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Abstract

Human computation has traditionally been an essential mechanism for providing train-
ing data and feedback to machine learning algorithms. Until a decade ago, human input
was collected mainly from machine learning experts or via controlled user studies with
small groups of people. With the rapid development of Internet technologies, human
computation became applicable to problems that require large-scale training data. To
this end, crowdsourcing is a form of human computation facilitated by online frame-
works on the Internet, which in their simplest model serve as shared marketplaces for
both crowd requesters and crowd workers.

This dissertation focuses on two aspects of integrating crowdsourcing in the process of
building and improving machine learning algorithms and systems. First, it studies how
human supervision can be e�ciently leveraged for generating training label data for
new machine learning models and algorithms. Second, it explores the impact of human
intervention for assisting machine learning experts in troubleshooting and improving
existing systems composed of multiple machine learning components.

While crowdsourcing opens promising opportunities in supporting machine learning
techniques, it also poses new challenges relevant to both human supervision and in-
tervention in intelligent systems. As opposed to expert input, crowdsourcing data
may involve noise which lowers the quality of the collected data and the correspond-
ing predictions. Noise is present in crowdsourcing data due to possible subjectivity,
ambiguous task design, human error, and insu�cient qualification worker skills. In or-
der to accommodate quality control measures that account for noise, machine learning
models need to be appropriately adopted for representing and interpreting crowd data
sources. Moreover, due to the large size of datasets and the design space of machine
learning models, crowdsourcing supervision and intervention can be costly and often
not feasible. For this purpose, cost optimization mechanisms are necessary for scaling
the crowdsourcing process and making it a�ordable even for complex tasks that have
high data requirements. In order to tackle the two challenges of (possibly) noisy and
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costly crowd input, this thesis contributes towards building quality control and cost
optimization techniques for hybrid crowd-machine systems that learn and are improved
from human-generated data.

The first contribution of the thesis is a crowd model, which we call the Access Path
Model. It seamlessly tackles the problems of label aggregation and cost optimization
for making new predictions. Di�erently from what has been proposed in previous work,
the Access Path Model relies on group-based representations of the crowd named as
access paths. This high-level abstraction allows the model to express worker answer
correlations in addition to the worker individual profiles. The design is beneficial for
making robust decisions with meaningful confidence even in the presence of noise and
sparse worker participation. Moreover, it allows for e�cient crowd access optimization
schemes, which plan the budget allocation to diverse access paths in order to maximize
the information gain for new predictions. Closely related to this contribution, we then
investigate cost optimization strategies that can be applied in the early stage of collect-
ing training data for a new model. In this context, we propose the B-Leafs algorithm,
which dynamically acquires data for feature-based classification models. B-Leafs nat-
urally trades o� exploration and exploitation crowd access decisions and overcomes the
challenge of data insu�ciency via model sampling and parameter credibility checks.

The Access Path Model and the B-Leafs algorithm are strategies of quality control
and cost optimization for building a single machine learning model from crowdsourced
labels. In the quest of a deeper integration of human computation with complete in-
telligent systems, the final contribution of this thesis is a troubleshooting methodology
for integrative computational pipelines composed of multiple machine learning com-
ponents. The goal of the methodology is to guide system designers in the process of
decision-making for improving the quality of current systems. For this purpose, the
methodology involves human computation for simulating component fixes that cannot
be generated otherwise. The simulated fixes are injected back in the system execu-
tion, which allows for systematic analysis of the potential impact of individual and
joint fixes in the overall system output quality. This human-assisted methodology is a
powerful tool for better understanding complex systems and prioritizing research and
engineering e�orts towards future system enhancements.
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Zusammenfassung

Human Computation ist ein wichtiger Mechanismus zur Bereitstellung von Trainings-
daten und Feedback für maschinelles Lernen. Bis vor einem Jahrzehnt wurde dieser
menschliche Aspekt hauptsächlich manuell durch Experten oder kontrollierte Benutzer-
studien mit einer kleinen Zahl von Teilnehmern verwirklicht. Mit der rasanten Entwick-
lung des Internets ist Human Computation zunehmend für Probleme mit Trainings-
daten in großem Umfang anwendbar. Crowdsourcing ist ein Beispiel dafür: Hier wird
Human Computation durch ein Online-Framework verwirklicht, das in seiner einfach-
sten Form als Marktplatz sowohl für Anbieter als auch Crowd-Arbeiter dient.

Diese Doktorarbeit legt ihren Schwerpunkt auf die Integration von Crowdsourcing für
den Entwurf und die Verbesserung von Systemen und Algorithmen im Bereich des
maschinellen Lernens. Zunächst wird untersucht wie menschliche Überwachung ef-
fizient genutzt werden kann um die Klassifizierung von Trainingsdaten für neue Modelle
und Algorithmen für maschinelles Lernen zu erzeugen. Dann wird der Einfluss men-
schlicher Eingri�e zur Unterstützung von Experten bei der Behebung und Verbesserung
von existierenden Systemen, die aus mehreren Komponenten des maschinellen Lernens
zusammengebaut sind, untersucht.

Crowdsourcing bietet attraktive neue Möglichkeiten zur Unterstützung existierender
Techniken im maschinellen Lernen, aber birgt auch neue Herausforderungen bezüglich
menschlicher Überwachung und menschlicher Eingri�e in intelligente Systeme. Im
Gegensatz zum Beitrag von Experten sind Crowdsourcing-Daten oft ungenau. Dies
senkt die Qualität der gesammelten Daten und der dazugehörigen Vorhersagen. Die
vorhandenen Ungenauigkeiten in den Daten sind oft ein Resultat von Subjektivität,
mehrdeutigem Design der Tasks, menschlichen Fehlern oder der ungenügender Quali-
fikation von Arbeitern. Um eine Qualitätskontrolle zur Verfügung zu stellen, die mit
verzerrten Daten umgehen kann, müssen Modelle des maschinellen Lernens für die
Repräsentation und Interpretation entsprechend angepasst werden. Als Konsequenz
der Größe der Daten und des Design-Spielraums von Modellen sind die Aufsicht und
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der Eingri� durch Crowdsourcing oft teuer und deshalb nicht realistisch.

Aus diesem Grund sind Mechanismen zur Kostenoptimierung nötig um Crowdsourcing-
Prozesse zu skalieren und bezahlbar zu machen - insbesondere auch, für komplexe
Aufgaben mit hohen Anforderungen an die Daten. Diese Doktorarbeit leistet einen
Beitrag zur Kostenreduzierung und Minderung der Störanfälligkeit beim Entwurf von
Techniken zur Qualitätskontrolle und Kostenoptimierung für hybride Crowdsourcing-
Systeme, die lernen und durch menschlich generierte Daten verbessert werden.

Der erste Beitrag dieser Ausarbeitung ist ein Modell des Crowdsourcing, welches wir Ac-
cess Path Modell nennen. Es löst nahtlos Probleme bei der Aggregation und Kostenop-
timierung zur Erzeugung von Vorhersagen. Im Unterschied zu existierenden Arbeiten
basiert das Access Path Modell auf gruppen-basierten Repräsentationen der Crowd,
die wir Access Path nennen. Diese Abstraktion bindet zusätzlich zu individuellen
Arbeiter-Profilen die Korrelation von Antworten zu Arbeitern in das Modell ein. Dieses
Design ist hilfreich um robuste Entscheidungen mit nützlicher Zuverlässigkeit selbst
dann zu gewähren, wenn Störungen vorliegen oder nur wenige Arbeiter teilgenommen
haben. Weiter erlaubt das Design die Verteilung des Budgets auf unterschiedliche
Access Paths und ermöglicht somit eine eine e�ziente Optimierung des Zugangs zur
Crowd. Dies maximiert den Informationsgewinn. Im Anschluss daran werden Strate-
gien zur Kostenoptimierung untersucht, die in den frühen Phasen des Sammelns von
Traingsdaten für neue Modelle angewendet werden können. In diesem Kontext stellen
wir unseren B-Leafs Algorithmus vor, welcher dynamisch Daten für merkmal-basierte
Klassifikationsmodelle erarbeitet. B-Leafs bietet einen Kompromiss zwischen der
Erkundung und Erschließung des Zugang zur Crowd und löst das Problem von un-
zureichenden Daten nach dem Sampling des Modells und bei der Überprüfung der
Glaubwürdikeit von Parametern.

Auf der Suche nach tiefgreifender Integration von Human Computation in abgeschlosse-
nen Intelligenten Systemen bietet diese Doktorarbeit als letzten Beitrag eine Methode
zur Fehlerbehandlung von Komponenten in intelligenten Systemen. Das Ziel dieser
Methode ist den Designer des Systems bei der Verbesserung der Qualität bestehen-
der Systeme zu unterstützen. Dafür verwenden wir Human Computation zur Simu-
lation der Fehlerbehebung von Komponenten, die anderweitig nicht erzeugt werden
können. Die simulierte Fehlerbehebung wird dann bei der Ausführung der Systeme
eingefügt. Dies ermöglicht die systematische Analyse des Einflusses von individuellen
und kombinierten Fehlerkorrekturen auf die Qualität der Ausgabe des Gesamtsys-
tems. Diese von Menschen unterstützte Methode ist ein mächtiges Werkzeug zum
besseren Verständnis von komplexen Systemen und der Priorisierung von Bemühungen
zur Forschung und Entwicklung in Richtung zukünftiger Verbesserungen der Systeme.
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1
Introduction

1.1 Motivation

Rapid developments in artificial intelligence and machine learning have given rise to
intelligent systems which are now ubiquitous in industry and in our everyday life.
Prominent examples include applications of AI in healthcare, transportation, personal
assistants as well as entertainment. Despite the improved capabilities of the various
algorithms and systems, there is still a large spectrum of tasks that machines are not
yet able to handle. Therefore, most of the applications in use nowadays require human
input in two main aspects: (i) Human supervision — acquiring label data for training
the underlying learning algorithms, and (ii) Human intervention — recovering from
potential errors ocurring in the system. The first aspect is related to the process of col-
lecting and aggregating label data from humans for the purpose of training supervised
machine learning models. Due to the increasing need for label data, this line of research
has attained significant attention from interdisciplinary studies in the intersection of
human computation and machine learning [70, 33, 164]. The latter aspect concerns the
opportunities of leveraging human intelligence to either bridge or correct shortcomings
of intelligent systems. Such human interventions are often crucial given that current
systems are not fully autonomous and they make mistakes [132, 111], which requires
ongoing human control to ensure reliability especially in mission-critical applications.
Both directions motivate the emerging need for building hybrid human and machine
learning systems where people either supervise or complement machine capabilities to
solve complex challenges [69, 83]. Figure 1.1 depicts a high-level view of such systems.
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Chapter 1. Introduction

Learning modelsTraining dataSupervision

ML
System

Intervention

Quality Control
Cost Optimization

Figure 1.1: Hybrid Human-Machine Learning Systems

Integrating human intelligence for supporting machine learning algorithms and sys-
tems has been challenging due to the fact that large-scale and real-time data collection
requires a high number of people available to participate in the process. Until a decade
ago, data labels for learning algorithms were commonly provided in research labs by
experts and trained individuals. The expert feedback although accurate, posed serious
limitations to the size of datasets and models. With the rapid advances in crowdsourc-
ing and human computation [65, 91] in the last years, on-demand human feedback
has been facilitated by various crowdsourcing platforms like Amazon Mechanical Turk
[1], Upwork [5], and CrowdFlower [3]. The main advantage of these platforms is that
they provide an online human computation marketplace of a large number of workers
which was not feasible in the past. Typically, human input is acquired through indi-
vidual micro-tasks specifically designed for the purpose of collecting training data or
providing feedback to a current system. The paradigm created practical opportunities
for introducing novel hybrid systems in various research areas like machine learning
(e.g. CrowdSynth [70], Flock [28], Gestalt [123]), databases (e.g. CrowdDB [50], Deco
[122], Qurk [106]), and Web search and information retrieval (e.g. CrowdSearcher [21],
Aardvark [63]).

The shift to crowdsourcing as a new paradigm for outsourcing micro-tasks to a large
crowd of people instead of experts introduces new challenges in terms of (i) quality
control [10, 92, 67] as well as (ii) cost optimization [75, 61, 151]. The two challenges
are inherent for heterogeneous marketplaces where people have di�erent skills and work
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1.1. Motivation

XXXXXXXXXXXXXXProblem
Domain

MODELS
Supervision

SYSTEMS
Intervention

Quality Control Label Aggregation
System Troubleshooting

Cost Optimization Crowd Access Optimization
Budgeted Learning & Feature Selection

Table 1.1: Quality control and cost optimization problems

quality. Regardless of the type of task, crowdsourcing work introduces noise either due
to task subjectivity, ambiguous task design, or human error [11], which motivates the
design of new algorithms and models that can either prune noisy answers (i.e. known
as spam detection) or accordingly interpret answers based on the worker and task
properties (i.e. known as label aggregation). In addition, crowdsourcing work comes
at a given cost often measured in terms of the worker payment in paid crowdsourcing
platforms [1, 5, 3] or the time that workers spend in citizen science platforms [2, 4].
For collecting large-scale supervision data or running long-term intervention processes,
the crowdsourcing cost is significant and oftentimes a key feasibility factor for many
projects. Therefore, the problem of cost optimization is longstanding in systems driven
or enhanced by human computation.

This thesis studies the quality control and optimization challenges in crowdsourcing in
the context of building hybrid human-machine learning algorithms and systems. As
shown in Figure 1.1, both challenges are present throughout the whole lifecycle of such
systems. Therefore, our main message is that measures for tackling these problems
should be employed as umbrella activities in various stages of training and refining
machine learning models as well as integrating such models into systems. Table 1.1
depicts a high-level overview of the problem space. Next, we provide an introductory
definition of the distinct problems that the dissertation solves in this area and how
they contribute towards improving the quality of current learning models and systems.
While a few of them are well-known in the literature (e.g. label aggregation), others are
new to the community and their characterization is also part of the thesis’ contribution.

1.1.1 Human supervision of machine learning models

Problem 1.1 (Label Aggregation). Given a set of labels {x1, . . . , x|W |} generated
by |W | crowdsourcing workers for a task Y , the goal is to find a high-quality prediction
of the outcome of task Y by aggregating the worker labels.
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Label aggregation is one of the most studied problem in crowdsourcing as it provides the
fundamental building block for ensuring quality while interpreting human-generated
data. The problem is encountered both in the training and the testing stage of algo-
rithms that make predictions from crowdsourced data. It applies to multiple types of
prediction tasks like classification, regression, clustering etc. The thesis focuses mostly
on classification tasks although the overall ideas we propose can be adapted to other
types of predictions.

An important part of the problem is designing a customized model that encodes the
dependencies between the various variables (i.e. tasks, workers etc.) and can be lever-
aged to infer the true value of the tasks. Traditional approaches [67, 35, 128, 176]
seek to model the individual performance of workers with respect to the task which is
crucial for accurately weighing decisions or excluding low-quality work. However, in
real-world use cases of crowdsourcing, individual worker representations are not su�-
cient. Due to high data sparsity and power-log work distribution, estimating accurate
worker parameters becomes challenging. Moreover, the full independence assumptions
that generally accompany the individual models may result to wrong predictions or
misleading confidence values associated to the predictions. In this thesis, we look at
these two additional challenges, namely managing data sparsity and modeling depen-
dencies across workers.

Problem 1.2 (Crowd Access Optimization). Given a task Y that can be solved by
aggregating labels provided by a set of crowdsourcing workers W under a crowd access
budget constraint B, the goal is to find the optimal set of workers S that satisfies the
budget constraint and maximizes the quality of predicting Y .

The problem is di�erently known in the literature as the task assignment problem
[75, 61, 151]. Depending on the application, the definition may take into account
varying worker costs and notions of expertise / performance which naturally become
part of the optimization problem. Here, we study the problem in the perspective of
maximizing the quality of predictions in the testing stage based on a previously trained
aggregation model of diverse workers both in terms of cost and expertise.

We observe that the challenges of crowd acces optimization are tightly coupled with
those of label aggregation. For example, poor estimation of workers’ performance can
prevent optimization algorithms to pick the best set for a task. Most importantly,
potential dependencies or correlations between worker answers need to be carefully
considered while accessing the crowd so that the budget is not unnecessarily spent in
collecting multiple times similar or dependent insights.
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Problem 1.3 (Budgeted Learning and Feature Selection). Given a feature-
based classification task Y that can be solved via a set of N candidate features X =
{X1, . . . , X

N

} with unknown labels that can be acquired through crowdsourcing, the goal
is to learn a classification model ◊ under a budget constraint B that can make high-
quality predictions of Y using only K < N most informative features.

The problems of budgeted learning (training models under hard budget constraints) [41,
40, 103] and feature selection (choosing the most informative features for prediction)
[57, 58] have previously been studied orthogonal to each other in a non-crowdsourcing
setting which assumes perfect feature labels (e.g. expert labels). Here, we focus our
interest in applications where feature labels are collected at a given cost from possibly
noisy crowdsourcing work.

Di�erently from crowd access optimization, this problem arises in the training stage and
aims at early planning the feature label acquisition in order to learn good prediction
models under two di�erent but related budget constraints. The first budget constraint
B is relevant to the amount of data that needs to be acquired for training such models.
The second budget constraint K, is relevant to the amount of data (i.e. number of
features) that will be used in the testing / prediction stage in order to make a single
prediction from the model. The main motivation for satisfying both constraints comes
from the fact that bootstrapping new datasets for training new prediction models
with a large number of candidate features is expensive and oftentimes not a�ordable.
However, planning for both budget limitations during training time is challenging as
budget allocation decisions (i.e. which feature label to collect next) need to be taken
based on insu�cient data and therefore unknown / uncertain feature parameters.

1.1.2 Human intervention on machine learning systems

Problem 1.4 (System Troubleshooting). Given a component-based machine learn-
ing system that consists of N components C = {c1, . . . , c

N

}, the goal is to analyse
system failures and understand the impact of component improvements / fixes in re-
covering failures and improving the overall system quality.

Failures in machine learning applications can cause unpleasant e�ects on users’ expe-
rience and therefore reduce their trust towards such systems. Hence, understanding
failures and identifying potential fixes that can help the system improve is a problem
of critical importance. Our goal is to assist system designers in deciding which compo-
nents need to be fixed first in order to fix the system output to the user. In this thesis,
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we start by characterizing the intrinsic challenging nature of this problem. In particu-
lar, we focus on systems composed of multiple machine learned components that work
together to solve a common task. This integrated architecture is motivated by various
benefits related to component reusability and maintenance as well as work division
among machine learning experts. We assume that the architecture of the systems we
study is modular and their input / output is human-interpretable.

To analyse the impact of component fixes in the overall system quality, system designers
need to simulate or even build improved component states. This is oftentimes infeasible
or expensive to implement. Therefore, we study the opportunities of involving humans
in the loop for correcting the output of components. We identify the challenges of
building a hybrid human-machine framework for this purpose as a valuable tool for
system designers to make system-level error analysis and troubleshooting.

1.2 Background

Quality Control Quality control in human computation refers to the process of re-
viewing and evaluating crowdsourcing work in order to ensure that aggregated
results meet given quality requirements. Research e�orts in this area have char-
acterized quality control along two main dimensions: (i) worker profiles and (ii)
task design [10]. Worker profiling a�ects or is part of a set of activities like
spam detection [159, 115, 127], expertise retrieval [16, 22] as well as incentivizing
and training workers [142, 44, 64, 60, 23]. The purpose of task design qual-
ity control on the other hand is to develop appropriate task definitions that can
improve workers’ e�ciency or their collaboration. To this end, task design encom-
passes various practices of human-computer interaction and collaborative work
[88, 84, 82] that can help crowdsourcing requesters to adjust task instructions and
visual representations (GUI design), task granularity, and worker interaction.

Our work on quality control is particularly centered around worker profiling.
However, in contrast to previous work which leverages only the individual worker
profiles [67, 35, 128, 176], we propose to leverage possible groupings or correlations
between crowd worker answers. This coarse-grained view on the crowd helps us to
avoid overconfident or wrong predictions that can be generated from models built
upon insu�cient or sparse data. In this context, other group-based approaches
[156, 94] have also investigated similar ideas on categorizing workers according
to their error confusion matrix with respect to the task.
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Cost Optimization For most of the crowdsourcing use cases, cost optimization and
quality control are tightly coupled to each other. In a broad perspective, opti-
mization techniques either minimize the cost of achieving required quality stan-
dards or they maximize quality under given hard budget constraints. Such tech-
niques can be divided in three directions: (i) task assignment [75, 61, 151] (ii)
active and budgeted learning for crowdsourcing [110, 98, 166, 175], and (iii)
workflow design for complex tasks [32, 149]. The work presented here mostly
contributes in the first two directions.

The main theme in task assignment techniques is expertise matching for target-
ing tasks to the most expert workers. We observe that alongside expertise, yet
another dimension to be considered is answer diversity. Diversity is important in
budget-limited task assignment as redundant budget allocations (i.e. assigning
the same task to multiple workers) do not reveal any new information if expert
answers are correlated. This phenomena was emphasized by Surowiecki in [145]
stating that the best answers are achieved from discussion and contradiction
rather than agreement and consensus. Other relevant studies in management
science also emphasize diversity [62, 90] and define the notion of types to refer
to forecasters that have similar accuracies and high error correlation.

The problem of active learning for crowdsourcing is closely related to the tradi-
tional active learning problem formulation [138] where the goal is to reduce the
cost of data collection for a learning algorithm by selectively choosing the data
instances to be labeled. When data instances are labeled by humans, labels may
be noisy (due to human error or subjectivity) which increases the cost of data
collection as multiple answers need to be collected for the same example. The
trade-o� between selecting multiple labels for the same instance and selecting
labels for multiple instances is thoroughly studied in [99, 98]. In this thesis, we
study an extended formulation of the problem where feature labels of the data
instances are unknown and are also collected via crowdsourcing.

Hybrid Human-Machine Learning Systems Learning from crowdsourced data la-
bels is the first step of bootstrapping prediction algorithms from human-generated
input. However, learning algorithms often make mistakes or are not able to cor-
rectly handle all the possible usage scenarios [135]. When several algorithms are
deployed together into a single system in the form of machine learning compo-
nents, the space of possible errors becomes broader. Maintaining and further
advancing such systems requires continuous human intervention. This type of
interaction is present or possible to integrate for numerous puposes like system
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evaluation [12], troubleshooting and failure prediction [172, 119] and taking over
complex tasks that automated machines cannot handle yet.

Designing hybrid systems poses several challenges which are mainly related to
the communication process between people and learning systems. Therefore, a
vast amount of work has been focused on interactive, human-interpretable and
human-centered machine learning methods [162, 13, 80, 155, 54]. These properties
are indeed important prerequisites to envision collaborative human-in-the loop
frameworks that can assist current intellingent systems.

1.3 Contribution

The Access Path model We propose a new crowd model named as the Access Path
model (APM) for the purpose of improving the quality of label aggregation in
crowdsourcing. The APM makes use of the access path notion as an alternative
way of retrieving an answer from the crowd. The configuration of access paths
can be based on various criteria depending on the task: (i) workers demographics
(e.g. profession, group of interest, age) (ii) the source of information or the tool
that is used to find the answer (e.g. phone call vs. web page, Bing vs. Google)
(iii) task design (e.g. time of completion, user interface) (iv) task decomposition
(e.g. part of the answers, features). Therefore, the model explores crowd diversity
not on the individual worker level but on the access path level which represents
the common dependencies of workers while performing a task. This design can
be applied even if the data is sparse and crowd workers are anonymous. We show
that predictions based on this model are not only more accurate but they also
map to realistic confidence values.

Furthermore, we employ the Access Path model to seamlessly tackle the problem
of crowd access optimization along with label aggregation. For this purpose, we
leverage highly e�cient greedy algorithms with strong guarantees which use a
submodular information-theoretic objective for crowd access optimization. Our
optimization scheme plans the number of workers to be asked within an access
path which means that crowd access is also centered around groups rather than
individuals. As a result, our crowd access approach is aware of worker correla-
tions and able to handle situations of low individual worker availability. These
properties then enable the Access Path model to make robust predictions with
lower cost.
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B-LEAFS In the context of cost optimization for traning new machine learning mod-
els, we introduce a novel algorithm B-Leafs, to jointly tackle the problems of
Budgeted Learning and Feature Selection for training and testing feature-based
classifiers that are robust to noisy feature labels. The purpose of the algorithm
is to e�ciently collect feature label data for training classifiers under two types
of budget constraints: (i) training phase budget constraints (the total cost of
collected feature labels), and (ii) testing phase budget constraints (the number
of features that can be used for prediction in the training phase). We adapt
B-Leafs for both the Naïve Bayes model and the Access Path model in order
to support both noisy and non-noisy labels.

B-Leafs operates in a Bayesian framework, and maintains posterior distribu-
tions over all model parameters, thereby enabling us to capture the uncertainty
in the model parameters about individual features. The algorithm makes greedy
decisions for selecting the next feature label to acquire by exploiting the sub-
modularity of information gain from a feature, conditioned on the current state
of learning. In addition, it e�ectively balances exploration and exploitation by
employing Thompson sampling techniques [148]. Our extensive experiments on
various datasets and noise regimes show that models constructed based on data
collected from B-Leafs can make better predictions with limited budget.

Human-in-the-loop troubleshooting First and foremost, we define the problem of
troubleshooting component-based machine learning systems which we observe to
have instrinsic characteristics not present in other analogous problems (e.g. trou-
bleshooting physical devices or software systems). Next, we envision an innova-
tive troubleshooting framework for component-based machine learning systems
that employs human feedback for diagnosing and fixing system failures. This
framework devises an innovative crowdsourcing methodology that combines hu-
man input with system execution in the form of crowdsourced component fixes
to diagnose the output of individual components and measure the benefit of the
proposed fixes on the overall system performance.

Human intervention is crucial to our idea as it can simulate improved component
output that cannot be produced otherwise without significant e�orts from sys-
tem developers. This framework can be used from system developers to either (i)
perform generic system troubleshooting and understand how to spend their devel-
opment resources towards further improving the system, or (ii) introduce instance
troubleshooting for correcting the system output on specific input instances with
human help if immediate improvement implementation is technically not feasi-
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ble. We apply our approach on a real-world running system for automatic image
captioning. Our analysis in this case study shows that crowd input on system
evaluation and component fixes provides valuable insights to system developers
and can be e�ectively used to diagnose and fix system failures.

1.4 Thesis overview

Chapter 2 describes the design of the Access Path model and how we employ this
model to solve multiple crowdsourced prediction tasks. We describe in detail
the learning and inference steps on the model and provide guidelines on viable
access path configurations. Parts of this chapter have been published in the
Third AAAI Conference on Human Computation and Crowdsourcing (HCOMP)
[113], and it is joint work with Adish Singla, Anja Gruenheid, Erfan Zamanian,
Andreas Krause, and Donald Kossmann.

Chapter 3 solves the crowd access optimization problem in the context of access
path selection. After proving the submodularity property of information gain
in the Access Path model, we show how this is beneficial for adapting a greedy
optimization scheme with theoretical bounds. Parts of this chapter have been
published in the Third AAAI Conference on Human Computation and Crowd-
sourcing (HCOMP) [113], and it is joint work with Adish Singla, Anja Gruenheid,
Erfan Zamanian, Andreas Krause, and Donald Kossmann.

Chapter 4 presents the B-Leafs algorithm for learning and selecting features in the
Naïve Bayes and the Access Path model under budget constraints. Experimental
results on noisy and non-noisy feature label settings are then presented to evaluate
the e�ectiveness of the algorithm in diverse regimes. Parts of this chapter have
been published in the Fourth AAAI Conference on Human Computation and
Crowdsourcing (HCOMP) [114], and it is joint work with Adish Singla, Andreas
Krause, and Donald Kossmann.

Chapter 5 introduces the problem of troubleshooting integrative machine learning
systems. Next, it proposes our human-in-the-loop framework for solving this
problem with the help of human input in the form of crowdsourcing micro-tasks.
The chapter describes how such a framework can be used to perform system and
instance troubleshooting in the context of an image captioning system. Parts
of this chapter will be published in the Thirty-First AAAI Conference, and it is
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joint work with Ece Kamar, Eric Horvitz, and Donald Kossmann, as part of a
collaborative project with Microsoft Research Redmond.

Chapter 6 concludes this dissertation and lays out possible future directions towards
understanding and strengthening the human impact in improving the quality of
current intelligent systems.
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2
Label Aggregation in

Crowdsourcing

2.1 Overview

Label aggregation is the fundamental building block of all algorithms and models that
make predictions based on crowdsourced data. Due to human error and subjectivity,
collecting a single label for a task is not su�cient. Therefore, the classical approach in
most crowdsourcing platforms is to collect multiple answers / labels for a given task in
order to improve the quality of predictions. In the literature, this approach is referred
to as crowdsourcing redundancy or answer overlap. The collected redundant labels are
then aggregated into a single final answer. The purpose of quality control in label
aggregation is to ensure that the final decision is of high-quality. In this thesis, we
look at two quality aspects of predictions: accuracy and confidence. While accuracy
measures whether the prediction matches the correct decision, confidence maps to the
level of prediction certainty. In these terms, a wrong prediction with low confidence is
still of a better quality than the same prediction with a high confidence because it is
more informative for decision-making.

The simplest form of aggregation is majority vote where the final aggregated value
corresponds to the opinion of the majority part of the crowd. In this case, all workers
are considered to have the same work quality which makes all labels equally important.
However, in reality, crowdsourcing workers have di�erent skills and expertise, which
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Majority Individual Access Path
Voting Models Model

Diversity awareness 7 3 3
Sparsity and Anonymity 3 7 3
Cost-e�cient optimization 7 7 3
Meaningful confidence 3 7 3

Table 2.1: Comparison of the APM with current approaches.

motivated the need to build more sophisticated aggregation methods that are based on
worker profiling [35, 67, 165]. These methods learn and then employ individual worker
parameters as weighing factors while aggregating labels. For example, the answer of a
worker with high accuracy would count more than the answer of a less accurate worker.
This type of individual profiling however faces two critical real-world challenges:

1. Worker answer correlation — The main assumption of individual models is
that the opinions of workers are all independent. Hence, retrieving the same
answer from di�erent workers significantly boosts the confidence of predictions.
Nonetheless, if independence does not hold, reinforcing predictions based on de-
pendent opinions can result to misleading predictions both in terms of accuracy
and confidence. In contrary, a prediction that is boosted by a diverse set of
independent opinions is less likely to be prone of correlation errors.

2. Data sparsity — The next assumption in employing individual models is that
workers have performed su�cient work in the past so that their parameters can
be accurately estimated. This is not usually the case in open crowdsourcing mar-
ketplaces. In contrary, worker participation especially in paid platforms follows a
power law distribution. Therefore, parameter estimation for most of of the work-
ers becomes challenging due to insu�cient data, which then leads to unreliable
predictions.

To overcome these challenges, we propose a novel label aggregation model named as
the Access Path Model (APM) which is a middle-ground solution between the majority
vote and individual models. Table 2.1 illustrates how the APM compares to these two
ends of aggregation methods.

The core idea of the model is to represent the diversity of worker answers through
the access path notion which is defined as an alternative way of retrieving a piece of
information from the crowd. For example, while evaluating the usability of a mobile
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LogopedistsPediatricians Parents

. . . . . . . . .

Does raising children
bilingually cause
language delay?

?
?

?

Figure 2.1: The APM for crowdsourcing a medical question

user interface, the designer may ask users of di�erent age and gender in order to form
an overall opinion. The assumption of the model then is that worker answers are
independent across access paths but they are dependent within the same access path.
In Example 2.1 we show a concrete example of applying the Access Path model to solve
a real-world problem.

Example 2.1. Peter and Aanya natively speak two di�erent languages which they
would like to teach to their young children. At the same time, they are concerned
how this multilingual environment a�ects the learning abilities of their children. More
specifically, they want to answer the question “Does raising children bilingually cause
language delay?”. To resolve their problem, they can ask three di�erent groups of people
(access paths):

Access Path Error rate Cost

Pediatricians 10% $20
Logopedists 15% $15
Other parents 25% $10

Table 2.2: Access path configuration for Example 1

Figure 2.1 illustrates the given situation with respect to the Access Path Model. In
this example, each of the groups approaches the problem from a di�erent perspective
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and has di�erent associated error rates and costs. For instance, pediatricians have
similar opinions due to the information that they study in medical school. The Access
Path model represents these dependencies and makes sure that a prediction is better
reinforced when the same answer comes from di�erent access paths. In this specific
problem, until the 90’s doctors generally agreed that growing up with more than one
language would lead to speech delay even though this belief was not confirmed by
multilingual families [93]. In contrary, the belief was proven to be wrong afterwards
and studies confirmed that bilinguism does not cause language delay. In such situations
where the ground truth is not well-established, answer diversity (encoded as access
path independencies in our model) is particularly important. If worker dependencies
within an access path would not be taken into consideration, repeated opinions from
pediatricians would lead to unrealistic confidence increase towards their opinion.

In this chapter, we present the design of the Access Path model and how it can be used
to solve concrete crowdsourcing problems on label aggregation. We find that the model
yields a higher quality even for sparse or anonymous data. In Chapter 3, we follow-
up on this contribution and show that such a model is also beneficial for designing
cost-e�cient budget allocation schemes.

2.2 Related work

Individual models for label aggregation. One of the central works in the field
is presented by David and Skene [35]. In an experimental design where observers can
make errors, the authors suggest to use the Expectation Maximization algorithm [109]
to obtain maximum likelihood estimates for the observer variation when ground truth
is missing or partially available. This has served as a foundation for several following
contributions [67, 102, 128, 161, 165, 176], placing the algorithm of Dawid and Skene in
the context of crowdsourcing and enriching it for building performance-sensitive pricing
schemes. The main subject of these studies is the crowd workers, for whom repeated
observations must be available.

Another interesting extension to the Dawid and Skene model that does not make full
independence assumptions is presented in [81] the context of combining Bayesian classi-
fiers (BCC models). The work proposes three extensions for modelling the correlations
between individual classifiers showing correlations for “easy” and “hard” instances of
data. [141] presents a dynamic version of these ideas where the confusion matrixes
of workers are continuously updated. Most recently, authors in [139] prove that the
individual Dawid and Skene model is equivalemt to a Restricted Boltzmann Machine
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with a single hidden node. Furthermore, the work also investigates on cases when the
conditional independency does not hold.

For aggregation problems where no ground truth is available even for historical train-
ing data, the above EM-like techniques that are usually employed may fall into local
maxima or saddle points [107]. Authors in [174] study this problem specifically in the
crowdsourcing setting and they propose to perform a preceding parameter initialization
step before the EM algorithm. The initialization step relies on spectral methods for
estimating latent variable models [14].

Diversity for quality. The notion of diversity has been studied in various disciplines
which aggregate information from possibly noisy data sources. Relevant studies in
management science that emphasize diversity [62, 90] define the notion of types to
refer to forecasters that have similar accuracies and high error correlation. These
works conclude that predictions based on a large crowd of workers are more accurate
if the crowd is diverse. In smaller groups, the accuracy of workers is more important
than diversity.

In the context of data integration, diversity is exploited for solving problems like truth
discovery, copying detection and data freshness [129, 43]. In particular, the authors in
[124] analyse the presence of information correlation among web data sources for the
purpose of data fusion.

In crowdsourcing, the diversity principle was first introduced by Surowiecki in his book
“Wisdom of the crowds” [145]. The book highlights diversity and indepedence as
critical factors in making good collective decisions claiming that crowds are smarter
when there is a balance between the amount of information that is shared and held
privately from its members. In the research community, recent work [156, 157] has then
explored the notion of communities as groups of people that have similar error rates.
This definition is a special case of an access path since correlation is a particular form
of statistical dependency. The work proposes the CBCC model (Community Bayesian
Combination Classifier) which builds on the previously introduced BCC models above
but in addition, it leverages communities to tackle the challenge of data sparsity. In
our work, we are interested in more generic forms of dependencies among workers that
are not always manifested as error correlation.

Task-specific label aggregation. Except worker characteristics, another crucial
aspect in aggregation are the task characteristics such as task di�culty, domain, and
length. Due to technical restrictions posed from current crowdsourcing platforms,
crowd requesters generally aim at posting homogeneous batches of tasks that possibly
require a similar amount of e�ort or time so that workers can receive the same payment.
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Despite these e�orts, examples within the same batch may still have visible di�erences.
For example, in a sentiment analysis task, some articles may convey a more clear
sentiment than others. Others, may require more domain knowledge on the article
topics to make a proper evaluation.

In [71] the authors propose a set of graphical models for detecting and handling task-
specific biases that prevent common aggregation models to find out the true label
when such biases are present in many of the crowdsourcing workers. Other approaches
represent worker expertise mapped to the task di�culty [165, 6] as a viable feature.
The model introduced in [164] uses a more extensive set of task features to model
various worker error types.

Label aggregation beyond classification. Most of the label aggregation techniques
that we have summarized so far, assume that crowdsourcing labels are worker answers
on a common single question which usually corresponds to a classification task. Beyond
classification, crowdsourced labels have been used to solve other aggregation problems
which require a more holistic view on the set of collected labels. Typical examples
are clustering or ranking. In these problems, information about an object may reveal
further information about other objects. Such problems require di�erent aggregation
models that account for object-to-object relationships. In clustering, various works have
suggested probabilistic models [53, 169] or graph-based techniques [160, 55] to reason
how pairwise relationships and comparisons can be aggregated to discover underlying
clusters. In ranking, the goal is to find a total order of the available objects according
to users’ or workers’ preferences. Since these preferences are often ambigious and hard
to estimate, ranking algorithms need to solve possible disagreements that may arise not
only across many workers but also within the labels of a single worker. The problem
is relevant to domains like Web search and recommender systems [27] as well as query
processing for sorting [105] and top-K queries [173, 56] in crowdsourced databases.

2.3 Problem definition: Label Aggregation

In this section, we define the problem of label aggregation along with its related re-
quirements and challenges. Note that this problem is equivalent to what we presented
in Chapter 1 but it is adapted in the context of probabilistic classifiers for label aggre-
gation.

Problem 2.1 (Label Aggregation). Given a task represented by a random variable
Y , and a set of answer labels {x1, . . . , x|W |} on this task from |W | workers, represented
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by random variables {X1, . . . , X|W |}, the goal of the label aggregation problem is to find
a high-quality prediction of the outcome of task Y by aggregating these votes.

Quality criteria. A high-quality prediction is not only accurate but should also be
linked to meaningful confidence levels. Confidence is formally defined as the likelihood
of the decision to be correct. This property simplifies the interpretation of predictions
from a probabilistic model. For example, if a doctor wants to know whether a particular
medicine can positively a�ect the improvement of a disease condition, providing a raw
yes/no result answer is not su�ciently informative as it might not hold for all cases.
Instead, it is much more useful to answer for example “yes with 85% confidence”, which
is significantly di�erent from “yes with 55% confidence”. Another example is betting
for sport events based on crowdsourced predictions. If accurate confidence is provided,
one can decide whether to place a bet or not (if the confidence is strong) or accordingly
invest the right amount of money.

Requirements and challenges. To provide high quality predictions, it is essential
to precisely represent the crowd. A desirable aggregation method should be able to
abstract diversity through the statistical dependencies of worker answers (i.e random
variables) that come with the access path usage. The main aspects to be represented
are:

1. The conditional dependence of worker answers within access paths given the task.

2. The conditional independence of worker answers across access paths given the
task.

The answers of two workers X
i

and X
j

are conditionally independent given a task Y

if, once the value of Y is known, the answer of X
j

does not add further information
about X

i

and vice versa, i.e. P (X
i

|X
j

, Y ) = P (X
i

|Y ). We are interested in statistical
dependencies since we want to model a broad class of relationships within a crowd.
One form of these relationships is error correlation which in the most common case
measures linear dependence.

Modeling such dependencies for probabilistic models is crucial for making the right
predictions and, as we show in the next chapter, also for e�cient optimization. These
dependency aspects mimic situations when groups of people make similar decisions
because they read the same media, are introduced to the same task-design etc. Diverse
groups instead take independent and sometimes di�erent decisions. Obviously, for
certain use-cases there might be other forms of dependencies except the ones introduced
by access paths. Nevertheless, the number and the types of dependencies to represent
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Chapter 2. Label Aggregation in Crowdsourcing

is a trade-o� between precision, generality, and complexity. Our goal is to design a
model that can express the dependencies that matter so that it does not overfit to
particular taks and is also computationally e�cient.

Another crucial requirement concerns the support for data sparsity and anonymity.
Data sparsity is common in crowdsourcing [156] and occurs when the number of tasks
that workers solve is not su�cient to estimate their errors which can negatively a�ect
quality. In other cases, the identity of workers is not available, but it is required to
make good predictions based on non-anonymized features. For example, for an election
prediction task, a participant might will to share the geographical region but not the
identity.

In order to fulfill these requirements, we introduce the concept of an access path as an
independent way of (partially) retrieving an answer from the crowd. In Section 2.5 we
describe in detail how access paths are used to define the general APM model and how
this can deal with answer dependencies, sparsity, anonymity and provide high-quality
at the same time.

2.4 Alternative aggregation models

Before describing the structure of the Access Path Model, we first have a look at other
alternative models and their behavior with respect to quality assurance. Table 2.3
specifies the meaning of each symbol as used throughout this chapter.

2.4.1 Majority-based aggregation

Majority Vote (MV). Being the simplest of the models and also the most popular
one, majority voting is able to produce fairly good results if the crowdsourcing re-
dundancy is su�cient. Nevertheless, majority voting considers all votes as equal with
respect to quality and does not have any sense of diversity. Consequently, it is not
possible to integrate it with any optimization scheme other than random selection.

2.4.2 Individual models

Naïve Bayes Individual (NBI). This model assigns individual error rates to each
worker and uses them to weigh the incoming votes and form a decision (Figure 2.2).
In cases when the ground truth is unknown, the estimation of error rates is carried out
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2.4. Alternative aggregation models

Symbol Description
Y random variable of the crowdsourced task
X

w

random variable of worker w

|W | number of workers
Z

i

latent random variable of access path i

X
ij

random variable of worker j in access path i

S[i] number of labels in access path i

N number of access paths
B budget constraint
D training dataset
K number of samples in the training dataset
s < y, x > instance of task sample in a dataset
◊ parameters of the Access Path Model

Table 2.3: Symbol description for the Access Path model

Y

Xw

. . . . . .
X2X1 XW ≠1 XW

Figure 2.2: Naïve Bayes Individual - NBI.

through the EM Algorithm as in the Dawid and Skene approach [35, 109]. Aggregation
(i.e. selecting the best prediction) is then performed through Bayesian inference. For
example, for a set of votes x coming from |W | di�erent workers X1, . . . , X|W | the most
likely outcome among all candidate outcomes y

c

is computed as:

prediction = arg max
ycœY

p(y
c

|x) where p(y
c

|x) = p(y
c

, x)
q

yœY

p(y, x) (2.1)

whereas the joint probability of a candidate answer y
c

and the votes x
t

is:

p(y
c

, x
t

) = p(y)
|W |Ÿ

w=1
p(x

wt

|y
c

) (2.2)

The parameters of the model correspond to the conditional probabilities p(X
w

= x|Y =
y) estimated during the training stage for every worker. The quality of predictions
highly depends on the assumption that each worker has solved a fairly su�cient num-
ber of tasks and that each task has been solved by a su�cient number of workers.

21



Chapter 2. Label Aggregation in Crowdsourcing

This assumption generally does not hold for open crowdsourcing markets where stable
participation of workers is not guaranteed. This means that the contribution from a
certain worker is either permanently missing or not available at the moment. Fur-
thermore, even in cases of fully committed workers, this model does not provide the
proper logistics to optimize the budget distribution since it does not capture the shared
dependencies between workers.
Due to the Naïve Bayes inference (Equations 2.1 and 2.2) which assumes conditional
independence between each pair of workers [133], predictions of this model are over-
confident. Example 2.2 illustrates overconfidence in a simplified scenario.

Example 2.2. Assume a binary task Y that has a uniform distribution P (Y = 1) =
P (Y = 0) = 0.5. The task is solved by five workers that have symmetric true positive
and true negative accuracies. Table 2.4 shows the accuracy and the respective votes of
all workers on a sample task.

X1 X2 X3 X4 X5

accuracy 0.9 0.8 0.7 0.8 0.7
label (x

i

) 0 0 0 1 1

Table 2.4: Accuracy rates and votes for each worker.

p(Y = 0, x) = 0.5 ◊ 0.7 ◊ 0.8 ◊ 0.9 ◊ 0.2 ◊ 0.3 = 0.01512
p(Y = 1, x) = 0.5 ◊ 0.3 ◊ 0.2 ◊ 0.1 ◊ 0.8 ◊ 0.7 = 0.00168
p(Y = 0|x) = 0.9 and p(Y = 1|x) = 0.1

In this example, the model will output 0 as a final prediction with confidence 0.9 even
though there is only one more vote in favor of this decision. If the pairwise independence
across workers really holds, such a high confidence is realistic. In contrast, if for instance
the answers of workers X1, X2, X3 are not independent, then reinforcing the confidence
through dependent observations is misleading. The direct e�ect of such reinforcement
is that the possible answers are mapped to either very high or very low confidence
which does not reflect the real confidence intervals. This discrepancy becomes more
visible if the number of dependent workers within the crowd increases.

2.5 Access path based models

The crowd model presented in this section aims to fulfill the requirements specified
in the definition of Problem 2.1 (Label Aggregation) and enables our method to
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2.5. Access path based models

learn the error rates from historical data and then accordingly aggregate worker votes.

2.5.1 Access Path design

We adapted the notion of a crowd access path from the traditional access path definition
in relational database systems which is one of the main pillars in query optimization
for traditional databases [136]. In this context, an access path is an alternative way
of retrieving information from a relation table (i.e. table scan, index etc.). Therefore,
di�erent access paths have a di�erent response time but they produce identical results
which means that they always return the same set of tuples. Also, physically stored
data does not include any kind of uncertainty, producing therefore deterministic results.

In contrast, crowdsourced data processing deals with uncertain information coming
from noisy observations. In the crowdsourcing context, access paths not only may have
a di�erent cost but they may also have di�erent qualities which as we show in Chapter 3
makes the optimization problem more challenging. In this section, we describe how
this notion can be exploited in practice in current crowdsourcing platforms along with
possible use cases.

2.5.1.1 Architectural context and implications

We envision access path design as part of the quality assurance and control module
for new crowdsourcing frameworks. In our case, this idea was initiated as part of the
query engine in a crowdsourced database [50, 122, 106]. Here, the query executor then
needs to be extended with aggregation functionalities (probabilistic inference on the
APM ) so that it can interpret the data after collecting it from the crowd. The query
optimizer determines the optimal combination of access paths as we discuss in the next
chapter.

The access path design can be provided by the task designer as part of the task config-
uration. Similarly as in a traditional database, the designer decides to add an access
path as an alternative index to the crowdsourced data. This design can either corre-
spond to groups of workers (e.g. based on location) or simply to groups of answers (e.g.
based on their source of information). In fact, the access path notion is a broad concept
that can accommodate various situations and may take di�erent shapes depending on
the task. We discuss possible configurations and use cases in Section 2.5.1.2.

When the access path configuration is not as intuitive, an alternative approach is to
attempt discovering groups of workers from historical data. We do not cover such
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Chapter 2. Label Aggregation in Crowdsourcing

techniques in this thesis but we discuss possible solutions and preliminary ideas in
Section 2.5.1.3.

2.5.1.2 Access path configuration and use cases

Below we describe a non-exhaustive list of possible configurations that are easy to
directly apply in current crowdsourcing platforms.

• Demographic groups. Common demographic characteristics (location, gender,
age) can establish strong statistical dependencies of workers’ accuracy [76]. Such
groups are particularly diverse for problems like sentiment analysis or product
evaluation and can be retrieved from crowdsourcing platforms as part of the task,
worker information, or qualification tests.

• Information sources. For problems like data collection and integration, the
data source being used to deduplicate or match records (addresses, business
names etc.) is the primary cause of error or accuracy [124]. In our experiments
for instance, we forwarded the information source to the workers by including a
respective link in the task and performed additional sanity checks.

• Task design. In other cases, the answer of a worker may be a�ected by the user
interface design. For instance, in crowdsourced sorting, a worker may rate the
same product di�erently depending on the scaling system (stars, 1-10 etc.) or
other products that are part of the same batch [118].

• Task decomposition. Often, complicated problems are decomposed into smaller
ones. Each subtask type can serve as an access path. For instance, in the bird
classification task that we study later in our experiments, workers can resolve sep-
arate features of the bird (i.e. color, beak shape etc.) rather than its category.
The subtasks will then appear as separate hits and can be solved independently.

These configurations can be included in a crowdsourcing platform in the form of worker
qualifications [116] or as part of the task user interface design.

2.5.1.3 Access path discovery

Access Path discovery is related to the problem of automatically detecting groups of
workers with strong answer dependency from historical data. Possible helpful tools
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Figure 2.3: Naïve Bayes Model for Access Paths - NBAP.

in this regard include graphical model structure learning based on conditional inde-
pendence tests [36] and information-theoretic group detection [95]. In particular, the
clustering algorithm presented in [158] discovers hierarchical structures in random vari-
ables for the purpose of explaining correlations between variables.

The main challenge that these methods face in the specific domain of crowdsourcing is
the sparse nature of the worker-task observations. For example, in a scenario when taks
are assigned to r di�erent workers from a pool of |W | workers in total, data sparsity
is 1≠r

|W | . Due to the power-law work distribution among workers, this ratio is then often
significantly low (even less than 2%). One related e�ect to this problem is that the
worker similarity is hard to estimate when they have either a few or no solved tasks
in common. In such circumstances, every access path discovery algorithm needs to
operate under incomplete data or in addition complete the missing values [77, 78]. For
heterogeneous batches of tasks, another idea would be to jointly leverage groups of
workers together with groups of tasks so that the worker similarity can then be defined
not in terms of tasks that workers have in common, but in terms of taks of the same
group that workers have in common.

We explored these ideas in [125] in collaboration with Matteo Pozzetti in the context of
his Master Thesis project. The project highlighted the following conclusions. Current
clustering algorithms (e.g. k-means) or hierearchical correlation explanation techniques
(e.g. CorEx [158]) can recover possible groups in the crowd only if the data sparsity is
less than 80%. For higher sparsity levels, the access path discovery error is significantly
higher. In these cases, the Access Path discovery can be extended to use the task
grouping and similarity to reveal worker groupings. The idea is also useful for label
aggregation and budget allocation as it can di�erentiate workers’ skills according to the
task group. However, it is important to note that these extensions are beneficial only
in use cases with heterogeneous tasks types. For use cases with homogeneous tasks, it
is more e�cient to cluster the workers only from their answers.
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Figure 2.4: Bayesian Network Model for Access Paths - APM.

2.5.2 Access Path based models

Access Path based models group the answers of the crowd according to the access path
they originate from. We first describe a simple Naïve Bayes version of such a model
and then elaborate on the final design of APM.

2.5.2.1 Naïve Bayes for Access Paths (NBAP)

For correcting the e�ects of non-stable participation of individual workers we first
consider another alternative, similar to our original model, presented in Figure 2.3.
The votes of the workers here are grouped according to the access path. For inference
purposes then, each vote x

ij

is weighed with the average error rate ◊
i

of the access path
it comes from. In other words, it is assumed that all workers within the same access
path share the same error rate. As a result, all votes belonging to the same access
path behave as a single random variable, which enables the model to support highly
sparse data. Yet, due to the similarity with NBI and all Naïve Bayes classifiers, NBAP
cannot make predictions with meaningful confidence especially when there exists a
large number of access paths.

2.5.2.2 Access Path Model overview

Based on the analysis of previous models, we propose the Access Path Model as pre-
sented in Figure 2.4, which shows an instantiation for three access paths. We design
the triple <task, access path, worker> as a hierarchical Bayesian Network in three
layers.
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Y
1 0

P (Y = 1) P (Y = 0)

Zi

Y 1 0

0 P (Zi = 1|Y = 0) 1 ≠ P (Zi = 1|Y = 0)
1 P (Zi = 1|Y = 1) 1 ≠ P (Zi = 1|Y = 1)

Xij

Zi 1 0

0 P (Xij = 1|Zi = 0) 1 ≠ P (Xij = 1|Zi = 0)
1 P (Xij = 1|Zi = 1) 1 ≠ P (Xij = 1|Zi = 1)

Figure 2.5: Parameters ◊ of the Access Path Model.

Layer 1. Variable Y in the root of the model represents the random variable modeling
the real outcome of the task.

Layer 2. This layer contains the random variables modeling the access paths Z1, Z2, Z3.
Each access path is represented as a latent variable, since its values are not observable.
Due to the diverging tree pattern, every pair of access paths is conditionally inde-
pendent given Y while the workers that belong to the same access path are not. The
conditional independence is the key of representing diversity by implementing therefore
various probabilistic channels. Their task is to distinguish the information that can be
obtained from the workers from the one that comes from the access path.

Such enhanced expressiveness of this auxiliary layer over the previously described
NBAP model avoids overconfident predictions in the following way. Whenever a new
prediction is made, the amount of confidence that identical answers from di�erent
workers in the same access path can bring is first blocked by the access path usage
(i.e. the latent variable). If the number of agreeing workers within the same access
path increases, confidence increases as well but not at the same rate as it happens
with NBI. The main reason is that additional workers contribute only with their own
signal, while the access path signal has already been taken into consideration. The
direct e�ect of this design is that the confidence of possible answers is more realistic
and does not map to extreme values only. In terms of optimization, this property of
the APM model makes a good motivation for combining access paths within the same
plan and not limiting the accesses to the same channel. For our experiments, we focus
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on binary Z variables but the model can be easily adapted to higher cardinalities.

Layer 3. The lowest layer contains the random variables X modeling the votes of the
workers grouped by the access path they are following. For example, X

ij

is the j-th
worker on the i-th access path. The incoming edges represent the error rates of workers
conditioned by their access paths.

The choice of using a Bayesian Network to design the Access Path Model is based on
the ability of such networks to explicitly manage and quantify uncertainty. This is a
general-purpose design and can be customized to the crowdsourced task by accordingly
choosing the type and cardinality of the variables. The acyclic structure of the model
supports e�cient optimization schemes as we will show in Chapter 3. Nevertheless,
note that the assumption of conditional independence of worker answers across access
paths is also a simplification design decision. Full independence of opinion is often
hard to achieve and one can think of introducing more fine-grained dependencies in
the model which should be handled with caution so that (i) the problem does not
become intractable, and (ii) the model does not overfit for the training data.

2.5.2.3 Parameter learning

The purpose of the training stage is to learn the parameters of the model, i.e. the
conditional probability of each variable with respect to its parents that are graphically
represented by the network edges. We will refer to the set of all model parameters
as ◊. Figure 2.5 shows an example of ◊ for a pure binary setting of the network.
Given a training dataset D with historical data of the same type of task, the goal
of the parameter learning stage is to find the maximum likelihood estimate ◊MLE for
the training set. In practice, this means finding the parameters that are the best
probabilistical description of the data. By definition, ◊MLE is a Maximum Likelihood
Estimate for ◊ if ◊MLE = arg max

◊

p(D|◊). For a training set containing K samples:

p(D|◊) =
KŸ

k=1
p(s

k

|◊) (2.3)

If all the variables < Y, Z, X > were observable then the likelihood of a sample s
k

training set given ◊ would be:

p(s
k

|◊) = p(y
k

|◊)
NŸ

i=1

3
p(z

ik

|y
k

, ◊)
Sk[i]Ÿ

j=1
p(x

ijk

|z
ik

, ◊)
4

(2.4)

where S
k

[i] is the number of votes in access path Z
i

for the sample. Since maximizing
the likelihood estimation is equivalent to minimizing the negative log likelihood, ◊MLE
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can be rewritten as:
◊MLE = arg min

◊

≠
Kÿ

k=1
log p(s

k

|◊) (2.5)

For this setting, the estimate for ◊
Zi|Y can be computed by taking the derivative on

both sides in order to find the inflection point:

ˆ log p(D|◊)
ˆ◊

Zi|Y
=

Kÿ

k=1

ˆ log p(z
ik

|y
k

)
ˆ◊

Zi|Y
(2.6)

For fully observable Z
i

the best estimate would be:

◊
Zi=z|Y =y

=
q

K

k=1 ”(z
ik

= z, y
k

= y)
q

K

k=1 ”(y
k

= y)
(2.7)

Here, ”() is an indicator function which returns 1 if the training example fulfills the
conditions of the function, and 0 otherwise. Since in our model Z

i

is not observable,
counting with the indicator function is not possible. For this purpose, we apply the
Expectation Maximization algorithm [109]. Next, we show the instantiation of one
iteration of the EM algorithm for our model.
E-step: Calculates the expected value for the log likelihood of the latent variables
given the current ◊Õ. For a binary variable Z

i

, for each sample this would be:

E[Z
ik

= z] = p(z
ik

= z, y
k

, x
k

|◊Õ)
q

z

Õœ{0,1} p(z
ik

= zÕ, y
k

, x
k

|◊Õ) (2.8)

M-step: Recomputes ◊ by maximizing the expected log likelihood found on the E-step.
Di�erently from what is shown in Equation 2.7, the counter for the latent variable is
replaced by its expected value.

◊
Zi=z|Y =y

Ω
q

K

k=1 ”(y
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= y)E[Z
ik
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q
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k=1 ”(y
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(2.9)

◊
Xij=x|Zi=z

Ω
q

K

k=1 ”(x
ijk

= x)E[Z
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= z]
q

K

k=1 E[Z
ik

= z]
(2.10)

Notice that Equation 2.10 models the situation when the votes are always ordered by
the worker identifier. This scheme works if the set of workers involved in the task
is su�ciently stable to provide enough samples for computing the error rates of each
worker (i.e. ◊

Xij |Zi) and if the worker identifier is not hidden. Since in many of the
crowdsourcing applications (as well as in our experiments and datasets) this is not
always the case, we share the parameters (error rates) of all workers within an access
path:

◊
Xij=x|Zi=z

Ω
q

K

k=1

qP [i]
j=1 ”(xijk=x)

P [i] E[Z
ik

= z]
q

K

k=1 E[Z
ik

= z]
(2.11)
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This enables us to later apply on the model an optimization scheme agnostic about the
identity of workers. The generalization is optional for APM and obligatory for NBAP.

The two EM steps are repeated until the algorithm converges and the parameters in
◊ do not change anymore. If there are at most M answers per access path and the
algorithm converges after I steps, the complexity of parameter learning for APM is
O(KNMI).

Training cost analysis. The main prerequisite for applying the Access Path Model
as a supervised learning technique is that the task should be repetitive to enable pa-
rameter learning. In crowdsourced databases, this requirement is relevant to statistics
management for query optimization. The amount of data needed to train APM is sig-
nificantly lower than what individual models require which results in a faster learning
process. The reason is that APM can benefit even from infrequent participation of
individuals X

ij

to estimate accurate error rates for access paths Z
i

. Moreover, sharing
the parameters of workers in the same access path reduces the number of parameters
to learn from W for individual models to 2N for APM which is at least three orders of
magnitude lower. In all our experiments and use-cases we observe that the benefit from
this generalization is higher than the respective loss. However, it is possible to adjust
the model accordingly if it is known that certain workers have a stable participation.
In this case, it is recommended to keep such workers distinct and learn their individual
errors. The optimization scheme should also be adjusted to explicitly decide whether
to include these cases in the final plan.

2.5.2.4 Inference

After parameter learning, the model is used to infer the answer of a task given the
available votes on each access path. As in previous models, the inference step computes
the likelihood of each candidate outcome y

c

œ Y given the votes in the test sample x
t

.

prediction = arg max
ycœY

p(y
c

|x
t

) where p(y
c

|x
t

) = p(y
c

, x
t

)
q

yœY

p(y, x
t

) (2.12)

Since the test samples contain only the values for the variables X, the joint probability
between the candidate outcome and the test sample is computed by marginalizing over
all possible values of Z

i

as in Equation 2.13. For a fixed cardinality of Z
i

, the overall
complexity of inferring the most likely prediction is then O(NM).

p(y, x
t

) = p(y)
NŸ

i=1
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4

(2.13)
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Besides inferring the most likely outcome, we are also interested in the confidence of
the prediction. In other words, we would also like to know what is the likelihood that
the prediction is accurate. For all models except Majority Vote, confidence corresponds
to p(prediction|x

t

) computed as in Equation 2.12. Marginalization in Equation 2.13
is the technical step that avoids overconfidence by smoothly blocking the confidence
increase when similar answers from the same access path are observed.

2.6 Experimental evaluation

We evaluated our work on four real-world data-sets, covering many of the use cases
described in Section 2.5.1. The main goal of the experiments is to validate the pro-
posed model. We compare our approach with other state of the art alternatives and
results show that label aggregation with the Access Path model can make high-quality
predictions even when the data is sparse.

2.6.1 Metrics

The comparison is based on two main metrics: accuracy and negative log-likelihood.
Accuracy corresponds to the percentage of correct predictions. Negative log-likelihood
is computed as the sum over all test samples of the negative log-likelihood that the
prediction is accurate. Hence, it measures not only the correctness of a model but also
its ability to output meaningful confidence.

-logLikelihood = ≠ ÿ

st

log p(prediction = y
t

|x
t

) (2.14)

The closer a prediction is to the real outcome the lower is its negative log-likelihood.
For example, imagine a model that makes two correct binary predictions: a prediction
of high-confidence 90%, and another one of low-confidence 60%. The high-confidence
decision has a negative log-likelihood of ≠ log(0.9) ¥ 0.05, while for the low-confidence
one is ≠ log(0.6) ¥ 0.22. Thus, a desirable model should o�er low values of negative
log-likelihood which intuitively map to high confidence for accurate predictions and
low confidence for those being inaccurate. Due to the logarithmic nature of the metric,
the penalty of the erroneous predictions is higher than the reward of accurate ones.
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2.6.2 Dataset description

All the following datasets come from real crowdsourcing tasks and consist of votes gath-
ered from people. For experiments with restricted budget, we repeat the learning and
prediction process several times via random vote selection and k-fold cross-validation.

CUB-200. The dataset [163] is built in the context of a large-scale data collection for
feature-based classification of bird images on Amazon Mechanical Turk (AMT). Since
this is a di�cult task even for experts, the crowd workers are not directly asked to
determine the bird category but whether a certain attribute is present in the image
or not. Each feature (e.g., yellow beak) brings a piece of information for the problem
and we treat them as access paths. The dataset contains 5-10 answers for each of
the 288 available feature. We keep the cost of all access paths equal as there was no
clear evidence of features that are more di�cult to distinguish than others. The total
number of answers is approximately 7.5 ◊ 106 for 50 candidate photos from each of the
50 bird species.

As in these experiments workers solve only a part of the task, it is not possible to apply
Majority Vote or the NBI model. For a basic comparison we performed additional
experiments on AMT based on the same images as the original dataset. Each hit
consisted of five photos to be classified as well as a good quality sample photo from
the real species(the latter was included to train the workers). Ten workers were asked
to decide whether the bird in the photo belongs to the same species as the one in the
sample.

MedicalQA. We gathered 100 medical questions and forwarded them to AMT. The
turkers were asked to answer the questions after reading in specific health forums. The
forums considered for this study belong to one of the categories in Table 2.5 which we
then design as access paths. 255 workers participated in our experiment. Workers could
solve all questions, but each question could be solved by a certain worker through one
access path only. The origin of the answer was checked via an explanation url provided
along with the answer as a sanity check. The tasks were paid equally to prevent the
price of the task to a�ect the quality of the answers. Nevertheless, for experimental
purposes, we assign an integer cost of (3, 2, 1) based on the reasoning that in real life
doctors are more expensive to ask, followed then by patients and common people. We
collected 10 answers per access path, which resulted in 30 answers per question.

ProbabilitySports. This data is based on a crowdsourced betting competition on
NFL games[126]. The participants in the competition voted on the question: “Is the
home team going to win?” for 250 events within the season. Not all participants voted
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Description Forums

(1) Answers from doctors www.webmd.com

www.medhelp.org

(2) Answers from patients www.patient.co.uk

www.ehealthforum.com

(3) General Q&A forum www.quora.com

www.wiki.answers.com

Table 2.5: Access Path Design for MedicalQA dataset.

Dataset Classes Features (access paths) Examples

car 4 6 1728
derm 6 34 366
mushroom 2 22 8124
nursery 5 8 12960

Table 2.6: UCI datasets description.

on all events and di�erent seasons have di�erent popularity. In total, there are 5,930
players in the entire dataset contributing with 1,413,534 bets. We designed the access
paths based on the accuracy of each player in the training set which does not reveal
information about the testing set samples. Since the players’ accuracy in the dataset
follows a normal distribution, we divide this distribution into three intervals where
each interval corresponds to one access path (worse than average, average, better than
average). In this configuration, access paths have a decreasing error rate. Thus, we
assign them an increasing integer cost (2, 3, 4), although the competition itself was not
incentivized by monetary rewards.

UCI. These datasets [96] are part of the UCI Machine Learning Repository. They
are not typical crowdsourcing datasets in that they contain a single label per feature
provided by experts which is considered to be correct. In this chapter, we use these
datasets as a basis structure and then inject noise on the given data in order to study
the impact of various noise regimes in the prediction quality. Table 2.6 shows the
datasets that we used for the study. Note that these datasets are generally used as
benchmarks for evaluating feature-based classifiers. Similarly to the CUB-200 dataset,
we use their features as access paths.
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Figure 2.6: Accuracy with unconstrained budget.

2.6.3 Model evaluation on real-world predictions

For evaluating the Access Path Model independently of the optimization, we show
experiments first using all available votes in the datasets and then equally distributing
the budget across all access paths. The question we want to answer in this set of
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Figure 2.7: Accuracy and negative log-likelihood for equally distributed budget across
all access paths in the MedicalQA dataset.

experiments is: “How robust are the APM predictions in terms of accuracy and negative
log-likelihood w.r.t. state-of-the-art methods?”

2.6.3.1 Predictions with unconstrained budget

Figure 2.6 shows the accuracy of all models if the full set of available votes is used.
The aim is to test the aggregation robustness of APM in case of high redundancy. As
MedicalQA has relatively low redundancy compared to the other datasets and consists
of only one set of questions, we will discuss it in the next experiment.

CUB-200. From this dataset we studied 50 species that belong to the same kind
(e.g. di�erent types of sparrows, seagulls etc.) and tested the e�ciency of our model
to distinguish between species although they might look quite similar. Note that this
classification task is harder than distinguishing across di�erent kinds of birds. For
example, a seagull is a lot di�erent from a bluebird as their features are significantly
di�erent from each other. After this comparison, it can be observed that access path
models generally perform better than individual and majority models. Many species
were di�cult to resolve without the presence of access paths. In special cases, when the
bird has a strong feature that makes it distinguishable (e.g speciesId 12, yellow headed
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Figure 2.8: Accuracy and negative log-likelihood for equally distributed budget across
all access paths in the ProbabilitySports dataset.

blackbird) there is no di�erence between the models. Also, often accuracy of NBI is
close to MV because of the non-stable participation of AMT workers throughout all
the photos from the same species.

ProbabilitySports. As expected, for the betting scenario it is challenging to improve
over Majority Vote when redundancy is high (more than 1000 bets per event). Never-
theless, although our model was not specifically customized to predict betting events,
we notice a 4%-8% enhancement of APM over majority while the Naïve Bayes baselines
cannot achieve significant improvement. Our results cover the most popular seasons of
the competition. We also show the accuracy of the odds provided by betting parties.

2.6.3.2 Predictions with constrained budget

Figures 2.7 and 2.8 illustrate the e�ect of data sparsity on quality. We varied the
budget and uniformly distributed it across all access paths (e.g. for a budget B = 30
we randomly selected 10 votes per access path). We do not show results from CUB-200
dataset as the maximum number of votes per access path in this dataset is 5-10.
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MedicalQA. The participation and the performance of Mechanical Turk workers in
this experiment was generally higher than in the other datasets, which allows for a
better error estimation of workers. According to workers’ feedback, the questions were
interesting and they found the provided health forums informative. Hence, as shown
in Figure 2.7, only for maximum redundancy (B = 30) NBI reaches comparable accu-
racy with APM although the negative log-likelihood dramatically increases. For lower
budgets (i.e. high sparsity) NBI cannot manage to provide accurate results.

ProbabilitySports. Figure 2.8 shows that while the improvement of APM accuracy
over NBI and MV is stable, NBAP starts facing the overconfidence problem while
budget increases. NBI exhibits low accuracy due to very high sparsity even for su�cient
budget. A further observation is the improvement of negative log-likelihood for MV
which reflects the robustness of majority to provide meaningful confidence levels for
high redundancy. Yet, majority fails to produce accurate predictions as it is agnostic
to error rates.

2.6.4 Label noise impact on predictions

In all experiments presented so far, the amount of noise is inherent to the data as
the labels were originally generated by crowdsourcing workers. In order to study the
impact of various noise settings, we synthetically injected noise in the feature labels
of UCI datasets. For this purpose, we experimented with two di�erent noise regimes:
uniform (Figure 2.9) and biased (Figure 2.10) noise. For these regimes we synthetically
generate 5 feature labels for both the training and the testing splits of the dataset. In
the uniform noise case, the label either replicates the true feature value or is uniformly
picked with a varying probability (horizontal axis in all graphs) from the possible
feature values di�erent from the true value. This simulates random but non-biased
worker mistakes. The biased noise regime instead imitates situations when workers
could have a strong bias in consistently confusing the true value for another erroneous
feature value. Note that, both noise regimes are present in real-world crowdsourcing
platforms. For the Naïve Bayes baseline, we aggregate the synthetically generated
labels via majority vote, and then apply a Naïve Bayes model on the aggregated data.
The NO NOISE predictions are the best predictions that can be achieved when there
is no crowdsourcing noise. We observe that both models can handle biased noise
better than uniform noise, which is reflected in the lower prediction error for this
regime. Depending on the feature cardinality, both models also can partially recover
from high noise levels by probabilistically interpreting labeling errors. For example,
in the uniform noise regime, if feature labels are wrong with high probability, the
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Figure 2.9: Uniform noise impact on prediction error for UCI datasets.

models are able to understand that the correct feature value is the one that is never
mentioned by the workers. APM is better at interpreting these cases and it recovers
faster from worker mistakes as it is able to decouple the the crowdsourcing noise from
the underlying feature noise.
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Figure 2.10: Biased noise impact on prediction error for UCI datasets.
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2.7 Summary

In this chapter, we presented the Access Path model as a label aggregation technique
that leverages correlations between worker answers to make predictions that are not
only more accurate but also more meaningful in terms of confidence. Meaningful
confidence is particulary beneficial when crowdsourced predictions are used for decision-
making. The Access Path model distinguishes the noise that comes from the access
paths from the noise induced by human error. This design property allows the model
to make accurate interpretations of crowd worker labels even in the presence of noise.
In addition, the model is robust to high data sparsity and worker anonymity, which is
an expected and standard phenomena in crowdsourcing.

The access path notion together with the proposed model are generic tools that can be
adapted to a large number of crowdsourcing problems that involve label aggregation.
Current crowdsourcing platforms can make use of the model by allowing requesters to
define their own access path design or by suggesting potential access paths based on
historical data. In our work, we explored the idea of access paths applicable to individ-
ual tasks. Given ample data from such platforms, it is interesting to also understand
how the access path design can be transferred and reused between di�erent problems
executed within the same platform and by the same crowd.
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3
Crowd Access Optimization

3.1 Overview

Due to the large scale of datasets required to train machine learning models, collecting
label training data is expensive both in terms of worker e�ort and monetary cost.
For example, the creation of the ImageNet dataset [38] as an ontology of images for
knowledge bases, required the crowdsourced mapping of 3.2 million images to 5247
synsets. Moreover, due to subjectivity or human error, the labeling process is usually
repetitive, which means that the same label is acquired multiple times from di�erent
workers. Therefore, crowd access optimization techniques are crucial for obtaining the
best quality for the cost.

In the general context, all optimization techniques aim at building appropriate budget
allocation schemes which for a given budget select the set of crowdsourcing workers
that are expected to provide the best answers for the task. Therefore, budget allocation
is tightly dependent on previous knowledge about the expertise of crowdworkers as a
prime criterion for worker selection. Previous work on budget allocation [75, 61, 151]
relies on inidividually learning the expertise of each worker from previous data and
then leveraging this information for future optimization.

In our work, we emphasize that crowd access optimization techniques face similar
challenges as label aggregation, namely worker answer correlation and data sparsity as
presented in Chapter 2. In label aggregation, these challenges may prevent aggregation
models to provide high-quality predictions. In crowd access optimization, the same
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challenges may lead to expensive data collection. We illustrate these challenges in
the context of Example 2.1. In this example, parents may have a budget constraint
B to find an answer to their question and need to know how many di�erent people
to ask from each access path. Every access path brings a di�erent perspective to
the problem. If parents would spend the whole budget asking people from the same
access path, this strategy would not provide new insights as the acquired answers are
correlated. Instead, we show that optimal strategies distribute the budget across a
diverse set of access paths. Moreover, as we explain in Chapter 2, data sparsity a�ects
the accuracy of worker expertise profiling. As most budget allocation techniques rely
on these profiles, the budget may be assigned to workers which appear to be experts
based on unsu�cient data.

Since the Access Path model can e�ciently handle both these challenges, we propose an
optimization scheme based on the same model, which aims at finding the best budget
distribution across access paths. This implies that we shift our focus from individual
worker selection to access path selection. A crowd access strategy is defined by the
notion of an access plan, which defines how many di�erent workers to ask within the
same access path. In order to find optimal access plans for a given budget constraint,
the proposed scheme uses an information-theoretic objective, capturing the reduction
in uncertainty. We prove that our objective is submodular, allowing us to leverage
highly e�cient greedy algorithms with strong guarantees.

3.2 Related work

Crowd access optimization. The problem of finding the best crowd access plan
is similar to expert selection in decision-making. However, di�erently from expert
selection, for crowd access optimization, the assumption that the selected individuals
will answer no longer holds, even in paid forms of crowdsourcing. Previous studies
based on this assumption are [59, 73]. The proposed techniques are e�ective for task
recommendation, spam detection, and performance evaluation, but they can easily run
into situations of low participation and high sparsity.

Due to the current limitations of crowdsourcing platforms with respect to worker pric-
ing and task design, most of the budget allocation techniques focus on homogeneous
tasks. However, inherent heterogeneity in task batches can be exploited in order to
customize crowd access according to the task types [152, 52]. We have also explored
the applicability of the Access Path model for heterogeneous tasks in [125]. This re-
cent work demonstrates that (i) the model can be extended to express the relationship
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between access paths and task groupings, and (ii) the extended model can be further
exploited to perform task-dependent budget allocation. However, the work also em-
phasizes that these extensions are beneficial only in the presence of heterogeneous task
groups previously defined by the task designer.

In our work, we look at optimization techniques which aim at providing the best quality
for a given budget constraint. Another interesting optimization problem is finding the
least expensive crowd access strategy that satisfies a required quality constraint/target.
A relevant work that tackles this problem is presented in [74]. The authors show that
it is possible to ensure required correctness constraints with a probability 1 ≠ ‘, if the
task redundancy is at least O((K/q) log(K/‘)), where K is the task cardinality and q

defines the quality of the crowd equivalent to the probability of picking a non-spammer
worker. The work however only applies to individual worker models and it would be
interesting to understand how these results can be adapted to group-based models.

Another complementary line of work related to crowd access optimization is the design
of e�cient stopping conditions in crowdsourcing. Oftentimes, predefined quality con-
straints cannot be guaranteed due to task di�culty or high worker disagreement. As a
result, it is beneficial to understand whether further crowd accesses can still improve
the prediction quality. In [7], this problem is commonly solved by introducing stopping
rules in the crowdsourcing process which adaptively estimate the additional benefit of
collecting new labels.

Query optimization and access path selection. The crowd access optimization
problem that we study in this thesis, was inspired by the use case of query optimiza-
tion in crowdsourced databases. Crowdsourced databases extend the functionalities
of conventional database systems to support crowd-like information sources. Quality
assurance and crowd access optimization are envisioned as part of the query optimizer,
which in this special case needs to estimate the query plans not only according to the
cost but also to their accuracy and latency. Most of the previous work [50, 106, 122, 46]
focuses on building declarative query languages with particular support for processing
crowdsourced data. The proposed optimizers take care of (i) defining the order of exe-
cution of operators within query plans and (ii) mapping the crowdsourcable operators
to micro-tasks, while the quality of the results is then ensured by requiring a minimum
amount of responses. In our work, we propose a complementary approach by first
ensuring the quality of each single database operator executed by the crowd.

Although the idea of access paths is crucial to query optimization for relational databases
[136], in crowdsourced databases this abstraction is not fully explored. One of the few
studies on this topic is presented in Deco [122]. Deco uses fetch rules to define how
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data can be obtained either from humans or other external sources. In this regard, our
access path concept is analoguous to a fetch rule with an important distinction that
an access path is associated with extra knowledge (error and cost) which enables the
database optimizer to use them for quality assurance.

3.3 Problem definition: Access path selection

We now formulate the problem of crowd access optimization in the context of access
path selection under budget constraints. Note that in this definition, we assume that
the requester has already trained an Access Path model by learning its parameters from
previous data. For cost optimization concerns, the requester is interested in optimally
distributing the available budget across access paths to maximize the quality of new
predictions from the model.

Problem 3.1 (Access Path Selection). Given a task represented by a random
variable Y , that can be solved by the crowd following N di�erent access paths denoted
with the random variables Z1, . . . , Z

N

, using a maximum budget B, the access path
selection problem is to find the best possible access plan S

best

that leads to a high-quality
prediction of the outcome of Y .

An access plan defines how many di�erent people are chosen to complete the task from
each access path. In Example 2.1, the access plan S = [1, 2, 3] asks one pediatrician,
two logopedists and three other parents. Each access plan is associated with a cost
c(S) and quality q(S). For example, c(S) = q3

i=1 c
i

· S[i] = $80, where c
i

is the cost
of getting one single answer through access path Z

i

. In these terms, the access path
selection problem can be generally formulated as:

S
best

= arg max
SœS

q(S) s.t.
Nÿ

i=1
c

i

· S[i] Æ B (3.1)

This knapsack maximization problem is tractable for modular objective functions (e.g.
summing the quality of access plans) but is NP-Hard even for submodular functions
[79]. Therefore, designing bounded and e�cient approximation schemes is necessary
to implement realistic crowd access optimization.

The choice of the quality objective function q(S) is crucial to the problem. Since the
crowd responses and the ground truth are not known ahead of time in crowdsourcing
applications, the quality objective should evaluate the quality of predictions before the
crowd access takes place. As explained in Section 3.5, we use information gain IG(Y ; S)
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as a quality objective q(S) because it naturally combines access path accuracy and
diversity [68, 85, 95]. Moreover, if applied in a suitably defined probabilistic model as
the APM, information gain can explore diversity to provide realistic confidence values
for predictions. These properties comply with the quality criteria that we define in
Problem 2.1.

Motivation for Access Path Selection. Access path selection is essential for ob-
taining a good prediction as can be seen in the following example where di�erent access
plans provide di�erent expected accuracy for the same budget. This example reflects
our later experimental setup in the context of multiple predictions.

Example 3.1. medicalQA is a dataset of health-related questions (similar to the one
in Example 2.1). Suppose the answer of each question is crowdsourced through two
access paths Z1 and Z2, e.g. a group of doctors and a group of patients. There are four
task solvers available in each access path. For simplicity, let us also assume that the
access paths have equal cost, c1 = c2 = 1. Table 3.1 shows a set of possible answers that
are collected for each of the three questions currently in the dataset. Note that these
answers and the ground truth are not known before requesting an answer on a certain
access path but are shown here for illustration purposes only.

Question Z1 Z2

Q1 (ground truth = 0) 0 0 0 0 1 1 1 1
Q2 (ground truth = 0) 1 1 1 0 0 0 0 1
Q3 (ground truth = 1) 1 1 1 1 0 0 0 0

Table 3.1: Set of answers collected from two access paths for Example 3.1.

Imagine now that a user has a budget constraint B = 3 to solve each question and
wants to do so for all questions in the dataset. There are three strategies that the user
can follow for this purpose:

S1: Three answers are randomly selected from Z1 and Z2.
S2: Three answers are randomly selected from Z1 which is expected to be more accurate

than Z2.
S3: The answers are selected from a predefined combination of Z1 and Z2. For illus-

tration, we will look at the access plan [2,1] that randomly selects two answers
from the first access path and one from the second.

To compare these strategies, we calculate the expected accuracy for each strategy if
majority vote is used for aggregation. Accuracy is defined as the percentage of questions
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answered correctly and for this example it can take values from {1.0, 2/3, 1/3, 0.0}.
Using the sample votes provided above, the probability of each strategy to correctly
answer each of the questions is shown in Table 3.2. Next, Table 3.3 shows the overall
expected accuracy and the detailed accuracy estimates per question and strategy.

S1 S2 S3

Q1 1/2 1.0 1.0
Q2 1/2 0.0 3/8
Q3 1/2 1.0 1.0

Table 3.2: Probability of each strategy to correctly solve each of the questions.

a = 1.0 a = 2/3 a = 1/3 a = 0.0 E[S]
S1 1/8 3/8 3/8 0.0 0.5
S2 0.0 1.0 0.0 0.0 0.67
S3 3/8 5/8 0.0 0.0 0.79

Table 3.3: Expected accuracy of each strategy.

As the example shows, access path selection is neither trivial nor simple. Here, asking
three di�erent workers on a single access path with a higher accuracy does not nec-
essarily guarantee good result quality (see Q2). Instead, investing part of the budget
on workers from a di�erent access path can e�ectively leverage diversity and improve
output quality. We address crowd access optimization over di�erent access paths in
Section 3.5.

3.4 Information Gain as a quality measure

The first step of crowd access optimization is to estimate the quality of access plans
before they are executed and then use this as an objective function. One attempt
might be to quantify the accuracy of individual access paths in isolation, and choose
an objective function that prefers the selection of more accurate access paths. However,
due to statistical dependencies of responses within an access path (e.g., correlated errors
in the workers’ responses), there is diminishing returns in repeatedly selecting a single
access path. To counter this e�ect, an alternative would be to define the quality of an
access plan as a measure of diversity (e.g., as proposed in [66]). For example, we might
want to prefer to equally distribute the budget across access paths. However, some
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access paths may be very uninformative / inaccurate, and optimizing diversity alone
might waste budget. Instead, we use the joint information gain IG(Y ; S) of the task
variable Y in our model and an access plan S as a measurement of plan quality as well
as an objective function for our optimization scheme. Formally, this is is defined as:

IG(Y ; S) = H(Y ) ≠ H(Y |S) (3.2)

In Equation 3.2, an access plan S determines how many variables X to choose from each
access path Z

i

. IG(Y ; S) measures the reduction in entropy (as measure of uncertainty)
of the task variable Y after an access plan S is observed. At the beginning, selecting
from the most accurate access paths provides the highest uncertainty reduction. Nev-
ertheless, if better access paths are relatively exhausted (i.e., accessed relatively often),
asking one more question in less accurate ones reduces the entropy more than contin-
uing to ask on paths that were previously explored. This situation reflects the way
how information gain explores diversity and increases the confidence of the prediction
if evidence is retrieved from independent channels. Based on this analysis, information
gain naturally trades accuracy and diversity. While plans with high information gain
do exhibit diversity, this is only a means for achieving high predictive performance of
the complete access plan. This measure is widely used in Bayesian experimental design
aiming to optimally design experiments under uncertainty. In targeted crowdsourcing
the concept has been recently applied [68, 95].

3.4.1 Information gain computation

The computation of the conditional entropy H(Y |S) as part of information gain in
Equation 3.2 is a di�cult problem, as full calculation requires enumerating all pos-
sible instantiations of the plan with votes. Formally, the conditional entropy can be
computed as:

H(Y |S) =
ÿ

yœY,xœXS

p(x, y) log p(x)
p(x, y) (3.3)

X
S

refers to all the possible assignments that votes can take according to plan S. We
choose to follow the sampling approach presented in [85] which randomly generates
samples satisfying the access plan according to our Bayesian Network model. The final
conditional entropy will then be the average value of the conditional entropies of the
generated samples. For a total number of G samples generated according to a plan S,
the whole computation is performed as in Equation 3.4.

H(Y |S) = 1
G

Gÿ

g=1
H(Y |x

g

) = ≠ 1
G

Gÿ

g=1

ÿ

yœY

p(y|x
g

) log p(y|x
g

) (3.4)
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This method is known to provide absolute error guarantees for any desired level of con-
fidence if enough samples are generated. Moreover, it runs in polynomial time if sam-
pling and the probabilistic inference from the network can also be done in polynomial
time. Both conditions are satisfied by our model due to the tree-shaped configuration
of the Bayesian Network. They also hold true for the Naïve Bayes baselines described
in Section 2.5 as simpler tree versions the APM. Consequently, the overall computa-
tional cost of computing information gain on the APM is O(GNM). Generating a
larger number of samples guarantees a better approximation.

3.4.2 Submodularity of information gain

Next, we derive the submodularity property of our objective function based on in-
formation gain in Equation 3.2. The property will then be leveraged by the greedy
optimization scheme in proving constant factor approximation bounds. A submodular
function is a function that satisfies the law of diminishing returns which means that
the marginal gain of the function decreases while incrementally adding more elements
to the input set.

Let V be a finite set. A set function F : 2V æ R is submodular if F (S fi {v}) ≠ F (S) Ø
F (S Õ fi {v}) ≠ F (S Õ) for all S ™ S Õ ™ V , v ”œ S Õ. For our model, this intuitively means
that collecting a new vote from the crowd adds more information when few votes have
been acquired rather than when many of them have already been collected. While
information gain is non-decreasing and non-negative, it may not be submodular for
a general Bayesian Network [85]. Information gain can be shown to be submodular
for the Naïve Bayes Model for Access Paths (NBAP) in Figure 2.3 by applying the
results from [85]. Here, we prove its submodularity property for the Bayesian Network
of APM shown in Figure 2.4. Theorem 1 formally states the result and the full proof
is given in Appendix A.1. Below we describe a short sketch of the proof.

Theorem 1. The objective function based on information gain in Equation 3.2 for the
Bayesian Network Model for Access Paths (APM) is submodular.

Sketch of Theorem 1. In order to prove Theorem 1, we consider a generic Bayesian
Network Model for Access Paths (APM) with N access paths, where each access path
is associated with M possible votes from workers. To prove submodularity of the
objective function, we consider two sets (plans) S µ S Õ where S Õ = S fi {v

j

} , i.e., the
plan S Õ containing one additional vote from access path j compared to plan S. Then,
we consider adding a vote v

i

from access path i and we prove the diminishing return
property of adding v

i

to S Õ compared to adding to S. The proof considers two cases.
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Algorithm 1. Greedy Crowd Access Optimization
1 Input: budget B

2 Output: best plan Sbest

3 Initialization: Sbest =ÿ, b = 0
4 while (÷i s.t. b Æ c

i

) do
5 U

best

= 0
6 for i = 1 to N do
7 S

pure

= PurePlan(i)
8 if c

i

Æ B ≠ b then
9 �

IG

= IG(Y ; S
best

fi S
pure

) ≠ IG(Y, S
best

)
10 if �IG

ci
> U

best

then
11 U

best

= �IG
ci

12 S
max

= S
best

fi S
pure

13 S
best

= S
max

14 b = cost(S
best

)

15 return S
best

When v
i

and v
j

belong to di�erent access paths, i.e., i ”= j, the proof follows by using
the property of conditional independence of votes from di�erent access paths given Y

and using the “information never hurts" principle [85]. The case of v
i

and v
j

belonging
to the same access path, i.e., i = j, is technically more involved. For this case, we
reduce the network to an equivalent network which contains only one access path Z

i

and then use the “data processing inequality" principle [18, 31].

This theoretical result is of generic interest for other applications and a step forward
in proving the submodularity of information gain for more generic Bayesian networks.

3.5 Access path selection

3.5.1 Greedy approximation scheme

After having determined the joint information gain as an appropriate quality measure
for a plan, the crowd access optimization problem is to compute:

S
best

= arg max
SœS

IG(Y ; S) s.t.
Nÿ

i=1
c

i

· S[i] Æ B (3.5)
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where S is the set of all plans. An exhaustive search would consider |S| = r
N

i=1
B

ci
plans

out of which the ones that are not feasible have to be eleminated. Afterwards, from
all the feasible plans, the one with the maximum information gain has to be selected.
Nevertheless, e�cient approximation schemes can be constructed given the similarity
of the problem with analogous maximization problems for submodular functions under
budget constraints [79].
Based on the submodular and non-decreasing properties of information gain we devise
a greedy technique as illustrated in Algorithm 1 that incrementally finds a local ap-
proximation for the best plan. In each step, the algorithm evaluates the benefit-cost
ratio U between the marginal information gain and cost for all possible access paths
feasible to access. The marginal information gain is the improvement of information
gain by adding to the current best plan one pure vote from one access path. Function
PurePlan(i) creates a plan that contains a single vote from the i-th access path. In the
worst case, when all access paths have unit cost, the computational complexity of the
algorithm is O(GN2MB) which also includes the computation of information gain as
in Section 3.4.1.
Except the greedy technique, we also studied a dynamic programming optimization
scheme on the same objective. Although dynamic programming produces good ap-
proximate plans that are not statistically di�erent from those selected by greedy opti-
mization in practice, it does not improve the theoretical guarantees, and has a higher
complexity.

3.5.2 Greedy approximation with varying costs

We now exploit the submodularity properties of the information gain in our consid-
ered Bayesian network model to prove theoretical bounds of the greedy optimization
scheme. For the simple case of unit costs across all access paths, the greedy selection
optimization scheme in Algorithm 1 guarantees a utility of at least (1 ≠ 1

e

) (= 0.63)
times the one obtained by optimal selection denoted by Opt [112]. This result is tight
under reasonable complexity assumptions [48]. However, the greedy selection scheme
fails to provide approximation guarantees for the general setting of varying costs of
access paths [79]. By using techniques of partial enumeration combined with greedy
selection or running multiple variants of the selection scheme can make it competitive
[146, 85], however such an algorithm may not be practically useful and feasible because
of overhead of running multiple iterations of the algorithm.
However, we exploit the following realistic property about the costs of the access paths
and allocated budget to prove strong theoretical guarantees about our Algorithm 1. We
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assume that the allocated budget is large enough compared to the costs of the access
paths. Formally stating, we assume that the cost of any access path c

i

is bounded away
from total budget B by factor “ , i.e., c

i

Æ “ · B ’i œ {1, . . . , N}, where “ œ (0, 1). We
state the theoretical guarantees of the Algorithm 1 in Theorem 2 below. The complete
proof is given in Appendix A.2.

Theorem 2. The Greedy optimization in Algorithm 1 achieves a utility of at least3
1≠ 1

e

(1≠“)

4
times that obtained by the optimal plan Opt Hereby, “ denotes the maximal

ratio of the cost of any access path c
i

’i œ {1, . . . , N} and the allocated budget B.

For instance, for “ = 0.5, the Algorithm 1 achieves a utility of at least 0.39 times that
obtained by Opt, while the approximation ratio for “ = 0.10 is 0.59.

Sketch of Theorem 2. We follow the structure of the proof from [79, 146]. The key idea
is to use the fact that budget spent by the algorithm at the end of execution when it
can not add an element to the solution is at least (B ≠ max

i™[1,...,N ] c
i

), which is lower-
bounded by B(1 ≠ “). This lower bound on the spent budget, along with the fact that
the elements are picked greedily at every iteration leads to the desired bounds.

These results are of practical importance in many other applications as the assumption
of non-unit but bounded costs w.r.t. budget often holds in realistic settings.

3.6 Experimental Evaluation

In this set of experiments, we evaluate the e�ciency of the proposed greedy approxima-
tion scheme to accurately choose plans of high quality that take diversity into account.
For a fair comparison, we adapted the same scheme to the other baselines NBI (Naïve
Bayes Individual in Section 2.4) and NBAP (Naïve Bayes for Access Paths in Sec-
tion 2.5.2.1). We will use the following accronyms for the crowd access strategies:
OPT (optimal selection), GREEDY (Greedy Approximation), RND (random selec-
tion), BEST (select votes from the best access path w.r.t. to accuracy), and EQUAL
(select the same number of votes from each access path to increase diversity).

3.6.1 Greedy approximation and diversity management

The goal of this experiment is to answer the questions: “How close is the greedy ap-
proximation to the optimal theoretical solution?" and “How does information gain as a
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Figure 3.1: Information gain and budget distribution for ProbabilitySports
(year=2002).

theoretical measure of uncertainty reduction exploit diversity?”. Figure 3.1 shows the
development of information gain with varying budget for the optimal plan, the greedily
approximated plan, the equal distribution plan, and three pure plans that take votes
only from one access path. The quality of GREEDY is very close to the optimal plan.
The third access path in ProbabilitySports (AP3, containing users with more than
average relative score) reaches the highest information gain compared to the others.
Nevertheless, its quality is saturated for higher budget values which encourages the
optimization scheme to select other access paths as well. For example, if the bud-
get constraint is B = 40, the optimal plan is [2,4,6]. For the same experiment, the
NBAP model with the same optimization strategy selects the third access path only.
Also, we notice that the EQUAL plan does not reach optimal values of information
gain although it maximizes for diversity. This happens because part of the budget is
misused while querying uninformative access paths. As we further show in the next
experiments, the quality of predictions can be further improved if diversity is carefully
planned by using information gain as an objective function. Note that the budget for
experiments in this section does not always correspond to the number of votes because
of the costs of the access paths are non-unit.
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Figure 3.2: Crowd access optimization results for varying budget in CUB-200.

3.6.2 Optimization with budget constraints

This experiment combines together both the model and the optimization technique by
following these four steps:

Step 1. Learn the model from historical training data.

Step 2. Find the best access plan using the learned model.

Step 3. Randomly choose votes from the testing data.

Step 4. Aggregate the chosen votes using the learned model.

The main question we want to answer here is: “What is the practical benefit of greedy
optimization on APM w.r.t. accuracy and negative log-likelihood?" Figures 3.2 and
3.3 show results for CUB-200 and ProbabilitySports datasets. We discuss MedicalQA
results in detail in the next experiment.

CUB-200.(Figure 3.2) For this dataset where the division of access paths is based
on attributes, the discrepancy between NBAP and the APM is higher. As mentioned
earlier, it is not possible to make a proper comparison with neither NBI nor MV as
votes in the dataset do not directly answer on the final task. In practice, the search
space of the optimization scheme in this data set is large due to the high number of
access paths which results to many more feasible access plans. Since not all of the
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Figure 3.3: Crowd access optimization results for varying budget in ProbabilitySports
(year = 2002).

attributes are informative for all tasks, EQUAL plans do not optimize for quality, their
performance is significantly worse. We also plan to study the impact of feature selection
for this specific setting.

ProbabilitySports.(Figure 3.3) Access Path based models (APM and NBAP) over-
perform MV and NBI. Since the plans for NBI target concrete users in the competition,
the accuracy for budget values less than 10 is low as not all targeted users voted for
all the events. Thus, we also present the performance of NBI with random access of
votes (NBI+RND). In this dataset and configuration, access paths are inherently de-
signed based on the accuracy of workers. This is why EQUAL plans do not o�er a
clear improvement while NBAP is advantaged in terms of accuracy by its preference
to select the most accurate access paths only. APM is nevertheless more stable when
both accuracy and negative log-likelihood are considered.
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Figure 3.4: Diversity impact on optimization. Varying access path correlation in
MedicalQA.

3.6.3 Impact of diversity

This experiment is designed to study the impact of diversity and conditional depen-
dence on crowd access optimization and finally answer the question: “How does greedy
optimization on APM handle diversity?”. One form of such dependency is within ac-
cess path correlation. If this correlation holds, workers agree on the same answer.
In contrast, if there is no dependency, the answer of a worker does not imply any
information on the expected answer of another worker within the same access path.
We experimented by varying the shared dependency within the access path as follows:
Given a certain probability p, we decide whether a vote should follow the majority vote
of existing answers in the same access path. For example, for p = 0.4, 40% of the votes
will follow the majority vote decision of the previous workers and the other 60% will
be withdrawn from the real crowd votes.

As shown in Figure 3.4, the quality of optimization drops for high dependency values
but the Access Path Model is more robust to this. NBAP instead, due to overconfi-
dence, accumulates all votes into a single access path which dramatically penalizes its
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Figure 3.5: Diversity impact on optimization. Varying budget in MedicalQA.

quality. APM+BEST applies APM to votes selected from supposedly the access path
with the best accuracy, in our case forums with doctors’ answers. Results show that for
p > 0.2, it is preferable to not only select from the best access path but to distribute
the budget according to the GREEDY scheme. It is interesting to see that due to high
dependency, majority vote also becomes overconfident.

Furthermore, in Figure 3.5 we show results from the same experiment for p = 0.4 and
varying budget. APM+GREEDY outperforms all other methods reaching a stable
quality at B = 30. For stronger dependence values this stability is reached earlier which
motivates the need to develop techniques that can dynamically stop the crowdsourcing
process if no new insights are possible. EQUAL plans result to perform slightly worse
than GREEDY w.r.t. accuracy although they are fairly applied over APM.
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3.7 Summary

This chapter presented a crowd access optimization strategy specifically designed to
collect new labels for making new predictions with the Access Path model. The strat-
egy adapts the greedy approximation scheme for maximizing monotone and increasing
submodular set functions. In this context, the scheme provides an approximate so-
lution to the access path selection problem, which plans ahead how many di�erent
workers to access within the same access path. Due to the ability of the APM to
model correlations within access paths, maximizing information gain for this model
prevents redundant crowd accesses by exploring crowd diversity across access paths.
Therefore, the resulting access plans are a mixed combination of various access paths
according to the amount of information gain that they provide on the prediction.

While the Access Path model provides a practical tool for interpreting incoming crowd
answers to make new predictions, the optimization strategy that we present here com-
plements this tool for applications with budget limitations. In these applications,
this strategy would guide crowd requesters to retrieve answers from the right set of
crowd workers. Although the task allocation infrastructure in current crowdsourcing
platforms is limited, we nevertheless applied these ideas in practice by implementing
back-end libraries, which can perform online mapping of workers to tasks. Integrating
such libraries within platforms would support requesters in seamless processes of crowd
access optimization and label aggregation.
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4
Budgeted Learning and Feature

Selection

4.1 Overview

In previous chapters, we looked at quality control and optimization problems that
raise while making new predictions from crowdsourced data. For this setting, we
assumed that prediction models are trained with ample historical data. However,
as the performance of machine learning algorithms crucially depends on the quality
of the training sets, acquiring the most informative training data in a cost-e�ective
way is fundamental to building good prediction models. In this chapter, we study
feature-based classification problems for which the feature labels are unknown in the
training phase, which is a commonly encountered setting in crowdsourcing [164]. The
data acquisition algorithm can acquire the label of a desired feature for an instance
and each such label has a fixed cost. While acquiring the most informative data for the
problem, we consider two types of budget constraints, often present in crowdsourcing
but also in other applications for medical diagnosis and sensor data aggregation.

Budget constraints at training phase Budget constraints at the training phase
limit the total cost of training data acquisition by the algorithm. The end goal is
to acquire the most informative labels to learn a classifier with low generalization
error. This notion of budget constraint is di�erent the one usually considered
in active learning [137]. In active learning, the feature labels for all training in-
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stances are known and the budget constraint bounds the cost of acquiring class
labels. Also, the data acquisition is more fine-grained in our settings since the
algorithm can pick any specific training instance and acquire only a desired set of
features. In practical terms, budget constraints at the training phase map to the
amount of budget that can be used in order to train a classifier before employing
it to classify new instances.

Budget constraints at testing phase To perform classification at the testing phase,
the algorithm again needs to acquire the feature labels for the test instance. This
is often the case in many classification problems where the feature values need
to be collected at a given cost for every new instance and can not be computed
automatically. For example, in crowdsourcing prediction markets, medical di-
agnosis, and sensor data aggregation, new predictions in the testing phase are
mostly based on newly acquired data for the specific instance that needs to be
classified.

This naturally leads to a budget constraint at the testing phase, which in practice
bounds the cost of making a prediction, often tackled implicitly via feature selec-
tion techniques. However, current techniques for budgeted learning and feature
selection (as well as the respective budget constraints) have been studied and
designed independently from each other. Several methods apply feature selection
strategies only after the labels have been collected for all features during the
training phase, which can be prohibitively expensive especially if the number of
initial candidate features is high. Then, after learning the predictive parameters
of all features, the least informative ones are discarded to reduce the cost of pre-
dictions at the testing phase [58, 57, 154]. Here, we consider both constraints
simultaneously while learning a classifier.

The problem of learning with budget constraints at the training phase has been for-
merly studied in a noise-free setting for learning Naïve Bayes classifiers [41, 72, 103].
However, the proposed algorithms assume that the feature labels are noise-free, which
is an unrealistic assumption for real-world applications. Hence, it is neccessary to sup-
port more robust learning models for handling noise, which further exacerbates the
challenges arising from the above mentioned budget constraints. To the best of our
knowledge, this is the first work that considers both budget constraints while learning
a classifier, in both the noise-free and noisy setting.

Figure 4.1 shows an example of making predictions from crowdsourced feature labels
under budget constraints.
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Figure 4.1: Example of feature-based crowdsourced predictions.

Example 4.1. Feature-based Crowdsourced Predictions

Imagine a company that produces various types of cameras and wants to implement a
new strategy for predicting the overall success of its new products based on the customer
evaluation of di�erent product features: price for value, menu usability etc. The sales
team collects this data via (paid) customer surveys on specific features. However, long
surveys are cumbersome and time-consuming for the customers to complete. Moreover,
some of the candidate features may be redundant / uninformative, and the evaluation
from the customers may be noisy due to subjectivity or human error.

Given that there is no previous data available, the company: (i) has a limited budget
for collecting data to train a model from its current products ( i.e. training budget
constraint), and (ii) prefers to have only a limited number of features in the surveys
for the future products ( i.e. testing budget constraint). Therefore, the questions of the
sales team for this problem are:

Q1. What data should be collected in order to build a good training model?

Q2. Which features should be included in the final survey for predicting the customer
satisfaction from new products.

Similar questions arise in numerous other problems of making predictions based on
crowdsourced feature labels. Analogous applications include medical diagnosis and
sensor data aggregation, where the budget constraints respectively relate to the cost
of medical tests or sensor measurements.

We propose a novel learning algorithm, B-Leafs, to jointly tackle the problems of
Budgeted Learning and Feature Selection for training and testing classifiers that are
robust to noisy feature labels. B-Leafs operates in a Bayesian framework, and main-
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tains posterior distributions over all model parameters, thereby enabling us to capture
the uncertainty in the model parameters about individual features. The algorithm
makes greedy decisions for selecting the next feature label to acquire by exploiting the
submodularity of information gain from a feature, conditioned on the current state of
learning. In addition, it e�ectively balances exploration and exploitation by employing
Thompson sampling [148].

4.2 Related work

Learning under budget constraints. Budgeted learning has previously been stud-
ied in the context of learning feature-based Naïve Bayes classifiers [41, 40, 103] under
fixed budget constraints. The problem is however discussed orthogonal to feature se-
lection and assumes accurate feature labels. [72] formally defines the joint problem but
the proposed algorithms first learn the parameters of the whole candidate set and then
adaptively select features via a bounded decision tree. While this adaptive approach
improves the classification accuracy, it requires a significant amount of data for build-
ing a plausible decision tree. Recently, [89] studies the optimization of the computation
time of feature extraction during training.

Another line of research is related to best-arm identification under budget constraints
[100, 42]. Nevertheless, these methods are not designed for learning classifiers but
rather for making a bounded selection of actions that maximize the joint reward. Ban-
dit algorithms have been lately applied in the crowdsourcing setting [20, 177, 150, 151,
8] for worker selection purposes in the context of expert crowdsourcing. Di�erently
from previous work on worker selection, the goal here is to select workers while learning
about their expertise. Our work addresses similar exploration-exploitation trade-o�s
related to feature selection rather than worker selection for training and testing classi-
fiers in a cost-e�cient way. The main di�erence between the two problems is the fact
that for the same example a worker can be accessed only once while a feature can be
labeled multiple times from various workers. Both problems are however complemen-
tary to each other and integrating both into a single framework is an important avenue
for future work.

Yet another optimization aspect relevant to crowdsourcing is related to applications
where the task label is unknown both at training and testing time and is acquired at
a given cost. This problem has been studied in recent work [98, 99] in the context
of (re)active learning in crowdsourcing where the task labels are unknown but the
feature labels are cost-free. Balancing this trade-o� for the generic case of unknown
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task and feature labels would combine related aspects of active learning and budgeted
learning. Although the key ideas of B-Leafs (i.e. model sampling, credibility check,
greedy feature selection) are valid even for these applications, the algorithm still needs
to consider an additional cost-quality trade-o� between labeling features for a new
instance or labeling features for instances that are already in the dataset.

Learning from crowdsourced data. The rapid advances in crowdsourcing appli-
cations created new opportunities for the community to collect and annotate data.
However, crowdsourcing processes for large-scale data acquisition are expensive and
prone to noisy annotations. This motivated the need for applying active learning tech-
niques [98, 110, 175] for reducing the cost of data collection. These approaches mainly
focus on actively selecting tasks and workers and assume that feature labels are cost-
free. The closest study to our method is presented by [134]. The authors propose a
traditional Thompson Sampling algorithm for selecting observations from noisy sensors.
As we show in the experimental section, the algorithm requires a longer exploration
phase, which increases the cost of selecting the best features.

In this work, we use the Access Path model for learning from crowdsourced data.
Similar approaches group workers [156] and tasks [71] to overcome the challenges of
data sparsity and task-dependent biases. Furthermore, other worker selection and
crowd access optimization strategies [59, 73] can be leveraged to achieve a fine-grained
optimization customized to the pool of crowd workers.

Finally, recent work has focused on crowdsourcing feature engineering and discovery
for machine learning classifiers [178, 29, 143]. Our ideas are complementary to feature
discovery as they can be applied to refine the learning model after obtaining a viable
candidate feature set from the crowd.

4.3 Problem definition: Learning and feature selec-
tion under budget constraints

The problem of budgeted learning and feature selecion is tied to the specific classi-
fication model that needs to be trained. The goal is to learn a good classifier on a
given budget. This section introduces the two models based on which we build our
algorithm: Naïve Bayes model (Section 2.4), and Access Path model (Section 2.5) as
a representative of models that handle crowdsourcing errors. Later, we formally define
our problem in the context of these two models.
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Figure 4.2: The Naïve Bayes model — plate representation.

4.3.1 Feature-based classification models

Naïve Bayes model. Figure 4.2 shows the plate representation of a Naïve Bayes
classifier. Note that this is the same model as the one we use in Chapters 2 and 3,
shown in a graphical representation in Figure 2.2. In this chapter, we make use of the
plate representation in order to explain the details of our algorithm.

Each training instance in the Naïve Bayes model is characterized by a class / task
variable Y taking values in the domain Y , and a set of N feature variables X =
{X1, . . . , X

N

}. The Naïve Bayes model considers a noise-free setting, where each fea-
ture label is observed exactly once and its value is considered to be correct. For further
details on learning and inference for Naïve Bayes, we refer the reader to Section 2.4.

◊
y

and ◊
yi

denote the underlying probability distributions for the task variable and the
feature variables respectively. In this work, we will deal with categorical tasks and
features. Therefore, ◊

y

and ◊
yi

are both modeled as Dirichlet distributions, where –

and —
yi

are the corresponding hyperparameters. We assume uniform hyperparameters
on all the variables. The goal of training in this model is to learn the conditional
probabilities of each feature given the task, i.e. p(X

i

|Y = y, —
yi

, D) where D is the set
of feature labels that have been collected so far. These probabilities correspond to the
maximum a posteriori (MAP) estimates [104] and can be computed exactly when Y is
also fully observable (i.e. there exists a ground truth for the final task). Otherwise, al-
ternative expectation-maximization (EM) techniques [37] can be employed to estimate
parameters. Predictions are then performed via Bayesian Inference.

The main assumption in this model is the conditional independence of the feature
variables given the task. The assumption may not always hold true due to possible
correlations between features. This can lead to Naïve Bayes predictions being overcon-
fident when features are not carefully engineered beforehand which further motivates
the need for feature selection.

Access Path model. As mentioned earlier, the Naïve Bayes model handles a single
label per feature for a given instance which is considered to be correct. In crowdsourcing
settings where the labels acquired from the workers may be noisy, it is common to ask

64



4.3. Problem definition: Learning and feature selection under budget constraints

–

◊y y

zi

◊yi —
yi

xij ◊zij “
zij

j œ [1, . . . , W ] workers

i œ [1, . . . , N ] features

Figure 4.3: The Access Path model — plate representation.

the same question / label to multiple workers to ensure quality. In order to support
such noisy labels, we adapt the Access Path model as shown in Figure 4.3 — a natural
extension to Naïve Bayes while being able to handle multiple (possibly noisy) labels
per feature. This design was originally proposed to represent groups of correlated
worker answers (i.e. access paths), with the goal of optimizing the prediction costs. In
our work, we leverage this model by adapting the notion of worker groups to represent
classification features. For further details on learning and inference for the Access Path
model, we refer the reader to Section 2.5.

The main benefit of this model is that it decouples the noise / information that inher-
ently comes with the features (i.e. p(Z

i

|Y = y, —
yi

, D)) from the noise / information
that is further introduced by the workers (i.e. p(X

ij

|Z
i

= z, “
zij

, D)) by introducing a
middle layer of latent variables Z

i

for i œ 1 . . . N . Similar to Dawid and Skene (2015),
learning is performed via an expectation-maximization (EM) algorithm [37], while in-
ference during the prediction step marginalizes over the latent feature variables. Due
to the high sparsity of worker participation, this model shares the parameters for the
workers within the same feature, which was shown to improve the accuracy of pre-
dictions. We follow the same guideline in our experiments as our algorithm runs in
training time where the data sparsity is even higher. Nevertheless, if it is known that
some of the workers have a su�cient participation to accurately estimate their quality,
the model could be further extended to di�erentiate such workers from the rest by not
sharing the ◊

zij

parameters.

4.3.2 Problem statement

We study feature-based classification problems for which the task label Y = y is known
during the training phase, and needs to be predicted by the classifier at the testing
phase. The feature labels are unknown for both the training and testing instances and
can be acquired at a given cost. In practice, there are various problems for which this
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assumption holds. In Example 4.1 for instance, the company may already know the
success rate of previous products but it may not know the values of individual fea-
tures and which ones are most informative for predicting the success of new products.
Another example is animal species recognition in images as we show in our experi-
ments. For this problem, one can bootstrap a classifier with training examples for
which the species in the image is already known but the visual feature labels need to
be determined.

Consider a Naïve Bayes model with N conditionally independent feature variables
X = {X1, . . . , X

N

} as presented in Figure 4.2. At the beginning, the classifier has
no knowledge about the underlying parameters of ◊

yi

, and we initialize them from the
hyperparameters —

yi

. At a given time, a new feature label is acquired (Y = y, X
i

= x
i

)
for the feature X

i

on a task with label Y = y. Based on this labeled instance, the
algorithm can update the distributions ◊

yi

. For illustration purposes, let us consider
the following example: Suppose X

i

is a feature variable that takes values in the domain
{a, b, c} while the task variable Y takes binary values {yes, no}. The current state of the
model has ◊

yes,i

≥ Dir(3, 2, 5). After observing a new labeled instance (y = yes, X
i

= b)
the posterior distribution will shift to the new state ◊

yes,i

≥ Dir(3, 3, 5).

In the context of the Access Path model shown in Figure 4.3, the algorithm acquires
labels to learn the distributions of both the features (◊

yi

) and the crowd workers (◊
zij

)
at the same time. As it is usually the case in crowdsourcing, on each feature observation
we ask a total number of W di�erent crowd workers. This will lead to a cost reduction
of W from the available budget B.

Budget B at the training phase First, the goal of budgeted learning is to learn the
model parameters during the training phase under a given budget constraint B,
with the goal of minimizing the classification error during the testing phase. The
budget here limits the number of acquired labels represented by the labeled set
D such that |D| Æ B. In crowdsourcing applications, this maps to the number of
times the learner accesses the crowd. In Example 4.1, B is the number of times
the algorithm asks a customer to evaluate a camera feature. While the learning
problem is well understood for infinite budget, the budgeted version is known to
be NP-Hard even for simplified variants when a feature is allowed to be queried
only once [103].

Budget K at the testing phase Second, the goal of feature selection is to select a
set of the best K features for classification in the testing phase where K Æ N .
Hence, K is a budget constraint applicable to the testing phase. In Example 4.1,
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K corresponds to the number of camera features that will be included in the final
survey design. For the Naïve Bayes model, the feature selection problem is also
NP-Hard [48], with viable approximation guarantees possible through greedy
selection approaches [86, 146].

In our final problem definition below, we aim at tackling both challenges while learn-
ing a classifier, in both the noise-free and noisy setting which correspond to the two
presented models above.

Problem 4.1 (Budgeted Learning and Feature Selection). Given a feature-
based classification task Y that can be solved via a set of N candidate features X =
{X1, . . . , X

N

} with unknown labels that can be acquired through crowdsourcing, the goal
is to learn a classification model ◊ under a budget constraint B that can make high-
quality predictions of Y using only K < N most informative features.

4.4 Budgeted Learning and Feature Selection

In this section, we first describe current approaches on our two-fold problem, and then
we present B-Leafs as an algorithm for budgeted learning and feature selection in the
context of the Naïve Bayes and the Access Path model.

4.4.1 Existing approaches

The purpose of any budget allocation strategy for training is to produce a classifier
that in the future is going to make good predictions. The trivial approach would be
to uniformly allocate the budget among all features without distinguishing the good
features from the bad ones. This is also known as the RoundRobin algorithm, and as
shown in our experimental evaluation and previous work, is generally inferior to other
schemes as some of the features are more informative than others. Other strategies
continue allocating budget to the same feature as long as this reduces the loss on the
task variable (i.e., the conditional entropy H(Y |X

i

)) after this i-th feature is observed
in isolation to the others. BiasedRobin [103] is one representative algorithm in this
spectrum and was shown to be competitive [41] when there exists only a relatively
small number of candidate features. However, for a larger number of candidates this
algorithm (i) fails to deal with correlated features, and (ii) delays the selection of
the best candidates. These issues are then handled by another group of Greedy
selection methods which select in each iteration the i-th feature that reduces the overall
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loss of the whole model when added to the currently selected feature set X
S

(i.e.,
the conditional entropy H(Y |X

Sfi{i})). These methods are known to be e�cient with
strong theoretical guarantees [85] for fixed and known feature parameters learned from
su�cient historical data. Our work is inspired from similar greedy selection techniques
but adapted for the case of unknown feature parameters that are updated as the data
is collected. A closely related approach, referred to as TsGreedy in our experiments,
proposed in [134], employs Thompson Sampling by greedily selecting in each iteration
a whole set of K features from a sampled model. As discussed further during our
experimental evaluation, this approach has a high exploration cost when feature labels
are noisy and is applicable only to the Naïve Bayes model.

For further information, we provide a detailed description of these algorithms in Sec-
tion 4.5.1.

4.4.2 Limitations and challenges

The fundamental issue with the aforementioned techniques is related to the fact that
the decision-making on which feature to observe next is based on the point estimates of
the feature parameters for the feature variables X

i

. If the collected data for the feature
is not su�cient, these estimates might not be good representatives of the underlying
parameter distribution. If so, the observed value of the feature may be far away from its
expected value which can then lead to selecting non-informative features and making
wrong classifications in the testing phase.

4.4.3 B-Leafs for Naïve Bayes

The key idea of our approach is to use the posterior distributions over the parameters
(e.g. ◊

y

and ◊
yi

for Naïve Bayes) in order to encode the uncertainty about the true
parameter value. Based on this Bayesian framework, we design the B-Leafs algorithm
inspired by Thompson Sampling [148, 9], which is a natural way to balance exploration
and exploitation for comparing various probability distributions. Next, we describe how
we apply these ideas for Naïve Bayes and the Access Path model.

The B-Leafs strategy (Algorithm 2) performs one iteration per feature selection /
search (Lines 10-19). The k-the iteration is allowed to spend a maximum budget of
b

k

= B

2k when k ≠ 1 number of features have already been added to the best set. The
reasoning behind this allocation is based on the experimental observation that the early
iterations of the algorithm explore more and require more budget than the later ones.
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Algorithm 2. B-Leafs
1 Input: feature variables X = {X1, . . . , X

N

}
2 training budget constraint B

3 testing constraint K features
4 credibility constraint ”

5 Output: parameters ◊̃ = {◊̃
y

, ◊̃
yi

’y œ Y , i œ [1, . . . , N ]}
6 best feature set S s.t. |S| = K

7 Initialize: S = ÿ, D = ÿ
8 uniform priors –, — = {—

yi

’y œ Y , i œ [1, . . . , N ]}
9 for (k = 1; k Æ K; k + +) do

10 b
k

=
Í

B

2k

Î
// B

2k≠1 for k = K

11 iú = null

12 while (( ¬isCredible(iú, D, —, ”)) and (b
k

> 0)) do
13 ◊̃ = SampleModel(D, –, —)
14 iú = arg max

iœ[1,...,N ]\S

IG(Y ; X
Sfi{i}|◊̃)

15 Draw y ≥ P (Y )
16 Observe x

i

ú for a task s.t. Y = y

17 D = D fi {(y, x
i

ú)}
18 b

k

= b
k

≠ 1 , B = B ≠ 1

19 S = S fi {iú}
20 ◊̃ = MAP(D, –, —)
21 return ◊̃, S

Algorithm 3. SampleModel - Naïve Bayes
1 Input: collected data D, priors –, —

2 Output: parameters ◊̃ = {◊̃
y

, ◊̃
yi

’y œ Y , i œ [1, . . . , N ]}
3 Sample ◊̃ ≥ P (◊|D, –, —)
4 return ◊̃

This iteration-based constraint ensures that each feature search does not spend more
than a maximum amount of budget before including a new item in the best set even if
the feature is not su�ciently credible. Every iteration performs the following steps:
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Figure 4.4: Example of binary parameter distributions

4.4.3.1 Model sampling

(Line 13) On each feature label acquisition, B-Leafs samples a set of parameters from
the current posterior parameter distribution ◊. Model sampling is essential for our
method as it helps to balance exploration vs. exploitation trade-o�s. The more data
we observe from a certain feature, the more likely it is for the sampled parameter to
be close to its mean value. Consequently, the early decisions of B-Leafs will tend
to explore more features while the later decisions will mostly focus on exploiting the
current best ones. This is the reason why the initial iterations require more budget than
the others. For Naïve Bayes, sampling is trivial and is performed as in Algorithm 3.
First, we compute the Dirichlet posterior distributions ◊ from the feature value counts
in the current dataset D, and then sample a model ◊̃ from the resulting distributions.

4.4.3.2 Submodular feature selection

(Line 14) Similar to the Thompson Sampling algorithm, we decide on which features
to observe next based on the sampled model parameters ◊̃. More precisely, we select
the feature iú that brings the most information in addition to what the current best set
S already provides, which prevents the algorithm from including correlated features.
Note that we use information gain as a decision-theoretic objective function which has
been shown to be submodular for both the models described in the previous section due
to the feature conditional independence assumption. The benefit of using a submodular
set function is that it enables the application of e�cient greedy approximation schemes
[146]. Moreover, information gain can be approximately computed via sampling from
the model network as shown in [85].
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4.4.3.3 Parameter credibility check

(Line 12) Before adding a feature to the best set, B-Leafs checks whether: (i) enough
budget has been invested for the feature search, and (ii) the posterior distributions
of this feature, ◊

yi

ú , are su�ciently credible and concentrated around the mean. For
instance, imagine two binary features whose conditional distribution P (X

i

|Y ) follows
a Bernoulli distribution. Suppose also that the conjugate priors for these features are
Beta distributions as shown in Figure 4.4. Both these distributions have a mean value
of µ = 0.5. However, Beta1 has only a few observations and the mass of distribution
within a credible interval [µ ≠ ‘; µ + ‘] as shown in the shaded area is smaller than for
Beta2. Formally, we define the credibility of a feature X

i

to be within a 2‘ credibility
interval around its mean as follows:

q
i

=
ÿ

yœY

P (Y = y)
|X

i

|
ÿ

xœXi

⁄
µ+‘

µ≠‘

Beta(ax

yi

, a0
yi

≠ ax

yi

)d◊x

yi

(4.1)

Here, ax

yi

is the number of times value x œ X
i

has been observed when Y = y, and a0
yi

is
the total number of examples for which Y = y. Note that ax

yi

represents concentration
parameters of the Dirichlet distribution for ◊

yi

. The normalization by P (Y =y)
|Xi| ensures

that the credibility of the whole feature is weighed according to the distribution of Y

and the feature variable cardinality. The function isCredible returns true if q
i

Ø 1≠”,
and false otherwise. The function is generic and can use other notions of parameter
concentration such as variance.

In our implementation, we fix ‘ = 0.05 while varying the credibility parameter ” ac-
cording to the budget constraints. Our initial guideline with this respect is that the
algorithm should spend more than B

N

budget units on the selected features which is the
amount of budget that RoundRobin would use. Without making any assumptions
on the conditional distribution of P (X

i

|Y ), one can compute a corresponding ”
L

value
for this guideline. Furthermore, one can also compute a corresponding ”

U

value for the
ideal case when the algorithm would spend on average a budget of B

K

on each selected
feature. The closer ” is to ”

U

, the tighter the credibility requirements are. As the
algorithm also requires budget for exploration, ”

U

is an unrealistic requirement. In our
experiments, we observe that ” = ”U ≠”L

2 is su�ciently stringent to detect informative
features.

4.4.3.4 Discussion

The B-Leafs algorithm is based on a generic class of greedy selection algorithms for
maximizing monotone submodular set functions [146, 48]. The crucial di�erence here
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k #observations per feature Selected features (S)

1 4 5 7 5 3 6 2 28 {X8}

2 20 34 14 14 13 10 12 28 {X2, X8}

3 36 34 16 19 16 13 15 28 {X1, X2, X8}

4 36 34 19 32 20 13 18 28 {X1, X2, X4, X8}

Table 4.1: Example of running B-Leafs on the nursery dataset for B = 200 and
K = 4.

is that the objective function (i.e. information gain in our case) is computed on the
sampled model for balancing exploration and exploitation. The data collection then
(Line 17) follows a traditional greedy selection, while the feature selection (Line 19)
instead appends new features only when they are su�ciently credible, which is the
major distinction of B-Leafs from the traditional Thompson Sampling algorithm.
Both decisions are guided by the marginal increase of information gain after observing
one additional feature value.

Example 4.2. In Table 4.1 we show an example of running B-Leafs on the nursery

dataset from the UCI repository [96]. In this example, we required the algorithm to
spend a maximum budget of B = 200 while selecting K = 4 (out of 8) features. The
optimal set of features without training phase budget constraints is {X1, X2, X4, X8}.
Each element in the collected data vector represents the number of times a feature has
been observed.

The algorithm adds one feature per iteration (marked in gray) in the set S and most of
the budget is spent in the first two iterations of the algorithm. After the last iteration,
the algorithm manages to recover the optimal set of features {X1, X2, X4, X8} which
is the set of features that would have been selected from a model trained with all the
available data in the dataset. Note that the amount of data assigned to the algorithm
in this case (B = 200) is only 2% of the overall data available in nursery.

B-Leafs does not spend more budget on a feature once the feature has been added to
S. One could observe that the final model ◊ could still benefit from reaccessing such
features for further improving their parameters. However, once the best set of features
is known, such refinements can be achieved in a more cost-e�cient way by periodically
retraining the model with new instances in the testing phase.
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Algorithm 4. SampleModel - Access Path model
1 Input: collected data D, priors –, —, “

2 Output: parameters ◊̃ = {◊̃
y

, ◊̃
yi

, ◊̃
zij

’y, z, i, j}
3 for (t = 1; t Æ T ; t + +) do
4 ◊(t)

y

≥ P (◊(t≠1)
y

|–, D)
5 for (i = 1; i Æ N ; i + +) do
6 foreach d œ D do
7 z(t)

i

[d] ≥ P (Z
i

|◊(t≠1)
yi

, D) //update Z
i

for instance d

8 ◊(t)
yi

≥ P (◊
yi

|z(t)
i

[1 . . . |D|], —
yi

, D)
9 for (j = 1; j Æ W ; j + +) do

10 ◊(t)
zij

≥ P (◊
zij

|z(t)
i

[1 . . . |D|], “
zij

, D)

11 return ◊(t)

4.4.4 B-Leafs for the Access Path model

B-Leafs for the Access Path model follows the same structure as Algorithm 2. How-
ever, due to the introduction of the feature layer with latent variables Z

i

, model sam-
pling and the parameter credibility check are accordingly adjusted.

4.4.4.1 Model sampling

Sampling from the Access Path model parameters entails sampling from ◊
y

, as well as
◊

yi

and ◊
zij

. In contrast to the Naïve Bayes model, here the actual counts that involve
the Z

i

variables cannot be observed. We overcome this problem by applying Gibbs
sampling [51] as a Markov Chain Monte Carlo algorithm for computing approximate
observations from a joint distribution of random variables. Gibbs sampling is a suitable
choice for the Access Path model given that the hidden variables ◊

y

, ◊
yi

, and Z
i

are
characterized by conditional probability distributions as depicted in Figure 4.3.

As shown in Algorithm 4, we implement these ideas for alternatively sampling: (i) the
value of the latent feature variables Z

i

(Line 7), and (ii) the model parameters ◊
yi

and
◊

zij

(Line 8 and 10). Each iteration samples one latent variable at a time given the
state of the rest of the other variables present in the model. Note that the Z

i

feature
variables need to be sampled for all the data that has been collected so far which
requires multiple passes through the data. However, for more practical applications,
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the algorithm can still benefit from parallelizing sampling across features thanks to the
conditional independence assumption.

4.4.4.2 Parameter credibility check

Similar to what we discussed earlier, B-Leafs checks the credibility of the feature
parameters by using the definition in Equation 4.1. For the Access Path Model we
ensure that both the feature and crowd parameters (◊

yi

and ◊
zij

) satisfy this condition.
Depending on the amount of crowdsourcing redundancy W and noise, one may also
enforce di�erent ”-credibility requirements for ◊

yi

and ◊
zij

. For simplicity, in all our
experiments we apply the same ” to both the parameters.

4.5 Experimental evaluation

Datasets. In this section, we show experimental results on two types of open and
publicly available data sources: datasets from the UCI Machine Learning Repository
[96] and the CUB-200 birds classification dataset [163]. Both datasets consist of cate-
gorical features and tasks. UCI datasets are labeled by domain experts and contain a
single expert label per feature.

CUB-200 instead, was created as part of a large-scale crowdsourced data collection for
bird species recognition. The dataset contains 6,033 images allocated over 200 di�erent
species. There are 288 candidate binary features in total, and the authors collected
5-10 crowdsourcing labels per feature per image. Therefore, for this task workers solved
tasks with image-related questions like: “Is the color of the bird’s beak yellow?”. The
collected answers then are used as labels for the corresponding features. The dataset
does not have any ground truth on the true feature values. However, one can measure
the amount of disagreement which is on average 3%-10% per image. Some features
have a higher disagreement than others which can reach up to 50% for features that
are hard to distinguish.

4.5.1 Baselines

We compare our approach with the following three di�erent baselines from related
work:

RoundRobin. [103] This algorithm uniformly allocates the budget across features
in a round-robin fashion, applying thereby the pure-exploration strategy as in Algo-
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Algorithm 5. RoundRobin
1 Input: feature variables X = {X1, . . . , X

N

}
2 training budget constraint B

3 testing constraint K features
4 Output: parameters ◊̃ = {◊̃

y

, ◊̃
yi

’y œ Y , i œ [1, . . . , N ]}
5 best feature set S s.t. |S| = K

6 Initialize: S = ÿ, D = ÿ
7 uniform priors –, — = {—

yi

’y œ Y , i œ [1, . . . , N ]}
8 i = 1
9 while (B Ø 0) do

10 Draw y ≥ P (Y )
11 Observe x

i

for a task s.t. Y = y

12 D = D fi {(y, x
i

)}
13 B = B ≠ 1
14 i = i mod N + 1

15 ◊̃ = MAP(D, –, —)
16 S = Greedy(◊̃, K)
17 return ◊̃, S

rithm 5. Note that none of the algorithms we describe here involves explicit feature
selection. For a fair comparison, we first learn a model from the collected data and
then run a submodular Greedy feature selection scheme on the resulting model [85].
This selection corresponds to Line 16 for RoundRobin. In every step, the greedy
algorithm selects the feature i that maximizes the marginal increase in information
gain IG(Y ; X

Sfi{i}) after adding this feature to the current best set. This algorithm is
explained in detail in Section 3.5 for the Access Path model.

BiasedRobin. [103] As shown in Algorithm 6, this strategy continues observing the
same feature as long as this action reduces the loss on the task variable, e.g. the con-
ditional entropy H(Y |X

i

). Note that this notion of loss does not take into account
sets of features but only the current feature in isolation. This may lead to selecting
redundant features that are correlated with each other. Once the expected value of the
loss does not decrease anymore, the algorithm starts exploring other features. Based on
this design, the approach tends to quickly exploit features that seem to be more infor-
mative without exploring the whole candidate set. However, this optimistic behavior
may prevent the algorithm from exploiting features that have not been encountered
yet before the budget is exhausted.
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Algorithm 6. BiasedRobin
1 Input: feature variables X = {X1, . . . , X

N

}
2 training budget constraint B

3 testing constraint K features
4 Output: parameters ◊̃ = {◊̃

y

, ◊̃
yi

’y œ Y , i œ [1, . . . , N ]}
5 best feature set S s.t. |S| = K

6 Initialize: S = ÿ, D = ÿ
7 uniform priors –, — = {—

yi

’y œ Y , i œ [1, . . . , N ]}
8 i = 1
9 ◊̃ = MAP(D, –, —)

10 l
old

= IG(Y ; X|◊̃)
11 while (B Ø 0) do
12 Draw y ≥ P (Y )
13 Observe x

i

for a task s.t. Y = y

14 D = D fi {(y, x
i

)}
15 B = B ≠ 1
16 ◊̃ = MAP(D, –, —)
17 l

new

= IG(Y ; X
i

|◊̃)
18 if (l

new

Æ l
old

) then
19 i = i mod N + 1

20 S = Greedy(◊̃, K)
21 return ◊̃, S

TsGreedy. [134] is the closest approach to our work although it is applicable only
for the Naïve Bayes model. It applies a traditional Thompson Sampling algorithm as
shown in Algorithm 7, which runs T = B

K

iterations. Depending on the Each iteration
involves three main steps: (1) model sampling as in Line 9 (2) submodular selection
of K features via the Greedy algorithm as in Line 11(3) observing the K features
and updating the current model as in Line 12. In contrast to our approach, this
algorithm selects K features at a time and does not check the credibility of feature
parameters before including them in the best set. As a result, the algorithm has a
higher exploration cost especially in the presence of noise. For comparison purposes,
we adapted TsGreedy for the Access Path model by employing the same Gibbs
Sampling algorithm as in Algorithm 4.

For all experiments, we keep 80% of the data for training and 20% for testing. All
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Algorithm 7. TsGreedy
1 Input: feature variables X = {X1, . . . , X

N

}
2 training budget constraint B

3 testing constraint K features
4 Output: parameters ◊̃ = {◊̃

y

, ◊̃
yi

’y œ Y , i œ [1, . . . , N ]}
5 best feature set S s.t. |S| = K

6 Initialize: S = ÿ, D = ÿ
7 uniform priors –, — = {—

yi

’y œ Y , i œ [1, . . . , N ]}
8 while (B Ø 0) do
9 ◊̃ = SampleModel(D, –, —)

10 k = min(B, K)
11 S = Greedy(◊̃, k)
12 for (i œ S) do
13 Draw y ≥ P (Y )
14 Observe x

i

for a task s.t. Y = y

15 D = D fi {(y, x
i

)}
16 B = B ≠ k

17 ◊̃ = MAP(D, –, —)
18 S = Greedy(◊̃, K)
19 return ◊̃, S

methods select feature labels from the training set and the resulting model with only
the selected features is then evaluated on the testing set. This process is repeated 16
times for each experiment.

Example 4.3. To illustrate the di�erences between the di�erent approaches, in Ta-
ble 4.2 we show an example of running all approaches on the breast-cancer UCI dataset
by assigning a budget constraint of B = 100 and K = 2. The optimal set of features
for this dataset is {X2, X3} and results to a 0.04 prediction error. Although none of
the methods is able to recover the full best set, the di�erences between the various algo-
rithms can be observed in the final set of selected features S and the amount of budget
that is spent to learn each of these features in the collected data vector. BiasedRobin
misses the selection of X2 as it quickly decides to exploit the previous feature. Ts-
Greedy is able to identify X2 as one of the best features but does not spend su�cient
budget on it which leads to a higher error. In fact, the budget in TsGreedy is more
uniformly distributed. B-Leafs instead manages to have a lower error rate given that
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Algorithm #observations per feature Selected features (S) Error

RoundRobin 12 11 11 11 11 11 11 11 11 {X2, X6} 0.10

BiasedRobin 18 10 7 16 6 15 7 18 3 {X1, X8} 0.11

TsGreedy 6 17 13 12 2 15 4 16 15 {X2, X8} 0.08

B-Leafs 1 45 10 0 2 38 2 1 0 {X2, X6} 0.05

Table 4.2: Example of running all the algorithms on the breast-cancer dataset for
B = 100 and K = 2.

it is able to better refine the parameters of the features in S by investing more budget
in them and spending significantly less budget in less informative features ( e.g. X9 is
the least informative feature here).

4.5.2 Evaluation on the Naïve Bayes model

Prediction error for varying budget constraints in training phase. We first
show results on the Naïve Bayes model. In Figure 4.5 we show the error rate of the
resulting classifiers in testing phase on two di�erent UCI datasets while varying the
training budget constraint B. The nursery dataset has N = 8 categorical features while
the breast-cancer dataset has N = 10 categorical features. B-Leafs is able to make
more accurate predictions at a lower cost. More interestingly, for the breast-cancer

dataset it is able to identify the top most informative features even though the best
features of this dataset are comparably informative. BiasedRobin instead quickly
overexploits some features and fails to select the best set. Finally, TsGreedy is
slower in identifying the best features due its longer explorative behavior.

Prediction error for varying budget constraints in testing phase. In the
experiment in Figure 4.6, we vary the testing phase constraint K, i.e. the number of
features that can be used for prediction. In the nursery dataset, only two of the features
are informative for classification which explains why the error improvement saturates
for all algorithms when K > 2. In general, we also observe that our approach (as well
as BiasedRobin and TsGreedy) are more beneficial when it is required to select a
small number of features. Otherwise, if K is comparable to the size of the candidate
set N , their performance converges to the simplistic RoundRobin.
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Figure 4.5: Learning and feature selection on Naïve Bayes. Varying B.
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Figure 4.6: Learning and feature selection on Naïve Bayes. Varying K.
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Figure 4.7: Learning and feature selection on the Access Path model. Synthetic noisy
crowd.

4.5.3 Evaluation on the Access Path model

Synthetic noisy crowd. To evaluate our approach in a crowdsourcing setting, we
initially add synthetic noise of 30% to the UCI datasets. In the experiment shown in
Figure 4.7, for instance, we synthetically generate 5 feature labels based on the actual
feature label in the dataset. In 70% of the cases, the label will correspond to the true
value. The rest of the labels, are uniformly picked from the rest of the possible feature
values. Multiclass datasets with non-binary features like nurseryare highly sensitive to
such noise. The interesting observation here is that, TsGreedy’s performance signifi-
cantly deteriorates in noisy settings, although it is fairly comparable to other baselines
for noise-free observations. B-Leafs then is more beneficial for lower rather than
higher training budget constraints.
Real-word crowd. Figures 4.8 shows results on the CUB-200 datasets, on two di�er-
ent bird species. Note that due to the lack of ground truth for feature vaules, we can
only measure the average worker disagreement on all features. Obviously, some fea-
tures have a higher disagreement than others (up to 50%). These experiments involve
one-vs-all classification tasks for birds that belong to the same category (e.g. di�erent
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Figure 4.8: Learning and feature selection on the Access Path model. Real-world
crowd.

kinds of sparrows) which is a more challenging task than classifying birds that belong
to di�erent categories. For each species, we include in the candidate feature set the
top K most informative features and N ≠ K other randomly selected ones (N = 20).
Results show that B-Leafs outperforms the prediction error of BiasedRobin. All
strategies are comparable for high budget except TsGreedy, which again has a long
exploration phase.

4.5.4 Noise impact

Finally, in the experiments in Figures 4.9 and 4.10, we study the behavior of both
learning models under two di�erent noise regimes: uniform noise and biased noise.
For both regimes we synthetically generate 5 feature labels for both the training and
the testing splits of the dataset. In the uniform noise case, the label either replicates
the true feature value or is uniformly picked with a varying probability (horizontal
axis) from the possible feature values di�erent from the true value. This simulates
random but non-biased worker mistakes. The biased noise regime instead imitates
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Figure 4.9: Uniform noise impact on the prediction error of models build from the
data collected from B-Leafs and the whole dataset.

situations when workers could have a strong bias in consistently confusing the true
value for another erroneous feature value. Note that, both noise regimes are present
in real-world crowdsourcing platforms. Moreover, in these experiments we also show
the discrepancy of the prediction error of models trained with all the available data
in the dataset (All Data) and the models trained with only the data collected by
B-Leafs with a a budget constraint of B = 1000. In both settings, we select K = 2
best features.

Uniform noise. Figure 4.9 shows that in the uniform noise regime both learning
models have comparable accuracy when noise is lower than 0.65. However, for higher
levels of noise, the Access Path model is able to better recover from the uniform noise
mistakes by inversely interpreting the feature labels. Also, the B-Leafs algorithm is
able to construct a better model if applied together with the Access Path model for
noisy feature labels.

Biased noise. Similar observations are also depicted in Figure 4.10 for biased noise.
However, these results also show that biased mistakes are more di�cult to recover as
the biased noise may lead to the selection of a non-optimal set of features. This explains
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Figure 4.10: Biased noise impact on the prediction error of models build from the
data collected from B-Leafs and the whole dataset.

the discrepancy between the models built from B-Leafs and the All Data setting.
These results highlight the importance of modelling and handling such biases in early
stages of model training in order to ensure the selection of the right set of features.
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4.6 Summary

In this chapter, we studied the problem of building machine learning models from
crowdsourced data under training and testing budget constraints. In particular, we fo-
cused on feature-based classification models and proposed a budgeted learning and fea-
ture selection algorithm, B-Leafs, which naturally balances exploration-exploitation
trade-o�s. This approach adaptively acquires crowdsourced feature labels for learning
classifiers that can make accurate predictions at a lower cost.

Our experimental evaluation shows that budgeted learning and selection techniques are
most e�cient for restricted budget constraints: low training budget or low number of
features. For ample training budget or a high number of features, traditional uniform
budget allocation techniques are comparably e�cient. In addition, these results also
confirm that biased noise regimes, where workers consistently mistake one feature value
for another, are more challenging to handle as they can lead to the selection of a non-
optimal set of features. This motivates the need for employing prediction models
that can appropriately encode such biases. We used the Access Path model as a
representative of such models and as a natural extension of our work presented in
Chapters 2 and 3. Applying B-Leafs to other probabilistical models presented in
previous work requires the adaptation of model sampling and greedy feature selection
procedures.

B-Leafs was designed to guide requesters on how they should collect necessary data
for training new models. Di�erently from active learning, the algorithm decides on
which feature labels to collect. Integrating these decisions with classical worker / task
selection active learning decisions is an open avenue for future work, which would
provide end-to-end guidelines in the process of learning in crowdsourcing applications.
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5
Troubleshooting Machine

Learning Systems via
Crowdsourcing

5.1 Overview

Advances in machine learning have enabled the design of integrative systems that
perform sophisticated tasks via the execution of analytical pipelines of components.
Despite the widespread adoption of such systems, current applications lack the ability
to understand, diagnose, and fix their own mistakes which consequently reduces users’
trust and limits future improvements. Therefore, the problem of understanding and
troubleshooting failures of machine learning systems is of particular interest in the com-
munity [135]. Our work studies component-based machine learning systems composed
of specialized components that are individually trained for solving specific problems
and work altogether for solving a single complex task. We analyze how the special
characteristics of these integrated learning systems, including continuous (non-binary)
success measures, entangled component design, and non-monotonic error propagation,
make it challenging to assign blame to individual components. These challenges hin-
der future system improvements as designers lack an understanding of how di�erent
potential fixes on components may improve the overall system output.

The aforementioned challenges are di�erent from the challenges encountered in previous
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Figure 5.1: Troubleshooting with humans in the loop

work for the analogous problem of troubleshooting physical devices. Previous studies
on this related problem [144, 24] are based on the following assumptions: (i) the system
/ component state is binary (normal or faulty) (ii) exactly one of the components is
faulty, and (iii) repairing one of the components does not deteriorate the final system
state. Instead, we observe that none of these assumptions is true for systems whose
components are based on machine learning techniques. Hence, the ambitious goal of
our framework is to assist system designers in tackling these challenges by providing
them with introspective insights on the system behavior so that these insights can
guide them on future system improvements. To the best of our knowledge, this is the
first work that studies the troubleshooting problem in the context of component-based
machine learning systems by leveraging human input.

Approach. We introduce a troubleshooting methodology which relies on crowdworkers
to identify and fix mistakes in existing systems. Human intervention is crucial to the
approach as human fixes simulate improved component output that cannot be produced
otherwise without significant system development e�orts. Figure 5.1 shows the main
flow of our approach. First, workers evaluate the system output without any fix to
analyze the current system state. To simulate a component fix, the input and output
of the component accompanied with the fix description are sent to a crowdsourcing
platform as microtasks. Once workers apply the targeted fixes for a component, the
fixed output is integrated back into the running system, which thereby generates an
improved version of the component. The system is executed as a simulation with the
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injected fix and the output is evaluated again via crowdworkers. The overall process
collects a valuable set of log data on system failures, human fixes, and their impact
on the final output. This data can then be analyzed to identify the most e�ective
combination of component improvements to guide future development e�orts.

Case study. We apply our methodology to a state-of-the-art integrative learning sys-
tem developed to automatically caption images [47]. The system involves three machine
learning components in a pipeline, including visual detection, language generation, and
caption ranking. The multimodal nature of this case study allows us to demonstrate
the applicability of the approach for components processing di�erent forms of data
and carrying out various tasks. The methodology reveals new insights on the error
dynamics previously unknown to the designers, and o�ers recommendations on how
to best improve the system. For example, in contrast to what system designers had
assumed, improving the Reranker is more e�ective than improving the Visual Detec-
tor. Experiments highlight the benefits of making informed decisions about component
fixes as their e�ectiveness varies greatly (18%, 3% and 27% for the three components
respectively).

5.2 Related work

Interactive and interpretable machine learning. Previous to integrating crowd-
sourcing in machine learning processes, there have been prior e�orts in interactively
including the feedback of machine learning experts in refining current models [45, 162].
A comprehensive summary of the current advances and challenges in interactive ma-
chine learning can be found in [13]. The study emphasizes that given the right user
interfaces and interaction models, human contribution to machine learning algorithms
expands to a broad range of capabilities that go beyond data labeling. Such capabilities
include quality assesment, model critisism, error sensitivity specification etc.

Interactive machine learning relies on people being able to understand and interpret
machine learning output [80]. In terms of interpreting predictions of classifiers, [130]
propose LIME as an explanatory algorithm for any classifier, and SP-LIME as a method
for selecting representatory instances for such explanations. The problem is however
more convoluted for pipelines of machine learning components where signals from var-
ious components are combined to provide a single output to the user. Our work makes
a step forward in this direction by providing a methodology that quantifies the current
performance of machine learning systems and decomposes it according to the perfor-
mance of their components.
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Crowdsourcing input for machine mearning. The contribution of crowdsourc-
ing to machine learning has been mostly limited to the creation of o�ine data sets
for learning (e.g., [101, 140]). Recently, there has been interest in actively integrating
crowd participation to the development of machine learning algorithms. Flock [28]
builds hybrid crowd-machine classifiers in which crowd workers generate new informa-
tive features by reasoning on how instances of positive and negative examples di�er
from each other. The feature discovery approach presented in [178] asks workers to
compare triplets of examples and explain why two out of the three examples are sim-
ilar to each other. For this purpose, the work also presents an adaptive algorithm for
selecting triplets based on previously discovered features. Alloy [26] focuses on cluster-
ing text documents by introducing humans in actively sampling examples to support
machine learning approaches to overcome their current shortcomings in understanding
the semantic di�erences between items.

Compared to the literature on incorporating human input in developing machine learn-
ing systems, there has been only limited work on understanding and diagnosing errors
of such systems. On debugging a single classifier, researchers developed an automated
method for detecting errors in training data through an interactive debugging process
with a domain expert [25]. In a related line of work, researchers proposed an explana-
tory debugging approach in which the user engages with machine learned systems
through two-way interactive explanations, first for understanding machine decisions
and then for correcting them [87]. Gestalt is a development environment enabling
pipelines that interleave implementation and data analysis to promote bug fixing and
discovery [123]. The Beat the Machine game [15], acquires the crowd input for detect-
ing the rare but important errors of predictive models. Our work contributes to this
line of literature by studying the diagnosis of component-based systems, rather than
individual predictive components, by leveraging the crowd input.

Crowdsourcing for image captioning. Crowdsourcing is heavily used for collect-
ing data for object recognition and image captioning [101, 47]. In terms of improv-
ing the acquisition of human input for object recognition, researchers have developed
games to elicit discriminative, fine-grained features from the crowd [39]. Given the
large-scale annotation e�ort needed for object recognition, previous work investigated
decision-theoretic optimization techniques for deciding when and how human input can
complement machine vision algorithms for generating accurate annotations of images
[131]. Zhang et al., developed self-assessment models for predicting the failures of vi-
sion systems based on input images [172]. Parikh and Zitnick performed user studies
to understand what makes humans superior to machines in vision tasks [120].

In terms of evaluating the performance of a component-based automated system, pre-
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vious work explored replacing di�erent components with human input to measure the
impact of each component on final performance [121]. This approach provides infor-
mation on the current system but does not o�er guidance on possible improvements.
Similarly, another work replaced components of an image captioning system to measure
upper-bounds on system performance [168]. Our work di�ers from these studies by of-
fering a general pipeline that simulates and evaluates the e�ect of di�erent component
fixes on system performance to guide system designers on future improvements.

Troubleshooting and blame assignment. The problems of error diagnosis and
blame assignment have been studied for systems whose components are not machine
learned and the state of components is binary through rule-based and model-based
diagnosis approaches [34]. Breese and Heckerman developed Bayesian networks for
predicting the state of each component and for making decisions about the next re-
pair action to take [24]. Other researchers investigated decentralized approaches for
diagnosis, where each component has a local diagnostic mechanism and their analysis
needs to be incorporated for the diagnosis of the system state [30]. In recent work,
Sculley et. al., overviewed the challenges of maintaining and improving real-world ma-
chine learning systems highlighting error diagnosis as a critical task in particular for
component-based systems [135].

An alternative way of improving machine learning algorithms is active learning [138].
Current techniques are applicable to single components (e.g. classifiers) but not to in-
tegrative systems with multiple components which is the focus of this work. Therefore,
active learning methods can be considered as individual component fixes but unfortu-
nately they are not yet applicable to integrative systems with multiple components.
Moreover, specific errors within a component oftentimes cannot be fixed by only in-
troducing new training data as the quality improvements for the underlying model
may get saturated. Such situations require experimenting with more fundamental and
versatile component improvements which we aim to support in our troubleshooting
methodology.

5.3 Case study: An image captioning system

5.3.1 System architecture

Visual Detector. The first component of the system is a Visual Detector which
recognizes from a given image a list of words associated with recognition scores. The
detected words can belong to any part of speech: nouns, verbs, adjectives etc. How-
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Figure 5.2: The image captioning system

ever, the detector only works on a restricted vocabulary of the 1000 most common
words present in the training captions. For this vocabulary, the component learns the
presence of each word in the image by using multiple instance learning [171] along with
a convolutional neural network applied on overlapping shifted regions of the image.
The score of a word then is computed as the maximum score that the word receives
across all regions. Note that this method does not di�erentiate between the various
part of speech, which means that the word elephant is learned in the same way as
the word running although the former represents an object while the other one an
activity. The list of {word, score} tuples is shortened via a global score threshold and
then forwarded to the Language Model.

Language Model. This component is a maximum entropy statistical model [19] that
generates likely sentences based on the detected words without having access to the
input image. The model uses N-gram features (up to 4-gram) and is trained only on
MSCOCO without using any external data. It generates sequences of words, whose
loglikelihood score is computed based on the probability of each word conditioned on
the other words in the sequence. The statistical nature of this component encodes
commonly encountered knowledge in the training data. For instance, the component is
able to understand that the word cat is more likely to be followed by the word sleep
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rather than snowboard. However, as we show in the experiments, the commonsense
awareness of this model is a delicate trade-o� between applying statistical knowledge
and including words detected from the first component. The set of the 500 most
likely word sequences (i.e. image captions) and the respective log-likelihood scores are
forwarded to the Caption Reranker.

Caption Reranker. The task of the final component is to rerank the captions gen-
erated from the Language Model and select the best match for the image. For this
purpose, the Reranker is trained only on the M-best lists of sentences. The ranking
model uses multiple features among which the log-likelihood of the sentence, the sen-
tence length, the number of objects mentioned in the sentence, and most importantly
the deep multimodal similarity of the sentences to the image. This similarity is com-
puted through a Deep Multimodal Similarity Model, which learns two separate neural
networks for mapping the images and the text sequences into vector representations
and computes their cosine similarity. Both networks are trained with the objective of
maximizing the likelihood of a text to describe the image defined in the context of the
cosine similarity between the respective vector representations. The caption with the
highest likelihood computed via this similarity is finally selected as the output of the
system for the given image.

5.3.2 MSCOCO dataset

All components in the system are trained on the publicly available MSCOCO1 dataset
[101] which was also used as part of the large-scale image captioning competition.
MSCOCO contains 160,000 images of 91 object types. These objects are generally
simple enough to be recognized by a 4 year old person. Moreover, the dataset contains
5 human-generated captions all images in the training and the validation dataset. Each
component is individually trained on the image-caption pairs in the training set while
we use images from the validation dataset to evaluate our approach.

5.4 Problem characterization

In this section, we define the problem of human-assisted troubleshooting of machine
learning systems. First, we describe the problem context along with the required
termonology. Next, characterize the troubleshooting problem and the associated chal-
lenges that are specific to machine learning systems.

1http://mscoco.org/
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5.4.1 Problem context

5.4.1.1 System architecture definition

This work studies machine learning systems consisting of several components designed
to carry out specific tasks in the system. The system takes a set of data as system input
(I) and the individual components work together to produce a final system output (O).
We assume that the system architecture is provided to the methodology by system
designers by specifying:

1. A set of N component nodes C = {c1, . . . , c
N

} along with the component input
and output data types.

2. A set of directed communication dependencies between components denoting the
input / output exchange. A dependency d

ij

denotes that the output of c
i

serves
as an input to c

j

. The whole set of dependencies defines the system execution
workflow (E). In our methodology, we only handle acyclic dependencies but allow
for branching. Therefore, the execution workflow can be specified by an ordered
set of nodes E whose size is equal to the number of components in the system,
|E| = |C| = N .

5.4.1.2 Quality definition

For a single system execution, we use an observable and quantifiable quality measure
Q(S, I) to represent the quality of the output of system S when executed with I as an
input. When a machine learned system solves a complex problem that combines various
tasks (e.g. image captioning), the quality definition has multiple dimensions and needs
to be rethought for every newly introduced system. Often, designers use automatic
scores as a proxy to compare the system output with a previously known ground
truth, which may be generated by humans. These proxy metrics have limitations in
assessing system quality as ground truth is not always available and for complex tasks
there may be more than one plausible ground truth (e.g. an image may have more than
one plausible caption). Therefore, in addition to automatic scores, we also evaluate the
quality of system output based on a human satisfaction score assigned to the caption
from crowdsourcing workers, resembling a real-world user evaluation.

For a given component c
i

running in a system S with I
i

as a component input, we
use a quality measure Q

i

(c
i

, S, I
i

) to represent the quality of the component output
in the context of the system. Note that this quality measure is dependent on the
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context in which the component is being used in S. For example, a visual detector
for image captioning has di�erent quality requirements compared to a general-purpose
visual detector, as it needs to detect only those objects that are su�ciently prominent
to mention in the caption.

5.4.2 Problem definition

Troubleshooting of component-based machine learning systems can be decoupled to
answering the following two questions:
Question 1: How does the system fail?
The system designer is interested in identifying and measuring the di�erent types of
system failures and their frequencies as well as the failures of individual components
in the system context.

Question 2: How to improve the system?
System failures can be addressed by various potential fixes applicable to individual
components. To guide future e�orts on improving the system, the system designer
is interested in knowing the e�ects of component fixes on the overall system output
quality, which provides guidance on future e�orts to improve the whole system.

We pose these two questions in the System Troubleshooting problem definition,
which is the focus of this chapter.

Problem 5.1 (System Troubleshooting). Given a component-based machine learn-
ing system that consists of N components C = {c1, . . . , c

N

}, the goal is to analyse
system failures and understand the impact of component improvements / fixes in re-
covering failures and improving the overall system quality.

5.4.3 Problem characteristics

Next, we examine the special characteristics of component-based machine learning
systems that make the problem of troubleshooting challenging. These characteristics
di�erentiate this problem from previous work on troubleshooting and motivate our
methodology.

5.4.3.1 Continuous quality measures.

Uncertainty is inherent in machine learning components. When these components
work together to solve complex tasks, the quality measure of components and the
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Figure 5.3: Continuous output quality in the image captioning system
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man 0.58
water 0.51

Figure 5.4: Continuous output quality in the Visual Detector component

system as a whole is no longer binary, rather it spans a wide spectrum. Therefore, the
evaluation of these systems needs to go beyond accuracy metrics to deeper analysis
of system behavior. For instance, shows a few examples from image captioning where
the system (Figure 5.3) and component output (Figure 5.4) varies in quality and the
types of mistakes. Blame assignment in this quality continuum where all components
are only partially correct / faulty is non-trivial, which motivates our work for for
troubleshooting.

5.4.3.2 Complex component entanglement

In component-based machine learning systems, components have complex influences
on each other as they may be tightly coupled or the boundaries between their responsi-
bilities may be not be clear. When the quality of a component depends on the output
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Figure 5.5: Component entanglement in the image captioning system

of previous components, blame cannot be assigned to individual components without
decoupling imperfection problems in component inputs. Figure 5.5 illustrates a typical
scenario of component entanglement in the image captioning system. The final caption
is clearly unsatisfactory as it mentions a non-existing object (blender). However, the
Visual Detector assigns a low score to this word (0.57), which makes the detector only
partially responsible for the mistake. The Language Model is also partially respon-
sible as it creates a sentence with low commonsense awareness. Finally, the caption
reranker chooses as the best caption a sentence that includes a word with a low score.
In this example, the errors from all components are interleaved and it is not possible
to disentangle their individual impact on the final error.

5.4.3.3 Non-monotonic error

We note that improving the outputs of components does not guarantee system im-
provement. On the contrary, doing so may lead to quality deterioration. For example,
when components are tuned to suppress erroneous behavior of preceding components,
applying fixes to the earlier ones may result to unknown failures. Figure 5.6 shows an
example of non-monotonic error behavior. Here, the Visual Detector makes a mistake
including computer in the list. The initial assumption would be that if the list is fixed
so that it contains only the prominent words, then the quality of the caption should
increase. In reality, the caption after the fix is more erroneous than the original. Since
the language model finds a teddy bear wearing glasses unlikely, it creates a caption
that mentions a person instead.
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Figure 5.6: Non-monotonic error in the image captioning system

5.5 Human-in-the-loop methodology

Due to these problem characteristics, blame assignment is challenging in integrative
systems and analyzing only the current state of the system is not su�cient to develop
strategies for system improvement. As shown in Figure 5.1, our methodology overcomes
these challenges by introducing humans in the loop for: (i) simulating component fixes,
and (2) evaluating the system before and after fixes to directly measure the e�ect of
future system improvements.

5.5.1 Human computation fixes

A component fix is simulated by translating it to a microtask. The microtask exposes
the input and the output of the component to crowdsourcing workers and instructs
them about the fix within the system scope. In this setting, workers see the component
as a black box and do not need to understand the internal details of the component. We
denote with c(fk)

i

the process of applying a human fix f
k

on the output of component
c

i

. Depending on the component, there may be several human fixes applicable to
the same component. In the system level, a fix workflow F is a system execution
workflow in which the output of the components is corrected via a set of human fixes.
For example, the fix workflow F = {c(f1f3)

1 , c2, c(f4)
3 } applies the fixes f1 and f3 on

the first component, no fix in the second component, and f4 on the third component.
After applying a fix workflow, the system and the components’ outputs are updated
along with the respective quality measures. In addition, a fix workflow execution
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consecutively changes the input of the components following those in which a fix was
applied.

5.5.2 Methodology setup

The troubleshooting methodology is applicable to systems that follow the assumptions
of: (1) system modularity with clearly defined component inputs and outputs, and
(2) human interpretability of the component input / output. To apply the methodol-
ogy to a new system, the system designer provides the set of components and their
input/outputs within the system execution workflow. After identifying a list of com-
ponent fixes that can potentially improve the system, the system designer formulates
corresponding crowdsourcing tasks for these fixes and the overall system evaluation.
Both types of tasks should describe the high-level goal of the system, the context in
which it operates as well as its requirements (e.g. an image captioning system de-
signed to assist users with visual impairments). In addition, component fixing tasks
should be appropriately formulated so that their expected output matches the output
of implementable fixes that the system designer plans to test.

5.5.3 Troubleshooting steps

The execution of the methodology is guided by the fix workflow as a combination
of various component fixes to be evaluated. The system designer chooses which fix
workflows to execute and evaluate for the purpose of troubleshooting. For a given fix
workflow, the steps of our methodology are as follows:

1. Current system evaluation — workers assess the final output of the current system
on various quality measures.

2. Component fix simulation — for each fix in the workflow, workers complete the
respective micro-task for examining and correcting the component output.

3. Fix workflow execution — executing a fix workflow involves integrating the cor-
rected outputs of each component into the system execution.

4. After-fix system evaluation — workers re-evaluate the new system output after
incorporating component fixes.

When a workflow includes fixes for multiple components, steps 2 and 3 need to be
repeated so that the fixes of earlier components are reflected on the inputs of later
components.

97



Chapter 5. Troubleshooting Machine Learning Systems via Crowdsourcing

5.5.4 Troubleshooting outcomes

Applying human fix workflows simulates improved component states and helps system
designers to observe the e�ect of component fixes on system performance, overcoming
the challenges raised by the problem characteristics.

Continuous quality measures Comparing the system quality before and after var-
ious fix workflow executions not only can quantify the current quality of system
and component output, but it can also isolate and quantify the e�ect of individ-
ual component fixes. For example, if many components are partially failing and
possibly responsible for a specific error, the system designer can test the respec-
tive fixes, systematically understand their impact, and decide which are the fixes
that matter.

Non-monotonic error Non-monotonic error propagation can be disclosed when the
overall system quality drops after a component fix. When such a behavior is
observed, the system designer can conclude that although such fixes may improve
the internal component state, they are not advisable to be implemented in the
current state of the system as they produce negative artifacts in the holistic
system.

Complex component entanglement Entanglement detection requires the execu-
tion of workflows with di�erent combinations of fixes to measure the individual
and the joint e�ect of component fixes. For example, if two consecutive com-
ponents are entangled, individual fixes in either one of the components may not
improve the final output. However, if both components are fixed jointly, this may
trigger a significant improvement. The designer could also use this information
to detect entanglement and potentially correct the system architecture in future
versions.

Most importantly, the complete analysis enables system designers to make informed
decisions on choosing the most e�ective component improvements based on the variaton
of system improvements after fix workflow executions.

5.6 Troubleshooting the image captioning system

We now describe the customized crowdsourcing tasks for our case study for both system
evaluation and component fixes.
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5.6.1 System evaluation

The purpose of the system evaluation task is to assign a quality score to the final
system output that is close to human satisfaction. With this motivation in mind, we
suggest a system evaluation where designers include various measures as important
quality dimensions in a micro-task. For a consistent comparison, the same evaluatian
task is then going to be used for evaluating the system both before and after applying
human fixes. Our evaluation task for the image captioning system shows workers
an image-caption pair in a microtask and ask them to evaluate the following quality
measures:

1. Accuracy (1-5 Likert scale) — the ability of the caption to mention correct infor-
mation on the image.

2. Detail (1-5 Likert scale) — the ability of the caption to mention important in-
formation on the image.

3. Language (1-5 Likert scale) — the language fluency of the caption.

4. Commonsense (binary) — the ability of the caption to describe images with
commonsense awareness.

5. General evaluation (1-5 Likert scale) — the general satisfaction of the worker
from the image caption.

For each measure, we provided a detailed description along with representative exam-
ples. However, we on purpose did not instruct the workers on how to judge image-
caption pairs for the general evaluation in order to encourage them to report their real
satisfaction from the caption. For instance, we did not bias them on which quality
measure is more important (e.g. accuracy vs. detail). Also, we clearly stated that
a caption may still have a perfect general evaluation even if it fails to have a perfect
score on the other measures and vice versa.

5.6.2 Component fixes

Table 5.1 lists all component fixes designed for the system. For all fixes, the task
instructions task instructions also describe the system goal to the workers and ask them
to apply fixes in the same context. This is an essential detail in the task design because,
as we mentioned earlier in the problem definition, the quality measure Q

i

(c, S, I
i

) for
a certain component c depends on the system S where it is employed.
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Component Fix Description
Visual Detector c(f1)

1 Add objects
Visual Detector c(f2)

1 Remove objects
Visual Detector c(f3)

1 Add activities
Visual Detector c(f4)

1 Remove activities
Language Model c(f1)

2 Remove noncommonsense captions
Language Model c(f2)

2 Remove non-fluent captions
Caption Reranker c(f1)

3 Rerank Top 10 captions

Table 5.1: Summary of human fixes for the image captioning system.

5.6.2.1 Visual Detector fixes

The visual detector recognizes various part of speech words: nouns, verbs, prepositions
etc., and outputs a list of words. Among these part of speech types, mistakes about
nouns and verbs can be detected and corrected when workers review the output of the
visual recognizer as they can simply tell whether the word should be mentioned in the
caption or not. However, this decision is more di�cult and in some cases infeasible for
relationships and qualifiers as the word should be associated with the respective noun.
For instance, in order to understand whether the word in front of is applicable to
the caption, it needs to mention which object stands in front of which other object.
This association is not present in the word list. Therefore, these aspects cannot be be
properly corrected in visual detector fixes, but they can only be fixed in the caption
reranker.

We designed two di�erent tasks for the visual detector, respectively one for fixing ob-
jects and another one for fixing activities. In the object fix task we show workers the
input image together with the list of nouns present in the visual detector output. Work-
ers are asked to correct the list by either removing objects or adding new ones. Since
the final list should contain only prominent objects to be mentioned in the caption,
workers are instructed to also remove objects that are indeed present in the image but
not prominent enough to be mentioned. As the system is able to recognize words from
a limited dictionary of 1000 words, sometimes the word that the worker is looking for
may not be in the dictionary. In this case, we extend the word search with a word look-
up on wordnet [49] which maps synonyms and super concepts of the keywords to words
that are already in the dictionary. If in the worst case, none of the synonyms or super
concepts matches a dictionary word, the workers can add the original keyword. This
input can still be useful to the designers for understanding which words are prevalent
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enough to be inserted in the dictionary. The activity task has a similar design except
that now workers are allowed to also submit either an unmodified or an empty list of
activities. This is motivated by the fact that the list of detected activities is usually
much shorter than for objects. In order to decouple the e�ect of adding new words to
the list from the e�ect of removing the existing ones, in our analysis we separate both
the object and the activity fixes into object / activity addition and removal fixes as
shown in Table 5.1. The goal here is to understand how improvements of the Visual
Detector precision and recall will influence the final system output. The result of the
Visual Detector fixes is a new word list which is forwarded to the Language Model
together with the corresponding worker agreement scores (e.g. majority vote).

5.6.2.2 Language Model fixes

The goal of this set of fixes is to improve the quality of the output of the language
model. We implemented two types of fixes for removing sentences that do not have
commonsense awareness and removing those that do not use a fluent English. These
fix tasks do not show the input image to the workers and ask workers to make their
assessments based on the captions only, as the language model itself does not have
access to the input image. In the commonsense fix (c(f1)

2 ), workers are required to mark
whether a caption describes a likely situation that makes sense in the real world. For
example, the caption a cat playing a video game has no commonsense awareness.
In the language fix (c(f2)

2 ) instead, the goal is to mark sentences whose language is not
satisfactory in a 1-5 Likert scale. In addition, workers also highlight problematic parts
of the sentence which they think would make the caption fluent if fixed appropriately.
We use these patterns to prune non-fluent captions that contain the same patterns.

Integrating language model fixes in the system execution removes the noncommonsense
and the non-fluent captions from the caption list forwarded to the Caption Reranker.

5.6.2.3 Caption Reranker fixes.

In the Caption Reranker fix, we show workers an image together with the top 10
captions ranked highest in the original Caption Reranker. The presentation order of
the captions is randomized so that workers do not get biased from the original ranking.
Workers can then pick up to 3 captions that they think fit the image best. However,
they can also report that none of the 10 sentences is satisfactory for the image. The
workers’ feedback is then aggregated via majority vote and the most frequent caption
is selected as the best.
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5.7 Experimental evaluation

The evaluation of the captioning system with our methodology uses an Evaluation

dataset of 1000 images randomly selected from the MSCOCO validation dataset. All
experiments were performed on Amazon Mechanical Turk.

5.7.1 Quality scores

We report the system quality based on human assessments as well as automatic ma-
chine translation scores. The human satisfaction scores are based on the crowdsourced
system evaluation. The automatic scores are adapted from automatic machine trans-
lation scores where the automatically translated text is compared to human-generated
translations. Similarly, in image captioning, an automatic caption is compared to the
five image captions retrieved from crowdsourcing workers available in the MSCOCO
dataset. While this evaluation is generally cheaper than directly asking people to re-
port their satisfaction, it does not always correlate well with human satisfaction. More
specifically, studies show that often what people like is not necessarily similar to what
people generate [153]. This phenomena happens due to the fact that an image de-
scription can be expressed in many di�erent ways from di�erent people. As a result,
designing good automatic scores for image captioning (and machine learning tasks in
general) is an active research area [167, 153, 17, 117], as it facilitates systematic and
large-scale evaluation of systems.

In our evaluation, we experimented with CIDEr, Bleu4, Bleu1, ROUGEL, and ME-
TEOR. The Bleu scores [117] compute n-gram precision similarities of the candidate
caption with respect to the reference captions. For example, Bleu4 scores higher those
captions that have patterns of 4 consecutive words in common with the human cap-
tions. However, Bleu scores do not explicitly model recall which in this case would
measure how well does the automatic caption cover the content of the human captions.
ROUGE [97] instead, is a recall-based score that was proposed for content summariza-
tion which makes it suitable for image captioning as the caption is in fact a textual
summary of the visual content in the image. METEOR [17] and CIDEr [153] take into
account multiple versions of captions independently and have shown to correlate better
with human satisfaction than the other methods.
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Human Satisfaction Scores
Eval. Sat. Unsat.

Accuracy (1-5) 3.674 4.474 2.579
Detail (1-5) 3.563 4.265 2.601
Language (1-5) 4.509 4.693 4.256
Commonsense (0-1) 0.957 1.000 0.898
General (1-5) 3.517 4.306 2.437
%Satisfactory (0-1) 57.8% 100% 0%

Table 5.2: Current system evaluation — Human satisfaction scores.

Automatic Scores
Val. Eval. Sat. Unsat.

CIDEr 0.909 0.974 1.248 0.628
Bleu 4 0.293 0.294 0.368 0.184
Bleu 1 0.697 0.693 0.757 0.606
ROUGE L 0.519 0.521 0.578 0.443
METEOR 0.247 0.248 0.284 0.2

Table 5.3: Current system evaluation — Automatic scores.

5.7.2 How does the system fail?

5.7.2.1 The current system state

First, we evaluate the current system state as shown in Table 5.2. To gain a deeper
understanding of the system performance, we divide the Evaluation dataset in two
datasets: Satisfactory and Unsatisfactory based on the general evaluation score
collected from the system evaluation task. We consider every answer in 1-3 as an
unsatisfactory evaluation, and every other answer in 4-5 as satisfactory. All instances
whose original caption reaches a majority agreement on being satisfactory belong to
the Satisfactory dataset. The rest is classified as Unsatisfactory.

Result: Only 57.8% of the images in the Evaluation dataset have a satisfactory
caption. The comparison between the Satisfactory and Unsatisfactory partitions
shows that the highest discrepancies happen for the accuracy and detail measures,
highlighting the correlation of accuracy and detail with the overall satisfaction.

Since the MSCOCO dataset contains five human generated captions for all the images in
the Validation dataset (40,504 images), we were able to compute the automatic scores
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Figure 5.7: Impact of Visual Detector fixes on the component state

Commonsense fix Language fix All fixes
Top1-Eval. 8.0% 22.9% 25.0%
Top10-Eval. 8.6% 21.7% 27.1%
Top1-Val. 3.0% 15.2% 16.1%
Top10-Val. 2.6% 14.2% 14.9%

Table 5.4: Percentage of pruned captions from the Language Model.

for the whole Validation dataset and compare it with the scores from Evaluation as
in Table 5.3.
Result: The evaluation on automatic scores shows that the Evaluation dataset is a
good representative of the whole Validation dataset as it has similar automatic scores.
The highest di�erences between the Satisfactory and Unsatisfactory datasets are
observed for the CIDEr and Bleu4 scores, highlighting their agreement with human
satisfaction.

5.7.2.2 The current component state

Next, we also evaluated the current state of each individual system component.

Visual Detector. Figure 5.7 shows the precision and recall of the Visual Detector
for both objects and activities when compared to the human-curated lists created from
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the majority vote aggregation of multiple workers’ fixes. In the same figure, we also
show the size of the lists before and after applying human fixes.
Result: The Visual Detector produces longer lists for objects than for activities but
with lower precision and recall.

Language Model. In the Language Model fixes, we examine only those captions from
the Language Model that are among the Top10 best captions in the Caption Reranker.
Given that many of the 500 generated sentences never appear as best captions of the
Reranker, and the Language Model output is quite extensive to be fully fixed via
crowdsourcing, we focus only on those captions that are likely to impact the system
output. Table 5.4 shows the percentage of captions pruned after applying the two fixes.
The Validation dataset here represents the whole MSCOCO dataset which contains
40,504 images.
Result: Due to self-repetition within the dataset, fixes generated for the 1000 images
of the Evaluation dataset generalize well to the whole Validation set, pruning 16.1%
of the Top1 captions and 14.9% of the Top10 captions. Language fixes have a higher
coverage than the commonsense ones.

Caption Reranker. Caption Reranker fixes also focus only on the Top10 best cap-
tions. After reranking this set with the crowdsourcing majority vote, we observe that
the best caption changes for 76.9% of the images. In 46.1% of the cases, the original
caption was never chosen by any of the workers. For 19.2% of the images, the majority
of workers reported that they could not find any caption in the list that is a good fit
for the image. These cases are indeed more serious failures that cannot be recovered
through reranking only.

5.7.3 Component fixes

5.7.3.1 Visual Detector fixes

Tables 5.5 and 5.6 show results from applying the four types of fixes on the Visual
Detector. These fixes increase the number of satisfactory captions in the dataset up
to 17.6% compared to the initial state of the system. Object fixes are more e�ective
than the activity ones for two reasons. First, the precision of the Visual Detector is
originally significantly lower for objects than for activities (0.44 vs. 0.8), which o�ers
more room for improvement for object fixes. Second, activity fixes are limited by
the shortcomings of the Language Model. Even when a corrected list of activities is
provided to the Language Model, it may fail to form commonsense captions containing
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Human Satisfaction Scores — Evaluation dataset
No fix Object Activity Addition Removal All fixes

Accuracy 3.674 4.045 3.681 3.709 4.000 4.035
Detail 3.563 3.900 3.590 3.604 3.880 3.916
Language 4.509 4.505 4.427 4.521 4.423 4.432
Csense. 0.957 0.947 0.940 0.957 0.933 0.942
General 3.517 3.848 3.510 3.549 3.796 3.831
%Sat. 57.8% 69.1% 57.1% 58.5% 66.8% 68.0%

Table 5.5: Visual Detector fixes — Human satisfaction scores.

Automatic Scores — Evaluation dataset
No fix Object Activity Addition Removal All fixes

CIDEr 0.974 1.048 0.948 0.995 1.023 1.045
Bleu4 0.294 0.298 0.289 0.299 0.289 0.295
Bleu1 0.693 0.713 0.690 0.698 0.711 0.719
ROUGEL 0.521 0.529 0.517 0.524 0.524 0.528
METEOR 0.248 0.254 0.247 0.251 0.253 0.257

Table 5.6: Visual Detector fixes — Automatic scores.

the corrected activities (e.g. A woman holding an office) due to non-monotonic
error behavior of the system.
Result: The entangled design between the Visual Detector and the Language Model
causes non-monotonic error propagation in particular for activity fixes.

Among all automatic scores, CIDEr, Bleu4, and METEOR preserve the same trends
as the human satisfaction score. For example, they confirm that object and removal
fixes are more e�ective than respectively the activity and addition fixes. The non-
monotonic error propagations are also reflected in the automatic score analysis as
previously concluded from the human satisfaction evaluation.

Improvements for the ROUGEL, METEOR, and Bleu4 are lower (also for other types
of fixes) as the metrics require a more complete coverage of the human captions which
is challenging to achieve in a sentence with limited length. For example, ROUGEL and
METEOR require high recall, while Bleu4 relies on exact matches of 4-gram patterns.

106



5.7. Experimental evaluation

Human Satisfaction Scores — Evaluation dataset
No fix Commonsense Language All fixes

Accuracy 3.674 3.698 3.696 3.712
Detail 3.563 3.583 3.590 3.602
Language 4.509 4.575 4.618 4.632
Csense. 0.957 0.973 0.974 0.982
General 3.517 3.546 3.557 3.572
%Sat. 57.8% 58.5% 59.2% 59.3%

Table 5.7: Language Model fixes — Human satisfaction scores.

Automatic Scores — Evaluation dataset
No fix Commonsense Language All fixes

CIDEr 0.974 0.975 0.983 0.98
Bleu4 0.294 0.297 0.297 0.298
Bleu1 0.693 0.694 0.690 0.691
ROUGEL 0.521 0.524 0.526 0.527
METEOR 0.248 0.249 0.247 0.247

Table 5.8: Language Model fixes — Automatic scores.

5.7.3.2 Language Model

As shown in Tables 5.7 and 5.8, language fixes are generally more e�ective than the
commonsense fixes as they have a higher coverage and they generalize better to other
images. Fixes in the Language Model increase the number of satisfactory captions by
only 3%.
Result: The impact of Language Model fixes is limited due to the fact that most
captions with language mistakes also have other problems which cannot be fixed only
through this component.

5.7.3.3 Caption Reranker fixes

As a final component, fixes in the Caption Reranker (Tables 5.9 and 5.10) directly
a�ect the final caption. This means that if there is a plausible caption in the Top10
set better than the original best caption, that caption is going to be ranked higher
after the fix and will directly improve the system output. This explains why Caption
Reranker improvements are higher than all other component fixes. However, notice
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Human Satisfaction Scores — Evaluation dataset
No fix Reranking (All fixes)

Accuracy 3.674 4.145
Detail 3.563 3.966
Language 4.509 4.626
Csense. 0.957 0.988
General 3.517 3.973
%Sat. 57.8% 73.6%

Table 5.9: Caption Reranker fixes — Human satisfaction scores.

Automatic Scores — Evaluation dataset
No fix Reranking (All fixes)

CIDEr 0.974 1.087
Bleu4 0.294 0.320
Bleu1 0.693 0.720
ROUGEL 0.521 0.543
METEOR 0.248 0.261

Table 5.10: Caption Reranker fixes — Automatic scores.

that the Caption Reranker fixes are also limited. Fixing the Reranker has no e�ect
if none of the captions in Top10 are satisfactory. This was the case in 19.2% of our
dataset. In these cases, fixing the Reranker alone is not su�cient to improve the final
caption, the fix workflow needs to include fixes of earlier components as well to improve
the final caption.
Result: The system improves by a factor of 27% after the Reranker fixes. Although
this provides the most e�ective system improvement, its influence is limited to instances
with at least one satisfactory caption in Top10, which is the case only for 80.8% of our
dataset.

5.7.3.4 Complete fix workflow

Tables 5.11 and Tables 5.12 show the improvements from each component and the
complete fix workflow which sequentially applies all possible component fixes (i.e. F =
{c(f1f2f3f4)

1 , c(f1f2)
2 , c(f1)

3 }). Figure 5.8 decouples the results for the Satisfactory and
Unsatisfactory partitions of the data set. In Section 5.7.6, we present concrete
examples on the impact of of fixes on the system output.

108



5.7. Experimental evaluation

Human Satisfaction Scores — Evaluation dataset

No fix Visual
Detector

Language
Model

Caption
Reranker All fixes

Accuracy 3.674 4.035 3.712 4.145 4.451
Detail 3.563 3.916 3.602 3.966 4.247
Language 4.509 4.432 4.632 4.626 4.660
Csense. 0.957 0.942 0.982 0.988 0.998
General 3.517 3.831 3.572 3.973 4.264
%Sat. 57.8% 68.0% 59.3% 73.6% 86.9%

Table 5.11: Complete fix workflow — Human satisfaction Scores.

Automatic Scores — Evaluation dataset

No fix Visual
Detector

Language
Model

Caption
Reranker All fixes

CIDEr 0.974 1.045 0.98 1.087 1.106
Bleu4 0.294 0.295 0.298 0.320 0.315
Bleu1 0.693 0.719 0.691 0.720 0.743
ROUGEL 0.521 0.528 0.527 0.543 0.543
METEOR 0.248 0.257 0.247 0.261 0.266

Table 5.12: Complete fix workflow — Automatic scores.

Result: The complete fix workflow increases the number of satisfactory captions by
50%. In contrast to the initial assumptions of system designers, fixes in the Caption
Reranker are most e�ective due to the entanglement in the previous components. Most
improvements come from the Unsatisfactory dataset partition. However, because of
non-monotonic error behavior in specific instances, some fixes result in slight deterio-
rations on the Satisfactory partition (e.g. Visual Detector fixes).

Moreover, the results show that the complete fix workflow does not improve each
quality metric equally. The limited dictionary of the system limits how much the
detailedness of captions can improve. Oftentimes, the system fails to make the caption
closely specific to the image as the dictionary does not include specific words that are
prominent in the image (e.g. wheelchair) and the correct word is mapped to a word
that is already in the dictionary but too general (e.g. pancakes to food).

The comparison of automated scores with human evaluations shows that automated
scores are able to detect major improvements in performance from fixes but they fail
to recognize the impact of fixes on the various quality dimensions (i.e. accuracy, detail
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Figure 5.8: Human satisfaction scores on the Satisfactory and Unsatisfactory

dataset partitions.

etc.), showcasing their limitations in comparison to human evaluation. In overall,
Caption Reranker fixes remain the most e�ective ones, followed by the Visual Detector,
and the Language Model.

5.7.4 Quality control

For all crowdsourcing experiments we applied the following quality control techniques:

Worker training — Providing accurate instructions to crowdsourcing workers is a
crucial aspect in applying our methodology to new machine learning systems.
We paid special attention to the task setup by reiterating over the user interface
design, providing multiple examples of correct solutions, and giving online feed-
back to workers on their work quality. Detailed task instructions are necessary
for workers to understand the goal of the system and the role of their fixes. We
also noticed that workers get more engaged if they understand how their work
contributes to improving the presented application.
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Spam detection — Due to the multimodal nature of the case study, the set of crowd-
sourcing tasks we used in our methodology is rich and versatile both in terms
of content (e.g. images, words, sentences) and design (e.g. yes / no questions,
word list correction etc.). Therefore, each task required specific spam detection
techniques. Given the lack of ground truth, we used worker disagreement as the
main criterion to distinguish low-quality work. However, due to potential subjec-
tivity in our tasks, we used worker disagreement only as an initial indication of
low quality and further analyzed distinct cases to decide upon work acceptance.

Batching — Large crowdsourcing batches are exposed to low-quality work risk as
workers may get tired or reinforce repetitive and wrong biases over time. To
avoid such e�ects, we performed experiments in small-sized batches (e.g. 250
image-caption pairs) which were published in periodical intervals. This allowed
us to analyze the batch data o�ine and give constructive feedback to specific
workers on how they can improve their work in the future. The strategy also
helped to keep workers engaged and motivated.

5.7.5 Methodology cost

The cost of human-in-the loop troubleshooting for a new machine learning system
depends on the number of components, the number of fixes, the fix workload, and the
size of the dataset to be investigated. Our analysis covered various fix workflows on
all components in the 1000 images Evaluation dataset which showed to be a good
representative of the Validation dataset. The total cost of the complete fix workflow
(the most expensive one) was $1,850, respectively spent in system evaluation ($250),
Visual Detector fixes ($450), Language Model fixes ($900), and Caption Reranker fixes
($250). For a more specialized troubleshooting, the system designer can guide the
process towards components that are prime candidates for improvement or on errors
to which users are most sensitive.

Table 5.13 shows the cost of each crowdsourcing task used in our methodology for the
captioning system. Based on this table, system designers can estimate the cost of any
future fix workflow. The last column corresponds to the total cost for all instances in
the Evaluation dataset. Note that the data collected for the Language Model fixes
is reusable as the sentences pruned in one workflow can be safely pruned in other
workflows as well. Once we executed the tasks for the workflow that fixes only the
Language Model, we observed that due to self-repetition, the number of new sentences
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Crowdsourcing task Fix Tasks Cost Assignments Total cost
Visual Detector
Add / remove objects c(f12)

1 1000 $0.05 3 $250.00
Add / remove activities c(f34)

1 1000 $0.04 3 $200.00
Language Model
Mark noncommonsense captions c(f1)

2 Æ 10000 $0.02 3 $600.00
Remove non-fluent captions c(f2)

2 Æ 10000 $0.01 3 $300.00
Caption Reranker
Rerank Top 10 captions c(f1)

3 1000 $0.05 5 $250.00
Human satisfaction 1000 $0.05 5 $250.00
Maximum workflow cost $1,850.00

Table 5.13: Summary of the crowdsourcing cost in the Evaluation dataset.

generated from other workflows is at least 4 times lower. This means that the cost of
fixes for the Language Model continuously decreases over time.

5.7.6 Examples of fix integration

Figure 5.9 presents examples of di�erent ways fix workflows a�ect the system output.
Figure 5.9(a) is an example of fixes to the Visual Detector resulting in a satisfac-
tory system output. In this example, workers removed the erroneous object kite and
added umbrella which propagated the improvement to the final caption. In the larger
dataset, successful propagations of individual component fixes to the final output are
also observed for activity fixes, commonsense fixes, and caption refinement fixes. Fig-
ure 5.9(b) shows an example of fixes having a limited improvement on the final caption
due to the commonsense barrier of the Language Model. In this example, the word
horse was present in both the original and the fixed word list. However, none of the
sentences generated by the Language Model could depict the situation in the image as
it was not found to be likely. This example is not unique, the Unsatisfactory dataset
contains a few more images of the same nature which describe an unlikely situation
that are (at the moment) hard to be described by a statistical automated system. Fig-
ure 5.9(c) is an example in which improvements from fixes are hindered by the limited
size of the dictionary. Since the word guitar is not in the dictionary, the final caption
fails to provide a satisfactory description.
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Before fix
A blue and yellow kite.

After fix
A blue umbrella in
a field of flowers.

(a) Successful fix

Before fix
A man in a red building.

After fix

A large red chair.

(b) Commonsense limitation

Before fix
A man is using a
laptop computer.

After fix
A man using a laptop

computer sitting on top of
a table. (guitar missing)

(c) Dictionary limitation

Figure 5.9: Examples of applying the complete fix workflow

5.8 How to improve the system?

Which fixes are more e�cient? The results from the methodology provide guid-
ance on next steps to improve the captioning system. First, improving the Reranker
emerges as the most promising direction to pursue. Second, due to entanglement is-
sues, improvements on the Visual Detector are suppressed by the shortcomings of the
Language Model. Therefore, Visual Detector fixes need to be accompanied with a more
capable and commonsense Language Model.

How to implement the fixes? There are multiple ways how human input collected
from simulating component fixes can help with permanently implementing component
fixes. Human fixes on the Visual Detector reveal that the majority of mistakes are false
detections. This issue can be addressed by improving model precision, which can be
achieved in multiple ways: (i) adjusting the thresholds used for creating the word list,
or (ii) expanding the model to reason about the prominence (saliency) of the word for
describing a given image. While the first idea is easier to implement, the latter is not
straightforward and the changes would a�ect a significant part of the detection model.
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Moreover, the data collected from language and commonsense fixes can be used for
training better language models or for immediately filtering out phrases and sentences
flagged by workers. Finally, since a common type of reranking error occurs when the
component chooses sentences with words scored low by the Detector, the Reranker can
be improved by increasing the weight of the image-caption similarity score.

Can all mistakes be fixed? The human fixes we experimented with in our case
study were able to simulate a system state where 86.9% of the captions were satisfac-
tory (Table 5.11). Still, the combination of all fixes we implemented failed on 13.1%
of our dataset. We can gain important insights into the shortcomings of the system
that cannot be easily fixed by asking the following question: What are the character-
istics of these unrecoverable cases? Based on an analysis of this subset, we categorize
these unrecoverable instances into three groups: (1) images with complex relationships
between objects that require more advanced models (Figure 5.9(b)), (2) images rep-
resenting rare and out-of-domain entities, activities, and relationships that require a
broader domain knowledge and a customized training set (Figure 5.9(c)), and (3) im-
ages that can be described in many di�erent ways and their captions fail the evaluation
test due to human subjectivity. These observations hint that the coverage of human
fixes can be extended and that the improvement of such systems is an incremental
ongoing process.

5.9 Discussion: Use cases and generalizability

The general methodology we presented can be applied to a broad range of component-
based systems that are designed to be modular and their component input / output is
human-interpretable. Even in systems in which these assumptions do not hold in the
functional component design, a new structure can be discovered by logically separating
components in boundaries where data dependencies are guaranteed and the exchanged
data can be analyzed by humans.

Applying the methodology to a new system requires the designer to customize the
methodology by identifying component fixes, defining system quality measures and
designing human computation tasks for evaluation and for simulating component fixes.
In addition to the captioning system, we conceptually applied our methodology to two
other systems: (i) question answering with knowledge bases and web search [170], and
(ii) an email-based reminder for a personal assistant. Our feasibility analysis showed
that both applications are compatible with the methodology and highlighted that the
most crucial aspect of customization is providing careful and non-ambigious training
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to crowdsourcing workers tailored to the system context. Given the novelty of the
proposed human interventions, the resulting crowdsourcing tasks are expected to be
di�erent from the typical labeling tasks frequently encountered in today’s platforms.
Such problems are usually more interesting and engaging to crowdsourcing workers.

5.10 Summary

This chapter summarized our work on troubleshooting component-based machine learn-
ing systems. We particularly focused on the system troubleshoting problem. The
problem raises two questions: “’How does the system fail?’ and “’How to improve
the system?’. We observe that, for component-based machine learning systems, this
problem exhibits particular intricacies not present in physical or conventional software
systems: continuous quality measures, non-monotonic error, and complex component
entanglement. Due to these characteristics, blame assignment in case of failure(i.e. de-
tecting the responsible component for the failure) is challenging and often not feasible.
Consequently, we proposed a troubleshooting methodology that uses the simulation of
component fixes as a bulding block for troubleshooting. The execution of fix simula-
tions can generate future hypothetical states of the system, in which one / some of the
components are improved. Afterwards, the system designer can compare and evaluate
the outcome with the initial state of the system. The analysis is beneficial not only
for troubleshooting, but most importantly for making decisions on how to improve the
system and where to focus the development e�ort of machine learning experts.

Human computation is fundamental to our approach as it facilitates the simulation of
component fixes. When a component fix cannot be implemented yet or it is too expen-
sive, crowdsourcing workers can check the component output and fix it according to
the respective input. These human computation fixes are collected via a crowdsourcing
platform in the form of microtasks. This methodology highlights the benefits of deeper
integration of crowd input on troubleshooting and improving integrative systems.

We applied our methodology on a real-word system for automatic image captioning.
The system combines interesting aspects of visual perception and language under-
standing, which has recently attracted interest in the machine learning community.
The study showed that the human-in-the-loop methodology can reveal insights, prob-
lems, and future improvement suggestions previously unknown to the system designers
and oftentimes surprising. While our experimental discussion focused mainly on this
system, the generic methodology is applicable to any system with modular design and
human-interpretable component input / output. Finally, there is an opportunity to
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develop generalizable pipelines for automating human-in-the-loop troubleshooting of
machine learning systems with reusable crowdsourcing task templates. Such a pipeline
would provide valuable insights on system development and create a feedback loop in
support of continuous improvement.
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Conclusions and future work

6.1 Summary and conclusions

Crowdsourcing has empowered the role of human intelligence in the AI loop either by
providing label data for training or by correcting possible mistakes in the computation
flow. In this dissertation, we referred to these processes as human supervision and
human intervention in machine learning. In particular, we studied quality control and
cost optimization approaches for such human-in-the-loop extensions of machine learning
models and systems. Quality control techniques are motivated by two fundamental
challenges. First, crowdwork may be subject to human error and ambiguity, which
poses limitations in making correct predictions from trained models. Second, current
machine learning systems may generate erroneous output of low quality, which is often
unpredictable and hard to diagnose. Given the large scale of datasets, cost optimization
techniques are then necessary for planning data acquisition under budget constraints.

6.1.1 Human supervision of machine learning models

Training machine learning algorithms from human-generated crowdsourced data has
traditionally heavily relied on profiling individual workers for correctly interpreting
their answers. In Chapter 2, we emphasized the importance of leveraging crowd models
that rely on higher level crowd representations which also account for group-based
correlations among workers. We proposed the Access Path model as an alternative of
modeling worker correlations and showed that this design comes with various additional
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benefits. First, the APM provides accurate predictions with meaningful confidence,
which makes it reliable for decision-making. In addition, it can handle noisy and sparse
data, which makes it a practical tool for label aggregation in real-world scenarios.

In Chapters 3 and 4, we focused on cost optimization aspects of human supervision.
This part of the thesis highlighted the importance of solving the problem in two stages:
(i) testing time — while collecting data for making new predictions from a given model,
and (ii) training time — while collecting data for building a new learning model.
In Chapter 3, we showed that the design of the Access Path model facilitates cost
optimization for new predictions by enabling the adoptation of greedy approximation
schemes for crowd access optimization. For this purpose, our analysis proves that
information gain is a submodular objective function for the model, which can then
guarantee theoretical bounds on the approximate solution. Experimental results also
indicate that best crowd access plans are highly diverse and they combine answers from
multiple access paths.

Optimization techniques for training time data collection face the challenge of model
uncertainty due to insu�cient available data in early stages. In Chapter 4, we discuss
the B-Leafs algorithm for making decisions on how to acquire labels for building
feature-based classification models. For given budget constraints, B-Leafs is able to
identify a set of informative features for the model, and at the same time learn their
corresponding parameters. The algorithm operates in a Bayesian framework, and main-
tains posterior distributions over all model parameters, thereby enabling us to capture
the uncertainty in the model parameters about individual features. It makes greedy
decisions for selecting the next feature label to acquire by exploiting the submodular-
ity of information gain from a feature, conditioned on the current state of learning. In
addition, it e�ectively balances exploration and exploitation by employing Thompson
sampling. We apply the B-Leafs ideas on both the Naïve Bayes and Access Path
model, and in an end-to-end evaluation we finally present the advantages of employing
the algorithm on a model that handles noisy crowdsourced labels.

6.1.2 Human intervention in machine learning systems

In the quest of continuously improving machine learning systems, we proposed a
human-assisted troubleshooting methodology. The presented methodology is appli-
cable to component-based integrative systems that interleave functionalities and data
from various machine learning components in order to provide a single output to the
end user. Due to the inherent uncertainty present in machine learning output and the
high complexity of such systems, errors in the final output are hard to understand and
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diagnose. Our approach overcomes these challenges by introducing human feedback for
evaluating and fixing the output of composing components. Via a set of crowdsourcing
tasks, workers are presented with pairs of component input and output, which they
can correct given the natural capabilities of human intellect to perform such tasks.
This feedback simulates new improved component states that are not feasible to gen-
erate without significant development e�ort and time. The simulations and the system
evaluation results before and after human component fixes construct a set of valuable
log data which can be used by system designers to make strategic decisions on how to
further improve the system.

Chapter 5 describes the workings of our approach and how we applied it on a state-
of-the art intelligent system for automatic image captioning. Due to the multimodal
nature of the integrated components, crowdsourced fixing tasks are versatile both in
terms of design and content. The overall evaluation demonstrated the benefits of
the methodology in two aspects. First, the application of individual and joint fixes
in a workflow could reveal surprising design facts about the system, previously not
known to the designers, including non-monotonic error behavior and complex compo-
nent entanglement. Second, results on the impact of individual component fixes in the
system quality as a whole provided informed guidelines on which components should
be prioritized for improvement. Most importantly, the process of implementing the
troubleshooting methodology in a real working system, validated the practical oppor-
tunities of incorporating crowd input that goes beyond data labeling and blends within
learning pipelines as a built-in quality control module.

6.2 Future work

6.2.1 Crowdsourcing platform support and integration

Quality control and in particular label aggregation has been the focus of crowdsourcing
research in the last decade. The problem is important not only to the machine learning
community but also to other research communities (e.g. psychology, sociology, human-
computer interaction etc.) that conduct experiments in crowdsourcing platforms. As
of now, there is only minimal guidance and support from the platform side on how to
interpret the collected data, target the right workers, or optimize the cost of data col-
lection. This implies that almost all crowd requesters need to come up with particular
schemes on their own in order to tackle the problems above. While some of the tasks
indeed require specific aggregation methods, many others share numerous commonal-
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ities, which hints for possible opportunities to integrate generalizable modules within
current frameworks that can be leveraged at users’ choice. Such modules can be built
to provide any of the following functionalities.

Label aggregation Many of the machine learning packages and libraries o�er generic
implementations of algorithms and models, which crowd requesters need to adopt
for handling crowdsourcing input. However, in the crowdsourcing community,
various works have proposed valuable aggregation methods, often superior to the
standard generic implementations [102, 141, 174, 81, 71, 53]. The Access Path
model we proposed in this dissertation is one representative in this family. In
order to support the integration of these methods, crowdsourcing frameworks
could provide implementable interfaces that allow requesters to either introduce
a model of their own or reuse models proposed and implemented by other re-
questers. The process would be beneficial not only for assisting crowd requesters
but also for having a consolidated understanding of the advantages and limita-
tions of current techniques when they are put into practical use.

Worker quality evaluation Quality scores provided by current frameworks mostly
focus on the percentage of work being approved by requesters. However, the
approval rate is informative only for excluding adversarial low quality work and
it does not reveal any insights on workers’ level of expertise. The issue can
become even more problematic for novice requesters, which have not yet created
a reputation in the framework and also have no previous knowledge about the
performance of individual workers.

If worker quality evaluation is combined with label aggregation models, similarly
to what happens in probabilistical models, it is possible to generate more reliable
and informative quality metrics that can express various dimensions of work:
accuracy, creativity, responsiveness, time e�ciency etc. Certain metrics can then
assist requesters to target the right set of workers. In addition, it is interesting
to explore how shared models of quality across various requesters can improve
targeted crowdsourcing. Most importantly, shared models can also be beneficial
in overcoming data sparsity challenges and discovering worker correlations.

Cost control and optimization Due to the lack of systematic techniques for label
aggregation and worker quality evaluation, cost control in current platforms is
usually static, i.e. it does not adapt neither to the type of task nor to the state
of the already collected data. The simplest and the most frequent form of cost
control in use is the number of assignments per task, which is constant within
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a given batch. However, as we showed in this thesis, there is a significant bene-
fit from optimizing data collection according to users’ budget constraints either
for planning the cost of new predictions or for bounding the cost of generat-
ing new models. To implement adaptive data collection algorithms, requesters
usually create temporary empty batches of work which they update as soon as
tasks are completed from workers. Again, although this technique is commonly
employed in research-oriented experiments, there is only little support for other
requesters. Therefore, it would be helpful to o�er data collection algorithms as
batch execution modes, which users can choose to run.

As discussed in Chapters 3 and 4, an important aspect of cost optimization is
targeting the right users for the task. Providing meaningful worker quality evalu-
ation metrics as discussed above, is the first requirement towards targeted crowd-
sourcing. However, due to the challenges that we presented in these chapters (i.e.
data sparsity and worker correlation) and the way how open crowd marketplaces
work (i.e. pull-based rather than push-based), it is not possible to target indi-
vidual workers in the crowd. For example, workers may not be available or they
may be overloaded with work. A viable idea would be to apply a hybrid model
of task distribution between pull-based and push-based, where requesters choose
to push the task only to a subgroup of workers (e.g. based on the access path
design in our case) and then workers pull tasks from the batch. In this setting,
requesters could still have a coarse-grained control on which wokers complete the
tasks, and at the same time overcome the inherent problems relevant to accessing
individual workers.

6.2.2 Crowdsourcing in future intelligent systems

This thesis was motivated by emerging opportunities of leveraging crowdsourcing to
provide human feedback to current learning systems. We showed that human feedback
can be introduced in analytical models either for the purpose of training or making in-
terventions for correcting erroneous output. As the complexity of the machine learning
systems and the problems that they solve grows, integrating a human perspective in
the design of intelligent pipelines can help towards continuously improving such sys-
tems, understanding their complexity, and adapting them to their users’ needs. Next,
we review some of the open directions, which can be promising in bridging the gap
between human and machine computation.
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Training for complex problems The problems that current machine learning algo-
rithms can solve are mainly characterized by individual tasks whose solution can
be represented via a limited set of labels or actions, which can be directly used
as training data. Simple examples include text classification, image recognition
etc. Recently, there has been increasing interest in solving more sophisticated
problems that involve multiple learning algorithms. The image captioning sce-
nario that we discussed in Chapter 5 is a typical example. Other applications
involve machine translation, question answering, and dialogue systems. Current
solutions in these domains use crowdsourced data as input, which is usually pre-
sented in the form of possible solutions to the task (e.g. human translated text,
answers, and conversations). This type of training data goes beyond single-label
answers. Often, it may even require training by providing a sequence of actions
that lead to the correct solution. In this context, human input can be valuable
if integrated with other forms of learning, e.g. reinforcement learning [108, 147]
with implicit or explicit human feedback. The shift has major implications in
several aspects of crowdsourcing such as task-design, aggregation models as well
as worker profiling.

System evaluation for complex problems An additional input for improving a
running system is to provide feedback on how satisfactory the system behav-
ior is to the end user. Most of the system evaluation surveys focus on estimating
single quality scores of user satisfaction. However, similar surveys can be con-
ducted to have a detailed understanding of other quality dimensions like: (i) the
sensitivity of users to various types of errors, and (ii) their preferences on which
task instances should have a higher priority than others. This type of evaluation
can guide designers in adjusting current systems according to users’ sensitivity.
Possible adjustments include the correction of penalty / reward measures of the
models so that they can account for online human criticism.

Control transfer In mission-critical applications of machine learning, failure detec-
tion and prevention are central prerequisites for building robust and reliable sys-
tems [132]. In this thesis, we showed how crowdsourcing can be used as part of
troubleshooting methodologies when failures happen. However, it is also equally
important for such systems to be able to understand in an online fashion when
such failures happen and transfer the further operation flow to users. Designing
smooth control transfers is however a challenging problem as it requires the im-
plementation of error-awareness modules that can initiate the process. On the
other hand, systems should be su�ciently transparent to users to enable them

122



6.2. Future work

understand the failure and take over the control flow. Operation transparency
and interpretability are dependent on shared human-machine cognitive models,
which can ensure that users build a correct perception of the system and vice
versa.
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A
Access path selection

A.1 Proof of Theorem 1

In order to prove Theorem 1, we will consider a generic Bayesian Network for the
Access Path Model (APM) with N access paths and each access path associated with
M possible votes from workers. Hence, we have following set of random variables to
represent this network:

i) Y is the random variable of the crowdsourcing task.
ii) Z : {Z1, . . . , Z

i

, . . . , Z
N

} are the latent random variables of the N access paths.
iii) X : {X

ij

for i œ [1, . . . , N ] and j œ [1, . . . , M ]} represents a set of random vari-
ables associated with all the workers from the access paths.

The goal is to prove the submodularity property of the set function:

f(S) = IG(S; Y ) (A.1)

i.e., the information gain of Y and S ™ X w.r.t to set selection S, earlier referred
to as access plan. We begin by proving the following Lemma 1 that establishes the
submodularity of the information gain in a network with one access path (i.e., N = 1),
denoted as Z1.

Lemma 1. The set function f(S) = IG(S; Y ) in Equation A.1 is submodular for the
Bayesian Network representing an Access Path Model with N = 1 access path denoted
by Z1, associated with M workers denoted by X : {X1j

for j œ [1, . . . , M ]}.
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Y

Z1

X1jÕ

. . .. . .
X1j

. . .
X11 X1l

. . .
X1M

Figure A.1: APM Model for N = 1 access path, associated with M workers

Proof of Lemma 1. Figure A.1 illustrates the Bayesian Network consisdered here with
one access path Z1. For the sake of the proof, we consider an alternate view of the
same network as shown in Figure A.2. Here, the auxiliary variable Z1j

denotes the
set of first j variables associated with workers’ votes from access path Z1, i.e., Z1j

=
{X11, X12, . . . , X1j

}. This alternate view is taken from the following generative process:
Z1 is first sampled given Y , followed by sampling of Z1M

from Z1, where Z1M

=
{X11, X12, . . . , X1M

}. Given Z1M

, the remaining Z1j

’j Æ M are just subsets of Z1M

.
We define set Q : {Z1j

for j œ [1, . . . , M ]}.

One crucial property we use while considering this generative process here is that all
the X1j

are just repeated observations of same variable associated with response of a
worker from Z1 access path and hence they are anonymous and ordering does not mater.
Note that, querying j workers from Z1, i.e. observing S = {X11 . . . X1j

} is equivalent
to observing Z1j

. Given this equivalence of the two representations of Figure A.1 and
Figure A.2, we now prove the submodularity of the set function g(A) = IG(A; Y ) i.e.,
the information gain of Y and A ™ Q w.r.t to set selection A.

Note that since Z1j

™ Z1j

Õ ’ j Æ jÕ, we can alternatively write down A as equivalent to
the singleton set given by {Z1k

} where k = arg max
j

Z1j

œ A. Also note that, function
f(S) and g(A) have one to one equivalence given by g(A) = f({X11 . . . X1k

}) where k =
arg max

j

Z1j

œ A.

To prove submodularity of g, consider sets A µ AÕ µ Q and an element q œ Q\AÕ. Let
A © {Z1j

}, AÕ © {Z1j

Õ} where jÕ > j and q = Z1l

where l > jÕ. First, let us consider
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Y

Z1

Z1jÕ

. . .. . .
Z1j

. . .
Z11 Z1l

. . .
Z1M

Figure A.2: APM Model for N = 1 access path, associated with M workers repre-
sented with auxiliary variables Z

ij

marginal utility of q over A denoted as �
g

(q|A), given by:

�
g

(q|A) = g(A fi {q}) ≠ g(A)
= IG(A fi {q}; Y ) ≠ IG(A; Y )
= IG({Z1j

} fi {Z1l

}; Y ) ≠ IG({Z1j

}; Y )
= IG({Z1l

}; Y ) ≠ IG({Z1j

}; Y ) (A.2)
= IG(Z1l

; Y ) ≠ IG(Z1j

; Y ) (A.3)

=
3

H(Y ) ≠ H(Y |Z1l

)
4

≠
3

H(Y ) ≠ H(Y |Z1j

)
4

= H(Y |Z1j

) ≠ H(Y |Z1l

)

Step A.2 uses the fact that {Z1j

} fi {Z1l

} is simply equivalent to {Z1l

} as Z1j

µ Z1l

.
Step A.3 replaces singleton sets {Z1l

} and {Z1j

} by the associated random variables
Z1l

and Z1j

. Now, to prove submodularity, we need to show that �
g

(q|A) Ø �
g

(q|AÕ),
given by:

�
g

(q|A) ≠ �
g

(q|AÕ)

=
3

H(Y |Z1j

) ≠ H(Y |Z1l

)
4

≠
3

H(Y |Z1j

Õ) ≠ H(Y |Z1l

)
4

= H(Y |Z1j

) ≠ H(Y |Z1j

Õ)

=
3

H(Y ) ≠ H(Y |Z1j

Õ)
4

≠
3

H(Y ) ≠ H(Y |Z1j

)
4

= IG(Z1j

Õ ; Y ) ≠ IG(Z1j

; Y )
Ø 0 (A.4)

Step A.4 uses the “data processing inequality" [18, 31], which states that post-processing
cannot increase information, or the mutual information gain between two random vari-
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ables decreases with addition of more intermediate random variables in the unidirec-
tional network considered in Figure A.2.

Next, we use the result of Lemma 1 to prove the results for generic networks with N

access paths.

Proof of Theorem 1. We now consider a generic Bayesian Network for the Access Path
Model (APM) with N access paths and each access path associated with M possible
votes from workers. Again taking the alternate view as illustrated in Figure A.2, we
define auxilliary variables Z

ij

denoting a set of first j variables associated with workers’
votes from access path Z

i

, i.e., Z
ij

= {X
i1, X

i2, . . . , X
ij

}. As before, we define set
Q : {Z

ij

for i œ [1, . . . , N ] and j œ [1, . . . , M ]}. The goal is to prove the submodularity
over the set function g(A) = IG(A; Y ) i.e., the information gain of Y and A ™ Q w.r.t
to set selection A.

We define Q
i

: {Z
ij

for j œ [1, . . . , M ]} ’ i œ [1, . . . , N ], and hence we can write
Q = fiN

i=1Qi

. We can similarly write A = fiN

i=1Ai

where A
i

= A fl Q
i

. We denote
complements of A

i

and Q
i

as Ac

i

and Qc

i

respectively, defined as follows: Qc

i

= Q \ Q
i

and Ac

i

= A fl Qc

i

.

To prove the submodularity property of g, consider two sets A µ Q, and AÕ = A fi {s},
as well as an element q œ Q \ AÕ. Let q œ Q

i

. We consider following two cases:

Case i). s œ Q
i

(q and s belong to the same access path.)

Note that, we can write A = A
i

fi Ac

i

and AÕ = AÕ
i

fi Ac

i

, as A and AÕ di�er only along
access path i. Also, let us denote a particular realization of the variables in set Ac

i

by
ac

i

. The key idea that we use is that for a given realization of Ac

i

, the generic Bayesian
Network with N access paths can be factorized in a similar way as with just one access
path (Figure A.2), when computing the marginal gains of q over A

i

and A
i

fi {s}.

Again, we need to show �
g

(q|A) Ø �
g

(q|AÕ); given by:

�
g

(q|A) ≠ �
g

(q|AÕ)
= �

g

(q|A
i

fi Ac

i

) ≠ �
g

(q|AÕ
i

fi Ac

i

)

= E
a

c
i

3
�

g

(q|A
i

, ac

i

) ≠ �
g

(q|AÕ
i

, ac

i

)
4

(A.5)

Ø 0 (A.6)

Step A.5 considers expectation over all the possible realizations of random variables
in Ac

i

. Step A.6 uses the result of Lemma 1 as this network for a given realization
of Ac

i

has the same characteristics as a single access path network where information
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gain is submodular. Hence, each term inside the expectation is non-negative, proving
therefore the desired result.

Next, we consider the other case when q and s belong to di�erent access paths.

(Case ii) s œ Qc

i

(q and s belong to di�erent access paths.) First, let us consider
marginal utility of q over A denoted as �

g

(q|A), given by:

�
g

(q|A) = g(A fi {q}) ≠ g(A)
= IG(A fi {q}; Y ) ≠ IG(A; Y )

=
3

H(A fi {q}) ≠ H(A fi {q}|Y )
4

≠
3

H(A) ≠ H(A|Y )
4

=
3

H(A fi {q}) ≠ H(A)
4

≠
3

H(A fi {q}|Y ) ≠ H(A|Y )
4

= H(q|A) ≠ H(q|A; Y ) (A.7)
= H(q|A) ≠ H(q|A

i

; Y ) (A.8)

Step A.7 simply replaces the singleton set {q} with the random variable q. Step A.8
uses the fact that A = A

i

fi Ac

i

and the conditional independence of q and Ac

i

given Y .

Now, to prove submodularity, we need to show �
g

(q|A) Ø �
g

(q|AÕ), given by:

�
g

(q|A) ≠ �
g

(q|AÕ)

=
3

H(q|A) ≠ H(q|A
i

, Y )
4

≠
3

H(q|AÕ) ≠ H(q|A
i

, Y )
4

(A.9)

= H(q|A) ≠ H(q|AÕ)
Ø 0 (A.10)

Step A.9 uses the conditional independence of q and Ac

i

given Y . Note that a crucial
property used in this step is that s œ Ac

i

for this case. Step A.10 follows from the
“information never hurts" principle [31] thus proving the desired result and completing
the proof.

A.2 Proof of Theorem 2

Proof of Theorem 2. In order to prove Theorem 2, we first consider a general sub-
modular set function and prove the approximation guarantees for the greedy selection
scheme under the assumption that the cost to budget ratio is bounded by “.

Let V be a collection of sets and consider a monotone, non-negative, submodular set
function f defined over V as f : 2V æ R. Each element v œ V is associated with a
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Appendix A. Access path selection

Algorithm 8. Greedy for general submodular function
1 Input: budget B, set V , function f

2 Output: set SGreedy

3 Initialization: set S =ÿ, iterations r = 0, size l = 0
4 while V ”= ÿ do
5 vú = arg max

v™V

!
f(Sfiv)≠f(S)

cv

"

6 if c(S) + c
v

ú Æ B then
7 S = S fi {vú}
8 l = l + 1

9 V = V \ {vú}
10 r = r + 1

11 SGreedy = S

12 return SGreedy

non-negative cost c
v

. The budgeted optimization problem can be cast as:

Sú = arg max
S™V

f(S) subject to
ÿ

sœS

c
s

Æ B

Let SOpt be the optimal solution set for this maximization problem, which is intractable
to compute [48]. Consider the generic Greedy selection algorithm given by Algo-
rithm 8 and let SGreedy be the set returned by this algorithm. We now analyze the
performance of Greedy and start by closely following the proof structure of [79, 146].
Note that every iteration of the Algorithm 8 can be classified along two dimensions: i)
whether a selected element vú belongs to SOpt or not, and ii) whether vú gets added
to set S or not. First, let us consider the case when vú belongs to SOpt, however was
not added to S because of violation of budget constraint. Let r be the total iterations
of the algorithm so far, and l be the size of S at this iteration. We can renumber the
elements of V so that v

i

is the ith element added to S for i œ [1, . . . , l] and v
l+1 is the

first element from SOpt selected by the algorithm that could not be added to S. Let S
i

be the set obtained when first i elements have been added to S. Also, let c(S) denote
q

sœS

c
s

. By using the result of [79, 146], the following holds:

f(S
i

) ≠ f(S
i≠1) Ø c

i

B
·

3
f(SOpt) ≠ f(S

i≠1)
4
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A.2. Proof of Theorem 2

Using the above result, [79, 146] shows the following through induction:

f(S
l

) Ø
A

1 ≠
lŸ

j=1

3
1 ≠ c

j

B

4B

· f(SOpt)

Ø
A

1 ≠
3

1 ≠
lÿ

j=1

c
j

B · l

4
l

B

· f(SOpt) (A.11)

=
A

1 ≠
3

1 ≠ c(S
l

)
B · l

4
l

B

· f(SOpt) (A.12)

In Step A.11, we use the property that every function of form
A

1 ≠ r
l

j=1

3
1 ≠ cj

B

4B

achieves its minimum at
3

1 ≠
1
1 ≠ —

2
l

4
for — = q

l

j=1
cj

B·l .

Now, we will incorporate our assumption of bounded costs, i.e., c
v

Æ “ · B ’v œ V ,
where “ œ (0, 1) to get the desired results. We use the fact that budget spent by
Algorithm 8 at iteration r when it could not add an element to solution is at least
(B ≠ max

v™V

c
v

), which is lower-bounded by B(1 ≠ “). Hence, the cost of greedy
solution set c(S

l

) at this iteration is at least B(1 ≠ “). Incorporating this in Step A.12,
we get:

f(S
l

) Ø
A

1 ≠
3

1 ≠ (1 ≠ “)
l

4
l

B

· f(SOpt)

=
A

1 ≠
3

1 ≠ 1
÷

4
÷·(1≠“)B

· f(SOpt) where ÷ = l

(1 ≠ “)

Ø
3

1 ≠ 1
e(1≠“)

4
· f(SOpt) (A.13)

This proves that the Greedy in Algorithm 8 achieves a utility of at least
3

1 ≠ 1
e

(1≠“)

4

times that obtained by optimal solution Opt. Given these results, Theorem 2 follows
directly given the submodularity properties of the considered optimization function.
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