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ABSTRACT
Mammalian body surfaces are inhabited by vast numbers of microbes, the commensal
microbiota, which help the host to digest food, provide nutrients, and mature its immune system.
For a long time, postnatal colonization was believed to be the main stimulus for microbial-
induced immune development. Using a model of reversible colonization of germ-free mice
during gestation, we recently showed that the microbial shaping of the neonatal immune system
begins even before birth through molecular signals derived from the microbiota of the mother.
Maternal microbiota was important to mature intestinal innate immune cells and to alter
intestinal gene expression profiles in the offspring. These changes prepare the newborn for
postnatal colonization. The majority of the gestational colonization-dependent effects required
maternal antibodies. Here, we discuss and provide further evidence how maternal antibodies are
important players in transferring a signal originating from the maternal intestinal microbiota to
the offspring.
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Background

We all live in a microbial world, with microbes colo-
nizing nearly all surfaces in our environment. Some of
the highest microbial densities anywhere are found
within the mammalian intestine. These microbes colo-
nize the mammalian inner and outer body surfaces,
such as the skin, the intestine, the urogenital tract and
the airways.1 The microbial host relationship is
mutual beneficial. The commensal microbes contrib-
ute to the digestion of nutrients and the synthesis of
essential vitamins,2 and also protect the host from
invasion by pathogens.3 By densely colonizing the
mucosal surfaces, commensal bacteria occupy space
and compete for nutrients thereby preventing patho-
genic bacteria and viruses from taking up residence.
In addition, the commensal microbiota has been
shown to efficiently mature the host innate and adap-
tive immune systems, both at mucosal sites and gener-
ally in the body.4 Elegant models using germ-free
mice have illustrated the important role of the

microbiota in the development of immunity and other
body systems.5 Indeed, in the absence of microbiota,
intestinal IgA production and T helper cell differentia-
tion are strongly diminished, secondary and tertiary
lymphoid organs (lymph nodes, Peyer’s patches and
isolated lymphoid follicles) are underdeveloped and
the innate immune system is hyporeactive.4

The birth of a newborn child is a tremendous life
event. While the unborn child is well protected in the
sterile environment of the uterus from external influ-
ences and infections by maternal immunity and by
physical separation, birth exposes the newborn baby
for the first time to a vast number of microbes – both
commensal and potentially pathogenic in nature. The
colonization of the body surfaces with an endogenous
commensal microbiota starts immediately after birth
and microbes living on the body soon reach numbers
of astronomical proportions. Bacterial infections are
the first cause of death of preterm babies and new-
borns,6,7 so understanding exactly when and how the
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immune system is prepared to deal with the enormous
colonization that starts at birth is crucial. A long
believed dogma stated that immune maturation is
mainly shaped through postnatal endogenous coloni-
zation of the offspring.8,9 This is of course predicated
on the knowledge that the developing fetus is sterile
and not yet colonized by microbes. However, the
unborn child is connected to the maternal blood
stream for efficient nutrient supply and bacterial com-
ponents or metabolites induced in the maternal organ-
ism by the microbiota can efficiently be transferred to
the fetus. We hence challenged the old dogma and
asked whether signals originating from the maternal
microbiota during gestation contribute to the micro-
bial shaping of the immunity of the offspring.10

Model of gestation-only colonization

An important aspect of our experimental approach was
to uncouple maternal colonization with microbes dur-
ing gestation from postnatal colonization of the off-
spring. The effects of commensal colonization of the
mammalian body on the host immune system have
been elegantly demonstrated by the specific coloniza-
tion of germ-free mice. As colonization of a germ-free
animal with a commensal bacteria is non-reversible,
even if antibiotics are applied, offspring born to or
nursed by a colonized mouse will lead to its immediate
colonization, and the observed phenotype will no lon-
ger be attributable to either maternal or endogenous
microbiota. To achieve gestation-only colonization, we
made use of a system of reversible colonization of
germ-free mice with the genetically modified strain
Escherichia coli (E. coli) HA107, which had been devel-
oped in our laboratory several years ago.11 E. coli
HA107 is an auxotrophic mutant of the non-patho-
genic E. coli K-12 that is deficient in the biosynthesis of
the D-isomer of alanine and meso-diaminopimelic
acid, both of which are essential components of the
bacterial cell wall and cannot be provided by the mam-
malian host. E. coli HA107 can thus only be grown in
supplemented in vitro culture and colonizes a germ-
free mouse reversibly for only 24–48 hours.

In our model of gestation-only colonization, we
have delivered E. coli HA107 to pregnant dams every-
other day starting from embryonic day (E) 8 until E16
by gavage. The dams regained germ-free status after
treatment and therefore delivered their pups germ-
free. The offspring of these gestationally colonized

dams were then compared with offspring that were
born to dams that were maintained germ-free
throughout pregnancy.10

Effect of gestational colonization on offspring
immunity

As a first approach to assess the effect of maternal
microbiota on the immune system of the offspring, we
screened various innate and adaptive immune cell
populations in primary and secondary lymphoid
organs and in the intestinal tissue of the newborn off-
spring using flow cytometry. While adaptive immune
cells, such as B and T helper cell subsets were unal-
tered in the offspring of gestationally colonized mice
compared with the offspring of germ-free control
mice, we detected significant changes in the innate
immune compartment.10 Specifically, small intestinal
NKp46C type 3 innate lymphoid cells (ILC3s) and
intestinal F4/80C CD11cC mononuclear cells (iMNCs)
in the small and large intestine were increased in rela-
tive and absolute numbers. These changes were appar-
ent as early as 10 d after birth and were durable until
adulthood. To appreciate the full effect of gestational
colonization on the newborn intestinal immune sys-
tem, we also performed RNA sequencing analysis
from the intestine of 14 day-old pups born to either
control or gestationally colonized dams. Astoundingly,
more than 2000 genes were significantly altered in
expression between the 2 groups. Among these, were
not only immunologically relevant genes, but also
genes involved in the establishment of host-microbial
mutualism, for example those required for mucus pro-
duction and secretion, and proliferation, differentia-
tion and homeostasis of intestinal epithelial cells,
including soluble factors like antimicrobial peptides
and mucosal antibodies.10 Signals deriving from the
maternal microbiota thus not only shape immunity of
the offspring, but have pleiotropic effects, the func-
tion/influence of which on the physiology of the off-
spring throughout life remain to be elucidated in
further research.

The microbiota composition in the first years of life
differs from that in adults.12 Enterobacteriaceae and in
particular E. coli are part of the initial composition of
the microbiota of neonates.13,14 Knowing that antimi-
crobial peptides and intestinal ILC3s are important
players in maintaining host-microbial mutualism and
in restricting intestinal commensals to the intestinal
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lumen,15,16 we decided to address the impact of mater-
nal microbiota in the ability of the newborn to restrain
microbiota to the gut preserving the sterility of sys-
temic organs. In our experimental set-up, the neonates
of both the untreated germ-free control mothers and
of the gestationally colonized mothers are born germ-
free. To mimic colonization with commensal microbes
that normally occurs at birth, we exposed the offspring
on day 14 after birth to a benign E. coli strain. After
18 hours, bacteria had translocated to the mesenteric
lymph nodes in the pups born to control dams but
not in the offspring of gestationally colonized moth-
ers.10 These results in combination with the RNA
sequencing data show that signals of the maternal
microbiota mainly serve to prepare the offspring for
the enormous biomass of microbes that colonize the
intestine and other body surfaces after birth.

How can signals originating from the maternal
intestinal microbiota affect the offspring?

It is a well-established paradigm in host-microbial
mutualism that intestinal bacteria hardly ever cross
the intestinal barrier and if they do so they are effi-
ciently stopped at the firewall of the mesenteric lymph
nodes.17 Moreover, during pregnancy a second bar-
rier, the placenta, prevents the colonization of the
fetus in the uterus. There are studies suggesting that
very low numbers of organisms from the maternal
microbiota may be able to cross the placenta and reach
fetal tissues.18,19 The technical challenge of such stud-
ies is to avoid contaminations during sample collec-
tion and processing in humans.20 In our model, we
extensively checked the gestationally colonized dams
as well as colonized pregnant mice by culturable and
non-culturable methods and did not detect any bacte-
ria either in the fetus or in the placenta. Therefore, in
this model we found that the developing fetus was
never exposed to live microbes. Several studies have
illustrated the molecular transfer from the mother to
the newborn organism during lactation via compo-
nents present in the mother milk.21 However, in our
system of only transient colonization during preg-
nancy, no live microbes remained in the maternal
body at the time of delivery and the maternal milk in
our experiments was always sterile. Although live bac-
teria from the maternal microbiota are not transferred
to the offspring, bacterial compounds may well be.
When we traced bacteria-derived metabolites by

exposing pregnant dams to 14C-labeled E. coli HA107,
we detected radioactivity both in the placenta and in
the maternal milk,10 indicating that bacteria-derived
metabolites can reach the offspring both during fetal
development via the placenta and during lactation as
components of the maternal milk (Fig. 1). This was
also supported by cross-fostering experiments when
the newborn litters of gestationally colonized dams
were swapped to control dams for nursing and vice
versa. Only if the offspring was born and raised by a
transiently colonized mother, the effect on the new-
born immune system was complete. However, 14C-
labeling techniques do not allow the molecular identi-
fication of the bacteria-derived molecules and can also
not distinguish between molecules of bacterial origin
and 14C label incorporated into host molecules
through secondary metabolism. To resolve the molec-
ular identities of penetrant bacterial molecules, we
labeled E. coli HA107 with the stable isotope 13C and
transiently colonized pregnant dams. This enabled us
to track bacterial products from the maternal intestine
into the mother’s milk and even into the newborn tis-
sues. We identified several hundred partially or fully
13C-labeled potential metabolites based on accurate

Figure 1. Maternal microbiota-derived signals are transferred to
the offspring ante- and postnatally. During gestation signals
derived from the maternal microbiota reach the offspring via the
placenta (maternal gut-placenta-fetus axis). Signals originating
from intestinal microbial colonization of the mother during preg-
nancy can also reach the offspring through the breast milk after
birth (maternal milk-newborn axis).
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mass in the maternal milk of a gestationally colonized
mouse.10 These tentatively annotated metabolites were
members of a diverse range of different compound
classes. However, of the many 13C-labeled bacteria-
derived metabolites we focused our attention on
potential ligands for the aryl hydrocarbon receptor
(AhR). This cytoplasmic ligand-activated transcrip-
tion factor is known to be involved in the metabolism
of aromatic hydrocarbons and therefore in the detoxi-
fication of xenobiotics.22 AhR has a broad ligand
range, including exogenous toxic compounds such as
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), food
indoles present in cruciferous vegetables, and endoge-
nous ligands generated during tryptophan metabo-
lism.23 AhR is also required in the development and
homeostasis of immune cells involved in microbiota-
host mutualism, such as intraepithelial gamma delta T
cells,24 regulatory T cells,25 T helper 17 cells26 and
ILC3.27 We detected several partially or fully 13C-
labeled AhR ligands to be significantly increased in
the milk of gestationally colonized dams compared
with the milk of control dams. We confirmed the
functional AhR ligand effect by showing that the
uptake of a purified AhR ligand, indole-3-carbinol, by
germ-free dams during pregnancy was sufficient to
recapitulate the immune phenotype observed in the
offspring following gestational colonization.10 All
together these results suggest that some of the multi-
parametric effects of maternal microbiota on intestinal
immune education of the offspring could be driven by
bacteria-derived AhR ligands.

The involvement of maternal antibodies in
maternal microbiota-dependent imprinting of
the neonatal immune system

It is well known that antibodies are transferred from
the mother to her offspring to equip the child with
passive immunity and protection.28,29 Immunoglobu-
lin G is transferred via the placenta in mice and
humans30 and taken up from the milk via the duode-
num until about postnatal day 12 in mice.31 IgA is
mainly secreted into the maternal milk.32 Given our
observation that a transfer of signals from the mater-
nal microbiota most probably occurs both in utero
and during lactation, we hypothesized that maternal
antibodies were involved in this process. We hence
tested how the absence of maternal antibodies affected
our observed phenotypes following transient

gestational colonization through cross-breeding JH-
deficient females, which are devoid of B cells, with
wild type males. This showed that many of the
changes observed in the immune system of the off-
spring born to a gestationally colonized dam com-
pared with those born to a control dam were absent if
the mother was deficient in B cells (e.g. the increase in
intestinal NKp46C ILC3s and most of the transcrip-
tional changes observed in the RNA-Seq experi-
ment10). Transfer of serum from an E. coli HA107-
primed wild type mouse, but not from an E. coli
HA107-primed antibody-deficient mouse, to a preg-
nant germ-free dam, induced similar changes in the
offspring immune system as gestational colonization.

But how can maternal antibodies contribute to
these immune changes in the offspring? There are 2
possibilities: i) mucosal priming of the mother during
pregnancy significantly increases the concentration of
immunoglobulins in the serum and the higher con-
centration of antibodies reaching the offspring may
exert direct changes in the immune system of the off-
spring, or ii) specific antibodies may bind bacterial
products, retain them in the maternal organism, and
deliver them across the placenta or into the milk. We
have tested both. By exposing female mice before
pregnancy to the same dose of E. coli HA107 as we
usually applied during gestation, we were able to
increase serum and milk antibody levels to concentra-
tions that equaled those after gestational priming.
However, delivering the priming signal before gesta-
tion was insufficient to contribute to the maturation
of the offspring immune system.10 Hence, solely
increased antibody levels in the maternal serum are
not the key to our observations. Our hypothesis is
thus that the maternal antibodies in the serum, which
are later secreted into the milk, are able to capture and
retain microbial products in the maternal body. By
labeling HA107 with radioactive 14C we tested for dif-
ferences in uptake and retention of bacterial metabo-
lites by the mother in antibody-sufficient and deficient
mice. Consistent with our hypothesis, in the absence
of antibodies, less radioactive products were retained
in the maternal organism over time. Likewise, JH-defi-
cient mothers that were gavaged with 13C-labeled
HA107 during pregnancy, exhibited largely fewer fully
13C-labeled (microbial) metabolites in the maternal
milk shortly after birth. Especially tryptophan metabo-
lites, which are ligands of the AhR, were absent from
the milk of antibody-deficient mice.10 To prove that
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metabolites of the maternal intestinal microbiota can
bind to maternal serum antibodies, we made use of
size exclusion chromatography to fractionate the
serum 6 hours after gavaging 13C-labeled E. coli
HA107. When we analyzed the fractions containing
IgG and IgA, we were able to identify several partially
or fully 13C-labeled metabolites.10 With high likeli-
hood, these bacterial metabolites were bound to the
antibodies and therefore co-eluted in the same frac-
tion. It is known that intestinal microbiota-specific
antibodies are present both in serum and mothers
milk,33,34 and we have evidence that it is E. coli-spe-
cific antibodies in the maternal body that are responsi-
ble for the capture and transfer of bacterial products
into the milk and subsequently into the offspring. Fol-
low-up experiments will have to be performed to defi-
nitely prove the binding of bacterial metabolites to
serum antibodies.

We believe that microbe-specific maternal antibod-
ies, besides passively protecting the unborn and neona-
tal child from infections through immune exclusion,
are an important player in the maternal-fetal/neonatal
transfer of maternal microbiota-derived signals. Explic-
itly, microbiota-specific antibodies are able to bind bac-
terial fragments leading to a better retention of
microbiota-derived metabolites in the maternal organ-
ism and hence a more efficient transport of these across
the placenta and into the maternal milk, thereby pre-
paring the offspring for immunological challenges after
birth (Fig. 2).

Retrospect

The work we published in 201610 and the additional
considerations we describe here contribute to the
understanding of the “critical window of opportuni-
ties,” which describes the importance of microbial
influences on the host immune system happening
early in life.35 Not only does postnatal colonization
play an important role in setting the immune pheno-
type of the newborn child, but molecular signals origi-
nating from the microbiota of the mother, which can
reach the offspring in utero via the placenta and post-
natally through the breast milk, significantly contrib-
ute to the microbial shaping and setting up of the
neonatal immune system. While we were able to dem-
onstrate the importance of the maternal microbiota in
preparing the offspring for the event of colonization
in its first days of life, it now remains to show the con-
sequences of this effect in adulthood if we colonize the
offspring after birth.
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Figure 2. Maternal antibodies help in the transfer of microbial
products to the offspring. Metabolites from the intestinal micro-
biota of the mother resulting from transient gestational coloniza-
tion of the dam are transferred to the offspring antenatally via
the placenta and postnatally through the maternal milk and
induce immune maturation of the offspring intestinal mucosa,
such as an increase in NKp46C type 3 innate lymphoid cell (ILC3)
and in intestinal mononuclear cell (iMNC) numbers. Expression of
genes for antimicrobial peptides, mucus production and antibody
secretion (pIgR: polymeric immunoglobuline receptor) were
upregulated in intestinal epithelial cells in the offspring. Maternal
antibodies (green: IgG, blue: dimeric IgA) mediated these effects,
probably by more efficiently retaining microbial products in the
maternal organism and transporting them to the placenta and/or
the breast milk.
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