus the Markov chain q(0), q(1), q(2), . . . exhibits the stationary distribution
π1(q). Notice that, similar to the MH algorithm, HMC sampling requires only evaluations of the unnormalized
posterior density.

Additionally the time integration in Eq. (5.13) requires the computation of first-order partial derivatives of
the unscaled posterior log-density in Eq. (5.9). In turn this requires the differentiation of the forward model
with respect to its inputs. For simple models this can be done analytically [56]. Otherwise one has to rely on
the adjoint method [57], automatic differentiation [35] or the straightforward use of finite differences [36]. It
is interesting to note that derivatives do not have to be calculated exactly. Although this may decrease the
acceptance rate, such approximations are managed in the correction step Eq. (5.14). An interesting idea would
be to employ such approximations of the forward model for which derivatives can be analytically obtained, e.g.
polynomial chaos metamodels [58].

Other practical issues relate to the handling of parameter constraints [59, 60] and the optimal tuning of the
algorithm [61, 62]. Free algorithmic parameters of the HMC are the number of leapfrog steps L and the timestep
∆τ . Together they determine the total trajectory length L∆τ . Furthermore the mass matrix M has to be set.
The latter is often chosen to be a diagonal matrix M = diag(m1, . . . ,md). Individually setting the entries mi

for i = 1, . . . , d then allows to account for different posterior scales of qi, e.g. with mi = 1/Var[qi] where Var[qi]
is the marginal posterior variance. A more in-depth discussion of related issues is found in [22].

5.5 Numerical experiments
In order to demonstrate the optimal inference of individual parameters, we devise a simple example within

the domain of structural engineering for which we conduct a simulated computer experiment. It should be
understood as a benchmark of optimal combination of information in data analysis of engineering systems. An
experimental situation is investigated where data are collected for an ensemble of identically manufactured
beams. The acquired specimen-specific data are informative to variable degree. Therefore the goal is to optimally
exploit the available information in the individual assessment of ensemble members that are poorly supported by
experimental evidence.

The system under consideration is a set of simply supported beams i = 1, . . . , n with well-known lengths Li,
widths bi and heights hi. Beams are composed out of a material which is subject to aleatory uncertainty in its
material properties, say the Young’s modulus Ei. For each individual beam i the elastic modulus Ei is assumed
to be constant along its main axis. Across the sample of beams Young’s moduli Ei are distributed according to
a lognormal distribution LN (Ei |µE , σ2

E) with mean value µE = E[Ei] and variance σ2
E = Var[Ei]. At positions

sj with j = 1, . . . , ni and 0 ≤ sj ≤ Li/2 the deflections vi(sj) of the beams under concentrated point loads Fi at
midspan are calculated as

vi(sj) = Fisj
48EiIi

(
3L2

i − 4s2
j

)
. (5.15)

Here the moment of inertia is given as Ii = bih
3
i /12. A symmetric expression holds for positions sj with

Li/2 ≤ sj ≤ Li. In Fig. 5.6 a sketch of a simply supported beam is drawn. In a series of experiments measured
beam deflections can be used to estimate individual realizations Ei or the hyperparameters (µE , σE). Herein
we consider the inference of the Young’s modulus Ei0 of a beam i0 ∈ {1, . . . , n} for which it is assumed that
experimental evidence is scarce. A simulated computer experiment is conducted as described below.

Figure 5.6: Simply supported beam.

We choose a set of n = 100 beams with well-known and constant dimensions Li = 1 m and bi = hi = 10 cm
that are subjected to loads Fi = 30 kN. The elastic moduli Ei are randomly sampled from a lognormal distribution
with mean µE = 15 GPa and standard deviation σE = 3 GPa. We simulate a synthetic set of pseudo-data
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yi = (yi1, yi2, yi3) for each beam. For j = 1, 2, 3 pseudo-observations yij = vi(sj) + εij are generated for positions
si = (s1, s2, s3) with s1 = 25 cm, s2 = 50 cm and s3 = 75 cm by perturbing the corresponding model predictions
Eq. (5.15). The residuals εi = (εi1, εi2, εi3) are independently sampled from centered Gaussians N (εi |0,Σi)
with covariance matrices Σi = diag(σ2

i1, σ
2
i2, σ

2
i3). We choose comparably small residual standard deviations

σij = 0.01 cm for i 6= i0 and comparably large deviations σi0j = 0.1 cm. This represents an experimental situation
where the ensemble of beams is tested, however, the data are less informative about the specimen i0.

We assume that the hyperparameter values (µE , σE) are not known, yet prior or expert knowledge is available.
The inferential prior of the hyperparameters is set as the independent distribution π(µE , σE) = π(µE)π(σE)
with weakly informative but proper uniform distributions π(µE) = U(µE |0, 100) and π(σE) ∼ U(σE |0, 30) (in
GPa) as marginals. This represents the scenario that the available prior knowledge does not allow to assign
more informative priors. Nonetheless the hyperparameter values are physically bounded by zero from below and
they can be priorly bounded from above. Thus values that are outside of the specified interval can be excluded.

In the following we conduct inference of the Young’s modulus Ei0 of a beam i0. The hyperparameter values
(µE , σE) and the randomly sampled elastic moduli 〈Ei〉 are treated as “unknowns”. This includes the “true”
parameter value Ei0 = 17.01 GPa. The measurement locations 〈si〉, applied loads 〈Fi〉 and physical beam
dimensions 〈Li, bi, hi〉 are the well-known experimental conditions. Further knowns comprise the parametric prior
π(µE , σE), the levels of measurement uncertainty 〈Σi〉 and the data 〈yi〉. The described experimental setup is
studied next. Simple Bayesian updating, staged estimation and multilevel inversion are demonstrated. The flow
of information is investigated and insight into the inferential mechanism is provided. Low-dimensional posteriors
are generally computed by means of a RWM algorithm, while higher-dimensional posteriors are computed by
means of HMC/RWM hybrid sampler. The latter is based on updating the parameters via Hamiltonian dynamics
while updating the hyperparameters with a random walk. Finally the implementation of the samplers is described
in detail. Furthermore, the efficiency of HMC/RWM sampling is contrasted with pure RWM sampling.

5.5.1 Simple updating

The compound prior Eq. (5.3) may not be available in analytical form, however, one can sample the prior by the
method of composition [63]. To that end one draws K samples from the hyperparameter distribution π(µE , σE).
Subsequently one draws a sample from the parameter distribution LN (Ei |µE , σ2

E) for each hyperparameter
realization. As desired the sample of parameter values is distributed according to the mixture in Eq. (5.3). We
draw K = 105 random samples of the mixture prior. In Fig. 5.7 a kernel density estimate of the mixture is
shown. It is seen that the mixture is approximated well by kernel smoothing. In the following MCMC analysis
the prior of Ei0 is therefore represented as the obtained kernel density estimate. We accomplish Bayesian
updating by sampling the one-dimensional posterior π(Ei0 |yi0) with a simple RWM sampler. In Fig. 5.8 the
simulated posterior is shown. The posterior of Ei0 has the mean µEi0 = 21.73 GPa and the standard deviation
σEi0 = 5.49 GPa. With a coefficient of variation CV = 25 % this corresponds to a relatively high degree of
posterior uncertainty. The maximum a posteriori (MAP) estimate of the modulus Ei0 , i.e. the posterior mode, is
found to be ÊMAP

i0
= 19.07 GPa. Compared to the true value Ei0 = 17.01 GPa the relative approximation error

of the MAP estimate is ε = 12 %.
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Figure 5.7: Simple updating: prior.
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Figure 5.8: Simple updating: posterior.
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5.5.2 Staged estimation
First we conduct probabilistic inversion to infer the hyperparameters (µE , σE) with data 〈y 6=i0〉. The high-

dimensional posterior π(〈E 6=i0〉, µE , σE |〈y 6=i0〉) is therefore computed via HMC sampling. The implementation
of the sampler is described later on. For the time being we remark that N = 106 posterior samples are drawn
within a runtime of ca. t = 1 h. A thinned sample of the posterior π(µE , σE |〈y 6=i0〉) is used to draw K = 105

samples from Eq. (5.4) by the composition method. The resulting sample from π(Ei0 |〈y6=i0〉) is shown in Fig. 5.9
along with a lognormal fit to the sample. Since the lognormal fit reproduces the desired distribution adequately
well, it is utilized as the prior π(Ei0 |〈y 6=i0〉) in the subsequent updating step. The resulting univariate posterior
π(Ei0 |〈y6=i0〉,yi0) is shown in Fig. 5.10. The final posterior of Ei0 has the mean µEi0 = 17.44 GPa and the
standard deviation σEi0 = 2.17 GPa. With CV = 12 % the posterior features a lower degree of uncertainty as
compared to simple updating. Likewise the relative error ε = 1 % of the MAP estimate ÊMAP

i0
= 16.84 GPa is

much smaller.

Young’s modulus Ei0
[GPa]

0 5 10 15 20 25 30 35 40

p
ro
b
a
b
il
it
y
d
en
si
ty

0

0.05

0.1

0.15

0.2

mixture samples
lognormal fit

Figure 5.9: Staged estimation: prior.
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Figure 5.10: Staged estimation: posterior.

Summarized, the posterior π(Ei0 |〈y 6=i0〉,yi0) shown in Fig. 5.10 is a better representation of the true value
than π(Ei0 |yi0) depicted in Fig. 5.8. The reason is that the prior π(Ei0 |〈y 6=i0〉) plotted in Fig. 5.9 contains more
information than π(Ei0) shown in Fig. 5.7. This illustrates the flow of information from data 〈y 6=i0〉 towards Ei0
that was already discussed. The information exchange takes place in an indirect way. While staged estimation
requires the consecutive solution of two different problems, i.e. probabilistic inversion and subsequent updating,
multilevel inversion is more elegant and satisfactory in the sense that it allows to consistently perform those two
separate tasks at once. This is demonstrated next.

5.5.3 Multilevel inversion
Full multilevel inversion is finally performed by sampling the joint posterior π(〈Ei〉, µE , σE |〈yi〉). The

employed MCMC sampler is described and benchmarked afterwards. Samples from the marginal Eq. (5.5) can
easily be extracted by discarding samples from 〈E 6=i0〉 and (µE , σE). The marginal posterior π(Ei0 |〈yi〉) is
plotted in Fig. 5.11. It has the mean µEi0 = 17.44 GPa and the standard deviation σEi0 = 2.18 GPa which
rounds up to CV = 13 %. The relative error of the MAP estimate ÊMAP

i0
= 16.86 GPa is ε = 1 %. As a summary

the simulated posteriors π(Ei0 |yi0), π(Ei0 |〈y6=i0〉,yi0) and π(Ei0 |〈yi〉) that are relevant to the identification
of Ei0 are shown in Fig. 5.12. The corresponding means, modes and standard deviations (SD) are listed in
Table 5.1.

Table 5.1: Summary of estimating Ei0 .

Approach Mean [GPa] Mode [GPa] SD [GPa]
Simple updating 21.73 19.07 5.49

Staged estimation 17.44 16.84 2.17
Multilevel inversion 17.44 16.86 2.18

As expected, the posterior π(Ei0 |〈yi〉) shown in Fig. 5.11 is nearly identical to π(Ei0 |〈y 6=i0〉,yi0) in Fig. 5.10.
By comparison with the corresponding posterior π(Ei0 |yi0) in Fig. 5.8, the additional amount of information
relating to Ei0 that has been gained by utilizing the full set of observations 〈yi〉 becomes apparent from the
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Figure 5.11: Multilevel inversion: posterior.
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Figure 5.12: Summary of the posteriors.

associated shrinkage of the posterior uncertainty. A manifest advantage of multilevel inversion over staged
estimation is that it incidentally provides information about all unknowns (〈Ei〉, µE , σE). The posterior
π(〈Ei〉, µE , σE |〈yi〉) accumulates information such that the whole data 〈yi〉 contributes to the collective learning
process. This is advantageous in the case that not just a single realization Ei0 but a larger subset of 〈Ei〉 is of
inferential interest. While staged estimation mainly served the purpose of illustrating the presence and manner
of the abovementioned learning process, it is practical in experimental situations where data are not collected at
the same time. In this case the sequential approach allows to analyze newly observed data without the need for
resolving the full multilevel problem again.

5.5.4 Algorithmic efficiency
The efficacy and viability of HMC sampling for exploring multilevel posteriors is now investigated. In the last

two sections the algorithm was used to compute the posteriors π(〈E6=i0〉, µE , σE |〈y 6=i0〉) and π(〈Ei〉, µE , σE |〈yi〉).
The latter involves a 102-dimensional parameter space. In order to assess the performance gain by HMC sampling
the algorithm is compared to a classical RWM algorithm. The RMW sampler is implemented in a blocked
manner where the block of hyperparameters and the one of the parameters are updated separately. Gaussian
proposal distributions with covariance matrices Σ(µE ,σE) = diag(0.3, 0.3) and Σ〈Ei〉 = diag(σ2

1 , . . . , σ
2
n) are used.

The latter is defined by setting σi0 = 0.3 and σi = 0.002 for i 6= i0. This takes the different scales of the
posterior marginals into account. The sampler is initialized at maximum likelihood estimates of individual
parameters in separate deterministic inverse problems and two-stage estimates of the hyperparameters. This
procedure initializes the algorithm close to the posterior modes. The MCMC execution time to draw N = 107

posterior samples amounts to ca. t = 5 h. Acceptance rates of ca. 22 % for the parameters and ca. 25 % for the
hyperparameters are noticed.

The HMC/RWM sampler features the same blockwise updating structure. Hyperparameters are updated by
the same random walk updates that were described above. The parameters are updated with HMC proposals.
For the present problem all necessary partial derivatives are analytically obtained. A diagonal mass matrix
M = diag(m1, . . . ,mn) is used. The point masses are set to mi = 20 for i 6= i0 and to mi0 = 0.15 for the QoI.
This tuning accounts for the different marginal scales of the parameters. More details about relative parameter
scalings can be found in [22]. For the dynamical simulation the parameters are set as follows. The number
of leapfrog steps is set to L = 8. At the start of the trajectory the discretized stepsize ∆τ in fictional time
is randomized within the interval [0.15, 0.16]. It is kept fixed throughout each dynamical simulation, though.
This avoids potentially occurring problems such as slow mixing or even of non-ergodicity due to (nearly) exact
periodicity of the system trajectories [64]. The used parameter tuning leads to stable trajectories while it also
ensures that long distances in the parameter space are traversed. Initialization is accomplished as before. A
number of N = 106 MCMC iterations are executed within an execution runtime of ca. t = 1 h. The dynamical
HMC parameter updates are accepted with a rate of ca. 100 %. In the hyperparameter block the acceptance rate
is ca. 25 %.

The Markov chains produced by the RWM and the HMC sampler are compared with each other. In Figs. 5.13
and 5.14 the converged chains for Ei0 are shown for 5000 MCMC iterations. These trace plots show how the
chains sample the corresponding posterior marginals around their means. Obviously the mixing properties of
the HMC chain are better than the ones of the RWM chain. The sample autocorrelation function (ACF) gives
greater insight into the characteristics of the samplers. In Figs. 5.15 and 5.16 the ACFs of the two chains are
shown for the QoI Ei0 . It can be seen that for RWM sampling the ACF drops to zero within ca. 1000 MCMC
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iterations. In contrast the ACF of the HMC chain dies down within ca. five iterations.
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Figure 5.13: RWM: Trace plot of Ei0 .
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Figure 5.14: HMC: Trace plot of Ei0 .
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Figure 5.15: RWM: ACF of Ei0 .
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Figure 5.16: HMC: ACF of Ei0 .

With the ACF one can approximately assess the effective sample size Neff in Eq. (5.7). A variety of methods
for assessing the estimation variance σ2

Ēi0
= N−1σ2

Ei0
τint and the effective sample size Neff = N/τint have been

proposed [65, 66]. The simplest method rests upon the substitution of σ2
Ei0

and τint by estimators [67, 68]. We
use a sample estimate σ̂2

Ei0
and a truncated series approximation τ̂int = 1 + 2

∑r
s=1 ρ̂s. The sum is cut off at the

smallest lag r for which the absolute value of the empirical autocorrelation ρ̂r drops below a certain threshold
|ρ̂r| < 0.01. For the RWM chain with a total number of iterations N = 107 that were done in t = 5 h one obtains
an effective sample size Neff = 3 · 104 and a Monte Carlo standard error (MCSE) σĒi0 = 1.5 · 10−2 GPa for
estimating Ei0 . The effective sample size and the MCSE for the HMC chain with N = 106 and t = 1 h equal to
Neff = 7 · 105 and σĒi0 = 2.5 · 10−3 GPa, respectively. A summary of those rounded values is given in Table 5.2.
This amounts to a considerable speedup of about two orders of magnitude.

Table 5.2: Summary of sampling Ei0 .

Algorithm N Neff MCSE t Neff/t

RWM 107 3 · 104 1.5 · 10−2 GPa 5 h 6 · 103 h−1

HMC/RWM 106 7 · 105 2.5 · 10−3 GPa 1 h 7 · 105 h−1

We observe that parameters different from Ei0 show similar mixing properties. In Figs. 5.17 and 5.18 the
ACFs of the HMC series are exemplarily shown for two other parameters Ei1 and Ei2 . For the former the ACF
vanishes almost instantaneously, which implies perfectly decorrelated updates. For the latter the ACF alternates
between positive and negative values before it eventually vanishes within ca. five MCMC iterations. While for a
reversible Markov chain the sum ρ2t + ρ2t+1 of autocorrelations at even-lag 2t and the adjacent odd-lag 2t+ 1
must be strictly positive [46], negative autocorrelations cannot be ruled out principally. However, they typically
do not occur for RWM updating schemes. For the nonlocal updates of HMC-like samplers, negative odd-lag
autocorrelations may indicate that the trajectory is too long. If the dynamical simulation starts above/below the
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posterior mean, then the trajectory tends to end below/above the mean. Altogether these observations suggest
that the overall performance of the HMC algorithm can be further improved, e.g. through a fine tuning of the
mass matrix.
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Figure 5.17: HMC: ACF of Ei1 .
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Figure 5.18: HMC: ACF of Ei2 .

5.6 Concluding remarks
Simple updating, staged estimation and multilevel inversion were proposed as Bayesian approaches to

uncertainty reduction and information gathering in hierarchically defined inversed problems. Multilevel inversion
was shown to outclass simple updating and staged estimation in terms of consistency and effectiveness. Specifically
it facilitates the coherent inference of the problem unknowns where available prior information and experimental
data are optimally combined. In the case that intermediate model variables are of inferential interest, this allows
for pooling statistical strength. The potential of borrowing strength was demonstrated for the optimal estimation
of material properties. The mutual exchange of information between specimens from a statistical ensemble
was investigated. Ensemble members that are subject to a high degree of uncertainty can be advantageously
assessed by exploiting information from members that are more strongly informed by the data. In our example
application this allowed to mitigate the influence of high measurement uncertainty.

Moreover posterior exploration in high-dimensional parameter spaces was addressed. HMC was proven
to be a practical and highly efficient sampler for hierarchical problems. For the system under consideration
it outperforms RWM by two orders of magnitude as measured by the number of effective posterior samples
that can be simulated within a given execution time. Put another way, for achieving a certain number of
effective draws it reduces the execution time by two orders of magnitude. That way the HMC algorithm enables
uncertainty quantification in more complex problems where the employment of classical MCMC techniques
would be unfeasible. The high computational cost associated with traditional algorithms may easily exceed the
available budget for problems that involve more sophisticated representations of uncertainty or more resource
intensive forward models.

With increasing dimensionality of the parameter space, e.g. due to a refined uncertainty model, HMC promises
to yield relative speedups that are even higher than the one observed in our benchmark application. For more
advanced forward models, efficient and sufficiently accurate means to evaluate their derivatives have to be
devised. A promising idea is the use of surrogate models such as polynomial chaos expansions. Research in this
direction is in progress.
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Chapter 6

Bayesian multilevel model calibration
with perfect data
Original publication
J. B. Nagel and B. Sudret. “Bayesian Multilevel Model Calibration for Inverse Problems Under Uncertainty with
Perfect Data”. In: Journal of Aerospace Information Systems 12.1 (2015), pp. 97–113. doi: 10.2514/1.I010264

Abstract
A probabilistic framework for Bayesian inference and uncertainty analysis is developed. It allows to address

inverse problems in experimental situations where data is scarce and uncertainty is ubiquitous. The uncertainty
characterization subproblem of the NASA Langley multidisciplinary uncertainty quantification challenge serves
as the motivating application example. From responses of a computational model the goal is to learn about
unknown model inputs that are subject to multiple types of uncertainty. This objective is interpreted and solved
as Bayesian multilevel model calibration. The zero-noise or “perfect” data limit is investigated. Thereby the
likelihood function is defined as a solution to forward uncertainty propagation. Posterior explorations are based
on suitable Markov chain Monte Carlo algorithms and stochastic likelihood simulations. An unforeseen finding
in this context is that the posterior distribution can only be sampled with a certain degree of fidelity. Partial
data augmentation is introduced as a means to improve the error statistics of likelihood estimations and the
fidelity of posterior computations.

6.1 Introduction
The NASA Langley multidisciplinary uncertainty quantification challenge has raised contemporary open

questions to uncertainty quantification (UQ) [1, 2]. Altogether it consists of five subproblems that deal with
uncertainty characterization, sensitivity analysis, uncertainty propagation, extreme case analysis and robust
design. These problems originate from a specific aerospace application which is part of greater efforts to
reduce the rate of fatal loss-of-control accidents [3–5]. An abstract and widely discipline-independent problem
formulation prompts researchers and practitioners from various fields in academia and industry to devise generic
solutions to the problems. A dynamically scaled, free-flight model of a remotely piloted, twin-turbine powered
transport aircraft is the physical system under consideration. It serves as a prototyping and experimentation
testbed for flight control in adverse situations, e.g. under structural damage or component failure. Parameter
uncertainties of this subscaled model reflect the uncertainties in aerodynamic conditions and losses in control
effectiveness.

In this contribution we address the uncertainty characterization subproblem of the challenge posed. With
given responses of a computational model the challenge is to learn about the unknown inputs that parametrize
the flying conditions. Throughout the experiments data are collected while model inputs are subject to epistemic
uncertainty and aleatory variability [6, 7]. Inference therefore focuses on physically fixed model parameters
as well as on so-called hyperparameters. The latter determine the distribution of such model inputs that
are variable during experimentation. We approach the problem from a Bayesian perspective to statistical
inversion and uncertainty quantification [8–10]. While classical Bayesian inversion allows to estimate constant
model parameters, the additional identification of hyperparameters requires hierarchical modeling approaches.
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Hierarchical models were mainly developed in biological statistics [11, 12] and they are only slowly being adopted
within the engineering community [13–15].

The goal of this paper is the development of a framework along with computational tools for attacking inverse
problems under aleatory and epistemic parameter uncertainty. We combine classical inversion and hierarchical
modeling into a Bayesian multilevel framework that allows to tackle the general class of problems that the
uncertainty characterization subproblem typifies. Within a probabilistic setting this eventually allows for an
elegant formulation and efficient numerical solution. The foundations of inverse modeling in conjunction with
“perfect” data, i.e. in the zero-noise limit, and parameter uncertainty are laid. Randomness in the data is then
solely attributed to a probability model of the input arguments of a computational “blackbox” solver. The
likelihood is formulated as a solution to uncertainty propagation. Since this renders its evaluation analytically
intractable, statistical estimators based on the Monte Carlo method and kernel density estimation are proposed.
In this context the induced type of posterior approximation is investigated. Heuristic ways of tuning free
algorithmic parameters, e.g. the kernel bandwidth, are presented. Partial data augmentation is proposed in order
to improve likelihood estimations through automatic kernel bandwidth selection and to enhance the fidelity of
the posterior.

The manuscript is organized as follows. In Section 6.2 a generic Bayesian multilevel framework for inversion
under uncertainty will be initially formulated. For the solution of the NASA Langley UQ challenge we will devise
a statistical model involving “perfect” data in Section 6.3. Computational key challenges posed by Bayesian
inference in the present context will be discussed in Section 6.4. The challenge problem will be cast as multilevel
inversion in Section 6.5 and in the subsequent Section 6.6 our results will be presented. In Section 6.7 data
augmentation will be utilized in order to ensure a sufficient degree of algorithmic efficiency and posterior fidelity.
We will conclude in Section 6.8 where the gathered experience from solving the NASA UQ challenge problem is
summarized.

6.2 Bayesian multilevel modeling
Due to the lack of a universally accepted terminology, we define a multilevel or hierarchical model as “an

assembly of submodels at different levels of a hierarchy”. The hierarchical structure can be constituted by
stochastic dependencies and deterministic maps between the quantities involved. According to that definition
multilevel modeling forms sort of an overarching theme in modern cross-disciplinary statistics. In the last two
decades it has been extensively studied from a frequentist [11, 12] and a Bayesian [16, 17] point of view. Adopting
the latter paradigm, prior elicitation [18, 19] and posterior computation [20, 21] are delicate issues that have been
discussed in the statistical literature. Applications of multilevel modeling encompass probabilistic inversion [22,
23] and optimal combination of information [24, 25]. Based on a probabilistic representation of both epistemic
uncertainty and aleatory variability, Bayesian multilevel modeling establishes a natural framework for solving
complex inverse problems under uncertainty. Inference can be accomplished by transforming, conditioning and
marginalizing probability distributions.

6.2.1 Uncertainty and variability
A forward model M : (m,x, ζ,d) 7→ ỹ represents the system or phenomenon under consideration. It formally

maps model inputs (m,x, ζ,d) ∈ Dm × Dx × Dζ × Dd to outputs ỹ = M(m,x, ζ,d) ∈ Dỹ ⊂ Rd. When
carrying out a number of experiments the variability of measured forward model responses can be attributed
to models of input uncertainty. There are fixed yet unknown model parameters m ∈ Dm ⊂ Rp, model inputs
ζ ∈ Dζ ⊂ Rr with perfectly known aleatory variability, input variables x ∈ Dx ⊂ Rq with imperfectly known
aleatory variability, and experimental conditions d ∈ Dd ⊂ Rs that are entirely known.

With respect to a number of i = 1, . . . , n experiments, forward model inputs are represented as deterministic or
stochastic objects within the Bayesian multilevel framework. Throughout the experiments data is acquired under
known but possibly different experimental conditions di. These model inputs di are therefore deterministically
represented. Fixed albeit unknown model parameters m are assumed to be constant over the experiments. In
Bayesian fashion they are represented as random variables M ∼ πM (m), where the Bayesian prior distribution
πM (m) accounts for a subjective degree of belief or prior knowledge about their true values. This is the Bayesian
conception of epistemic uncertainty.

Over the number of experiments varying model inputs ζ take on unknown experiment-specific realizations
ζi of conditionally independent random variables (Zi |θZ) ∼ fZ |ΘZ (ζi |θZ). The conditional distribution
fZ |ΘZ (ζi |θZ) with known hyperparameters θZ states a subjective degree of belief or prior knowledge about
the individual realizations ζi. This is a Bayesian notion of aleatory variability. Similarly model inputs x are
subject to variability and take on unknown experiment-specific realizations xi of conditionally independent
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random variables (Xi |θX) ∼ fX |ΘX (xi |θX). The hyperparameters θX determine this variability throughout
the experiments and are fixed but unknown. In turn they are modeled as random variables ΘX ∼ πΘX (θX),
where the distribution πΘX (θX) quantifies an a priori degree of plausibility. Random variables (X1, . . . ,Xn) ∼∫

(
∏n
i=1 fX |ΘX (xi |θX))πΘX (θX) dθX embody the prior knowledge about the experiment-specific realizations

xi.
Summarizing, marginal distributions πM (m) and πΘX (θX) represent parametric prior knowledge about

the true values of the model parameters m and the hyperparameters θX , whereas conditional distributions
fX |ΘX (xi |θX) and fZ |ΘZ (ζi |θZ) encapsulate structural prior knowledge about the problem, i.e. information
about experiment-specific xi and ζi.

6.2.2 Statistical data model
An integral constituent of many statistical approaches to inverse problems is a residual model. Real

observations yi often deviate from model predictions ỹi =M(m,xi, ζi,di) even if forward model inputs were
known with certainty. This discrepancy, which is due to measurement errors, numerical approximations and
model inadequacies, is often accounted for by a statistical data model yi = ỹi + εi. Prediction errors εi are
assumed to be realizations of random variables Ei ∼ fEi(εi), e.g. with normal distributions fEi(εi) = N (εi |0,Σi)
and experiment-specific, symmetric and positive-semidefinite covariance matrices Σi. It quantifies a degree of
imperfection of the forward model and experimental apparatus. Hence observations are viewed as realizations yi
of random variables (Yi |m,xi, ζi) with distributions f(yi |m,xi, ζi) = fEi(yi −M(m,xi, ζi,di)). The overall
model formulated thus far can be summarized as

(Yi |m,xi, ζi) ∼ fEi
(
yi −M(m,xi, ζi,di)

)
, (6.1a)

M ∼ πM (m), (6.1b)
(Xi |θX) ∼ fX |ΘX (xi |θX), (6.1c)

ΘX ∼ πΘX (θX), (6.1d)
(Zi |θZ) ∼ fZ |ΘZ (ζi |θZ). (6.1e)

This model is composed of conditional probabilistic and deterministic relations between the quantities involved.
As per our previous definition it is a generic Bayesian multilevel model. An intuitive model representation is
provided by a directed acyclic graph (DAG) [26, 27], such as shown in Fig. 6.1. In Section 6.3 we will devise a
model for analyzing “perfect” observations ỹi instead of the “imperfect” ones yi = ỹi + εi. Unlike the latter, the
randomness of the former is exclusively attributed to forward model input variability as discussed in Section 6.2.1.
Unless stated or denoted otherwise random variables in Eq. (6.1) are assumed to be (conditionally) independent.
This defines a joint overall probability density of all probabilistic quantities. By conditioning and marginalizing
this overall density at one’s convenience, one can derive meaningful probability densities. For inferential purposes
these are certain prior and posterior distributions that we will explain in the following.

Figure 6.1: DAG of the generic multilevel model. Vertices symbolize unknown ( ) or known ( ) quantities and directed
edges represent their deterministic ( ) or probabilistic ( ) relations. Model parameters m are constant over
i = 1, . . . , n experiments. The variability of experiment-specific realizations xi and ζi is determined by unknown or known
hyperparameters θX and θZ , respectively. Data can be interpreted as “perfect” ỹi = M(m,xi, ζi,di) or “imperfect”
observations yi = ỹi + εi with fEi(εi) = N (εi |0,Σi).
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6.2.3 Inference in multilevel models
In what follows 〈qi〉 denotes a tuple 〈qi〉1≤i≤n = (q1, q2, . . . , qn). Conditioned on the priorly known

hyperparameters θZ , the joint prior distribution of the unknowns (m, 〈xi〉, 〈ζi〉,θX) is given as

π
(
m, 〈xi〉, 〈ζi〉,θX |θZ

)
=
(

n∏
i=1

fX |ΘX (xi |θX)
)(

n∏
i=1

fZ |ΘZ (ζi |θZ)
)
πΘX (θX)πM (m). (6.2)

It summarizes the available parametric and structural prior knowledge. The joint posterior distribution of the
unknowns (m, 〈xi〉, 〈ζi〉,θX) is obtained by further conditioning the prior Eq. (6.2) on the data 〈yi〉. By virtue
of Bayes’ law this posterior is up to a scale factor found as

π
(
m, 〈xi〉, 〈ζi〉,θX |〈yi〉,θZ

)
∝

(
n∏
i=1

fEi
(
yi −M(m,xi, ζi,di)

))
π
(
m, 〈xi〉, 〈ζi〉,θX |θZ

)
. (6.3)

The posterior degree of plausibility about the quantities of interest (QoI) can be extracted by marginalizing the
posterior Eq. (6.3) over parameters considered nuisance [28, 29]. Provided (m,θX) are QoI and (〈xi〉, 〈ζi〉) are
nuisance parameters, the correspondingly marginalized posterior is

π
(
m,θX |〈yi〉,θZ

)
=
∫
Dnx

∫
Dn
ζ

π
(
m, 〈xi〉, 〈ζi〉,θX |〈yi〉,θZ

)
d〈xi〉d〈ζi〉, (6.4)

where d〈xi〉 = dx1 . . .dxn and d〈ζi〉 = dζ1 . . .dζn. Summarized the genuinely unique approach to Bayesian
inference in multilevel models is to construct the posterior of the QoI (m,θX) by conditioning on the knowns
(〈yi〉,θZ) and subsequently marginalizing out nuisance (〈xi〉, 〈ζi〉).

6.2.4 Marginalized formulation
Equivalently one could solve a marginal formulation of the multilevel calibration problem, with a marginal

prior π(m,θX) = πM (m)πΘX (θX) and a marginalized version of the likelihood L(〈yi〉|m,θX ,θZ) [30, 31].
One therefore factorizes the marginalized posterior Eq. (6.4) as

π
(
m,θX |〈yi〉,θZ

)
∝

(
n∏
i=1

f(yi |m,θX ,θZ)
)
πM (m)πΘX (θX), (6.5)

where f(yi |m,θX ,θZ) is the marginalized density of the observation yi. The aleatory variables (xi, ζi) have
been eliminated based on the integration

f(yi |m,θX ,θZ) =
∫
Dx

∫
Dζ

fEi
(
yi −M(m,xi, ζi,di)

)
fX |ΘX (xi |θX) fZ |ΘZ (ζi |θZ) dxi dζi. (6.6)

When defining the marginalized or integrated likelihood as L(〈yi〉|m,θX ,θZ) =
∏n
i=1 f(yi |m,θX ,θZ), the

marginal posterior Eq. (6.5) simply writes as π(m,θX |〈yi〉,θZ) ∝ L(〈yi〉|m,θX ,θZ)π(m,θX). Directly
computing the marginal posterior Eq. (6.4) involves a lower-dimensional parameter space compared to computing
the joint posterior Eq. (6.3). However, it requires the computation of the integrals in Eq. (6.6).

6.3 “Perfect” data model
In Section 6.2.2 the residual model was introduced as a representation of the “imperfection” of the forward

solver and measurement device. As a consequence, in Eq. (6.1a) observations were regarded as realizations
yi = ỹi + εi of random variables (Yi |m,xi, ζi) conditioned on direct forward model inputs. The residual
assumptions that led to Eq. (6.1a) had equipped the data space Dỹ with a probability model. We introduce the
term “imperfect” for this statistical data model in order to distinguish it from the following.

In this paper we are interested in the experimental situation where ỹi =M(m,xi, ζi,di) can be directly
observed, e.g. due to noise-free measurements and a “sufficiently accurate” forward simulator. Hereinafter we
will refer to this limiting case as to involve “perfect” data. Not being premised on a residual model, the data
are viewed as realizations ỹi of random variables (Ỹi |m,θX ,θZ) conditioned on the “highest-level” quantities.
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Provided an appropriate probability model f(ỹi |m,θX ,θZ) of those random variables, a Bayesian multilevel
model for “perfect” data can be written as

(Ỹi |m,θX ,θZ) ∼ f(ỹi |m,θX ,θZ), (6.7a)
(M ,ΘX) ∼ π(m,θX) = πM (m)πΘX (θX). (6.7b)

As before prior knowledge about the unknowns (m,θX) is embodied in Eq. (6.7b). As a function of the unknowns
(m,θX), with the density Eq. (6.7a) one can formulate a residual-free version of the likelihood

L
(
〈ỹi〉|m,θX ,θZ

)
=

n∏
i=1

f(ỹi |m,θX ,θZ). (6.8)

For reasons that will be discussed below, we call Eq. (6.8) the transformed likelihood. As usual Bayesian analysis
proceeds by conditioning the prior on the acquired data 〈ỹi〉. The posterior follows as

π
(
m,θX |〈ỹi〉,θZ

)
∝ L

(
〈ỹi〉|m,θX ,θZ

)
π(m,θX). (6.9)

Note that the notation of Eq. (6.9) is reminiscent of classical Bayesian inversion. Indeed the multilevel character
of the problem manifests in the likelihood function Eq. (6.8) that we will now specify in greater detail.

6.3.1 Forward uncertainty propagation
LetXi ∼ fX |ΘX (xi |θX) and Zi ∼ fZ |ΘZ (ζi |θZ) be the aleatory variables in Eqs. (6.1c) and (6.1e) that have

independent marginal densities for given hyperparameters (θX ,θZ). Now consider the mapMm,di : (xi, ζi) 7→
ỹi = M(m,xi, ζi,di) that the forward model defines for fixed inputs (m,di). For given (m,di,θX ,θZ) the
random variables in Eq. (6.7a) are constructed by forward propagation of the aleatory input uncertainties through
the functionMm,di(xi, ζi) into an output uncertainty. Provided the existence of a corresponding density, the
transformed random variables (Ỹi |m,θX ,θZ) =Mm,di(Xi,Zi) follow

f(ỹi |m,θX ,θZ) =
∫
Dx

∫
Dζ

δ
(
ỹi −Mm,di(xi, ζi)

)
fX |ΘX (xi |θX) fZ |ΘZ (ζi |θZ) dxi dζi. (6.10)

Here δ denotes the Dirac delta distribution. At this point it is to be noted that epistemic uncertainties are not
propagated through the forward model. The transformed density Eq. (6.10) establishes the proper probability
model in the space of data Dỹ and thereby defines the transformed likelihood function Eq. (6.8). More formally
one can derive Eq. (6.10) as the density function of a push-forward measure [32].

6.3.2 Relation between “imperfect” and “perfect” data
It is interesting to examine the relation between the “perfect” and the “imperfect” data model. The full

multilevel model Eq. (6.1) was defined by a cascade of random variables that were conditioned on one another.
Constructing the marginal model (Yi |m,θX ,θZ) in Eq. (6.6) was then based on the marginalization of aleatory
variables, whereas the mechanism to formulate the “perfect” data model (Ỹi |m,θX ,θZ) in Eq. (6.10) was their
propagation. Those two operations are related by writing (Yi |m,θX ,θZ) = (Ỹi |m,θX ,θZ) +Ei as the sum of
independent random variables. The convolution integral

f(yi |m,θX ,θZ) =
∫
Dỹ

f(ỹi |m,θX ,θZ) fEi(yi − ỹi) dỹi (6.11)

then establishes the relation between the distributions f(yi |m,θX ,θZ) and f(ỹi |m,θX ,θZ) of “imperfect” and
“perfect” data, respectively. Of course, when plugging Eq. (6.10) in Eq. (6.11) one easily re-derives Eq. (6.6).

For finite measurement uncertainty ‖Σi‖ > 0 the two models involving “imperfect” and “perfect” data describe
distinct experimental situations. However, in the limiting case ‖Σi‖ → 0 with E[((Yi |m,xi, ζi) − ỹi)2] → 0
and fEi → δ the marginalized likelihood approaches the transformed likelihood. Naturally this meets one’s
expectations. In classical Bayesian inversion the small-noise limit implies that the posterior of the unobservables
shrinks to exact solutions of the inverse problem, i.e. posterior consistency [33, 34]. In multilevel inversion,
however, the zero-noise limit leads to convergence of the posterior Eq. (6.5) to Eq. (6.9).
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6.3.3 Kernel density estimation
Since the transformed likelihood Eq. (6.8) will be rarely available in analytical form, one has commonly to

rely on numerical approximations. A possible approach is to simulate the response density Eq. (6.10) by Monte
Carlo (MC) sampling and kernel density estimation (KDE) [35, 36] and evaluate the likelihood accordingly [37,
38].

In the d-variate case, given a sample (ỹ(1), . . . , ỹ(K)) from some distribution with an unknown density f(ỹ),
a kernel smoothing (KS) estimate of this density is given as f̂(ỹ) = K−1∑K

k=1KH(ỹ − ỹ(k)). The scaled kernel
KH(ỹ) = |H|−1/2K(H−1/2ỹ) is defined by a kernel function K and a symmetric and positive-definite bandwidth
matrix H. Common types of bandwidth matrices are multiples of the identity matrix H = h21d for h > 0 or
diagonal matrices H = diag(h2

1, . . . , h
2
d) with h1, . . . , hd > 0. According to certain criteria and assumptions,

“optimal” bandwidths are commonly selected to prevent over- and undersmoothing. This amounts to a classical
trade-off between the bias and the variance of the estimation. The mean squared error (MSE) of a KDE f̂(ỹ) at
a point ỹ can be decomposed into its variance and the square of its bias

MSE
[
f̂(ỹ)

]
= E

[(
f̂(ỹ)− f(ỹ)

)2] = Var
[
f̂(ỹ)

]
+ Bias2

[
f̂(ỹ)

]
. (6.12)

An optimal bandwidth normally strives to minimize the mean integrated squared error, i.e. when Eq. (6.12)
is integrated over ỹ, by balancing the variance against the bias. The KDE of a univariate density similar
to a Gaussian with kernels of the same type, can be based on Silverman’s normal reference rule [35], i.e.
h = (4/3K)1/5 σ̂. Here σ̂ is the standard deviation of the sample (ỹ(1), . . . , ỹ(K)).

Based on MC and KDE techniques one can estimate the target density Eq. (6.10). On top of that we propose
to estimate the transformed likelihood Eq. (6.8) through

L̂KS
(
〈ỹi〉|m,θX ,θZ

)
=

n∏
i=1

(
1
K

K∑
k=1
KH

(
ỹi − ỹ(k)

i

))
, with


x(k) ∼ fX |ΘX (x(k) |θX),
ζ(k) ∼ fZ |ΘZ (ζ(k) |θZ),

ỹ
(k)
i =M(m,x(k), ζ(k),di).

(6.13)

For k = 1, . . . ,K forward model responses ỹ(k)
i = M(m,x(k), ζ(k),di) are computed for given arguments

(m,di) and for further inputs x(k) and ζ(k) that are randomly sampled from their parent distributions. These
distributions fX |ΘX (x(k) |θX) and fZ |ΘZ (ζ(k) |θZ) are defined by values of the hyperparameters (θX ,θZ),
respectively.

With Eq. (6.13) we have a nonparametric statistical estimator of the likelihood Eq. (6.8) at hand. However,
this estimator is accompanied by additional free parameters, i.e. the type of kernel function K, the number of
samples K and the bandwidth H. As it will be discussed in the following, the application of classical criteria,
that usually assist in adjusting free parameters, is questionable in the context of posterior computation via
Markov chain Monte Carlo.

6.4 Bayesian computations
More often than not Bayesian posterior distributions do not have analytic closed-form solutions. Nevertheless

one can explore posteriors through Markov chain Monte Carlo (MCMC) sampling techniques [39]. The principle
of MCMC is to realize an ergodic Markov chain over the prior support whose invariant distribution equals the
posterior. Let π0(q) be the prior and π1(q) ∝ L(q)π0(q) the posterior of an unknown QoI q. The Markov
kernel K defines the density K(q(t), q(t+1)) of the transition probability from q(t) to q(t+1), i.e. the state of the
chain at times t and t + 1. The posterior π1(q) is said to be an invariant distribution of the Markov chain
if π1(q(t+1)) =

∫
π1(q(t))K(q(t), q(t+1)) dq(t). This is abbreviated as π1 = π1K. Detailed balance, i.e. time

reversibility π1(q(t))K(q(t), q(t+1)) = π1(q(t+1))K(q(t+1), q(t)), is a sufficient condition for the Markov chain to
leave the posterior π1(q) invariant. It normally serves as the guiding principle for the construction of a Markov
chain appropriate for posterior exploration. The Metropolis-Hastings (MH) algorithm establishes a prototypical
class of MCMC techniques that relies on this principle [40, 41].

6.4.1 The Metropolis-Hastings algorithm
Initialized at q(0) the MH algorithm generates a Markov chain with steady-state distribution π1(q) by

iteratively applying the Markov chain transition kernel as follows. For a current state q(t) of the Markov chain
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a candidate state q(?) ∼ P (q(?) |q(t)) is sampled from a proposal distribution P (q(?) |q(t)). The proposal state
becomes accepted, i.e. q(t+1) = q(?), with probability

α
(
q(?) |q(t)

)
= min

(
1, π1(q(?))P (q(t) |q(?))
π1(q(t))P (q(?) |q(t))

)
. (6.14)

Otherwise it is rejected, i.e. q(t+1) = q(t). The MH transition kernel defined this way satisfies detailed balance.
Note that the MH correction Eq. (6.14) requires the computation of posterior ratios, hence only unscaled
posterior densities have to be evaluated. Classical random walk Metropolis sampling is based on local proposals,
e.g. sampling candidate states from a Gaussian q(?) ∼ N (q(?) |q(t),Σq) with mean q(t) and covariance matrix
Σq. Independence MH samplers are based on nonlocal proposals, e.g. sampling candidate states from the prior
q(?) ∼ π0(q(?)) or from some suitable approximation of the posterior q(?) ∼ π̂1(q(?)).

6.4.2 Key challenges
Typically MCMC sampling calls for a high number of forward model runs for likelihood evaluations in

Eq. (6.14). Besides that, the degree as to which MCMC samples are autocorrelated governs their quality as
posterior representatives. The design and efficient tuning of MCMC algorithms therefore aims at optimizing the
mixing properties, i.e. the speed of convergence of the Markov chain towards its equilibrium distribution. This is
a challenging and highly problem-dependent task. MCMC methods demand careful convergence diagnostics,
i.e. the assessment of when the Markov chain has reached its target distribution and has lost the dependency
on its initialization [42, 43]. Moreover MCMC suffers from difficulties in exploring high-dimensional parameter
spaces and multimodal posteriors. Multilevel model calibration poses further multilevel-specific MCMC burdens.
Sampling the posterior Eq. (6.9) imposes estimations of the likelihood Eq. (6.8) that is analytically intractable
[44].

6.4.3 Posterior fidelity
Due to Bayes’ law, deterministic closed-form approximations L̄ of the likelihood L directly induce approxima-

tions on the level of the posterior π̄1(q) ∝ L̄(q)π0(q). However, if the posterior is explored by means of MCMC
and calls to the likelihood function L are replaced by calls to a statistical estimator L̂, then a modification is
introduced on the level of the Markov chain transition kernel [45, 46]. There is no reason to expect that the
modified MH transition kernel with the “randomized” version of Eq. (6.14), leaves the posterior invariant, i.e. in
general π1 6= π1K̂. Consequentially there arises the question of whether an equilibrium distribution π̂1 = π̂1K̂
actually exists, and in the event of that it does, as to what extent the induced distribution π̂1 is in congruence
with the true posterior π1. In order to pay tribute to these issues we introduce the term posterior fidelity as a
qualitative measure of the similarity between π̂1 and π1.

Moreover there is the practical question of how free algorithmic parameters, e.g. the number of response
samples K and the kernel bandwidth H , can be set in order to provide a convenient trade-off between posterior
fidelity and computational feasibility, i.e. an “optimal” parameter tuning. We suppose that it is indeed possible
to define certain criteria that parameter tuning can be based on. Even though this is beyond the scope of this
paper, we have some preliminary comments. As done below, when postulating the existence and uniqueness
of an equilibrium distribution, one can further argue that “small” changes in the transition kernel only cause
“small” changes in the distribution. Given the current state q(t) of the Markov chain, that is assumed to be
ergodic, in the MH correction Eq. (6.14) a certain “random” decision is made whether to approve or to refuse a
candidate state q(?). This binary decision follows the computation of the posterior ratio π1(q(?))/π1(q(t)). Thus
provided that the ratio of estimated likelihoods approximates the true ratio “reasonably well”, i.e. in some sense

L̂
(
q(?))

L̂
(
q(t)
) ≈ L(q(?))

L
(
q(t)
) , (6.15)

an “appropriate” decision is being made. High posterior fidelity is ensured on condition that “appropriate”
decisions are being frequently made over the course of the Markov process, i.e. detailed balance is maintained in
some average sense. That this is indeed the case depends on a complex interplay between the quality of the
estimation L̂ of L, the true posterior π1 and the proposal distribution P .

Similar arguments have been invoked in connection with Bayesian inversion of MC forward models, where
algorithms have been designed that make use of forward model evaluations at multiple MC resolutions [47].
Moreover approximate MH corrections have been proposed in the context of big data, where evaluating the
likelihood for partial chunks of observations from a large dataset trades off the bias and the variance of MCMC
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posterior sampling [48, 49]. In order to provide a likelihood simulator that does not exhibit variations between
consecutive evaluations for the same arguments, it was proposed to employ a common random number generator
seed [50]. Once the seed is chosen, likelihood evaluations become effectively deterministic. The pseudo-marginal
approach to MCMC [51] provides a strong theoretical result regarding posterior fidelity. It is shown that for
unbiased likelihood estimators the exact posterior can be sampled. Though this is accompanied by a slowdown
in the mixing properties of the Markov chain. With that said one may suppose that it is preferable to minimize
the bias in Eq. (6.12) instead of the total mean squared error.

6.5 The NASA Langley multidisciplinary UQ challenge
Now we will interpret the uncertainty characterization subproblem A of the NASA Langley UQ challenge [1,

2] in Bayesian terms. For that purpose we will compose an appropriate Bayesian multilevel model and formulate
the main objective, i.e. the reduction of epistemic uncertainties, as Bayesian calibration of this multilevel model.
Inputs (p1, p2, p3, p4, p5) of the forward modelM≡ h1 are subject to uncertainty. Model inputs ζ ≡ p3, that are
subject to aleatory variability, constitute the category I parameters. There is epistemic uncertainty about the
true value of the category II model parameter m ≡ p2. Category III subsumes those parameters x ≡ (p1, p4, p5)
that are subject to a mixed-type uncertainty. Generally, population distributions of experiment-specific variables
are provided by the organizers of the challenge problem, whereas prior marginals of the QoI are uninformative
interpretations of the epistemic intervals given.

6.5.1 Category I: Aleatory uncertainty
For experiments i = 1, . . . , n category I model inputs ζ ≡ p3 ∈ [0, 1] take on experiment-specific realizations

p3,i. The population distribution is a uniform distribution U(p3,i |a3, b3) determined by perfectly known
hyperparameters θZ ≡ θ3 = (a3, b3) with (a3, b3) = (0, 1). We write this as follows

(P3,i |θ3) ∼ f3(p3,i |θ3) = U(p3,i |0, 1). (6.16)

It corresponds to a prescribed aleatory variability or structural uncertainty that is irreducible in the sense that
by analyzing available data ỹi for i = 1, . . . , n “past” realizations p3,i could be inferred in principle, whereas the
knowledge about “future” realizations p3,i′ with i′ > n cannot be improved.

6.5.2 Category II: Epistemic uncertainty
Category II model inputs are physically fixed yet unknown model parameters m ≡ p2 ∈ [0, 1]. A given

epistemic interval ∆ = [0, 1] is known to contain the true value of p2 prior to any data analysis. We translate
this available information into a flat and uniform Bayesian prior probability density

P2 ∼ π2(p2) = U(p2 |0, 1). (6.17)

It represents an a priori degree of plausibility of the true value p2 and it is reducible in the sense that Bayesian
updating provides an a posteriori degree of evidence. The quantification of parametric Bayesian priors is a
controversial business. Priors go beyond bare interval-like statements by assigning a relative probability structure
over the set of admissible values. Thus more generally any prior distribution with nonzero support over the
priorly admissible set ∆ that vanishes elsewhere could be considered appropriate.

6.5.3 Category III: Mixed uncertainty
Category III comprises those model inputs x ≡ (p1, p4, p5) that are subject to aleatory variability across

experiments i = 1, . . . , n. The natural variability is parametrized by hyperparameters θX ≡ (θ1,θ45) that are
epistemically uncertain themselves. This is a mixed-type uncertainty model that in less Bayesian contexts is
sometimes referred to as imprecise probability or distributional p-box [52, 53].

6.5.3.1 Unimodal beta

Model inputs p1 ∈ [0, 1] are distributed according to a unimodal beta distribution. Beta distributions
Beta(p1,i |α1, β1) are commonly parametrized by shape hyperparameters α1, β1 > 0. Instead we herein
parametrize the beta distribution Beta(p1,i |µ1, σ

2
1) by its mean µ1 and variance σ2

1 . Thus with unknown
hyperparameters θ1 ≡ (µ1, σ

2
1) experiment-specific realizations p1,i are drawn from the population distribution

(P1,i |θ1) ∼ f1(p1,i |θ1) = Beta(p1,i |µ1, σ
2
1). (6.18)
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To begin with, given the shape parameters (α1, β1), the expected value µ1 = E[p1] and the variance σ2
1 = Var[p1]

of the density function Beta(p1,i |µ1, σ
2
1) are given as

µ1 = α1

α1 + β1
, σ2

1 = α1β1

(α1 + β1)2(α1 + β1 + 1) . (6.19)

Conversely, given the statistical moments (µ1, σ
2
1), the shape parameters (α1, β1) of the density function

Beta(p1,i |α1, β1) can be obtained by

α1 =
(
σ2

1 + µ2
1 − µ1

σ2
1

)
(−µ1) , β1 =

(
σ2

1 + µ2
1 − µ1

σ2
1

)
(µ1 − 1) . (6.20)

The required unimodality, i.e. the fact that the distribution features a single mode within its support, translates
into α1, β1 > 1. Moreover the problem setup requires 3/5 ≤ µ1 ≤ 4/5 and 1/50 ≤ σ2

1 ≤ 1/25. In order to adopt this
epistemic uncertainty model for the hyperparameters θ1 we state the uniform hyperprior

Θ1 ∼ π1(θ1) = U(θ1 |Dθ1), with
Dθ1 =

{
(µ1, σ

2
1) ∈ R2 |3/5 ≤ µ1 ≤ 4/5, 1/50 ≤ σ2

1 ≤ 1/25, α1 > 1, β1 > 1
}
.

(6.21)

If λ(Dθ1) is the volume of the set Dθ1 ⊂ R2, then the uniform density Eq. (6.21) is 1/λ(Dθ1) on Dθ1 and zero
elsewhere. In practice the normalization constant λ(Dθ1) is unknown, but since priors are flat and only ratios are
compared in the MH correction Eq. (6.14), only the set membership of MCMC proposals has to be determined.

Consequently we can treat the prior Eq. (6.21) as π1(θ1) = π(µ1)π(σ2
1) with independent marginals

π(µ1) = U(µ1 |3/5, 4/5) and π(σ2
1) = U(σ2

1 |1/50, 1/25) and reject MCMC proposals that do not respect α1, β1 > 1
with the aid of Eq. (6.20). This practical prior choice is ambiguous in the sense that priors could be assumed for
shape parameters (α1, β1), too. However, this could yield improper prior distributions. From an engineering
point of view, we consider (µ1, σ

2
1) statistically more “natural” than the shape parameters. In addition they

underlie strong prior constraints which is advantageous to exploring the posterior by means of MCMC.

6.5.3.2 Correlated Gaussian

The model inputs p4, p5 ∈ R are modeled as possibly correlated Gaussian random variables. Across the
experiments i = 1, . . . , n these model inputs take on different unknown realizations (p4,i, p5,i). This inherently
aleatory variability is represented by the population distribution(

(P4,i, P5,i)|θ45
)
∼ f45

(
(p4,i, p5,i)|θ45

)
= N

(
(p4,i, p5,i)|µ45,Σ45

)
. (6.22)

For j = 4, 5 the means µj = E[pj ], variances σ2
j = Var[pj ] and the coefficient of correlation ρ45 = E[(p4 −

µ4)(p5 − µ5)] constitute the hyperparameters θ45 ≡ (µ4, σ
2
4 , µ5, σ

2
5 , ρ45). Those hyperparameters are unknown

constants that determine the mean µ45 and the covariance matrix Σ45 of the bivariate normal density by

µ45 =
(
µ4
µ5

)
, Σ45 =

(
σ2

4 ρ45 σ4 σ5
ρ45 σ4 σ5 σ2

5

)
. (6.23)

Besides the natural bounds |ρ45| ≤ 1 it is requested that −5 ≤ µj ≤ 5 and 1/400 ≤ σ2
j ≤ 4. We translate these

intervals into flat and independent marginals π(µj), π(σ2
j ) and π(ρ45) of the common hyperprior π45(θ45) by

π(µj) = U(µj | − 5, 5),
π(σ2

j ) = U(σ2
j |1/400, 4),

π(ρ45) = U(ρ45 | − 1, 1),

 Θ45 ∼ π45(θ45) =

 5∏
j=4

π(µj)π(σ2
j )

π(ρ45). (6.24)

Insofar as priors for spread hyperparameters could refer to standard deviations or variances alike, the ambiguity
in quantifying parametric Bayesian priors becomes especially obvious for these type of hyperparameters.

6.5.4 Bayesian problem statement
The primary objective of the NASA UQ challenge subproblem A is the reduction of epistemic uncertainties

of the true values of the forward model parameter p2 and the hyperparameters (θ1,θ45) [1]. In order to
accomplish that goal, the forward model, a set of data and prior knowledge is available. Preventing to reverse-
engineer its mathematical character and numerical implementation, the forward model h1 is distributed as a
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protected MATLAB p-code file, i.e. a “blackbox” model. Available data 〈ỹi〉1≤i≤50 comprises n = 50 scalar
observations ỹi = h1(p1,i, p2, p3,i, p4,i, p5,i) which have been realized as forward model responses complying with
the true uncertainty model of forward model inputs, i.e. the model parameter p2 takes on its true value and
(〈p1,i〉, 〈p3,i〉, 〈p4,i〉, 〈p5,i〉) have been randomly sampled from their true population distributions. Notwithstanding
that the observations provided are “perfect”, in general they might very well be subject to an additional model-
measurement discrepancy, i.e. “imperfect” [2]. Data have been arranged into two distinct configurations of
observations 〈ỹi〉1≤i≤25 and 〈ỹi〉26≤i≤50 whose separate and joint analysis is envisaged to indicate how the number
n of processed samples impacts the significance of the final results.

The available prior knowledge has been translated into parametric and structural Bayesian prior distributions.
We have pointed out that this formulation endows the problem with a subjectivist interpretation of probability
and suffers from the ambiguity in the chosen parametric prior and its influence on the resulting posterior.
The problem statement as well as the framework and the algorithms introduced so far grant ample scope of
formulating and solving the problem as Bayesian inference of the QoI (p2,θ1,θ45) within a multilevel context. In
the first place the Bayesian multilevel model Eq. (6.7), defined by parametric priors Eqs. (6.17), (6.21) and (6.24)
and structural priors Eqs. (6.16), (6.18) and (6.22), establishes the natural framework for solving the original
problem posed. For the sake of completeness the devised multilevel model is summarized as

(Ỹi |p2,θ1,θ45,θ3) ∼ f(ỹi |p2,θ1,θ45,θ3),
P2 ∼ π2(p2) = U(p2 |0, 1),

(P1,i |θ1) ∼ f1(p1,i |θ1) = Beta(p1,i |µ1, σ
2
1),(

(P4,i, P5,i)|θ45
)
∼ f45

(
(p4,i, p5,i)|θ45

)
= N

(
(p4,i, p5,i)|µ45,Σ45

)
,

Θ1 ∼ π1(θ1) = U(θ1 |Dθ1),
Θ45 ∼ π45(θ45) = π(µ4)π(σ2

4)π(µ5)π(σ2
5)π(ρ45),

(P3,i |θ3) ∼ f3(p3,i |θ3) = U(p3,i |0, 1).

(6.25)

The corresponding posterior distribution Eq. (6.9) of the QoI (p2,θ1,θ45) follows Bayesian data analysis of the
given forward model responses 〈ỹi〉, i.e. realizations of random variables (Ỹi |p2,θ1,θ45,θ3).

In the second place one could solve the inverse problem posed in the presence of additional measurement
noise. To that end the Bayesian multilevel model Eq. (6.1) establishes the proper framework. Synthetic and
noisy observations yi = ỹi + εi could be obtained by perturbing the given model responses ỹi with residuals
εi that are randomly sampled from prescribed distributions fEi(εi) = N (εi |0, σ2

i ). Parameters of the residual
model, i.e. the residual variances σ2

i , could either be treated as knowns or as further unknowns. By analyzing
“imperfect” data 〈yi〉, i.e. realizations of random variables (Yi |p1,i, p2, p3,i, p4,i, p5,i), and treating latent variables
(〈p1,i〉, 〈p3,i〉, 〈p4,i〉, 〈p5,i〉) as nuisance, inference of the QoI would be based on the posterior Eq. (6.4). A DAG
of the Bayesian multilevel model corresponding to our challenge problem interpretation with “perfect” and
“imperfect” data, respectively, is depicted in Fig. 6.2.

Figure 6.2: DAG of the NASA UQ challenge subproblem A. The hyperparameters θ1 and θ45 and the forward model
parameter p2 located at the “highest” hierarchical level are the QoI. Realizations (〈p1,i〉, 〈p3,i〉, 〈p4,i〉, 〈p5,i〉) on the
“intermediate” problem level are considered nuisance. “Perfect” ỹi = h1(p1,i, p2, p3,i, p4,i, p5,i) or “imperfect” data
yi = ỹi + εi constitute the “lowest” model layer.
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6.6 Bayesian data analysis
We will now apply the inferential machinery of multilevel calibration for solving the Bayesian interpretation

of the uncertainty characterization subproblem A of the NASA Langley multidisciplinary UQ challenge. The
problem will be solved in its original formulation involving “perfect” data. Motivated by findings from first
preliminary problem analyses, posterior densities of the QoI will be computed by a suitable MH independence
sampler. This sampler will be implemented in MATLAB and serially run on a modern CPU. Nevertheless we
will discuss possible parallelization strategies. The total data 〈ỹi〉1≤i≤50 and its subconfigurations 〈ỹi〉1≤i≤25 and
〈ỹi〉26≤i≤50 will be analyzed with the devised algorithm. Based on heuristic parameter tuning and plausibility
checks we will assess the fidelity of the posterior. Promising a boost of posterior fidelity we will lastly devise a
hybrid MCMC scheme which is based on data augmentation and both independence and random walk sampling.

6.6.1 Preliminary analyses
A basic understanding of an inverse problem under consideration allows to judge the performance of various

potential MCMC schemes. This allows to design efficient algorithms and it is indispensable since it prevents
from obtaining misleading results that are due to inappropriate samplers. In order to gain first insights into the
present multilevel calibration problem, we perform a number of initial MCMC runs that were based on crude
random walk Metropolis sampling. Thereby we could provisionally assess the principal nature of the posteriors
Eqs. (6.3) and (6.9). Main findings from sampling the posterior Eq. (6.9) indicate that posterior marginals of the
QoI (p2,θ1,θ45) may very well be multimodal or broad distributions that significantly overlap with the marginal
priors.

Solving a joint problem in the presence of additional measurement noise provides further insight. Notwith-
standing that this is actually a different problem, it will eventually prove valuable. Sampling the joint posterior
Eq. (6.3) of the entirety of unknowns (〈p1,i〉, p2, 〈p3,i〉, 〈p4,i〉, 〈p5,i〉,θ1,θ45) reveals further information about the
unknowns, e.g. it occurs that experiment-specific unknowns 〈p1,i〉 are identifiable and their posterior marginals
feature single modes. This does not refer to the posteriors of 〈p3,i〉 and 〈p4,i〉 that are rather flat and the ones
of 〈p5,i〉 that are bimodal. Altogether those preliminary analyses have provided useful information that will
eventually motivate the final MCMC samplers.

6.6.2 “Perfect” data analysis
For the calibration of the Bayesian multilevel model Eq. (6.7) we devise a blockwise independence MCMC

sampler. Since the algorithm is based on MCMC, MC and KS techniques, hereinafter it will be referred to as
MC3KS. QoI are grouped in blocks (p2), (µ1, σ

2
1), (µ4, σ

2
4 , ρ45) and (µ5, σ

2
5) that are consecutively updated by

sampling blockwise candidates from the corresponding prior distributions. In many cases independence sampling
from the priors is inefficient due to a negligible overlap between the prior and the posterior distributions and the
resulting low acceptance rates. However, on account of the multimodality of the posteriors and their overlap
with the priors, that were indicated by first analyses, independence sampling promises rapid mixing for the
problem at hand.

Moreover in the context of Eq. (6.15) we suppose that wide jumps in the parameter space, that are induced
by independence sampling on average, are beneficial in terms of posterior fidelity. For wide jumps the difference
of the likelihood at the current and the candidate state of the Markov chain tends to be larger than for small
jumps. Following previous discussions, to some extent this alleviates the error statistics of repeated likelihood
estimations for the same state. Another advantage of the devised MCMC scheme over random walk sampling
is that apart from its blockwise updating structure, it does not require extensive fine-tuning of the proposal
distribution. Updating in blocks intents to minimize the number of calls to the likelihood Eq. (6.13) that are
necessary for each block in each MCMC iteration, while maintaining high acceptance rates that are favorable
for independence sampling. With the help of Eq. (6.20) the constraints α1, β1 > 1 are enforced by rejecting
nonconforming proposals in the block (µ1, σ

2
1). The MC3KS sampler is initialized by setting parameters in

the middle of their admissible intervals. Due to rapid mixing the initialization is not of crucial importance
for the employed sampling scheme. Generally speaking we expect that forward model parameters and mean
hyperparameters are easier to identify than spread or even correlation hyperparameters.

6.6.3 Likelihood estimation and posterior fidelity
For the estimation Eq. (6.13) of the transformed likelihood Eq. (6.8) we choose kernel functions K of Gaussian

type. In order to achieve a convenient trade-off between the conflicting endeavors fidelity of the posterior and
ease of its computation, the number of samples K and the bandwidth h have to be set. In practice computational
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resource limitations restrict the total number of affordable forward model runs, hence we approach parameter
tuning from the situation of a given K.

Owing to the absence of a rigorous means to define a corresponding and “optimal” bandwidth h, we study the
posteriors obtained for fixed K = 104 and decreasing h in a cascade of runs. We observe an initial shrinkage of
the posterior, i.e. evolving from the flat prior it takes on definite shape, and an eventual collapse, i.e. the posterior
flattens out again and looses its structure. The initial shrinkage is associated with significant changes of the
posterior shape, the eventual breakdown is QoI-dependent, and in between the posterior is relatively stable with
respect to h. We remark that this behavior is consistent with Eqs. (6.14) and (6.15). Significant oversmoothing
the target density Eq. (6.10), i.e. a strongly biased estimator Eq. (6.13), can falsely assign posterior mass to
QoI-values that do not well-explain or even contradict the data. Considerable undersmoothing of the target
density, i.e. a high variance of the estimator Eq. (6.13), can cause “arbitrary” acceptances in the MH correction.
We speculate that in between those extremes, the more stable the posterior is with respect to small changes in h,
the more confident we can be to have revealed the true posterior. Beyond that we presume that a high degree of
distinctiveness of the posterior with respect to the prior indicates high posterior fidelity. The converse statement
does not hold, though.

In addition to those heuristics we perform a plausibility check as follows. During preliminary analysis we
have solved the UQ challenge problem in the presence of additional measurement noise εi with Ei ∼ N (εi |0, σ2

i ),
i.e. we sampled a joint posterior of the form Eq. (6.3). If the corresponding noise-level σ2

i tends to zero the
results of analyzing “imperfect” data should approach the ones of analyzing “perfect” data. Indeed we find
that for low levels of noise σ2

i & 0 the joint problem solution resembles our final results for analyzing “perfect”
data. While the posterior Eq. (6.9) can only be approximately explored with the dubious aid of statistical
likelihood estimations Eq. (6.13), the joint posterior Eq. (6.3) can be sampled exactly. Thus we have found
that our approximate solution to the actual problem reminds of an exact solution to an only slightly different
problem. For “well-behaved” problems we take this observation as an indication of an acceptable degree of
posterior fidelity.

Following this discussion K = 104 and h = 0.002 constitutes our final parameter setup. The principle of
estimating the density Eq. (6.10) and the transformed likelihood Eq. (6.8) is visualized in Fig. 6.3. Samples
of K = 104 and K = 107 forward model responses are simulated for two different (hyper)parameter values
(p2,θ1,θ45)high and (p2,θ1,θ45)low. As judged from our final results, these are (hyper)parameter values of high
and low degree of posterior evidence, respectively. For the smaller sample with K = 104 estimates of the sought
densities f(ỹi |p2,θ1,θ45,θ3) are shown. For reference purposes a histogram of the larger sample with K = 107

is shown. It can be seen that response densities f(ỹi |p2,θ1,θ45,θ3) for (p2,θ1,θ45)high and (p2,θ1,θ45)low
significantly overlap. This is a problem characteristic that complicates the statistical identification of the QoI
(p2,θ1,θ45).
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Figure 6.3: Estimation of f(ỹi |p2, θ1, θ45, θ3). Evaluating the transformed likelihood Eq. (6.8) for MC3KS is based on
the forward model response density Eq. (6.10). For two different values of the (hyper)parameters (p2, θ1, θ45) a KDE of
f(ỹi |p2, θ1, θ45, θ3) with K = 104 and h = 0.002 is shown. Histograms with K = 107 forward model responses are shown
as a reference.

It can also be seen that the employed bandwidth h = 0.002 amounts to a slight undersmoothing of the target
density, i.e. a bias-variance trade-off favoring lower bias yet acceptable variance. This is advantageous because it
allows to capture local small-scale features of the target density, e.g. sharp peaks and edges, in the posterior.
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We remark that in the context of pseudo-marginal MCMC [51] this observation supports the speculation that
it is preferable to minimize the bias in Eq. (6.12). Since the target density significantly differs from a normal
distribution, automatic bandwidth selection cannot be based on the normal reference rule. The resulting
oversmoothing of the target density, i.e. a significantly biased KDE, would veil its important characteristics.
Finally the (hyper)parameter values (p2,θ1,θ45)high can be seen to lead to a response density that explains the
data sample 〈ỹi〉 reasonably well.

6.6.4 Final results
First of all we jointly analyze the total data 〈ỹi〉1≤i≤50. For N = 105 iterations of the MC3KS algorithm

the total program runtime amounts to t ≈ 30 h on a single core. Blockwise acceptance rates were found to
be ca. 20 % for (p2), 40 % for (µ1, σ

2
1), 60 % for (µ4, σ

2
4 , ρ45) and 10 % for (µ5, σ

2
5). With Eq. (6.19) a number

of 10327 blockwise proposals (µ1, σ
2
1) had been rejected because of violating the prior requirement α1, β1 > 1.

Marginal posterior densities of the QoI are shown in Figs. 6.4 to 6.7. Based on appropriate boundary correction
methods, the densities shown have been obtained by kernel smoothing of the MCMC posterior samples. Following
precursory discussions we attribute an acceptable degree of fidelity to the posteriors obtained. We are confident
that we have revealed a “good” approximation of the true posteriors, regardless of whether some of them are flat
and only weakly informative.

We also analyze the data subconfigurations 〈ỹi〉1≤i≤25 and 〈ỹi〉26≤i≤50 separately. The posterior densities
produced by separate analyses may differ considerably. With respect to the posteriors yielded by analyzing
〈ỹi〉1≤i≤50, the two data subconfigurations are representative to a different degree. Those findings indicate that
n = 25 is a comparably low number of observations while n = 50 is moderately satisfying for the Bayesian
calibration of mean hyperparameters and the forward model parameter. Properly identifying the variance and
correlation hyperparameters would require a higher number of observations. This is hardly surprising regarding
the complex uncertainty setup, the number of unknowns, the unknown character of the forward model, and the
inverse nature of the calibration problem.

At this point it is important to mention that multilevel model calibration shares and combines aspects of
classical inverse problems, i.e. the inference of an unknown constant forward model parameter, and direct sample
statistics, i.e. fitting a parametric distribution to a random data sample. Thereby Bayesian multilevel model
calibration also inherits the usual difficulties inherent in inversion and distribution fitting.

The marginal posteriors of µ1 and σ2
1 are shown in Fig. 6.4. In comparison to the prior, the posterior of

µ1 shows a pronounced structure. Separately analyzing 〈ỹi〉1≤i≤25 and 〈ỹi〉26≤i≤50 gives rise to two different
posterior modes. Those are suggested by the corresponding experiment-specific realizations 〈p1,i〉1≤i≤25 and
〈p1,i〉26≤i≤50. A joint analysis of 〈ỹi〉1≤i≤50 leads to a mode that lies in between the two abovementioned ones.
The posterior marginal of the spread hyperparameter σ2

1 is comparably structureless and therefore less informative.
In Fig. 6.5 the posterior marginals of p2 and ρ45 are depicted. Due to the fact that data subconfigurations
〈ỹi〉1≤i≤25 and 〈ỹi〉26≤i≤50 are to a different degree informative about further unknowns, e.g. about (µ1, σ

2
2)

which was discussed above, the posteriors obtained for the constant model parameter p2 may deviate as well. The
analysis of 〈ỹi〉1≤i≤50 by MC3KS reveals two clear and separated posterior modes in the posterior of the forward
model parameter p2, whereas the posterior of the correlation hyperparameter ρ45 is flat. This is according
to our previous expectations. Posteriors of µ4 and σ2

4 are given in Fig. 6.6. That they are comparably flat
and uninformative prevents from drawing clear inferential conclusions. This statement does not hold for the
posteriors of µ5 and σ2

5 that can be seen in Fig. 6.7. While the former features a bimodal structure and drops
to zero for higher values of µ5, the latter is unimodal and reaches a nonzero “plateau” for higher values of σ2

5 .
Since this region accumulates considerable posterior probability mass, one cannot exclude those values of σ2

5 .
Apart from the results of MC3KS the figures Figs. 6.4 to 6.7 also contain the results of analyzing 〈ỹi〉1≤i≤50
by MC3DA, i.e. an alternative algorithm which is based on data augmentation. This technique will be further
detailed in Section 6.7.

Note that Bayesian probabilities feature a richer structure than mere epistemic intervals. Conforming with
a subjective Bayesian paradigm, probabilities are identified as relative degrees of belief or plausibility. Thus
multivariate probability distributions, that may contain complex dependency structures and that are not entirely
defined by their marginals only, have to be interpreted accordingly. The marginal densities shown hide this
possibly existing posterior correlations. We provide a selection of two-dimensional posterior projections in
Figs. 6.8 and 6.9.

Parameters that were assumed to be statistically independent a priori, e.g. the parameter p2, the hyperparam-
eters θ1 and the hyperparameters θ45, can be statistically dependent a posteriori. Small negative correlations in
the posteriors of (µ1, σ

2
1) and (µ1, µ4) shown in Figs. 6.8 and 6.9, with linear Pearson coefficients of correlation

rµ1,σ2
1

= −0.08 and rµ1,µ4 = −0.22 were discovered, respectively. In order to provide final results of interval-like
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hyperparameter σ2
1

p
ro
b
a
b
il
it
y
d
en

si
ty

 

 

0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04
0

20

40

60

80

100

120

140

160

180

200
prior distribution
MC3KS for 〈ỹi〉1≤i≤25
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Figure 6.4: Posterior marginals of µ1 and σ2
1 . The posterior of µ1 features a clear structure as compared to the prior.

Separate analyses of 〈ỹi〉1≤i≤25 and 〈ỹi〉26≤i≤50 lead to different posterior modes, whereas jointly analyzing 〈ỹi〉1≤i≤50
leads to a mode in between the two aforementioned ones. The posterior marginal of σ2

1 is seen to be less informative.
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Figure 6.5: Posterior marginals of p2 and ρ45. Analyzing 〈ỹi〉1≤i≤50 by MC3KS reveals two separated posterior modes in
the posterior of p2. As expected the posterior of the correlation hyperparameter ρ45 is flat and uninformative. Slightly
more pronounced posterior structures are discovered by MC3DA.
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Figure 6.6: Posterior marginals of µ4 and σ2
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4 that were sampled by MC3KS are
rather flat and uninformative. On the contrary, the posterior of µ4 explored by MC3DA features more definite structure.
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Figure 6.7: Posterior marginals of µ5 and σ2
5 . The posterior marginals of µ5 and σ2

5 feature a distinctive structure as
compared to the priors. The posterior of µ5 is multimodal whereas the one of σ2

5 is unimodal. With respect to the
posteriors sampled by MC3KS, the ones that are due to MC3DA are slightly more evolved in structure.
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character one could define suitable Bayesian credible intervals or sets that accumulate a certain proportion, e.g.
95 %, of the total posterior mass. However, the definition of such intervals is ambiguous and would still bear the
probabilistic interpretation, therefore we refrain from defining Bayesian credible intervals.

6.6.5 First conclusion
With the proposed MC3KS algorithm the Bayesian formulation of the challenge problem could be solved.

The numerical efficiency of the MCMC sampling scheme, that was based on independently sampling from the
priors, could be easily increased. Obtained posteriors could be approximated by suitable distributions that
are easy to sample. Utilizing these as proposal distributions would lead to higher acceptance rates and better
mixing properties. Most Bayesian computations can only be parallelized by running several Markov chains
simultaneously. An obvious parallelization strategy for the devised algorithm is to parallelize the estimation of
the transformed likelihood on the level of forward model runs. This also suggests the possibility of studying
the posterior for significantly larger K and smaller h. Moreover different classes of kernel functions K, e.g.
with bounded nonzero support, or more advanced KDE techniques, e.g. locally adaptive schemes or other
bias reduction and correction methods, could be employed. The major shortcoming of the approach was the
dependency of the final results on free algorithmic tuning parameters. Parameter tuning had to be based on
heuristic criteria and plausibility checks and the fidelity of the final posteriors could only be provisionally assessed.
In the following section we will therefore propose a complementary multilevel approach that aims at enhancing
the level of posterior fidelity.

6.7 Partial data augmentation
As a potential improvement over the employed MC3KS sampler we will devise a new hybrid MCMC sampling

scheme. Since the scheme will be based on data augmentation (DA), henceforth it will be referred to as MC3DA.
Traditionally DA can be a powerful tool for enhancing the computational efficiency of MCMC posterior sampling
[54–56]. Instead we will herein utilize DA as a means to reformulate the multilevel model calibration problem
in such a complementary way, that it allows for more adequate likelihood estimations in view of Eq. (6.12).
In turn this promises an enhancement of the posterior fidelity through Eq. (6.14). The approach will also
allow for automatic kernel bandwidth selection based on a classical yet well-approved criterion, namely the
normal reference rule [35]. This is appealing since it avoids the cumbersome procedure of tuning free algorithmic
parameters of the KDE that was described in Section 6.6.3.

Rather than directly sampling the posterior of the QoI (p2,θ1,θ45), one can sample the posterior of
an augmented number of unknowns (〈p1,i〉, p2,θ1,θ45) and obtain the posterior of the QoI by subsequently
marginalizing over nuisance 〈p1,i〉. Presuming that sampling from π(〈p1,i〉, p2,θ1,θ45 |〈ỹi〉,θ3) is “easier” to
accomplish than straightforwardly sampling from π(p2,θ1,θ45 |〈ỹi〉,θ3), a de facto improvement is achieved. The
introduction of 〈p1,i〉 as auxiliary variables is a partial form of data augmentation. As indicated by preliminary
problem analyses, the forward model h1 seems to be in such a strong way dependent on its input p1, that the
data 〈ỹi〉 can be inverted for the unknown 〈p1,i〉, under uncertainty of the remaining unknowns. Even though
〈p1,i〉 are not QoI this provides additional insight into to inverse problem posed. Moreover the likelihood function
corresponding to partial data augmentation can be estimated more adequately. Presumably, within a feasible
computation time, the aforementioned facts will allow to sample π(〈p1,i〉, p2,θ1,θ45 |〈ỹi〉,θ3) with higher fidelity
than sampling π(p2,θ1,θ45 |〈ỹi〉,θ3). We will introduce the formalism of partial data augmentation below.

6.7.1 Augmented multilevel model
If the unknowns (p2,θ1,θ45) of the Bayesian multilevel model Eq. (6.7) are augmented by experiment-specific

realizations 〈p1,i〉, then the collective of unknowns (〈p1,i〉, p2,θ1,θ45) has to be explicitly taken into account.
The associated Bayesian prior is given as

π
(
〈p1,i〉, p2,θ1,θ45

)
=
(

n∏
i=1

f1(p1,i |θ1)
)
π2(p2)π1(θ1)π45(θ45). (6.26)

This distribution comprises both parametric and structural prior knowledge. Given an appropriate probability
model f(ỹi |p1,i, p2,θ45,θ3) of random variables (Ỹi |p1,i, p2,θ45,θ3), the corresponding augmented likelihood
follows as

L
(
〈ỹi〉|〈p1,i〉, p2,θ45,θ3

)
=

n∏
i=1

f(ỹi |p1,i, p2,θ45,θ3). (6.27)
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The definition of the augmented likelihood Eq. (6.27) rests upon a probability model (Ỹi |p1,i, p2,θ45,θ3) ∼
f(ỹi |p1,i, p2,θ45,θ3). Analogous to the propagated uncertainty in Eq. (6.10), such a model is established through
a transformed random variableMp1,i,p2(P3, P4, P5) with a density function

f(ỹi |p1,i, p2,θ45,θ3) =
1∫

0

+∞∫
−∞

+∞∫
−∞

δ
(
ỹi −Mp1,i,p2(p3, p4, p5)

)
f3(p3 |θ3) f45

(
(p4, p5)|θ45

)
dp3 dp4 dp5. (6.28)

Here δ denotes the Dirac delta function andMp1,i,p2 : (p3, p4, p5) 7→ M(p1,i, p2, p3, p4, p5) formalizes the map
that the forward modelM≡ h1 defines for fixed inputs (p1,i, p2) and functional arguments (p3, p4, p5). With the
combined parametric and structural prior Eq. (6.26) and the augmented likelihood Eq. (6.27), the augmented
posterior of the unknowns (〈p1,i〉, p2,θ1,θ45) is according to Bayes’ law proportional to

π
(
〈p1,i〉, p2,θ1,θ45 |〈ỹi〉,θ3

)
∝ L

(
〈ỹi〉|〈p1,i〉, p2,θ45,θ3

)
π
(
〈p1,i〉, p2,θ1,θ45

)
. (6.29)

Since we are not interested in inferring experiment-specific realizations 〈p1,i〉 per se, they are treated as nuisance.
Similar to the marginalization Eq. (6.4) the posterior of the QoI (p2,θ1,θ45) is thus found by integrating the
posterior Eq. (6.29) as follows

π
(
p2,θ1,θ45 |〈ỹi〉,θ3

)
=

1∫
0

. . .

1∫
0

π
(
〈p1,i〉, p2,θ1,θ45 |〈ỹi〉,θ3

)
d〈p1,i〉, (6.30)

where d〈p1,i〉 = dp1,1 . . .dp1,n as before. Both of the distributions Eqs. (6.9) and (6.30) equivalently define
the desired posterior π(m,θX |〈ỹi〉,θZ) ≡ π(p2,θ1,θ45 |〈ỹi〉,θ3). While Eq. (6.9) straightforwardly conditions
via π(p2,θ1,θ45 |〈ỹi〉,θ3) ∝ L(〈ỹi〉|p2,θ1,θ45,θ3)π(p2,θ1,θ45), Eqs. (6.29) and (6.30) provide a rearrangement
where nuisance variables 〈p1,i〉 are firstly factored out before they are eventually eliminated.

Even though this scheme of data augmentation leads to a higher-dimensional estimation problem, it may
be computationally advantageous. In practice the marginal Eq. (6.30) can be computed by sampling the joint
distribution Eq. (6.29) and simply discarding samples of 〈p1,i〉, i.e. the multi-dimensional integral does not have
to be calculated explicitly. Writing the compound distribution

f(ỹi |p2,θ1,θ45,θ3) =
1∫

0

f(ỹi |p1,i, p2,θ45,θ3) f(p1,i |θ1) dp1,i (6.31)

establishes the connection between the transformed likelihood L(〈ỹi〉|p2,θ1,θ45,θ3) of the form Eq. (6.8)
and the augmented likelihood L(〈ỹi〉|〈p1,i〉, p2,θ45,θ3) in Eq. (6.27). The relation Eq. (6.31) suggests that
f(ỹi |p1,i, p2,θ45,θ3) could be a “simplified” version of the “complex” distribution f(ỹi |p2,θ1,θ45,θ3) that was
exemplarily shown in Fig. 6.3. Ideally it would be a unimodal distribution that resembles a Gaussian. Indeed in
this case the augmented likelihood could be estimated more adequately than the transformed one. Consequently,
the QoI-marginal of the induced limiting distribution of the MC3DA scheme can be expected to be closer to the
true posterior than the long-run distribution of the MC3KS approach.

An augmented model can be analogously defined when latent variables other than 〈p1,i〉 are introduced
as auxiliary variables. The more variables are introduced, the smaller the variance of the target density
similar to Eq. (6.28) is expected to be. In the case that all variables (〈p1,i〉, 〈p3,i〉, 〈p4,i〉, 〈p5,i〉) are jointly
introduced, the conditional distribution of the data would even shrink to a Dirac delta f(ỹi |p1,i, p2, p3,i, p4,i, p5,i) =
δ(ỹi−Mp1,i,p2,p3,i,p4,i,p5,i). Note that for if “imperfect” data yi = ỹi+εi would be involved, a proper distribution
would still be defined as f(yi |p1,i, p2, p3,i, p4,i, p5,i) = fEi(yi −Mp1,i,p2,p3,i,p4,i,p5,i). In fact this exactly defines
the distribution Eq. (6.1a) of the a joint problem in Eq. (6.1). The motivation for augmenting with 〈p1,i〉 is the
expectation that this provides a convenient trade-off between fidelity and feasibility, i.e. likelihood evaluations
are optimally facilitated with respect to the implied increase in dimensionality.

6.7.2 Augmented likelihood estimation

In practical terms the augmented likelihood Eq. (6.27) can be estimated analogously to Eq. (6.13). To that
end the response density f(ỹi |p1,i, p2,θ45,θ3) is estimated for each p1,i and evaluated for the given responses ỹi.
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Hence a KDE-based estimate of the augmented likelihood as a function of (〈p1,i〉, p2,θ45) is given as

L̂DA
(
〈ỹi〉|〈p1,i〉, p2,θ45,θ3

)
=

n∏
i=1

(
1
K

K∑
k=1
Khi

(
ỹi − ỹ(k)

i

))
,

with



p
(k)
3,i ∼ f3(p(k)

3,i |θ3),(
p

(k)
4,i , p

(k)
5,i
)
∼ f45

(
(p(k)

4,i , p
(k)
5,i )|θ45

)
,

ỹ
(k)
i =Mp1,i,p2(p(k)

3,i , p
(k)
4,i , p

(k)
5,i ),

hi = (4/3K)1/5 σ̂i.

(6.32)

For k = 1, . . . ,K inputs p(k)
3,i ∼ f3(p(k)

3,i |θ3) and (p(k)
4,i , p

(k)
5,i ) ∼ f45((p(k)

4,i , p
(k)
5,i )|θ45) are sampled from the correspond-

ing population distributions, responses ỹ(k)
i =Mp1,i,p2(p(k)

3,i , p
(k)
4,i , p

(k)
5,i ) are computed accordingly. Furthermore

σ̂i denotes the standard deviation of the response samples (ỹ(1)
i , . . . , ỹ

(K)
i ). Note that in Eq. (6.32) the density

f(ỹi |p1,i, p2,θ45,θ3) is individually estimated for each p1,i with i = 1, . . . , n. The number of samples for each
of these estimations is set to K = 103 and selection of the bandwidths follows the normal reference rule
hi = (4/3K)1/5 σ̂i.

Let us compare the transformed densities Eqs. (6.10) and (6.28). The random variableMp2(P1, P3, P4, P5) ∼
f(ỹi |p2,θ1,θ45,θ3) is conditioned on θ1 and involves the uncertainty of P1 ∼ f1(p1 |θ1). In contrastMp1,i,p2(P3,
P4, P5) ∼ f(ỹi |p1,i, p2,θ45,θ3) is conditioned on the realization p1,i and does not bear reference to θ1. Hence
f(ỹi |p2,θ1,θ45,θ3) is the broader and more complex density, whereas f(ỹi |p1,i, p2,θ45,θ3) is simpler and easier to
estimate. In turn, likelihood estimations for MC3DA are less biased and have a smaller variance than for MC3KS.
Thus the approach promises a higher degree of posterior fidelity. In Fig. 6.10 the density f(ỹi |p1,i, p2,θ45,θ3)
is shown for values (p2,θ45)high and (p2,θ45)low that have been chosen as the same values already used in
Fig. 6.3. Following our final results, the value p1,i has been exemplarily chosen as the posterior mean of p1,i
with i = 36. When comparing Figs. 6.3 and 6.10 one can clearly see the essential difference between the densities
f(ỹi |p2,θ1,θ45,θ3) and f(ỹi |p1,i, p2,θ45,θ3). The latter is distinctly simpler and clearly better resembling a
Gaussian density. Moreover the densities for (hyper)parameter values of high and low posterior evidence only
negligibly overlap. It can also be seen that the chosen values p1,36 and (p2,θ45)high lead to a response density
which is consistent with the observation ỹ36.
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Figure 6.10: Estimation of f(ỹ36 |p1,36, p2, θ45, θ3). Evaluating the augmented likelihood Eq. (6.27) for MC3DA is based
on the response density Eq. (6.28). For p1,36 = 0.465 and two different values of the (hyper)parameters (p2, θ45)high and
(p2, θ45)low a KDE of f(ỹ36 |p1,36, p2, θ45, θ3) with K = 103 is shown. The bandwidths h = 0.0019 and h = 0.0020 were
automatically selected according to the normal reference rule. Histograms with a larger number K = 107 are shown for
reference purposes.

6.7.3 MCMC
The augmented posterior Eq. (6.29) is explored by means of a suitable MC3DA sampler. Updating is done in

blocks 〈p1,i〉, (µ1, σ
2
1), (p2), (µ4), (µ5) and (σ2

4 , σ
2
5 , ρ45). Each p1,i in the block 〈p1,i〉 is concurrently updated
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with a random walk Metropolis sampler based on independent Gaussian proposals with standard deviation
σp1,i = 0.01. As before the remaining blocks are initialized in the middle of the corresponding epistemic intervals
and updated with independent prior proposals. Acceptance rates amounted to ca. 10 % for 〈p1,i〉, (p2), and (µ5),
15 % for (µ4) and (σ2

4 , σ
2
5 , ρ45), and 30 % for (µ1, σ

2
1). A number of 10219 proposals in the last-mentioned block

were rejected due to violating α1, β1 > 1. We start with preliminary MCMC runs with K = 103 and constant
bandwidths hi = 0.02 in order to identify the posterior modes of 〈p1,i〉. Experiment-specific realizations 〈p1,i〉
are initialized in the middle of their epistemic intervals and converge within ca. 1000 MCMC iterations. The
initial convergence and final posterior of an experiment-specific realization p1,i with i = 10 are shown in Fig. 6.11.
This shows that individual experiment-specific realizations 〈p1,i〉 can indeed be inferred. The danger of the
approach is that missing further posterior modes of 〈p1,i〉 would alter the sampled posteriors of the remaining
unknowns, above all the one of θ1. Convergence checks have therefore been accomplished by initializing 〈p1,i〉
within admissible regions of the parameter space that have not been visited in previous runs. Ultimately the
chains converged to the same posterior modes which were found before. We conclude that the parameter space
has been properly explored.
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Figure 6.11: Convergence and identifiability of p1,10. With N = 105 iterations of the MC3DA algorithm the augmented
posterior Eq. (6.29) is explored by analyzing 〈ỹi〉1≤i≤50. For a preliminary run with K = 103 and fixed hi = 0.02, i.e.
without automatic bandwidth selection, a trace plot of the converging Markov chain of an experiment-specific p1,10 is
shown. After convergence within ca. 1000 iterations the Markov chain samples the corresponding posterior around its
mean.

We point out that although partial data augmentation has been motivated by considerations of posterior
fidelity, it also gives additional insight into the inverse problems posed. Incidentally the posterior of experiment-
specific realizations 〈p1,i〉 is explored and its modes are identified. Thus we have gained knowledge about
unknown problem quantities that are not primary QoI. Eventually we initialize the final sampler within the
detected posterior modes of 〈p1,i〉. With K = 103 and automatic selection of the bandwidths hi we draw N = 105

posterior samples. Total execution time amounts to t ≈ 90 h on a single core. The resulting posterior marginals
of the QoI are added to Figs. 6.4 to 6.7. As compared to the results obtained by MC3KS the posteriors found by
MC3DA have been slightly shrunk and evolved in structure. Resting upon the assumption that the posterior
modes of 〈p1,i〉 have been correctly identified, we take this as an indication of a gain in posterior fidelity. In
Fig. 6.12 two-dimensional posteriors are shown for (µ1, σ

2
1) and (µ1, p1,i) with i = 19. The corresponding linear

coefficients of correlation are found to be rµ1,σ2
1

= −0.25 and rµ1,p1,19 = 0.19. Generally we find small linear
correlations rµ1,p1,i & 0 between the mean hyperparameter µ1 and experiment-specific realizations p1,i for nearly
all i = 1, . . . , n. This is plausible since higher values of µ1 increase the plausibility of higher values of each p1,i
and vice versa.

6.8 Conclusion and outlook
Addressing the uncertainty characterization subproblem of the NASA Langley multidisciplinary UQ challenge

has turned out to be a challenging yet rewarding task. We began with formulating a generic Bayesian multilevel
framework for managing different types of forward model input uncertainties in complex inverse problems.
Incidentally this showed how the problem could be solved for “imperfect” data, e.g. in the presence of additional
measurement noise, and how the entirety of problem unknowns, including those that are not of declared inferential
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Figure 6.12: 2D posteriors of (µ1, σ
2
1) and (µ1, p1,19). Posterior projections that follow analyzing 〈ỹi〉1≤i≤50 are shown for

(µ1, σ
2
1) and (µ1, p1,19). While the former can be compared to the corresponding posterior marginal in Fig. 6.8 for MC3KS,

the latter is appertain to MC3DA. Linear coefficients of correlation are found to be rµ1,σ2
1

= −0.25 and rµ1,p1,19 = 0.19.

interest, can be deduced. Although these were not the guiding questions, this is a future research direction
in its own [57]. Bayesian structural prior modeling served as a foundation for devising a multilevel model in
the zero-noise or “perfect” data limit, i.e. the data space has been endowed with a probability model that was
based on uncertainty propagation. Ensuing from those general considerations we have interpreted and solved the
challenge problem as Bayesian calibration of a suitably defined multilevel model. We thoroughly commented on
the assumptions that the adopted approach rests upon as well as the interpretations it entails.

In turn the problem solution has given rise to new questions of theoretical and practical relevance alike.
Posterior fidelity was discussed in the context of MCMC posterior exploration and online uncertainty propagation.
First related thoughts were given and an in-depth consideration has been initiated. The starting point of
the latter could be Eqs. (6.12) to (6.15). With the objective of improving the fidelity of the final results we
demonstrated how one can exploit partial data augmentation. In addition to improving the estimation of the
QoI, in principle this approach allows to infer such problem unknowns that inferential interest is not particularly
focused on. That way partial data augmentation has provided further insight into the calibration problem posed.
In sum we hope that these efforts prove to be a solid contribution to the NASA challenge problem in particular
and to the theory and practice of Bayesian data analysis and uncertainty quantification in general. Future
research work encompasses the design of more sophisticated methods to simulate the likelihood function and the
rigorous assessment of the posterior fidelity.
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Chapter 7

Bayesian assessment of structural
masonry
Original publication
J. B. Nagel, N. Mojsilovic, and B. Sudret. “Bayesian Assessment of the Compressive Strength of Structural
Masonry”. In: 12th International Conference on Applications of Statistics and Probability in Civil Engineering
(ICASP12). Vancouver, Canada: University of British Columbia, 2015. doi: 10.14288/1.0076072

Abstract
The application of hierarchical models for assessing the compressive strength of structural masonry is

investigated. Based on current codified models the distribution of compressive strengths within an ensemble of
masonry wall specimens is related to the statistical properties of the populations of brick units and mortar used.
The parameters of this relation are calibrated with test data acquired at ETH Zürich. This approach allows
for heterogeneous material modeling, consistent uncertainty management and optimal information processing.
Costly compression tests of full-size masonry and inexpensive tests of brick and mortar samples are jointly
utilized for learning about the masonry wall characteristics.

7.1 Introduction
Structural masonry is a composite material that consists of brick units and mortar. A simplified sketch is

found in Fig. 7.1. The mechanical key characteristic of masonry is the compressive strength perpendicular to the
bed joints. Estimating or predicting this material property are thus issues of central importance to assessing
the reliability of masonry structures. These problems are therefore addressed in current standards [1, 2] and
numerous enhancements [3–10].

The motivation of this research study is twofold. Firstly, we observe a systematic discrepancy between
measured data and predictions of the masonry compressive strength according to [1]. This suggests a recalibration
of the model code parameters. Secondly, it is noticed that current approaches either suffer from their semi-
probabilistic character or their unsatisfactory treatment of the emerging uncertainties. Thus the goal of this
paper is to develop a fully probabilistic extension of current codified models for assessing the compressive
strength of unreinforced masonry. We will rely on hierarchical models [11, 12] and Bayesian networks [13, 14].

Figure 7.1: Structural masonry. The masonry wall is composed of brick units (white) that are bound by mortar (gray).
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This approach will allow for heterogeneous modeling of structural masonry, quantification of various types of
uncertainty and acquisition of information from diverse sources.

More specifically it is aimed at analyzing the compressive strength of structural masonry with system-level
data, i.e. measurements that are taken from full-scale masonry specimens, component-level data, i.e. results
from testing brick units and mortar samples individually, and prior or expert knowledge. Compression tests of
masonry specimens are rather costly, whereas data associated to component-specific material characteristics are
relatively inexpensive to acquire. Hierarchical models enable the joint processing of information from different
levels of the overall system. This way the information is optimally utilized. Moreover a predictive relationship is
established that connects the masonry compressive strength with the component-level compressive strengths.

The remainder of this document is organized as follows. Previous approaches of assessing the compressive
strength of structural masonry will be reviewed in Section 7.2. Hierarchical models will be introduced in
Section 7.3. In Section 7.4 the acquired data will be discussed and Section 7.5 will show the results of Bayesian
updating. Lastly we will summarize and conclude in Section 7.6.

7.2 Current models
In [1] it is tried to relate the compressive strength of masonry to the resistances of its brick and mortar

components. The relationship is realized as a power function

fw = k′fα
′

b fβ
′

m . (7.1)

On the one hand, the compressive strength of masonry is summarized by the characteristic value fw, i.e. a
5 %-quantile. On the other hand, fb denotes the normalized mean compressive strength of the units and fm
denotes the mean compressive strength of the mortar. Estimates of the constants (k′, α′, β′) are given for different
types of masonry. In [2] the empirical relation Eq. (7.1) is interpreted similarly. Here fw, fb and fm represent
the mean values of the corresponding distributions. Different prior estimates of the coefficients (k′, α′, β′) are
provided. The coefficients are often set so that they (approximately) satisfy α′ + β′ = 1. This choice can be
justified for reasons of the physical dimension in Eq. (7.1).

Ensuing from these semi-probabilistic models, a variety of extensions have been proposed in the literature.
There are probabilistic reinterpretations of Eq. (7.1) based on lognormal distributions [5, 7, 9, 10]. In other
studies the model uncertainty of Eq. (7.1) is quantified [3, 4]. A conjugate Bayesian updating approach based on
Gaussian distributions is presented in [6]. Another idea is to establish a connection between the compressive
strengths of masonry and its components via artificial neural networks [8].

These previous approaches suffer from the fact that they either do not clearly distinguish between epistemic
and aleatory shares of uncertainty or they neglect material heterogeneity. Fitting the parameters of a probabilistic
extension of Eq. (7.1) is a problem that has hardly been satisfactorily solved as yet.

7.3 Hierarchical models
In the following hierarchical Bayesian modeling is introduced as a tool for distinguishing and handling

uncertainty in codified models of the form Eq. (7.1). The aim of this section is to establish a Bayesian model
and updating strategy for the following experimental situation. The compressive strength is measured for
a number of clay block masonry specimens. Specimens can be grouped according to the ensembles of brick
units and mortar that were used for their construction. Here ensembles of clay bricks are characterized by the
same ingredients used and the same manufacturing procedure. Similarly in every ensemble of mortar samples
identical constituents were used for mixing. In this modeling approach material heterogeneity is accounted for
by distinguishing between brick and mortar samples used in constructing the masonry wall systems. The final
goal is the assessment and prediction of the compressive capacity of structural masonry by utilizing system- and
component level information.

7.3.1 Aleatory model
Within an ensemble of masonry wall specimens, the compressive strength of the masonry wall is represented

as a random variable
Fw = kFαb F

β
m. (7.2)

This is a probabilistic extension of the codified model in Eq. (7.1). We remark that the coefficients (k, α, β) of
the relation Eq. (7.2) are not immediately identified with the ones of Eq. (7.1).
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The compressive strengths of the bricks and the mortar are modeled as lognormal random variables Fb ∼
LN (fb |µb, σ2

b ) and Fm ∼ LN (fm |µm, σ2
m). Their distributions are determined by hyperparameters θb = (µb, σb)

and θm = (µm, σm) that are the mean and standard deviation of log(Fb) and log(Fm), respectively. Consequently
the masonry wall compressive strength in Eq. (7.2) is a random variable that follows a lognormal distribution

Fw ∼ LN
(
fw |µw, σ2

w

)
, (7.3a)

with µw = αµb + βµm + log k, (7.3b)
and σ2

w = α2σ2
b + β2σ2

m. (7.3c)

The distribution Eq. (7.3a) represents the variability, i.e. the frequency distribution, of the masonry compressive
strengths within the population of specimens. It is parametrized by hyperparameters θw = (µw, σw) that are
determined by the statistical properties of component populations due to Eqs. (7.3b) and (7.3c).

The mean value and the variance of the distribution LN
(
fw |µw, σ2

w

)
in Eq. (7.3) are simply given as

E[Fw] = exp(µw + σ2
w/2) and Var[Fw] = (exp(σ2

w) − 1) exp(2µw + σ2
w), respectively. The 5 %-quantile of

LN
(
fw |µw, σ2

w

)
, e.g. for comparison with Eq. (7.1), follows as Qw,5 % = exp(µw − 1.645σw).

7.3.2 Epistemic model
If the coefficients (k, α, β) of Eqs. (7.2) and (7.3) are not perfectly known, one can represent their epistemic

uncertainty as prior random variables (K,A,B) ∼ π(k, α, β). In the following we will confine the analysis to the
case β = 1− α. We consider mutually independent prior random variables

K ∼ π(k), A ∼ π(α). (7.4)

Their joint prior uncertainty π(k, α) = π(k)π(α) can be reduced by Bayesian data analysis of experimental
measurements. In the following two different updating approaches are outlined for experimental situations where
the assumption of known hyperparameters, i.e. the distributional parameters of the ensembles of masonry wall
components, is either justified or rather unfounded.

7.3.3 Known hyperparameters
Let us consider experiments of the following type. In each batch of experiments i = 1, . . . , n the masonry

compressive strength fw,ij is measured for a number of different specimens j = 1, . . . , Ji from an ensemble.
We use 〈fw,ij〉 = (fw,11, . . . , fw,nJn) to denote the set of these measurements. The hyperparameters θb,i and
θm,i are measured for the bricks and the mortar used in experiment i, too. This can be accomplished by a
statistical analysis of data 〈fb,ik〉 = (fb,11, . . . , fb,nKn) and 〈fm,il〉 = (fm,11, . . . , fm,nKn) with k = 1, . . . ,Ki and
l = 1, . . . , Li. These data must be numerous and they must be observed for the ensembles of brick units and
mortar used. The Bayesian multilevel model for this scenario can be written as

(Fw,ij |k, α) ∼ π(fw,ij |k, α), (7.5a)
(K,A) ∼ π(k)π(α). (7.5b)

Here the conditional distributions Eq. (7.5a) are given by Eq. (7.3), where batch-specific knowns θb,i and θb,i
are plugged in. The epistemic prior uncertainty of the coefficients (k, α) is encoded in Eq. (7.5b). As long as not
indicated otherwise, all random variables in Eq. (7.5) are assumed to be (conditionally) independent. A directed
acyclic graph (DAG) as in Fig. 7.2 serves as an intuitive visualization of the model Eq. (7.5).

As usual, Bayesian updating is accomplished by conditioning the prior distribution π(k, α) = π(k)π(α) on
the acquired data 〈fw,ij〉. One obtains

π(k, α|〈fw,ij〉) ∝ π(k)π(α)
n∏
i=1

Ji∏
j=1

π(fw,ij |k, α). (7.6)

Note that Eq. (7.6) is based on exact values the hyperparameters θb,i and θm,i for every batch i.

7.3.4 Unknown hyperparameters
The requirement of known hyperparameters θb,i and θm,i restricts the applicability model Eq. (7.5) to

situations that are rarely met in practice. Therefore we consider the situation when only prior knowledge
π(θb,i,θm,i) = π(θb,i)π(θm,i) about the hyperparameters is available. Additionally in each batch of experiments
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Figure 7.2: Known hyperparameters. Nodes symbolize known ( ) or unknown ( ) quantities. Arrows represent
deterministic ( ) or probabilistic ( ) relations.

i a variable number of measurements fb,ik and fm,il for k = 1, . . . ,Ki and l = 1, . . . , Li are taken of the brick
unit and the mortar compressive strength, respectively. The corresponding hierarchical Bayesian model reads

(Fw,ij |k, α,θb,i,θm,i) ∼ π(fw,ij |k, α,θb,i,θm,i),
(Fb,ik |θb,i) ∼ π(fb,ik |θb,i), (7.7a)

(Fm,il |θm,i) ∼ π(fm,il |θm,i),

(Θb,i,Θm,i) ∼ π(θb,i)π(θm,i),
(K,A) ∼ π(k)π(α).

(7.7b)

While Eq. (7.7a) summarizes the aleatory uncertainties, Eq. (7.7b) contains the epistemic uncertainties. The
model Eq. (7.7) is visualized as the DAG in Fig. 7.3. We remark that the observations 〈fb,ik〉 and 〈fm,il〉 inform
about the statistical properties θb,i and θm,i of the component ensembles. This way they give information about
the unobservable properties of the brick and mortar samples used for constructing the masonry wall i.

Figure 7.3: Unknown hyperparameters. The batch-specific hyperparameters θb,i and θm,i are unknown. They can be
inferred from the data 〈fb,ik〉 and 〈fm,il〉.
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Bayesian analysis proceeds by updating the joint prior π(k, α, 〈θb,i〉, 〈θm,i〉) = π(k)π(α)
∏n
i=1 π(θb,i)π(θm,i).

Conditioned on the data (〈fw,ij〉, 〈fb,ik〉, 〈fm,il〉) one obtains for the joint posterior

π(k, α, 〈θb,i〉, 〈θm,i〉|〈fw,ij〉, 〈fb,ik〉, 〈fm,il〉) ∝ π(k)π(α)
n∏
i=1

π(θb,i)π(θm,i)

·
Ji∏
j=1

π(fw,ij |k, α,θb,i,θm,i)
Ki∏
k=1

π(fb,ik |θb,i)
Li∏
l=1

π(fm,il |θm,i).
(7.8)

Notice that the posterior Eq. (7.8) gathers information from both system- and component-level data.

7.4 Experimental data
In the years 2009-2012 and 2014 the compressive strength of clay block masonry was measured for a variable

number of specimens in a series of compression tests. In addition, the compressive strengths of bricks and
mortar were recorded for realizations from the same ensembles that were later used for the construction of the
masonry wall. The tests were performed at the laboratories of the Department of Civil, Environmental and
Geomatic Engineering of ETH Zürich. Two photographs that were made during the tests are shown in Fig. 7.4.
In Table 7.1 the experimental data are summarized. Five batches of experiments were performed in total. At
the system- and the component level the available data is generally scarce. Especially in the years 2011 and
2012 the number of component-level tests was very limited. Moreover, in the years 2009 and 2010 brick units
from the same ensemble were used.

(a) Before failure. (b) After failure.

Figure 7.4: Compression test. A specimen is shown before its failure in (a) and thereafter in (b).

We observe that the empirical relation Eq. (7.1) generally overpredicts the masonry wall compressive strength.
In Fig. 7.5 the actually acquired data for i = 1, i.e. for the year 2009, is shown together with the correspondingly
predicted characteristic value. The values k′ = 0.45, α′ = 0.7, β′ = 0.3 provided in [1] were used. Brick unit
data 〈fb,ik〉 have been normalized according to their geometry. Moreover a lognormal distribution of the form
Eq. (7.2) is shown, where α = α′ and β = β′ have been identified with the corresponding coefficients from [1].
The remaining coefficient k = k′ · exp(1.645

√
α2
iσ

2
b,i + β2

i σ
2
m,i +αi[σ2

b,i/2] +βi[σ2
m,i/2]) has been set in order that

the 5 %-quantile equals Eq. (7.1). Note that the abovementioned identification/transformation of the coefficients
establishes another way of extending Eq. (7.1) and comparing it to Eq. (7.2). In this paper we do not pursue
this approach, though.

Of course, the unexpected code/measurement discrepancy raises important questions. Anticipating our
results it is said that we will not be able to satisfactorily explain this discrepancy. Instead we will calibrate
the coefficients k and α in a way that leads to better predictions. Those predictions are valid for the testing
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Table 7.1: Experimental data. Data are shown for tests of clay block masonry that were performed in the years 2009-2012
and in 2014. Blocks from the same ensemble were used in 2009 and 2010. Thus the corresponding rows show duplicate
data entries.

2009 Batch 1
fw

[M
Pa

] 9.41 5.53 7.98 8.86 6.67 7.17 7.92 - - - - - -
fb 33.58 34.55 37.1 39.21 39.63 36.1 35.46 37.61 35.6 36.26 35.2 32.7 36.6
fm 15.8 16.1 14.4 14.8 16.1 15.4 13.9 14.6 14.6 14.4 16.8 16.1 -

2010 Batch 2
fw

[M
Pa

] 6.67 6.12 5.91 8.3 6.44 5.32 6.7 - - - - - -
fb 33.58 34.55 37.1 39.21 39.63 36.1 35.46 37.61 35.6 36.26 35.2 32.7 36.6
fm 12.5 12.94 12.43 13.33 12 12.32 - - - - - - -

2011 Batch 3
fw

[M
Pa

] 4.32 3.71 6.06 4.95 4.29 2.8 6.28 4.22 5.23 - - - -
fb 23.8 26.8 25.7 - - - - - - - - - -
fm 14.9 14.7 14.9 15.4 14.7 14.6 - - - - - - -

2012 Batch 4
fw

[M
Pa

] 8 7.87 8.1 7.53 8.14 6.99 7.82 9.13 5.87 7.71 - - -
fb 37 39.9 38 - - - - - - - - - -
fm 26.9 28.1 17 16.2 18.7 21.1 - - - - - - -

2014 Batch 5
fw

[M
Pa

] 6.53 7.01 6.12 5.94 7.14 5.69 5.82 6.34 5.96 - - - -
fb 28.15 27.74 28.05 27.20 26.25 23.15 26.69 28.04 27.69 26.73 - - -
fm 11.73 12.19 12.13 10.49 10.34 10.44 - - - - - - -

machine and the materials used in our laboratory. Using the predictions outside their scope of applicability is
questionable and should only be done with utmost caution.

7.5 Bayesian analysis
The Bayesian framework discussed in Section 7.3 is now applied to analyze the experimental data that was

presented in Section 7.4. More specifically we use the first two batches of experiments that were conducted in
2009 and 2010 to calibrate the unknown coefficients of the model Eq. (7.5). For those batches the amount of
component-level data is deemed sufficient to fit the hyperparameters and to treat them as knowns subsequently.
Moreover the first four batches will be analyzed with the model Eq. (7.7) that allows to treat the hyperparameters
as unknowns. Especially in the years 2011 and 2012 the small amount of component-level data does not allow to
proceed in another way. The fifth batch of experiments from 2014 will be used as an independent test set.

Since the coefficients in Eqs. (7.2) and (7.3) cannot be identified with those of Eq. (7.1), it is not possible
to elicit informative priors about the former by exploiting expert knowledge or code information about the
latter. Hence uninformative priors are used. Specifically we assign uniform prior distributions π(k) = U(0, 1)
and π(α) = U(0.5, 1). Due to β = 1− α the latter assignment enforces α ≥ β. This reflects the intuition that,
regarding the masonry compressive strength, the brick units are more influential than the mortar. For the
Bayesian model in Eq. (7.7) priors π(θb,i) = π(µb,i)π(σb,i) and π(θm,i) = π(µb,i)π(σb,i) have to be elicited for
the unknown hyperparameters. We use independent uniform hyperprior distributions with reasonable bounds
for the means and standard deviations.

The posteriors Eqs. (7.6) and (7.8) can be sampled by means of Markov chain Monte Carlo (MCMC)
techniques [15]. In Figs. 7.6 and 7.7 the resulting posterior marginals of k and α are depicted. It can be seen
that π(k, α|〈fw,ij〉, 〈fb,ik〉, 〈fm,il〉) contains a higher degree of posterior uncertainty than π(k, α|〈fw,ij〉). Since
more data has entered the former posterior, at first sight this seems to be surprising. This fact can be attributed
to the differences of the models Eqs. (7.5) and (7.7) in treating the hyperparameters and their uncertainties,
though.

Specifically the modes k̂ = 0.21 and α̂ = 1 are found for the posterior π(k, α|〈fw,ij〉) that represents the
situation that hyperparameters are assumed to be known. The posterior π(k, α|〈fw,ij〉, 〈fb,ik〉, 〈fm,il〉), for the
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Figure 7.5: Data and predictions for 2009. The data, its expected 5 %-quantile and a corresponding lognormal distribution
are shown. The data are overpredicted.

Figure 7.6: Posterior of k. The posteriors π(k |〈fw,ij〉) and π(k |〈fw,ij〉, 〈fb,ik〉, 〈fm,il〉) are shown. It can be seen that the
latter is broader than the former.

scenario that hyperparameters are treated as unknowns, features the modes k̂ = 0.22 and α̂ = 1.
The fact that the posterior of α in Fig. 7.7 peaks at the upper bound of its prior is somewhat surprising. As

a consequence of β̂ = 1− α̂ = 0, the influence of mortar occurs to be negligible. Moreover, such a behavior may
indicate that the inverse problem is improperly solved, e.g. the true parameter value was accidentally excluded a
priori. It was therefore tried to relax the assumption β = 1− α by permitting arbitrary values α > 0 and β > 0.
To that end independent priors π(α) and π(β) were assigned. We had to conclude that the limited amount of
available data is not sufficiently informative in order to calibrate this extended model.

Plugging the point estimates k̂ and α̂ in Eq. (7.3) establishes a predictive relation of the frequency distribution
of structural masonry. For that purpose one has to specify the values or estimates of the hyperparameters θb
and θm for the ensembles of bricks and mortar used in the construction of the masonry wall. The predicted
distributions, that are obtained this way for the actually analyzed batches of experiments, describe the masonry
wall resistances adequately well. Since the estimations of the coefficients were informed by the very same data,
this does not seem to be very surprising. Yet this signifies that the representation Eq. (7.3) is adjustable enough
to match the data. In turn this may indicate that Eq. (7.3) is indeed a suitable representation of the masonry
wall compressive strength.

When applied to the fifth batch of experiments the procedure described above can serve as a validation
test, i.e. the data collected in 2014 are used as an independent test set. In Fig. 7.8 the measured masonry wall
compressive strengths are shown together with the their predicted distribution. The plot is supplemented with
the corresponding 5 %-quantile. Here the point estimates k̂ = 0.22 and α̂ = 1 that were obtained by analyzing
the previous four batches are used on one side. On the other side component-level data 〈fb,5j〉 and 〈fm,5j〉 for
the fifth batch are used to estimate θb,5 and θm,5. The predictive distribution captures the data fairly well.
Obviously it is of higher quality than the poor code-forecast shown in Fig. 7.5.
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Figure 7.7: Posterior of α. Both the posterior marginals π(α|〈fw,ij〉) and π(α|〈fw,ij〉, 〈fb,ik〉, 〈fm,il〉) peak at their upper
boundary.

Figure 7.8: Data and predictions for 2014. The gathered data, the predicted distribution and its 5 %-quantile are shown.
Predictions conform to data tolerably well.

7.6 Summary and conclusion
It was demonstrated how hierarchical Bayesian models can serve the purpose of assessing the compressive

strength of structural masonry. This establishes a fully probabilistic alternative to the existing semi-probabilistic
approaches. The hierarchical framework offers versatile and powerful tools of uncertainty quantification and
information aggregation at multiple system levels. Different types of uncertainty, i.e. ignorance and variability, are
thoroughly managed, while heterogeneous types of information, e.g. data and expert knowledge, are consistently
utilized. This way the analysis of the masonry wall resistance can be based on large-scale compression tests as
well as on inexpensive tests of brick unit and mortar samples.

Our hope is that this possibility will encourage experimenters in entirely publishing their collected data. In
fact it seems to be commonplace to quote statistical data summaries only, e.g. sample means or characteristic
values. The proposed methodology, however, allows to process the acquired data as a whole.

A number of questions have arisen. It is queried if Eq. (7.3) is an adequate representation of the distribution
of masonry compressive strength in terms of distributional parameters of the components. With regard to the
complexity of structural masonry, its failure modes and their dependency on the quality of workmanship, the
relations Eqs. (7.1) and (7.2) are oversimplifying. They were inspired by the structure of current models but lack
a solid physical foundation. For future studies this motivates the introduction of model uncertainty in addition to
the emerging parameters uncertainties. Beyond that future work will also involve the construction and objective
selection of better system-level models of aleatory variability. A more fundamental question concerns the general
suitability of empirical relations for any probabilistic extension whatsoever. Another raised issue relates to the
observed mismatch between measurements and code-predictions. We were not able to explain this discrepancy.
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Abstract
A spectral approach to Bayesian inference is presented. It pursues the emulation of the posterior probability

density. The starting point is a series expansion of the likelihood function in terms of orthogonal polynomials.
From this spectral likelihood expansion all statistical quantities of interest can be calculated semi-analytically.
The posterior is formally represented as the product of a reference density and a linear combination of polynomial
basis functions. Both the model evidence and the posterior moments are related to the expansion coefficients.
This formulation avoids Markov chain Monte Carlo simulation and allows one to make use of linear least squares
instead. The pros and cons of spectral Bayesian inference are discussed and demonstrated on the basis of simple
applications from classical statistics and inverse modeling.

8.1 Introduction
In view of inverse modeling [1, 2] and uncertainty quantification [3, 4], Bayesian inference establishes a

convenient framework for the data analysis of engineering systems [5–7]. It adopts probability theory in order
to represent, propagate and update epistemic parameter uncertainties. The prior distribution captures the
uncertainty of unknown model parameters before the data are analyzed. A posterior is then constructed as
an updated distribution that captures the remaining uncertainty after the data have been processed. The
computation of this posterior is the primary task in Bayesian inference.

Some simplified statistical models admit closed-form expressions of the posterior density. Beyond these
so-called conjugate cases, computational approaches either aim at evaluating expectation values under the
posterior or drawing samples from it [8]. This is usually accomplished with stochastic methods such as Markov
chain Monte Carlo [9, 10]. Nowadays this class of techniques constitutes the mainstay of Bayesian computations.
The posterior is explored by realizing an appropriate Markov chain over the prior support that exhibits the
posterior as its long-run distribution. In turn, the obtained sample is used to empirically approximate the
statistical quantities of interest. These include the characteristics of the posterior and the predictive distribution.
This way of proceeding suffers from some inherent deficiencies. The presence of sample autocorrelation and
the absence of a convergence criterion cause severe practical problems. Moreover, Markov chain Monte Carlo
typically requires a large number of serial forward model runs. Since in engineering applications even a single
model run can be computationally taxing, this may be prohibitive. In the recent past, numerous enhancements
have been proposed in order to accelerate Markov chain Monte Carlo for Bayesian inverse problems. This
includes the implementation of more efficient sampling algorithms, e.g. transitional Markov chain Monte Carlo
[11, 12] or Hamiltonian Monte Carlo [13–15], and the substitution of the forward model with an inexpensive
metamodel, e.g. based on Gaussian process models [16, 17] or polynomial chaos expansions [18–20]. Although
these approaches promise significant speedups, they still inherit all principle shortcomings of sample-based
posterior representations.
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Unfortunately there are only few fundamental alternatives to stochastic sampling. Variational Bayesian
inference establishes such an alternative where the posterior is sought through deterministic optimization [21–23].
In particular, a member from a simple parametric family of probability densities is selected such that some
distance to the posterior is minimized. In this regard, the Kullback-Leibler divergence is often chosen as a
relative measure of the dissimilarity of two probability densities. The procedure commonly rests upon some
simplifying independence assumptions. Variational methods are regarded as less computing intensive than
Markov chain Monte Carlo, yet they are only approximate. They are prominently used in machine learning
and computer science [24, 25], and since recently such methods are applied to inverse problems [26, 27], too. A
particularly interesting implementation of variational Bayesian inference has been proposed in [28]. The posterior
is parametrized as a transformation of the prior density and can be computed based on the corresponding
back-transformation. More specifically, a random variable transformation is sought in polynomial form such
that the Kullback-Leibler divergence between the prior density and the back-transformed posterior density
is minimized. This formulation is supported by arguments from optimal transport theory which also allows
for a practical regularization of the problem. Finally, samples from the posterior distribution are obtained by
independently sampling from the prior and applying the polynomial map. Another approach to certain Bayesian
inverse problems has been recently devised in [29, 30]. Based on monomial Taylor expansions of the forward
model and of the posterior density, the computation of expectation values under the posterior is tackled by
sparse numerical quadrature.

In this paper we propose a novel approach to surrogate the posterior probability density in itself. The main
idea is to decompose the likelihood function into a series of polynomials that are orthogonal with respect to
the prior density. It is shown that all statistical quantities of interest can then be easily extracted from this
spectral likelihood expansion. Emulators of the joint posterior density and its marginals are derived as the
product of the prior, that functions as the reference density, and a linear combination of polynomials, that
acts as an adjustment. In doing so, the model evidence simply emerges as the coefficient of the constant term
in the expansion. Moreover, closed-form expressions for the first posterior moments in terms of the low-order
expansion coefficients are given. The propagation of the posterior uncertainty through physical models can
be easily accomplished based on a further postprocessing of the expansion coefficients. In this sense, spectral
Bayesian inference is semi-analytic. While the corrections required for an expansion of the posterior with respect
to the prior as the reference density may be large, they can be small for an expansion around a properly chosen
auxiliary density. A change of the reference density is therefore suggested in order to increase the efficiency of
computing a posterior surrogate. The devised formulation entirely avoids Markov chain Monte Carlo. Instead
it draws on the machinery of spectral methods [31–33] and approximation theory [34–36]. It is proposed to
compute the expansion coefficients via linear least squares [37, 38]. This allows one to make use of the wealth of
statistical learning methods [39, 40] that are designed for this type of problems. The approach features a natural
convergence criterion and it is amenable to parallel computing.

The scope of applicability of the proposed approach covers problems from Bayesian inference for which the
likelihood function can be evaluated and for which polynomials can be constructed that are orthogonal with
respect to the prior, possibly after a carefully chosen variable transformation. This excludes statistical models
that involve intractable likelihoods [41, 42], i.e. the likelihood cannot be exactly evaluated. It also excludes
improper prior distributions [43, 44], i.e. the prior does not integrate to one or any finite value, and models
with pathologic priors such as the Cauchy distribution for which the moments are not defined [45, 46]. Many
hierarchical Bayesian models [47, 48] are not covered by the devised problem formulation. They are either based
on conditional priors, which does not allow for orthogonal polynomials, or on integrated likelihoods, which can
only be evaluated subject to noise.

Spectral likelihood expansions complement the existing array of Bayesian methods with a way of surrogating
the posterior density directly. They have the potential to remedy at least some of the shortcomings of Markov
chain Monte Carlo. Yet, their practical implementation poses challenges. Hence, the goal of this paper is to discuss
and investigate the possibilities and limitations of the approach. The method of spectral likelihood expansions is
therefore applied to well-known calibration problems from classical statistics and inverse heat conduction. We
restrict the analysis to low-dimensional problems. The final results are compared with corresponding results
from Markov chain Monte Carlo simulations.

The manuscript is structured as follows. The principles of Bayesian inference are summarized in Section 8.2.
Surrogate forward modeling with polynomial chaos expansions is reviewed in Section 8.3. After that, spectral
likelihood expansions are introduced as an alternative approach to Bayesian inference in Section 8.4. Two
well-known Gaussian fitting examples and the identification of thermal properties of a composite material serve
as numerical demonstrations in Section 8.5. Finally, it is summarized and concluded in Section 8.6.
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8.2 Bayesian inference
Let x = (x1, . . . , xM )> ∈ Dx with Dx = Dx1 × . . .×DxM ⊂ RM be a vector of unknown parameters. The

goal of statistical inference is to deduce these unknowns from the observed data y = (y1, . . . , yN )> ∈ RN . In
Bayesian statistics one adapts probabilistic models for representing uncertainty. Hence, let (Ω,F ,P) be a suitable
probability space with a sample space Ω, a σ-field F and a probability measure P . On this space one can define
a prior model of the unknowns and an observational model of the data that represent the encountered parameter
uncertainties and the experimental situation, respectively.

The epistemic uncertainty of the parameter values is cast as a Dx-valued random vector X : Ω → Dx ⊂
RM . Here, the components of X = (X1, . . . , XM )> are Dxi-valued random variables Xi : Ω → Dxi ⊂ R for
i = 1, . . . ,M . Since the data have not been processed at this stage, the joint density of X ∼ π(x) is called the
prior density. Similarly, a RN -valued random vector Y : Ω→ RN represents the observables. The components
of Y = (Y1, . . . , YN )> are real-valued random variables Yi : Ω→ R for i = 1, . . . , N . In order to draw inferences
from the data about the unknowns, one has to formulate an observational model that establishes a relationship
between those quantities. Commonly this is a probabilistic representation of the observables Y |x ∼ f(y |x)
that is conditional on the unknown parameters. For the actually acquired data Y = y, the likelihood function
L(x) = f(y |x) is defined by interpreting the conditional density f(y |x) as a function of the unknowns x.

Given this setup, one can formulate an updated probability density π(x|y) of the unknowns that is conditioned
on the realized data. This so-called posterior density results from Bayes’ law

π(x|y) = L(x)π(x)
Z

. (8.1)

It completely summarizes the available information about the unknowns after the data have been analyzed. The
model evidence Z properly normalizes the posterior density. It can be written as

Z =
∫
Dx

L(x)π(x) dx. (8.2)

One is often interested in the marginals and moments of the posterior. The posterior marginal π(xj |y) of a
single unknown xj with j ∈ {1, . . . ,M} is defined as

π(xj |y) =
∫
Dx∼j

π(x|y) dx∼j . (8.3)

Here, the simplifying notation x∼j = (x1, . . . , xj−1, xj+1, . . . , xM )> is introduced. For the mean E[X |y] and
the covariance matrix Cov[X |y] of the posterior one has

E[X |y] =
∫
Dx

xπ(x|y) dx, (8.4)

Cov[X |y] =
∫
Dx

(x− E[X |y])(x− E[X |y])> π(x|y) dx. (8.5)

More generally, Bayesian inference focuses the computation of posterior expectation values of the quantities
of interest (QoI) h : Dx → R. These expectations may be formally expressed as

E[h(X)|y] =
∫
Dx

h(x)π(x|y) dx. (8.6)

For later considerations, it is remarked that this integration over the posterior density can be interpreted as a
reweighted integration over the prior density

E[h(X)|y] =
∫
Dx

h(x)L(x)
Z

π(x) dx = 1
Z
E[h(X)L(X)]. (8.7)
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8.2.1 Bayesian inverse problems
The Bayesian framework described above can be applied to a vast range of scenarios from classical statistics [49,

50] and inverse modeling [51, 52]. In inverse problems, a so-called forward model M establishes a mathematical
representation of the physical system under consideration. It is the function

M : Dx → RN

x 7→ M(x)
(8.8)

that maps model inputs x ∈ Dx ⊂ RM to outputs ỹ =M(x) ∈ RN . Inversion is the process of inferring the
unknown forward model parameters x with the measured data y of its response.

A probabilistic model of the observables is commonly constructed supposing that they can be represented as
the sum Y = Ỹ +E of the model response vector Ỹ =M(X) : Ω→ RN and another random vector E : Ω→ RN .
The latter accounts for measurement noise and forward model inadequacy. It is assumed that the residual vector
E is statistically independent from X. An unknown realization E = ε measures the discrepancy between the
actually measured data y = ỹ + ε and the model response ỹ =M(x) at the true value x. Typically one starts
from the premise that the residual E ∼ N (ε|0,Σ) follows a Gaussian distribution. Here, Σ is a symmetric and
positive-definite covariance matrix. The observational model is then simply given as Y |x ∼ N (y |M(x),Σ).
For the likelihood this implies

L(x) = 1√
(2π)N det(Σ)

exp
(
−1

2 (y −M(x))>Σ−1 (y −M(x))
)
. (8.9)

For the actually acquired data y, this is understood as a function of the unknowns x. The Bayesian solution
to the inverse problem posed is then the posterior in Eq. (8.1) where the likelihood is given as in Eq. (8.9). It
summarizes the collected information about the unknown forward model inputs.

8.2.2 Markov chain Monte Carlo
Apart from some exceptional cases, the posterior density in Eq. (8.1) does not exhibit a closed-form expression.

Thus one settles either for computing expectation values under the posterior or for sampling from the posterior.
The former can be accomplished through stochastic integration techniques such as Monte Carlo (MC) [53]
or importance sampling [54]. For the latter one usually has to resort to Markov chain Monte Carlo (MCMC)
sampling [9, 10]. An ergodic Markov chain X(1),X(2), . . . over the support Dx is constructed in such a way that
the posterior arises as the invariant distribution

π(x(t+1) |y) =
∫
Dx

π(x(t) |y)K(x(t),x(t+1)) dx(t). (8.10)

Here, K(x(t),x(t+1)) denotes the density of the transition probability from the state x(t) of the Markov chain at
a time t to its state x(t+1) at time t + 1. The Metropolis-Hastings (MH) algorithm [55, 56] suggests an easy
principle for the construction of a Markov kernel K that satisfies Eq. (8.10). It is based on sampling candidates
from a proposal distribution and a subsequent accept/reject decision. The transition kernel defined this ways
satisfies detailed balance, i.e. time reversibility π(x(t) |y)K(x(t),x(t+1)) = π(x(t+1) |y)K(x(t+1),x(t)). This is a
sufficient condition for Eq. (8.10) to apply. In practice, one initializes the Markov chain at some x(1) ∈ Dx and
then iteratively applies the MH updates from x(t) to x(t+1) for a finite number of times T . The ergodic theorem
then ensures that one can approximate the population average in Eq. (8.6) in an asymptotically consistent way
as the time average

E[h(X)|y] ≈ 1
T

T∑
t=1

h(x(t)). (8.11)

A whole string a unpleasant consequences is entailed by the fact that MCMC updates are typically local and
serially dependent. The quality of the posterior approximation is governed by the MCMC sample autocorrelation.
In order to ensure an efficient posterior exploration one has to carefully design and tune the proposal distribution.
This is an extremely tedious and problem-dependent task. Yet, even for comparably efficient MCMC updates,
a large number of MCMC iterations may be required in order to achieve an acceptable degree of fidelity of
the final results. In inverse modeling this requires an even larger number of serial forward solves which can
be prohibitively expensive for demanding models. Another intrinsic MCMC weakness is that it lacks a clear
convergence and stopping criterion, i.e. for diagnosing when the chain has forgotten its initialization and has
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converged to the target distribution in Eq. (8.10), and for the assessment of when the MC error in Eq. (8.11)
has become sufficiently small. Even though there are more or less sophisticated convergence diagnostics [57, 58],
those heuristic checks may very well fail, e.g. when separated posterior modes have not yet been detected.

The model evidence in Eq. (8.2) is important in the context of model comparison and selection [59]. In
engineering applications it often happens that one wants to judge the performance of various competing models
against measured data [60, 61]. While in variational Bayesian inference at least a lower bound of the model
evidence is implicitly computed as a side product, in the MH algorithm it is not computed at all. Avoiding
the explicit computation of the model evidence is beneficial for parameter estimation, but it does not allow for
model selection. To this effect one has to rely on dedicated methods [62, 63].

8.3 Surrogate forward modeling
In the analysis of engineering systems it has become a widespread practice to substitute expensive computer

models with inexpensive metamodels or surrogate models. Those approximations mimic the functional relationship
between the inputs and the outputs of the original model in Eq. (8.8). Metamodeling promises significant gains
in situations that require a large number of forward model runs, e.g. for optimization problems, uncertainty
analysis and inverse modeling. Important classes of metamodels are based on Gaussian process models or Kriging
[64, 65] and polynomial chaos expansions [66]. More recent introductions to these subjects can be found in [67,
68] and [69, 70], respectively. Nowadays the application of Kriging [16, 17] and polynomial chaos surrogates
[18–20] is commonplace in Bayesian inverse problems.

We focus on polynomial chaos metamodels next. The idea is to decompose the forward model response into
polynomial terms that are orthogonal with respect to a weight function. In stochastic analysis this weight is
often identified with a probability density in order to facilitate uncertainty propagation. In inverse analysis it is
commonly equated with the prior in order to enhance MCMC posterior sampling. The formalism of polynomial
chaos expansions is rooted in spectral methods and functional approximations with orthogonal polynomials.
Hence, the function space point of view is emphasized in this section. We also concentrate on linear least squares
for the practical computation of the expansions coefficients.

8.3.1 L2
π function space

From here on it is assumed that the components of the uncertain parameter vector X = (X1, . . . , XM )> are
independent random variables Xi. Thus their joint density can be written as

π(x) =
M∏
i=1

πi(xi). (8.12)

Let L2
π(Dx) = {u : Dx → R|

∫
Dx u

2(x)π(x) dx <∞} be the Hilbert space of functions that are square integrable
with respect to the prior density in Eq. (8.12). For u, v ∈ L2

π(Dx) a weighted inner product 〈·, ·〉L2
π
and its

associated norm ‖·‖L2
π
are defined as

〈u, v〉L2
π

=
∫
Dx

u(x)v(x)π(x) dx, (8.13)

‖u‖L2
π

= 〈u, u〉1/2L2
π
. (8.14)

Given that u, v ∈ L2
π(Dx), the real-valued random variables u(X), v(X) : Ω → R on the probability space

(Ω,F ,P) have a finite variance. One can then write the inner product in Eq. (8.13) as the expectation

〈u, v〉L2
π

= E[u(X)v(X)]. (8.15)

In the further course of the presentation, the identity in Eq. (8.15) is frequently used in order to switch back and
forth between expectation values under the prior distribution and weighted inner products.

8.3.2 Orthonormal polynomials

Now a basis of the space L2
π(Dx) is constructed with orthogonal polynomials [71–73]. Let {Ψ(i)

αi }αi∈N be a
family of univariate polynomials in the input variable xi ∈ Dxi . Each member is characterized by its polynomial
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degree αi ∈ N. The polynomials are required to be orthonormal in the sense that

〈
Ψ(i)
αi ,Ψ

(i)
βi

〉
L2
πi

= δαiβi =
{

1 if αi = βi,

0 if αi 6= βi.
(8.16)

These polynomials form a complete orthogonal system in L2
πi(Dxi). Next, a set of multivariate polynomials

{Ψα}α∈NM in the input variables x ∈ Dx is constructed as the tensor product

Ψα(x) =
M∏
i=1

Ψ(i)
αi (xi). (8.17)

Here, α = (α1, . . . , αM ) ∈ NM is a multi-index that characterizes the polynomials. By construction, namely due
to Eqs. (8.12), (8.16) and (8.17), they are orthonormal in the sense that

〈Ψα,Ψβ〉L2
π

= δαβ =
{

1 if α = β,

0 if α 6= β.
(8.18)

These polynomials establish a complete orthogonal basis in L2
π(Dx). Note that the constant term is always given

as Ψ(i)
0 = 1 in the univariate case. This ensures the proper normalization ‖Ψ(i)

0 ‖L2
πi

= 1. In the multivariate case
one similarly has Ψ0 = 1 with ‖Ψ0‖L2

π
= 1.

8.3.3 Hermite and Legendre polynomials
Two classical univariate families are the Hermite and the Legendre polynomials {Hαi(xi)}αi∈N for xi ∈ R

and {Pαi(xi)}αi∈N for xi ∈ [−1, 1], respectively. The former are orthogonal with respect to the weight function
N (xi |0, 1) = (2π)−1/2 exp(−x2

i /2), the latter with respect to U(xi | − 1, 1) = I[−1,1](xi)/2. Here, I[−1,1] denotes
the indicator function of the interval [−1, 1]. A short summary of these two univariate families is given in
Table 8.1. Over the respective domains, their first members are defined as given in Appendix 8.A. Classical
orthogonal polynomials {ψ(i)

αi (xi)}αi∈N are typically not normalized, e.g. the aforementioned Hermite or Legendre
families. An orthonormal family {Ψ(i)

αi }αi∈N is then obtained through an appropriate normalization with
Ψ(i)
αi = ψ

(i)
αi /‖ψ

(i)
αi ‖L2

πi
.

Table 8.1: Two families of orthogonal polynomials.

Input type Polynomials Dxi πi(xi) ψ
(i)
αi (xi) ‖ψ(i)

αi ‖L2
πi

Gaussian Hermite R N (xi |0, 1) Hαi(xi)
√
αi!

Uniform Legendre [−1, 1] U(xi | − 1, 1) Pαi(xi)
√

1/(2αi + 1)

In practice, the parameter space Dx and the input distribution π(x) are often not directly suitable for an
expansion based on the two standardized families in Table 8.1. One possibility is then to employ suitably chosen
or constructed polynomials [74, 75]. Another possibility is to use an invertible function T : RM → RM , sufficiently
well-behaved and as linear as possible, in order to transform the physical variables x into standardized variables
ξ = T (x), i.e. the image Dξ = T (Dx) and the transformed weight function πT (ξ) = π(T −1(ξ)) |det JT −1(ξ)| are
of a standard form. Here, JT −1 = dT −1/dξ is the Jacobian matrix. If such a change of variables is needed, the
considerations that are given below forM and h in the variables x ∈ Dx can be straightforwardly repeated for
M◦ T −1 and h ◦ T −1 in the variables ξ ∈ Dξ. In this case, the expectation in Eq. (8.6) follows the integration
by substitution

E[h(X)|y] = 1
Z

∫
Dξ

h
(
T −1(ξ)

)
L
(
T −1(ξ)

)
πT (ξ) dξ. (8.19)

8.3.4 Polynomial chaos expansions
For simplicity, herein the presentation is restricted to scalar-valued modelsM : Dx → R. The extension to

the multivariate case is straightforward. It is supposed that the forward modelM ∈ L2
π(Dx) is mean-square
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integrable. This is a reasonable assumption as seen from a physical perspective. In L2
π(Dx) the generalized

Fourier expansion ofM in terms of the orthogonal polynomials {Ψα}α∈NM is then given as

M =
∑
α∈NM

aαΨα, with (8.20)

aα = 〈M,Ψα〉L2
π

=
∫
Dx

M(x)Ψα(x)π(x) dx. (8.21)

The generalized Fourier coefficients {aα}α∈NM of the series expansion in Eq. (8.20) are defined as the orthogonal
projection ofM onto the basis elements in Eq. (8.21). The corresponding Fourier series of the second-order random
variable Ỹ =M(X) on (Ω,F ,P) is a so-called polynomial chaos expansion (PCE)M(X) =

∑
α∈NM aαΨα(X).

PCEs have been popularized in the context of uncertainty propagation where the goal is the quantification
of the distribution of Ỹ =M(X). For this purpose it comes in handy that the mean and the variance of this
random variable can be easily determined from its PCE coefficients. Indeed, with Eq. (8.18) it is easy to verify
that they are simply given as

E[M(X)] =
〈

Ψ0,
∑
α∈NM

aαΨα

〉
L2
π

= a0, (8.22)

Var[M(X)] =

∥∥∥∥∥ ∑
α∈NM

aαΨα − a0Ψ0

∥∥∥∥∥
2

L2
π

=
∑

α∈NM\{0}

a2
α. (8.23)

The simple identities in Eqs. (8.22) and (8.23) follow from the definitions of the inner product and the associated
norm in Eqs. (8.13) and (8.14), respectively.

8.3.5 Truncated series
For a practical computation one has to truncate the infinite series in Eq. (8.20). Let the total degree of a

multivariate polynomial Ψα be defined as ‖α‖1 =
∑M
i=1|αi|. A standard truncation scheme is then adopted by

limiting the terms in Eq. (8.20) to the finite set of multi-indices

Ap =
{
α ∈ NM : ‖α‖1 ≤ p

}
. (8.24)

This specifies a set of polynomials {Ψα}α∈Ap such that their total degree ‖α‖1 is smaller than or equal to a
chosen p. The total number of terms retained in the set Ap is given as

P =
(
M + p
p

)
= (M + p)!

M ! p! . (8.25)

The dramatic increase of the total number of terms P with the input dimensionality M and the maximal
polynomial degree p, that is described by Eq. (8.25), is commonly referred to as the curse of dimensionality.
A simple idea to limit the number of regressors relies on hyperbolic truncation sets. For 0 < q < 1 a
quasinorm is defined as ‖α‖q = (

∑M
i=1|α

q
i |)1/q. The corresponding hyperbolic truncation scheme is then given as

Aqp = {α ∈ NM |‖α‖q ≤ p}. Adopting the standard scheme in Eq. (8.24), a finite version of Eq. (8.20) can be
written as

M̂p(x) =
∑
α∈Ap

aαΨα(x). (8.26)

In engineering problems, one uses M̂p(x) as a functional approximation ofM(x), i.e. as a polynomial response
surface [76]. This is justified because the approximation converges in the mean-square sense∥∥∥M−M̂p

∥∥∥2

L2
π

= E

[(
M(X)− M̂p(X)

)2
]

=
∑

α∈NM\Ap

a2
α → 0, for p→∞. (8.27)

The rate of the convergence in Eq. (8.27) depends on the regularity ofM. On top of that, the response surface
in Eq. (8.26) is also optimal in the mean-square sense∥∥∥M−M̂p

∥∥∥2

L2
π

= inf
M?∈Pp

‖M−M?‖2L2
π
, where Pp = span

(
{Ψα}α∈Ap

)
. (8.28)

According to Eq. (8.28), the response surface in Eq. (8.26) minimizes the mean-square error over the space of
polynomials Pp = span({Ψα}α∈Ap) having a total degree of at most p.
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8.3.6 Least squares
In order to find a metamodel of the form Eq. (8.26), one computes approximations of the exact expansion

coefficients in Eq. (8.21). Broadly speaking, one distinguishes between intrusive and non-intrusive computations.
While the former class of techniques is based on manipulations of the governing equations, the latter is exclusively
build upon calls to the forward model at chosen input values. Stochastic Galerkin methods belong to the class of
intrusive techniques [77, 78], whereas stochastic collocation [79, 80] and projection through numerical quadrature
[81, 82] are non-intrusive approaches. Herein we focus on another non-intrusive formulation that is based on
least squares regression analysis [83, 84]. This formulation is based on linear least squares [37, 38] and related
ideas from statistical learning theory [39, 40]. Since this includes sparsity-promoting fitting techniques from
high-dimensional statistics [85, 86], recently least squares projection methods receive considerable attention.
This includes frequentist [87–90] and Bayesian implementations [91–94] of shrinkage estimators. Current results
regarding the convergence behavior of such regression methods can be found in [95–97].

We introduce a simplifying vector notation such that a = (a1, . . . , aP )> and Ψ = (Ψ1, . . . ,ΨP )> gather and
order the coefficients and the polynomials for all α ∈ Ap. For the truncated expression in Eq. (8.26) one thus
has M̂p = a>Ψ. The problem of finding M̂p ∈ Pp that minimizes the mean-square error in Eq. (8.28) may then
be equivalently rephrased as

a = arg min
a?∈RP

E
[(
M(X)− a?>Ψ(X)

)2]
. (8.29)

The stochastic optimization objective in Eq. (8.29) establishes an alternative to the orthogonal projection in
Eq. (8.21). This formulation may be more amenable to a numerical computation. At the very least it allows
one the draw on the machinery of linear least squares in order to compute an approximation â of the exact
coefficients a. To that end one discretizes Eq. (8.29) as

â = arg min
a?∈RP

1
K

K∑
k=1

(
M(x(k))− a?>Ψ(x(k))

)2
. (8.30)

Here, the experimental design X = (x(1), . . . ,x(K)) is a representative sample of K forward model inputs, e.g.
randomly drawn from the input distribution in Eq. (8.12). It is then required to compute the corresponding
model responses Y = (M(x(1)), . . . ,M(x(K)))> in K training runs.

Now let A ∈ RK×P be the matrix with entries Ak,l = Ψl(x(k)) for k = 1, . . . ,K and l = 1, . . . , P . Moreover,
let the system Y = Aâ be overdetermined with K ≥ P . The linear least squares problem in Eq. (8.30) may then
be written as

â = arg min
a?∈RP

‖Y −Aa?‖2 (8.31)

The normal equations (A>A)â = A>Y establish the first-order condition for Eq. (8.31) to apply. Given that
the matrix A>A is non-singular, this linear system is solved by

â = (A>A)−1A>Y. (8.32)

The positive definiteness of A>A, i.e. the columns of A are linearly independent, is the second-order condition
for Eq. (8.32) to be the minimum of Eq. (8.31). The ordinary least squares (OLS) solution Eq. (8.32) is commonly
computed by means of linear algebra methods. An alternative to OLS is least angle regression (LAR) [98,
99]. LAR is well-suited for high-dimensional PCE regression problems [87] and can be even applied in the
underdetermined case. It is based on selecting only the most dominant regressors from a possibly large candidate
set. The resulting predictor is thus sparse as compared to the OLS solution.

8.3.7 Prediction errors
After the computation of a metamodel, one typically wants to assess its prediction accuracy. Moreover,

when a number of candidate surrogates is computed, one wants to compare their performances in order to
eventually select the best. Hence, one needs to define an appropriate criterion that allows for an accurate
and efficient quantification of the approximation errors. The natural measure of the mismatch between the
forward modelM and an approximation M̂p is the generalization error EGen = E[(M(X)− M̂p(X))2]. This
is exactly the error the minimization of which is posed by Eq. (8.29). Since it remains unknown, it cannot be
used as a performance measure. One could estimate EGen based on MC simulation, though. However, this is not
very efficient since it requires the execution of additional forward model runs. In contrast, the empirical error
EEmp = K−1∑K

k=1(M(x(k))− M̂p(x(k)))2 is the quantity that is practically minimized according to Eq. (8.30).
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This error indicator is obtained for free, however, it does not account for overfitting and thus tends to severely
underestimate the real generalization error EGen.

In order to construct an estimate of EGen that is more efficient than the MC estimate and more accurate
than EEmp, one sometimes resorts to leave-one-out (LOO) cross validation [100]. Let M̂∼k be the surrogate
model that is obtained from the reduced experimental design X∼k = (x(1), . . . ,x(k−1),x(k+1), . . . ,x(K)), i.e. a
single input x(k) has been dropped. The LOO error is then defined as

ELOO = 1
K

K∑
k=1

(
M(x(k))− M̂∼k(x(k))

)2
. (8.33)

Without the need for re-running the forward model, this error allows for a fair assessment of how well the
performance of a metamodel M̂p generalizes beyond the used experimental design. Yet, Eq. (8.33) calls for
conducting K separate regressions for finding M̂∼k with an experimental design of the size K − 1. A remarkably
simple result from linear regression analysis states that ELOO can be also computed as

ELOO = 1
K

K∑
k=1

(
M(x(k))− M̂p(x(k))

1− hk

)2

. (8.34)

Here, M̂p is computed from the full experimental design X and hk denotes the k-th diagonal entry of the matrix
A(A>A)−1A>. This is more efficient since it does not require repeated fits. A derivation of the formula in
Eq. (8.34) can be found in [101].

One may define εEmp = EEmp/Var[Y ] and εLOO = ELOO/Var[Y ] as normalized versions of the empirical and
the LOO error, respectively. Here, Var[Y ] is the empirical variance of the response sample Y . These normalized
errors can be used in order to judge and compare the performance of metamodels. In turn, this enables a
practical convergence analysis, e.g. by monitoring the errors over repeated metamodel computations for an
increasing experimental design size K and expansion order p.

8.4 Spectral Bayesian inference
Different types of probability density approximations are encountered in statistical inference. This includes

series expansions for the population density of a random data sample in nonparametric distribution fitting.
Here, the unknown density of the data is either directly represented as a linear combination of polynomial basis
functions [102] or as the product of a base density times a superposition of polynomials [103]. The latter type of
expansion is also encountered in parametric density estimation of random data where one-dimensional posterior
densities of the unknown parameter are expanded about a Gaussian baseline. This can be based on a Taylor
sum at a maximum likelihood estimate [104, 105] or on Stein’s lemma and numerical integration [106, 107].
Moreover, different types of likelihood approximations are encountered in inverse modeling. This includes direct
approaches where the likelihood is approximated itself [108, 109] and indirect methods where the likelihood is
approximated based on a surrogate of the forward model [18–20]. These techniques facilitate Bayesian inference
within the limits of MCMC sampling.

By linking likelihood approximations to density expansions, now we present a spectral formulation of Bayesian
inference which targets the emulation of the posterior density. Based on the theoretical and computational
machinery of PCEs, the likelihood function itself is decomposed into polynomials that are orthogonal with
respect to the prior distribution. This spectral likelihood expansion enables semi-analytic Bayesian inference.
Simple formulas are derived for the joint posterior density and its marginals. They are regarded as expansions
of the posterior about the prior as the reference density. The model evidence is shown to be the coefficient of
the constant expansion term. General QoI-expectations under the posterior and the first posterior moments
are obtained through a mere postprocessing of the spectral coefficients. After a discussion of the advantages
and shortcomings of the spectral method, a change of the reference density is proposed in order to improve the
efficacy.

8.4.1 Spectral likelihood expansions
The authors C. Soize and R. Ghanem start their paper [110] with the following sentence: “Characterizing the

membership of a mathematical function in the most suitable functional space is a critical step toward analyzing
it and identifying sequences of efficient approximants to it.” As discussed in Section 8.2, given the data y and
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the statistical model f(y |x), the likelihood is the function

L : Dx → R+

x 7→ f(y |x).
(8.35)

It maps the parameter space Dx into the set of non-negative real numbers R+. At this place we assume that
the likelihood L ∈ L2

π(Dx) is square integrable with respect to the prior. From a statistical point of view,
this is a reasonable supposition which is necessary in order to invoke the theory of Section 8.3. On condition
that the likelihood is bounded from above, the mean-square integrability follows immediately from the axioms
of probability. Note that maximum likelihood estimates (MLE) implicitly rest upon this presumption. If
xMLE ∈ arg maxx∈Dx L(x) is a MLE, i.e. for all x ∈ Dx it applies that L(x) ≤ L(xMLE) <∞, then one trivially
has

∫
Dx L

2(x)π(x) dx ≤ L2(xMLE)
∫
Dx π(x) dx = L2(xMLE) <∞.

Having identified L2
π(Dx) as a suitable function space for characterizing the likelihood, one can represent the

likelihood with respect to the orthonormal basis {Ψα}α∈NM . This representation is

L =
∑
α∈NM

bαΨα, with (8.36)

bα = 〈L,Ψα〉L2
π

=
∫
Dx

L(x)Ψα(x)π(x) dx. (8.37)

We refer to Eqs. (8.36) and (8.37) as a spectral likelihood expansion (SLE). Notice that the SLE coefficients
{bα}α∈NM are data-dependent. This reflects the fact that the likelihood in Eq. (8.35) depends on the data.
With the truncation scheme in Eq. (8.24), one can limit the infinite series in Eq. (8.36) to the finite number of
terms for which α ∈ Ap. A mean-square convergent response surface of the likelihood is then given as

L̂p(x) =
∑
α∈Ap

bαΨα(x). (8.38)

For the time being we assume that the coefficients of the SLE in Eq. (8.36) or its response surface in Eq. (8.38)
are already known. One can then accomplish Bayesian inference by extracting the joint posterior density or a
posterior density surrogate, its marginals and the corresponding QoI-expectations directly from the SLE.

8.4.2 Joint posterior density
We begin with the joint posterior density function and the model evidence. By plugging Eq. (8.36) in Eq. (8.1)

one simply obtains the “nonparametric” expression

π(x|y) = 1
Z

( ∑
α∈NM

bαΨα(x)
)
π(x). (8.39)

Due to the orthonormality of the basis, the model evidence is simply found as the coefficient of the constant
SLE term. This is easily verified by writing Eq. (8.2) as

Z = 〈1,L〉L2
π

=
〈

Ψ0,
∑
α∈NM

bαΨα

〉
L2
π

= b0. (8.40)

The remarkably simple result in Eq. (8.40) completes the expression of the posterior density in Eq. (8.39). It is
interesting to note that the posterior density is of the form

π(x|y) = π(x)

1 +
∑

α∈NM\{0}

b−1
0 bαΨα(x)

 . (8.41)

In essence, the posterior density is here represented as a “perturbation” around the prior. The latter establishes
the leading term of the expansion and acts as the reference density. The expression in Eq. (8.41) is reminiscent
of an Edgeworth expansion for a density function in asymptotic statistics [111–113].
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8.4.3 Quantities of interest
Based on the joint posterior density one can calculate the corresponding QoI-expectations in Eq. (8.6). At

this point, the identities in Eqs. (8.7) and (8.15) finally play a key role. They allow one to express and treat the
posterior expectation of a QoI with h ∈ L2

π(Dx) as the weighted projection onto the likelihood

E[h(X)|y] = 1
Z
E[h(X)L(X)] = 1

Z
〈h,L〉L2

π
. (8.42)

Let h =
∑
α∈NM cαΨα with cα = 〈h,Ψα〉L2

π
be the QoI representation in the polynomial basis used. The general

posterior expectation in Eq. (8.6) follows then from Eq. (8.42) by Parseval’s theorem

E[h(X)|y] = 1
b0

〈 ∑
α∈NM

cαΨα,
∑
α∈NM

bαΨα

〉
L2
π

= 1
b0

∑
α∈NM

cαbα. (8.43)

If the QoI h ∈ Pp is known by a multivariate monomial representation of finite order, then its representation in
the orthogonal basis can always be recovered by a change of basis. Examples that relate to the first posterior
moments are given shortly hereafter. In a more complex case the QoI is a computational model itself and one
would have to numerically compute a PCE surrogate. While Eq. (8.22) facilitates the propagation of the prior
uncertainty, Eq. (8.43) promotes the propagation of the posterior uncertainty.

8.4.4 Posterior marginals
Now the posterior marginals in Eq. (8.3) are derived. For some j ∈ {1, . . . ,M} let us introduce the new set

of multi-indices A(j) = {(α1, . . . , αM )|αi = 0 for i 6= j}. With a slight abuse of the notation, the sub-expansion
of the SLE that only contains terms with α ∈ A(j) is denoted as

Lj(xj) =
∑

α∈A(j)

bαΨα(x) =
∑
µ∈N

b(j)µ Ψ(j)
µ (xj), where b(j)µ = b(0,...,0,µ,0,...,0). (8.44)

It collects all the polynomials that are constant in all variables x∼j , i.e. they are non-constant in the single
variable xj only. In this sense the sub-expansion in Eq. (8.44) is virtually a function of xj only. For the posterior
marginal of the single unknown xj in Eq. (8.3) one can derive

π(xj |y) = πj(xj)
Z

∫
Dx∼j

L(x)π(x∼j) dx∼j = 1
b0
Lj(xj)πj(xj). (8.45)

These equalities apply due to the independent prior π(x) = π(x∼j)πj(xj) in Eq. (8.12), the orthonormality of
the univariate polynomials in Eq. (8.16) and the tensor structure of the multivariate ones in Eq. (8.17). For a
pair j, k ∈ {1, . . . ,M} with j 6= k let us introduce yet another set of multi-indices A(j,k) = {(α1, . . . , αM )|αi =
0 for i 6= j, k}. The sub-expansion of the full SLE that only contains terms with α ∈ A(j,k) is denoted as

Lj,k(xj , xk) =
∑

α∈A(j,k)

bαΨα(x) =
∑
µ,ν∈N

b(j,k)
µ,ν Ψ(j)

µ (xj)Ψ(k)
ν (xk),

where b(j,k)
µ,ν = b(0,...,0,µ,0,...,0,ν,0,...,0).

(8.46)

Since it only contains terms that are constant in x∼j,k, the sub-expansion in Eq. (8.46) can be seen as a function
of xj and xk. The posterior density can then be marginalized as follows

π(xj , xk |y) =
∫

Dx∼j,k

π(x|y) dx∼j,k = 1
b0
Lj,k(xj , xk)πj(xj)πk(xk). (8.47)

Note that the dependency structure of π(xj , xk |y) in Eq. (8.47) is induced by those terms of Lj,k(xj , xk) that
are not present in Lj(xj) and Lk(xk), i.e. the terms b(j,k)

µ,ν Ψ(j)
µ (xj)Ψ(k)

ν (xk) with µ, ν 6= 0.

8.4.5 First posterior moments
With the two marginalizations of the posterior density in Eqs. (8.45) and (8.47) one can calculate the entries

of the posterior mean in Eq. (8.4) and the covariance matrix in Eq. (8.5). Let {d(j)
0 , d

(j)
1 } be defined such that

xj = d
(j)
0 Ψ(j)

0 (xj) + d
(j)
1 Ψ(j)

1 (xj). With this univariate representation and Eq. (8.45) one easily obtains

E[Xj |y] = 1
b0
〈xj ,Lj〉L2

πj

= 1
b0

(
d

(j)
0 b

(j)
0 + d

(j)
1 b

(j)
1

)
. (8.48)
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Note that one actually has b(j)0 = b0 in this notation. Diagonal entries of the covariance matrix in Eq. (8.5) can
be similarly deduced. Let {e(j)

0 , e
(j)
1 , e

(j)
2 } the coefficients of the univariate representation (xj − E[Xj |y])2 =∑2

µ=0 e
(j)
µ Ψ(j)

µ (xj). Then one simply has

Var[Xj |y] = 1
b0

〈
(xj − E[Xj |y])2

,Lj
〉
L2
πj

= 1
b0

2∑
µ=0

e(j)
µ b(j)µ . (8.49)

Finally, let {e(j,k)
0,0 , e

(j,k)
0,1 , e

(j,k)
1,0 , e

(j,k)
1,1 } be the coefficients of the bivariate PCE with (xj−E[Xj |y])(xk−E[Xk |y]) =∑1

µ,ν=0 e
(j,k)
µ,ν Ψ(j)

µ (xj)Ψ(k)
ν (xk). For an off-diagonal entry of Eq. (8.5) one then finds

Cov[Xj , Xk |y] = 1
b0

1∑
µ,ν=0

e(j,k)
µ,ν b(j,k)

µ,ν . (8.50)

Notation-wise, Eqs. (8.48) to (8.50) may seem to be somewhat cumbersome. Nevertheless, they establish
simple recipes of how to obtain the first posterior moments by a postprocessing of the low-degree SLE terms in
closed-form. Higher-order moments could be obtained similarly. Some examples of how the corresponding QoIs
can be represented in terms of orthogonal polynomials can be found in Appendix 8.B.

8.4.6 Discussion of the advantages
In spectral Bayesian inference the posterior is genuinely characterized through the SLE and its coefficients.

The essential advantage of this approach is that all quantities of inferential relevance can be computed semi-
analytically. Simple formulas for the joint posterior density and the model evidence emerge in Eqs. (8.39)
and (8.40). They allow to establish Eq. (8.41) as the posterior density surrogate. General QoI-expectations under
the posterior are then calculated via Parseval’s formula in Eq. (8.43). The posterior marginals are obtained based
on sub-expansions of the full SLE in Eq. (8.45) and the first posterior moments have closed-form expressions in
Eqs. (8.48) to (8.50). These striking characteristics clearly distinguish spectral inference from integration and
sampling approaches where the posterior is summarized by expected values or random draws only. As for the
latter, one has to rely on kernel estimates of the posterior density and on empirical sample approximations of
the QoI-expectations. Also, the model evidence is not computed explicitly.

The practical computation of the SLE in Eq. (8.36) can be accomplished analogously to finding the PCE
approximation of the forward model in Eq. (8.20), e.g. by solving a linear least squares problem as in Eq. (8.30).
This allows one to draw on the vast number of tools that were developed for carrying out this well-known type of
regression analysis. An attractive feature of this procedure is that the prediction error of the obtained SLE acts
as a natural convergence indicator. We recall that the LOO error in Eq. (8.33) can be efficiently evaluated as
per Eq. (8.34), i.e. without the need for additional forward model runs or regression analyses. The existence of
an intrinsic convergence criterion is an advantage over traditional MCMC techniques. Another advantage of the
formulation its amenability to parallel computations. While the workload posed by MCMC is inherently serial,
running the forward model for each input in the experimental design is embarrassingly parallel. Parallelization
is also possible on the level of the linear algebra operations that are necessary in order to solve the normal
equations.

8.4.7 Discussion of the shortcomings
The approximate nature of SLE computations is twofold, i.e. only a finite number of terms are kept in the

expansion and the coefficients are inexact. Unfortunately, a number of inconveniences may arise from these
inevitable approximations. The SLE and the correspondingly computed posterior density could spuriously take
on negative values. Also the estimated model evidence in Eq. (8.40) could take on negative values Z < 0. Still
note that the approximate posterior in Eq. (8.39) always integrates to one. For reasonably adequate SLEs,
we expect that negative values only occur in the distributional tails. Even so, the presence of negative values
hampers the interpretation of the obtained posterior surrogate as a proper probability density, e.g. it leads
to finite negative probabilities that are somehow irritating. From a more practical rather than a technical or
philosophical perspective, densities are ultimately instrumental to the evaluation of more concrete quantities
such as the expectations in Eq. (8.43). The severity of negative densities has thus to be judged with respect to
the distortions of these relevant values. As long as their accurate approximation is guaranteed, the possibility of
negative density values is an unavoidable artifact that can be regarded as a minor blemish. And the obtained
surrogate density still proves to be expedient to effectively characterize the posterior distribution. In this light,
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it is more unpleasant that the a posteriori estimates of the model parameters may violate the restrictions that
were imposed a priori. In Eq. (8.48) it could indeed happen that E[Xj |y] /∈ Dxj . Estimations of the second
order moments in Eq. (8.49) could result in unnatural values Var[Xj |y] < 0, too. Although these problems
cannot be remedied unless one solves an appropriately constrained version of Eq. (8.30), they unlikely occur if
the SLE is sufficiently accurate. Anticipating outcomes from later numerical demonstrations, we remark that the
occurrence of negative density values is observed, while unphysical or unnatural estimates of the first posterior
moments are not found.

The SLE decomposition into a globally smooth basis of tensorized polynomials suffers from some other
intrinsic problems. Generally, there is the curse of dimensionality, i.e. the increase of the number of regressors in
Eq. (8.25). Furthermore, the SLE convergence rate in Eq. (8.27) depends on the regularity of the underlying
likelihood function. For discontinuous forward or error models the SLE approximation with smooth polynomials
converges only slowly. Likelihood functions often show a peaked structure around the posterior modes and
a vanishing behavior elsewhere. Hence, any adequate superposition of polynomials has to capture those two
different behavioral patterns through some kind of “constructive” and “destructive” interaction between its
terms, respectively. Due to their global nature, the employed polynomial basis may not admit sparse likelihood
representations. In turn, a high number of terms might be necessary in order to accurately represent even simple
likelihood functions. Especially in the case of high-dimensional and unbounded parameter spaces this may cause
severe practical problems. Of course, in Eqs. (8.36) and (8.37) one could expand the likelihood in a different
basis. Yet, note that the QoIs in Eq. (8.43) would also have to be expanded in that basis.

The role of the prior for spectral inference is manifold. Initially the posterior expectations in Eq. (8.6) have
been rewritten as the weighted prior expectations in Eq. (8.7). This formulation is accompanied by difficulties in
computing posteriors that strongly deviate from the prior. The same situation arises for crude MC integration
and eventually motivates importance or MCMC sampling that allow to focus on localized regions of high posterior
mass. Those difficulties become manifest if the prior acts as the sampling distribution for the experimental design.
In this case, the SLE is only accurate over the regions of the parameter space that accumulate considerable
shares of the total prior probability mass. Approximation errors of the SLE in regions that are less supported by
the prior then induce errors in the computed posterior surrogate. Note that this difficulty is also encountered in
MCMC posterior exploration with prior-based PCE metamodels. Also, the error estimate in Eq. (8.34) then
only measures the SLE accuracy with respect to the prior which may be misleading for the assessment of the
posterior accuracy. It is not clear how the errors of the likelihood expansion relate to the induced errors of the
posterior surrogate and the posterior moments. Moreover, since the prior acts as the reference density of the
posterior expansion in Eq. (8.41), the spectral SLE representation of significantly differing posteriors requires
higher order corrections. Otherwise put, SLEs are expected to perform better for posteriors that only slightly
update or perturb the prior.

8.4.8 Change of the reference density
As just discussed, a major drawback of SLEs is their dependency on the prior π as the reference density

function. The errors are minimized and measured with respect to the prior and the posterior is represented
as correction of the standard reference. In case that high-order corrections are required, SLEs also suffer
from the curse of dimensionality. While fully maintaining the advantages of the spectral problem formulation,
these shortcomings can be remedied through the introduction of an auxiliary density g over the prior support
Dx that would optimally mimic the posterior in some sense. This reference density change allows for the
construction of auxiliary expansions that are more accurate with respect to the posterior and for a more
convenient series expansions of the joint posterior density. It is analogous to the adjustment of the integration
weight in importance sampling, where the average over a distribution is replaced by a weighted average over
another ancillary distribution. An iterative use of this reference change naturally allows for adaptive SLE
approaches.

Given that g(x) 6= 0 for all x ∈ Dx, one may define the auxiliary quantity G = Lπ/g. Under the additional
assumption that G ∈ L2

g(Dx), one can expand this quantity in terms of polynomials {Ψg
α}α∈NM that are

orthogonal with respect to the auxiliary reference. Analogous to the expansion of L ∈ L2
π(Dx) in Eqs. (8.36)

and (8.37), this is

G = Lπ
g

=
∑
α∈NM

bgαΨg
α, with (8.51)

bgα = 〈G,Ψg
α〉L2

g
=
∫
Dx

G(x)Ψg
α(x) g(x) dx =

∫
Dx

L(x)Ψg
α(x)π(x) dx. (8.52)
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The coefficients of this auxiliary SLE (aSLE) are denoted as {bgα}α∈NM . They equal the projections bgα =
〈L,Ψg

α〉L2
π
of the likelihood onto the polynomials Ψg

α. Note that if the new reference g = π equals the prior,
then G = L is simply the likelihood and the formulation remains unchanged. If the density g = π(·|y) equals
the posterior, then the quantity G = Z equals the model evidence. In this case the aSLE G = bg0Ψg

0 = bg0 is a
constant with a single nonzero term. If g ≈ π(·|y) only applies in an approximate sense, then one may still
speculate that the aSLE is sparser than the corresponding SLE.

As in importance sampling, one can then rewrite the expectation values under π in Eqs. (8.2) and (8.7) as
expectations under g. Similar to Eq. (8.40), the model evidence then emerges again as the zeroth expansion term

Z =
∫
Dx

G(x) g(x) dx = bg0. (8.53)

Let h =
∑
α∈NM cgαΨg

α with cgα = 〈h,Ψg
α〉L2

g
be the auxiliary expansion of a QoI. Similar to Eq. (8.43), for

general QoI posterior expectations one may then write

E[h(X)|y] = 1
Z

∫
Dx

h(x)G(x) g(x) dx = 1
bg0

∑
α∈NM

cgαb
g
α. (8.54)

In accordance with the aSLE in Eqs. (8.51) and (8.52) the joint density of the posterior distribution is
obtained as the asymptotic series

π(x|y) = G(x)g(x)
Z

= 1
bg0

( ∑
α∈NM

bgαΨg
α(x)

)
g(x) = g(x)

1 +
∑

α∈NM\{0}

bgα
bg0

Ψg
α(x)

 . (8.55)

As opposed to Eq. (8.41) where the posterior density is represented around the prior π, in Eq. (8.55) the posterior
is expanded about the new reference g. If the latter resembles the posterior adequately well, the formulation
only calls for small corrections.

8.5 Numerical examples
Next, the potential and the difficulties of the theory presented in the preceding section are investigated. The

goal is to give a proof of concept for the basic feasibility of spectral Bayesian inference. It is verified that the
theory can be successfully applied in practice and further insight into its functioning is obtained. Moreover, it
is learned about its current shortcomings. Four instructive calibration problems from classical statistics and
inverse modeling are solved for these purposes. The analysis is confined to problems with low-dimensional
parameter spaces. First, the mean value of a normal distribution is inferred with random data under a conjugate
normal prior. Second, the mean and standard deviation of a normal distribution are fitted for a joint prior with
independent and uniform marginals. Third, an inverse heat conduction problem in two spatial dimensions with
two unknowns is solved. Finally, a similar thermal problem with six unknowns is considered. Synthetically
created pseudo-data are used in all these example applications.

As it turns out, one can gain valuable insights into the characteristics of likelihood expansions and posterior
emulators by way of comparison. Therefore, the analyses for the first three examples proceed analogously. For
rich experimental designs, the convergence behavior of high-degree SLEs is studied by reference to the LOO error.
More importantly, the capability of lower-degree SLEs to accurately capture the posterior QoI-expectations is
explored for scarcer experimental designs. Eventually, aSLE-based posterior surrogates are investigated in order
to mitigate the curse of dimensionality. All results are compared to reference solutions. Where possible, the exact
solutions from a conjugate Bayesian analysis are used to this effect. Otherwise, corresponding approximations
are computed via classical MCMC sampling.

The uncertainty quantification platform UQLab [114, 115] is used throughout the numerical demonstrations.
It provides a flexible environment for the uncertainty analysis of engineering systems, e.g. for uncertainty
propagation. In this context it ships with a range of regression tools that allow one to easily compute PCEs.
These tools can be directly applied to the likelihood function in order to compute SLEs. OLS is employed as the
standard solving routine in the following examples.

8.5.1 1D normal fitting
First of all, we consider the problem of fitting a Gaussian distribution N (yi |µ, σ2) to random realizations yi

with i = 1, . . . , N . The goal is to estimate the unknown mean µ whereas the standard deviation σ is assumed to
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be already known. Given a Gaussian prior, this one-dimensional normal model with known variance exhibits a
Gaussian posterior density. Moreover, a closed-form expression for the model evidence can be derived. Since this
offers the possibility of comparing the SLE results with analytical solutions, this simple statistical model is used
as a first SLE testbed. Let the data y = (y1, . . . , yN )> be comprised of N independent samples from the normal
distribution. For the observational model one may then write

Y |µ ∼
N∏
i=1
N (yi |µ, σ2), with known σ2. (8.56)

Consequently, the likelihood function can be simply written as L(µ) =
∏N
i=1N (yi |µ, σ2). A Bayesian prior

distribution π(µ) captures the epistemic uncertainty of the true value of µ before the data analysis. For the
posterior distribution, that aggregates the information about the unknown after the data have been analyzed,
one then has π(µ|y) = Z−1L(µ)π(µ).

The conjugate prior for the data model in Eq. (8.56) is a Gaussian π(µ) = N (µ|µ0, σ
2
0). Its mean µ0 = E[µ]

and variance σ2
0 = Var[µ] have to be conveniently specified by the experimenter and data analyst. This prior

choice ensures that the posterior is a Gaussian π(µ|y) = N (µ|µN , σ2
N ) whose parameters µN = E[µ|y] and

σ2
N = Var[µ|y] are easily found as

µN =
(

1
σ2

0
+ N

σ2

)−1(
µ0

σ2
0

+ Ny

σ2

)
, σ2

N =
(

1
σ2

0
+ N

σ2

)−1
. (8.57)

Here, y = N−1∑N
i=1 yi is the empirical sample mean of the data. Likewise, an explicit expression for the model

evidence Z =
∫
R

(
∏N
i=1N (yi |µ, σ2))N (µ|µ0, σ

2
0) dµ can be derived. Let y2 = N−1∑N

i=1 y
2
i denote the sample

mean of the squared observations. A straightforward calculation based on simple algebra and a Gaussian integral
then yields

Z = σ−1
0

(
σ
√

2π
)−N ( 1

σ2
0

+ N

σ2

)−1/2
exp

(
−1

2

(
µ2

0
σ2

0
+ Ny2

σ2 −
(

1
σ2

0
+ N

σ2

)−1(
µ0

σ2
0

+ Ny

σ2

)2
))

. (8.58)

For the following computer experiment, the parameters of the data distribution in Eq. (8.56) are specified
as µ = 10 and σ = 5, respectively. In the course of the procedure only the mean is treated as an unknown,
whereas the standard deviation is assumed to be known. We consider a situation where N = 10 samples
are randomly drawn from the data distribution. For the numerical experiment, the pseudo-random numbers
y = (8.78, 4.05, 12.58, 3.60, 11.05, 8.70, 20.80, 1.23, 19.36, 12.07)> are used as synthetic data. The prior distribution
is set to be a Gaussian π(µ) = N (µ|µ0, σ

2
0) with µ0 = 11.5 and σ0 = 1.5.

8.5.1.1 Posterior density

In order to better understand the principles of spectral Bayesian inference we now proceed as follows. Spectral
expansions L̂p of the likelihood function L defined above are computed and compared for experimental designs of
varying size K and polynomial terms of varying degree p. Hermite polynomials are used in combination with an
appropriate linear transformation to standardized variables ξµ ∈ R with a Gaussian weight function N (ξµ |0, 1).
Accordingly, the unknown can be represented as µ = µ0 + σ0ξµ. The experimental designs are one-dimensional
Sobol sequences that are appropriately transformed.

First the convergence behavior and the accuracy of the likelihood approximation are analyzed. For a rich
experimental design with K = 5× 104, SLEs are computed for an increasing order up to p = 20. The normalized
empirical error εEmp and the normalized LOO error εLOO are monitored over these computations. While
the former can be directly computed according to its definition, the computation of the latter relies on the
reformulation in Eq. (8.34). This serves the purpose of assessing the prediction accuracy of the computed
SLE as a function of the degree p. The results are plotted in Fig. 8.1. It can be seen how the error estimates
approach zero, i.e. the SLE converges to the likelihood function. For p = 20 the empirical error amounts to
εEmp = 1.05× 10−12 and the LOO amounts to εLOO = 1.82× 10−10. These small error magnitudes show that
the likelihood function L can be indeed spectrally expanded in a Hermite basis.

The functional likelihood approximation L̂p provided by the most accurate SLE with p = 20 is visualized in
Fig. 8.2. Moreover, the plot shows a low-order SLE with p = 5 and K = 1× 102 for which the error estimates
εEmp = 2.61 × 10−4 and εLOO = 8.41 × 10−4 are obtained. For the sake of comparison the exact likelihood
function L is shown as well. It can be seen that the SLEs are able to accurately represent the likelihood around
its peak, i.e. roughly speaking in the interval µ ∈ [8, 15] for p = 5 and in µ ∈ [5, 18] for p = 20. Note that these
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Figure 8.1: 1D normal fitting: Convergence of the SLE.

regions accumulate the largest proportions of the total prior probability mass. Outside of these ranges, however,
the SLEs L̂p start strongly deviating from L and taking on negative values. These phenomena can be attributed
to an imperfect polynomial cancellation of the finite series approximation of the likelihood in the regions of the
parameter space that are only sparsely covered by the experimental design. Indeed, for unbounded parameter
spaces it is clearly hopeless to achieve a global net cancellation of a finite polynomial expansion that is necessary
in order to emulate the vanishing behavior of the likelihood far from its peaks. The extent to which this impacts
on the approximation of the posterior density and its first moments is investigated next.

Expanding the likelihood function is only a means to the end of surrogating the posterior density. Approxi-
mations of the posterior density π(µ|y) ≈ b−1

0 L̂p(µ)π(µ) are computed from the SLEs with p = 5 and p = 20
through Eqs. (8.39) and (8.40). The results are plotted in Fig. 8.3. In addition to the SLE approximations,
the prior density π(µ) = N (µ|µ0, σ

2
0) and the exact solution π(µ|y) = N (µ|µN , σ2

N ) from a conjugate analysis
based on Eq. (8.57) are shown. The posterior surrogate for p = 5 shows minor deviations from the the analytical
result, while the approximation for p = 20 perfectly matches the true density. It is noted that the discrepancies
between L̂p and L shown in Fig. 8.2 are attenuated. The underlying reason is that for large enough |µ| → ∞
the exponential decay of the Gaussian prior π(µ) ∝ exp(−(µ − µ0)2) dominates the polynomial increase of
L̂p(µ) =

∑p
α=0 bαΨα(µ) in the sense that L̂p(µ)π(µ)→ 0. This absorbs the effects of the SLE approximation

that is increasingly inadequate for large values of |µ|. In this sense, the prior reference density guards the
posterior surrogate against the inadequacies of the SLE. Therefore, the posterior emulation may very well be
more accurate than the SLE approximation of the likelihood.
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Figure 8.2: 1D normal fitting: Likelihood function.
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Figure 8.3: 1D normal fitting: Posterior density.

8.5.1.2 Quantities of interest

Commonly one employs posterior means as parameter estimates and posterior standard deviations as measures
of the estimation uncertainty. In order to investigate how well one can approximate the model evidence together
with these meaningful quantities in spectral Bayesian inference, SLEs are computed for experimental designs of
varying size K and for a selection of expansion orders p. The corresponding SLE-based approximations of the
model evidence Z, the posterior mean µN and the standard deviation σN are then computed from Eqs. (8.40),
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(8.48) and (8.49). Note that the effects of the transformation to standard variables have to be appropriately
taken care of at this place. This happens via Eq. (8.19). The SLE approximations can then be compared to
the analytical solutions that are obtained from the conjugate analysis in Eqs. (8.57) and (8.58). In Table 8.2
the results of this procedure are summarized. Note that all the SLE estimates attain admissible values, e.g.
the model evidence is non-negative. Furthermore, it is noticed that Z, µN and σN can be recovered with high
accuracy even for very scarce experimental designs and low-order SLEs, say for K = 1× 103 and p = 10. It is
concluded that, in some sense, the accurate estimation of the model evidence and the first posterior moments
require significantly less computational effort than the accurate estimation of the posterior density.

Table 8.2: 1D normal fitting: Statistical quantities.

K p εLOO Z [10−15] µN σN

SL
E

1× 102 5 8.41× 10−4 3.71 10.85 0.92
5× 102 8 2.49× 10−4 3.75 10.91 1.14
1× 103 10 2.58× 10−5 3.74 10.90 1.07
5× 103 12 8.21× 10−6 3.74 10.89 1.09
1× 104 15 3.84× 10−7 3.74 10.89 1.09
5× 104 20 1.82× 10−10 3.74 10.89 1.09

Exact results 3.74 10.89 1.09

8.5.2 2D normal fitting
Next, we consider the problem of fitting both the unknown mean µ and the standard deviation σ of a

Gaussian distribution N (yi |µ, σ2). A number of independent samples yi with i = 1, . . . , N from the normal
distribution constitute the available data y = (y1, . . . , yN )>. The data model for this situation is written as

Y |µ, σ ∼
N∏
i=1
N (yi |µ, σ2). (8.59)

For the likelihood function one then has L(µ, σ) =
∏N
i=1N (yi |µ, σ2). Given a Bayesian prior π(µ, σ), the

posterior distribution is π(µ, σ |y) = Z−1L(µ, σ)π(µ, σ). This distribution aggregates the information about the
two unknowns after the data have been analyzed.

The true values of the mean and standard deviation are set as µ = 30 and σ = 5, respectively. These
values are treated as unknowns in the further course of the computer experiment. We consider a situation
where N = 10 samples are randomly drawn from the distribution in Eq. (8.59). The pseudo-random numbers
y = (31.23, 27.50, 24.91, 25.99, 32.88, 36.41, 27.81, 25.19, 37.96, 34.84)> are used as synthetic data. We consider
an independent prior π(µ, σ) = π(µ)π(σ) with uniform marginals π(µ) = U(µ|µ, µ) and π(σ) = U(σ |σ, σ) over
bounded supports Dµ = [µ, µ] = [20, 40] and Dσ = [σ, σ] = [2, 10]. As opposed to the conjugate example above,
this two-dimensional model does not permit a closed-form expression of the posterior density and the model
evidence.

8.5.2.1 Posterior density

Now we proceed analogously to the investigation of the normal model with known variance. Expansions
L̂p of the likelihood L are computed and contrasted for different experimental designs of size K and different
polynomial orders p. An appropriate linear transformation to uniform standardized variables is applied such that
the unknowns are represented as µ = (µ− µ)/2 · ξµ + (µ+ µ)/2 and σ = (σ − σ)/2 · ξσ + (σ + σ)/2, respectively.
Here, ξµ, ξσ ∈ [−1, 1] are the corresponding standardized variables with a uniform weight function. Accordingly,
tensorized Legendre polynomials form the trial basis. Two-dimensional Sobol sequences are utilized as uniformly
space-filling experimental designs.

As before, the speed of convergence and the prediction accuracy of the SLE are analyzed first. The normalized
empirical error εEmp and the normalized LOO error εLOO are therefore monitored throughout a series of runs
that are conducted for an experimental design of the fixed size K = 1× 105 and for an increasing expansion order
up to p = 50. In Fig. 8.4 a corresponding plot is shown, where the convergence of the SLE L̂p to the likelihood
function L is diagnosed. The reason that εEmp and εLOO do not significantly differ is that the large size of the
experimental design prevents overfitting. For p = 50 the normalized empirical error and the normalized LOO
error are found as εEmp = 5.56× 10−11 and εLOO = 6.05× 10−11, respectively. This shows that the likelihood
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function L can be indeed expanded in the Legendre basis. For the uniform prior distribution that is used here,
the normalized SLE errors effectively measure the errors of the posterior density.
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Figure 8.4: 2D normal fitting: Convergence of the SLE.

Now the joint posterior density π(µ, σ |y) is computed and plotted in Fig. 8.5. For comparison purposes the
posterior is sampled by means of MCMC simulation first. A simple random walk Metropolis (RWM) sampler
with a Gaussian instrumental distribution is utilized. With this algorithm an unusually large number of 107

MCMC samples is drawn from the posterior. This serves the purpose of providing very accurate results that act
as references for the SLE-based estimates. In Fig. 8.5(a) a normalized histogram of the obtained RWM sample is
shown. Next, the joint posterior density π(µ, σ |y) ≈ b−1

0 L̂p(µ, σ)π(µ, σ) is computed via Eqs. (8.39) and (8.40).
The SLE L̂p(µ, σ) with p = 50 that features the lowest LOO error is used. In Fig. 8.5(b) the posterior surrogate
that arises from the SLE is plotted. For a later comparison with the heat conduction example, in Fig. 8.5(c)
the SLE posterior surrogate from Fig. 8.5(b) is plotted again from a different angle. By visual inspection the
obvious similarity between the density π(µ, σ |y) sampled by MCMC and emulated by the SLE is noticed.

(a) MCMC reference sample. (b) SLE with p = 50.

(c) SLE with p = 50.

Figure 8.5: 2D normal fitting: Joint posterior.
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Now the posterior marginals π(µ|y) and π(σ |y) are computed from the joint posterior. On the one hand,
samples from the posterior marginals are obtained by restricting the analysis to the corresponding components of
the joint MCMC sample. On the other hand, functional approximations of the posterior marginals are extracted
based on sub-expansions L̂µ,p(µ) and L̂σ,p(σ) of a joint SLE L̂p(µ, σ) as in Eqs. (8.44) and (8.45). For the SLEs
with p = 9 and p = 50 the results are visualized in Fig. 8.6. Histogram-based MCMC sample representations
and functional SLE approximations of the marginal densities are shown, too. As it can be seen, the marginal
posteriors as obtained by MCMC and the SLE with p = 50 exactly match each other. For p = 9 the posteriors
marginals display some wavelike fluctuations in their tails.
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Figure 8.6: 2D normal fitting: Posterior marginals.

8.5.2.2 Quantities of interest

Since the posterior density itself is of little inferential use, the model evidence and the first posterior moments
are computed for a selection of SLEs with varying size of the experimental design K and degree p. According
to Eqs. (8.40) and (8.48) to (8.50), the SLE estimates of these quantities are obtained from the expansions
coefficients. In Table 8.3 a summary of the results is given. Compliant with Eq. (8.40) the SLE estimates of
the model evidence Z are obtained as the coefficient of the constant expansion term. According to Eqs. (8.48)
and (8.49), the SLE estimates of the posterior mean E[µ|y] and the standard deviation Std[µ|y] = Var[µ|y]1/2
of the location parameter µ are computed. Likewise, the corresponding estimates for the spread parameter
σ follow through a simple postprocessing of the low-order expansion coefficients. The SLE estimates of the
linear coefficient of correlation ρ[µ, σ |y] = Cov[µ, σ |y]/Std[µ|y]/Std[σ |y] are computed based on Eq. (8.50).
Additionally, the LOO error εLOO is listed to indicate the SLE prediction accuracy. Note that all those estimates
comply with the natural bounds and restrictions of the estimated quantities, e.g. the posterior means comply
with the prior bounds.

For the sake of comparison, associated results are listed for the simulated MCMC sample, too. These MCMC
results are simply obtained as the corresponding sample approximations. The reference estimate of the model
evidence is obtained by crude MC simulation instead, i.e. the arithmetic mean of the likelihood is computed for
a number of 108 independent draws from the prior. It is interesting to note that the SLEs can reproduce the
MCMC results for moderate experimental designs and degrees, say for K = 5× 103 and p = 21. Even though a
large number of input samples and a large polynomial degree is necessary to reproduce the shape of the joint
posterior density, significantly smaller experimental designs and polynomial orders suffice to reproduce the first
posterior moments.

8.5.3 2D inverse heat conduction
Finally, an inverse heat conduction problem (IHCP) is considered. The heat equation is a partial differential

equation (PDE) that describes the distribution and evolution of heat in a system where conduction is the
dominant mode of heat transfer. We consider a stationary heat equation of the form

∇ · (κ∇T̃ ) = 0. (8.60)

The temperature is denoted as T̃ and the thermal conductivity is denoted as κ. Commonly one is interested in
the solution of the boundary value problem that is posed when Eq. (8.60) is satisfied over a physical domain
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Table 8.3: 2D normal fitting: Statistical quantities.

K p εLOO Z [10−14] E[µ|y] E[σ |y] Std[µ|y] Std[σ |y] ρ[µ, σ |y]
SL

E

5× 102 5 4.24× 10−1 1.19 30.34 5.57 2.03 1.39 0.18
1× 103 9 1.19× 10−1 1.20 30.39 5.54 2.01 1.41 0.08
5× 103 21 9.64× 10−4 1.18 30.48 5.56 1.79 1.38 −0.01
1× 104 32 5.86× 10−6 1.18 30.47 5.56 1.81 1.38 0.00
5× 104 45 1.30× 10−9 1.18 30.47 5.56 1.81 1.38 −0.00
1× 105 50 6.05× 10−11 1.18 30.47 5.56 1.81 1.38 −0.00

(MC)MC 1.18 30.47 5.56 1.81 1.38 −0.00

subject to appropriate boundary conditions. We consider the steady state situation in two spatial dimensions.
The Euclidean coordinate vector is denoted as r = (r1, r2)> in the following.

It is dealt with the identification of thermal conductivities of inclusions in a composite material with close-to-
surface measurements of the temperature. The setup of the simplified thermal problem is visualized in Fig. 8.7.
The thermal conductivity of the background matrix is denoted as κ0, while the conductivities of the material
inclusions are termed as κ1 and κ2, respectively. It is assumed that the material properties are not subject to a
further spatial variability. At the “top” of the domain a Dirichlet boundary condition T̃1 is imposed, while at the
“bottom” the Neumann boundary condition q2 = −κ0 ∂T̃ /∂r2 is imposed. Zero heat flux conditions ∂T̃ /∂r1 = 0
are imposed at the “left” and “right” hand side.

We consider the IHCP that is posed when the thermal conductivities κ = (κ1, κ2)> are unknown and
their inference is intended. With this in mind, a number of N measurements T = (T (r1), . . . , T (rN ))> of
the temperature field at the measurement locations (r1, . . . , rN ) is available. The forward modelM : κ 7→ T̃
establishes the connection between the data and the unknowns. It formalizes the operation of solving Eq. (8.60)
for T̃ as a function of κ. Measured temperatures T = T̃ + ε consist of the corresponding model response
T̃ = M(κ) and a residual term ε. The latter accounts for measurement uncertainty and forward model
inadequacy. We consider residuals that are distributed according to a Gaussian N (ε|0,Σ) with covariance
matrix Σ. In compliance with Eq. (8.9) the likelihood function is given as L(κ) = N (T |M(κ),Σ). Provided
that a prior distribution π(κ) can be elicited, the posterior is given as π(κ|T ) = Z−1L(κ)π(κ).

The thermal conductivity of the background matrix is set to κ0 = 15 W/m/K, while the thermal conductivities
of the inclusions are specified as κ1 = 32 W/m/K and κ1 = 28 W/m/K. The material properties of the inclusions
are treated as unknowns subsequently. Moreover, the boundary conditions T̃1 = 200 K and q2 = 2000 W/m2 are
imposed. A finite element (FE) model is used to solve a weak form of the governing PDE. The FE solution
for the experimental setup described above is shown in Fig. 8.8. We consider a uniform prior distribution
π(κ) = π(κ1)π(κ2) with independent marginals π(κ1) = U(κ1 |κ1, κ1) and π(κ2) = U(κ2 |κ2, κ2). The prior
bounds are chosen as κ1 = κ2 = 20 W/m/K and κ1 = κ2 = 40 W/m/K, respectively. A number of N = 12
close-to-surface observations is analyzed. Their measurement locations are indicated by the black dots in Fig. 8.7.
Independent Gaussian measurement noise with Σ = σ2

T1 and σT = 0.25 K is considered. Based on this setup,
synthetic data are simulated for conducting the computer experiment. This means that the forward model
responses T̃ for the true parameter setup are computed and pseudo-random noise is added in order to obtain T .

Figure 8.7: 2D IHCP: Heat conduction setup. Figure 8.8: 2D IHCP: Steady state solution.

156



Spectral likelihood expansions for Bayesian inference

8.5.3.1 Posterior density

The analyses proceed analogously to the preceding section. By comparing the present IHCP and the
non-conjugate Gaussian example, that have a two-dimensional parameter space and uniform priors in common,
one can gain interesting insight into spectral Bayesian inference. First, the convergence behavior of the SLE is
investigated. Spectral expansions L̂p of the likelihood L are therefore computed for an experimental design of
size K = 1× 105 and candidate bases with polynomials up to degree p = 50. All practical issues are handled
analogously to the procedure in the non-conjugate Gaussian example. In Fig. 8.9 the normalized versions of
the empirical error εEmp and the LOO error εLOO are shown as a function of p. Comparing these results to
Fig. 8.4 reveals that the convergence rate of the SLE L̂p is considerably slower than the corresponding one
for the Gaussian example. For the SLE with p = 50 the error estimates amount to εEmp = 6.26 × 10−4 and
εLOO = 7.56× 10−4. These errors are around seven orders of magnitude higher than the errors observed for the
Gaussian example. The difference in the SLE convergence rate presumably originates from a difference in the
underlying likelihood functions and posterior densities. This is now investigated in more detail.
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Figure 8.9: 2D IHCP: Convergence of the SLE.

A RWM approximation with 107 samples and the SLE-based emulation with p = 50 of the posterior density
π(κ1, κ2 |T ) ≈ b−1

0 L̂p(κ1, κ2)π(κ1, κ2) are depicted in Fig. 8.10. In order to reduce the numerical cost of MCMC
sampling, the FE modelM is replaced by a PCE surrogate M̂p. For i = 1, . . . , N , separate PCEs M̂i,p of the
temperature T̃i =Mi,p(κ1, κ2) at the location ri are fitted as a function of the unknown conductivities. After
an appropriate transformation to standardized variables, tensorized Legendre polynomials up to degree p = 10
act as the trial basis. Based on an experimental design of the size K = 103, the LOO errors of the regressions
amount to about εLOO ≈ 10−10. Accordingly, the PCE is considered an adequate replacement of the full FE
model. Note that it would be also possible to use M̂p as a forward model surrogate during the likelihood training
runs.

The posteriors in Fig. 8.10 can be compared to the posteriors of the Gaussian example in Fig. 8.5 of the
previous section. Relative to the respective prior, the posterior of the thermal problem π(κ1, κ2 |T ) contains
more information than the posterior of the normal problem π(µ, σ |y), i.e. the likelihood L(κ1, κ2) has a slightly
more peaked and localized structure than L(µ, σ). In order to capture these different behaviors nearby and
far from the posterior mode, the SLEs L̂p(κ1, κ2) and L̂p(µ, σ) require a different number of expansions terms.
The more localized the posterior modes are with respect to the prior, the more terms are required in order to
achieve the cancellation in the tails. Moreover, as opposed to π(µ, σ |y) the posterior π(κ1, κ2 |T ) exhibits a
pronounced correlation structure. In turn, this requires non-vanishing interaction terms. As a consequence, the
SLE L̂p(κ1, κ2) of the IHCP example is less accurate than the SLE L̂p(µ, σ) of the Gaussian example. This
is also reflected in the fact that the posterior surrogate fluctuates and takes on negative values around the
points [κ1, κ2] and [κ1, κ2]. In order to see this more clearly, the SLE posterior surrogate from Fig. 8.10(b) is
plotted again from a different angle in Fig. 8.10(c). A small wavelike posterior structure spans the parameter
space between these corners. These artifacts stem from an imperfect polynomial cancellation of the finite series
approximation. This stands in contrast to the posterior of the Gaussian example in Fig. 8.5(c) where these
phenomena were not observed.

Via Eq. (8.45) the posterior marginals π(κ1 |T ) and π(κ2 |T ) can be extracted from the joint SLEs. The
resulting densities are shown in Fig. 8.11 together with a histogram-based MCMC sample representation. As it
can be seen, for p = 50 the marginals are captured fairly well, while the moderate-order surrogate for p = 21 still
exhibits discrepancies at the bounds of the parameter space. The approximation of the posterior marginals by
sub-SLEs seems to be more accurate, at least in the sense of the maximum deviation, than the approximation of
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(a) MCMC reference sample. (b) SLE with p = 50.

(c) SLE with p = 50.

Figure 8.10: 2D IHCP: Joint posterior.

the joint posterior π(κ1, κ2 |T ) by the full SLE in Fig. 8.10(c). This phenomenon can be explained through the
absence of all non-constant polynomial terms in the variables that are marginalized out.

8.5.3.2 Quantities of interest

Now we investigate how well one can extract the statistically interesting quantities. Results from SLEs with
varying K and p are compared with the results from MCMC sampling. A summary of the findings is provided
in Table 8.4. The LOO error εLOO of various SLEs is shown together with some basic posterior characteristics
obtained by a postprocessing of the SLE coefficients. For j = 1, 2 the posterior mean E[κj |T ] and the standard de-
viation Std[κj |T ] = Var[κj |T ]1/2 of the posterior distribution are given in physical units of W/m/K. In addition,
the model evidence Z and the linear coefficient of correlation ρ[κ1, κ2 |T ] = Cov[κ1, κ2 |T ]/Std[κ1 |T ]/Std[κ2 |T ]
are specified. In comparison to Table 8.3, where the results for the non-conjugate normal example are listed, the
SLE results for the IHCP match their MCMC counterparts less accurately. Nevertheless, it can be observed that
the lowest-degree quantities of inferential interest can be extracted with a comparably small experimental design
and relatively low number of regressors, say with K = 1× 104 and p = 29. Note that all the estimates attain
admissible values.

Table 8.4: 2D IHCP: Statistical quantities.

K p εLOO Z [10−1] E[κ1 |T ] E[κ2 |T ] Std[κ1 |T ] Std[κ2 |T ] ρ[κ1, κ2 |T ]

SL
E

5× 102 5 8.24× 10−1 8.45 31.33 28.36 1.74 1.33 0.28
1× 103 9 6.08× 10−1 7.81 31.40 28.22 2.02 1.53 0.15
5× 103 21 1.50× 10−1 7.47 31.32 28.13 2.16 1.61 0.34
1× 104 29 5.79× 10−2 7.21 31.56 28.30 1.61 1.39 −0.05
5× 104 35 1.63× 10−2 7.18 31.62 28.34 1.24 1.08 −0.75
1× 105 50 7.56× 10−4 7.18 31.62 28.33 1.26 1.10 −0.68

(MC)MC 7.17 31.62 28.33 1.26 1.09 −0.68
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(b) Thermal conductivity κ2.

Figure 8.11: 2D IHCP: Posterior marginals.

8.5.4 6D inverse heat conduction
In the previous sections it was demonstrated that likelihood functions can be indeed spectrally expanded and

that the posterior density with its moments can be computed accordingly. For low-dimensional problems the
SLE convergence behavior up to a high degree was studied by monitoring the LOO error. It was shown that the
expansion error can be arbitrarily reduced by increasing the order of the expansion and adding samples to the
experimental design. While this is reassuring to know, it does not help in solving higher-dimensional problems
for which the computation of high-order expansions is exacerbated by the curse of dimensionality. Hence, now
we want to investigate the applicability of SLEs and aSLEs in an inverse problem of moderate dimension.

An IHCP in two spatial dimensions with six unknown conductivities is considered in this section. The
setup of the problem is shown in Fig. 8.12. The M = 6 unknown conductivities κ = (κ1, . . . , κ6)> are inferred
with N = 20 noisy measurements T = (T1, . . . , T20)> of the temperature field T̃ . We set κ0 = 30 W/m/K and
κ = (20, 24, . . . , 40)>W/m/K. The prior is set to a multivariate lognormal distribution π(κ) =

∏6
i=1 π(κi) with

independent marginals π(κi) = LN (κi |µ0, σ
2
0) with µ0 = 30 W/m/K and σ0 = 6 W/m/K. These parameters

describe the mean µ0 = E[κi] and standard deviation σ0 = Std[κi] of the lognormal prior. They are related
to the parameters of the associated normal distribution N (log(κi)|λ0, ς

2
0 ) via µ0 = exp(λ0 + ς20/2) and σ2

0 =
(exp(ς20 )−1) exp(2λ0 +ς20 ). Otherwise than that, the problem setup is exactly as described in the previous section,
i.e. the likelihood function is given as L(κ) = N (T |M(κ),Σ). In accordance with this setup, in the following
synthetic data are simulated and analyzed in order to compute the joint posterior π(κ|T ) = Z−1L(κ)π(κ).

Figure 8.12: 6D IHCP: Heat conduction setup.

8.5.4.1 Posterior density

The unknowns are represented as κi = exp(λ0 + ς0ξi) in terms of the standardized variables ξi ∈ R

with Gaussian weight functions N (ξi |0, 1). A spectral expansion L̂p in tensorized Hermite polynomials is
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then computed for p = 5 and K = 5 × 104. The errors of the likelihood approximation are estimated as
εEmp = 8.81 × 10−1 and εLOO = 9.14 × 10−1. As compared to the low-dimensional examples that were
studied before, these are large errors. An auxiliary reference density g(κ) =

∏6
i=1 g(κi) is then constructed

as a multivariate lognormal with independent marginals g(κi) = LN (κi |µi, σ2
i ). The parameters of the latter

are chosen as the means µi = E[κi |T ] and standard deviations σi = Std[κi |T ] of the posterior surrogate
corresponding to the coefficients of SLE L̂p. We remark that this is a simple two-step procedure and that a
more refined usage of the reference change would certainly lead to more sophisticated approaches. Subsequently,
an aSLE Ĝp with p = 5 and K = 5 × 104 is computed. The errors amount to εEmp = 4.81 × 10−1 and
εLOO = 6.24× 10−1. Notwithstanding that these errors are smaller than the corresponding errors of the SLE,
they are still large as compared to the previous examples. Since these errors are now measured with respect to
the auxiliary density which is expectedly closer to the true posterior than the prior is, the aSLE presumably
leads to a more accurate posterior surrogate.

From the previously computed SLE L̂(κ) and the aSLE Ĝp(κ) approximations of the joint posterior density
are computed via Eqs. (8.39) and (8.55). The obtained surrogates π(κ|T ) ≈ L̂p(κ)π(κ)/b0 and π(κ|T ) ≈
Ĝp(κ)g(κ)/bg0 are now compared to each other. We start with the one-dimensional marginals that can be
compiled by collecting terms from the full expansions based on Eq. (8.45). For j = 1, . . . , 6 the marginals π(κj |T )
that are extracted that way are shown in Fig. 8.13. The marginal priors π(κj) and the auxiliary densities g(κj)
are shown, too. While the marginals that are taken from the SLE slightly deviate from their MCMC counterparts,
the marginals based on the aSLE match their references perfectly well. The reason is that the posterior can be
easier represented as a small adjustment of the auxiliary density than as a large correction to the prior. Thus,
with the same expansion order the posterior is more accurately represented through the aSLE than through the
SLE. Regarding the size of the error estimates, it is surprising that the marginals can be retrieved that well with
the aSLE. Even though the SLE-based posterior approximations can hardly be interpreted as proper probability
densities, i.e. they conspicuously take on negative values, the moments are recovered sufficiently well for the
construction of the auxiliary reference density.

On the basis of Eq. (8.47) the two-dimensional posterior marginals π(κj , κk |T ) can be constructed from the
full expansions. For j = 3 and k = 4 the posterior marginal for the SLE L̂p is shown in Fig. 8.14(a). The same
two-dimensional distribution is depicted in Fig. 8.14(b) for the aSLE Ĝp. A histogram of the MCMC sample is
provided in Fig. 8.14(c) as a reference. As already found in Figs. 8.13(c) and 8.13(d) for instance, in Fig. 8.14 the
aSLE-based surrogate appears to be almost exact whereas the SLE-based one is flattened out. Since the aSLE
captures the true posterior density more accurately than the SLE, we expect similar findings for the posterior
moments.

8.5.4.2 Quantities of interest

Finally we compute the model evidence and the first posterior moments with the aid of Eqs. (8.40) and (8.53)
and Eqs. (8.48) to (8.50). For the aSLE Ĝp the analysis proceeds analogously to the SLE L̂p. In Table 8.5
a summary of the results is given. As it can be taken from the table, the aSLE consistently gives more
accurate estimates of the reference values. This fulfills our earlier expectations. Regarding the inaccuracy
of the SLE-based posterior marginals and the concerns about interpreting them as probability densities, the
quality of the SLE-based estimates of the moments surpasses our expectations. In particular, the estimated
standard deviations are more accurate than the surrogate marginals suggest, e.g. the ones shown in Figs. 8.13(a)
and 8.13(f). Similar as for the posterior density, we have to conclude that the normalized LOO error does not
give conclusive information about the accuracy of the first posterior moments. Nevertheless, it is remarked that
the use of resampling methods still ensures a robust fit, i.e. it protects against overfitting.

8.6 Concluding remarks
A spectral approach to Bayesian inference that focuses on the surrogate modeling of the posterior density

was devised. The likelihood was expanded in terms of polynomials that are orthogonal with respect to the prior
weight. Ensuing from this spectral likelihood expansion (SLE), the joint posterior density was expressed as
the prior that acts the reference density times a polynomial correction term. The normalization factor of the
posterior emerged as the zeroth SLE coefficient and the posterior marginals were shown to be easily accessible
through sub-expansions of the SLE. Closed-form expressions for the first posterior moments in terms of the
low-order spectral coefficients were given. Posterior uncertainty propagation through general quantities of
interest was established via a postprocessing of the higher-order coefficients. The semi-analytic reformulation
of Bayesian inference was founded on the theory and practice of metamodeling based on polynomial chaos
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(c) Thermal conductivity κ3.
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Figure 8.13: 6D IHCP: Posterior marginals.
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(a) SLE with p = 5. (b) aSLE with p = 5.

(c) MCMC reference sample.

Figure 8.14: 6D IHCP: Posterior marginals.

Table 8.5: 6D IHCP: Statistical quantities.

Z [10−3] E[κ1 |T ] E[κ2 |T ] E[κ3 |T ] E[κ4 |T ] E[κ5 |T ] E[κ6 |T ]
SLE 4.04 21.42 24.86 28.79 28.45 34.43 37.27
aSLE 3.68 21.53 24.48 29.16 28.57 34.59 36.95

(MC)MC 3.65 21.52 24.57 29.11 28.56 34.64 37.00
Std[κ1 |T ] Std[κ2 |T ] Std[κ3 |T ] Std[κ4 |T ] Std[κ5 |T ] Std[κ6 |T ] ρ[κ1, κ2 |T ]

SLE 1.95 3.43 2.63 2.43 3.96 3.13 −0.40
aSLE 1.94 3.56 2.61 2.33 3.62 2.99 −0.44

(MC)MC 1.93 3.48 2.56 2.31 3.64 3.00 −0.47
ρ[κ1, κ3 |T ] ρ[κ1, κ4 |T ] ρ[κ1, κ5 |T ] ρ[κ1, κ6 |T ] ρ[κ2, κ3 |T ] ρ[κ2, κ4 |T ] ρ[κ2, κ5 |T ]

SLE 0.19 −0.39 −0.28 0.05 −0.40 −0.18 −0.30
aSLE −0.01 −0.29 −0.03 0.10 −0.48 −0.17 −0.28

(MC)MC −0.02 −0.32 −0.03 0.09 −0.48 −0.17 −0.31
ρ[κ2, κ6 |T ] ρ[κ3, κ4 |T ] ρ[κ3, κ5 |T ] ρ[κ3, κ6 |T ] ρ[κ4, κ5 |T ] ρ[κ4, κ6 |T ] ρ[κ5, κ6 |T ]

SLE −0.09 −0.00 0.22 −0.22 −0.20 0.24 −0.11
aSLE −0.13 0.11 −0.02 −0.32 −0.24 0.13 −0.24

(MC)MC −0.16 0.10 −0.03 −0.34 −0.26 0.12 −0.24
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expansions. This allows one to compute the SLE coefficients by solving a linear least squares problem. An
analysis of the advantages and disadvantages of the proposed method eventually motivated a change of the
reference density. While the expansion of the posterior in terms of the prior may require substantial modifications,
its representation with respect to an auxiliary density many only require minor tweaks.

The possibilities and difficulties that arise from the problem formulation were exhaustively discussed and
numerically demonstrated. Fitting a parametric distribution to random data and identifying the thermal
properties of a composite material served as benchmark problems. These numerical experiments proved that
spectral Bayesian inference works in principle and they provided insight into the mechanisms involved. The
convergence behavior of the SLE was studied based on the leave-one-out error. It was found that high-degree
SLEs are necessary in order to accurately represent the likelihood function and the joint posterior density,
whereas lower-order SLEs are sufficient in order to extract the low-level quantities of interest. A change of the
reference density allowed for reducing the order of the corrections required in order to represent the posterior
with respect to the prior. This helped in alleviating the curse of dimensionality to some extent.

In turn, a number of follow-up questions were given rise to. While the leave-one-out error performs well in
quantifying the prediction errors of the SLE, it turned out to be of limited use with regard to the errors of
the corresponding posterior surrogate and its marginals. A critical question thus relates to a means to assess
the errors of these quantities and to diagnose their convergence. This would assist in choosing experimental
designs of a sufficient size. Also, it would be desirable to quantify the estimation errors of individual expansion
coefficients. This would support the assessment of the efficiency and scalability of the approach and the fair
comparison with Monte Carlo, importance and Markov chain Monte Carlo sampling. Another question is whether
a constrained optimization problem can be formulated that naturally respects all prior restrictions. This would
remedy the potential problem of illegitimate values of the posterior moments. In order to handle a broader
spectrum of statistical problems, SLEs would have to be extended to dependent prior distributions and noisy
likelihood functions. For increasing the computational efficiency beyond the change of the reference density, it is
conceivable to deploy advanced techniques from metamodeling and machine learning. This includes piecewise
polynomial models, expansions in a favorable basis and the use of sparsity-promoting regression techniques.
Yet another important issue concerns the practical applicability of the presented framework to problems with
higher-dimensional parameter spaces. In future research efforts we will try to address the abovementioned issues
and to answer this principal question.

Appendices

8.A Univariate polynomials
The main properties of two classical orthogonal families of polynomials were shortly summarized in Table 8.1,

i.e. the domain of definition, the associated weight function and the norm. The first six members of these
univariate Hermite polynomials {Hα}α∈N and Legendre polynomials {Pα}α∈N are listed in Table 8.6. Higher
order members can be defined via recursive or differential relations. These polynomials can be used for the
construction of the multivariate polynomial basis {Ψα}α∈N in Eq. (8.17). Note that this orthonormal basis is
normalized via Ψα = Hα/

√
α! or Ψα = Pα/

√
1/(2α+ 1).

Table 8.6: Low-order polynomials.

α Hα(x), x ∈ R Pα(x), x ∈ [−1, 1]
0 1 1
1 x x
2 x2 − 1 (3x2 − 1)/2
3 x3 − 3x (5x3 − 3x)/2
4 x4 − 6x2 + 3 (35x4 − 30x2 + 3)/8
5 x5 − 10x3 + 15x (63x5 − 70x3 + 15x)/8

8.B Low-order QoIs
The representation of six low-order QoIs in terms of the normalized Hermite and Legendre polynomials is

given in Table 8.7 below. Those expansions can be used in order to compute the first posterior moments, e.g. as
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shown in Eqs. (8.48) to (8.50). Note that the representations in the orthonormal bases directly follow from a
change of basis and the substitutions Hα =

√
α!Ψα and Pα =

√
1/(2α+ 1)Ψα.

Table 8.7: Low-order QoIs.

QoI Hermite expansion Legendre expansion
1 Ψ0 Ψ0
x Ψ1 Ψ1/

√
3

x2 √
2Ψ2 + Ψ0 (2Ψ2/

√
5 + Ψ0)/3

x3 √
6Ψ3 + 3Ψ1 (2Ψ3/

√
7 + 3Ψ1/

√
3)/5

x4 2
√

6Ψ4 + 6
√

2Ψ2 + 3Ψ0 (8Ψ4/3 + 20Ψ2/
√

5 + 7Ψ0)/35
x5 2

√
30Ψ5 + 10

√
6Ψ3 + 15Ψ1 (8Ψ5/

√
11 + 28Ψ3/

√
7 + 27Ψ1/

√
3)/63
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Chapter 9

Bayesian inference as a random
variable transformation

This chapter provides an introduction to and demonstration of Bayesian inference via transport maps.
Bayesian updating is first recast as a random variable transformation and then solved as an optimization
problem. The latter involves an information-theoretic optimality criterion. In particular, the relative entropy
of the back-transformed posterior from the prior is minimized. After posing the problem that way, it becomes
regularized in the framework of optimal transportation theory.

The transport map–based formulation was originally introduced in [1]. A nice overview of the optimal
transportation of probability measures for purposes of Bayesian inference is given in [2]. Similar ideas had
also emerged in the context of sequential data assimilation, an overview of which can be found in [3, 4].
Transformation-based inference joins the ranks of the Bayesian methods reviewed in Section 3.7. It can be seen
as a special case of variational Bayesian inference in Section 3.7.2, where certain prior transformations constitute
the parametric family of candidate distributions. Beyond that, it shares commonalities with spectral Bayesian
inference as presented in Chapter 8.

A simple inverse heat conduction problem is used for demonstration purposes. Unknown thermal conductivities
of a composite material are indirectly inferred from measurements of the temperature that are taken close
to the boundary. The prior is transformed into the corresponding posterior distribution. Traditional Markov
chain Monte Carlo sampling serves as the reference solution. Parts of this chapter were also presented at
the International Symposium on Reliability of Engineering Systems that was held on October 15–17, 2015 in
Hangzhou, China [5].

The tutorial on Bayesian inference as a random variable transformation is structured as follows. In Section 9.1
the optimal transportation from the prior to the posterior is investigated. In Section 9.2 a variational problem is
formulated that allows for a numerical computation of the posterior. Subsequently, Section 9.3 covers practical
issues such as the parametrization of the map and the regularization of its computation. In Section 9.4 the pros
and cons of the approach are weighed and compared to spectral Bayesian inference that was devised previously.
In Section 9.5 an inverse heat conduction problem is solved as an illustrative example of transformation-based
Bayesian inference. Finally, Section 9.6 contains some concluding remarks.

9.1 Prior transformations
Given the prior distribution and the likelihood function, Bayes’ rule characterizes the posterior as a conditional

density. It is interesting to view the transition from the prior to the posterior density in terms of random variables
instead. While that point of view is not directly suggested by Bayes’s law, which only operates on probability
densities, it indeed provides some useful intuition and leads to new recipes for computational Bayesian inference.
This is investigated next.

Consider an injective and continuously differentiable map T : RM → RM that transforms a random variable
X ∼ π(x) distributed according to the prior distribution into a new random variable

X̃ = T (X) ∼ πT (x̃). (9.1)

The map is assumed to be invertible and sufficiently well-behaved, such that one can write the transformed
density of the random variable in Eq. (9.1) as

πT (x̃) = π(T−1(x̃)) |det JT−1(x̃)|. (9.2)
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Conversely, given that a random variable X̃ ∼ π(x̃|y) is distributed according to the posterior, one may consider
the back-transformation X = T−1(X̃) ∼ πT−1(x|y) with

πT−1(x|y) = π(T (x)|y) |det JT (x)| = L(T (x))π(T (x))
Z

|det JT (x)|. (9.3)

One is interested in such maps T for which the transformed prior πT in Eq. (9.2) equals the posterior and the
back-transformed posterior πT−1(·|y) in Eq. (9.3) equates to the prior. This means that

πT = π(·|y), πT−1(·|y) = π. (9.4)

In this sense, the prior and the posterior density transform into one another. Given the prior random vector
X ∼ π(x), the transformed random vector X̃ ∼ π(x̃|y) follows the posterior. While Eq. (9.4) is formulated in
terms of densities, it also establishes a deterministic coupling (X, T (X)) of the prior and the posterior probability
measure [6, 7].

An illustration of this principle is given in Fig. 9.1, where both the prior and the posterior are Gaussian
distributions. This is the same setup as already visualized in Fig. 3.1. Two linear transformations are shown that
transform the prior into the posterior density. For more complex problems involving non-Gaussian distributions
the transformations will be generally nonlinear, though.

Figure 9.1: Prior transformation.

9.1.1 Couplings of Gaussians
Motivated by the illustrative example above, we study the case involving Gaussian distributions in greater

depth. Consider two real-valued Gaussian random variables X1 ∼ N (x1 |µ1, σ
2
1) and X2 ∼ N (x2 |µ2, σ

2
2). Their

respective distributions have means µ1 and µ2 and variances σ2
1 and σ2

2 . The first distribution transforms into
the second one by

x2 = T (x1) = µ2 ±
σ2

σ1
(x1 − µ1) (9.5)

Two different linear couplings between the Gaussian distributions are described by Eq. (9.5) for which the
variance transforms as σ2

2 = σ2
1(±σ2/σ1)2. In the case that the random variables X1 ∼ N (x1 |µ1, σ

2
1) = π(x1)

and X2 ∼ N (x2 |µ2, σ
2
2) = π(x2 |y) are distributed according to the prior and the posterior of Gaussian shape,

respectively, this is exactly the scenario encountered in Fig. 9.1.
Now consider two RM -valued random variables X1 ∼ N (x1 |µ1,Σ1) and X2 ∼ N (x2 |µ2,Σ2). They have

Gaussian distributions with mean vectors µ1 and µ2 and covariance matrices Σ1 and Σ2, respectively. Let Σ1/2

denote the principle square root of a symmetric and positive-definite matrix Σ that is uniquely characterized
by Σ = Σ1/2Σ1/2. In a straightforward manner, a deterministic coupling between the multivariate normal
distributions is established by

x2 = T (x1) = µ2 + Σ1/2
2 Σ−1/2

1 (x1 − µ1). (9.6)

Indeed one has Σ2 = (Σ1/2
2 Σ−1/2

1 )Σ1(Σ1/2
2 Σ−1/2

1 )>. More generally, Σ2 = (Σ1/2
2 ΦΣ−1/2

1 )Σ1(Σ1/2
2 ΦΣ−1/2

1 )>
for an arbitrary orthogonal matrix Φ with Φ>Φ = ΦΦ> = I. Hence, the coupling in Eq. (9.6) is non-unique
since any such Φ defines an appropriate coupling by

x2 = T (x1) = µ2 + Σ1/2
2 ΦΣ−1/2

1 (x1 − µ1). (9.7)
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The just-mentioned transforms define well-behaved couplings between Gaussian distributions that exhibit
Jacobian formulas for the change of variables. More generally, non-continuous transformations may accomplish
the same purpose, e.g. piecewise combinations of the linear transformations discussed, but cannot be written that
nicely. In the following we exclusively concentrate on invertible and continuously differentiable maps. Beforehand,
some introductory remarks on optimal transportation are given. This framework gives rise to important
statements regarding the existence and uniqueness of deterministic couplings between general probability
distributions, not only Gaussians.

9.1.2 Optimal transportation
As the preceding discussion revealed, a suitable map that transforms the prior into the posterior may not

be unique. It may not even exist in the general case. In the framework of optimal transport theory [8, 9],
however, one can establish certain existence and uniqueness results. A map T that satisfies πT = π(·|y) is
called a transport map in this context. Let a cost function c : RM ×RM → R+ represent the expense c(x, x̃) of
transporting a unit mass from x to x̃. The total cost of the mapping x̃ = T (x) is then

C(T ) =
∫
RM

c(x, T (x))π(x) dx. (9.8)

The Monge problem asks for finding a transport map that is optimal in that it minimizes the transportation cost
in Eq. (9.8). As expressed in our density-oriented language and notation, this means to

minimize C(T ),
subject to πT = π(·|y).

(9.9)

A solution to the problem in Eq. (9.9) is called an optimal transport map. Under relatively weak assumptions
regarding the distributions involved and the cost function, one can ensure the existence and uniqueness of
such an optimal map, e.g. for a quadratic cost function c(x, x̃) = ‖x− x̃‖22 such results are established by the
Brenier–McCann theorem [10, 11]. Moreover, it states that the map is monotone. Under certain other cost
considerations, the optimal map can be shown to coincide with the Knothe–Rosenblatt rearrangement [12, 13].
This means that the transport map has a triangular structure.

For the sake of completeness, it is remarked that the Monge–Kantorovich problem is a generalization of
the problem discussed above. It allows for transport plans π(x, x̃) and more general couplings (X, X̃) that
admit the marginals X ∼ π(x) and X̃ ∼ π(x̃|y). The trivial coupling with π(x, x̃) = π(x)π(x̃|y) and the
deterministic coupling with X̃ = T (X) discussed above are two extreme cases. An optimal transference plan
minimizes the total cost C(T ) =

∫∫
RM×RM c(x, x̃)π(x, x̃) dx dx̃. Non-deterministic couplings are not permitted

in Monge’s original problem formulation which we actually focus on. However, for future research endeavors it
may be useful to keep this possibility in mind.

In the Bayesian context, one is only interested in the transformation properties of the map and may thus
safely disregard its cost and optimality. Indeed, here the map is merely an auxiliary construct with no associated
transportation cost whatsoever. Hence, any arbitrary transport map is as good as any other. Yet, imposing an
auxiliary cost function may still guide the practical computation of a transport map with a convenient structure,
i.e. it regularizes the problem. Note that the quadratic cost function would favor maps close to the identity.
This would for example suggest to pick the monotonically increasing transport map and scrap the decreasing
one in Fig. 9.1 or Eq. (9.5). Other cost functions would promote other structures, e.g. triangular maps.

9.2 Variational formulation
For obtaining a transform-based representation of the posterior distribution, we have to solve Eq. (9.4) for

an appropriate map or even crack the corresponding Monge problem in Eq. (9.9). Not to mention again the
fact that the latter entails a completely pointless cost function, the two problems are extremely challenging.
Unfortunately, as if traditional optimal transportation was not hard enough, the problem is aggravated by the
usual intricacies of Bayesian inference, i.e. the target posterior distribution is only partially known through
pointwise references to its unnormalized density.

In order to compute an approximate transport map despite all these difficulties, a variational formulation on
the basis of Section 3.7.2 is devised. It relies on fundamental concepts in information theory [14, 15]. Instead of
finding a map that exactly establishes a deterministic coupling between the prior and the posterior, one can
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resort to a map that fits a certain information-theoretic optimality criterion. In this regard, the Kullback–Leibler
(KL) divergence of the back-transformed posterior πT−1(·|y) from the prior π is considered

DKL(π‖πT−1(·|y)) =
∫
RM

log
(

π(x)
πT−1(x|y)

)
π(x) dx = logZ − G(T ). (9.10)

This shows an intriguing resemblance to Eq. (3.56). The divergence DKL(π‖πT−1(·|y)) is now the difference
between the constant log-evidence logZ and

G(T ) =
∫
RM

log
(
L(T (x))π(T (x))|det JT (x)|

π(x)

)
π(x) dx

=
∫
RM

(logL(T (x)) + log π(T (x)) + log |det JT (x)| − log π(x))π(x) dx.
(9.11)

In the best case one would have π = πT−1(·|y) such that DKL(π‖πT−1(·|y)) = 0 and G(T ) = logZ.
More generally one has DKL(π‖πT−1(·|y)) ≥ 0, thus a variational lower bound of the evidence is estab-
lished through logZ ≥ G(T ) instead of the free energy in Eq. (3.57). Note that the differential Shannon
entropy HS(π) = −

∫
RM

log(π(x))π(x) dx of the prior density emerges when one decomposes as G(T ) =∫
RM

log(L(T (x))π(T (x))|det JT (x)|)π(x) dx+HS(π).
Let us consider a class of possible transformations T. Then one can find the member T ∈ T that, measured

in terms of the relative entropy, best back-transforms the posterior into the prior πT−1(·|y)) ≈ π. Hence, the
posterior is well approximated by the transformed prior πT ≈ π(·|y). Similar as in Eq. (3.59), minimizing
DKL(π‖πT−1(·|y)) is equivalent to maximizing G(T ). Thus

T = arg min
T?∈T

DKL(π‖πT−1
?

(·|y)) ⇔ T = arg max
T?∈T

G(T?). (9.12)

Basically, this minimizes the information loss or entropy gain which comes along with replacing the prior with
the back-transformed posterior. A stochastic program is posed in that a probabilistic expectation under the
prior is extremized [16, 17].

As opposed to DKL(π‖πT−1(·|y)) in Eq. (9.10), the intractable model evidence has been eliminated from G(T )
in Eq. (9.11). Instead of minimizing DKL(π‖πT−1(·|y)), one might hit on the alternative idea of doing so for
DKL(πT−1(·|y)‖π) =

∫
RM

log(πT−1(x|y)/π(x))πT−1(x|y) dx. This would involve intractable expectations under
the back-transformed posterior, however. Another idea is to minimize either of the distances DKL(π(·|y)‖πT ) or
DKL(πT ‖π(·|y)) between the transformed prior and the posterior. In addition to the intractable expectation
arising in the first objective, this is generally problematic because it would require to evaluate the inverse map
T−1 and its Jacobian determinant det JT−1 . On the whole, the minimization of DKL(π‖πT−1(·|y)) in Eq. (9.12)
is the only viable option.

9.3 Practical computation
After having reformulated Bayesian inference as a stochastic program, a few more ingredients are still

necessary in order to render its practical solution feasible. This involves means to parametrize the map, regularize
its computation and evaluate stochastic averages in the optimization routine. Herein we restrict the search for a
transformation to a convenient and reasonably rich function space and deploy a Monte Carlo approximation of
the optimization objective.

9.3.1 Map parametrization
We consider maps with a triangular structure. This form is motivated by the discussion about optimal

transport where it emerges as a consequence of certain considerations regarding the transportation cost. For
i = 1, . . . ,M each component Ti(x1, . . . , xi) is a function of the first i variables only. Overall, such a triangular-like
map is written as

TM(x) =


T1(x1)
T2(x1, x2)
...
TM (x1, x2, . . . , xM )

 . (9.13)
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An apparent characteristic of this formulation is that it depends on the ordering of the variables involved. The
Jacobian matrix of the vector function in Eq. (9.13) has the lower triangular structure

JTM = dTM

dx =


∂T1
∂x1

0 . . . 0
∂T2
∂x1

∂T2
∂x2

. . . 0
...

...
. . .

...
∂TM
∂x1

∂TM
∂x2

. . . ∂TM
∂xM

 . (9.14)

As a direct consequence thereof, the determinant of the lower triangular matrix in Eq. (9.14) is simply the
product of its diagonal terms

det JTM =
M∏
i=1

∂Ti
∂xi

. (9.15)

That the Jacobian determinant can be easily determined through Eq. (9.15) is of great help. It simplifies the
evaluation of objective function in Eq. (9.11) for the optimization problem in Eq. (9.12).

After specifying the structure of the random variable transformation, we have to represent its individual
components in some way. Multivariate polynomials up to a certain degree are envisaged for that purpose. They
provide a convenient basis for representing smooth functions which is both flexible and interpretable. Given that
we have a candidate set of polynomials {Ψαi(x1, . . . , xi)}αi∈Ai,pi for all i = 1, . . . ,M , the components of the
map in Eq. (9.13) can be represented as a superposition

Ti(x1, . . . , xi) =
∑

αi∈Ai,pi

aαiΨαi(x1, . . . , xi). (9.16)

As usual, multi-indices αi = (αi,1, . . . , αi,i) ∈ Ni are introduced in order to bookkeep and restrict the number of
terms in Eq. (9.16). The total polynomial degrees ‖αi‖1 =

∑i
j=1|αi,j | ≤ pi are limited to i-dependent maxima

pi ∈ N. Only terms whose multi-index satisfies αi ∈ Ai,pi =
{
βi ∈ Ni : ‖βi‖1 ≤ pi

}
are then kept. Let us now

fix the polynomial degrees pi = p to an identical upper limit p ∈ N for all components of the map. Moreover,
letting a ∈ RP with P ∈ N>0 denote the totality of the coefficients for all expansions, one can write

TM
a (x) =



∑
α1∈A1,p

aα1Ψα1(x1)

∑
α2∈A2,p

aα2Ψα2(x1, x2)

... ∑
αM∈AM,p

aαMΨαM (x1, x2, . . . , xM )


. (9.17)

The number of terms in Eq. (9.17) grows fast with increasing dimensionality M and expansion order p. Based
on Eq. (2.24) the total number of terms P is given as

P =
M∑
i=1

(
i+ p
p

)
=

M∑
i=1

(i+ p)!
i! p! . (9.18)

The triangular formulation of the map with polynomial components gives rise to one free algorithmic parameter
that has to be set, namely the maximal polynomial degree p.

While there is no stringent necessity for choosing a family of polynomials that is orthogonal with respect to
the prior weight function, it certainly is appealing to do so. This may require a transformation to standardized
variables, which is tantamount to the introduction of a secondary measure that transforms into both the prior
and the posterior. The random vector in Eq. (9.1) can then be seen as a triangular type of polynomial chaos
expansion X̃ = TM

a (X) in terms of the random variables X ∼ π(x) that are distributed according to the prior.
Notwithstanding that this facilitates the interpretation of the coefficients of the parametrized map, we do not aim
at leveraging the Hilbert space theory from Section 2.3 per se. Rather we just need any class of transformations
that is sufficiently flexible, i.e. in order to contain such members that well couple the prior and the posterior,
and reasonably restrictive at the same time, i.e. so as to facilitate the process of finding a good transform.

177



Bayesian inference as a random variable transformation

Analogous to Eq. (2.26), given that the prior is a product measure with a density π(x) = π1(x1) . . . πM (xM )
and that the basis functions in Eq. (9.16) are normalized, one can write the means and variances of the random
variables Ti(X1, . . . , Xi) for i = 1, . . . ,M as

E[Ti(X1, . . . , Xi)] = a0i , Var[Ti(X1, . . . , Xi)] =
∑

αi∈Ai,p\{0i}

a2
αi . (9.19)

The zero vector of Ri is here denoted as 0i. For i, j = 1, . . . ,M with j > i one can similarly write the covariance
between any two different random variables Ti(X1, . . . , Xi) and Tj(X1, . . . , Xj) as

Cov[Ti(X1, . . . , Xi), Tj(X1, . . . , Xj)] =
∑

αi∈Ai,p\{0i}

aαia(αi,0j−i). (9.20)

Here, (αi,0j−i) = (αi,1, . . . , αi,i, 0, . . . , 0) ∈ Aj,p denotes the concatenation of the multi-index αi ∈ Ri and the
zero element 0j−i = (0, . . . , 0) ∈ Rj−i.

Provided that an inferential map perfectly couples the prior and the posterior, Eqs. (9.19) and (9.20)
immediately provide the first posterior moments. Conditional on the data, the posterior means and covariances
are simply given as E[Xi |y] = E[Ti(X1, . . . , Xi)] and Cov[Xi, Xj |y] = Cov[Ti(X1, . . . , Xi), Tj(X1, . . . , Xj)],
respectively. In case a transport map only establishes an imperfect coupling, these relations may still serve as
posterior approximations.

9.3.2 Sample average approximation
For evaluating the objective function, we avail ourselves of Monte Carlo (MC) simulation. In principle one

can imagine two different modalities of random sampling–based stochastic optimization, i.e. one can either use a
fixed sample or resample for every computation of the objective function. The former approach is known as
the sample average approximation (SAA) in stochastic programming [18, 19]. After the selection of the initial
sample, the objective function is deterministic in that it always returns the same output value for the same
values of the optimization parameters. The SAA can be readily implemented with any appropriate deterministic
or stochastic optimizer. Its results are similarly straightforward to interpret. The latter approach features a
stochastic approximation of the objective function in that it attains randomly varying outputs for the same
inputs. While it can be implemented as easily as the SAA, its results are more problematic to interpret. For
example, the algorithm could randomly but prematurely terminate due to obeying a stopping rule.

For these reasons, we use the SAA from now on. Let (x(1), . . . ,x(K)) be a representative sample from the
prior distribution of size K ∈ N>0, e.g. randomly and independently sampled. An MC approximation of the
utility function in Eq. (9.11) is then given as

Ĝ(a) = 1
K

K∑
k=1

(
logL(TM

a (x(k))) + log π(TM
a (x(k))) + log |det JTM

a
(x(k))| − log π(x(k))

)
. (9.21)

The sample remains fixed once it has been selected. Given the sample average function in Eq. (9.21) and the
parametrized transformation in Eq. (9.17), the maximization in Eq. (9.12) can be approximately stated as

â = arg max
a?∈RP

Ĝ(a?). (9.22)

Two remaining choices have to be made for a practical implementation of the SAA method. A convenient
optimizer has to be decided on and the MC sample size K has to be fixed.

9.3.3 Assessing convergence
Finally, an independent convergence criterion is desired. This refers to the iterations of the optimization

algorithm, where the maximum achievable utility is unknown, but also to an additional outer loop that iterates
over the maximal polynomial degree. Taking the logarithm of the back-transform in Eq. (9.3) subject to Eq. (9.4)
and solving for the log-evidence leads to

logZ = logL(T (x)) + log π(T (x)) + log |det JT (x)| − log π(x). (9.23)

This characterizes the perfect coupling. However, the exact equality may not be achieved once the triangular
map with polynomial components in Eq. (9.17) is used. In this case one can still utilize the right hand side of
Eq. (9.23) in defining

Λa(x) = logL(TM
a (x)) + log π(TM

a (x)) + log |det JTM
a

(x)| − log π(x). (9.24)
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Note that the prior expectation of Eq. (9.24) is related to Eq. (9.11) by E[Λa(X)] = G(TM
a ). In case that

TM
a would establish a perfect coupling, one would have Λa(x) = logZ for all x ∈ RM . This implies that
E[Λa(X)] = logZ and Var[Λa(X)] = 0. The following alternative to the optimization problem in Eq. (9.12) and
its discretization in Eq. (9.22) is thus suggested

â = arg min
a?∈RP

Var[Λa?(X)]. (9.25)

Since Eq. (9.25) does not admit a straightforward interpretation, e.g. with regard to the minimization of a
divergence measure, we do not solve that problem directly. Nevertheless, we can monitor Var[Λâ(X)]→ 0 or its
MC sample approximation as a convergence indicator during the solution of Eq. (9.22). The selection of the
maximal polynomial degree can be finally based on this criterion.

9.4 Comparison to SLEs
It is interesting to compare the variational transport formulation of Bayesian inference in this chapter to the

spectral likelihood expansion (SLE) picture promoted in Chapter 8. Both approaches specify the joint posterior
density in a flexible and nonparametric fashion. Of course, the representations of the posterior do actually
feature parameters. Their number is, however, not dependent on a classical underlying probability model with
parametric families of distributions. Instead, a wide range of non-classical densities can be represented, e.g. all
posterior probability densities arising from a likelihood function which is mean-square integrable with respect to
the prior distribution in the case of SLEs.

In this chapter, the posterior has been represented as a transformation of the prior in Eqs. (9.2) and (9.4), i.e.
the prior density composed with the back-transformation times the corresponding Jacobian determinant. Based
on an SLE, the posterior density had been represented in Eqs. (8.39) and (8.41) as the product of the prior
density and a linear combination of multivariate orthogonal polynomials. While the SLE-based posterior density
is immediately evaluable as a function of the unknowns, the evaluation of the transformation-based posterior
density calls for the inverse map and its Jacobian. In the following, these representations based on orthogonal
series expansions and probability density transforms are compared with each other in some more detail.

Both approaches to Bayesian inference are based on orthogonal polynomials, either for the expansion of
probability densities or for the transformation of random variables. This is not imperative but very convenient.
On the one hand, the scalar-valued likelihood in Eq. (8.35) is spectrally expanded in an orthonormal function
space basis in Eqs. (8.36) and (8.37). This allows one to fully capitalize on Hilbert space theory. On the
other hand, orthogonal polynomials provide a sufficiently adjustable representation of the transformation as
the vector-valued function in Eq. (9.17). Properly done, a polynomial chaos expansion of the random vector in
Eq. (9.1) distributed according to the posterior arises.

As for the spectral Bayesian approach, the SLE admits a statistically meaningful interpretation of the
expansion coefficients. They are directly related to characteristics of the posterior distribution such as the
model evidence in Eq. (8.40), the first posterior moments in Eqs. (8.48) to (8.50) and more general quantity
of interest–posterior expectations in Eq. (8.43). Moreover, the posterior marginals emerge as sub-SLEs in
Eqs. (8.45) and (8.47). In transport map inference, the coefficients of the parametrized transformation are also
interpretable, albeit not so conveniently. The fact of the matter is that the model evidence is only accessible
through an approximate lower bound. In order to estimate the first posterior moments one can use the relations
in Eqs. (9.19) and (9.20). Nonetheless, for more general posterior expectation values one has to resort to a
sampling procedure with independent draws. This is a limitation of the transportation approach and yet an
advantage over the SLE method. While SLEs enable the evaluation of the normalized posterior density, they do
not allow one to sample from the posterior distribution, at least not straightforwardly.

In spectral Bayesian inference the posterior is expanded as kind of a perturbation series about the prior as
the reference density. This may require high-order expansion terms in case the posterior is significantly different
from the prior. The baseline density change performed in Eqs. (8.51) and (8.52) clears that obstacle. It allows
one to express the posterior in Eq. (8.55) as a correction to an auxiliary expansion density. In transport map
inference the problem of higher-order terms is alleviated right from the start. That is because random variable
transformations are highly effective in moving from one distribution to a completely different one. As exemplified
through Eqs. (9.5) and (9.7), any arbitrary two Gaussian distributions can be linearly transformed into one
another, no matter what the location and dispersion parameters. Moderately nonlinear maps may suffice for
transporting between more general distributions.

So far we compared how spectral and transformation-based variational Bayesian inference characterize the
posterior density function. Now we proceed with the practical computations. In order to compute an SLE one
has to solve a linear stochastic program of the form as in Eq. (8.29). The linear least squares minimization in
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Eq. (8.31) is a discretized variant of that problem. It has the appealingly simple ordinary least squares solution
in Eq. (8.32). The leave-one-out error in Eq. (8.34) facilitates the selection of the sample size and expansion
order. For the computation of a suitable coupling between the prior and posterior one has to solve the nonlinear
stochastic optimization problem in Eq. (9.12) through the discretization in Eq. (9.22). In principle, this is a
more complex problem than linear least squares. An independent convergence criterion is established by the
variance of Eq. (9.24) under the prior distribution.

While both of the discussed approaches establish novel alternatives to traditional techniques in computational
Bayesian inference, it is remarked that they have their own characteristic flaws. The emergence of negative
values in the approximations of the likelihood function and posterior density surely is a weakness of the SLE
method. A shortcoming of inferential transportation is that the formulation actually presupposes the invertibility
of the candidate maps. However, this is likely violated by the polynomial representation.

9.5 Numerical experiment
Previously we discussed inferential transportation as firstly developed in [1, 2]. Many more interesting ideas

were proposed in the original literature, e.g. the composition of transport maps. As a matter of fact, one does
not need to transform the prior into the posterior in one step, which could possibly require a highly nonlinear
map. Instead, one might construct a sequence of maps that establish an appropriate coupling in a step-by-step
manner, i.e. one would only have to transport between similar interim distributions that progressively evolve
into the target posterior. This lowers the necessary degree of nonlinearity. We do not investigate these ideas
here, but focus on the one-step formulation.

A numerical experiment is conducted in order to demonstrate and study the transformation method. Its
applicability for probabilistic parameter estimation is confirmed and its features and shortcomings are identified.
For these purposes, an inverse heat conduction problem (IHCP) [20, 21] is solved. The setup is similar to
the demonstration example used in the previous chapter. After calling the problem to mind, a numerical
demonstration of transformation-based Bayesian inference is given. Markov chain Monte Carlo (MCMC)
posterior sampling is employed as a reference and benchmarking solution.

9.5.1 Problem setup
We investigate a thermodynamic system with heat conduction in steady state, after a sufficiently long

relaxation time has elapsed. The stationary heat equation ∇ · (κ∇T̃ ) = 0 then governs the macroscopic diffusion
of heat. Let T̃ (r) and κ(r) denote the fields of temperature and thermal conductivity, respectively. They depend
on the spatial coordinates r = (r1, r2)>. Two space dimensions are considered.

A composite material with inclusions is the system under study. An illustration of the system and its
geometry is provided in Fig. 9.2. The “top” of the domain is held at a fixed temperature T̃1, which establishes
a first-type boundary condition. At the “bottom” the heat flux q2 = −κ0 ∂T̃ /∂r2 through the boundary is
prescribed, which imposes a second-type condition. The “left” and “right” hand side are perfectly insulated such
that there is no heat fluxing across the surfaces. In Table 9.1 the numeric values of the physical parameters
including the boundary conditions are listed.

While the thermal conductivity κ0 of the background matrix is considered well-known, the M = 4 conductiv-
ities κ = (κ1, κ2, κ3, κ4)> of the material inclusions are the unknown parameters. Their statistical inference is
the goal of the Bayesian IHCP. A number of N = 16 data points of the temperature ỹ = (T̃ (r1), . . . , T̃ (rN ))> at
the sensor locations (r1, . . . , rN ) is measured and analyzed to that end. The forward modelM : κ 7→ ỹ arises
from solving the boundary value problem corresponding to the partial differential equation for the measurable
temperature as function of the unknowns. Here, the finite element method is used together with an interpolation
of the nodal values to the sensor locations. A polynomial chaos expansion–based surrogate of the forward model
is subsequently used in the Bayesian analysis.

The data y = (T (r1), . . . , T (rN ))> comprise the observations of the temperature field at the measurement
locations. They are thought of as y = T̃ + ε, i.e. as the model predictions T̃ =M(κ) corrupted with noise ε. A
multivariate Gaussian distribution π(ε) = N (ε|0,Σ) with mean 0 and covariance matrix Σ = σ2I represents
the measurement noise. The standard deviation σ quantifies the noise level. It is specified as σ = 0.25 K in
the numerical experiment. This establishes the data model Y |κ ∼ N (y |M(κ), σ2I) and the corresponding
likelihood function L(κ) = N (y |M(κ), σ2I). Herein we use pseudo-data that has been simulated according to
the probability model just described.

We select a multivariate Gaussian prior distribution π(κ) =
∏4
i=1 π(κi) with independent marginals π(κi) =

N (κi |µ0, σ
2
0). The mean and standard deviations are respectively specified as µ0 = 30 W/m/K and σ0 =

5 W/m/K. Even though this prior setup allows for negative thermal conductivities in principle, they are six
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Figure 9.2: Heat conduction setup.

Table 9.1: Numeric parameter values.

κ0 κ1 κ2 κ3 κ4 T̃1 q2
[W/m/K] [K] [W/m2]

15 20 27 33 40 200 2000

standard deviations far away from the mean. The prior probability mass assigned to those unphysical values
is thus negligibly small. After the IHCP setup has been finally completed, for the density of the posterior
distribution one has π(κ|y) = Z−1L(κ)π(κ).

9.5.2 Algorithmic implementation
As already mentioned, many techniques from nonlinear programming [22–24] are now readily available for

computing the posterior distribution by transforming the prior appropriately. We employ a quasi-Newton method
where, in general black-box fashion, the necessary derivatives are smartly calculated by finite-differencing. In
particular, we use the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [25–29], an iterative quasi-Newton
method for unconstrained nonlinear optimization. It is arguably one of the most widespread algorithms for this
type of programming problems.

Several other local and global optimizers were tried out. This involves derivative-free optimization algorithms
such as the Nelder–Mead method and pattern search. Moreover, this includes techniques from evolutionary
computing such as a genetic algorithm, particle swarm optimization and the covariance matrix adaption evolution
strategy. A typology of these diverse approaches eludes the scope of this chapter. The interested reader is
redirected to [30, 31] for comprehensive overviews. As compared to BFGS, the performance of these techniques
turns out to be rather mediocre. Hence, the BFGS algorithm is selected.

Multivariate normalized Hermite polynomials in conjunction with a standardizing parameter transform are
used to build the triangular map. In order to avoid a too complex notation, the linear reparametrization remains
implicit in the discussion of the inferential coupling. The sample average utility function is maximized as in
Eq. (9.22) in a series of preliminary runs, where different values of K in Eq. (9.21) and p in Eq. (9.17) are tested.
Apart from the comparison with the results from MCMC simulation, which hardly establishes a stand-alone
solution, the only criterion at hand for deciding on those parameters is that the variance of Eq. (9.24) should be
minimal as in Eq. (9.25). On this basis, we eventually choose a rather high sample size K = 105 for the SAA
and a very low maximal polynomial degree p = 2. According to Eq. (9.18) we then have to find P = 34 unknown
coefficients a of the transport map TM

a (x).
The BFGS algorithm is initialized at the identity map. It starts from the values a0 for which TM

a0
(x) = x is

the identity map and then, over the course of the optimization, gradually transforms the prior into the posterior.
It is stopped after I = 51 iterations and roughly three hours of program runtime, when the first-order optimality
criterion ‖∇Ĝ(aI)‖∞ ≤ 10−6 is fulfilled. The final estimates of the coefficients that determine the inferential
map TM

â (x) are given as â = aI . We obtain Ĝ(â) = −9.22 and exp(Ĝ(â)) = 9.86× 10−5 for the maximal value
of the utility and its exponential. In Table 9.2 the quantities exp(Ĝ(aι)) and Var[Λaι(X)] are listed for the
intermediate values of the coefficients aι that are obtained after every tenth iteration ι ∈ {0, 1, 10, 20, 30, 40, 50}.
While the evidence-related quantity exp(Ĝ(aι)) is maximized, Var[Λaι(X)] is a separate convergence indicator.
It attains Var[Λâ(X)] = 0.73 in the last iteration.

It is interesting to monitor the convergence of the coefficients over the BFGS iterations. In Fig. 9.3 the
components of the coefficient vector aι are shown for ι = 0, . . . , 50. The constant, linear and quadratic terms
can be distinguished by their color. As it can be seen, the coefficients have almost reached their final values after
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Table 9.2: BFGS optimization.

Iteration no. ι 0 1 10 20 30 40 50

exp(Ĝ(aι)) 4.23× 10−86 1.48× 10−58 3.25× 10−5 9.63× 10−5 9.86× 10−5 9.86× 10−5 9.86× 10−5

Var[Λaι(X)] 2.44× 104 1.08× 104 6.71× 100 8.52× 10−1 7.29× 10−1 7.31× 10−1 7.31× 10−1

about ten to twenty iterations and hardly change thereafter. Accordingly, we could have stopped the algorithm
at this point already. Notice that the constant terms, which establish the posterior mean vector, start from the
prior means and then approach the true values of the unknown thermal conductivities. The remaining coefficients
of the linear and quadratic terms concentrate around lower values. They determine further characteristics of the
posterior distribution such as the variances and correlations.

Figure 9.3: Converging coefficients.

The means and E[κi |y] standard deviations Std[κi |y] = Var[κi |y]1/2 of the posterior distribution for
i = 1, 2, 3, 4 over the first twenty BFGS iterations are listed in Table 9.3. After every second algorithm iteration,
the current values of the optimization parameters are used in the calculation of the two first posterior moments
according to Eqs. (9.19) and (9.20). As it is observed, the expected values of the transformed random variables
evolve from the prior into the posterior means. At the same time, the standard deviations expectedly decrease
from the prior to the posterior level. The final estimates of the discussed posterior characteristics are further
analyzed below.

Table 9.3: Converging moments.

Iteration no. ι 0 2 4 6 8 10 12 14 16 18 20
E[κ1 |y] [W

/m
/K

]

30 24.52 24.93 22.35 20.19 19.49 19.71 19.34 19.35 19.36 19.39
E[κ2 |y] 30 25.61 26.87 26.41 26.51 26.67 26.59 26.61 26.55 26.46 26.38
E[κ3 |y] 30 28.00 29.25 30.68 32.48 33.27 32.99 33.33 33.35 33.35 33.34
E[κ4 |y] 30 29.32 31.13 34.22 37.64 39.15 38.72 39.42 39.64 39.79 39.90

Std[κ1 |y] [W
/m

/K
]

5 3.38 3.05 2.33 1.53 1.23 1.33 1.16 1.11 1.10 1.10
Std[κ2 |y] 5 4.31 2.88 2.60 1.97 1.80 1.82 1.59 1.58 1.57 1.57
Std[κ3 |y] 5 3.65 3.21 2.05 1.17 1.08 1.41 1.44 1.74 1.90 1.89
Std[κ4 |y] 5 3.43 2.93 2.04 1.50 1.38 1.59 1.66 1.94 2.15 2.22

9.5.3 Posterior distribution
After an appropriate random variable transformation has been found, the posterior distribution can be

analyzed in view of its marginals, statistical moments and the like. The most general way of doing so is to
sample the posterior. To that end one draws independent samples from the prior and applies the computed
transformation to each of them individually. Independent samples from the posterior result from this procedure.
They can be subsequently analyzed in order to visualize the posterior marginals or to compute conditional
expectation values.
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For the analysis of the marginal distributions, a prior sample of the size L = 107 is used. The same total
number of samples is also computed by means of MCMC with thirty parallel chains. A comparison of the four
posterior marginals is found in Fig. 9.4. In Fig. 9.4(a) histograms of the obtained MCMC sample are depicted.
Directly besides in Fig. 9.4(b) histograms of the map-based posterior marginals are plotted. As far as one
can tell by visual inspection, the marginals obtained from both methods are nearly identical. Only a minor
deviation shows up in the fourth marginal. This means that the posterior marginals are captured very well with
a low-degree triangular transformation.

(a) MCMC. (b) Mapping.

Figure 9.4: One-dimensional posterior marginals.

We also investigate some of the two-dimensional posterior marginals. A collection of bivariate histograms of
those marginals can be found in Fig. 9.5. The results obtained from MCMC sampling are located on the left
side, the ones from the prior transformation are shown on the right. In Figs. 9.5(a) and 9.5(b) the marginal
π(κ1, κ2 |y) is visualized. Similarly, Figs. 9.5(c) and 9.5(d) contain π(κ2, κ3 |y) while Figs. 9.5(e) and 9.5(f)
show π(κ3, κ4 |y). Transformation-based inference leads to two-dimensional posterior marginals that seem to be
slightly flattened out as compared to their MCMC solutions.

The consideration of the sign of the Jacobian determinant in the course of the BFGS iterations ι = 0, . . . , I
over the prior range provides some interesting insights. We find that the Jacobian det JTM

â
(x(l)) < 0 of the finally

computed map is negative for all prior samples x(l) with l = 1, . . . , L. This indicates that the computed map
TM
â is indeed invertible over large proportions of the input space that are covered well by the prior. One might

think that this justifies Eqs. (9.2) and (9.3), which only hold for invertible maps, in retrospect. However, while
the algorithm is initialized such that the Jacobian det JTM

a0
> 0 is positive in the beginning, it takes on positive

and negative values det JTM
aι

≷ 0 after some intermediary iterations. For such intermediate maps, the Jacobian
determinant has zeros in regions of the parameter space that accumulate most prior mass. This signifies that
these maps cannot be inverted globally.

The transformation and the MCMC results can be also compared by reference to the first posterior moments.
In Table 9.4 the conditional means, standard deviations and linear correlations are summarized in tabular form.
Apart from the correlation coefficients, all results are given in units of [κ] = W/m/K. While the MCMC reference
values are statistical sample approximations, transformation-based inference allows us to calculate the moments
from the coefficients of the transport map through Eqs. (9.19) and (9.20). It is seen that the transportation
manages to characterize the posterior in terms of its first statistical moments. The expected values E[κi |y] are
reproduced satisfactorily for i = 1, . . . , 4. As measured by the standard deviations Std[κi |y] = Var[κi |y]1/2,
the transformed distribution tends to overestimate the spread of the posterior slightly. The correlations
ρ[κi, κj |y] = Cov[κi, κj |y]/Std[κi |y]/Std[κj |y] for i, j = 1, . . . , 4 are captured well. We conclude that, all in all,
the prior has been successfully transformed into the posterior by the low-order transport map.

Lastly we investigate the model evidence Z. It can be estimated by brute-force MC simulation on the one
hand. On the other hand, one may use the relation Z ≥ exp(G(T )) that emerged in the context of Eqs. (9.11)
and (9.12) in order to approximate the model evidence. After maximizing the sample average function in
Eq. (9.21) as described by Eq. (9.22), Z ≈ exp(Ĝ(â)) may serve as a biased estimator of the model evidence. The
convergence of this quantity in the optimization was already monitored in Table 9.2. With the abovementioned
procedures, the model evidence is determined as ZMC = 1.97× 10−5 and ZMap = exp(Ĝ(â)) = 9.86× 10−5. Even
though exp(G(T )) establishes a lower bound of the evidence in theory, exp(Ĝ(â)) practically overestimates the
MC reference solution. Contrary to the estimation of the first posterior moments that works rather well, the
computation of the model evidence in inferential transportation seems to be more problematic.
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(a) MCMC. (b) Mapping.

(c) MCMC. (d) Mapping.

(e) MCMC. (f) Mapping.

Figure 9.5: Two-dimensional posterior marginals.

Table 9.4: Posterior summaries.

E[κ1 |y] E[κ2 |y] E[κ3 |y] E[κ4 |y] Std[κ1 |y] Std[κ2 |y] Std[κ3 |y]
MCMC 19.78 26.36 32.94 39.06 1.11 1.50 1.69
Mapping 19.52 26.18 33.16 40.18 1.12 1.55 1.78

Std[κ4 |y] ρ[κ1, κ2 |y] ρ[κ1, κ3 |y] ρ[κ1, κ4 |y] ρ[κ2, κ3 |y] ρ[κ2, κ4 |y] ρ[κ3, κ4 |y]
MCMC 2.01 −0.38 −0.22 −0.02 −0.03 −0.72 −0.36
Mapping 2.25 −0.39 −0.24 −0.01 −0.01 −0.72 −0.38
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9.6 Summary and conclusion
An approach to Bayesian inference based on transport maps was investigated in this chapter. The prior and

the posterior were coupled based on an appropriate change of variables. Practically this was done by minimizing
the Kullback–Leibler divergence of the back-transformed posterior from the prior. The optimization problem
faced was regularized in the framework of optimal transportation theory. A triangular map with polynomial
components was used to parameterize the sought transformation. The upside of the technique is that it works
in principle and indeed establishes a doable option for probabilistic inference. Due to the lack of fundamental
alternatives to conventional Markov chain Monte Carlo techniques, this is a very strong point that makes further
research attractive and needful.

On the downside, finding an appropriate transformation comes at a high computational price. The optimization
problem posed involves expectations under the prior distribution over the likelihood function. Even though
it was found that low-degree polynomials suffice in order to transform between the prior and the posterior
distribution, a high number of samples from the prior are required for approximating the corresponding utility
function. This imposes an immense number of likelihood evaluations that are necessary for each call to the
utility in every algorithm iteration.

A host of open questions has been given rise to. An in-depth understanding of the optimization problem
and its discretization would support the choice of well-suited optimizers and their algorithmic parameters. It
would be helpful to have a solid criterion assisting in setting the sample size of the Monte Carlo approximation
and the polynomial degree of the triangular map. While the model evidence establishes an upper bound of the
utility function, it cannot serve as a target value for assessing convergence, since we do not actually know it.
This is exacerbated because we obtain an acceptable solution to an approximate problem at most by maximizing
the sample average function. Vice versa, the eventually obtained maximum of the utility function does not
necessarily serve well as an estimator of the log–model evidence. It is biased downwards. As for the Monte Carlo
sample size used in the sample average approximation and also the maximal polynomial degree, we had to rely
on heuristic criteria and checks against the results from a Markov chain Monte Carlo procedure.

Another question that was brought up is how one can enforce invertibility of the transformation. This is
necessary in order to warrant the correctness of the change of variables formula that the optimization objective
builds on. The issue was recklessly but wittingly ignored in the current approach. Moreover, it would be desirable
to restrict the search for transformations to such ones that comply with possibly existing prior constraints and
do not map out of the permissible range.

Beyond detail improvements of the transport map approach, one could envisage the combination with
sampling-based approaches. Markov chain Monte Carlo sampling could be accelerated by transforming a
standard proposal into a non-standard distribution that strongly overlaps with the posterior. Looking at it the
other way around, one could also transform a complex posterior into a simpler target distribution. Indeed there
is ongoing research in these directions [32, 33].
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Chapter 10

Hydrological black-box model
calibration

This chapter deals with the Bayesian calibration of a dynamical urban drainage simulator. The process-based
simulation of water systems is typically expensive and yet highly uncertain [1]. That is why hydrological model
calibration is an extremely important and difficult task. We use a combination of advanced methods in order
to estimate the unknown model parameters and to quantify the measurement and prediction errors. Principal
component analysis is used for purposes of dimension reduction of the model outputs that constitute a whole
times series. The accordingly reduced outputs are then metamodeled as a function of the unknowns based on
sparse polynomial chaos expansions. Eventually the posterior distribution of the unknown parameters of the
hydrological and the error model is sampled via Markov chain Monte Carlo.

The process-oriented hydrological simulator predicts the outflow from a catchment area that receives rainfall.
It has been developed at the Swiss Federal Institute of Aquatic Science and Technology (Eawag), where it was
used in the PhD dissertation of D. Machac [2]. By courtesy of Eawag we have access to the results of roughly two
thousand training runs of the simulator for a single rainfall event. Moreover, about six hundred measurements
of the time-varying runoff at a single outlet during the event were made available. This describes a realistic
black-box situation where the abovementioned hybridization of techniques for compression, metamodeling and
calibration permits a synthesis of the supplied information.

Measurement uncertainties and modeling errors are explicitly considered in two different Bayesian models.
Parametric uncertainties in the hydrological inputs are the main focus of both models. They differ, however,
in the degree of sophistication of how the inevitable deviation of the model predictions from the measurement
data is represented. The first simple model only acknowledges independent measurement noise, while the second
model also accounts for random error correlation and systematic model discrepancy.

The present chapter is organized as follows. A more detailed overview of the problem setup and the available
information is provided in Section 10.1. The construction of the hydrological emulator is described in Section 10.2.
Bayesian parameter estimation and predictive model correction are performed in Section 10.3. Finally it is
summarized and concluded in Section 10.4.

10.1 Problem setup
As elsewhere, in hydrology one distinguishes between physical process-based and purely data-driven modeling

approaches [3–5]. Even if a model is primarily based on physical principles, the parameters and predictions
have to be respectively calibrated and corrected in conjunction with experimental data. This is the goal of
this chapter. The physics-oriented hydrological model under consideration predicts the outflow from an urban
drainage basin in a precipitation event. Dynamical simulations of the runoff are based on a series of rainfall
measurements. Some further model inputs are unknown and shall be calibrated with time series data of the
outflow. Bounds of these unknowns are established and their prior distributions are prescribed. If the model
could be run for arbitrarily chosen values of the inputs, the uncertain parameters could be identified with the
methods previously discussed in this thesis. However, this is not the case, because the model is not available to
us in an executable form.

We only have the results of a limited number of simulator runs that were performed for certain rainfall data
and uniformly varying values of the unknown parameters. In this situation we have to construct an operational
emulator first. The originally performed model runs are fed into a metamodeling procedure for that purpose.
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After a surrogate model is obtained, one can use it in order to “interpolate” between the design points in
continuous fashion. This way the simulator output can be at least computed approximately for arbitrary values
of the unknowns. Subsequently Bayesian inference proceeds as usual.

We start with a brief description of the urban drainage model and the measurement data. More details can be
taken from the fourth chapter of [2]. The storm water management model (SWMM) is a dynamic rainfall-runoff
simulation program for urban areas [6]. It can be used to predict the runoff from a catchment area during and
shortly after a rainfall event. A model of the drainage basin of Adliswil, a municipality in the canton of Zürich
in the northeast of Switzerland, was created with the SWMM. In Fig. 10.1 a map is provided that shows the
surrounding area of the size 5 km × 3 km. The SWMM implementation models about 160 ha of this area, i.e.
approximately ten percent. Roughly speaking, this SWMM implementation uses one hundred sub-catchments
that are linked through five hundred channels.
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Figure 10.1: Adliswil, Switzerland (1:50000). From OpenStreetMap under CC BY-SA 2.0. © OpenStreetMap contributors.

All sub-catchments and interconnections have their own unknown parameters. This amounts to a fairly large
number of unknowns that is reduced by considering spatial averages only, i.e. physical quantities of the same
type are averaged over the sub-catchments or channels. Moreover, the parameter classes are normalized so as to
be dimensionless and to lie in between reasonable bounds. A compilation of the obtained scaled parameters
xi ∈ Dxi for i = 1, . . . , 8 and their bounded domains Dxi = [xi, xi] is presented in Table 10.1 below. The physical
quantities described and their unscaled spatial averages are also provided. While the first seven parameters
relate to the sub-catchments, only the last one characterizes the pipes.

A single 15-hour rainfall event is considered that had occurred on May 28, 2013. Time is denoted as t in
the following. The experiment extends over a period with t/120 s ∈ [0, 600]. Measurements of the varying
rainfall intensity I and the catchment outflow Q are taken in regular intervals of two minutes over the full
duration. For i = 0, . . . , 600 the time instances of the observations are denoted as ti. Both rainfall and outflow
measurements were made at single locations within the drainage basin, e.g. the outflow was measured at the
wastewater treatment plant. In Fig. 10.2 the available data are summarized. The observations of the rainfall
intensity I(ti) are indicated by the black dots in Fig. 10.2(a). Similarly, the recorded outflows Q(ti) at the
sewage treatment plant are shown in Fig. 10.2(b).

Beyond the observational data just described, the results of approximately two thousand runs of the SWMM
simulator are available. These will constitute the training runs for the computation of the surrogate model in the
next section. They were conducted for the given rainfall data shown in Fig. 10.2(a) and uniformly distributed
values of the uncertain hydrological parameters. A hundred trajectories from these computer simulations are
depicted in Fig. 10.2(b). They can be compared to the actually measured runoffs in the same plot.
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Table 10.1: Hydrological model parameters.

xi Dxi Physical parameter Spatial average
x1 [0.5, 1.1] Percentage of the impervious area 36 %
x2 [0.5, 1.5] Characteristic width of the overland flow path 35.7 m
x3 [0.5, 1.5] Slope of the sub-catchments 11.4 %
x4 [0.5, 1.5] Depression storage height of the impervious area 2 mm
x5 [0.5, 1.5] Manning roughness coefficient of the impervious area 0.12 s ·m−1/3

x6 [0.5, 1.5] Depression storage height of the pervious area 2 mm
x7 [0.5, 1.5] Percentage of the impervious area without depression storage 19.04 %
x8 [1.0, 1.5] Manning roughness coefficient of the channels 0.012 s ·m−1/3

The model manages to capture the main trends and characteristics of the data. In the time interval
t/120 s ∈ [150, 200] it seems to slightly underpredict the outflow, though. An even stronger systematic discrepancy
is detected for the time span t/120 s ∈ [250, 500] during which the outflow is overpredicted. It is also noticed
that the model predictions for different values of the uncertain inputs do not differ significantly, i.e. they cannot
be discriminated very well by their ability to trace the data. This is especially obvious in the second half of
the experiment with t/120 s ∈ [300, 600]. Here, the mismatch between the data and the model predictions is
apparently dominated by systematic errors and random noise, rather than by variations of the model inputs.

(a) Rainfall intensity data. (b) Observed and simulated outflow.

Figure 10.2: Experimental data.

10.2 Metamodeling
Dynamic simulators can be emulated in a purely statistics-based manner, e.g. by conditioning a Gaussian

process prior on the experimental design. Mechanism-based approaches try to enhance the emulation through
an appropriate incorporation of the available physical understanding [7–9]. In particular, the solution of a
simplified problem is incorporated into the prior and subsequently corrected so as to emulate the full simulator.
An application of this approach to the Adliswil watershed can be found in [10].

We pursue an alternative strategy. First, the model output dimensionality is reduced through principal
component analysis. Then, sparse polynomial chaos expansions are computed for the main components as
functions of the uncertain inputs. Last, the obtained expansions are combined in order to obtain a surrogate
model for the full time series of the outflow.

10.2.1 Computational model
The SWMM implementation of the catchment predicts a complete time series of the outflow at the wastewater

treatment plant throughout the precipitation event. Provided that one inputs the rainfall intensity over the
duration of the experiment, the model only acts as a function of the uncertain input parameters listed in
Table 10.1. We gather the unknown model input parameters in a vector x = (x1, . . . , xM )> with M = 8.
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Similarly we proceed for the rainfall data d = (d0, . . . , dN )> with N = 600. For i = 0, . . . , N we have introduced
di = I(ti) for the observed rainfall intensities at the measurement time instances ti.

The numerical model predicts the vector ỹ = (ỹ0, . . . , ỹN )> whose entries are the outflows ỹi = Q̃(ti) at the
times ti. All in all, ỹ =M(x,d) reflects the structure of the hydrological simulations. Since we only consider a
single precipitation event and disregard errors in the rainfall data, we absorb the dependence on the rainfall into
the definition of the forward modelMd by

ỹ =Md(x). (10.1)

We now switch to a probabilistic formulation, where the inputs are assumed to be independent and [xi, xi]-
valued random variables Xi with uniform distributions Xi ∼ U(xi |xi, xi) for i = 1, . . . ,M . The random vector
X = (X1, . . . , XM )> is then distributed according to

X ∼
M∏
i=1
U(xi |xi, xi). (10.2)

This distribution represents some kind of input uncertainty. When the model Md is applied to the random
inputs X, the output uncertainty is described by the RN+1-valued random response vector

Ỹ =Md(X). (10.3)

As already mentioned before, the original implementation of this simulator is only available to us through
K = 2048 training runs in total. We cannot execute it for arbitrary values of the inputs. Yet we have access
to realizations x(k) of the input variables in Eq. (10.2) for k = 1, . . . ,K and the corresponding realizations
ỹ(k) =Md(x(k)) of Eq. (10.3). The inputs were obtained by Latin hypercube sampling [11] in two chunks of
1024 samples each. Altogether they constitute the experimental design X = (x(1), . . . ,x(K)). Moreover, the
responses are collected into the data matrix

Y =


ỹ(1)>

ỹ(2)>

...
ỹ(K)>

 =


ỹ

(1)
0 ỹ

(1)
1 . . . ỹ

(1)
N

ỹ
(2)
0 ỹ

(2)
1 . . . ỹ

(2)
N

...
...

. . .
...

ỹ
(K)
0 ỹ

(K)
1 . . . ỹ

(K)
N

 . (10.4)

With that said, we have to embrace a black-box perspective on the present problem. The information
contained in the training runs is used in the computation of a surrogate simulator, i.e. a metamodeling problem
with M = 8 inputs, N + 1 = 601 outputs and K = 2048 training runs is posed. The problem is solved with a
multivariate extension of the polynomial chaos–based methods described in Sections 2.3 and 2.4.

10.2.2 Principal components
Note that a preliminary discussion of the multivariate case was already provided in Section 2.5. The

coordinates of the model output with respect to a certain reference system, e.g. the canonical basis, can be
considered individually. In our case, this would require to handle about six hundred different metamodels at
the same time. That is inconvenient and involves a high degree of redundancy, i.e. the simulation outputs at
contiguous times are highly correlated.

To find a remedy one can choose a basis that is qualified for purposes of dimension reduction and data
compression. Here we use principal component analysis (PCA) [12–14] to that end. While this technique is
mainly used for compressing big real-word data sets with many features, it can be similarly used for reducing
the model output in the context of computer simulations [15, 16]. We start by discussing the population PCA
for a random vector, which is just the discrete variant of the Karhunen–Loève (KL) expansion of a stochastic
process [17]. Afterwards the empirical sample PCA is recalled.

Consider the random vector Ỹ with mean µỸ = E[Ỹ ] and covariance matrix ΣỸ = Cov[Ỹ ] = E[(Ỹ −
µỸ )(Ỹ − µỸ )>]. Since ΣỸ is symmetric and positive definite, one can find linearly independent eigenvectors
φi with positive eigenvalues λi > 0 for i = 0, . . . , N . The characteristic vectors and values satisfy

ΣỸ φi = λiφi. (10.5)

Eigenvectors corresponding to distinct eigenvalues are orthogonal anyway, while they can be always chosen as such
for degenerate eigenvalues. We assume that the eigenvalues are arranged in decreasing order λ0 ≥ λ1 ≥ . . . ≥ λN
and that eigenvectors are normalized such that φ>i φj = δij for i, j = 0, . . . , N . Leaving degeneracy aside, this
way the eigenvectors are uniquely defined up to a multiplication by −1.
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The set of eigenvectors constitutes an orthonormal basis of RN+1 = span({φi}Ni=0). One can define the
orthogonal matrix Φ = (φ0,φ1, . . . ,φN ) with Φ>Φ = ΦΦ> = I. It diagonalizes the covariance matrix by

Φ>ΣỸ Φ = Λ =


λ0 0 . . . 0
0 λ1 . . . 0
...

...
. . .

...
0 0 . . . λN

 . (10.6)

Vice versa, one obtains the spectral eigendecomposition of the covariance matrix ΣỸ = ΦΛΦ> =
∑N
i=0 λiφiφ

>
i .

Now consider the orthogonal transformation
Z̃ = Φ>(Ỹ − µỸ ). (10.7)

The linearly transformed random vector has mean zero E[Z̃] = 0 and the diagonal covariance matrix Cov[Z̃] =
E[Z̃Z̃>] = Λ, i.e. it has been centered and decorrelated. Independence is not necessarily implied thereby, though,
the special case involving Gaussianity forms an exception. The back-transformation reads

Ỹ = µỸ + ΦZ̃ = µỸ +
N∑
i=0

Z̃iφi. (10.8)

This is the discrete KL expansion of the random vector Ỹ . The random variables Z̃i = φ>i (Ỹ − µỸ ) for
i = 0, . . . , N are called the principal components.

Define the total variance of Ỹ as the sum
∑N
i=0 Var[Ỹi] of the individual variances of Ỹi. The orthogonal

transformation preserves the total variance in the sense that
N∑
i=0

Var[Ỹi] = tr(ΣỸ ) = tr(Λ) =
N∑
i=0

Var[Z̃i] =
N∑
i=0

λi. (10.9)

This follows from the invariance of the trace under cyclic permutations. The KL expansion is optimal with
respect to compaction of the total variance. Consider keeping only the first N ′ + 1 ≤ N + 1 terms in

Ỹ ≈ µỸ +
N ′∑
i=0

Z̃iφi. (10.10)

This is the expansion that contains most of the total variance with N ′ + 1 terms. The number of terms is often
chosen such that at least a predetermined fraction

∑N ′

i=0 λi/
∑N
i=0 λi of the total variance is explained.

The sample PCA functions in exactly the same way for independent realizations as the population PCA does
for random vectors. Instead of the exact mean µỸ = E[Ỹ ] and covariance matrix ΣỸ = Cov[Ỹ ], one considers
their empirical estimates for the sample Y = (ỹ(1), . . . , ỹ(K))> of realizations from Ỹ . They are given as

µỸ = 1
K

K∑
k=1

ỹ(k), ΣỸ = 1
K − 1

K∑
k=1

(ỹ(k) − µỸ )(ỹ(k) − µỸ )>. (10.11)

For i = 0, . . . , N the eigenvectors φi and eigenvalues λi of the empirical covariance fulfill ΣỸ φi = λiφi. The
eigenvalues are arranged in the descending order λ0 ≥ λ1 ≥ . . . ≥ λN .

Then one finds the smallest N ′ ≤ N for which the proportion
∑N ′

i=0 λi/
∑N
i=0 λi of the total empirical variance

is larger or at least equal than a prespecified threshold. The matrix ΦN ′ = (φ0,φ1, . . . ,φN ′) is composed and
for k = 1, . . . ,K one defines

z̃(k) = Φ>N ′(ỹ(k) − µỸ ). (10.12)

This is the reduced PCA representation of ỹ(k) in terms of the empirical principal components z̃(k)
i = φ

>
i (ỹ(k) −

µỸ ) for i = 0, . . . , N ′. The data set is compressed while retaining most of the total variation by

Z =


z̃(1)>

z̃(2)>

...
z̃(K)>

 =


z̃

(1)
0 z̃

(1)
1 . . . z̃

(1)
N ′

z̃
(2)
0 z̃

(2)
1 . . . z̃

(2)
N ′

...
...

. . .
...

z̃
(K)
0 z̃

(K)
1 . . . z̃

(K)
N ′

 . (10.13)

The compression of the data is still lossy, but one can reconstruct the originally observed samples for k = 1, . . . ,K
approximately as

ỹ(k) ≈ µỸ + ΦN ′ z̃
(k) = µỸ +

N ′∑
i=0

z̃
(k)
i φi. (10.14)
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10.2.3 Sparse expansion
Now we perform PCA to our sample of SWMM simulator responses Y = (ỹ(1), . . . , ỹ(K))>. Using N ′ + 1 = 9

principal components captures 99 % of the total variance of the signal. Hundred realizations contained in the
compressed data set Z = (z̃(1), . . . , z̃(K))> are visualized in the parallel coordinate plot in Fig. 10.3. These
are the empirical principal components of the sample of training runs that were already shown in Fig. 10.2(b).
It can be seen that the main components are centered around zero and ordered according to their individual
contribution to the total variance.

With the underlying experimental design X and the reduced output data Z, PCEs of the population
principal components z̃i(X) are computed separately for i = 0, . . . , N ′. Normalized multivariate Legendre
polynomials {Ψα(X)}α∈Ap in the random inputs constitute the expansion basis for all PCEs. The total degree
‖α‖1 =

∑M
i=1|αi| ≤ p is limited to at most p = 10. Only terms with α ∈ Ap =

{
β ∈ NM : ‖β‖1 ≤ p

}
are then

kept in the PCEs
z̃i(X) ≈

∑
α∈Ap

âi,αΨα(X). (10.15)

We use least angle regression (LAR) [18, 19] in order to compute the coefficients {âi,α}α∈Ap for each
expansion with i = 0, . . . , N ′. LAR is a powerful technique that promotes sparsity in the PCE coefficient vectors.
Regressors are penalized such a way that only the most dominant ones are retained in the expansion. This
allows us to mitigate the curse of dimensionality discussed in Section 2.6 to some degree. The algorithm has
been proven very efficient in the context of metamodeling based on polynomial chaos [20]. We use our own
inhouse implementation of LAR [21].

Cross validation is used to assess the generalization performance of the sparse PCEs. The normalized
leave-one-out errors for expansions with K = 1024 and K = 2048 are reported in Table 10.2. As expected, the
PCE with the richer experimental design generalizes better than the one with the poorer design for which the error
is approximately twice as high. One can observe the general trend that the accuracy of the approximation decays
with the order of the principal components. As it turns out, the hydrological model is indeed approximately
sparse in the polynomial basis used. Only a small fraction of the total number of regressors is retained in each of
the nine expansions.

Table 10.2: Normalized leave-one-out errors.

K z̃0 z̃1 z̃2 z̃3 z̃4 z̃5 z̃6 z̃7 z̃8

1024 2.58× 10−5 1.42× 10−4 3.94× 10−4 2.22× 10−4 3.37× 10−3 2.70× 10−3 7.35× 10−3 7.37× 10−3 1.11× 10−2

2048 1.49× 10−5 6.87× 10−5 1.73× 10−4 1.06× 10−4 1.41× 10−3 1.23× 10−3 2.56× 10−3 2.97× 10−3 3.16× 10−3

After the computation of a PCE for each principal component in z̃(X) = (z̃0(X), . . . , z̃N ′(X))>, the random
vector containing the model outputs is approximately represented as

Ỹ ≈ M̂p(X) = µỸ +
N ′∑
i=0

z̃i(X)φi. (10.16)

This expansion is henceforth used as a metamodel of the model output ỹ ≈ M̂p(x) = µỸ +
∑N ′

i=0 z̃i(x)φi at
arbitrary input values x ∈ Dx. This is justified due to the mean-square convergence of the underlying PCEs. In
Fig. 10.4 the simulated and emulated outflows are shown for three different input values in the experimental
design. It is ascertained that the obtained metamodel is sufficiently accurate for parameter calibration purposes.

10.3 Bayesian calibration
We now turn towards model calibration. The goal is to infer the unknown hydrological parameters with

the available outflow data. Two different Bayesian models are employed in order to account for the high level
of uncertainty and error in hydrological model predictions [22, 23]. According to the first simple model, the
hydrological parameters and the measurement uncertainty are unknown. The formulation is the nonlinear
generalization of the inverse modeling with an unknown noise level that was discussed in Section 3.6.2. In
addition to that, a second model is devised that considers also error correlation and model discrepancy as a
function of time. The main behavior of the outflow is captured by the model, while a simple trend function
accounts for the discrepancy. This more advanced representation of simulator discrepancy was already highlighted
in Section 3.6.3.

194



Hydrological black-box model calibration

Figure 10.3: Principal component analysis. Figure 10.4: Final metamodel predictions.

The measurement data y = (y0, . . . , y600)> comprise the observations of the outflow yi = Q(ti) for i =
0, . . . , 600. They are represented as responses ỹ =Md(x) of the forward model in Eq. (10.1) contaminated by
random measurement noise and systematic model discrepancy. The unknown parameters of the forward and the
error model can then be identified in a statistical data analysis.

10.3.1 Independent random errors
A first simple model takes only random measurement errors into account. They are assumed to act additively

and independently on the forward model predictions. Thus the measured data are represented as

y =Md(x) + ε. (10.17)

Here, ε is a realization of a random vector with a Gaussian distribution π(ε|σ) = N (ε|0, σ2I), where the noise
level σ > 0 is unknown. Consequently the following statistical model arises

π1(y |x, σ) = N (y |Md(x), σ2I). (10.18)

The likelihood function is simply L1(x, σ) = N (y |Md(x), σ2I). Instead of merely maximizing the likelihood, a
fully Bayesian approach is pursued. For any given prior distribution π1(x, σ), the corresponding posterior is

π1(x, σ |y) ∝ L1(x, σ)π1(x, σ). (10.19)

In order to complete the setup, we specify a joint prior of the unknowns with the product structure
π1(x, σ) = π1(x)π1(σ) and π1(x) = π1(x1) . . . π1(x8). The priors for the hydrological parameters xi ∈ [xi, xi]
are normal distributions π1(xi) = N (xi |µxi , σ2

xi , xi, xi) truncated at the respective parameter bounds xi and
xi. Before the truncation, the distributions are centered around the midpoint µxi = (xi + xi)/2 and their
standard deviations σi = (xi − xi)/6 are set to the sixth part of the admissible range. Note that the prior for
the hydrological parameters is different from the uniform distribution that the experimental design was sampled
from. A uniform distribution π1(σ) = U(σ |σ, σ) with σ = 0× l/s and σ = 100× l/s is selected as the prior for
the unknown noise level σ. The lower bound emerges naturally, whereas the upper bound is chosen so that it is
highly probable that the true or best value is really contained in the supported interval.

10.3.2 Systematic model discrepancy
The second model is more sophisticated in that it also acknowledges other sources of uncertainty and error. In

particular, model discrepancy and random error correlation are captured. We start the discussion by representing
the measurement data as

y =Md(x) + δ(b) + ε. (10.20)

This is the sum of the model response Md(x) at the true x and two other terms that allow for a refined
treatment of discrepancy and noise. The systematic modeling errors are absorbed into the term δ(b), whereas ε
captures the noise. We assume that the discrepancy is an unknown function of time that can be sufficiently well
represented as

δ(b, t) =
p∑

α=0
bαΨα(t). (10.21)
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Here, {Ψα(t)}pα=0 is a function basis with P = p + 1 elements and b = (b0, . . . , bp)> denotes the unknown
coefficients. The values δi(b) = δ(b, ti) of the discrepancy function at the measurement instances ti for
i = 0, . . . , 600 generate the discrepancy vector δ(b) = (δ0(b), . . . , δ600(b))>.

The term ε is a realization of a random vector following a multivariate Gaussian distribution π(ε|σ, τ) =
N (ε|0,Σ(σ, τ)) with an unknown covariance matrix Σ(σ, τ). For i, j = 0, . . . , 600 the entries of the covariance
matrix are represented as

Σi,j(σ, τ) = σ2 exp
(
−|ti − tj |

τ

)
. (10.22)

As before, the standard deviation σ determines the noise level. The additionally introduced correlation length τ
establishes a characteristic time scale of the error correlation. Both parameters σ and τ describing the covariance
structure of the error process are unknown. In total, we have established the probabilistic data model

π2(y |x, b, σ, τ) = N (y |Md(x) + δ(b),Σ(σ, τ)). (10.23)

The likelihood function L2(x, b, σ, τ) = N (y |Md(x) + δ(b),Σ(σ, τ)) arises as a result. If one has a joint prior
π2(x, b, σ, τ), one obtains the posterior distribution by

π2(x, b, σ, τ |y) ∝ L2(x, b, σ, τ)π2(x, b, σ, τ). (10.24)

Some prior specifications are now overdue. We impose a joint prior distribution with the block-wise
independence structure π2(x, b, σ, τ) = π2(x)π2(b)π2(σ)π2(τ). While the priors π2(x) = π1(x) and π2(σ) = π1(σ)
are not altered, we only have to set π2(b) and π2(τ). The latter is chosen as π2(τ) = U(τ |τ , τ) with the lower
bound τ = 0× 120 s and a conservatively high upper bound τ = 100× 120 s.

We believe that the discrepancy δ(b, t) is a rather smooth function of time. It is thus expanded in terms
of the first normalized Legendre polynomials {Ψα(t)}pα=0 up to rather low degree p = 5. In fact there is
no need to be picky while choosing the polynomial family here. Since the expansion coefficients b are mere
tuning parameters which do not correspond to physically interpretable quantities, the specification of the prior
π2(b) = π2(b0) . . . π2(b5) is a bit delicate. We opt for Laplace distributions π2(bi) = Laplace(bi |µxi , sxi) =
(2sxi)−1 exp(−|bi − µxi |/sxi) for all i = 0, . . . , 5. They peak at the mean µxi = 0 and have the scale parameter
sxi = 10 which leads to a standard deviation σxi = sxi

√
2 ≈ 15.

The double-exponential density Laplace(bi |µxi , sxi) decays exponentially with the absolute difference from
the mean, whereas the bell-shaped density N (bi |µxi , σ2

xi) = (2πσ2
xi)
−1/2 exp(−(bi − µxi)2/(2σ2

xi)) dies down
with the squared difference. Accordingly, the Laplace distribution has a spikier peak and fatter tails than the
Gaussian at the same time. Both sparsity of the coefficient vector and robustness with respect to the prior
choice are promoted that way. While sparsity is not our main concern at this point, robustness can be indeed
adduced as an argument for the Laplace prior. The specification of the scale parameter, however, remains more
or less arbitrary after all.

10.3.3 Posterior distributions
Now we perform fully Bayesian analyses by computing the two posterior distributions π1(x, σ |y) and

π2(x, b, σ, τ |y) by means of MCMC sampling. The obtained surrogate model M̂p(x) is used in place of the
original simulator Md(x) throughout the analyses. A random walk Metropolis algorithm with a Gaussian
proposal distribution is deployed. Thirty parallel chains with 106 MCMC iterations are run for both Bayesian
models. For the first model the parameters (x, σ) are updated altogether, while for the second model x and
(σ, τ, b) are updated in two separate blocks. Roughly speaking, the posterior computations take half a day for the
simple and about a week for the more complex model. The non-diagonal covariance matrix and the block-wise
MCMC updates for the second model are responsible for the runtime difference.

First of all, we discuss the posterior marginals of the uncertain hydrological parameters x. For i = 1, . . . , 8
the marginals π1(xi |y) and π2(xi |y) of both Bayesian models are shown in Fig. 10.5. Some marginals of the
simple model feature posterior modes close to their bounds, i.e. see Figs. 10.5(a), 10.5(c) and 10.5(d) where
the posteriors of x1, x3 and x4 are depicted. Other marginals peak directly at the parameter bounds, i.e. the
marginals of x2, x5 and x6 in Figs. 10.5(b), 10.5(e) and 10.5(f), respectively. The posterior of x7 in Fig. 10.5(g)
is hardly different from the prior. A more complex structure is found in the marginal of x8 that is shown in
Fig. 10.5(h). It has two modes, one of which peaks at the lower parameter bound.

As compared to the simple model, the marginal posteriors of the second model with the discrepancy term
are generally flattened out and shifted towards the prior means. Neither of the two models give clear evidence
about the hydrological parameters. Relatively little information is gained through the Bayesian update. In a
way, that the posteriors peak at the bounds even suggests that the problem is mis-specified.
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(a) Model parameter x1. (b) Model parameter x2.

(c) Model parameter x3. (d) Model parameter x4.

(e) Model parameter x5. (f) Model parameter x6.

(g) Model parameter x7. (h) Model parameter x8.

Figure 10.5: Posterior marginals for the hydrological model.
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The posterior marginals of the parameters describing the random error model are shown in Fig. 10.6. As it
can be seen from Fig. 10.6(a), the marginal π1(σ |y) suggests a higher value of the standard deviation σ than the
marginal π2(σ |y). The reason is that according to the first model all errors are attributed to independent noise
only. In the second model, those errors are also captured by the error correlation and model discrepancy. The
marginal π2(τ |y) of the correlation length τ is plotted in Fig. 10.6(b). It concentrates around a surprisingly low
value. We speculate that the introduction and estimation of the discrepancy term effectively decorrelates the
remaining sources of random error, which would explain this observation. In Fig. 10.6(c) all marginals π2(bi |y)
of the coefficients bi with i = 0, . . . , 5 are shown. Their actual units are discarded for the sake of simplicity. It is
interesting to note that the parameters b of the discrepancy function are estimated quite clearly. Especially the
constant and the linear term with their coefficients b0 and b1 have pronounced posterior shapes.

(a) Noise level σ. (b) Correlation length τ .

(c) Discrepancy coefficients bi.

Figure 10.6: Posterior marginals for the error model.

Some summaries of the posterior distributions π1(x, σ |y) and π2(x, b, σ, τ |y) are compiled in Table 10.3.
These are point estimates of the unknown parameters, e.g. the posterior mean vectors (x̂, σ̂) = E[x, σ |y] and
(x̂, b̂, σ̂, τ̂) = E[x, b, σ, τ |y]. Quantities whose dimension does not equal one are expressed in comparison to
the units that were previously adopted. Posteriors that peak at the prior bounds are not summarized well
by their mean values only. Therefore the modes (x̂, σ̂)MAP = arg maxx,σ π1(x, σ |y) and (x̂, b̂, σ̂, τ̂)MAP =
arg maxx,b,σ,τ π2(x, b, σ, τ |y) of the joint posterior densities are shown, too. They have been obtained through
maximizing the logarithms of the unnormalized posterior densities, i.e. the log–likelihood function plus the
log–prior density. Note that the individual components of the joint posterior density mode do not have to
coincide with the maxima of the marginal densities.

Table 10.3: Posterior summaries.

x̂1 x̂2 x̂3 x̂4 x̂5 x̂6 x̂7 x̂8 σ̂ τ̂ b̂0 b̂1 b̂2 b̂3 b̂4 b̂5

π1(·|y) Mean 1.05 0.54 0.63 0.62 0.59 1.48 1.04 1.09 33.63 - - - - - - -
Mode 1.06 0.50 0.55 0.62 0.50 1.49 0.99 1.00 33.04 - - - - - - -

π2(·|y) Mean 0.79 0.56 0.70 0.85 0.84 1.18 1.02 1.13 22.78 2.53 −10.63 −17.97 16.33 47.05 −8.38 −44.31
Mode 0.71 0.50 0.50 0.71 0.59 0.91 1.01 1.03 19.95 1.80 −13.33 −20.25 19.39 46.70 −10.25 −42.72
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After having explored the posterior distribution, one can check the obtained results for consistency by
comparing an ensemble of prior and posterior predictions with the data. We start by comparing the posterior
π1(x, σ |y) of the first model with the correspondent prior π1(x, σ) in this regard. See Fig. 10.7 for that purpose.
In Fig. 10.7(a) the forecasts of the outflow are shown for one hundred input values that were randomly sampled
from the prior. Likewise Fig. 10.7(b) shows the predictions for the same number of posterior samples that were
obtained from the MCMC chains by an appropriate thinning. Moreover, the time trajectory for the posterior
mode is highlighted. The measurement uncertainty is not accounted for in those figures. As it can be seen, the
prediction ensemble for the prior contains more uncertainty than for the posterior.

The adjustment of the model parameters associated with the Bayesian update does not significantly reduce
the systematic discrepancy between the simulated and the measured outflows from the drainage basin. The
underlying reason is that varying the input parameters of the hydrological simulator and the level of independent
noise does not allow for establishing full consistency between the simulations and the observations, especially
in the second half of the covered time interval. This was already clear after the discussion of Fig. 10.2(b) and
actually led to the inclusion of a correlation and discrepancy term in the second model.

(a) Prior predictions. (b) Posterior predictions.

Figure 10.7: Stochastic model predictions.

We now investigate how well the posterior mode of π2(x, b, σ, τ |y) aligns with the data. The mode estimate
of the discrepancy function δ̂(t) = δ(b̂, t) is plotted in Fig. 10.8. It indicates a trend that the model underpredicts
the actual rainfall in roughly the interval t/120 s ∈ [100, 250] and overpredicts in t/120 s ∈ [250, 500]. These
mis-predictions occur more or less for the period t/120 s ∈ [100, 450] of the precipitation event that was shown in
Fig. 10.2(a). At the boundaries, say for t/120 s ∈ [0, 100] and t/120 s ∈ [500, 600], the discrepancy vanishes as
far as the low-degree polynomial representation admits. The accordingly corrected predictions M̂p(x̂) + δ̂ are
depicted in Fig. 10.9. They align with the data reasonably well. One, two and three σ̂ prediction intervals are
added so as to visualize the posterior mode prediction uncertainty. Due to the additive and symmetric error
model, the intervals extend to negative outflow values. Since these values are physically nonsensical, they shall
be ignored.

Figure 10.8: Model discrepancy. Figure 10.9: Corrected predictions.
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10.4 Discussion and conclusion
Probabilistic calibration of a hydrological urban drainage simulator was accomplished in this chapter. A

combination of techniques for Bayesian and surrogate modeling was deployed for that purpose. The original
training runs of the simulator were statistically compressed and subsequently translated into a functional
emulator. Inference was then based on the exploration of the posterior distributions related to two different
Bayesian models through Markov chain Monte Carlo.

The two models differ in their ability to capture measurement and modeling uncertainties. With the first
model, that only acknowledges independently varying errors, the hydrological parameters were calibrated. With
the second Bayesian model, that also includes random error correlation and systematic model discrepancy, we
could additionally quantify the mismatch between the model predictions and the data throughout the rainfall
event. This was, however, accompanied by a lack of interpretability with regard to the corresponding estimates
of the hydrological parameters.

This last observation was already foreshadowed in the very setup of the problem. While the catchment
area has multiple outlets, only a single one at the wastewater treatment plant was considered for parameter
calibration purposes. A coarse-grained parametrization of the unknowns based on crude averages over hundreds
of sub-catchments and channels was used. Moreover, the whole procedure was dependent on a single precipitation
event for which the rainfall record was taken as if it were measured without error. In this context one also has
to mention that the predictions of the forward model were highly uncertain and only weakly sensitive to the
calibration parameters.

The preceding discussion suggests a number of possible extensions and future improvements that would allow
for more complex and realistic modeling. A more refined representation of the uncertain hydrological parameters
could be based on a finer graining of the spatial resolution. Sparse polynomial chaos expansions and advanced
stochastic sampling schemes would allow one to cope with the associated increase in dimensionality. Errors and
uncertainties in the rainfall input data could be considered by treating and inferring the rainfall as additional
unknowns. If the data for various different precipitation events were available, a more thorough representation
and management of the encountered uncertainties could be based on hierarchical Bayesian modeling as developed
in Chapters 4 and 5.
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Chapter 11

Conclusion

After the reading it is now time to retrospect and recapitulate. The starting points of this dissertation were
two quite broad research questions. First of all, how can we cope with both epistemic uncertainty and aleatory
variability in Bayesian inverse problems? Second of all, how can we overcome the limitations of sampling-based
methods for computing the posterior probability distribution? The provided answers and some of the ensuing
issues are summarized and discussed in these concluding remarks.

11.1 Hierarchical modeling
In reply to the first guiding research question, a hierarchical formulation and integrative solution of Bayesian

inverse problems under uncertainty and variability was presented in Chapter 4. It allows one to perform
uncertainty quantification and data analysis in complex experimental situations, where a forward model predicts
the observable quantities, but the inputs are uncertain or variable. Different types of forward model inputs were
distinguished in this respect. There are global model parameters that are constant throughout and unknown.
Further unknowns are variable quantities that take on different values during the experimentation. Their
distributions are determined by hyperparameters that are often unknown, or else, they are already well-known
or even controllable. The epistemic uncertainty of the global parameters can be reduced within the developed
multilevel framework and one can infer the population distributions of the variable quantities. An optimal
combination of the information available from models, experiments and experts is achieved that way. On this
basis, various aspects of ensemble heterogeneity and temporal or spatial variation can be studied.

Since Bayesian inverse problems in the presence of uncertainties are often strongly simplified and their
solutions are occasionally misunderstood, it is believed that this work is of high relevance and value. Variable
quantities are indeed often mistreated as constants in current practice and a popular fallacy is to misinterpret
subjective Bayesian measures of uncertainty, especially posterior probabilities, as objective frequencies. The
hierarchical framework establishes a solid foundation for inverse problems under uncertainty and thereby clarifies
these matters. Its potency and flexibility were demonstrated in a number of realistic engineering applications. It
will continue to be used in the future.

11.2 Hamiltonian Monte Carlo
As it was discussed, Bayesian inversion in the presence of multiple sources and types of uncertainty poses

considerable computational challenges. The high-dimensionality of the parameter space causes difficulties for
traditional Markov chain Monte Carlo sampling techniques, while a lower-dimensional but yet mostly equivalent
reformulation calls for costly evaluations of an integrated likelihood function instead. Hamiltonian Monte Carlo
was proposed as an efficient sampling algorithm in Chapter 5. This is a gradient-driven sampler with ancillary
parameters which is inspired by systems from classical physics. Here the posterior is explored through a point
mass moving in a potential well that is proportional to minus its log-density. It was shown that this updating
scheme is ideally suited for the high-dimensional spaces arising in hierarchical inverse problems. The posterior
was sampled almost independently and a simple Metropolis–Hastings algorithm was easily outperformed.

Future research efforts will involve the employment of polynomial chaos expansions in hierarchical models.
After the specification of an appropriate weight function for the model input parameters and the assignment of
the associated orthogonal polynomials as basis functions, accordingly constructed metamodels will accelerate the
computations. In conjunction with Hamiltonian Monte Carlo sampling, they could also assist in finding the
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necessary derivatives of the forward model and the posterior log-density, which would offer an alternative to
adjoint modeling, automatic differentiation and finite differencing. This idea is actually not limited to hierarchical
models only, it can be used in non-hierarchical problems just as well. In turn, this raises the question of how
accurate the derivatives of a polynomial approximation of the forward model are.

11.3 Realistic applications
The developed multilevel framework was used for solving the identification problem of the NASA Langley

challenge in Chapter 6. Here the goal was to calibrate an unmanned aircraft model subjected to adverse
conditions such as structural damage or component failure. A physical model, experimental data and statistical
information regarding the uncertainty and variability of the relevant quantities were provided by the challenge
organizers. This was translated into a Bayesian hierarchical model whose parameters are related to aerodynamic
conditions and the loss of control effectiveness. An oddity of the challenge consisted in the fact that the forward
model is perfect in the sense that the data are noise-free. As a consequence, the likelihood function had to be
constructed as the solution to a subsidiary uncertainty propagation problem. The latter could be addressed
by Monte Carlo simulation and kernel density estimation, which was accompanied by a deformation of the
corresponding posterior distribution. Even though it was tried to investigate and moderate this undesirable side
effect based on heuristic checks and partial data augmentation, the rigorous analysis of the induced posterior
approximations remains an important issue for the future.

Hierarchical Bayesian modeling was also employed for assessing masonry wall compressive strengths in
Chapter 7. The most important property of structural masonry is the compressive strength perpendicular to the
bed joints. Statistically predicting this key characteristic of masonry walls based on tests of brick units and
mortar samples, that belong to the same population used in the construction of the wall, was the objective
of this study. Previous efforts in that direction fail in providing satisfactory predictions and quantifying the
inevitable uncertainties. A probabilistic model based on lognormal distributions with unknown hyperparameters
was constructed. It was trained with full-scale tests of masonry walls and tests of the corresponding brick and
mortar ensembles, that were executed by Dr. Nebojsa Mojsilovic at the Institute of Structural Engineering of
ETH Zürich. The statistically predictive relationship that was obtained hereby could be validated by applying it
to an independent test set. Its performance proved to be superior to previous attempts, which in the future,
when more data will become available and more complex models can be created and calibrated, is even expected
to improve. Adaptations of the approach taken will be useful for the investigation of many kinds of composite
systems that are constructed of similar elements from certain populations.

Another application of Bayesian inference to a real-world engineering problem was considered in Chapter 10.
The ambition was to calibrate a dynamic urban drainage simulator, not under parametric variability, but in the
presence of various forms of modeling errors. Experimental data, runs of the hydrological simulator and a prior
distribution were made available to that end by the Swiss Federal Institute of Aquatic Science and Technology.
A difficulty was that the forward model was not provided in an executable form, such that it could not be run
for arbitrary input values. Therefore, a response surface was fitted to the training runs at hand. This was done
by reducing the large number of time-variant response variables by means of principal component analysis and
metamodeling the lower number of principal components with sparse polynomial chaos expansions. In order to
account for correlated random errors and systematic model discrepancy, sophisticated statistical models had
to be deployed. The whole chain of analyses made model corrections possible and resulted in well-calibrated
predictions. Beyond the hydrological case study performed, the proposed combination of methods will generally
facilitate to deal with legacy code and data.

11.4 Novel methods
A novel method for computing the posterior distribution by means of spectral likelihood expansions was

developed in Chapter 8. Spectral Bayesian inference tries to beat the convergence rate of Monte Carlo approaches,
where samples are treated and processed locally, by exploiting global structures of the problem and regularity
properties of the likelihood function, in particular its smoothness as measured by its differentiability. Based
on an expansion of the likelihood in terms of polynomials that are orthogonal with respect to the prior weight,
an orthogonal series representation of the joint posterior density was derived. The nonparametric expression
was interpreted as a perturbation series around the prior, which eventually suggested an adaptive procedure
based on a recurrent baseline density change. While the posterior marginals emerge as sub-expansions, the
model evidence and the posterior moments are related to the expansion coefficients. Furthermore, posterior
uncertainty propagation can be accomplished by prior polynomial chaos expansions. Classical distribution fitting
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and an inverse heat conduction problem served as low-dimensional application examples for demonstrating and
benchmarking this rather unconventional technique. One of the next steps will be to combine spectral Bayesian
inference with variational strategies and Laplace approximations. A rough approximation of the posterior can be
found first with one of those well-established techniques. The obtained approximation could then be used as an
auxiliary expansion baseline and it would be appropriately corrected so as to approach the true posterior. In
turn, this will require to construct polynomial chaos expansions with arbitrary input measures, which will then
help in tackling higher-dimensional problems. Whether there are bases that are more beneficial to likelihood
expansions than multivariate polynomials is an interesting open research question. The most important question
might be how to assess the errors in the computed expansions coefficients and their impact on the actually
relevant posterior moments and expectation values.

Another recently devised method for computational Bayesian inference was investigated in Chapter 9. It is
based on the diligent construction of a deterministic coupling of distributions or a transformation of random
variables. The basic idea is to find a transport map that morphs a prior-distributed random vector into a
posterior-distributed one. Motivated by optimal transportation theory, an appropriate map can be found by
solving an optimization problem featuring an information-theoretic optimality criterion. More specifically, the
Kullback–Leibler divergence from the back-transformed posterior to the prior is minimized. This approach was
implemented and discussed in the context of variational inference. The bottom line is that transformations of
the prior establish a remarkably flexible class of candidate posteriors, but the actual computation of a transport
map is expensive. It is envisaged to combine inferential mapping with Monte Carlo sampling. Indeed, one
could transform some standard distribution, which is easy to sample from, into a distribution that mimics the
posterior, which in turn would aid in assessing the exact posterior. By the same token, one could also transform
the posterior in such a way that it resembles some familiar probability distribution.

Spectral likelihood expansions and optimal inferential maps strike radically different paths of computing the
posterior distribution. Notwithstanding that they may not yet be as full-fledged as Markov chain theory, they
have the potential to attain maturity in the future and to lay a new foundation for computational Bayesian
inference. This would answer the second research question of how to remedy the major shortcomings and
numerous inconveniences of Markov chain Monte Carlo sampling.

All in all, the made developments allow for a thorough and efficient data and uncertainty analysis. The
framework for Bayesian inversion under multiple types of uncertainty enables the principled study of many
complex systems. Moreover, the presented numerical approaches to Bayesian inference offer completely new
possibilities of representing and characterizing the posterior. These approaches establish promising alternatives
to conventional methods and they will hopefully stimulate many future developments.
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