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METHODOLOGY

Nontargeted homologue series 
extraction from hyphenated high resolution 
mass spectrometry data
Martin Loos1,2*  and Heinz Singer1

Abstract 

Background:  A large proportion of polar anthropogenic compounds routinely released into the environment com-
prises homologue series, i.e., sets of chemicals differing in a repeating chemical unit. Using analytical techniques such 
as liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS), these compounds are readily 
measurable as signal sets with characteristic differences in mass and typically retention time. However, and despite 
such distinct characteristics, no computational approach for the direct, simultaneous and untargeted detection of all 
such signal sets comprising both LC and HRMS information has to date been presented.

Results: A fast two-staged approach has been developed to extract LC-HRMS signal patterns which can be indica-
tive of homologous analytes. In a first stage, a k-d tree representation of picked LC-HRMS peaks is used to extract all 
feasible 3-tuples of peaks with restrictions in, e.g., mass defect differences. A second stage then recombines these 
3-tuples to larger series tuples while ensuring smooth changes in their retention time characteristics. This unsuper-
vised approach was evaluated for ten effluent samples from Swiss sewage treatment plants (STPs), in both positive 
and negative electrospray-ionization.

Conclusions: Beside recovering all continuous series of previously identified homologues, substantial fractions of 
nontargeted peaks could subsequently be assigned into very diverse peak series, although assignments were often 
not unique. The latter ambiguities were resolved by a self-organizing map technique and revealed both distinctive 
series meshing and rivaling combinatorial solutions in the presence of isobaric or gapped series peaks. When compar-
ing STPs, several ubiquitous yet partially low-frequent series mass differences emerged and may prioritize future iden-
tification efforts. The presented algorithm is freely available as part of the R package nontarget and as a user-friendly 
web-interface at www.envihomolog.eawag.ch.

Keywords: Homologue series, Mass spectrometry, Liquid chromatography, Nontarget screening, Sewage effluent, 
Surfactants
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Background
Homologue compounds differing in a common chemi-
cal subunit are regularly addressed in different areas of 
research. They have been focused on in fields as diverse 
as toxicology [1–3], biopolymers [4–7] food control [8, 
9] and oil processing [10, 11]. In environmental research, 
natural and anthropogenic homologue sources have been 

detected in various media, with Surface Active Agents 
(Surfactants) even classified as High Production Volume 
Chemicals (HPVC) [12–19]. Not surprisingly, the ana-
lytical detection of homologue series (HS) has therefore 
been of great interest. Among the methods used, liquid 
chromatography (LC) and high-resolution mass spec-
trometry (HRMS) have found abundant application to 
detect polar and semi-polar HS with both high sensitiv-
ity and specificity [20]. However, while most applications 
have targeted a priori known or suspected HS, rather few 
nontargeted approaches have been established to extract 
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the LC-HRMS signals of yet unknown HS [21]. Con-
cerning the latter, and as compared to non-homologous 
compounds, the regular patterns in LC-HRMS signals 
caused by the repetitive HS chemical units enable a spe-
cific fingerprinting. LC-HRMS has therefore potential 
to routinely single out yet unknown signal series of, e.g., 
emerging contaminants, yet unidentified transformation 
products or differently ionized species of the same HS 
which otherwise evade targeted approaches. Once listed, 
the repetitive signals of individual or grouped HS would 
allow for averaged masses and additional peak relations 
to improve deisotoping, blank removal and finally their 
identification via complementary analytical methods 
(reference standards, MSn) [22, 23].

Using mass spectrometric information, Kendrick mass 
defect plots and their extension to more than one type of 
chemical HS unit have been one popular method to deter-
mine the presence of signal patterns caused by unknown 
HS [11, 22, 24]. Another methodological branch has relied 
on extensive molecular formula fitting to detect regular 
patterns among measured classes of compounds, visual-
ized by, e.g., van Krevelen diagrams or carbon versus mass 
plots [25–27]. Yet others have proposed a projection on 
regularly spaced vectors for HS pattern recognition [28]. 
Main drawbacks with these first approaches arise, inter 
alia, from either the restriction to a fixed set of basic HS 
units or the requirement to derive unique molecular 
formulas for demanding numbers of measured masses. 
Any available information from the orthogonal chroma-
tographic dimension is therein omitted—in spite of the 
often systematic differences in retention time (RT) among 
the homologues of a series [29, 30]. Methods to embrace 
chromatographic information and to combine it with 
HRMS data for signal series detection are however scarce. 
For instance, Pietrogrande and coworkers have proposed 
autocovariance functions to reveal joint regularities in 
mass and RT differences [31–34]. Here, one major LC-
related drawback is that RT differences cannot be eas-
ily linearized to align with autocorrelated differences in 
homologue masses because RT differences in a series are 
often not constant, vary significantly between different 
HS found in the same sample and can hardly be predicted 
in nontargeted analysis. Second, retracting and local-
izing single HS from autocovariance functions may not 
be straightforward. Third, infrequent HS may simply be 
masked by noise or the autocorrelation of more frequent 
HS. In contrast, other methods embracing both LC and 
HRMS information have  rather aimed to aggregate data 
for comparison of samples, and do not aim at a detection 
of individual HS [4].

From a data mining perspective, the unsupervised 
extraction of regular HS patterns is indeed intricate, even 
from a list of picked signal peaks. As noted elsewhere 

[35], an exhaustive pairwise peak comparison to find 
regular mass differences is a time-consuming task, not to 
speak of computing all possible series of such mass differ-
ences. Fortunately, differences in HS mass and RT can be 
restricted and their search optimized through appropri-
ate metric data structures. To this end, a fast two-staged 
computational strategy to extract systematically spaced 
peak series from electrospray-ionization (ESI) LC-HRMS 
measurements is presented. The novel approach detects 
signal series even when (a) HS are not dominating a com-
plex sample matrix, (b) no deisotoping or blank-subtrac-
tion was run beforehand, (c)  signal peaks with differing 
measurement uncertainties exist in the same sample, (d) 
only limited prior HS information is available, (e) differ-
ent HS units occur and (f ) combinatorial ambiguities 
arise. The approach is evaluated for ten sewage treatment 
plant (STPs) effluent samples, both for revealing com-
mon patterns and for recovering the series of a priori 
identified HS compounds.

Methods
Based on a definition of LC-HRMS signal series which 
can be caused by homologous compounds, series detec-
tion progresses in two stages. A first stage extracts the set 
S3 of feasible 3-tupels (triplets) of peaks, while a second 
stage recombines them to larger tuples of n > 3 in a step-
wise manner.

Series definition
A series k of length n  ≥  nmin is defined as the tuple 
Sn,k  =  (p1,k,…, pn,k) of picked LC-HRMS signal peaks 
p  =  {m/z, RT, intensity}, ordered by increasing m/z 
of the series peaks. Sn denotes the set of all such series 
tuples having length n. Peaks being adjacent in a tuple 
are assumed to only differ in a repetitive and possibly 
unknown chemical unit or functional group, e.g., CH2 
or OH. As a result, changes in the mass differences Δm/z 
between any two adjacent series peaks pj,k and pj+1,k 
must remain within an error margin of [−4ε; 4ε]. ε here 
denotes a maximum ± m/z measurement error and may 
depend on m/z or peak intensity [36]. The Δm/z of all 
series in a LC-HRMS data set range within lower and 
upper bounds Δm/zmin and Δm/zmax, a priori set as the 
considered mass range of chemical units at given charges 
z.

Furthermore, Δm/z restrains feasible differences in 
the mass defect of adjacent series peaks, denoted Δm. 
The mass defect here refers to the deviation between an 
ion`s exact m/z value and its nearest integer [37]. For any 
monoisotopic chemical unit that could constitute a mass 
difference Δm/z, bounds γmin and γmax for minimum and 
maximum differences in Δm between a series peak pj,k 
and another peak pj+1,k can be determined by the mass 
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defects of the isotopes of lowest mass for each of the ele-
ments contained in a unit. For example, and albeit lacking 
knowledge of the exact composition of a chemical unit 
but assuming only C, H, N, O, S, Cl and Br to be present, 
we can expect the value of Δm between any two series 
peaks differing by Δm/z to lie within [−0.0010 Δm/z; 
0.0078 Δm/z]. The first factor γmin is determined by the 
ratio of mass defect to atomic mass of 79Br, the second 
factor γmax by the ratio for 1H. Factors for all of the other 
elements range in between these bounds. γ must be cal-
culated over all chemical elements if no assumptions on 
the involved elements can be made. A mathematical defi-
nition of γmin and γmax is given in Additional file 1. Fur-
thermore, one must account for the rounding involved 
in the calculation of mass defects: any Δm along a series 
leading to mass defect values above 0.5 consequently 
wrap them to Δm − 1, whereas values below −0.5 con-
vert to Δm + 1. Thus, differences by Δm must be adapted 
accordingly.

Similar to the bounds for Δm/z and Δm, deviations in 
retention time RT between adjacent series peaks must 
also be restricted in order to reflect reasonable chroma-
tographic characteristics caused by repeated introduc-
tion of chemical units [29, 30]. On the one hand, ΔRTmin 
and ΔRTmax hence define minimum and maximum 
bounds for differences in RT from one peak pj,k to its fol-
lowing tuple peak pj+1,k, respectively. On the other hand, 
changes in ΔRT across a series can be expected to be sys-
tematic [29, 30]. First, such changes in ΔRT from one pair 
of adjacent peaks in a tuple (pj,k, pj+1,k) to the next (pj+1,k, 
pj+2,k) must be smaller than a predefined value, denoted 
as ΔΔRT. Second, cubic smoothing splines are fitted to 
model RT as a function of m/z in each series tuple [38]. 
Briefly, the model fit of each series as determined by the 
coefficient of determination (R2) has to be above a certain 
threshold, using a preset smoothing parameter λ ≥ 0.

Triplet detection
Constrained by the above outlined bounds for Δm/z, Δm 
and ΔRT, a first series detection stage uses k-dimensional 
(k-d) trees [39] as a metric data structure to enable a 
computationally fast extraction of peak 3-tuples which 
might be feasible sub-tuples of larger series tuples. In a 
k-d tree, each signal peak x from a LC-HRMS data set is 
represented by a vector ax ∈ R

4

A geometrical depiction of the elements in ax is given 
by the blue lines in Fig.  1. The second and third ele-
ments ax2 and ax3 transform the minimum and maxi-
mum change in mass defect with changing peak mass 
to a metric scale that can be represented in a k-d tree. 

(1)
ax = (m/zx, �mx − γminm/zx, �mx − γmaxm/zx, RTx)

In the latter, each tree node (alias peak) splits the space 
and the therein contained peaks into two partitions, 
using the peak with the median value for one of the ele-
ments in ax. The resulting two partitions are in turn split 
using the next element in ax, each by another median 
peak contained in those partitions (cp. numbered split-
ting planes in the TOC for an arbitrary example in R3). 
Starting with the first entry of ax for the root node and 
recursively cycling over entries of ax until partitions with 
a single peak (i.e., terminal nodes) are reached, a k-d tree 

Fig. 1 Exemplary subspace query (black polygons) for the detection 
of 3-tuples, centered at one peak (blue point) with one detected 
3-tuple exemplified in green. Intersections of blue lines with axes 
indicate the values of the four elements of ax for this peak. Moreo-
ver, dashed lines mark the m/z interval defined in Eq. (6). In turn, 
dotted lines in the top panel mark the RT interval of Eq. (9), whereas 
dotted lines in the bottom panel indicate the upper and lower bound 
of intervals related to mass defect differences from Eqs. (7) and (8), 
respectively



Page 4 of 11Loos and Singer  J Cheminform  (2017) 9:12 

supports fast range queries. These queries are conducted 
to extract all peaks from two subspaces of types L and H 
with lower and higher m/z repeatedly centered at each 
LC-HRMS peak. The extracted peaks are then succes-
sively recombined to screen for all unique peak combina-
tions that can form 3-tuples in accordance with the above 
series definition and that include the current center peak 
as the second element of a triplet (cp. green and blue dots 
in Fig.  1). The peaks queried with these subspaces usu-
ally represent a minor fraction of all measured LC-HRMS 
peaks and the recombination to feasible triplets thus 
greatly improves over a check using all peaks. The men-
tioned subspace types L and H result from combining the 
intervals

via their Cartesian products to the queried subspaces

 
Intervals I1–I4 define bounds in each of the four dimen-

sions of ax for a subspace H succeeding the queried 
center peak. In contrast, intervals I5–I8 define a subspace 
L preceding the queried peak, as indicated by black lines 
and polygons in Fig. 1. Further details on how to account 
for the mentioned rounding issue of Δm and to accelerate 
the computational retrieval of subspaces are provided in 
Additional file 2.

Tuple recombination
The second stage successively combines the extracted 
3-tuples to larger tuples. To this end, all pairwise combi-
nations of tuples x and y from a set Sn which only differ in 
their first and last peak members, i.e.,

or

(2)I1 = [ax1 +�m/zmin; ax1 +�m/zmax]

(3)I2 = [ax2 − 2ε;∞]

(4)I3 = [−∞; ax3 + 2ε]

(5)I4 =
[

ax4 + RTmin; ax4 + RTmax

]

(6)I5 = [ax1 −�m/zmax; ax1 −�m/zmin]

(7)I6 = [−∞; ax2 + 2ε]

(8)I7 =
[

ax3 − 2ε;∞
]

(9)I8 = [ax4 − RTmax; ax4 − RTmin]

(10)H = I1 × I2 × I3 × I4

(11)L = I5 × I6 × I7 × I8

(12)
(

p1,x, . . . , pn−1,x

)

=
(

p2,y, . . . , pn,y
)

and conform to the above series definitions concerning 
ε, changes in ΔRT and λ are combined to a new (n + 1)-
tuple in Sn+1. After having formed all combinations from 
Sn, the resulting tuples in Sn+1 are in turn recombined to 
larger tuples in the next set Sn+2. This is repeated until an 
empty set is reached, wherein each n-tuple is free to com-
bine to several different (n + 1)-tuples. Therefore, a peak 
cannot be included more than once in one tuple, but 
several times in several different tuples. In every recur-
sion, n-tuples which can be combined to at least one new 
(n +  1)-tuple in Sn+1 are removed from Sn; they other-
wise remain in Sn or are discarded when ranging below a 
minimum user-defined length nmin. Moreover, redundant 
sub-tuples which form by a regular omission of peaks 
in larger n-tuples of sets Sn≥5 need to be filtered at each 
recursion.

Series pairing
As mentioned, a peak may be a member of more than 
one series, as its containing 3-tuples might have been 
incorporated into several different larger tuples instead 
of a single one. To elucidate the underlying reasons for 
such ambiguities, all unique series pairs that intersect in 
at least one peak of a LC-HRMS sample were extracted 
and their properties characterized twofold.

On the one hand, the intersection angle θ was used to 
approximate in how far two series x and y of such a pair 
were superjacent in the plane of RT and m/z. θ is defined 
as

In this equation, numerator and denominator state the 
dot product and the product of the Euclidean norm of 
vectors with scaled mean values

of each series, respectively. Here, c�RT and c�m/z are the 
range of �RT  and �m/z over all series. The smaller the 
value of θ, the more do two paired series overlie with 
each other in the RT vs. m/z plane. At θ = 0π, they are 
fully superjacent.

On the other hand, a self-organizing map (SOM) was 
used to visualize and cluster common properties among 
the paired series to explain differences in θ [40, 41]. Being 
an unsupervised learning strategy, SOMs allow the map-
ping of a large set of m multidimensional input vectors 
v = (v1,…,vj,…,vm) of series pair properties onto a smaller 
two-dimensional grid of SOM nodes. The SOM can then 

(13)
(

p2,x, . . . , pn,x
)

=
(

p1,y, . . . , pn−1,y

)

(14)cos θ =
ux · uy

� ux �� uy �

(15)ux =

(

�RTx

c�RT
,
�m/zx

c�m/z

)



Page 5 of 11Loos and Singer  J Cheminform  (2017) 9:12 

be selectively displayed for the mapped properties; simi-
lar properties are herein mapped to close regions in the 
SOM while different ones are rather separated. In the 
given case, each input vector of series pair properties

contains the mean values of m/z and RT differ-
ences present in paired series x and y, arranged by 
�m/zx ≥ �m/zy and ĉ�RT and ĉ�m/z representing the 
mean expected measurement uncertainties of ΔRT and 
Δm/z, respectively. Based on these properties, an inter-
section angle θ can be calculated for each SOM node via 
Eq.  (14) to estimate the superjacency of series mapped 
onto it. Further information on the training and quality 
of the SOM is provided in the Additional file 3. The SOM 
calculations were conducted with the R kohonen package, 
parameterized as listed in the Additional file 4: Table S1 
[42].

Sampling and analysis
Evaluation was carried out on 24  h flow-proportional 
samples taken from the effluent of ten Swiss sewage 
treatment plants in February 2010, as used and detailed 
in Schymanski et  al. [16]. In short, a sample volume of 
0.25  L was each pH-adjusted, filtered, spiked with 103 
isotope-labeled standards and enriched via a mixed-bed 
solid-phase extraction. After basic/acidic extraction, fur-
ther enrichment under a nitrogen gas stream, reconsti-
tution with HPLC water to 1  mL and a second filtering 
step, a final aliquot of 20 μL was analyzed with HPLC-
ESI-HRMS. The chromatographic step comprised Waters 
XBridge C18 columns (Milford, USA) and a water/
methanol gradient at a flow rate of 200 μL/min gener-
ated by a Rheos 2200 low pressure mixing pump (Flux 
instruments, Basel, Switzerland). A Q-Exactive (Thermo 
Fisher Scientific, San Jose, USA) was used for full-scan 
mass spectrometric analysis at a resolution of 140,000 at 
m/z = 200, following electrospray ionization in each pos-
itive and negative modes (spray voltage +4 and −3  kV, 
respectively; 350  °C capillary temperature). A blank 
measurement was run prior to each block of positive and 
negative sample aliquots, respectively. The data files are 
openly accessible via the MassIVE repository [43].

Data processing
LC-HRMS full-scan data were centroided and converted 
to open  mzXML format files with ProteoWizard (ver-
sion 3.0.7162) [44, 45]. All downstream analysis was 
then run in the R statistical environment [46]. Utilizing 
the R package enviPick (version 1.2) [47], ion chroma-
tograms were extracted in each file and each extracted 

(16)vj =

(

�RTx

ĉ�RT
,
�m/zx

ĉ�m/z
,
�RTy

ĉ�RT
,
�m/zy

ĉ�m/z

)

chromatogram screened for signal peaks, with param-
eters listed in the Additional file 5: Table S2. Upon peak-
picking, series were detected with the above outlined 
algorithm, as parameterized in Additional file  6: Table 
S3. For each peak being part of a series, both a blank 
subtraction and a deisotoping was run with the enviMass 
v3.1 [48] and the nontarget v1.9 [49] packages, respec-
tively (see Tables S4 and S5 for parameters in Additional 
files 7 and 8). In the first case, a peak-centered RT and 
m/z window was checked for each sample peak to not 
contain raw blank data points higher than 0.1 times the 
maximum sample peak intensity to certify its presence in 
the effluent. A majority rule, i.e., a fraction of ≥0.5 peaks 
per series, was used for a final assignment of a series to 
be of blank origin. For deisotoping, a comparison with 
quantized simulation data enabled a grouping of the 
isotopologue peaks of an unknown compound, within 
given measurement uncertainties. The peaks in the indi-
vidual isotopologue groups of each series peak were then 
ranked by increasing m/z. A series was assumed to be 
monoisotopic if the most frequent rank over all peaks in 
a series equaled 1.

Results and discussion
Series inventory and recovery
On average (±standard deviation, SD), 21,153  ±  3052 
and 10,418 ± 831 peaks were picked from the LC-HRMS 
measurements of the 10 STP samples in positive and 
negative ionization modes, respectively (Table S6, Addi-
tional file 9). A substantial mean fraction of 0.37 ± 0.09 
of these peaks could be assorted into series for the posi-
tive mode, whereas a smaller and less variant fraction 
of 0.13 ± 0.03 was assorted in the negative mode. Only 
few of these detected series are likely caused by chance 
alone, as in fully unrelated sets of peaks. As estimated 
by additional randomization experiments in Table S7 
of Additional file  10, false discovery rates amounted to 
much smaller mean fractions of 0.02 ±  0.01 and below 
for the positive and negative ionization modes, respec-
tively. Furthermore, overall numbers of peaks assigned 
to series were strongly correlated with the total number 
of picked peaks in a STP sample, although series peaks 
dominated the measured set of picked peaks at only one 
location (STP ID 8, positive mode). Series counts were in 
turn correlated with the fraction of series peaks for both 
ionizations although the length of individual series var-
ied greatly, from five and up to 30 peaks. Notably, series 
counts were often on the same order as the peak counts 
of which they were comprised, for reasons discussed in 
the next section. Overall, 7576 ±  4222 and 1018 ±  494 
series were detected in positive and negative modes, 
respectively. The large SD was mainly driven by one STP 
(ID 8, Table S6).
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To test the presented algorithm, a ground truth set of 
eight known HS compounds was utilized. These com-
pounds had each at least five of their homologues ten-
tatively identified in a majority of the discussed STP 
samples in a suspect screening campaign conducted by 
Schymanski et al. [16]; they consisted of the surfactants 
LAS, SPAC, DAT, STAC, C12-AES, C13-AES, SAS and 
PEG as listed in Table S6 of the named study. In line with 
this previous study, the full peak series of the four sur-
factants SPAC, STAC, C12-AES and PEG were consist-
ently recovered in all ten STP samples by our algorithm. 
The peak series of the remaining four HS compounds 
were recovered in nine (DAT), four (SAS) and three 
(LAS, C13-AES) samples. In all other cases, series could 
not be recovered because either not all series peaks were 
consistently picked at lower intensities (40% of cases) or 
had partly erratic RT behavior (60% of cases). The algo-
rithm thus successfully retrieved all continuous HS peaks 
with systematic RT differences among the individual 
homologues. Furthermore, homologue peaks in addition 
to those individually screened in the named study were 
detected in at least six cases. In another six cases, some of 
the HS peaks were also integrated into series other than 
those covered in the named study, hence complementing 
the previous suspect screening approach (cp. Figures S2 
and S3 in Additional files 11 and 12).

Moreover, much lower series counts were observed in 
the two blank measurements. Only few of the STP sam-
ple series were conversely removed via majority voting 
during the blank subtraction step, i.e., series fractions of 
0.10 ±  0.06 (positive ionization mode) and 0.07 ±  0.03 
(negative ionization mode). Their absolute numbers cor-
related negatively with the total number of picked peaks 
in a sample, which may be explained by varying degrees 
of matrix suppression of blank signals in more complex 
samples. Of the remaining non-blank series, fractions of 
0.46 ±  0.13 (positive) and 0.27 ±  0.08 (negative) series 
contained sporadic peaks which did not pass the blank 
subtraction individually. This may be attributed either to 
false detection of series comprising sporadic peaks also 
present in the blank or to uncertainties in the blank sub-
traction for an existing series. Deducing from the above 
mentioned randomization experiment (Table S7 of Addi-
tional file 10), we expect the first case to be less frequent 
than the second. For the latter, running the blank sub-
traction after peaks were assorted into series instead of 
before can help avoid sporadic series gaps which impede 
series detection. On the other hand, removing all sample 
series with sporadic blank peak assignments would over-
estimate counts of such sample blank series by an order 
of magnitude as compared to series counts found in the 
blank measurements. Similar uncertainties existed for 
the filtering of monoisotopic series, with their counts 

listed in column 8 of Table S6 in Additional file 9. Frac-
tions of 0.72 (positive) and 0.46 (negative) of monoi-
sotopic series contained infrequent peaks with masses 
suggesting a non-monoisotopic composition (i.e., with 
m/z rank > 1), which is in line with the false positive rates 
of isotopologue grouping. Using ensembles of peaks in 
each series after the series detection step instead of an 
earlier deisotoping based on singular peaks might thus 
improve deisotoping.

Series computation
The restrictions for ΔRT, Δm/z and Δm localized at each 
center peak decrease the computational burden of detect-
ing meaningful 3-tuples. The total number of all possible 
3-tuple peak combinations in samples thereby reduced by 
around seven orders of magnitude to averages of 4.3 × 105 
and 1.0 × 105 3-tuples for the positive and negative ioniza-
tion mode, respectively. Of these triplets, fractions of only 
0.13 (positive) and 0.08 (negative) passed into 4-tuples 
through pairwise combinations; passed fractions then 
strongly increased towards higher n-tuple combinations. 
At this stage, fractions of up to 0.14 4-tuple combinations 
could be excluded for having erratic changes in ΔRT, which 
then dropped mostly to zero for series with length n ≥ 5. 
Additional exclusion criteria such as the similarity of chro-
matographic peak shapes or the distribution of Δm/z and 
intensity in a series may be approached in future versions. 
Overall, the computation time for series detection never 
exceeded 4.1  min per sample on a standard computer, 
including parsing of results, and decreased rapidly with the 
number of detected triplets. For negative mode samples, 
computation time was hence below 0.5 min (Windows 7, 
R version 3.1.3, 2.2 GHz Intel core i7-4702 MQ processor, 
single-core usage, 32 GB RAM, 64 bit).

Superjacent series
The incorporation of a single peak into different series 
was common to all samples and ionization modes. 
Dominant mean fractions of 0.99 ±  0.01 (positive) and 
0.96 ± 0.02 (negative) series thus shared peaks with other 
series, for reasons elucidated further below. Often, much 
more than one peak sharing existed per series, leading to 
a multitude of series pairs with at least one peak in com-
mon (last two columns of Table S6 in Additional file 9). 
A SOM was hence trained for one STP sample (posi-
tive ionization, ID =  1 in Table S6) to map and cluster 
properties of series pairs that can explain such peak shar-
ing for different intersection angles between the paired 
series. The resulting SOM with node values for �m/zx 
and �m/zy in the top and bottom panels is shown in 
Fig. 2. To recall, �m/z is the mean Δm/z in a series; con-
comitant distributions of �RTx and �RTy across SOM 
nodes can be found in the Additional file 13: Figure S4.
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Based on the SOM, several observations can be made. 
First, although series pairs with a wide array of different 
�m/z and �RT  values exist, many pairs nevertheless 
cluster at certain nodes (black dots in Fig. 2 and Figure 
S4 of Additional file 13). In fact, just 13% of the nodes are 
able to summarize 90% of the pairs. This indicates that 
dominant patterns in series properties can account for 
significant proportions of series being paired with other 
series. Second, the contribution of non-monoisotopic 
series herein is noteworthy, affecting as much as 42% of 
the pairings. Third, a majority of series pairs intersect at 
low angles θ and are therefore largely superjacent, i.e., 
they are similarly positioned in the RT and m/z plane. 
Using a histogram-derived threshold of θ  <  0.08π, this 
affects a predominant fraction of 0.81 series pairs in the 
considered STP sample (Additional file 14: Figure S5; cp. 
last column of Table S6 in Additional file 9 for fractions 

in other STPs). The concomitant SOM nodes onto which 
such superjacent pairs map are shown in white in Addi-
tional file  16: Figure S7. In these SOM regions, nodes 
with both series in a pair having �m/z ≈ 14.016 are most 
frequently used for mapping (nodes 1–3 in Fig. 2 and S4 
of Additional file 13). Based on an inspection of the LC-
HRMS data, it can be concluded that these superjacent 
series frequently result from close-eluting isobaric peaks. 
If overlapping in the ΔRT window of different tuples, 
isobaric peaks can cause an exponential increase in the 
number of possible combinations for forming series 
from these tuples. For example, 2n series combinations 
of comparable �m/z arise for n pairs of isobaric peaks 
each located at different m/z values. Isobaric peaks from 
homologue isomers are indeed common and may require 
additional analytical separation to be extractable as fully 
non-superjacent series [15, 50]. One confirming example 
known to have isobaric peaks from different isomers of 
homologues differing by CH2 at �m/z ≈ 14.016 is pro-
vided for the identified SPAC surfactant in Figure S2 of 
Additional file 11, albeit for the negative ionization mode.

Another less frequent reason for superjacent series was 
the sporadic occurrence of missing peaks in otherwise 
continuous series, e.g., at series ends with diminishing 
measurement intensities. As a result, closely superja-
cent series with �m/z being multiples of each other are 
detected. Because the affected series are no strict sub-
sets of each other, they cannot be eliminated during the 
removal of sub-tuples at the end of the second stage of 
the algorithm. An aggravated example for illustrating 
superjacency caused by such series gaps is provided in 
Figure S6 of the Additional file 15. To clarify, �m/z val-
ues being multiples of each other can also arise for dif-
ferently charged adducts of the same homologue series; 
these multiples are however not superjacent and can 
thus be distinguished. Similarly, the different series of the 
different isotopologues of a homologue compound are 
unlikely superjacent but rather parallel in orientation in 
the m/z vs. RT plane.

Meshed series
A notable 19% of series pairs were not superjacent (high-
lighted by the heat colors in Figure S7 of Additional 
file 16), but instructively arranged. For closer inspection, 
the set of most strongly clustered monoisotopic series 
pairings at intersection angles θ  ≥  0.08π was selected 
from the SOM (black squares 4–11 in Fig.  2 and S4 of 
Additional file 13). The chosen series are in turn plotted 
in Fig. 3 and comprise seven distinct values in �m/z.

One first group of interrelated series embraces �m/z 
values of 14.016, 44.026, 30.011 and 58.042 Th, with mul-
tiple pairings between these values. The co-occurrence of 
these values can be illustrated by using a subset of series 

Fig. 2 SOM for series pairs from STP sample with ID = 1, positive 
ionization mode. Coloring of the top and bottom panels show �m/zx 
and �m/zy values at the SOM nodes, respectively. Sizes of the black 
dots in the top panel indicate frequencies of monoisotopic series pairs 
mapped onto the nodes. In turn, black squares in the bottom panel 
either indicate the three nodes with highest frequencies at low inter-
section angles (θ < 0.08π, nodes 1–3) or nodes with highest mapping 
frequencies containing 50% of all monoisotopic series pairs at larger 
intersection angles (θ ≥ 0.08π, nodes 4–11). The series mapped onto 
the latter nodes 4–11 are shown in Fig. 3. Moreover, crosses highlight 
the mapping nodes of the unknown superjacent series shown in 
Figure S6 (Additional file 15)
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related to the known PEG surfactant, shown in Fig-
ure S3 of Additional file  12. Therein, the first two values 
stem from Ethoxylate (C2H4O1) and possibly Alkyl (CH2) 
homologue units of variable length, with the first iden-
tified as part of the known PEG series (black triangles in 
Figure S3). Confirmingly, co-occurrence of both units has 
also been reported for homologues found elsewhere in 
STP effluents [12, 15, 51]. With (a) both units coexisting 
at all their differing lengths and (b) varying RT increases 
for both the resulting chains, a mesh-like orientation of 
these series in the m/z vs. RT plane arises. In addition, the 
mutual orientation of both series types allows for further 

cross-meshing, formed by a subtraction (C1H2O1) and a 
sum (C3H6O1) of the former two homologue units. This 
overall hypothesis is also in agreement with observed mass 
defect differences Δm, which are smaller for higher O/C 
ratios in these four series types (lower panel of Figure S3).

A second major group of interrelated series pairs 
extracted from the concerned SOM nodes comprises 
�m/z values of 7.008, 29.021, 51.034 and 58.042 Th. 
This second group is likely a result of adduct formation 
at z  =  2, considering (a) concomitant mass defect dif-
ferences (cp. lower panel of Fig. 3), (b) the first two val-
ues being halves of the above discussed �m/z values of 
14.016 and 58.042 Th and (c) the latter two values forma-
ble by multiples and subtractions among the former two.

Several implications related to the outlined meshing 
must further be stressed. First, series meshing does not 
only provide complementary information, but can also 
prevent false conclusions. That is, a �m/z value of 58.042 
Th may as well suggest the occurrence of a propylene 
oxide unit instead of a sum of two different units—and 
propylene units are known to exist for homologue series 
[52]. As a matter of fact, other series with �m/z = 58.042 
Th not participating in any meshing occur in the very 
same STP sample, but have yet to be chemically identi-
fied. Second, negative RT differences (ΔRTmin  <  0) can 
arise for peak series formed by subtractions in cross-
meshing (such as the one with �m/z = 30.011 Th in Fig-
ure S3 of Additional file  12), even when RT is expected 
to increase with the length of the underlying chemical 
homologue chains (as exemplified for another unknown 
series with the same mass difference in Figure S2 of Addi-
tional file  11). Third, cross-meshed series with �m/z 
values not matching any molecular formula can arise if 
the atoms of the homologue units do not form subsets. 
In the above first example group, C2H4O1 minus CH2 
equals C1H2O1; however, a hypothetical C2H4O1 minus 
CF2 would in contrast not suggest a valid molecular for-
mula. Fourth, meshed series may have fixed sets of �m/z 
values but likely a more variable set of �RT  values. In the 
SOM, this latter variation is covered by several mapping 
nodes, which should nonetheless be close to each other 
in the SOM if the topological continuity holds (cp. black 
squares 10 and 11 in the bottom panel of Fig. 2 for two 
such adjacent nodes). Finally, the complexity of series 
meshing will rise with the number of homologous chains 
per compound. Even for the discussed example, further 
additions and subtractions from cross-meshing of (CH2)2 
and (C2H4O1)2 units exist, but these were less frequent 
and hence not selected from the SOM here.

STP comparison
To complement the above exemplification of series pat-
terns based on only a single STP sample, Fig. 4 ultimately 

Fig. 3 Meshed series pairs from nodes 4–11 of Fig. 2, colored by their 
series mass differences �m/z . Light gray points show all picked peaks 
whereas only those depicted in dark gray are part of any series. Bold 
rectangles indicate the zoom area for Figure S3 (Additional file 12) to 
depict the PEG-related series
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stacks the �m/z distributions of all blank-corrected series 
for every STP at both ionization modes (panels A and C, 
black lines) and filters for �m/z values prevalent across 
STPs (panels B and D, gray bars). Noteworthy, a mul-
tiplicity of �m/z values exist, many of which are highly 
conserved across the different STPs, although at different 
frequencies and with less diversity in the negative than in 

the positive ionization mode. Among the most frequent, 
especially in the negative mode, are the three discussed 
values of �m/z =  14.016, 44.026 and 58.042 Th, partly 
corresponding to alkyl, ethoxylate and possibly propyl-
ene oxide units (red solid lines) [16]. The larger frequency 
of the latter again suggests another origin than the mere 
addition of the former two units as presented above, both 
at charges z = 1 and z = 2. Other than that, a large but 
still incomprehensive fraction of the remaining �m/z val-
ues might be annotated via either charge- or gap-related 
multiples or additions/subtractions of these three units, 
albeit tentatively until identified as such (red dashed and 
gray bars). Moreover, seven of the most ubiquitous yet 
low-frequent �m/z values among STPs in positive mode 
almost disappear when non-monoisotopic series are 
excluded from the cumulative frequency analysis (gray 
dashed lines, blue bars). Their values occur around major 
non-affected ones at mass differences equal to those 
between 12C and 13C and may involve series of different 
isotopologues of different carbon-rich members of hom-
ologue series. However, without further identification 
attempts—which can now gain from additional informa-
tion on series meshing and �m/z co-occurrence across 
STPs—such annotations remain largely speculative. Given 
the prevalence of some �m/z values, detected series may 
nonetheless be engaged to cluster different STPs, to quan-
tify the ubiquity of series across STPs or to find similari-
ties of unpaired series arising from, e.g., transformations 
by a second SOM training.

Implementation
The outlined algorithm is freely available as function 
homol.search() in the R package nontarget [49] and acces-
sible through a web-interface at www.envihomolog.eawag.
ch [53]. With the package, parameters Δm/zmin, Δm/zmax, 
ΔRTmin, ΔRTmax, ΔΔRT, nmin, ε, λ, R2 and the involved 
chemical elements can all be user-defined (cp. Table S3 in 
Additional file 3). Optionally, restrictions for Δm/z can be 
included for a more targeted series detection or to con-
fine the numbers of computed series in samples with even 
higher HS contents, e.g., oil extracts. Spline smoothing 
can be disabled and changes in ΔRT increased to comprise 
series with erratic RT behavior, although this will almost 
certainly trigger more false positive series as a trade-off. 
Series results can finally be tagged to adduct and isotopo-
logue groups with the package to derive component peak 
sets; the package documentation contains instructive script 
examples for executing all functions with an exemplary list 
of peaks. As complement, the web-interface facilitates series 
detection and data handling for non-programmers and 
allows a fully interactive visualization, filtering and export of 
results. Extensive clustering of series pairs such as the pro-
posed SOM is not scope of the package or web-interface.

Fig. 4 Relative cumulative frequency of �m/z values for all blank-
subtracted series detected in positive (a) and negative (c) ionization 
modes, stacked top-down for individual STP samples in order of 
their IDs 1–10 (cp. Table S6 in Additional file 9). Solid red lines indicate 
masses of three common homologue units at z = 1, red dashed ones 
at z = 2. Solid gray lines denote �m/z values of possible multiples, 
additions or subtractions thereof. Gray dashed lines indicate isotopo-
logue shifts of some of these masses, equal to 12C vs. 13C mass transi-
tions. Moreover, gray bars in b and d show STP counts from a moving 
�m/z window (±5 μ) over all stacked distributions for the positive 
and negative mode, respectively. In contrast, blue bars were derived 
after omission of non-monoisotopic series

http://www.envihomolog.eawag.ch
http://www.envihomolog.eawag.ch
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Conclusion
Given the large throughput in LC-HRMS experiments, a 
visual detection of systematic signal patterns to pinpoint 
the presence of unknown homologous compounds from 
the accumulated data is futile. Hence, an untargeted yet 
efficient bottom-up computation of picked peak series 
with systematic differences in mass and retention time is 
presented and evaluated. With just a minimum of prior 
information on expected homologous compounds to 
confine this detection, the presented algorithm will reveal 
series regardless of their specific ionized species, certain 
modifications during ionization or nonlinear RT proper-
ties. While coping with variable measurement uncertain-
ties, the algorithm enables the detection of low-frequent 
and low-intense series even in complex matrices if series 
peaks are properly picked and reach a minimum but 
adjustable series length. Furthermore, non-random inclu-
sion of peaks into different series proved useful to discern 
possible ambiguities in assigning peaks to series and to 
identify series meshing caused by homologues with more 
than a single variable chemical unit. The detected series 
are highly beneficial as they facilitate subsequent identi-
fication efforts, can lead to a substantial data reduction 
and provide additional nontargeted statistics to compare 
different samples, amongst others. Future research might 
implement gap-tolerant versions of the proposed algo-
rithm and further data mining to automatize the diges-
tion of the wealth of complex series interrelations.
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