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Abstract

The primary aim of this thesis is to endow legged robots with a reliable sense of
ego-motion. Just like humans or other legged beings, many legged robots require
estimates of their posture and velocity in order to keep balance and move through
the environment. The estimates need to exhibit both sufficiently high bandwidth and
accuracy in order to allow for a controlled execution of these tasks. Furthermore, due
to this dependency, failures of the state estimation may quickly lead to damaging of
the robot or its surroundings, which emphasizes the importance of the reliability of
the employed estimation algorithms. The associated research question may be formu-
lated as finding an appropriate combination of sensor modalities and state estimation
algorithms such that the ego-motion can reliably and accurately be estimated with
financially and computationally reasonable costs. Furthermore, the state estimation
should not limit the capabilities of the robot and thus the use of restrictive assump-
tions such as a horizontal terrain, specific gait patterns, or the availability of external
sensing is undesirable.
In a first step the focus will be set on proprioceptive sensing in order to keep the

data processing simple and thus keep time delays small and avoid additional error
sources. In contrast to other types of robots, legged robots interact with their en-
vironment through intermittent foot-ground contacts. Assuming stationary ground
contacts and measurable forward kinematics, this interaction can provide the legged
robot with a very valuable source of information. Since most modern robotic platforms
are also equipped with inertial sensing devices, the combination of inertial and kine-
matic data becomes an apparent approach for solving the state estimation problem
for legged robots. However, careful modeling and sensor fusion design are prerequi-
sites for achieving good performance. Concurrently, further challenges such as online
calibration of Inertial Measurement Unit (IMU) biases, handling of slipping feet, or
mitigating numerical inconsistencies have to be taken care of before truly reliable ego-
motion estimation can be attained. In order to tackle these challenges we propose to
co-estimate the foothold locations within a Kalman filter framework. We thereby also
circumvent the use of restrictive assumptions such as a flat environment or a fixed
gait pattern.
In a second part we investigate the use of exteroceptive sensing in order to reduce

drift that occurs when employing proprioception only. We focus on the use of cameras
due to the rich information they provide while exhibiting low weight and low power
consumption. In order to achieve high robustness, it is important to incorporate iner-
tial data during visual processing for reducing vision-only related failure modes, such
as caused by fast motion or missing texture. Furthermore, the handling of fast motion
during which the scene may pass rapidly trough the field of view, is improved if visual
information extraction occurs from a feature’s second observation onwards. Ideally,
the handling of visual features is kept simple such that no cumbersome initialization
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Abstract

routine is required, which again improves robustness since the system can easily be
reset if failures occur. Targeting these design concepts a first framework tightly com-
bines optical flow measurements with inertial data. To this end an optical flow based
residual is derived which relies on the co-estimation of the mean scene depth. The
residual is then integrated in the update step of an IMU-driven Kalman filter.

Based on a similar IMU-driven Kalman filter approach we also investigate the pos-
sibility to tightly integrate the photometric information itself instead of relying on a
visual pre-processing. The idea is to use the raw pixel intensity measurements directly
in the Kalman filter update step by associating every landmark with a multilevel image
patch. In subsequent camera frames, a photometric residual is derived by projecting
the previously extracted patches into the images and computing a pixel-wise intensity
error. If used within an Iterated Extended Kalman Filter (IEKF), this process di-
rectly takes care of the landmark tracking and no additional data association method
is required. Furthermore, since this inherent landmark tracking relies on the use of
inertial and visual information simultaneously it allows the inclusion of non-corner
visual features such as line segments. The overall filter framework is formulated in
a fully robot-centric way where landmark locations are partitioned into bearing vec-
tors and distance parameters. This allows an undelayed and stochastically accurate
initialization of new landmarks leading to a truly power-up-and-go state estimation
framework.
Strong emphasis is set on the consistency and cleanliness of the developed methods.

To this end differential geometric concepts are employed for the representation and
handling of non-vector space quantities such as three-dimensional (3D) orientations
and bearing vectors. The application of these concepts allows a minimal representa-
tion of differences and derivatives and thereby decreases the computational costs while
leading to simple and singularity-free state estimation models. Furthermore, the cor-
responding “minimal” Jacobians can be used for performing a nonlinear observability
analysis in order to identify the observable sub-space.
All state estimation algorithms are evaluated on real datasets. In many cases they

have also been implemented on real robots and employed for feedback control. For
instance, the proposed kinematic and inertial sensor fusion approach has become an
inherent part of the software framework running on the quadrupedal robots Star-
lETH and ANYmal (see Figure 2.1). Likewise, the proposed visual inertial odometry
has been applied in various Unmanned Aerial Vehicle (UAV)-related projects and is
available as open-source software.
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Zusammenfassung

Das primäre Ziel dieser Arbeit ist es, Laufroboter mit einem zuverlässigen Bewe-
gungssinn zu versehen. Ähnlich wie Menschen und andere gehende Lebewesen, ver-
trauen viele Laufroboter auf eine Schätzung ihrer Haltung und Geschwindigkeit, um
das Gleichgewicht zu halten und sich durch die Umwelt zu bewegen. Diese Schätzung
muss eine ausreichend hohe Bandbreite und Genauigkeit aufweisen um eine kon-
trollierte Ausführung dieser Aufgaben zu gewährleisten. Gleichzeitig, stellt diese
Abhängigkeit eine hohe Anforderung an die Zuverlässigkeit des Schätzalgorithmus.
Ein Versagen der Zustandsschätzung kann dabei schnell zu einer Beschädigung des
Roboters und seiner Umgebung führen. Die vorliegende Fragestellung richtet sich
dementsprechend auf das Erforschen geeigneter Sensormodalitäten und entsprechen-
der Schätzalgorithmen, so dass die Bewegung des Robotersystems zuverlässig und
effizient geschätzt werden kann. Zusätzlich sollten die Fähigkeiten des Roboters nicht
eingeschränkt werden und dementsprechend muss der Gebrauch von restriktiven An-
nahmen bezüglich Roboterumgebung oder Gangarten vermieden werden.
In einem ersten Teil fokussiert sich die Arbeit auf das Verarbeiten von propriozep-

tiven Messdaten. Dies erleichtert die Datenverarbeitung und ermöglicht dadurch,
Zeitverzögerungen gering zu halten und zusätzliche Fehlerquellen zu vermeiden. Im
Gegensatz zu anderen Roboterarten interagieren Laufroboter mittels intermittieren-
den Bodenkontakten mit ihrer Umgebung. In der Annahme dass Bodenkontakte sta-
tionär bleiben, stellt diese Interaktion eine sehr wertvolle Informationsquelle dar. Dies
erfordert natürlich, dass die Vorwärtskinematik der Beine mittels kinematischen Sen-
soren erfasst werden kann. Da die meisten modernen Roboter auch mit sogenannten
IMUs (Trägheitsnavigationssysteme) ausgestattet sind, ergibt sich die Kombination
von Trägheits- mit kinematischen Messungen als effizienter Ansatz für die Zustandss-
chätzung von Laufrobotern. Allerdings bedingt dies eine sorgfältige Modellierung und
den Einsatz adäquater Schätzalgorithmen. Zusätzlich müssen weitere Schwierigkeiten
wie die online Kalibrierung von systematischen IMU Messabweichungen, die Hand-
habung von rutschenden Füssen, oder das Vorbeugen von Inkonsistenzen angegan-
gen werden, bevor eine zuverlässige Bewegungsschätzung erreicht werden kann. Um
diese Schwierigkeiten anzugehen, schlagen wir vor, die Schätzung der Fusspunkte im
Schätzalgorithmus mit einzubeziehen. Damit vermeiden wir auch den Einsatz restrik-
tiver Annahmen wie etwa einer flachen Umgebung oder einer vorgegeben Gangart.
Im zweiten Teil wird die Verwendung von exterozeptiven Sensoren zur Driftreduk-

tion untersucht. Dabei wird der Fokus auf die Verwendung von Kameras gesetzt,
da diese leichten und energiesparenden Sensoren einen sehr reichen Informationsge-
halt aufweisen und über die Wiederbeobachtungen von Orientierungspunkten eine
Driftreduktion ermöglichen. Um eine hohe Zuverlässigkeit zu erreichen, ist es äusserst
wichtig, während der Verarbeitung visueller Daten die Messungen einer vorhandenen
IMU mitzuberücksichtigen. Dies vermindert die Anfälligkeit auf visuell degenerierte

v



Zusammenfassung

Situationen, wie sie beispielsweise bei schnellen Bewegungen oder fehlender Umge-
bungstextur anzutreffen sind. Bei schnellen Bewegungen ist es wichtig, dass die In-
formation bereits aus wenigen Beobachtungen einzelner Bildpunkte extrahiert werden
kann, da die Umgebungen sehr schnell an der Kamera vorbeizieht. Eine einfache und
unverzögerte Handhabung der visuellen Orientierungspunkte ist darum unabdingbar.
Zusätzlich kann dies auch die Initialisierungsroutine vereinfachen und dadurch ein
Zurücksetzen des Systems bei Fehlern ermöglichen. Um diese Konzepte zu verfolgen,
werden in einem ersten Ansatz IMU daten mit sogenannten optischen Fluss Messun-
gen kombiniert. Hierzu wird der optische Fluss in ein Residuum umgewandelt, indem
eine Annahme über die Szenentiefe getroffen wird. Dieses Residuum wird dann in
den Aktualisierungsschritt eines Kalman Filter integriert, dessen Prädiktionsschritt
auf IMU Daten basiert.

Gestützt auf eine ähnliche IMU-Prädiktion, wurden auch Kalman Filter basierte
Schätzer untersucht, mit denen photometrische Information direkt integriert wird.
Anstatt auf eine visuelle Vorverarbeitung zu vertrauen, besteht die Idee darin, die
Bildintensitätsmessungen direkt im Aktualisierungsschritt des Kalman Filters zu ver-
arbeiten. Dies wird erreicht indem jeder Orientierungspunkt mit einer kleinen quadra-
tischen Bildregion assoziiert wird. Diese Bildregion wird in nachfolgenden Kameraauf-
nahmen mit den Bildintensitäten verglichen an der Stelle, wo der Orientierungspunkt
zu erwarten ist, um einen pixelweisen Intensitätsfehler zu berechnen. Innerhalb eines
iterierten erweiterten Kalman filters (IEKF) kann der Intensitätsfehler während des
Aktualisierungsschritt direkt als Innovation benutzt werden. Das Interessante dabei
ist, dass dadurch die Orientierungspunktverfolgung zu einem inhärenten Bestandteil
des Kalman filters wird und dass keine zusätzliche Datenassoziation benötigt wird.
Des weiteren werden die IMU-daten somit auch während dieser inhärenten visuellen
Datenassoziation berücksichtigt was wiederum die Zuverlässigkeit erhöht und die Ver-
folgung von nicht Eckpunkten ermöglicht (zum Beispiel Liniensegmente). Eine voll-
ständige roboterzentrische Formulierung wird benutzt, welche Orientierungspunkte in
Richtungsvektoren und Distanzparameter zerlegt. Dies ermöglicht eine unverzögerte
und stochastisch genaue Initialisierung von neuen Orientierungspunkten, so dass ein
echtes “Power-Up-and-Go” system erreicht werden kann.
In dieser Arbeit wird stark auf Richtigkeit und Einfachheit der entwickelten Metho-

den geachtet. Dazu werden differentiell geometrische Konzepte für die Darstellung und
Handhabung von nicht-Vektorraumgrössen wie 3D Orientierungen und Richtungsvek-
toren verwendet. Die Anwendung dieser Konzepte erlaubt eine minimale Darstellung
von Differenzen und Ableitungen, verringert die Rechenkosten, und führt zu einfachen
und singularitätsfreien Modellen. Weiterhin können die entsprechenden “minimalen”
Jacobians in einer nichtlinearen Beobachtbarkeitsanalyse verwendet werden, um den
beobachtbaren Unterraum zu identifizieren.
Die entwickelten Schätzalgorithmen werden auf realen Datensätzen ausgewertet.

Zusätzlich werden einige der vorgeschlagenen Ansätze auf realen Robotern imple-
mentiert und dabei täglich gebraucht. Zum Beispiel ist der auf kinematischen und
inertialen Daten basierende Ansatz zu einem inhärenten Teil der Softwareumgebung
geworden, die auf den vierbeinigen Robotern StarlETH und ANYmal läuft (siehe Fig-
ure 2.1). Ebenso wurde die vorgeschlagene visuelle-inertiale Odometrie in verschiede-
nen Flugroboter bezogenen Projekten angewendet und ist als open-source Software
verfügbar.
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Preface

Relevant work published during the course of the Author’s doctoral studies make
up the core of this cumulative thesis. This is framed by extended introduction and
conclusion sections, which provide an overview of the work and illustrate how the
different publications are part of a coherent research framework.
Chapter 1 begins with an introduction into the matter and states the motivation of

the research. It also explains the division of the work into two parts. Subsequently,
Chapter 2 discusses the current state-of-the-art while elaborating on certain key con-
cepts encountered throughout the thesis and highlighting open problems. Context
and contribution of each publication are summarized in Chapter 3. It demonstrates
the interconnections between the published work and illustrates the broader context.
Finally, Chapter 4 concludes the work by summarizing the overall contribution of the
present thesis and by discussing possible future directions.
The relevant publications are attached as post-print copies at the end of the thesis.

They are ordered by project and by increasing complexity.
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Chapter1
Introduction

We may assume the superiority ceteris paribus [other things being equal] of
the demonstration which derives from fewer postulates or hypotheses.

— Aristoteles, Posterior Analytics

Large parts of our planet’s landmass are inaccessible by wheeled vehicles but are
nonetheless often populated by legged animals, including man. This observation has
motivated engineers to study and investigate the principles of legged locomotion in
order to extend the range of robotic applications and thereby allowing robots to
increasingly take over dangerous, difficult, or repetitive tasks in various fields such as
search and rescue, agriculture, mining, nuclear power, forestry, resource exploration,
health care, or public services.
The field of legged robotics has seen a significant progress in recent years [18, 70,

101, 118]. The platforms have become more capable and robust and have reached a
point where they can actually leave lab environments and carry out tasks in real-world
scenarios. While these improvements have mainly been achieved on a hardware and
control level, it is essential that the perceptive capabilities of the robotic platforms
sustain this progress. As part of this, state estimation adopts a central role since
estimated quantities are often prerequisites for other tasks such as balance control,
trajectory planning, target tracking, or terrain mapping. Particularly for systems
which need constant stabilization, such as dynamically balanced systems, high band-
width estimates of the attitude and velocity of the robot are indispensable.
The strong dependency of other tasks on the estimated outputs imposes high re-

liability specifications on the state estimation. Missing, delayed, or bad estimates
can quickly lead to failures of the robotic platform causing potential damage to the
robot or its surroundings. In a first instance this motivates the use of simple sensor
modalities. By employing sensors with low data processing complexity the frame-
work is less prone to possible failures. For instance, inertial measurements require
much less processing than image streams and are less affected by bad environmental
conditions such as poor illumination or missing texture. Thus, a reliable state estima-
tion methodology should include “simple” sensors in order to guarantee the quality of
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1 Introduction

the estimation output at all times. This is further motivated by eventual bandwidth
specifications which do not allow for long processing times.

Inertial sensors are nowadays often available on robotic platforms and, arguably,
provide a very reliable source of information. While attitude estimates can be gen-
erated from inertial measurements only [93], position or velocity estimates are very
inaccurate due to the underlying numerical integration of acceleration measurements.
On the other hand, legged robots are often also equipped with kinematic sensors such
as joint encoders. In conjunction with the assumption that foot-ground contacts re-
main stationary, this offers a further source of information. The first part of this thesis,
entitled Proprioceptive State Estimation for Legged Robots addresses this matter and
focuses on the sensor fusion of inertial and kinematic data.

Relying on proprioceptive sensor modalities only has the disadvantage that there
are very limited means to counteract estimation drift, i.e., the accumulation of errors
over time that are not being corrected for. In cases where inertial measurements are
available, this mainly concerns the position and yaw angle estimates of the robot, since
inclination angles (and velocities) are typically observable. In essence, the robot is
comparable to a blindfolded person which finds itself moved to an unknown location:
While the individual is able to estimate its inclination w.r.t. the gravity direction and
its local velocity, it has no means to gauge its location or the direction it is facing
to if no additional cues are available. One such additional cue is provided by the
human visual perception system with which a person is able to localize w.r.t. known
landmarks. For robotic systems, analogous information can be retrieved by the means
of cameras. Due to their low weight and power consumption as well as the relatively
affordable pricing, many robotic systems are nowadays equipped with visual sensing.
Vision based state estimation has been the focus of a large research community

in the past few years. This is probably due the maturity of the sensor devices and
the rich sensory information, which allows vast algorithmic possibilities. While state-
of-the-art visual localization and mapping algorithms have achieved very astonishing
performance in terms of accuracy and map size, the performance quickly degrades in
more challenging situations. Difficulties typically arise from conditions such as missing
texture, bad illumination, motion blur, or dynamic scenes. As aforementioned, a
failure of the state estimation for real-world robotic systems can lead to disastrous
events and should therefore be avoided or at least detected. One possible approach
to render the visual state estimation more robust is to integrate measurements from
additional sensor modalities. This will be the focus of the second part of this work,
entitled Robust Visual-Inertial Sensor Fusion, where we will investigate tight visual-
inertial sensor fusion while keeping a particular focus on the robustness of the methods.
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Chapter2
State-Of-The-Art

This chapter reviews the current state-of-the-art. A detailed discussion of the related
work is provided in order to illustrate the encompassing context of this thesis and to
introduce certain key concepts. After a brief review on legged robotics, we present
the state-of-the-art relating to both parts of this thesis.

2.1 Legged Robotics

First autonomous legged robots have emerged in the late mid 20th century [42, 94].
For a long time the focus remained on classical position controlled hardware and
thus locomotion and maneuvers were often bound to slow and static motions. More
recently, the emergence of dynamically stabilized robots has allowed to overcome these
limitations by enabling more adaptive and versatile interaction with the environment.
This has been impressively demonstrated by the Boston Dynamics robots, including
the well-known quadruped BigDog [18, 111] or their humanoid counterpart Atlas.
In the scope of this work we closely worked on both ETH Zurich quadruped robots

StarlETH [68] and ANYmal [70] (see Figure 2.1). Both are approximately dog-sized
torque-controlled robots equipped with joint encoders, contact sensors, IMU, and a
varying collection of exteroceptive sensor modalities. Some additional experiments
have been performed on the hydraulically-actuated quadruped HyQ [118] and on the
SARCOS humanoid [117].

2.2 Part A: Proprioceptive State Estimation for Legged
Robots

In comparison to other locomotion technologies, legged robots distinguish themselves
in the way they interact with their surroundings through intermittent ground contacts.
This can represent an additional source of information if corresponding sensory data
is available. One of the earliest approaches leveraging kinematic information was
developed by Roston and Krotkov [116] on their Ambler hexapod. Using a forward
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Figure 2.1: The two quadrupeds employed for the evaluation of the devel-
oped algorithms. Left: StarlETH [68]. Right: ANYmal [70].

a) b) c)

Figure 2.2: This figure illustrates three common concepts for leveraging leg
kinematic information. Quantities in green are only intermediate. Quantities
in red are passed to the encompassing estimation framework. Left: foothold
matching generates incremental pose estimates [43, 51, 87, 116]. Middle:
assuming knowledge on the incremental rotation linear velocity estimates can
be derived from every foot constraint [35, 92]. Right: the “raw” constraints
is directly forwarded to the encompassing framework. Here the residual is
given by the error between forward kinematics and footholds [10, 11, 117].

kinematics model the location of the point feet can be computed w.r.t. the robot body.
Assuming that feet in contact with the ground remain stationary, they can be matched
between successive timesteps and thereby used to calculate the incremental motion.
This basically minimizes the motion of the contact feet as perceived from an inertial
coordinate frame and is analogous to the well-known iterative closest point method
[110], whereas the point-to-point associations are already known. This concept is
investigated in Paper II and a possible extension to flat feet is proposed. Figure 2.2
provides a coarse overview of methods for leveraging leg kinematic information.

Several research groups have extended the above foothold matching methodology.
For example, Gaßmann et al. [43] introduce fuzzy weights in order to describe the reli-
ability of the ground contact constraints. Contacts which are for instance suspected to
slip are associate with a lower reliability. This is assessed by the means of various mea-
surements, such as force and motor current measurements. The subsequent foothold
matching takes this reliability score into account by down-weighting unreliable contact
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constraints. Another option is to include additional sensor modalities. IMU measure-
ments are often used in Kalman filter [77] based sensor fusion by integrating them into
the prediction model [23, 35, 92]. This is a highly established approach as it allows to
leverage raw IMU measurements while keeping a reasonable filter state size, avoiding
additional motion models, and offering the possibility for online bias estimation. Lin
et al. [87] propose such an approach for their under-actuated hexapod RHex and em-
bed the incremental pose estimates from the foothold matching into the update step
of the Kalman filter. This allows the estimation framework to bridge phases where
the solution to the foothold matching is not well-defined, i.e., when less then three
ground contacts are available. An additional advantage which comes with the use of
inertial measurements, is that they provide information about the orientation w.r.t.
the gravity direction, which, depending on the employed control framework, may be
an essential asset. An alternative source of information for estimating the gravity
direction can be retrieved through force measurements as these reflect the constant
effort required to compensate the effect of gravity. If joint torque measurements are
available, roll and pitch estimates can be acquired based on a quasi-static assumption
[51]. Again, these inclination estimates can be fused with the ego-motion estimates
obtained from foothold matching and can be combined with inertial data [23].
A fundamental issue with foothold matching is that a minimum of three contact

points is required in order to obtain a fully-defined estimate of the incremental mo-
tion. In order to overcome this limitation for more dynamic scenarios, data-driven
approaches can be used. For instance, stride length can be determined by using joint
encoders, force sensors and IMU data [113]. The disadvantage here is that the state
estimation needs to be trained whereas generalization to various locomotion patterns
or environment types is not guaranteed. In cases where the attitude can be assumed
to be known, incremental position estimates (or velocity estimates) can be obtained
from a single ground contact (see Paper II for more details). This has often been
applied on humanoid robots equipped with high performance IMUs which provide
high quality standalone attitude estimates [35, 92].
Another option is to rely on a dynamic model and draw on the torque and force

sensor measurements which are available on many modern legged robotic platforms.
However, due to non-modeled effects and external disturbances as well as due to the
dependency on parameters which tend to be difficult to identify (e.g. moments of
inertia or friction coefficients), the overall accuracy of dynamic models tends to be
limited. Furthermore, the evaluation of the equations of motion for a fully actuated
robot can be computationally demanding especially if derivatives w.r.t. to state vari-
ables (e.g. robot attitude or velocities) are required. A brief sketch how to include the
full dynamic model is provided in Paper II. The relatively low accuracy and the high
computational costs motivate and justify the use of approximations. For instance, the
increased costs emerging from the Jacobian computation can be avoided by using a
decoupled steady state Kalman filter [144] or by treating the prior state as a fixed
value [143]. Both approaches involve stochastic simplifications and may become in-
consistent due to the negligence of cross-correlations. Other common approximations
are the Spring Loaded Inverted Pendulum (SLIP) model [53], the Linear Inverted Pen-
dulum Model (LIPM) [129, 142], or the use of two-dimensional (2D) sagital dynamics
[2, 82].
A first relation to the second part of this thesis is given by the fact that a single
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foothold can be interpreted as a stationary landmark in the environment (see Paper
III). Modeling the world as collection of 3D landmarks has been frequently exploited in
the fields of visual odometry and Simultaneous Localization And Mapping (SLAM)
[28, 81, 100]. This has also been shown to be combinable with IMU data, where
robust state estimation can be obtained through tight sensor fusion [73, 79]: This
combines sensor data in a in a less-processed form and thereby leads to a stochastically
more consistent formulation. Furthermore, a nonlinear observability analysis can be
performed for such systems in order to show that all states are observable except for
the global position and yaw angle [96]. The required motion for exciting the observable
states depends on the amount of information that can be extracted from a landmark
observation. In the context of legged robotics, this depends on the ground contact
modeling. For instance, many humanoid robots exhibit flat feet where the additional
rotational constraints around the feet provide extra information [117].

Most methods leveraging kinematic information assume stationary contact points.
While a certain amount of slippage can be handled the use of an explicit slip detec-
tion and managing can be beneficial to avoid corruption of the state estimation. A
relatively simple approach draws on the observation that non-slipping ground con-
tacts maintain a constant distance w.r.t. each other. Especially for robots with larger
number of legs this becomes interesting since a slipping foothold violates more than
one relative distance constraint [116]. In filtering setups, the stochastic nature of the
approach can be used to evaluate the probability of observing a given measurement
[52]. In Paper IV we discuss a way to apply this to legged robotic state estimation
in order to reject the kinematic measurements of slipping feet. If available, the con-
sideration of further sensor readings such as force sensors can also be helpful for slip
detection [78].
The use of filter-based approaches also allows for an easy inclusion of further sensor

modalities. In order to reduce the accumulation of drift exteroceptive sensor modal-
ities are of high interest. A classical approach is to include GPS data. This can
easily be achieved within a filter-based approach by integrating position measure-
ments within the update step [43]. In particular when the nature of the sensory data
becomes more complex, the information is often fused in a loose manner, i.e., the
exteroceptive data is first processed to an intermediate ego-motion estimate before it
is combined with the proprioceptive measurements [23, 39, 92]. A generic approach to
introduce external six-dimensional (6D) pose measurements is described in Paper II.
While this improves modularity and keeps the framework manageable, it often results
in a stochastically suboptimal solution. In the context of legged robotics, only Fallon
et al. [35] propose a semi-tight fusion of exteroceptive sensing by computing a Light
Detection And Ranging (LiDAR) based innovation term on the sub-state of the filter.

2.3 Part B: Robust Visual-Inertial Sensor Fusion

Many visual localization methods rely on the assumption that the environment can
be modeled as a collection of stationary 3D landmarks. Fundamental contributions,
in both visual localization [28, 81] and visual reconstruction [135], have relied on this
concept. The idea is to extract salient points [56, 120] in a specific image and to
find correspondences in neighboring frames. This can be either done by matching
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landmark descriptors [88] or by using tracking approaches [89, 120]. The later rely on
good initial guesses for the location of landmarks in the camera frames.
For 3D monocular vision, Davison [28] proposed one of the first real-time localiza-

tion algorithms. It relies on an Extended Kalman Filter (EKF) based framework,
where the 3D locations of the landmarks are part of the filter state and thus co-
estimated online. A constant velocity model is employed as process model and the
reprojection errors between predicted and measured landmark image locations serve
as innovation terms in the Kalman filter update step. As both localization and map-
ping are performed in a unified framework, this approach can be classified as a SLAM
algorithm. In subsequent contributions a trend towards batch optimization based
frameworks can be observed, especially after the seminal work of Klein and Murray
[81]. One reason for this was that frameworks which jointly optimize map and motion
for a given number of keyframes (a selected subset of all camera frames) exhibit a
much better scalability in terms of landmark count [130]. Also, due to the possibility
to refine past estimates, consistency issues related to the continuous linearization and
marginalization of filtering frameworks [21, 75] could be mitigated. This resulted in
some impressive visual SLAM solutions [76, 95, 100, 131].
One fundamental issue with visual approaches is the projective nature of the camera

models which, without any additional cues, prevents the inference of the distance of
perceived landmarks from a single view. Thus, in the case of monocular vision, camera
motion is essential for retrieving the 3D geometry of the scene. However, as the dis-
tance information gets gradually available with increasing baseline, it is not straight-
forward how to represent the corresponding estimates. For instance, frameworks with
regular Cartesian coordinates cannot properly capture the one-directional initial un-
certainty and thus often fall back to delayed landmark initialization schemes [28],
where a landmark is only properly initialized once it has been observed from different
view points. Fortunately this limitation can be overcome by using an inverse-depth
parametrization of the landmark position [98]. In essence this splits the representa-
tion of the landmark location into a direction it is viewed in and its inverse depth (or
distance). This partitions the state into an initially unobservable part (depth) and
an observable part which can be properly initialized for a new landmark (direction).
The additional inversion of the depth parametrization alleviates issues related to non-
linearities and allows a more appropriate stochastic representation of the depth [126].
Note that for batch optimization based approaches regular Cartesian parametriza-
tion is often sufficient since landmarks can be initialized once observed from multiple
points of view and can also be refined thereafter.
While visual odometry or SLAM approaches can achieve great results in terms

of accuracy, they often struggle in more difficult scenarios involving fast motions or
missing texture. A common approach to improve robustness is sensor fusion whereby
vision has often been combined with inertial data due to the complementarity of
both sensor modalities: IMUs provide reliable and high bandwidth incremental pose
estimates but quickly suffer from drift due to the integration of sensor noise. On the
other hand, visual information can be used to observe landmarks over a prolonged
time period and thereby mitigate the accumulation of drift, but can potentially be
prone to estimation failures. Within an EKF framework, tight fusion of both sensor
modalities can be achieved by including the IMU measurements into the process model
of the classical EKF SLAM approach [28]. Additional challenges are caused by the
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need for online calibration of the accelerometer and gyroscope biases which are often
modeled as slowly time varying quantities [73, 79].

In the context of visual-inertial sensor fusion the superiority of batch optimiza-
tion based approaches is less evident. This may be due to the more accurate incre-
mental motion estimates which alleviate problems caused by the EKF linearization
as the deviation from the true trajectory is less severe. Also, in order to integrate
IMU measurement in a batch optimization framework the temporal distance between
keyframes cannot exceed a certain value and thus the number of required keyframes
increases with time. This in turn impairs the scalability of these frameworks and
often marginalization of parts of the map are unavoidable for maintaining real-time
capability [84]. Furthermore, methods for mitigating consistency issues related to
the spurious observability of unobservable states can also improve the consistency of
filter-based approaches. The two most common ones are partitioning of observable
and unobservable states [21] or the numerical enforcement of unobservability con-
straints [61]. Due to its simplicity we will follow the first approach in Paper V, Paper
VI, and Paper VII. Another option to improve consistency while at the same time
reducing computational costs is to follow a structureless approach where the landmark
locations are directly marginalized during construction of the reprojection error. This
has been embedded in both a filter-based framework [99] or batch optimization [41].
A recent and popular trend is the transition to direct photometric approaches. In-

stead of relying on the tracking of 3D landmarks these methods directly minimize the
error between predicted/rendered and measured image regions, and are consequently
often referred to as direct methods. One option is to model the environment as a
collection of planar image patches and derive a photometric residual capturing ge-
ometry (location/normal of patches), camera motion, as well as illumination changes
[71, 97, 122]. The classical KLT-tracker [120] is related to those approaches and can be
seen as direct method for landmark tracking. In Paper VI and Paper VII the concept
of direct patch-based method is combined with an IMU-driven EKF in a fully robot-
centric setup. Tanskanen et al. [132] present a similar method but deviate in how they
parameterize the patch location. An alternative is to compute a per-pixel estimate of
the depth for the partial or full image. This can be achieved within keyframe based
batch optimization where the algorithm alternates between depth estimation and di-
rect image alignment [33]. This has also recently been combined with inertial data by
formulating a joint energy term composed of visual and inertial residuals [136].
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Chapter3
Contribution

In this chapter we discuss contexts and contributions of publications included in this
thesis. We also highlight the relations between the different papers and show how they
fit into a coherent research framework. A recurring link throughout this work is given
by the underlying methods and tools, e.g., sensor fusion methods, parametrization
and modeling tools, or nonlinear observability analysis. Paper I reviews the proper
handling of 3D orientations in the context of optimization frameworks, which is a key
component in mobile robotic state estimation. Thereafter the papers are ordered by
project and by increasing complexity.

3.1 Background Theory

The paper included in this section discusses the representation and handling of 3D
orientations, which is a central part of this thesis. This is due to the high occurrence
of optimization based methods in state estimation and the frequent involvement of 3D
orientations. However, the scope of its applicability is much broader than discussed
here, and includes every optimization based technique involving 3D orientations. In
robotics, notable examples include motion control or path planning.

Paper I

Michael Bloesch, Hannes Sommer, Tristan Laidlow, Michael Burri, Gabriel Nuetzi,
Péter Fankhauser, Dario Bellicoso, Christian Gehring, Stefan Leutenegger, Marco
Hutter, Roland Siegwart, “A Primer on the Differential Calculus of 3D Orientations”.
CoRR, arXiv.org 2016.

Context

Many filtering and optimization problems in engineering require the representation
of 3D orientations. A classical example is the orientation of free floating base robots
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such as legged robots or micro aerial vehicles. Issues typically arise when 3D orienta-
tions become part of the free variables that are being optimized for. This is caused
by the fact that the set of 3D orientations is not a vector space and thus classical
gradient based approaches will not work as usual. Unfortunately, conceptually simple
but suboptimal solutions are often employed. These may include singularity-affected
representations or over-parametrization. Furthermore, these solutions can be compu-
tationally more expensive due to complex analytical derivatives, larger state spaces,
and slower convergence.

Contribution

The contribution in this paper consists in the condensation of differential geometric
concepts for 3D orientations and improving the accessibility for engineers. A more
abstract notion of 3D orientations is conveyed which helps avoiding issues related to
different conventions. A simple notation is introduced and used to construct boxplus
and boxminus operators which adopt the roles of addition and subtraction on the
Lie group SO(3). Combining this with a regular definition of differentials then leads
to simple and minimal analytical derivatives of quantities involving 3D orientations.
Exemplification is provided in the form of a commonly encountered filtering problem
and through various derivations and proofs. The presented derivation for the Jacobian
of the exponential map is of special interest as it is much more compact when compared
to the standard series expansion based proof.

Interrelations

The concepts presented in this paper are used throughout the entire thesis and play
a central role within the other contributions. Many results achieved in this thesis
strongly rely on a proper handling of 3D orientations in order to simplify the imple-
mentation and to improve consistency and accuracy of the state estimation methods.
The concepts and notations have evolved during the course of the thesis and thus
some of the publications are based on differing versions.

In Paper VI and Paper VII a similar concept is derived for the representation of
bearing vectors on the 2D unit sphere.

3.2 Part A: Proprioceptive State Estimation for Legged
Robots

In this section we include the contributions related to the proprioceptive state esti-
mation for legged robots. While the first paper provides an overview of the state-of-
the-art and elaborates on basic concepts, the two subsequent papers offer theoretical
contributions and include a detailed discussion thereof.

Paper II
Michael Bloesch, Marco Hutter, “Technical Implementations of the Sense of Balance”.
Humanoid Robotics: a Reference, Springer 2017.
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Context

The sense of balance is an essential component of legged robotic systems. Using
the available sensor readings a legged robot must be able to infer its posture and
motion. Kinematic encoders, force sensors, or IMUs can be among the employed sensor
modalities whereby many different approaches have been proposed for leveraging the
information contained in the corresponding sensor readings. While methods can rely
on a single sensor modality only, multiple sensor readings can also be combined or
fused. In the context of legged robotics, kinematic sensors are of high interest as they
represent a mean to extract information from the intermittent foot-ground contacts.

Contribution

The paper summarizes the basic concepts related to legged state estimation. This
includes kinematic and dynamic modeling of legged robots, as well as basics in sensor
modeling and sensor fusion. In addition to reviewing many state-of-the-art state
estimation approaches, more detailed and partially novel considerations are provided
for incremental foothold matching during statically stable locomotion patterns. These
allow the estimation of a legged robot’s ego-motion based on kinematic measurements
only. Methods for point foot contacts and flat foot contacts are discussed, whereby
closed-form solutions to the incremental motion estimation problem are derived for
both cases. Finally, possible methods for integrating inertial measurements, dynamic
quantities, or including pose estimates from other estimation processes (such as from
exteroceptive sensing) are elaborated on.

Interrelations

This paper provides a general overview of legged state estimation and puts the con-
cepts of Paper III and Paper IV into a broader perspective.

Paper III

Michael Bloesch, Marco Hutter, Mark A. Hoepflinger, Stefan Leutenegger, Christian
Gehring, C David Remy, Roland Siegwart, “State Estimation for Legged Robots –
Consistent Fusion of Leg Kinematics and IMU”. In Robotics Science and Systems
Conference, 2012.

Context

A reliable state estimation without the need for restrictive assumptions such as a flat
terrain or a pre-defined gait pattern is of high importance for versatile legged robots.
Two sensor modalities which can potentially contribute to this goal while at the same
time being available on many legged robots are IMUs and kinematic sensors. So far
however, most existing approaches do not fully leverage the information contained in
these measurements or rely on restrictive assumptions.

13



3 Contribution

Contribution

The contribution of the presented method consists in integrating the information
from the intermittent ground contacts within a state estimation framework. Inspired
by the current SLAM literature, footholds are modeled as 3D stationary landmarks
and co-estimated within an IMU-driven EKF. Based on a forward kinematics model,
kinematic measurements can be turned into relative constraints between the estimated
footholds and the robot’s ego-motion. These constraints are integrated as innovation
terms during the update step of the EKF. An observability analysis is performed in
order to show that for a non-degenerate motions only the global position and yaw
angle are unobservable, even if only a single foot is in contact with the ground. Based
on Huang et al. [61], observability constraints are enforced in order to guarantee
consistency of the framework. The resulting proprioceptive estimation framework
achieves very high bandwidth and locally accurate state estimates and can thus be
employed for stabilizing feedback control on the quadrupedal robot StarlETH [68].

Interrelations

Paper IV revisits the concept introduced in this paper and presents potential improve-
ments. Also, the concept is extended to legged robots with flat feet where additional
information can be gained from the rotational constraints [117]. Furthermore, a batch
optimization based calibration routine is developed in order to estimate the kinematic
parameters of the robot during locomotion [12].

Paper IV

Michael Bloesch, Christian Gehring, Peter Fankhauser, Marco Hutter, Mark A. Hoepf-
linger, Roland Siegwart, “State Estimation for Legged Robots on Unstable and Slip-
pery Terrain”. In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 2013.

Context

In the context of legged robotics the knowledge about the state of the foot contacts
can be valuable for the control framework. For instance if a foot is detected to slip,
the control framework can take this into account and take corrective actions such as
decreasing the tangential force. On the other hand, a more detailed characterization of
the contact state can also improve the state estimation as slipping feet could be down-
weighted or even be discarded. Arguably this may be a very important property, as the
combination of slippage and simultaneous degradation of the state estimation quality
due to erroneous contact constraints could exacerbate the situation. However, self-
contained slippage detection sensors applicable to legged robots have not been invented
yet and are constrained by low payload specifications at the foot. Consequently, a
sensor fusion based slip detection approach relying on more readily available sensor
readings while considering the full robot model and state is desirable.
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Contribution

In this paper the kinematic constraints employed in Paper III are used to derive a
foothold stationarity constraint on the velocity level. This has the advantage that the
filter state can be reduced since the footholds need not to be co-estimated anymore.
Furthermore, due to the stochastic nature of Kalman filters, an estimate of the uncer-
tainty of the innovation term is available and a Mahalanobis distance based test can
be performed for outlier detection [52]. Thus, whenever the innovation term (which
directly results from the zero velocity constraint at the foothold) exceeds a certain
threshold, the corresponding foot is marked as slipping. In this event, the innovation
term can be discarded and, consequently, erroneous contact constraints do not cor-
rupt the estimation process. Additionally, an observability analysis of the system is
performed in order to show that all states except for global position and yaw angle are
observable. In comparison to prior work, the presented observability analysis takes
into account the special nature of 3D rotations, leading to an analytically simpler
observability matrix.
An adapted implementation of the filter presented in this paper has become an

integral part of both quadrupedal platforms StarlETH [68] and ANYmal [70]. Further
experiments have been performed on the HyQ robot [118].

Interrelations

A modular extension has been proposed where the state estimation is enhanced with
external 6D pose measurements [39].

3.3 Part B: Robust Visual-Inertial Sensor Fusion

This section lists and summarizes publications related to robust visual-inertial sensor
fusion. All papers present filter-based approaches and pay special attention to the
robustness of the localization. In contrast to the first paper which draws on an optical
flow inspired approach, the two subsequent papers investigate the use of photometric
error as direct source of information.

Paper V
Michael Bloesch, Sammy Omari, Peter Fankhauser, Hannes Sommer, Christian Geh-
ring, Jemin Hwangbo, Mark A. Hoepflinger, Marco Hutter, Roland Siegwart, “Fusion
of Optical Flow and Inertial Measurements for Robust Egomotion Estimation”. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014.

Context

Robustness is an important property to consider for visual-inertial sensor fusion, es-
pecially if the estimates are used for real-time control of a robotic platform. Unfor-
tunately, due to the rather difficult quantification of the robustness of localization
systems, the state estimation community has often employed the error over traveled
distance as primary endpoint, and consequently focused on high-accuracy localization.
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Classical challenges encountered during visual-inertial localization are fast motions,
short feature tracks, image blur, missing texture, lighting changes, or dynamic scenes.

Contribution

This paper deals with a first filter-based attempt for developing a robust ego-motion
estimation based on the combination of inertial and visual measurements. The use
of optical flow allows the extraction of visual information from a single visual match.
Thus, a feature does not need to be tracked over an extended time period in order
to contribute to the estimation. Furthermore, this also avoids complex initialization
procedures of landmarks and simplifies the overall initialization of the state estimation
system. By co-estimating the mean scene depth, a new residual can be derived for each
optical flow measurement. These residuals serve as innovation term in the update step
of an Unscented Kalman Filter (UKF) with an IMU-driven process model. Optical
flow measurements are thereby tightly fused with inertial data leading to a localization
framework which is highly robust to fast motions and short feature tracks.

Interrelations

This paper represents preliminary work towards filter-based robot-centric visual-iner-
tial sensor fusion. Paper VI and Paper VII can be perceived as continuation of this
work.

Paper VI
Michael Bloesch, Sammy Omari, Marco Hutter, Roland Siegwart, “Robust Visual
Inertial Odometry Using a Direct EKF-Based Approach”. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2015.

Context

Direct approaches attempt to leverage the photometric error directly into the es-
timation framework. This can have the advantage that a statistically more sound
measurement model can be applied. However, as discussed and shown in previous
work [71, 97, 122], a generative photometric model can be highly nonlinear and thus
prone to local minima. Consequently, a good initial guess is essential for optimization
based algorithms to work properly. The combination with inertial data can signifi-
cantly improve this aspect whereas only the image depth remains as highly uncertain
initial quantity.

Contribution

This paper tightly combines photometric residuals with inertial measurements within
an EKF. This is achieved by associating every landmark with an image patch and by
employing the pixel intensity error between the original patch and its projection into
subsequent images as innovation term. Analogously to classical IMU-driven Kalman
filters, the inertial measurements are integrated within the process model. By em-
ploying a fully robot-centric formulation of the filter state and by partitioning the
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landmark representation into bearing vector and distance parameter, issues linked to
spurious observability can be mitigated. This also allows an undelayed initialization
of landmark locations: While the initial bearing vector can directly be guessed from
the landmark’s pixel coordinates the uncertainty of the corresponding distance pa-
rameter is initialized to a large value. Thus, similar to the framework in Paper V,
visual information can be integrated from a landmark’s second observation onwards.
Online calibration of IMU biases and IMU-camera extrinsics is integrated into the
open-source available software framework1.

Interrelations

This paper employs the same IMU-driven process model as Paper V but directly
leverages photometric residuals within the visual measurement model.

Paper VII

Michael Bloesch, Michael Burri, Sammy Omari, Marco Hutter, Roland Siegwart,
“IEKF-based Visual-Inertial Odometry using Direct Photometric Feedback”. Inter-
national Journal of Robotics Research, SAGE 2017.

Context

In classical landmark based visual localization systems the set of employed landmarks
needs to be registered w.r.t. the camera images. This data association process, whether
done by extraction and descriptor matching [88] or direct tracking [120], is prone to
various failure modes. A possible way to improve the data association is to include
further information such as inertial data. For tracking based approaches, this can
either be used to generate an initial guess or may be more tightly integrated as prior.

Contribution

In comparison to Paper VI, an IEKF is applied which has the advantage of overcoming
the nonlinearities present in the generative photometric model. At the same time, this
allows to omit additional data association since this process is inherently handled by
the filter’s iterative update step which aligns the patches within the current image.
Furthermore, the inertial measurements, which are processed during the prediction
step, are tightly integrated into the data association in form of the prior state estimate.
This results in a visual-inertial framework which is no longer limited to the tracking
of corner features, but can also track other visual features such as lines.
Additionally, this paper provides a more detailed discussion on the parametrization

of bearing vectors together with the minimal representation of uncertainties. This in-
cludes insights into the differentiation of non-vector space quantities and the required
adaptations on the filter level.

1https://github.com/ethz-asl/rovio
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Interrelations

This paper extends the work of Paper VI and investigates data association and multi-
camera setups while providing more insights into the mathematical derivations.

3.4 List of Publications

First author publications (sorted by year)

• M. Bloesch, S. Weiss, D. Scaramuzza, and R. Y. Siegwart. Vision Based MAV
Navigation in Unknown and Unstructured Environments. In IEEE International
Conference on Robotics and Automation, 2010. doi: 10.3929/ethz-a-010137518

• M. Bloesch, M. Hutter, M. A. Hoepflinger, S. Leutenegger, C. Gehring, C. D.
Remy, and R. Siegwart. State Estimation for Legged Robots - Consistent Fusion
of Leg Kinematics and IMU. In Robotics Science and Systems Conference, 2012.
doi: 10.15607/RSS.2012.VIII.003

• M. Bloesch, M. Hutter, C. Gehring, M. A. Hoepflinger, and R. Siegwart. Kine-
matic Batch Calibration for Legged Robots. In IEEE International Conference
on Robotics and Automation, 2013. doi: 10.1109/ICRA.2013.6630924

• M. Bloesch, C. Gehring, P. Fankhauser, M. Hutter, M. A. Hoepflinger, and
R. Siegwart. State Estimation for Legged Robots on Unstable and Slippery Ter-
rain. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
2013. doi: 10.1109/IROS.2013.6697236

• M. Bloesch, S. Omari, P. Fankhauser, H. Sommer, C. Gehring, J. Hwangbo,
M. A. Hoepflinger, M. Hutter, and R. Siegwart. Fusion of Optical Flow and
Inertial Measurements for Robust Egomotion Estimation. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2014. doi: 10.3929/
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Chapter4
Conclusion and Outlook

In this chapter the main results are summarized and prospective research directions
are outlined.

4.1 Part A: Proprioceptive State Estimation for Legged
Robots

Research presented in the first part of this thesis focuses on providing reliable and
high-bandwidth ego-motion estimates for legged robots. A key contribution is the
extraction of information from single ground contacts without relying on restrictive
assumptions such as a horizontal terrain or a specific gait pattern. Two methods have
been proposed to this end: The first method co-estimates the location of footholds and
employs the kinematic data as relative measurement between foothold and main body.
The second method directly defines the innovation term through the residual velocity
at the foothold (which depends on both kinematic measurements and ego-motion
estimates). A nonlinear observability analysis endorses the presented approaches from
a theoretical side, by showing that all local control relevant states are fully observable
given enough motion. The approaches have been tested on real quadrupedal robots
and constitute an inherent part of the current software framework on StarlETH and
ANYmal.
While a concept to include exteroceptive sensing in a modular way has been dis-

cussed and is in use on the actual robots, a thorough evaluation of this approach is
still pending. A tighter integration of exteroceptive sensing could also be conceivable
if modularity is not an essential specification. This could lead to a more robust es-
timation framework as the exteroceptive data processing and state estimation could
benefit from the proprioceptive sensing. For instance, a classical filter-based visual
SLAM algorithm could be enhanced with inertial and kinematic measurements. In
case the robot moves into a texture-less region, the state estimation would inherently
rely more on the proprioceptive sensing and thus avoid divergence due to the lack of
visual inputs. The disadvantages of this approach are an increased complexity and a
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loss in modularity as the estimation framework is tailored to a specific exteroceptive
sensing modality.

Another only briefly discussed topic is the possible integration of dynamic sensors
and models. While they generally exhibit a higher noise and uncertainty magnitude,
they could serve as redundant source of information and for instance help to detect
and amortize IMU sensor saturation (in certain setups this can occur frequently). At
the same time this could also be used to co-estimate certain dynamic quantities and
thereby refine the quality of the dynamic model employed by the control algorithms.
A further related research direction is the better characterization of contact situ-

ations, including estimation of the contact force, the contact normal, or the contact
velocity. Some of the mentioned quantities are not observable in general scenarios,
but the contact force should for instance be retrievable through the use of a dynamic
model together with the ego-motion estimates and the joint torques. Alternatively,
using additional sensor modalities (see [138]) or making sensible assumptions on the
setup may lead to the estimation of further quantities, such as payload mass or exter-
nal forces. Eventually, also situations where other body parts, e.g. the shank or the
knee, are in contact with the environment could be detected and specified.

4.2 Part B: Robust Visual-Inertial Sensor Fusion

The lack of long-term accuracy of proprioception-only approaches was an incentive for
investigating exteroceptive sensing capabilities. Due to the inherent complementarity
of both sensor modalities we investigated the application of visual-inertial sensor fu-
sion. Special attention was payed to the robustness of the developed frameworks. This
motivated the use of simple and manageable estimation approaches with straightfor-
ward and unconstrained initialization procedures.
The bearing vector and distance parameter partitioning of the robot-centric land-

mark representation allows an undelayed landmark initialization, where information
gets extracted out of a landmark’s second observation onwards. The framework di-
rectly starts tracking landmarks as they appear in the field of view of the camera
and, consequently, there is no need for a cumbersome system initialization routine.
This enables an almost arbitrary resetting of the filter as long as the initial states are
within a reasonable range (this is covariance tuning dependent). At the same time the
robot-centric landmark location partitioning mitigates observability related issues and
reduces numerical inaccuracies. Finally, by employing a singularity-free parametriza-
tion together with a minimal representation of differences and derivatives, both for
3D orientations and bearing vectors, compact and numerically efficient filter equations
can be derived.
The attained level of “tightness” in terms of fusion between visual and inertial data

has not been demonstrated previously. To the best of our knowledge and along with
Tanskanen et al. [132], this work presents one of the first frameworks that combines
inertial and photometric data within a unified localization and mapping framework.
Other approaches either pre-process the photometric data or do not fuse it with in-
ertial measurements. Note that the presented framework estimates structure (patch
locations) and motion conjointly but does not yet co-estimate the texture (certain
cross-correlations are thus ignored in the filter). A full joint optimization of motion,
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structure, and texture may be part of future research. Another key contribution is
that the data association is inherently taken care of by the filter, whereby both photo-
metric and inertial data are considered. This extends the set of tracked image features
beyond mere corner features whereby line-shaped visual structures can be leveraged
as well.
While robustness has been achieved in the presence of fast motion, situations with

lack of motion remain a problem for the presented monocular visual-inertial approach.
Due to the projective nature of camera models the distance of the scene cannot be
inferred if no motion is present. Furthermore, as the estimation of the linear velocity
strongly depends on landmark distance estimates, an increasing uncertainty of the
distance will lead to an increasing uncertainty of the linear velocity. This can put the
estimation process in a fragile state where it is susceptible to external disturbance or
outliers (e.g. moving objects). Various adaptations could alleviate this issue. Prelimi-
nary tests with zero-velocity updates, applied when no motion is apparent, have been
carried out within the current framework, but the results remain to be evaluated. The
exploration of other virtual updates, hybrid models, or novel feature parametrization
(for instance allowing a better representation of infinitely distanced features) could
be directions for future work. Another option is the above mentioned integration of
robot specific sensors. For instance on a legged robot, the kinematic measurements
could be directly integrated into the same estimation framework. This could prevent
divergence of the filter state if the robot remains stationary or in surroundings with
lack of visual features.
The use of semantic information could be a further option for increasing robustness.

In the simplest setup, past tracking information could be linked to the corresponding
image patch content and used to train a learning algorithm to predict the quality
of candidate landmarks. This could also be taken a step further, where for instance
an image classification algorithm is applied on the visual inputs. Depending on the
determined class a “visual reliability” measure could be derived and used to mitigate
the effect of unmodeled disturbances such as reflections or moving objects.
A well-known limitation of filter-based approaches is the bad scalability w.r.t. in-

creasing state size. This strongly limits the number of features that can be tracked
and therefore the integration of a back-end mapping represents an interesting and
useful extension. Again, there are many different options to achieve this. Probably
one of the simplest options is the combination of the presented visual-inertial odom-
etry with a bundle adjustment based mapping framework where map landmarks are
fed back in a loose manner to the odometry [90]. Alternatively, a batch optimization
formulation of the framework could be considered. However, a robot-centric represen-
tation is not well suited in batch optimization frameworks as it leads to the addition
of per-landmark per-keyframe states if implemented in a naive way. Still, some con-
cepts, such as the photometric patch based residuals, could be transfered into a batch
optimization framework.
Some last comments concern the modeling of the environment as collection of flat

patches, which, depending on the actual surroundings, can induce significant modeling
inaccuracies. Several improvements are imaginable: One option is to enhance the
model in an offline manner and for instance allow for more complicated geometric
shapes. This could involve collecting measurements for a given patch and optimize its
shape and texture such that the localization process, which is running in parallel, can
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make use of a more accurate photometric error model. Alternatively, additional shape
parameters (e.g. the patch normal or a curvature parameter) could be tightly included
into the estimation framework. Statistically, this represents the more sound method,
but also involves augmenting the filter state which induces increased computational
costs and consequently must be limited to few additional degrees of freedom. For
instance, adding the rotation angle of the patch is an interesting option. In comparison
to the two traditional measurement quantities, the x- and y-coordinates of a landmark,
this adds a third degree of information around the viewing axis of the landmark. From
an observability point of view this increases the amount of information gained from a
single landmark observation and thereby could increase accuracy (more information)
and robustness (less landmarks required, less unobservable modes) of the framework.
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Paper I: A Primer on the Differential Calculus of 3D Orientations

1 Introduction

The primary goal of this document is to derive and summarize the most important
identities for handling 3D orientations. It can readily be used as a look-up document
(general identities are green (Section 4), implementation dependent identities are red
(Section 5)). In a compact theoretical section all equations are derived together with
some insights into their mathematical background (Section 3). We believe however,
that the best way to understand these concepts is to apply the presented findings on
an actual system. To this end, we discuss the modeling of an Inertial Measurement
Unit (IMU) driven kinematic model (Section 6). Furthermore, we provide the most
important proofs and derivations in order to provide some additional insights and
examples. Similar elaborations on the topic exist in [4, 30, 31].

An understanding of kinematics (including the concept of coordinate systems) is
a prerequisite for understanding this document. The corresponding conventions and
notations are summarized in Section 2. To completely follow the theoretical sections
some higher mathematical concepts are necessary.

2 Vectors and Coordinate Systems Notation

In this document coordinate systems are denoted by calligraphic capital letters, e.g.
A, and coordinate tuples are represented by bold lower case letters, e.g. ArBC . The
left-hand subscript of a coordinate tuple indicates the coordinate system the vector is
represented in, while the right-hand subscripts indicate the 3D points related to start
and end points. For instance, the term ArBC denotes the coordinates of a vector ~rBC
(denoted with an arrow) in the Euclidean space E3 from point B to point C, represented
in the coordinate systemA. By abuse of notation, we denote the origin associated with
a specific coordinate system by the same symbol. Furthermore, the term ΦBA ∈ SO(3)
is employed for representing the relative orientation of a coordinate system B w.r.t. a
coordinate system A. Its definition is coupled to the (distance preserving) mapping
of coordinate tuples and we employ the notation BrBC = ΦBA (ArBC). We define the
mapping C : SO(3)→ R3×3 such that Φ(r) , C(Φ)r (corresponding to the rotation
matrix). A more complete overview of coordinate systems and rotations is given in
[4].

Furthermore, the vectors ~vB and ~aB denote the absolute (w.r.t. an inertial coordi-
nate system) velocity and acceleration of the point B. The vector ~ωAB denotes the
relative angular velocity of the coordinate system B w.r.t. the coordinate system A.
The skew symmetric matrix of a coordinate tuple v ∈ R3 is denoted as v× ∈ R3×3 and
has the property v×r = v×r ∀r ∈ R3, where × denotes the Euclidean cross-product.
The term v× fulfills the following identities (I ∈ R3×3 is the identity matrix):

(v×)T = −v×, (5.1)

(v×)2 = vvT − vT vI, (5.2)

(C(Φ)v)× = C(Φ)v×C(Φ)T . (5.3)
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Figure 5.1: This figure depicts various quantities in a setup where a coordi-
nate system B is rotated by a constant rotational velocity ω w.r.t. an inertial
coordinate system I. Using coordinate systems, physical vectors can be rep-
resented through the corresponding coordinate tuples. Orientations between
coordinate systems can be defined by the mapping they induce on the coor-
dinate tuples. They are elements of SO(3). Differences and derivatives of
orientations can be represented in the tangential space TΦISO(3), which can
be associated with R3 by means of a basis B.

3 Theory

The following contemplations are independent of the choice of parametrization for
3D orientations. As will follow in the next definition, 3D orientations are first only
thought of as mapping.
Given a 3D rigid body with attached body-fixed coordinate system B, its orienta-

tion ΦBA w.r.t. a reference coordinate system A can be defined as the mapping of
coordinates of any fixed vector ~r from A to B, that is,

Br = ΦBA(Ar). (5.4)

Together with the concatenation operation, orientations form a Lie group known as
the special orthogonal group SO(3). The concatenation ◦ : SO(3)× SO(3)→ SO(3)
comes with the following (defining) identity:

(ΦCB ◦ ΦBA)(Ar) , ΦCB(ΦBA(Ar)). (5.5)
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There also exists an identity element ΦI and an inverse Φ−1 such that

ΦI ◦ ΦBA = ΦBA ◦ ΦI = ΦBA, (5.6)

Φ−1
BA ◦ ΦBA = ΦBA ◦ Φ−1

BA = ΦI . (5.7)

The Lie group SO(3) is not a vector space, has no addition operation, and conse-
quently no subtraction either. This poses an issue if using orientations in filtering or
optimization frameworks, which strongly rely on small differences and gradients (e.g.
for linearization). Fortunately, since SO(3) is a Lie group, there exists an exponential
map Exp : TΦISO(3) → SO(3) relating SO(3) to its Lie algebra TΦISO(3). The
later coincides with the tangent space at the identity element, which is isomorphic
to R3. The exponential map is smooth and fulfills the following (uniquely) defining
identities ∀t, s ∈ R, ∀~ϕ ∈ TΦISO(3):

Exp((t+ s)~ϕ) = Exp(t~ϕ) ◦ Exp(s~ϕ), (5.8)
d/dt(Exp(t~ϕ))|t=0 = ~ϕ. (5.9)

Elements on TΦISO(3) are abstract vectors and are not very suitable for actual
computations. By choosing a basis B = [~ϕ1, ~ϕ2, ~ϕ3] the map can be extended to R3.
We define the exponential exp : R3 → SO(3) of a coordinate tuple ϕ = (ϕ1, ϕ2, ϕ3) ∈
R3 by

exp(ϕ) := Exp(~ϕ1ϕ1 + ~ϕ2ϕ2 + ~ϕ3ϕ3). (5.10)

There is a certain degree of freedom in the selection of the basis [~ϕ1, ~ϕ2, ~ϕ3]. We
choose the basis vectors ~ϕi such that ∀i ∈ {1, 2, 3}, ∀v ∈ R3:

d/dt(Exp(t~ϕi)(v))|t=0 = ei × v (5.11)

where ei ∈ R3 are the standard basis vectors in R3. This makes exp(·) a unique
smooth mapping that fulfills ∀t, s ∈ R, ∀ϕ,v ∈ R3:

exp((t+ s)ϕ) = exp(tϕ) ◦ exp(sϕ) (5.12)
d/dt(exp(tϕ)(v))|t=0 = ϕ× v (5.13)

We will see later, that by using this definition of the exponential exp, its argument ϕ
can be interpreted as the rotation vector associated with the relative orientation of two
coordinate systems. There exists an open region around 0, the open ball with radius
π Bπ(0) ⊂ R3, such that the exponential is bijective and its image corresponds to all
non-180◦-orientations, SO(3)∗. Thus an inverse exists which is called the logarithm,
log : SO(3)∗ → Bπ(0).
With this we can construct boxplus and boxminus operations which adopt the

function of addition and subtraction [59]:

� :SO(3)× R3 → SO(3), (5.14)
Φ,ϕ 7→ exp(ϕ) ◦ Φ,

� :SO(3)× SO(3)→ R3, (5.15)

Φ1,Φ2 7→ log(Φ1 ◦ Φ−1
2 ).
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Similarly to regular addition and subtraction, both operators fulfill the following iden-
tities (axioms proposed by [59]):

Φ � 0 = Φ, (5.16)
(Φ �ϕ) � Φ = ϕ, (5.17)

Φ1 � (Φ2 � Φ1) = Φ2. (5.18)

This approach distinguishes between actual orientations, which are on SO(3) (Lie
group), and differences of orientations which lie on R3 (Lie algebra, see Figure 5.1).
The above operators take care of appropriately transforming the elements into their
respective spaces and allow a smooth embedding of rotational quantities in filtering
and optimization frameworks.
The definition of differentials involving orientations can be adapted by replacing

the regular plus and minus operators by the above boxplus and boxminus operators.
For instance the differential of a mapping f1 : R→ SO(3) can be defined as:

∂

∂x
f1(x) := lim

ε→0

f1(x+ ε) � f1(x)

ε
. (5.19)

The same can be done for the other case where we have a mapping f2 : SO(3)→ R:

∂

∂Φ
f2(Φ) := lim

ε→0


f2(Φ�(e1ε))−f2(Φ)

ε
f2(Φ�(e2ε))−f2(Φ)

ε
f2(Φ�(e3ε))−f2(Φ)

ε


T

. (5.20)

4 Implementation-Independent Identities

Some identities directly follow from the above considerations and are independent of
the choice of the underlying orientation representation. By concatenating the expo-
nential and the coordinate mapping we retrieve the well known Rodriguez’ formula
(see Appendix 7.1):

C(ϕ) := C(exp(ϕ)) (5.21)

= I +
sin(‖ϕ‖)ϕ×

‖ϕ‖
+

(1− cos(‖ϕ‖))ϕ×2

‖ϕ‖2
,

C(ϕ) ≈ I +ϕ×, (‖ϕ‖ ≈ 0). (5.22)

This shows that the argument of the exponential, ϕ, can be interpreted as the coor-
dinate tuple of the (passive) rotation vector associated with the relative orientation
of two coordinate systems. Thus, if the corresponding coordinate systems are known
we can write:

ΦBA = exp (BϕBA) = exp (AϕBA) . (5.23)

We can also derive the following (adjoint related) identity (see Appendix 7.2):
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exp(Φ(ϕ)) = Φ ◦ exp(ϕ) ◦ Φ−1. (5.24)

Useful identities can be derived for derivatives involving orientations (see Appendix
7):

∂/∂t (ΦBA(t)) = −BωAB(t), (5.25)
∂/∂r (Φ(r)) = C(Φ), (5.26)

∂/∂Φ (Φ(r)) = − (Φ(r))× , (5.27)

∂/∂Φ
(
Φ−1

)
= −C(Φ)T , (5.28)

∂/∂Φ1 (Φ1 ◦ Φ2) = I, (5.29)
∂/∂Φ2 (Φ1 ◦ Φ2) = C(Φ1), (5.30)
∂/∂ϕ (exp(ϕ)) = Γ(ϕ), (5.31)

∂/∂Φ (log(Φ)) = Γ−1(log(Φ)). (5.32)

The derivative of the exponential map is given by the Jacobian Γ(ϕ) ∈ R3×3 which
has the following analytical expression:

Γ(ϕ) = I +
(1− cos(‖ϕ‖))ϕ×

‖ϕ‖2
+

(‖ϕ‖ − sin(‖ϕ‖))ϕ×2

‖ϕ‖3
, (5.33)

Γ(ϕ) ≈ I + 1/2ϕ×, (‖ϕ‖ ≈ 0). (5.34)

5 Quaternion Implementation

The above discussion is completely decoupled from any actual orientation parame-
terization. It is valid whether Euler-angles, rotation matrices, quaternions, or other
representations are employed. In the following we provide one possible implementa-
tion of 3D orientations along with the means to check its correctness. Here we propose
the use of unit quaternions following the Hamilton convention [54] and we discuss the
implementation of the different operations that are required. For more details on the
differences between existing quaternion conventions we refer the reader to [125]. A
unit quaternion is composed of a real part, q0 ∈ R, and an imaginary part, q̌ ∈ R3,
which meet q2

0 + ‖q̌‖2 = 1. We denote this as Φ = (q0, q̌).

5.1 Coordinates Mapping and Rotation Matrix
For arbitrary coordinate systems, A and B, with relative orientation ΦBA = (q0, q̌)
the coordinates of a vector ~r can be mapped as:

ΦBA(Ar) = (2q2
0 − 1)Ar + 2q0q̌

×
Ar + 2q̌(q̌TAr). (5.35)
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From this, we can directly derive the expression for the associated rotation matrix:

C(ΦBA) = (2q2
0 − 1)I + 2q0q̌

× + 2q̌q̌T . (5.36)

5.2 Concatenation
The concatenation of two unit quaternions Φ1 = (q0, q̌) and Φ2 = (p0, p̌) is given by:

Φ1 ◦ Φ2 = (q0p0 − q̌T p̌, q0p̌+ p0q̌ + q̌ × p̌). (5.37)

5.3 Exponential and Logarithm
Given a ϕ ∈ R3, the exponential map to a unit quaternion is given by:

exp(ϕ) = (q0, q̌) =

(
cos(‖ϕ‖/2), sin(‖ϕ‖/2)

ϕ

‖ϕ‖

)
(5.38)

exp(ϕ) ≈ (1,ϕ/2), (‖ϕ‖ ≈ 0). (5.39)

The above small angle approximation is required to avoid numerical instabilities (typ-
ically for angles below 10−4 rad). The corresponding logarithm is given by:

log(Φ) = 2 atan2(‖q̌‖, q0)
q̌

‖q̌‖
, (5.40)

log(Φ) ≈ sign(q0) q̌, (‖q̌‖ ≈ 0). (5.41)

5.4 Consistency Tests
The consistency of the implementation can be tested through the following unit tests:

Φ() C ◦ exp log
C(Φ)r = Φ(r)
(Φ1 ◦ Φ2)(r) = Φ1(Φ2(r))
C(exp(ϕ)) = C(ϕ)
Φ = exp(log(Φ))

On the right-hand side the involved operators are listed. The third test compares
against Rodriguez’ formula (eq. (5.21)). Theoretically, these tests should be carried
out for all possible values of Φ,Φ1,Φ2∈SO(3), r,ϕ∈R3. In practice, testing various
samples, including very small angles, should be sufficient.

6 Simple Modeling Example

This section presents how to apply the above notation and convention to an actual
system modeling task. We want to estimate the position, velocity (expressed in B
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to simplify the Jacobians), and orientation of a robot using an IMU and a generic
position and orientation sensor (pose sensor). To avoid complicated modeling or
specific knowledge about the motion model the IMU can be used to do a prediction
of the state. This is very common in visual-inertial state estimation e.g. [14]. In the
following, we first show how to use the IMU for predicting the state and then show
the necessary steps to perform an update with the pose sensor.

6.1 Continuous Time Description
Let us assume we have an IMU driven dynamic system with inertial coordinate system
I and IMU-fixed coordinate system B for which we wish to estimate the motion.
Considering additive biases, Bbf and Bbω , and using continuous-time white noise
processes, Bnf , Bnω , Bnbf , Bnbω , we can model the IMU measurements, Bf̃B and
Bω̃B, as:

Bf̃B = Φ−1
IB(IaB − Ig) + Bbf + Bnf , (5.42)

Bω̃B = BωIB + Bbω + Bnω , (5.43)

Bḃf = Bnbf , (5.44)

Bḃω = Bnbω , (5.45)

where Ig is the gravity vector expressed in the inertial frame. We add the IMU biases
to the state x. This gives the full state by

x =
(
IrIB, BvB, ΦIB, Bbf , Bbω

)
. (5.46)

The resulting continuous-time equations of motion can be written as:

I ṙIB = ΦIB(BvB + Bnv), (5.47)

Bv̇B = d/dt
(

Φ−1
IB(IvB)

)
= Φ−1

IB(I v̇B)−
(

Φ−1
IB(IvB)

)×
C(ΦIB)T IωBI

= Φ−1
IB(IaB)− Bv×BBωBI

= Φ−1
IB(Ig) + BfIB − Bω

×
IBBvB, (5.48)

Φ̇IB = −IωBI = ΦIB(BωIB), (5.49)

Bḃf = Bnbf , (5.50)

Bḃω = Bnbω , (5.51)

with the bias and noise corrected proper acceleration and angular velocity measure-
ments

BfIB = Bf̃B − Bbf − Bnf , (5.52)

BωIB = Bω̃B − Bbω − Bnω . (5.53)

To derive (5.48) we used the product rule, followed by the chain rule and the identities
(5.25),(5.27),(5.28).
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6.2 Euler-Forward Discretization

One of the simplest and most commonly used discretization methods is Euler-Forward
discretization. Other discretization schemes can of course also be employed. For a
time increment ∆t, Euler-Foward discretization of the above formulation yields (the
next state is denoted by a bar, discretized noise by a hat):

I r̄IB = IrIB + ∆t ΦIB(BvB + Bn̂v), (5.54)

Bv̄B = BvB + ∆t
(

Φ−1
IB(Ig) + f − ω×BvB

)
(5.55)

Φ̄IB = ΦIB � (∆tΦIB(ω))

= exp(ΦIB(∆tω)) ◦ ΦIB

= ΦIB ◦ exp(∆tω) ◦ Φ−1
IB ◦ ΦIB

= ΦIB ◦ exp(∆tω), (5.56)

Bb̄f = Bbf + ∆tBn̂bf , (5.57)

Bb̄ω = Bbω + ∆tBn̂bω , (5.58)

with the discretized IMU measurements (bias and noise corrected) given by

f = Bf̃B − Bbf − Bn̂f , (5.59)
ω = Bω̃B − Bbω − Bn̂ω . (5.60)

The noise is discretized such that, if Ri is the noise density of the white noise process
ni, then the discrete Gaussian noise n̂i is distributed with N (0,Ri/∆t).

6.3 Differentiation

Using the identities (5.25)-(5.32) and applying the chain rule, the following Jacobians
of the discrete process model can be derived (F is w.r.t. the state, G is w.r.t. the
process noise):

F =


I ∆tC(ΦIB) −∆tΦIB(BvB)× 0 0

0 I −∆tω× ∆tC(ΦIB)T (Ig)× −∆t I −∆tBv
×
B

0 0 I 0 −∆tC(ΦIB)Γ(∆tω)
0 0 0 I 0
0 0 0 0 I

 ,

G =


∆tC(ΦIB) 0 0 0 0

0 −∆tI −∆t(BvB)× 0 0
0 0 −∆tC(ΦIB)Γ(∆tω) 0 0
0 0 0 ∆tI 0
0 0 0 0 ∆tI

 ,
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6.4 Measurement
For simplicity we assume a GPS position measurement I r̃IB and an orientation mea-
surement Φ̃IB. The measurement equations are given by

I r̃IB = IrIB + In̂p, (5.61)

Φ̃IB = ΦIB � In̂Φ (5.62)
= exp(In̂Φ) ◦ ΦIB, (5.63)

with the discrete Gaussian measurement noise vectors In̂p and In̂Φ.
Using the identities (5.29),(5.30),(5.31) and because the expectation of the orien-

tation measurement noise is zero, the following Jacobians can be derived (H is w.r.t.
the state, J is w.r.t. the update noise):

H =

[
I 0 0 0 0
0 0 I 0 0

]
,

J =

[
I 0
0 I

]
,

6.5 Hints for the EKF Implementation
Now that we have derived all the required parts, the well known EKF equations can
be used to estimate the state. The only difference to the standard EKF is that we
need to use the � operator for the innovation residual and the � operator for updating
the state estimate instead of normal addition and subtraction.

7 Conclusion

This document derived and summarized the main identities related to 3D orientations
in robotics and other engineering fields. In particular it discussed a more abstract but
convention-less notion of 3D orientations, the boxplus and boxminus operators, as
well as the concept of differentials. Various differentials involving 3D orientations
are derived, which can be used to compute the Jacobians of more complex models
by applying the chain rule. A simple modeling example shows how to apply the
introduced concepts.

Derivatives Involving Orientations

Time Derivative of Orientation

Here we need the kinematic concept of angular velocities. We assume the existence
of an inertial observer I which observes the motion, over a duration ε, of a moving
coordinate system B(t). We use the following definition of angular velocities (the
negative sign is required so that the angular velocity corresponds to the active rotation
which is measured by typical IMU devices):

B(t)ωIB(t) := − lim
ε→0

B(t)ϕB(t+ε)B(t)

ε
(5.64)
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Additionally we require the limit (based on the limits (5.39),(5.41)):

lim
ε→0

log(exp(εϕ1) ◦ exp(εϕ2))

ε
= ϕ1 +ϕ2. (5.65)

With this we can derive the derivative of an orientation ΦB(t)A(t) w.r.t. time t (used
identities: (5.19),(5.15),(5.23),(5.24),(5.64),(5.65)):

∂

∂t
ΦB(t)A(t) = lim

ε→0

ΦB(t+ε)A(t+ε) � ΦB(t)A(t)

ε

= lim
ε→0

1

ε

(
(ΦB(t+ε)B(t) ◦ ΦB(t)A(t) ◦ ΦA(t)A(t+ε))

� ΦB(t)A(t)

)
= lim
ε→0

1

ε

(
log(ΦB(t+ε)B(t) ◦ ΦB(t)A(t)

◦ ΦA(t)A(t+ε) ◦ Φ−1
B(t)A(t)

)
)

= lim
ε→0

1

ε

(
log(exp(B(t)ϕB(t+ε)B(t)) ◦ ΦB(t)A(t)

◦ exp(A(t)ϕA(t)A(t+ε)) ◦ Φ−1
B(t)A(t)

)
)

= lim
ε→0

1

ε

(
log(exp(B(t)ϕB(t+ε)B(t))

◦ exp(B(t)ϕA(t)A(t+ε)))
)

= lim
ε→0

1

ε

(
log(exp(−εB(t)ωIB(t))

◦ exp(εB(t)ωIA(t)))
)

=− B(t)ωIB(t) + B(t)ωIA(t)

=− B(t)ωA(t)B(t) (5.66)

Derivative of Inverse

Here we derive the derivative of the inverse of an orientation (used identities: (5.19),
(5.20), (5.15), (5.14), (5.24)):[

∂

∂Φ
Φ−1

]
i

= lim
ε→0

(Φ � eiε)−1 � Φ−1

ε

= lim
ε→0

log(Φ−1 ◦ exp(−eiε) ◦ Φ)

ε

= lim
ε→0

log(exp(−Φ−1(ei)ε)

ε

=− Φ−1(ei) = −C(Φ)T ei.
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∂

∂Φ
Φ−1 =−C(Φ)T . (5.67)

Derivative of Coordinate Map

The map of an orientation applied to a coordinate tuple can be differentiated w.r.t.
the orientation itself. This yields (used identities: (5.20), (5.14), (5.5), (5.22)):[

∂

∂Φ
Φ(r)

]
i

= lim
ε→0

(Φ � eiε)(r)− Φ(r)

ε

= lim
ε→0

C(eiε)C(Φ)r −C(Φ)r

ε

= lim
ε→0

(I + e×i ε)C(Φ)r −C(Φ)r

ε

= lim
ε→0

e×i εC(Φ)r

ε

=− (C(Φ)r)×ei.

∂

∂Φ
Φ(r) =− (C(Φ)r)×. (5.68)

Concatenation - Left

The concatenation of two orientations can be differentiated w.r.t. the involved ori-
entations. We first derive the derivative w.r.t. the left orientation (used identities:
(5.19),(5.20),(5.15),(5.14)):[

∂

∂Φ1
Φ1 ◦ Φ2

]
i

= lim
ε→0

((Φ1 � eiε) ◦ Φ2) � (Φ1 ◦ Φ2)

ε

= lim
ε→0

log(exp(eiε) ◦ Φ1 ◦ Φ2 ◦ Φ−1
2 ◦ Φ−1

1 )

ε

= ei.

∂

∂Φ1
Φ1 ◦ Φ2 = I. (5.69)

Concatenation - Right

The derivative of the concatenation w.r.t. the right orientation yields (used identities:
(5.19),(5.20),(5.15),(5.14),(5.24)):[

∂

∂Φ2
Φ1 ◦ Φ2

]
i

= lim
ε→0

(Φ1 ◦ (Φ2 � eiε)) � (Φ1 ◦ Φ2)

ε

= lim
ε→0

log(Φ1 ◦ exp(eiε) ◦ Φ2 ◦ Φ−1
2 ◦ Φ−1

1 )

ε

= lim
ε→0

log(exp(Φ1(ei)ε))

ε
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= Φ1(ei) = C(Φ1)ei.

∂

∂Φ2
Φ1 ◦ Φ2 = C(Φ1). (5.70)

Exponential Derivative

Define:

Γ(ϕ) := ∂/∂ϕ (exp(ϕ)) . (5.71)

Differentiate the adjoint related identity using the chain rule and product rule (iden-
tities (5.71),(5.27) for left side, identities (5.29),(5.30),(5.28) for right side):

∂/∂Φ
[

exp(Φ(ϕ)) = Φ ◦ exp(ϕ) ◦ Φ−1
]
, (5.72)

−Γ(Φ(ϕ))Φ(ϕ)× = I −C(Φ)C(ϕ)C(Φ)T . (5.73)

Set Φ to identity:

Γ(ϕ)ϕ× = C(ϕ)− I. (5.74)

Now consider the map f(x) = exp(xϕ) for some arbitrary ϕ ∈ R3. The chain rule
yields f ′(x) = Γ(xϕ)ϕ. Alternatively, it can be differentiated using the limit (5.19)
(used identities: (5.8),(5.15)):

f ′(x) = lim
ε→0

exp((x+ ε)ϕ) � exp(xϕ)

ε

= lim
ε→0

log(exp(εϕ) ◦ exp(xϕ) ◦ exp(xϕ)−1)

ε

= ϕ. (5.75)

Compare both derivatives at x = 1:

Γ(ϕ)ϕ = ϕ. (5.76)

This can be combined with eq. (5.74) in order to obtain the following matrix equation:

Γ(ϕ)
[
ϕ× ϕ

]
=
[
C(ϕ)− I ϕ

]
. (5.77)

Right multiply with
[
ϕ× ϕ

]T and simplify:

Γ(ϕ)(−ϕ×
2

+ϕϕT ) = (I −C(ϕ))ϕ× +ϕϕT , (5.78)

Γ(ϕ)‖ϕ‖2 = (I −C(ϕ))ϕ× +ϕϕT , (5.79)

Γ(ϕ) =
(I −C(ϕ))ϕ× +ϕϕT

‖ϕ‖2
. (5.80)

If substituting C(ϕ) we obtain eq. (5.33).
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Other Proofs

7.1 Rodriguez’ Formula
From eqs. (5.5), (5.12) and (5.13) we obtain the following properties for C(ϕ) =
C(exp(ϕ)), ∀t ∈ R, ϕ,v ∈ R3:

C((t+ s)ϕ) = C(tϕ)C(sϕ) (5.81)
d/dt (C(tϕ)(v)) |t=0 = ϕ× v (5.82)

For a given ϕ we define the curve Cϕ(t) := C(tϕ). Using a change of coordinate
t = s+ r, we can extend the range of the differential identity ∀t ∈ R, v ∈ R3:

d/dt (C(tϕ)v) = d/ds (C(sϕ)C(rϕ)v) |s=0,r=t (5.83)

= ϕ×C(tϕ)v (5.84)

Thus, we obtain the following matrix differential equation:

d/dt (Cϕ(t)) = ϕ×Cϕ(t), (5.85)

which has the matrix exponential solution

Cϕ(t) = etϕ
×
. (5.86)

Since this is valid for arbitrary ϕ, we obtain:

C(ϕ) = eϕ
×
, (5.87)

which can be shown to be the same as eq. (5.21) using series expansions.

7.2 Concatenation and Exponential – Adjoint Related
We want to prove the following identity:

exp(Φ(ϕ)) = Φ ◦ exp(ϕ) ◦ Φ−1. (5.88)

Since we know that exp is unique it is sufficient to show that the right hand side is
indeed the exponential of Φ(ϕ) and thus check the defining properties. First we verify
eq. (5.12):

exp((t+ s)Φ(ϕ)) = Φ ◦ exp((t+ s)ϕ) ◦ Φ−1 (5.89)

= Φ ◦ exp(tϕ) ◦ exp(sϕ) ◦ Φ−1 (5.90)

= Φ ◦ exp(tϕ) ◦ Φ−1 ◦ Φ ◦ exp(sϕ) ◦ Φ−1 (5.91)
= exp(tΦ(ϕ)) ◦ exp(sΦ(ϕ)). (5.92)
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Equation (5.13) poses a requirement on the derivative which can also be verified:

d/dt (exp(tΦ(ϕ))(v)) |t=0 = d/dt
(
C(Φ)

(
exp(tϕ)(C(Φ)T v)

))
|t=0 (5.93)

= C(Φ)ϕ×C(Φ)T v (5.94)

= (C(Φ)ϕ)×v = Φ(ϕ)× v. (5.95)

Since Φ ◦ exp(ϕ) ◦Φ−1 fulfills both uniquely defining properties of the exponential it
is indeed equivalent to exp(Φ(ϕ)).
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PaperII
Technical Implementations of the Sense of

Balance

Michael Bloesch, Marco Hutter

Abstract
Control algorithms for legged robots rely on accurate and fail-safe egomotion
estimation in order to keep balance and perform desired tasks. To this end,
the robot must integrate the measurements from different sensor modalities
into a single consistent state estimation. In particular, the estimation pro-
cess must provide estimates of the gravity direction and the local velocities
of the robot since those quantities are essential for stabilizing the system
and to counteract external disturbances. In comparison to other types of
robots, legged robots interact through intermittent contacts with the sur-
rounding. This provides the system with an additional source of information
which can be leveraged in order to improve the state estimation. Since there
is no one-size-fits-all solution, the following chapter will provide an insight
into the different concepts and algorithms by discussing state-of-the-art ap-
proaches and examples. This should enable the reader to design a tailored
state estimation solution to his or her specific robot and environment.
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1 Introduction

The capability of estimating a robot’s posture and ego-motion with respect to its
surrounding is an essential part when operating humanoid robots. Especially for
dynamically unstable robots, where the robot is required to constantly counteract the
effects of gravity and potential disturbances, it is of highest importance to estimate
the gravity direction as well as the ego-motion of the robot. In particular, it is also
essential to estimate linear and rotational velocities since these quantities are very
well suited to detect the occurrence of a disturbance and its effect on the robot (e.g.
a push to the left). The superimposed feedback loop imposes specifications on the
accuracy and bandwidth of the estimation process, whereas estimation failures can
quickly lead to damaging of the robot and its surrounding.

Looking at human posture estimation, one can observe that they constantly inte-
grate information they obtain from different sensor modalities. This includes pro-
prioceptive information from joint position and stress sensors, linear and rotational
acceleration measurements from the vestibular system, as well as visual information
from the eyes. Although it is still unclear how this information gets processed in detail,
different researcher could show that the single modalities get weighted and combined
in the central nervous system [109]. This results in a reliable sense of balance, where
the weighting can be adapted to the actual task and environment. E.g. if a healthy
human is walking on soft or unstable terrain he will automatically down-weight the
proprioceptive information and rely more on his visual and vestibular senses. Still, in
the presence of strong perturbations the system can fail leading to loss of balance and
nausea as can be observed in the case of seasick individuals.
In the broader robotics community various sensor modalities have been employed

for ego-motion estimation, many of which have a human counterpart (see fig. 6.1). For
instance, the widely used accelerometers measure linear accelerations, which are also
measured by the human vestibular system. The human counterpart of a robot’s joint
encoders and stress sensors can be found in the human muscle and joint proprioceptive
sensors. Furthermore, it is not difficult to make the connection between cameras
and human eyes. But a robot’s range of sensor modalities goes beyond this and for
instance includes range sensing (also referred to as Lidar) which does not have a
human counterpart.
Since a lot of concept described in this chapter do not depend on the number of

legs, the discussion on the sense of balance will be kept in a broader context of legged
robots. All legged robots have in common that they interact with their surrounding
by the mean of intermittent ground contact. Those intermittent ground contact will
be central to this chapter since they represent the main difference compared to other
types of robots like flying or wheeled robots. An important aspect is given by the
type of foot model that can be employed. This influences the amount of information
that can be retrieved from a contact with the ground.
This chapter is structured as follows. The first two sections introduce modeling of

legged systems and provide a brief introduction on sensor fusion algorithms. After
that, different state-of-the-art methods for doing state estimation with legged robots
will be discussed in order to provide the reader with an overview of the available tools
and concepts. This will include methodologies ranging from pure kinematic odometry
to the inclusion of dynamic information or fusion with other sensor modalities like an
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Figure 6.1: Many robotic sensors have a human counterpart.

Inertial Measurements Unit (IMU) or a camera.

2 Modeling

Before discussing the modeling in more detail a brief introduction into the employed
notation and convention is provided. Since one asset of legged robots is to deal
with more complex non-planar environment it is of high importance to employ 3D
models. This requires the proper handling of 3D rotations including an appropriate
parametrization and representation of local differences. Based on this, legged robot
specific modeling including contact modeling and system dynamics will be discussed
in the second part of this section. This will also cover a brief overview of the most
commonly employed sensors.

2.1 Employed Notation and Conventions
Throughout this chapter vectors will be denoted by small bold face letters, e.g. v,
and matrices by capital bold face letters, e.g. M . Coordinate frames and physical
points in space will both be referred to by regular capital letters, e.g. B. Thus if a
coordinate frame is associated with a specific origin the same capital letter can be
used for representing both. In order to represent the coordinate vector from point A
to point B expressed in the coordinate frame C the term CrAB will be used. The
following coordinate frames will be recurring throughout this chapter:

• I: Inertial coordinate frame,

• B: Moving coordinate frame associated with the robot’s main body or a mounted
sensor,

• Fi: Coordinate frame attached to foot i (the index is sometimes omitted).

47



Paper II: Technical Implementations of the Sense of Balance

Rotations will be parametrized by unit quaternions using the Hamilton convention,
but in most cases other parametrizations could be employed. The unit quaternion qAB
represents the rotation between coordinate frame B and A. It can be mapped to the
corresponding rotation matrix C(qAB) ∈ R3×3 which transforms the coordinates of a
vector expressed in coordinate frame B to the coordinates of the same vector expressed
in coordinate frame A, i.e., Av = C(qAB)Bv. Concatenation of quaternions is from
right to left and is not commutative, i.e., qAC = qAB⊗qBC 6= qBC⊗qAB . A concept
for addition, subtraction, and differentiation of 3D rotations [16] is summarized in
section 6.

The physical vector vB denotes the absolute velocity of a point B, i.e., the position
of B differentiated with respect to some inertial frame. Similarly aB denotes the
absolute acceleration of a point B. Rotational rates will be referred to by ωAB , which
is the rotational rate of coordinate system B with respect to coordinate system A.
In some cases further denotations like tildes (measurements) or hats (estimates) are
employed if a specific aspect of a certain quantity should be highlighted. The super-
script × is used to denote the skew symmetric matrix Av

× ∈ R3×3 of a coordinate
vector Av ∈ R3.

Most algorithms in this chapter employ zero-mean Gaussian noise as underlying
stochastic models. A multivariate random vector will be denoted by ni together with
the index i for labeling the noise. This will be associated with a covariance matrix
Ri and can thus be written as ni ∼ N (0,Ri).

2.2 General Legged System Modeling
Dynamic System Description

In general, the multi-body equations of motion for a legged robot with n degrees of
freedom can be written as follow:

M(θ)u̇+ b(θ,u) + g(θ) + JTc (θ)F c = ST τ , (6.1)

with θ denoting the generalized coordinates of the system, F c ∈ Rm the contact forces
acting on the system, and τ ∈ Rl the joint forces. While θ may be over-parametrized
(e.g. it may contain quaternions), its derivatives, the generalized velocities u and the
generalized accelerations u̇, are required to be in the n dimensional vector space Rn.
The remaining terms are the inertia matrixM(θ) ∈ Rn×n, the combined Coriolis and
centrifugal term b(θ,u) ∈ Rn, the gravity term g(θ), the contact Jacobian Jc(θ) ∈
Rm×n, and the selection matrix S ∈ Rl×n. Furthermore, assuming no slippage, the
contact condition provides the following constraint:

Jc(θ)u = 0, (6.2)

which is basically requiring the velocity of the contact to be zero. In the context of
dynamics, the time-differentiated form of this equation is often employed:

J̇c(θ)u+ Jc(θ)u̇ = 0. (6.3)

In 3D space the generalized coordinates θ typically include the pose of the free
floating base B with respect to an inertial frame I. The pose is composed of position
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and attitude and can be parametrized by (IrIB , qBI). The rest of the generalized
coordinates describe the internal configuration of the robot including quantities like
joint angles or link lengths. This last part of the generalized coordinate is referred to
as α. The generalized coordinates are thus composed of:

θ = (IrIB , qBI ,α). (6.4)

The above equations of motion often involve analytically complex terms and can
be expensive to compute. They provide a relation between the minimal coordinates,
the joint forces and the contact forces and can be employed in different ways. For
instance, in a simulation scenario all quantities are given except for the generalized
accelerations u̇ and the contact forces F c. For motion estimation, on the other hand,
the set of given quantities strongly depends on the available sensor measurements and
on the set of assumptions that can be made. E.g. a specific legged robot might be
equipped with joint encoders and load cells for measuring joint positions and forces,
but it could lack the ability to measure the contact forces. The contact forces will
thus be unknowns in the equations of motion and would have to be either eliminated
analytically or solved for. As will be shown in section 4.4, there is a simple way to
eliminate the contact forces by employing a null-space projection.

Contact Modeling

Contacts are often modeled as unilateral (no ground penetration) and as non-slipping
(infinite friction). Therefore contact forces can only arise along forbidden directions
of the contact. These directions coincide with the gradients of the vector of stacked
contact constraints c(θ) = c0:

Jc(θ) =
∂

∂θ
c(θ). (6.5)

Two commonly used contact models are the point foot model and the flat foot
model (see fig. 6.2). A point foot is modeled by enforcing a point constraint at the
location of contact with the ground. In 3D the dimension of the point foot constraint
is 3. Mathematically it can be expressed as equality constraint on the location of the
contact point F w.r.t. to the inertial coordinate frame I:

c(θ) = IrIB +C(qBI)TBrBF (α)
!
= Ir

∗
IF . (6.6)

The vector BrBF (α) represents the location of the contact point F w.r.t. the body
coordinate frame B and is a function of the robot’s internal configuration α. The
coordinate vector Ir∗IF represents the stationary location of the foot while in contact
with the ground. Using the identities in section 6, the Jacobian of eq. (6.6) can be
written as follows:

Jc(θ) =
[
I C(qBI)TBrBF (α)× C(qBI)TBJBF (α)

]
, (6.7)

with the generalized coordinates as in eq. (6.4) and

BJBF (α) =
∂

∂α
BrBF (α). (6.8)
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Point foot Flat foot

Figure 6.2: Two commonly employed types of foot models. The point foot
model requires only a position constraint at the point of contact. The flat
foot model also blocks the rotational degree of freedom at the contact point.
In the case of fully actuated robots, the flat foot model requires more joints
than the point foot model (in the above 2D case 3 instead of 2 actuated
joints).

The other type of contact model discussed here is the flat foot contact. It can
often be found with humanoid robots. In addition to a position constraint it also
exhibit a rotational constraint around the foot location as long as proper contact is
preserved with the ground. In 3D the total dimension of the flat foot constraint is
6. The coordinate system F which is associated with the flat foot is assumed to
remain stationary while the foot maintains ground contact. This extends the point
foot model by adding a rotational constraint around the foot. Mathematically this
can be expressed as:

c(θ) =

(
IrIB +C(qBI)TBrBF (α)

qFB(α)⊗ qBI

)
!
=

(
Ir
∗
IF

q∗FI

)
. (6.9)

The quaternion qFB(α) parametrizes the rotation between body and foot coordinate
frame and can often be computed using a forward kinematics model. The quaternion
q∗FI parametrizes the stationary orientation of the foot during contact. Again using
the identities in section 6, the Jacobian can be computed and written as:

Jc(θ) =

[
I C(qBI)TBrBF (α)× C(qBI)TBJBF (α)
0 C(qFB(α)) JFB(α)

]
, (6.10)

with

JFB(α) =
∂

∂α
qFB(α). (6.11)

The above contact models assume no slippage at the contact point. While this is
often employed as underlying assumption for legged state estimation algorithms, many
algorithms are able to intrinsically handle a certain violation of this assumption. Some
algorithms implement slippage detection methodologies in order to detect slipping feet
and adapt the estimation process accordingly [11, 43, 92, 116].
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2.3 Sensor Models
Kinematic Sensors

Kinematic sensors measure the internal configuration of the robot and often directly
depend on the corresponding state α:

z̃kin = fkin(α,nα). (6.12)

The noise term nα is often modeled as zero-mean discrete Gaussian noise with co-
variance Rα. In the case the measured quantities are equivalent to α, e.g., a robot
where every joint is equipped with an encoder, this can be simplified to:

z̃kin = α+ nα. (6.13)

In the context of state estimation, the additive Gaussian noise model is often sufficient
and more complex noise models are only rarely used.
The typical kinematic sensor is the encoder. Different type of physical principles

are employed, e.g. mechanical, optical or magnetic principles [121]. Furthermore they
can be manufactured as linear or rotational encoders. The linear encoder measures
the length or extension of a linear joint and the rotational encoder measures the angle
of a rotation joint. An important differentiation must be made between relative and
absolute encoders. Relative encoders count so-called “ticks” and thereby compute
the difference between the actual encoder position and some reference position (e.g.
the position the sensor was initialized at). In contrast to this, absolute encoders
measure the absolute encoder deflection which is encoded at the current position.
They have the advantage that after each re-start they yield the same encoder output
if measuring the same deflection. However, absolute encoder typically tend to be a
bit more expensive when compared to relative encoders with the same resolution.

Force Sensors and Contact Detection

Force sensors can be employed to measure internal forces such as joint forces or to
measure external forces such as contact forces. Often, they can be modeled similarly
to kinematics sensors:

z̃dyn = fdyn(τ ,F c,ndyn). (6.14)

where τ and F c represents the internal forces and contact forces (see section 2.2) and
ndyn is zero-mean discrete Gaussian noise with covariance Rdyn.
Again, there are many different types of sensors including optical, resistive, ca-

pacitive, or piezoelectric [121]. One difficulty involves the calibration of the force
sensor, which due to the lack of precise reference has often to be carried out by the
manufacturer and cannot be corrected afterwards. This is one reason why force sen-
sors represent a less reliable source of information when it comes to state estimation.
Consequently force sensors are often only used for estimating the contact state, i.e.,
whether a foot is in contact with the ground or not. If a contact force is not directly
measured by a force sensor, it can also be indirectly estimated by using the equation
of motion (eq. (6.1)).
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Inertial Measurement Unit

Inertial measurements units (IMUs) are sensor devices which contain at least a gy-
roscope and an accelerometer (in general both 3-axis). For the sake of simplicity
the coordinate frame that is attached to the IMU and in which the IMU measure-
ments are expressed is also denoted by B. The gyroscope measures the rotational
rate of the device Bω̃IB . The accelerometer measures its proper acceleration B f̃IB
which is the superposition of the actual acceleration of the device and the gravita-
tional acceleration. Other sensor modalities which are sometimes included in IMUs
are magnetometers, barometers, or GPS.

Most reasonable IMUs have an internal calibration routine which is responsible for
reducing nonlinear effects and performing temperature compensation of the measured
rotational rate and proper acceleration. But even with these measurement corrections,
remaining measurement noise and bias are never entirely avoidable. This can be
modeled in different ways, but the most common approach is to model it as additive
noise and bias on the IMU outputs (an in-depth discussion can be found in [105]).
The resulting stochastic model can be written as:

B f̃IB = C(qBI)(IaB − Ig) + bf + nf , (6.15)

ḃf = nbf , (6.16)

Bω̃IB = BωIB + bω + nω , (6.17)

ḃω = nbω , (6.18)

where Ig is the gravitational acceleration expressed in the inertial frame I. The ad-
ditive white Gaussian noise processes nf ,nbf ,nω ,nbω are added to the above terms
in order to model the continuous time noise that affects the IMU outputs. This is a
common modeling approach for IMU measurements, where the corresponding covari-
ance parameters Rf ,Rbf ,Rω ,Rbω can be derived by looking at the corresponding
Allan variance plots [32].

Especially in the consumer market IMUs have seen a huge upswing in the past few
years, providing increasingly performing devices at low prices. IMUs can be assigned
to different grading categories depending on their gyroscope bias stability parameter
bs, which specifies how well the gyroscope bias can possibly be estimated. A lower
bound for the bias stability parameter is given by bs > 0.5(

√
Rω ·Hz +

√
Rbω/Hz)

and can be used as alternative grading criteria. A possible choice of grading cate-
gories is given by: tactical grade (bs > 0.1◦/hr), navigation grade (0.1◦/hr > bs >
0.0001◦/hr), and strategical grade (0.0001◦/hr > bs).
There are algorithms which directly estimate the attitude of the IMU based on

the accelerometer and gyroscope measurements only. To this end, an often employed
assumption is that the mean acceleration over time is zero. This allows to correct
the integrated gyroscope values and to obtain a relatively stable longterm attitude
estimation. One critical part of this approach is given by the gyroscope bias which
has to be estimated online. Since an erroneous bias estimate gets directly integrated
into the attitude estimation it has a strong influence on its accuracy. The quality
of the bias estimate itself strongly depends on the bias stability parameter bs, which
explain why this parameter is one of the main grading criteria for IMUs.
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Environment Perception Sensors

To enhance state estimation and in particular to provide means of determining ab-
solute positions and yaw orientations, legged robots are sometimes equipped with
cameras or laser range finders (Lidar). Both sensors require relatively complex al-
gorithms to calculate the robot state from image data or laser scans. Cameras are
lightweight, cheap and energy efficient sensors that provide high density information
on the surrounding. Their main draw-back is that cameras tend to be sensitive to
bad lighting and fast motions which can quickly deteriorate the quality of the out-
put. There is a vast amount of state-of-the art visual odometry approaches which
show very impressive results in term of localization accuracy [33, 40, 131]. Additional
robustness can be gained by employing a visual-inertial approach which integrates
inertial measurements into the visual ego-motion estimation algorithm [14, 84].
Range sensors, on the other hand, are relatively heavy, power hungry, and expensive.

They also require additional processing if the robot is in motion during the scanning.
In comparison to camera image data, they provide depth measurements which are
less depending on illumination and motion of the system. Localization is typically
retrieved by point cloud matching, whereby iterative closest point (ICP) algorithms
are very popular [110].

3 Sensor Fusion

Key element for robust and reliable state estimation is proper fusion of the different
sensor modalities. While there exists a vast amount of possible optimization and fil-
tering techniques, Kalman filter based algorithms remain the most employed. In the
context of this section, the basic concepts of general Kalman filtering are discussed
using the example of the Extended Kalman Filter (EKF). A comprehensive introduc-
tion and overview on Kalman filters, including information on computational costs,
can be found in [52].
A Kalman filter is a stochastic filter that fuses the information from different sensor

modalities [77]. In the case of a linear system, a Kalman filter provides the optimal es-
timate of an information fusion problem in terms of minimum mean square error of the
estimate. For general nonlinear systems, no guarantee for optimality or convergence
can be given.
One of the key aspect of a Kalman filter is the choice and parametrization of its

state x, with which a proper system model is formulated. The discrete-time model is
of the following form:

xk+1 =f(xk, z̃f,k,nf,k), (6.19)
yk+1 =h(xk+1, z̃h,k+1,nh,k+1), (6.20)

where nf,k ∼ N (0,Rf,k) and nh,k+1 ∼ N (0,Rh,k+1) are discrete Gaussian noise.
Only with an appropriate choice of the state x it is possible to formulate a process
model f and an update model h such that the information contained in the mea-
surements z̃f,k and z̃h,k can be properly leveraged into the state estimation. In the
selected formulation, the update model directly outputs the Kalman innovation term
yk+1, which is a slightly more generalized form of the regular measurement model
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z̃h,k+1 = h(xk+1,nh,k+1). As a general design rule, every sensor measurement that
is used during the update step must yield an innovation term that depends on the mea-
surement itself and the filter state. Kalman filters always keep track of the covariance
of the filter state (or some related quantity):

P k = cov(xk). (6.21)

The EKF makes use of the same equations as the regular linear Kalman filter except
for replacing the linear system matrices with the Jacobians of the above nonlinear
system. In the following the a-priori estimated filter state (i.e. before the inclusion
of update measurements) will be decorated with a minus superscript − and the a-
posteriori (i.e. after the inclusion of update measurements) will be decorated with a
plus superscript +. The current best estimate of the state is used when evaluating
the Jacobians:

F k :=
∂f(xk, z̃f,k,nf,k)

∂xk

∣∣∣∣
(x̂+
k
,z̃f,k,0)

, (6.22)

Gk :=
∂f(xk, z̃f,k,nf,k)

∂nf,k

∣∣∣∣
(x̂+
k
,z̃f,k,0)

, (6.23)

Hk+1 :=
∂h(xk+1, z̃h,k+1,nh,k+1)

∂xk+1

∣∣∣∣
(x̂−
k+1

,z̃h,k+1,0)

, (6.24)

Jk+1 :=
∂h(xk+1, z̃h,k+1,nh,k+1)

∂nh,k+1

∣∣∣∣
(x̂−
k+1

,z̃h,k+1,0)

. (6.25)

The recursive filter equations for predicting the state and covariance matrix are:

x̂−k+1 = f(x̂+
k , z̃f,k,0), (6.26)

P−k+1 = F kP
+
k F

T
k +GkRf,kG

T
k . (6.27)

For the update step, the recursive filter equations have the form:

Sk+1 = Hk+1P
−
k+1H

T
k+1 + Jk+1Rh,k+1J

T
k+1, (6.28)

Kk+1 = P−k+1H
T
k+1S

−1
k+1, (6.29)

P+
k+1 = (I −Kk+1Hk+1)P−k+1, (6.30)

∆xk+1 = Kk+1h(x̂−k+1, z̃h,k+1,0), (6.31)

x̂+
k+1 = x̂−k+1 �∆xk+1. (6.32)

In the last equation the boxplus operator � is used in order to highlight that if the
state x contains some special over-parametrized quantities, such as unit quaternions,
the correction ∆xk+1 must be applied using a proper operation (please see section 6
or refer to [16, 59] for more details).
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The main reason why the legged state estimation community is mostly using Kalman
filters is its simple implementation, its low memory usage due to its recursive formu-
lation, as well as the undelayed estimation (i.e. a full update is generate after every
step). Another possibility of information fusion is based on maximum likelihood opti-
mization over the full data (including past data). This often provides more accurate
estimates but can be computationally more expensive and can come with an increased
time delay until the estimates are available. There are also many intermediate or com-
bined approaches, such as sliding window estimation approaches [84] or other forms of
delayed filtering, which are becoming increasingly popular (especially in the computer
vision community).

4 Approaches

4.1 Overview
In contrast to wheeled, flying, or swimming machines, legged robots uniquely fea-
ture intermittent ground contacts as additional source of information. Almost all
approaches employ an underlying no-slippage assumption for the feet in contact with
the ground, whereby some can intrinsically account for a certain amount of slippage.
While originally designed for either point feet or flat feet contacts, most methods can
be adapted to other types of feet. The different approaches can be characterized based
on the employed technologies:

• Matching technologies compare two subsequent feet configuration and thereby
compute the incremental motion. These legged odometry methods are relatively
easy to implement. Additional information like e.g. knowledge about the ground
plane can be leveraged by direct integration into the odometry.

• Fusion technologies combine the information from the intermittent contact with
further sensor modalities (often an IMU). They mostly avoid the use of further
assumption like even floors. Due to information fusion, these methods are known
to provide robust and accurate state estimation. The underlying fusion algo-
rithms often increase complexity and the computational costs.

• Technologies for leveraging dynamics exploit available force measurements to-
gether with dynamic models in order to improve ego-motion estimation. Due to
their complexity and the rather high noise amplitudes of the force measurements
they have not been used widely. Still, force measurements can provide an alter-
nate method for estimating the gravity direction and thereby replace or improve
the attitude estimation which usually strongly relies on the IMU measurements.

4.2 Matching Technology
Single Foot Matching

Single foot matching approaches make use of the kinematic measurements correspond-
ing to a single foot which remains in contact with the ground between two successive
timesteps and directly estimate the incremental motion of the robot’s main body. The
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Figure 6.3: Contact point matching for two stances that share the same
foothold F . The unknown incremental translation can be estimated by using
the triangle rBiF , rBjF , rBiBj together with the forward kinematics model
of the robot. All terms need to be represented in the same coordinate frame
which requires the relative rotation qBiBj between the coordinate frame Bi
and Bj . This could be obtained from on-board rotational rate measurements.

approach is not really limited to successive timesteps and can be applied between arbi-
trary robot stances sharing the same ground contact. For a point foot model eq. (6.6)
must be fulfilled for every timestep sharing the same point contact F . For two such
timesteps i and j, this means that the incremental translation between both stances
can be written as

BirBiBj = BirBiF −C(qBiBj )BjrBjF , (6.33)

where BirBiF := BrBF (αi) and BjrBjF = BrBF (αj) are given by the forward
kinematics of the corresponding leg at timestep i and j, and where qBiBj is required
in order to account for the rotational motion of the main body. The quantities are
illustrated in fig. 6.3.

The rotational term qBiBj can be neglected if the robot has only little rotational
motion between both timesteps, i.e., if the time difference is very small or if the
motion of the robot does not exhibit quick rotations. If this is not the case the
rotational term has to be estimated by some other means. Often rotational rates
measurements from an on-board gyroscope represent the simplest and most accurate
way of getting such an incremental rotational motion estimate. Furthermore, since the
incremental translation BirBiBj is given in body coordinates, an external attitude
estimation is indispensable if the robot should estimate its global trajectory. In some
cases the incremental translation is also employed in its differentiated form as velocity
measurement [35, 92].
An alternative is present if a flat foot contact model can be applied. In this case

eq. (6.9) must be fulfilled for every timestep sharing the same flat foot contact with
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associated coordinate frame F . The second part of the constraint can directly be used
for estimating the incremental rotation:

qBiBj = q−1
FBi
⊗ qFBj , (6.34)

with qFBi := qFB(αi) and qFBj := qFB(αj). This means that for each flat foot
that is in contact with the ground the full incremental motion of the main body can
be estimate by:

BirBiBj =BirBiF −C(q−1
FBi
⊗ qFBj )BjrBjF , (6.35)

qBiBj =q−1
FBi
⊗ qFBj . (6.36)

This is a widely used odometry concept for humanoid robots since as long as a contact
with the ground is available an incremental motion can be estimated. However, due
to slippage or model inaccuracies this approach is not very accurate and prone to
drift. Also, if no accelerometer or force data is used there is no way how the gravity
direction can be estimated reliably.

Multiple Foot Matching

Taking more than one ground contact into account enables the design of potentially
more accurate odometry approaches. Furthermore, if enough (at least three non-
colinear) contacts are available, the incremental rotation can also be estimated with
point contacts only. One of the first such approach was demonstrated by Roston and
Krotkov [116] on their Ambler hexapod. They formulated an optimization which min-
imizes the error between matching ground contact in order to estimate the incremental
motion (translation and rotation).
The basic idea is to form an error term out of the identity in eq. (6.33) for every of

the N foot point Fk in contact with the ground:

ek = BirBiBj − BirBiFk +C(qBiBj )BjrBjFk . (6.37)

Using the abbreviations t = BirBiBj , q = qBiBj , ak = BirBiFk , and bk = BjrBjFk
the term can be rewritten as

ek(t, q) = t− ak +C(q)bk. (6.38)

This can now be transformed to a quaternion form by mapping a 3D vector t to a
purely virtual quaternion t̄ = ST t with the selection matrix

S =

1 0 0 0
0 1 0 0
0 0 1 0

 . (6.39)

The selection matrix can also be used to compute a rotated coordinate vector as
C(q)b = S

(
q ⊗ ST b⊗ q−1

)
. Consequently, the quaternion form of the error term in

eq. (6.38) can be expressed as:

ēk(t, q) =
(
t̄− āk + q ⊗ b̄k ⊗ q−1

)
⊗ q, (6.40)

= t̄⊗ q − āk ⊗ q + q ⊗ b̄k, (6.41)
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where t̄ = ST t, āk = STak, and b̄k = ST bk are pure imaginary quaternions and
where a right multiplication by q was applied (this does not influence the norm of the
error term because q is a unit quaternion).
One advantage of the quaternion parametrization is that the obtained error term

ēk(t, q) is linear in q and equals zero if the contact constraint is fulfilled. This is
enabled by the linear nature of the quaternion multiplication which can be represented
as

q ⊗ p = L(q)p = R(p)q, (6.42)

where the matrices L(q) ∈ R4×4 and R(p) ∈ R4×4 can be expressed as linear maps
of the corresponding unit quaternion.

Constructing a least square optimization based on multiple such error terms and
including the Lagrangian term (with Lagrangian multiplier λ) for taking into account
the unit norm constraint of the quaternion q yields

min
t,q,λ

∑
k

ēTk (t, q)ēk(t, q) + λ(qT q − 1). (6.43)

It can be shown (see section 7) that the solution to this problem is given by the
following Eigenvalue problem for q:

Bq − λq = 0, (6.44)

with

B =
∑
k

(A−Ak)(A−Ak) =
∑
k

AkAk −AA, (6.45)

A =
∑
k

Ak, Ak = L(āk)−R(b̄k). (6.46)

The corresponding solution for the incremental translation t is given by the vector
that maps the mean of the rotated bk to the mean of ak:

t =a−C(q)b, a =

∑
k ak

N
, b =

∑
k bk

N
. (6.47)

Solving this Eigenvalue problem thus provides a solution for the incremental motion
t and q without the requirement for additional sensors as long as enough ground
contacts are available. This approach has often been applied on hexapods using a
tripod gait [43, 51, 87, 116].
The presented result for point feet can be adapted to flat feet and hence to ac-

count for rotational constraints. The additional rotational error terms can directly be
derived from eq. (6.34):

er,k = S
(
qFkBj ⊗ qBiBj ⊗ q

−1
FkBi

)
= SL(qFkBj )R(q−1

FkBi
)qBiBj . (6.48)
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Merging this into the previous optimization yields

min
t,q,λ

∑
k

eTk (t̄, q)ek(t̄, q) +
∑
k

eTr,k(q)er,k(q) + λ(qT q − 1), (6.49)

which can be shown to have the same solution as the point foot problem except for
an additive term in the Eigenproblem matrix:

B =
∑
k

AkAk −AA+
∑
k

R(qFkBi )q
−1
FkBj

q−TFkBj
R(q−1

FkBi
). (6.50)

The interesting aspect of this combination is that the estimation of the incremental
rotation q draws from the position constraint (eq. (6.37)) and the rotation constraint
(eq. (6.48)) simultaneously. Especially for humanoids this can be of interest since
typically the rotational constraint of the flat foot tends to be only weakly satisfied
and that further information from the location of the feet can be beneficial.

There are many adaptation to the above approaches. Often they can be derived
by directly adapting the formulation of the optimization problem. One important
extension is to integrate different weighting into the error terms. For instance, a foot
which is suspected to slip can be down-weighted in such a manner that the estimation
process relies more on the other feet in contact [43]. Also, when combining position
and rotational constraints in a joint optimization (as in eq. (6.49)) the use of weighting
is often very important due to the different units of the involved error terms.

4.3 Sensor Fusion for Legged Robots
Sensor fusion approaches tightly or loosely fuse the kinematic constraints that are
used in matching approaches with additional sensor modalities. The term “tightly” as
opposed to “ loosely” means that the different sensor measurements are combined in a
non-processed form (see fig. 6.4). For instance, for IMU and kinematic measurements
this means that the proper acceleration, rotational rate, and joint encoder measure-
ments are directly fused together in order to obtain a single ego-motion estimation.
In contrast to this, a loosely coupled approach would first produce ego-motion esti-
mates from the single sensor modalities and then combine them to one. The tightly
coupled approaches typically have the advantage that better measurement models are
applicable and that superfluous assumptions can be avoided.

The following section outlines the tight combination of kinematics measurements
with IMU readings, the most widely used sensor in legged robots. Inclusion of further
sensor modalities is illustrated in the section afterwards. Measurements fusion from
different sensor will be discussed using the example of the EKF. Most approaches
however could easily be transfered to other types of Kalman filters or to batch opti-
mization approaches. While every Kalman filter setup can be formulated as a batch
optimization, this is not necessarily true for the other way around.

Fusion of IMU and Kinematic Measurements

The basic concept is to tightly combine the IMU readings with the kinematic sensing
respectively the contact constraints. To this end, IMU measurements are very often
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Pre-processing 1

Pre-processing 2

Loose fusion

Sensor reading 1

Sensor reading 2

Tight fusion

Figure 6.4: A thigh sensor fusion directly employs the sensor measurements
in order to estimate a unified output. This is in contract to loose sensor
fusion which pre-processes the sensor measurements into intermediate quan-
tities before merging them together. While loose fusion might provide a
better overview of the process and can be faster, the tight fusion approach is
stochastically more accurate and yields better results.

integrated in the process model of the Kalman filter. This has the advantage that a
reduced filter state can be employed where acceleration and rotational rates do not
necessarily have to be included.
One technique to integrate kinematic measurements, is to formulate an update

model that assumes stationary contact points and penalizes every deviation from it.
This can be achieved by extending the filter state to contain the 3D location of the
N contact points [10]:

x :=
(
r,v, q, bf , bω ,p1, . . . ,pN

)
, (6.51)

=
(
IrIB , IvB , qBI ,Bbf ,Bbω , IrIF1

, . . . , IrIFN
)
,

with:

• IrIB : position of IMU w.r.t. the inertial frame I,

• IvB : velocity of IMU w.r.t. the inertial frame I,

• qBI : attitude of IMU (map from I to B),

• Bbf : additive bias on accelerometer (expressed in B),

• Bbω : additive bias on gyroscope (expressed in B),

• IrIFi : the location of the ith contact point w.r.t. the inertial frame I.

The process model can be formulated based on eqs. (6.15) to (6.18). It is composed
of IMU-based kinematics as well as of random walk models for the IMU biases and
the foot contact locations:

ṙ = v + nv , (6.52)

v̇ = C(q)T (B f̃IB − bf − nf ) + g, (6.53)
q̇ = Bω̃IB − bω − nω , (6.54)

ḃf = nbf , (6.55)

ḃω = nbω , (6.56)
ṗi = np,i. (6.57)
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The terms of the form n∗ represent white Gaussian noise with covariance parameter
R∗. Most noise parameters can be chosen based on the specifications of the IMU. The
covariances Rp,i represent how much a point foot can move while in contact and is a
tuning factor which has to be adapted to the platform and its environment. The set
of differential equation can be discretized by using a Euler-forward scheme yielding
a process model of the form xk+1 = f(xk, (ω̃k, f̃k),n∗). This model is directly
integrated in the Kalman filter in order to obtain a prediction of the filter state and
the covariance after processing an IMU measurement.
The innovation term for a leg i, which is in contact with the ground, is derived from

the kinematic constraint (eq. (6.6)) expressed in the inertial frame I. This depends
on the measured joint positions α̃:

yp,i(x, α̃) = IrIB +C(qBI)TBrBFi (α̃)− IrIFi + ncp,i, (6.58)

= r +C(q)TBrBFi (α̃)− pi + ncp,i. (6.59)

Additive noise ncp,i ∼ N (0,Rcp,i) is included in order to account for a certain amount
of modeling errors (e.g. ball-shaped feet with rolling motion) and other disturbances.
Similar to the prediction noise Rp,i, the covariance Rcp,i is a tuning factor and has
to be adapted to the hardware specification and the application scenario.
It is important to understand that the contact points are truly co-estimated in this

approach. When a new contact is made with the ground, a new estimated contact
location can be initialized using the current estimated location of the main body and
the forward kinematics. The corresponding covariance matrix can be initialized by
considering the innovation Jacobian and the system noise. After that, every succes-
sive kinematic measurement belonging to this contact point can be processed using
eq. (6.58). The Kalman filter equation will take care of propagating the information
throughout the filter state while properly considering the correlation between the dif-
ferent states. This will induce corrections on the estimated main body motion as well
as on the estimated foot points. As soon as a ground contact gets lost, the corre-
sponding contact point is removed from the filter state. This approach does not use
any additional assumption on the shape of the floor or the location of the foot points.
An alternative filter design for point feet can be derived when differentiating eq.

(6.33) and thus integrating the kinematic information on a velocity level [11]. This
yields the following innovation term:

yv,i(x, α̃, ˜̇α) = v +C(q)T (Bω̃IB × BrBFi (α̃))

+ CT (q)
∂

∂α
BrBFi (α̃)˜̇α+ ncv,i, (6.60)

where ˜̇α is the measured joint velocity and ncv,i discrete Gaussian noise. This basi-
cally exploits the fact that the velocity of a foot which is in contact with the ground is
zero. While exhibiting slightly higher drift on the position estimate of the main body
(since there is no direct position feedback), this filter has also a couple of advantages.
It does not require the co-estimation of the foot location and has therefore a smaller
filter state and reduced computational costs. Furthermore, by modeling the measure-
ment error on the velocity level, outliers occurring due to slippage can be more easily
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detected by a Mahalanobis based outlier detection. For more details on this filter
please refer to [11].

The above approaches can also be adapted to legged robots with a flat foot model
by extending the innovation term in eq. (6.58) to include the rotational constraint of
the flat foot (eq. (6.9)) [117]. For a given foot orientation qFiI , the innovation term
can be formulated as

yr,i(x, α̃) = exp(ncr,i)⊗ qFiB(α̃)⊗ qBI ⊗ q
−1
FiI

. (6.61)

This innovation term comes in addition to the position term of eq. (6.58) and thus
increases the amount of information that can be extracted from a ground contact.
Consequently the observability of the system is improved, which basically means that
less motion or ground contacts are required to make the system observable.

In general there are many options when designing a Kalman filter for legged state
estimation. A large invariant is the use of an IMU-based process model as described
in this section (eqs. (6.52) to (6.56)). This can be found in many different contri-
butions [23, 34, 35, 91, 92, 113]. Also the work of Lin et al. [87] (presenting one of
the first IMU-kinematics fusion methods) can be counted to this group since their
update based IMU integration is statistically similar. When it comes to integrating
kinematic information, however, methodologies diverge. For instance Reinstein and
Hoffmann [113] propose to combine the EKF with a machine learning methodology.
This processes pressure sensors and joint encoder measurements into an odometry
output before merging it into the Kalman filter.
Different approaches can be applied if the robot is equipped with a high-grade IMU.

In this case an accurate and reliable attitude estimation is often directly provided by
the IMU. This strongly simplifies the problem and allows the use of direct match-
ing methods in order to obtain position and velocity updates from kinematics (see
section 4.2). Since this often yields noisy position and velocity estimates due to en-
coder noise and forward kinematics inaccuracies, they are sometimes fused with the
IMU outputs. Because IMU measurements are used twice in that case, often with-
out considering the cross-correlation of the involved term, this is statistically not the
most sound approach. However, it represent a simple and reliable approach which
provides accurate results (provided the robot is equipped with a high-accuracy IMU).
Such methods are often applied on modern humanoids such as Boston Dynamics’ At-
las robot. For example, Johnson et al. [72] linearly combine the kinematic position
and velocity estimates with an IMU-driven model, by implementing a low pass fil-
ter. Others, including Fallon et al. [35] or Ma et al. [92], directly employ synthesized
position/velocity feedback as update measurement in an IMU-driven EKF.

Inclusion of Exteroceptive Sensor Data

Using proprioceptive sensors only is often sufficient for providing a robot with a lo-
cal ego-motion estimation including the attitude, velocity and incremental motion.
However if a robot has to localize itself with respect to a world fixed reference frame,
exteroceptive sensing becomes indispensable such that the robot is able to perceive
its surrounding and infer its location within it. The most commonly used sensor
modalities in this context are cameras [6, 23, 34, 91, 123] and laser range sensors
[35, 124].
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A common way of integrating exteroceptive sensory information is to process the
data into a more compact form and, subsequently, to fuse it with the rest of the state
estimation. For Kalman filter based estimation algorithms, the additional information
can be fused into the estimation process by extending the update model. For instance,
if the exteroceptive data can be processed to generate synthetic pose measurements
of the main body (I r̃IB , q̃BI) a corresponding Kalman innovation term could be
formulated as

ye =

(
I r̃IB − IrIB + nr

exp(nq)⊗ q̃BI ⊗ q
−1
BI

)
, (6.62)

with nr and nq being additive Gaussian noise. Often, this approach has to be adapted
to the actual setup. Typically, the inertial frame I or the body frame B of the
pose measurements do not match with the Kalman filter internal inertial and body
coordinate frames. In this case, the method has to be changed in order to account for
a fixed offset between the coordinate frames. This can be done by offline calibration
of the coordinate frames or by attempting to co-estimate the coordinate frame offset
in the Kalman filter.
Chilian et al. [23] propose the use of a cloning approach in order to integrate the

incremental pose measurements (I r̃IBk , q̃BkBk−1
) from a stereo vision odometry al-

gorithm. The cloning approach augments the filter state in order to include the last
pose (IrIBk−1

, qBk−1I
). This is required for remaining statistically consistent when

formulating the incremental pose update which relates the current pose estimate to
the last pose estimate:

yei,k =

(
I r̃IBk − (IrIBk−1

+C(qBk−1I
)TBk−1

rBk−1Bk ) + nr

exp(nq)⊗ q̃BkBk−1
⊗ qBk−1I

⊗ q−1
BkI

)
. (6.63)

Neglecting this would quickly lead to inconsistencies due to ignored cross-correlations
between the synthetic measurements and the filter state.
The use of laser range data for state estimation is less often observed. This is due

to the more costly deployment of the sensor as well as the more involved processing
of the data, which is even further complicated if the laser sensor is in motion during
scanning. In order to overcome the issue of a moving sensor frame, Fallon et al. [35]
use a particle filter to match a 2D scan of the environment to a prior map and thereby
generate an update measurement for their IMU-driven EKF.

4.4 Exploitation of Dynamic Models and Measurements
Many legged robots are equipped with sensors that can measure joint or contact forces.
In combination with an appropriate dynamic motion model (see eq. (6.1)), these
measurements provide a further source of information for ego-motion estimation. Joint
and contact forces can be directly related to the second order derivatives of position
and attitude quantities. However, if no additional measurements or assumptions are
provided, double integration of this noisy measurements will inevitably lead to drift
of the estimated pose.
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A common issue when integrating dynamic quantities are the considerable model
inaccuracies. It is often difficult to precisely determine all model parameters such
as the center of mass or moment of inertia. Furthermore, numerical derivatives of
quantities such as joint encoder are involved in most relations and amplify the overall
uncertainty of the employed dynamic models. In certain scenarios this motivates the
introduction of model simplifications or approximations as the additional modeling
inaccuracies become negligible.

Motion Estimation from Joint Torque Measurements

A possible approach for leveraging joint or contact force measurements will be dis-
cussed in the following. The multi-body equation of motion for a legged robot with
n degrees of freedom and m independent contact constraints as described in eq. (6.1)
and eq. (6.3) is

M(θ)u̇+ b(θ,u) + g(θ) + JTc (θ)F c = ST τ , (6.64)

J̇c(θ)u+ Jc(θ)u̇ = 0. (6.65)

These equations can be solved for the generalized accelerations u̇, which can drive the
process model of an EKF. However, it must be ensured that the entire equation only
depends on the filter state and measured quantities. If, for instance, joint positions α̃
and joint forces τ̃ are measured, the contact forces F c remain as unknown quantities.
This can be overcome by left-multiplying the first part of the equation of motion by the
right-null-space matrix Nc(θ) of the contact Jacobian (satisfying Jc(θ)Nc(θ) = 0):

NT
c (θ)M(θ)u̇+NT

c (θ)b(θ,u) +NT
c (θ)g(θ) = NT

c (θ)ST τ . (6.66)

For a fully-actuated system, the upper equation looses dimensions equals to the num-
ber of contact constraint m. The remaining n scalar equations can consequently be
solved for the generalized accelerations:

u̇ =

[
NT
c (θ)M(θ)
Jc(θ)

]−1 [
NT
c (θ)ST τ −NT

c (θ)b(θ,u)−NT
c (θ)g(θ)

−J̇c(θ)u

]
. (6.67)

An EKF can now be set up where the filter state is composed of x = (θ,u) and where
the process model is a double integration of the estimated generalized accelerations u̇.
The filter update step includes the identity update model α̃ = α+nα and potentially
additional measurement updates related to further sensors.

While approaches along the lines of the presented example seem nice in theory,
they have only rarely been implemented in practice. One issue is that the computa-
tion of the matrices involved in the equation of motion is expensive for more complex
legged systems. Furthermore, the EKF requires the evaluation of the Jacobian of
eq. (6.67) with respect to θ and u which can be quite involving. Computing this for
a complex model at high update rate is very close at the computational limits of em-
ployed hardware and, due to the rather limited benefits, has consequently only rarely
been implemented. Recently, more efficient methods have been tested for computing
derivatives of the equation of motion [103], but it remains to see how well they can
be integrated into a state estimation framework.
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5 Future directions and open problems

One way to make the above problem computationally tractable is to avoid a re-
cursive filtering approach and to solve for the best current estimate given that the
last estimate is correct (i.e. ignoring estimation error of the last time step). This has
been proposed by Xinjilefu et al. [143] where a quadratic programming optimization
method minimizes the error in eq. (6.64) and integrates various sensor models (joint
velocity, joint torques, IMU, contact constraints, contact forces) while being able to
simultaneously consider inequality constraints. Dynamic quantities like mass matrix
or Coriolis terms are formulated as terms depending on the last step only and the
corresponding Jacobians are therefore not required. This strongly reduces the compu-
tational load and allows the estimation process to be run real-time at high frequency
(e.g. 500Hz).

Simplified Models

In order to avoid the full equation of motion, the dynamics of a legged robot can also
be simplified and approximated by a Spring Loaded Inverted Pendulum (SLIP) model
[53] or by a Linear Inverted Pendulum Model (LIPM) [129, 142]. These reduced order
motion models are able to capture the most important dynamic characteristics of the
complex system and can be directly embedded in a Kalman filter. While this results
in stable and reliable estimators (as long as the actual system dynamics are close to
the selected model), it often suffers from insufficient accuracy. Another alternative to
the full 3D dynamics is to make use of 2D planar dynamics (in the sagittal plane) as
proposed by Aoustin et al. [2], Lebastard et al. [82].

Quasistatic Inclination Estimation

A last approach which should be mentioned is the synthesis of inclination measure-
ments based on a dynamic model. The robot must constantly counteract the effect
of gravity. By measuring this effort, it is possible to estimate the direction of gravity.
For low-speed motions a quasi-static assumption u̇ = u = 0 can be made [51] such
that eq. (6.64) simplifies to

g(θ) + JTc (θ)F c = ST τ . (6.68)

If the joint force τ and the joint angles α are measured, this equation can be used
to solve for the gravity direction (contained in θ). Moreover, if the system is fully-
actuated even the contact forces F c can be estimated.

5 Future directions and open problems

State-of-the-art ego-motion estimation algorithms have demonstrated to perform very
well for regular operation. In particular, the continuously ongoing improvement of
IMUs, which are becoming a standard sensor installed on every robot, largely con-
tributes to reliable state estimation.
However, state estimation algorithms still need improvement for operation in more

complex scenarios where the contact situation is unclear, the robot is slipping, or the
terrain is unstable. In those cases, the robot has to detect that its kinematic constraint
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with the surrounding are uncertain (similarly to what human are doing) and conse-
quently rely more on other sensor modalities. Potential performance improvement
can also be expected by a better integration and exploitation of the system dynamics.
In this context, a combination of force measurements and IMU measurements could
provide the state estimation with a redundant and consequently robust motion prior.

6 Handling 3D Rotations

A more detailed discussion on the following elaborations can be found in [16]. As
members of the special orthogonal group SO(3), 3D rotations possess a multiplication
operation (which is not commutative), but unfortunately do not have a concept of
addition. Consequently the subtraction and differentiation, which are essential for
most sensor fusion algorithms, do not exist either. In order to overcome this issue the
region around a specific rotation can be mapped to a 3D vector space (the so-called
Lie algebra). This is often done by means of the exponential and logarithmic map at
identity. There are different ways of selecting these maps and a common choice is:

log :SO(3)→ R3 (6.69)
qBI 7→ log(qBI) = ϕBI ,

exp :R3 → SO(3) (6.70)
ϕBI 7→ exp(ϕBI) = qBI , (6.71)

where ϕBI is the passive rotation vector of the rotation parametrized by the unit
quaternion qBI .

These maps can now be used to define a boxplus operator and a boxminus operator
as follows:

� :SO(3)× R3 → SO(3) (6.72)
q,ϕ 7→ exp(ϕ)⊗ q,

� :SO(3)× SO(3)→ R3 (6.73)

q,p 7→ log(q ⊗ p−1).

They represent a local concept of addition and subtraction and fulfill the axioms
required by Hertzberg et al. [59]:

q � 0 = q, (6.74)
(q �ϕ) � q = ϕ, (6.75)
q � (p � q) = p. (6.76)

The regular addition and subtraction in the definition of differentials can now be
replaced by the boxplus and boxminus operators in order to compute derivatives of
terms involving 3D rotations. This yields the following set of derivatives for commonly
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encountered terms (refer to [16] for a derivation):

∂/∂t (qBI(t)) = −BωIB(t), (6.77)

∂/∂q (C(q)r) = − (C(q)r)× , (6.78)

∂/∂q
(
q−1

)
= −C(q)T , (6.79)

∂/∂q (q ⊗ p) = I, (6.80)
∂/∂p (q ⊗ p) = C(q), (6.81)

∂/∂ϕ (exp(ϕ)) =: Γ(ϕ), (6.82)

∂/∂q (log(q)) = Γ−1(log(q)). (6.83)

Please note that these terms can vary based on the selected convention. The analytical
forms of the rotation matrix C(ϕ) and of the exponential differential matrix Γ(ϕ) are
given by:

C(ϕ) =I +
sin(‖ϕ‖)ϕ×

‖ϕ‖
+

(1− cos(‖ϕ‖))ϕ×2

‖ϕ‖2
, (6.84)

Γ(ϕ) =I +
(1− cos(‖ϕ‖))ϕ×

‖ϕ‖2
+

(‖ϕ‖ − sin(‖ϕ‖))ϕ×2

‖ϕ‖3
. (6.85)

7 Solving the Least Squares Problem for Multiple Point Feet

The goal is to solve the nonlinear least squares problem of eq. (6.43) (Lagrangian
form):

min
t,q,λ

∑
k

ēTk (t, q)ēk(t, q) + λ(qT q − 1), (6.86)

with the error term from eq. (6.41)

ēk(t, q) = t̄⊗ q − āk ⊗ q + q ⊗ b̄k, (6.87)

and where t is a 3D vector and q is a unit quaternion representing the incremental
translation and rotation, respectively. Setting the derivatives with respect to t, q and
λ to zero results in the following set of equations:∑

k

ēTk (t, q)R(q)ST = 0, (6.88)

∑
k

ēTk (t, q)
(
L(t̄)−L(āk) +R(b̄k)

)
+ λqT = 0, (6.89)

qT q − 1 = 0. (6.90)

Expanding and transposing the first equations gives∑
k

SR(q−1)
(
t̄⊗ q − āk ⊗ q + q ⊗ b̄k

)
= 0, (6.91)
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which can be transformed and simplified to

Nt−
∑
k

ak +
∑
k

C(q)bk = 0, (6.92)

where N is the number of point feet in contact with the ground. This can finally be
rearranged to

t =a−C(q)b, a =

∑
k ak

N
, b =

∑
k bk

N
. (6.93)

This means that the translation is obtained from the vector that maps the mean of
the rotated bk to the mean of the ak.
The quaternion form of t is

t̄ =ā− q ⊗ b̄⊗ q−1, (6.94)

which can be inserted into the transposed form of eq. (6.89):∑
k

(
L(ā− q ⊗ b̄⊗ q−1)−L(āk) +R(b̄k)

)T
(
L(ā− q ⊗ b̄⊗ q−1)−L(āk) +R(b̄k)

)
q + λq = 0. (6.95)

Furthermore, since

L
(
q ⊗ b̄⊗ q−1

)
q = R

(
b̄
)
q, (6.96)

and the summation of the second factor in eq. (6.95) equals 0:∑
k

(
L(ā)−R(b̄)−L(āk) +R(b̄k)

)
= 0, (6.97)

eq. (6.95) can be transformed to:

−
∑
k

(
L(ā)−R(b̄)−L(āk) +R(b̄k)

)
(
L(ā)−R(b̄)−L(āk) +R(b̄k)

)
q + λq = 0. (6.98)

This has the form of an Eigenvector problem for q:

Bq − λq = 0, (6.99)

with

B =
∑
k

(A−Ak)(A−Ak) =
∑
k

AkAk −AA, (6.100)

A =
∑
k

Ak, Ak = L(āk)−R(b̄k). (6.101)
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Abstract
This paper introduces a state estimation framework for legged robots that
allows estimating the full pose of the robot without making any assumptions
about the geometrical structure of its environment. This is achieved by means
of an Observability Constrained Extended Kalman Filter that fuses kinematic
encoder data with on-board IMU measurements. By including the absolute
position of all footholds into the filter state, simple model equations can be
formulated which accurately capture the uncertainties associated with the
intermittent ground contacts. The resulting filter simultaneously estimates
the position of all footholds and the pose of the main body. In the algorith-
mic formulation, special attention is paid to the consistency of the linearized
filter: it maintains the same observability properties as the nonlinear sys-
tem, which is a prerequisite for accurate state estimation. The presented
approach is implemented in simulation and validated experimentally on an
actual quadrupedal robot.
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Figure 7.1: Experimental quadruped platform StarlETH [63]. The inertial
and the body fixed coordinate frames I and B are depicted, as well as the
absolute position vectors of the robot r and of the footholds p1, . . . ,pN . The
presented EKF includes all foothold positions into the estimation process.

1 Introduction

Particularly in rough and highly unstructured environments in which we ultimately
want to employ autonomous legged robots, postural controllers require fast and precise
knowledge of the state of the robots they are regulating. Especially for dynamic loco-
motion, the underlying state estimation can quickly become a bottleneck in terms of
achievable bandwidth, robustness, and locomotion speed. To achieve the required per-
formance, a state estimator for legged robots should explicitly take into account that
such systems are interacting with their environment via multiple intermittent ground
contacts. Ignoring or neglecting the ground interaction will lead to computationally
and sensory more “expensive” approaches, ranging from vision-based [23, 123, 134] to
GPS-supported [27, 43] methods. In contrast to such approaches, we will show in the
following that in cases where on-board sensors fully measure the internal kinematics
of the robot as well as its inertial acceleration and rotational rate, precise information
on the robot’s pose can be made readily available.

One of the earliest approach exploiting information given by the leg kinematics
was implemented by Lin et al. [86] in 2005 on a hexapod robot. Assuming that the
robot is in contact with three of its six feet at all times and assuming completely flat
terrain, they implemented a leg-based odometer. Their method requires the robots
to follow a tripod gait and is affected by drift. In [87], the same group fused the
leg-based odometer with data from an Inertial Measurement Unit (IMU) and thus is
able to handle tripod running. Using the assumption of knowing the precise relief of
the terrain, Chitta et al. [24] implemented a pose estimator based on a particle filter.
It fuses leg kinematics and IMU in order to globally localize a robot.
Just very recently, three novel pose estimators have been presented that are all

based on leg kinematics. Reinstein and Hoffmann [112] presented a data-driven ap-
proach using joint encoders, pressure sensors, and an on-board IMU. They searched
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for significant sensory based indicators in order to determine the stride length when
given a specific gait pattern. With this assumption, they successfully limited the po-
sition drift of the IMU and by appropriate training of the filter could additionally
handle slippage. Chilian et al. [23] implemented a leg odometer based on point cloud
matching for a hexapod robot, requiring a minimum of three feet in contact. It is
based on a multisensor fusion algorithm that includes inertial measurements and vi-
sual odometry. Assuming planar spring-mass running, Gur and Saranli [53] proposed
a generic, model-based state estimation technique.
In the presented approach we implement an Extended Kalman Filter (EKF) and

choose an appropriate state vector in order to break down the estimation problem
to the proper formulation of a few simple measurement equations. Without any
assumption about the shape of the terrain, we are able to estimate the full state of
the robot’s main body, and we can provide an estimate of the ground geometry. By
performing an observability analysis, we show that apart from the absolute position
and yaw angle of the robot all other states can be precisely observed as long as at least
one foot is in contact with the ground. This means that, after accumulating some
drift during a flight phase, the pitch and roll angles become again fully observable
when the robot regains ground contact and the corresponding estimation errors will
decrease.
Only proprioceptive sensors are required and no assumptions are made concerning

the type of gait or the number of robot legs. Little foot slippage and uncertainties on
the leg kinematics can be handled as well. Due to current limitations of the control
approach, dynamic gaits are currently evaluated in simulation only. Still, results
obtained from static walking sequences on an actual quadrupedal platform (see Fig.
7.1) are presented and compared with ground truth measurements from an external
motion tracker.
The structure of the paper is as follows. In section 2 a short overview of the

sensory devices is provided. Subsequently, section 3 presents the design of an Extended
Kalman Filter. Section 4 argues on the observability of the filter states and introduces
observability constraints. Simulation and experimental validation are discussed in
section 5.

2 Sensor Devices and Measurement Models

This section discusses the required sensors and the corresponding stochastic measure-
ment models for a N legged robot. The particular model choices represent a trade-off
between simplicity and accuracy. Throughout the paper, external disturbances and
noise will be modeled as continuous white Gaussian noise or as discrete Gaussian
noise processes. This is a coarse simplification, but can be handled by increasing the
corresponding covariance matrix.

2.1 Forward Kinematics and Encoders

Incremental encoders provide access to the angular position of all joints. The corre-
sponding encoder measurement vector α̃ of the joint angles vector α is assumed to
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be affected by discrete Gaussian noise nα with covariance matrix Rα:

α̃ = α+ nα. (7.1)

Based on the known leg kinematics, the location of each foot can be computed with
respect to the main body. However, due to erroneous calibration and possible errors
in the kinematical model lkini(·) of leg i, additive discrete Gaussian noise terms ns,i
are included in the model:

si = lkini(α) + ns,i, (7.2)

where si represents the vector from the center of the main body to the contact point of
leg i and where Rs is the covariance matrix of ns,i. Both, si and ns,i, are expressed
in the body fixed frame B.

2.2 Inertial Sensors
The IMU measures the proper acceleration f and the angular rate ω of the robot’s
main body. The proper acceleration is related to the absolute acceleration a by

f = C(a− g), (7.3)

where C is the matrix rotating coordinates of a vector expressed in the inertial co-
ordinate frame I into the body coordinate frame B. The IMU quantities f and ω
are assumed to be directly measured in the body coordinate frame B. In order to
describe the underlying stochastic process, the following continuous stochastic models
are introduced:

f̃ = f + bf +wf , (7.4)

ḃf = wbf , (7.5)
ω̃ = ω + bω +wω , (7.6)
ḃω = wbω . (7.7)

The measured quantities f̃ and ω̃ are affected by additive white Gaussian noise pro-
cesses wf and wω and by bias terms bf and bω . The bias terms are modeled as
Brownian motions and their derivatives can be represented by white Gaussian noise
processeswbf andwbω . The noise terms are specified by the corresponding covariance
parameters Qf , Qbf , Qω , and Qbω . Following the paper of El-Sheimy et al. [32],
they can be evaluated by examining the measured Allan variances. For the sake of
simplicity each covariance parameter is assumed to be a diagonal matrix with identical
diagonal entries.

3 State Estimation

As stated in the previous section, two different sources of data are available. Each of
them provides information that can potentially contribute to the state estimate of the
robot. In order to exploit this information an Extended Kalman Filter is designed.
This section starts by defining the state vector of the filter and subsequently continues
by formulating the filter models and equations.
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3.1 Filter State Definition
The state vector of the filter has to be chosen such that the corresponding prediction
and measurement equations can be stated in a clean and consistent manner. In this
approach the state vector of the quadruped robot is composed of the position of the
center of the main body r, of the corresponding velocity v and of the quaternion q
representing the rotation from the inertial coordinate frame I to the body coordinate
frame B. In order to consider the kinematics of the legs, the absolute positions of
the N foot contact points pi are included into the state vector. Together with the
accelerometer bias bf and the gyroscope bias bω this yields the following state vector:

x :=
(
r v q p1 · · · pN bf bω

)
. (7.8)

r,v and all contact positions pi are expressed in the inertial coordinate frame I,
whereas bf and bω are expressed in the body coordinate frame B. Given a quaternion
q the corresponding rotation matrix C can be easily determined.

The presented Extended Kalman Filter represents the uncertainties of the estimated
state vector via the covariance matrix P of the corresponding state error vector δx

P := Cov(δx), (7.9)

δx :=
(
δr δv δφ δp1 · · · δpN δbf δbω

)
. (7.10)

For the orientation state q, special care has to be taken. It possesses 3 degrees of free-
dom and its covariance term should therefore also be represented by a 3 dimensional
covariance matrix. Therefore the error of the pose is represented as a 3-dimensional
rotation vector δφ. That is, if q̂ represents the estimate of the orientation quaternion,
the error quaternion δq is defined by the relation

q = δq ⊗ q̂, (7.11)

where ⊗ is the quaternion multiplication operator and where the quaternion error is
related to the error rotation vector by means of the map ζ(·):

δq = ζ(δφ), (7.12)

ζ : v 7→ ζ(v) =

[
sin( 1

2
‖v‖) v

‖v‖
cos( 1

2
‖v‖)

]
. (7.13)

The inclusion of the foot contact positions into the filter state is the key point in the
filter design, enabling a simple and consistent representation of the model equations.
The leg kinematics measurements represent relative pose measurements between main
body and foot contact, based on which the EKF is able to simultaneously correct the
location of the foot contacts as well as the pose of the main body. In fact, the
presented approach can be interpreted as a simultaneous localization and mapping
(SLAM) algorithm, where the position of the actual foot contacts build up the map
the robot is localized in.
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3.2 Prediction model
The prediction equations are responsible for propagating the state from one timestep
to the next. The IMU measurements f̃ and ω̃ are directly included here. Using
(7.3)-(7.7), a set of continuous time differential equations can be formulated:

ṙ = v, (7.14)

v̇ = a = CT (f̃ − bf −wf ) + g, (7.15)

q̇ =
1

2
Ω(ω)q =

1

2
Ω(ω̃ − bω −wω)q, (7.16)

ṗi = CTwp,i ∀i ∈ {1, . . . , N}, (7.17)

ḃf = wbf , (7.18)

ḃω = wbω , (7.19)

where Ω(·) maps an arbitrary rotational rate ω to the 4x4 matrix used for representing
the corresponding quaternion rate:

Ω : ω 7→ Ω(ω) =


0 ωz −ωy ωx
−ωz 0 ωx ωy
ωy −ωx 0 ωz
−ωx −ωy −ωz 0

 . (7.20)

While in principle the foot contacts are assumed to remain stationary, the white
noise terms wp,i in (7.17) with covariance parameter Qp,i are added to the absolute
foot positions in order to handle a certain amount of foot slippage. It is described
in the body frame which allows tuning the magnitude of the noise terms in the dif-
ferent directions relative to the quadruped orientation (7.21). Furthermore, the noise
parameter of a certain foothold is set to infinity (or to a very large value) whenever
it has no ground contact. This enables the corresponding foothold to relocate and
reset its position estimate when it regains ground contact, whereby the old foothold
position is dropped from the estimation process. This is all that is required in order
to handle intermittent contacts when stepping.

Qp,i =

wp,i,x 0 0
0 wp,i,y 0
0 0 wp,i,z

 . (7.21)

3.3 Measurement Model
Based on the kinematic model (7.2) a transformed measurement quantity is introduced
for each leg i:

s̃i := lkini(α̃) (7.22)
≈ lkini(α) + J lkin,inα (7.23)
≈ si−ns,i + J lkin,inα︸ ︷︷ ︸

ni

. (7.24)
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The linearized noise effect from the encoders (7.1) and the noise from the foothold
position are joined into a new measurement noise quantity ni with covariance matrix
Ri:

Ri = Rs + J lkin,iRαJ
T
lkin,i, (7.25)

where J lkin,i is the Jacobian of the kinematics of leg i with respect to the joint angles
αi of the same leg:

J lkin,i :=
∂lkini(α)

∂αi
i ∈ {1, . . . , N}. (7.26)

s̃i is the measurement of the position of the foot contact i with respect to the body
coordinate frame B which can also be expressed as the absolute position of the foot
contact minus the absolute position of the robot rotated into the body frame.

s̃i = C(pi − r) + ni. (7.27)

3.4 Extended Kalman Filter Equations

For the subsequent linearization and discretization of the above models, the following
auxiliary quantity is introduced:

Γn :=

∞∑
i=0

∆ti+n

(i+ n)!
ω×i, (7.28)

where the (·)× superscript is used to represent the skew-symmetric matrix obtained
from a vector. It draws on the series expansion of the matrix exponential. For n = 0
it yields:

Γ0 =
∞∑
i=0

(
∆tω×

)i
i!

= exp
(
∆tω×

)
. (7.29)

This means that Γ0 represents the incremental rotation matrix if rotating an arbi-
trary coordinate frame with a rotational rate of −ω for ∆t seconds. There exists a
closed form expression for Γn that can be efficiently numerically evaluated (similar to
Rodrigues’ rotation formula).

Prediction Step

A standard filtering convention is employed: at time step k the a priori state estimate
is represented by x̂−k , the a posteriori state estimate by x̂+

k . Assuming zero-order hold
for the measured quantities f̃k and ω̃k, and neglecting the effect of the incremental
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rotation, equations (7.14)-(7.19) can be discretized to:

r̂−k+1 = r̂+
k + ∆tv̂+

k +
∆t2

2
(Ĉ

+T
k f̂k + g), (7.30)

v̂−k+1 = v̂+
k + ∆t(Ĉ

+T
k f̂k + g), (7.31)

q̂−k+1 = ζ(∆tω̂k)⊗ q̂+
k , (7.32)

p̂−i,k+1 = p̂+
i,k ∀i ∈ {1, . . . , N}, (7.33)

b̂
−
f,k+1 = b̂

+
f,k, (7.34)

b̂
−
ω,k+1 = b̂

+
ω,k, (7.35)

with the bias corrected IMU measurements

f̂k = f̃k − b̂
+
f,k, (7.36)

ω̂k = ω̃k − b̂
+
ω,k. (7.37)

In order to correctly propagate the covariance matrix through the state dynamics,
a set of linear differential equations describing the error dynamics is derived from
(7.14)-(7.19) where all higher order terms were neglected:

δ̇r = δv, (7.38)
˙δv = −CT f×δφ−CT δbf −CTwf , (7.39)
˙δφ = −ω×δφ− δbω −wω , (7.40)

δ̇pi = CTwp,i ∀i ∈ {1, . . . , N}, (7.41)

δ̇bf = wbf , (7.42)

δ̇bω = wbω . (7.43)

For the subsequent discretization, Van Loan’s results [137] and the relation (7.28) can
be applied to get the discrete linearized error dynamics matrix F k and the discrete
process noise covariance matrix Qk (for readability only one foothold estimate is
depicted):

F k =



I ∆tI −∆t2

2
Ĉ

+T
k f̂

×
k 0 −∆t2

2
Ĉ

+T
k 0

0 I −∆tĈ
+T
k f̂

×
k 0 −∆tĈ

+T
k 0

0 0 Γ̂
T
0,k 0 0 −Γ̂

T
1,k

0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


, (7.44)
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∆t3

3
Qf + ∆t5

20
Qbf

∆t2

2
Qf + ∆t4

8
Qbf 0

∆t2

2
Qf + ∆t4

8
Qbf ∆tQf + ∆t3

3
Qbf 0

0 0 ∆tQω + (Γ̂3,k + Γ̂
T
3,k)Qbω

0 0 0

−∆t3

6
Qbf Ĉ

+
k −∆t2

2
Qbf Ĉ

+
k 0

0 0 −QbωΓ̂2,k

0 −∆t3

6
Ĉ

+T
k Qbf 0

0 −∆t2

2
Ĉ

+T
k Qbf 0

0 0 −Γ̂
T
2,kQbω

∆tĈ
+T
k QpĈ

+
k 0 0

0 ∆tQbf 0
0 0 ∆tQbω


= Qk.

By linearly combining two Gaussian distributions the Extended Kalman Filter stipu-
lates the following a priori estimate of the covariance matrix at the timestep k + 1:

P−k+1 = F kP
+
k F

T
k +Qk. (7.45)

Update Step

The measurement residual, also called innovation, is the difference between actual
measurements and their predicted value:

yk :=


s̃1,k − Ĉ

−
k (p̂−1,k − r̂

−
k )

...
s̃N,k − Ĉ

−
k (p̂−N,k − r̂

−
k )

 . (7.46)

Considering the error states and again neglecting all higher order terms, it can be
derived that the errors of the predicted leg kinematics measurements are given by:

si,k − Ĉ
−
k (p̂−i,k − r̂

−
k ) ≈− Ĉ−k δr

−
k + Ĉ

−
k δp

−
i,k

+
(
Ĉ
−
k (p−i,k − r

−
k )
)×
δφ−k . (7.47)

With this the measurement Jacobian Hk can be evaluated:

Hk =
∂yk
∂x̂k

=


−Ĉ−k 0

(
Ĉ
−
k (p̂−1,k − r̂

−
k )
)×

Ĉ
−
k · · · 0 0 0

...
...

...
...

. . .
...

...
...

−Ĉ−k 0
(
Ĉ
−
k (p̂−N,k − r̂

−
k )
)×

0 · · · Ĉ
−
k 0 0

 .
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Stacking the single measurement noise matrices (7.25) returns the total measurement
noise matrix:

Rk =

R1,k

. . .
RN,k

 . (7.48)

Finally the a priori state estimate can be merged with the current measurements,
where the Extended Kalman Filter states the following update equations:

Sk := HkP
−
kH

T
k +Rk, (7.49)

Kk := P−kH
T
k S
−1
k , (7.50)

∆xk := Kkyk, (7.51)

P+
k := (I −KkHk)P−k (7.52)

where Sk represents the innovation covariance,Kk the Kalman gain, ∆xk the result-
ing correction vector and P+

k the a posteriori estimate of the state covariance matrix.
Given ∆xk the state estimate can be updated. Again the orientation state requires
special attention. Although the quaternion is of dimension 4, the extracted rotational
correction ∆φk has only 3 dimensions. It basically represents the 3D rotation vector
that needs to be applied to correct the predicted quaternion:

q̂+
k = ζ(∆φk)⊗ q̂−k . (7.53)

4 Observability Analysis

4.1 Nonlinear Observability Analysis
Analyzing the observability characteristics of the underlying nonlinear system reveals
the theoretical limitations of state estimation and can validate the employed approach.
Based on the paper of Hermann and Krener [57] a nonlinear observability analysis
is performed. In order to remain analytically tractable robocentric coordinates are
introduced. The coordinate transformation is bijective and will thus not change the
observability characteristics. Given the current operating point by

x∗ :=
(
r∗ v∗ q∗ p∗1 · · · p∗N b∗f b∗ω

)
(7.54)

the following coordinate transformation is introduced:

z :=



s1

...
sN
v̄
b̄ω
q̄
b̄f
r̄


=



C(p1 − r)
...

C(pN − r)
Cv

bω − b∗ω
q ⊗ q∗−1

bf − b∗f
Cr


. (7.55)
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The quantities in (7.55) are ordered such that a nice row echelon form results. The
corresponding prediction model (7.14)-(7.19) and measurement equation (7.27) will
be transformed to

ż :=



(ω − b̄ω)×s1 − v̄
...

(ω − b̄ω)×sN − v̄
(ω − b̄ω)×v̄ + f − b̄f + C̄C∗g

0
Ω(ω − b̄ω)q̄

0
(ω − b̄ω)×r̄ + v̄


, (7.56)

s̃i = si i ∈ {1, . . . , N} (7.57)

where all noise terms were disregarded as they have no influence on the observability
and where C̄ and C∗ represent the rotation matrices corresponding to q̄ and to q∗,
respectively.
The observability of the transformed system can now be analyzed. In contrast to the

linear case, Lie-derivatives need to be computed in order to evaluate the observability
matrix. By applying a few row-operations and by directly including the transformed
operating point

z∗ :=
(
s∗1 · · · s∗N C∗v∗ 0 (0 0 0 1) 0 C∗r∗

)
(7.58)

the observability matrix can be converted into a row echelon form. For the sake of
readability the ∗ are dropped again:

O =



I · · · 0 0 0 0 0 0
...

. . .
...

...
...

...
...

...
0 · · · I 0 0 0 0 0

0 · · · 0 −I 0 0 s×1 0
0 · · · 0 0 I −2(Cg)× O1 0
0 · · · 0 0 0 2ω×(Cg)× O2 0

0 · · · 0 0 0 0 ∆s×i,j 0

0 · · · 0 0 0 0 ∆s×i,jω
× 0

0 · · · 0 0 0 0 ∆s×i,jω
×ω× 0

0 · · · 0 0 0 0 O3 0

0 · · · 0 0 0 0
... 0



, (7.59)
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O1 = − s×1 ω
× − 2(Cv)×, (7.60)

O2 = (s×1 ω
× + 3(Cv)×)ω× − ω×(s×1 ω

× + 2(Cv)×)

− (Cg)× − 2f×, (7.61)

O3 = ω×(s×1 ω
×ω× + 5(Cv)×ω× − 4f× − 3(Cg)×)

− (s×1 ω
×ω× + 4(Cv)×ω× − 3f× − 2(Cg)×)ω×

− 4ω×(Cv)ωT , (7.62)

∆si,j := si − sj . (7.63)

A full interpretation of this matrix is not within the scope of this paper. However, two
essential points are emphasized. The four dimensional manifold composed of robot
position and yaw angle (rotation around gravity vector g) is always unobservable.
This can be verified by looking at the tangential space spanned by the matrix

Ū =

[
0 · · · 0 0 0 0 0 I
0 · · · 0 0 0 1

2
(Cg)T 0 0

]T
, (7.64)

0 = OŪ . (7.65)

Infinitesimal errors ∆z = Ūε lying within the subspace of Ū cannot be detected.
Transforming this back to our original coordinates yields the tangential space

U =

[
CT 0 0 CT · · · CT 0 0

gT r× gT v× gTCT gTp×1 · · · gTp×N 0 0

]T
(7.66)

where the upper row corresponds to a 3 dimensional translation of the inertial coordi-
nate frame and where the lower row corresponds to a rotation of the inertial coordinate
frame around the gravity axis g.

The second point is that in some cases, the rank loss associated with the unobserv-
able manifold can increase by up to 5 additional ranks. Table 7.1 depicts some of
the cases. All cases which induce a rank loss require some singularities. It can thus
be stated that statistically almost surely the unobservable space will be limited to
absolute position and yaw angle (except for the case where there is no ground contact
at all). Note that if the bias estimation is excluded, the unobservable subspace will
be invariantly of rank four.

Unfortunately, typical operating points can lie very close to singular cases. The
upper highlighted row in table 7.1 represents the case where the robot has at least 3
non co-linear ground contacts and where the rotation axis is not perpendicular to the
gravity vector. The lower highlighted row represents the corresponding singular case
where ω = 0 inducing a rank loss of 2. This proximity to singular cases can cause bad
convergence quality. For this reason the filter is implemented in such a manner that
the estimation of the accelerometer and gyroscope biases can be enabled or disabled
at runtime. Thereby it is possible to disable the bias estimation for critical tasks.
On the other hand special maneuvers can be derived from the conditions in table 7.1
which can properly estimate the bias states.
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ω f v s1, . . . , sN Rank loss
ω ·Cg 6= 0 * * not co-linear 0
ω ·Cg 6= 0 detO3 6= 0 at least one contact 0
ω ·Cg = 0 * * at least one contact ≥ 1

0 * * at least one contact ≥ 2
0 * * not co-linear 2
0 0 * s1 = . . . = sN 3
0 −1/2Cg * s1 = . . . = sN 5

Table 7.1: Estimation scenarios and corresponding rank loss.

4.2 Observability Analysis of the Extended Kalman Filter
The filter makes use of a linearized and discretized version of the nonlinear system
model:

xk+1 = F kxk +wlin,k, (7.67)
yk = Hkxk + nlin,k, (7.68)

where errors caused by linearization or discretization are incorporated in the noise
terms wlin,k and nlin,k. The corresponding observability analysis will be performed
by applying the concept of local observability matrices [22]: similar to the time-
invariant case the observable subspace can be derived by analyzing the subspace
spanned by the rows of a local observability matrix:

M =


Hk

Hk+1F k
Hk+2F k+1F k

Hk+3F k+2F k+1F k
...

 . (7.69)

The observability characteristics of the discrete linear time-varying system (7.67)-
(7.68) can differ from those of the underlying nonlinear system (7.14)-(7.19),(7.27).
This discrepancy can be caused by linearization/discretization effects as well as by
noise effects. The effect of noise becomes particularly evident when contemplating
the observability characteristics of a corresponding noiseless (ideal) system. For the
presented system the effect of noise renders the yaw angle observable by preventing the
evaluation of the Jacobians F k and Hk around the true state and thereby increasing
the numerical rank of the local observability matrix M. The spurious appearance
of new observable states is strongly objectionable as it results in overconfident state
estimation. The magnitude of this inconsistency depends on the noise ratio, but in
the long run, it will always deteriorate the state estimate.

The above phenomenon has been observed earlier in the context of EKF-SLAM
[61, 75]. Huang et al. [62] introduced the Observability Constrained Extended Kalman
Filter in order to tackle this issue. The approach in this paper goes much along
their idea: the unobservable subspace of the nonlinear system (7.66) should also be
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unobservable in the linearized and discretized system (7.67)-(7.68). Mathematically,
this can be imposed by adding the following constraint:

M U = 0. (7.70)

In order to meet this constraint Huang et al. evaluate the Jacobians at special op-
erating points: instead of using the actual state estimate they use slightly altered
values.

The approach in this paper tackles the observability problem by exploiting the
following observation: the noiseless case does meet the constraint (7.70) because it
perfectly fulfills the prediction equations (7.30)-(7.35) and thus the appropriate terms
are canceled out. For the presented filter it suffices if the following constraints are
introduced (where a ∗ denotes the states or measurements around which Jacobians
are evaluated):

r∗k+1 = r∗k + ∆tv∗k +
∆t2

2
(C∗Tk f∗k,1 + g), (7.71)

v∗k+1 = v∗k + ∆t(C∗Tk f∗k,2 + g), (7.72)

q∗k+1 = ζ(ω∗k)⊗ q∗k, (7.73)

p∗i,k+1 = p∗i,k ∀i ∈ {1, . . . , N}. (7.74)

Both, filter state and IMU measurements, are allowed to differ from their actual
estimated quantities. However, in order to keep the linearization errors small the
linearization point should remain as close as possible to the estimated state. Thus,
given the timestep li of the last touch-down event of foot i, the first-ever available
estimate is chosen for the linearization:

r∗k = r−k , v∗k = v−k , q∗k = q−k , (7.75)

p∗i,k = p−i,li
∀i ∈ {1, . . . , N}. (7.76)

This is in analogy to the First-Estimates Jacobian EKF of Huang et al. [61]. But, in
general, the prediction constraints (7.71)-(7.73) are still not met. For this reason the
additional terms f∗k,1, f

∗
k,2 and ω∗k were introduced. Now, by choosing

f∗k,1 = C∗Tk

(
r∗k+1 − r

∗
k −∆tv∗k

0.5∆t2
− g
)
, (7.77)

f∗k,2 = C∗Tk

(
v∗k+1 − v

∗
k

∆t
− g
)
, (7.78)

ω∗k = ζ−1
(
q∗k+1 ⊗ q

∗−1
k

)
(7.79)

all constraints can be easily met. The above quantities represent the IMU measure-
ments that would arise when considering two subsequent filter prediction states at
timestep k and k + 1. Because the acceleration related measurements can differ if
evaluated based on the position prediction or on the velocity prediction, two terms
were introduced. This permits to keep the computation of the linearization quantities
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Figure 7.2: 2D view of a 5m trotting sequence in simulation. Dashed line
(in the background): ground-truth body trajectory. Darker ellipses (red):
successive position estimates of the robot’s main body. Light grey ellipses:
estimates of the foothold positions. In both cases the ellipses are scaled
depending on the corresponding standard deviation (1σ). The position error
at the end amounts to less than 5% of the traveled distance.

simple and avoids complex optimization algorithms or oscillation provoking bindings
between subsequent linearization points.
Computing the Jacobians F k and Hk using the supplementary linearization quan-

tities and evaluating the corresponding local observability matrix (7.69) yields:

M =



−I 0 s×1,kC
T
k I · · · 0 0 0

...
...

...
...
. . .

...
...

...
−I 0 s×1,kC

T
k 0 · · · I 0 0

0 I (vk + ∆t
2
g)×CTk 0 0 0 −∆t2

2
CTk #

0 0 −g× 0 0 0 1
2

(CTk+1 +CTk ) #

0 0 0 0 0 0 1
2

(CTk+2 −C
T
k ) #

0 0 0 0 0 0 1
2

(CTk+3 −C
T
k+1) #

0 0 0 0 0 0
... #


whereby it is simple to test that the observability constraint (7.70) is satisfied. As
a last side note: similarly to the nonlinear case, observability rank loss will again be
induced when ω ≡ 0 and thus

CTk+2 −C
T
k = 0. (7.80)

5 Results and Discussion

Experiments are performed in simulation and on a real platform, whereby a series-
elastic actuated quadruped is stabilized by a virtual model control approach [63] using
the feedback of the pose estimator. The estimation of accelerometer and gyroscope
biases is always enabled. In a first experiment the filter behavior is evaluated for a
dynamic trotting gait within a simulation environment including realistic noise levels.
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Figure 7.3: Comparison between estimated position and the motion capture
system’s position outputs. All three positions are affected by some drift,
amounting up to 10 % of the traveled distance.

Fig. 7.2 shows results from a 15 s trajectory with a reference forward speed of 0.4m/s.
The uncertainties of the robot and of the foothold positions are represented by the
corresponding 1σ-ellipses. The effects of unobservable absolute position and yaw
angle can clearly be perceived. The leg kinematics measurements directly correlate
the estimate of the main body position and the estimates of the foothold positions
and thereby strongly limit the drift. Moreover, considering the correlations induced
by the prediction model, the filter is able to properly correct the estimated quantities
rendering the inclination angles and the velocities fully observable. Based on the
resulting state estimate the quadruped can stabilize itself in a highly dynamic gait.

The second set of results is collected on a real platform. During the experiment
independent ground truth measurements are provided by an external visual tracking
system. A 60 s long static walking sequence where the robot moves approximately one
meter forward is evaluated. By pushing and tilting the robot external disturbances are
imposed on the slow locomotion pattern. Because the position is not fully observable,
a slight drift occurs for the corresponding estimates (see Fig. 7.3), it can amount
up to roughly 10 % of the traveled distance. Notable sources for the drift are the
inaccurate leg kinematics and the fault-prone contact detection. The slightly longer
actual robot shank explains the shorter estimated traveled distance (x direction). On
the other hand, small perturbations are closely tracked by the filter. This is attested
by very precise velocity estimates yielding RMS error values of less than 0.02 m/s (see
Fig. 7.4). Like the velocity states, the roll and pitch angles are fully observable as
well and exhibit also very small estimation errors (see Fig. 7.5). The drift of the
yaw angle is almost imperceivable. For all estimates the corresponding 3σ covariance-
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Figure 7.4: Comparison between estimated velocity and the motion capture
system’s numerical position derivatives. All three velocity estimates are fully
observable and consequently can be tracked very accurately. The resulting
RMS error values are 0.0111 m/s, 0.0153 m/s and 0.0126 m/s.

hull is plotted. Except for the x-position estimate, where model inaccuracies induce
a significant offset, all estimate errors remain within the covariance-hull and thus
validate the consistency of the presented approach.

6 Conclusion and Future Work

This paper presents a pose estimator for legged robots. It fuses information from leg
kinematics and IMU data, whereby the model equations are kept simple and precise,
and only a minimum of assumptions is introduced (mainly limited foot slippage). The
filter can handle unknown terrain and arbitrary locomotion gaits. Through an observ-
ability analysis, it was shown that for non-degenerate cases only absolute position and
yaw angle are not observable. Consequently, the roll and pitch angles as well as the
robot’s velocity can be accurately tracked, which was confirmed by the experimental
results. Compared to proprioceptive sensor setups only, the obtained state estimate
attains an unpreceded level of precision. The very generic formulation enables the fil-
ter to be extended with further sensory measurements and allows its implementation
on various kinds of legged platforms.

Future work will include handling the unobservable states. Different approaches
like introducing coordinate transformations, partitioning the unobservable manifold
or implementing pseudo-measurements could be evaluated. Fusion with exteroceptive
sensors will also be investigated. More aggressive locomotion needs to be further
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Figure 7.5: Comparison between estimated roll, pitch and yaw angle and
the motion capture system’s orientation outputs. Roll and pitch angle are
fully observable and the filter produces very precise corresponding estimates,
with angular error RMS of less than 0.5 deg (0.0088 rad and 0.0073 rad). The
yaw angle drift is almost unnoticeable.

tested: while it has been validated in simulation, future work will include dynamic
walking on the real quadruped platform.

86



PaperIV
State Estimation for Legged Robots on

Unstable and Slippery Terrain

Michael Bloesch, Christian Gehring, Peter Fankhauser, Marco Hutter, Mark
A. Hoepflinger, Roland Siegwart

Abstract
This paper presents a state estimation approach for legged robots based on
stochastic filtering. The key idea is to extract information from the kine-
matic constraints given through the intermittent contacts with the ground
and to fuse this information with inertial measurements. To this end, we
design an unscented Kalman filter based on a consistent formulation of the
underlying stochastic model. To increase the robustness of the filter, an out-
liers rejection methodology is included into the update step. Furthermore,
we present the nonlinear observability analysis of the system, where, by con-
sidering the special nature of 3D rotations, we obtain a relatively simple form
of the corresponding observability matrix. This yields, that, except for the
global position and the yaw angle, all states are in general observable. This
also holds if only one foot is in contact with the ground. The presented filter
is evaluated on a real quadruped robot trotting over an uneven and slippery
terrain.
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1 Introduction

As the research in legged robotic design and control is resulting in increasingly per-
forming platforms, the aspect of state estimation and perception of such machines
becomes more and more important as well. In order to be able to leave structured
and controlled lab environments and go into more uncertain, rough and difficult ter-
rain, it is indispensable to endow legged robots with precise state estimation and
perception capabilities. Consequently, different research groups explored the integra-
tion of perception devices on legged platforms [91, 123, 128]. In the present paper
however, focus is set on the proper extraction of information contained in the kine-
matics of the robot and obtained from inertial sensors. While for most legged robots
such data is readily available from on-board sensor devices, it also represents a very
valuable source of high-bandwidth information for state estimation. In our opinion,
the exploitation of this information is a prerequisite for fast and elaborate control of
legged robots in unstructured and difficult environments and represents an important
foundation for the inclusion of further sensor modalities like vision or LIDAR.

Roston et al. [116] presented one of the earliest navigation system which extracts
information from leg kinematics. By matching the foot positions between two con-
secutive timesteps they compute the incremental motion of the main body. Further,
they introduce a slip detection method which relies on the invariance of the distance
between feet that are in contact with the ground. Several groups extend this idea, e.g.,
Gassmann et al. [43] introduce fuzzy weights, based on different sensor measurements,
in order to describe how well a certain foot is in contact with the ground and fuse the
resulting legged odometer with GPS data. Along similar lines Lin et al. [87] present
a leg strain-based odometer and use an inertial measurement unit (IMU) for handling
flight phases of their hexapod robot. Again based on contact point matching, Görner
et al. [51] present a legged odometer where joint torques are used to estimate roll and
pitch of a fully actuated hexapod. A common drawback of these methods is that the
associated legged odometer requires at least 3 non-colinear feet in contact with the
ground.
Other approaches range from data-driven methods to model based observers. For

example, using joint encoders, pressure sensors, and IMU data, Reinstein and Hoff-
mann [113] search for significant sensory based indicators in order to determine stride
length. While it requires training of the state estimation for new locomotion sce-
narios, it enables the handling of cases with significant foot slippage. Based on a
two dimensional dynamic model, Lebastard et al. [82] designed a high-order sliding-
mode observer for estimating the 2D posture of their bipedal robot during a walking
gait. Assuming planar spring-mass running, Gur and Saranli [53] propose a generic,
model-based state estimation technique. The major issues of these approaches are
the requirement for a precise dynamic system model and the possible restriction to a
specific type of motion.
The detection of outliers in the context of legged robotic state estimation has only

scarcely been studied. Most approaches use some additional force sensing on the foot
level and compare desired and actual forces in order to detect slippage [78]. More
recently, Okita and Sommer [106] considered slip events being anomalies which can
be detected by employing appropriate filtering methods. In a simplified 2D stick-
slip experiment they showed how to detect slippage using smoothed innovation in
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an Unscented Kalman filter (UKF) setup. Detecting anomalies or outliers in general
filtering frameworks has been very widely analyzed. Ting et al. [133] as well as
Agamennoni et al. [1] present outlier robust Kalman filtering by introducing more
flexible noise models which allow the co-estimation of update noise parameters. Others
investigated the use of non-Gaussian distributions which are less susceptible to outliers
[127, 140].
The present paper is an extension to our prior work [10]. While following a similar

overall approach, in the sense that accurate estimates of the full body pose are ob-
tained by fusing information from an on-board IMU and kinematic measurements, the
presented approach extends and improves different aspects of the previous method-
ology. By deriving velocity constraints from the feet that are in contact with the
ground, simple measurement equations are obtained which reduce the size of the
state and which are more suitable for slippage detection. Further, a robot-centric
formulation of the state space is chosen in order to appropriately partition the filter
states and avoid problems with unobservable states.
A thorough nonlinear observability analysis is provided for the presented filter. A

novel method for handling rotational states is presented which significantly simplifies
the analytical evaluation of the unobservable subspace and corresponding rank de-
ficiency. Based on the nonlinear observability analysis of Hermann and Krener [57]
we present a method for handling states which are elements of the special orthogonal
group SO(3) by exploiting the local homeomorphism to 3D real vector space. With
this we show, that up to some singular robot motions, all states of the robotic plat-
form are observable except for the yaw angle around the gravity axis and the global
position (which are not essential for the local control of the robot). This also holds for
the case where only one leg is in contact with the ground and thus the state estimator
can be applied for dynamic locomotion as well.
The presented filter is implemented and evaluated on our quadruped robot Star-

lETH [63]. We show results from experiments where the robot is trotting over uneven
and labile terrain with occurring foot slippage. For all experiments the control of the
robot fully relies on the estimates from the filter. No previous information on the
shape of the terrain is required and the external motion capture system is only used
for groundtruth comparison.
The paper is structured as follows. In Section 2 we start with some brief prereq-

uisites. Subsequently, Section 3 discusses the specific filter setup and the outliers
detection. In Section 4 the observability analysis is performed and in Section 5 the
experimental setup and obtained results are presented.

2 Prerequisites

For better readability we give a short overview on the employed notations and con-
ventions. The coordinates, expressed in a frame A, of a vector from a point P to a
point Q are denoted by ArPQ. If B is a second coordinate frame, then CBA maps
the coordinates expressed in A to the corresponding coordinates in B. The rotation
between both frames is generally parametrized by the unit quaternion qBA. Through-
out the paper, we add a subscript k to a quantity v, if we want to talk about its value
at a time tk, i.e., vk = v(tk). Two coordinate frames are of interest: the world fixed
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coordinate frame W and the main body frame B.
In a filter setup, mathematical operations are employed which are not defined for

3D rotations (especially addition and differentiation). In order to handle this issue we
exploit the homeomorphism between the 3D manifold SO(3) and 3D vector spaces.
For a more thorough discussion on the topic please refer to the work of Hertzberg
et al. [59]. In short we use the exponential mapping, q = exp(θ), between a 3D
rotation vector, θ ∈ R3, and the corresponding quaternion q ∈ SO(3). This mapping
is surjective and thus an inverse exists, θ = log(q), which is called the logarithm.
These maps are used for introducing the boxplus and boxminus operators:

� :SO(3)× R3 → SO(3), (8.1)
q,θ 7→ exp(θ)⊗ q,

� :SO(3)× SO(3)→ R3, (8.2)

q1, q2 7→ log(q1 ⊗ q
−1
2 ),

where the boxminus operator expresses the difference between two quaternions by
returning the error rotation vector between both, and where the boxplus operator
applies a small rotation, expressed by a rotation vector, onto a unit quaternion.

Based on the above definitions we introduce special differentials on unit quaternions.
Given a function q : x 7→ q(x) which maps from some real vector space RN to the set
of unit quaternions, we define the differential(

∂q

∂x

)
i

:= lim
ε→0

q(x+ εei) � q(x)

ε
, i = 1, . . . , N, (8.3)

and if f : q 7→ f(q) is a function which maps from the set of unit quaternions to some
real vector space we define(

∂f

∂q

)
i

:= lim
ε→0

f(q � εei)− f(q)

ε
, i = 1, . . . , 3. (8.4)

Let C(·) be the mapping between unit quaternions and corresponding rotation ma-
trices, then following identities hold:

∂/∂q (C(q)v) = − (C(q)v)× , (8.5)

∂/∂q
(
q−1

)
= −CT (q), (8.6)

∂/∂q1 (q1 ⊗ q2) = I, (8.7)
∂/∂q2 (q1 ⊗ q2) = C(q1), (8.8)

∂/∂q (log(q)) = Γ−1
1 (log(q)), (8.9)

∂/∂t (qBA(t)) = BωBA(t), (8.10)

where the subscript × is used to denote the skew-symmetric matrix of a vector and
where ωBA is the rotational rate vector of frame B with respect to frame A. We

also made use of the auxiliary quantity Γn(θ) :=
∑∞
i=0

θ×
i

(i+n)!
. It draws on the series
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expansion of the matrix exponential and, consequently, Γ0(θ) represents the rotation
matrix corresponding to the rotation vector θ. There exists a closed form expression
for Γn that can be efficiently numerically evaluated (similar to Rodrigues’ rotation
formula). The above special differentials strongly simplify the handling of analytical
Jacobians, especially in the context of nonlinear observability analysis including rota-
tional quantities. It can be proven that the chain rule is valid. Please note that the
formulation of the identities can vary slightly depending on the employed conventions.

3 Filter Setup

3.1 Filter States and Measurement Models
The overall structure of a filter strongly depends on the choice of the underlying filter
states. In our case we chose a set of robot-centric states in order to describe the motion
of the robot’s main body. The state includes the position of the world frame with
respect to the body frame, BrBW , the negative velocity of the main body expressed
in the frame B, −BvB , the attitude of the main body parametrized by qWB , as well
as the bias terms of the accelerometer and gyroscope, Bbf and Bbω . In short, the
state x will be defined as

x :=
(
r,v, q, c,d

)
(8.11)

:=
(
BrBW ,−BvB , qWB ,Bbf ,Bbω

)
. (8.12)

Building on this, process and measurement equations need to be formulated which
properly capture the behavior and uncertainties of the underlying system. The choice
of the models is a trade-off between simplicity and accuracy, whereby all stochastic
quantities will be modeled as continuous white Gaussian noise or as discrete Gaussian
noise processes. This is in accord with the prerequisites of most filtering methods and
deviation from the real system can be handled to a certain extent by increasing the
corresponding covariance matrices.
The proper acceleration measurement f̃ and the rotational rate measurement ω̃ of

the IMU are assumed to be affected by additive white Gaussian noise, nf and nω , as
well as by the additive biases c and d:

f̃ = f + c+ nf , (8.13)
ω̃ = ω + d+ nω . (8.14)

Both quantities do not directly depend on the states of the filter but rather measure
the corresponding rates. Considering

f = C(qBW ) (W v̇B − g) , (8.15)
ω = q̇BW , (8.16)

where g is the gravity vector in W , the IMU measurements will later be directly
included into the prediction step of the filter. For simplicity, we assume that all
inertial measurements are obtained with respect to the body frame B.
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Encoders in each of the robot’s joints provide access to the corresponding angu-
lar measurements α̃ and their derivatives ˙̃α. Considering the forward kinematics
BrBFi (α̃) = si(α̃), we can compute the absolute location of the ith foot Fi:

W rWFi = W rWB +CWBBrBFi (α̃) (8.17)
= C(q)(si(α̃)− r). (8.18)

If foot i is in contact with the ground and assuming that it remains stationary with
respect to the world frameW , the differentiation of the above kinematic identity yields

0 =− v + ω×si(α̃) + Ji(α̃) ˙̃α+ ns, (8.19)

where Ji(α̃) = ∂
∂α̃
si(α̃) is the Jacobian of the forward kinematics. The discrete

Gaussian noise term ns ∼ N (0,Rs) incorporates different sources of noise, including
errors from the encoder measurements as well as imprecise kinematic modeling. This
is mainly done because the noise on the encoder measurements causes only a minor
part of the full measurement noise of (8.19), where modeling errors and foot contact
effects are more important. In order to avoid the complex modeling of such effects,
the covariance matrix Rs incorporates all stochastic errors together and represents
one of the main tuning parameter of the filter.
As mentioned earlier, the IMU measurements are linked to the rates of the filter

states and are thus included into the continuous time differential equations of the
prediction model. Using equation (8.15) and (8.16) and carefully evaluating the total
derivatives we can write:

ṙ =− (ω̃ − d− nω)×r + v, (8.20)

v̇ =− (ω̃ − d− nω)×v − f̃ + c+ nf −CT (q)g, (8.21)
q̇ = C(q)(ω̃ − d− nω), (8.22)
ċ = nc, (8.23)

ḋ = nd. (8.24)

The additional continuous white Gaussian noise processes nc and nd model a certain
drift affecting the bias terms. For all white Gaussian noise processes, the correspond-
ing covariance parameters, Rf , Rω , Rc and Rd describe the magnitude of the noise.
The covariance parameters can be identified by considering the Allan plots of the IMU
measurements [32].

3.2 Unscented Kalman Filter
The different measurements are fused within an unscented Kalman filter framework.
While the resulting computational costs are slightly higher than for a corresponding
extended Kalman filter, the UKF is in general more robust against nonlinearities.
However, for the case at hand, our choice was mainly motivated by the simplicity of
handling correlated noise between prediction and correction step. The correlation can
best be seen by considering the discretized filter equations.
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Discretization of the stochastic differential equations (SDE) (8.20)-(8.24) is a diffi-
cult problem and is, in general, not analytically solvable without approximation. The
most common approach is to linearize the equations and to integrate the linear SDE.
Here, we discretize the deterministic and stochastic part of the SDE separately. This
allows the analytical solution of the corresponding system of deterministic differential
equations and thus keeps our rotational state in the 3D manifold SO(3). Using the
abbreviation ∆tk = tk − tk−1 and applying the method of variation of parameters
we obtain:

rk = ΓT0,k

(
rk−1 + ∆tkvk−1 −

∆t2k
2

(
2Γ2,k(f̃k

− ck−1 − nf,k) +C(qk−1)g
))

+ nr,k, (8.25)

vk = ΓT0,k

(
vk−1 −∆tk

(
Γ1,k(f̃k − ck−1

− nf,k) +C(qk−1)g
))

, (8.26)

qk = qk−1 ⊗ exp
(

∆tk(ω̃k − dk−1 − nω,k)
)
, (8.27)

ck = ck−1 + ∆tknc,k, (8.28)
dk = dk−1 + ∆tknd,k, (8.29)

with

Γn,k = Γn
(

∆tk(ω̃k − dk−1 − nω,k)
)
. (8.30)

The various discretized noise quantities are distributed with N (0,R/∆tk) where R is
the corresponding continuous covariance parameter. The new discrete Gaussian noise
term nr,k is used to model errors that occurred during discretization.

While equations (8.25)-(8.29) are used for the prediction of the filter, the update
step is based on the kinematic identity (8.19). This is applied to every leg i that is in
contact:

0 =− vk + (ω̃k − dk−1 − nω,k)×si(α̃k)

+ Ji(α̃k) ˙̃αk + ns,k. (8.31)

The recurrence of the gyroscope measurement noise nω,k in the update equation
correlates the noise between prediction and update step. In an UKF setup this can
be handled very easily. The basic outline of the filter looks as follows. Given the a-
posteriori estimate xk−1 and its covariance matrix P k−1 at time tk−1, sigma points
are sampled in such a manner that they represent the joint distribution of the state
estimate and all noise quantities. This results in a set of sigma points of the following
form:

X ik−1 =
(
xik−1,n

i
r,k,n

i
f,k,n

i
ω,k,n

i
c,k,n

i
d,k,n

i
s,k

)
. (8.32)
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Whereby using the same sampled rotational rate noise during prediction and update
automatically handles the stochastic correlation between both steps. For a more de-
tailed discussion on the employed UKF please refer to [74]. Also, please note that
throughout the filter the boxplus (8.1) and boxminus (8.2) operators have to be em-
ployed where appropriate.

3.3 Outliers Detection

Kalman filters have the drawback that they can be very sensitive to outliers. While
outliers are often caused by non-modeled effects or other anomalies, their appear-
ance is in most cases only difficultly predictable and the corresponding observations
draw generally from a significantly different probability distribution. The sensitivity
is caused by the light-tailed underlying Gaussian distribution which leads to the min-
imization of squared error terms. In order to handle outliers caused by foot slippage
we propose to employ a simple thresholding based on the Mahalanobis distance of the
innovation. This employs the predicted covariance of the innovation and classifies a
measurement as an outlier if the Mahalanobis distance exceeds a certain threshold.
This has the drawback that the threshold needs to be hand-tuned, however, if it is
appropriately chosen this leads to near-optimal filtering [133].

Let yi,k be the innovation induced by the kinematic constraints of the ith leg
at timestep k (8.31) and Si,k the corresponding predicted covariance matrix. We
classify the observation as an outlier if the Mahalanobis distance is larger than a
certain threshold parameter p, i.e., if yTi,kS

−1
i,kyi,k > p is met. Under the assumption

of Gaussian distribution the left hand side of the inequality will be χ2 distributed with
3 degrees of freedom. In our case the threshold p = 16.27 was chosen in order to obtain
a rejection rate of 0.1% for inliers. If the above threshold is exceeded, the kinematic
constraints are ignored and not taken into account during the update step (like for
all legs that are not currently in contact with the ground). An analogous approach
was employed by Mirzaei et al. [96] for rejecting visual feature measurements within
a Kalman filter based IMU-camera calibration.

4 Nonlinear Observability Analysis

Similarly to Hermann and Krener [57], we employ the notion of locally weakly ob-
servability which qualifies whether each point of a system can be instantaneously
distinguished from its neighbors. As a slight technical difference we consider our sys-
tem to have no external control input and interpret the rotational rate as well as the
proper acceleration as system parameters. The subsequent nonlinear observability
analysis should reflect the observability characteristics of the system in dependence of
those parameters.

Lets consider the following state-space representation of a smooth nonlinear system:

ẋ =f(x,u), (8.33)
z =h(x), (8.34)
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with process function f and measurement function h. For a given state x and input
parameters u we can now evaluate the observability matrix

O(x,u) =


∇L0

fh(x)

∇L1
fh(x)

...

 , (8.35)

based on the gradient operator ∇ and Lie derivatives [57]. Informally it describes the
effect of infinitesimal state perturbations δx on the instantaneous measurement z and
its derivatives:

δzδż...
 = O(x,u)δx. (8.36)

Perturbations δx which do not cause any change in the corresponding measurements
are intrinsically not observable. Consequently, the nullspace of the observability ma-
trix O(x,u) is equivalent to the unobservable subspace of the system at a state x
and for a given input parameter u.

The novelty in the presented nonlinear observability analysis is the seamless in-
tegration of rotational states into the observability analysis by means of the special
derivatives introduced in equations (8.3) and (8.4). Using the identities (8.5)-(8.10)
and applying the chain rule, the Lie derivatives can be easily evaluated, whereby
the entries in the observability matrix corresponding to 3D rotational quantities will
exhibit the proper number of dimension (which should be 3) and accurately reflect
the observability characteristics of the system. This is best explained at hand of a
concrete example: for the filter presented in this paper the sequence of Lie derivatives
and corresponding gradients together with the observability matrix will be evaluated
for the case of a single foot contact with the ground. For the sake of readability
the indexes are omitted where possible and the noise terms are left out (they do not
influence the observability analysis). In short we will also use s̃ = s(α̃), ω̂ = ω̃ − d,
f̂ = f̃ − c and C = C(q). The process function (equations (8.20)-(8.24)) can be
written as:

f(x,u) =


−ω̂×r + v

−ω̂×v − f̂ −CT g
Cω̂

0
0

 . (8.37)
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The sequence of Lie derivatives and corresponding gradients can be evaluated to:

L0
fh(x) =− v + (ω̃ − d)×s̃+ J(α̃) ˙̃α, (8.38)

∇L0
fh(x) =

[
0 −I 0 0 s̃×

]
, (8.39)

L1
fh(x) = ω̂×v + f̂ +CT g, (8.40)

∇L1
fh(x) =

[
0 ω̂× CT g× −I v×

]
, (8.41)

...

Lnfh(x) = − ω̂×
n
v − ω̂×

n−1
f̂ − nω̂×

n−1
CT g, (8.42)

∇Lnfh(x) =
[
0 −ω̂×

n
−nω̂×

n−1
CT g× ω̂×

n−1

∂Lnfh(x)/∂d
]
. (8.43)

With this, the Observability matrix (8.35) can be constructed and simplified in
order to obtain the following term:

O(x,u) =

0 −I 0 0 s̃×

0 0 CT g× −I v× + ω̂×s̃×

0 0 −ω̂×CT g× 0 (ω̂×v + f̂ + 2CT g)×

0 0 0 0 (ω̂×v + f̂ +CT g)×ω̂×

0 0 0 0 (ω̂×v + f̂ +CT g)×ω̂×2

0 0 0 0 (ω̂×g)×

0 0 0 0 (ω̂×2g)×


In this example, the input parameter u is given by the rotational rate ω̂ and the
proper acceleration f̂ which describe the motion of the robot main body. Our goal is
to obtain the observability characteristic in dependence of those parameters, rather
than asking the question whether there exists some input parameter which make our
system observable.

As mentioned above, the nullspace of the observability matrix corresponds to the
directions of disturbances which can not be observed at the output of the system. Up
to a few singular cases, the rank of the nullspace is 4 and is spanned by the following
matrix:

U(x,u) =

[
I 0 0 0 0
0 0 gT 0 0

]T
, (8.44)

where the first row describes unobservable disturbances on the robot position and
where the second row represents rotation around the gravity axis (yaw angle). The
emergence of those unobservable modes could have been predicted as we do not use
any global positioning system. However, there are singular cases where more direc-
tions become unobservable. Those can also be evaluated analytically based on the
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ω̂ = 0 ω̂ ⊥ CT g ω̂ ‖ CT g Rank deficiency

x x x 5 (f̂ = −2CT g)

3 (f̂ 6= −2CT g)
x 1

x 1
0

Table 8.1: Rank deficiency in dependence of input parameters.

Figure 8.1: Trotting sequence over uneven and slippery terrain. The robot
requires about 15 s for traversing the 3m long area covered with loose wooden
planks.

observability matrix. In the scope of this paper the singular cases are listed in table
8.1 together with a brief discussion (if a cross is set the above equality is fulfilled).
As can be observed, the rank loss depends on the relation between gravity vector and
rotational rate vector. If there is no rotational motion in the system, the filter can
not distinguish between inclination angles (pitch and roll) and a bias on the proper
acceleration measurement. Furthermore it will not be able to estimate the gyroscope
bias around the gravity and we thus get a total rank deficiency of 3 for this case.
In a less intuitive way the system loses two further ranks if it does not exhibit

any rotational motion and, at the same time, accelerates with −g in the world frame
(f̂ = −2CT g). This represents a rather unrealistic situation our robot might find
itself in. In the general case the system will rarely be perfectly at a singular point
and thus the corresponding filter should be able to observe all state except for the
globally unobservable position and yaw angle. Also, please remember that the above
table describes the case where only a single foot is in contact with the ground and
that the rank deficiency tends to be smaller if more contacts are available.

5 Results and Discussion

The presented filter was implemented and evaluated on our quadruped platform Star-
lETH [63]. For the experiments the output of the state estimation was used to stabilize
and control the robot. We illustrate the filter performance at hand of an experiment
where the robot trots over uneven and highly slippery terrain. Figure 8.1 shows a
sequence of images depicting the trajectory of the robot. It covers a distance of
approximately 3m in roughly 15 s.
In Figure 8.2 a detailed sequence of snapshots shows a slip situation towards the

end of the experiment (around the last image of Figure 8.1). For this sequence we
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Figure 8.2: A sequence of snapshots illustrating the substantial slip that is
occurring during the experiment. If looking at the plank beneath the left
foot one can observe that it is moved by approximately 10 cm. Time between
snapshots: 32ms.

20 20.5 21 21.5

0

1

time [s]

 

 

Contact Sensor

Outlier Detection

Figure 8.3: Binary outputs from contact sensor and outlier detection of the
left hind leg. Light gray: flag of contact sensor (1 = contact). Dark grey:
outlier detection (only detect outliers if the contact sensor flag is true). Three
stance phases are displayed. In the first stance phase slippage is detected
which corresponding to the slip event illustrated in Figure 8.2.

plotted the results of the outlier detection algorithm of Section 3.3 in Figure 8.3. The
three distinct blocks in the figure correspond to the stance phases of three subsequent
steps of the left hind leg. While the light gray surface represents the contact detected
by the contact sensor, the dark gray surfaces represent the detection of outliers. The
first block corresponds to the slip situation of Figure 8.2, where the dark gray phase
towards the beginning of the stance phase represents detected slip (the contact is also
lost for a very short instant). There are a few unexpected outlier detections throughout
the dataset. They often occur at the beginning or towards the end of stance phase
where the foot is not well in contact with the ground and where oscillations can occur
due to the compliance of the foot. In contrast to our previous work [10], where an
estimate of the foothold is initialized at each new step, the present filter is much less
susceptible to fast switching foot contacts.
Figure 8.4 and Figure 8.5 show the resulting estimates for the attitude and the

velocity of the robot main body. From the point of view of the local controller those
quantities are of high importance in order to enable the stabilization of the main body.
As pointed out in Section 4 the angle around the gravity axis (yaw) is not observable
and consequently the filter estimate will drift away. However, for the remaining two
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Figure 8.4: Roll, pitch, and yaw angles of the main body for the sequence
depicted in Figure 8.1. Red: estimated values. Red dashes: 3σ covariance
bounds. Blue: motion capture data. The RMS values for the roll, pitch, and
yaw estimates are: 0.0086 rad, 0.0056 rad, 0.0693 rad.

degrees of freedom (pitch and roll) very precise results are obtained with RMS values
below 0.01 rad if compared to the motion capture data. The plotted 3σ covariance
bounds of the attitude estimates roughly captures the uncertainty of the system and
the motion capture attitude remains between the bounds for most of the time (there
are some outliers in the motion capture data).

The velocity estimates are more difficult to evaluate due to noisy numerical differ-
entials of the motion capture system. Still, one can observe a nice overlay between
both trajectories. Here, all three quantities are observable and after a very quick ini-
tial convergence the covariance estimates remain more or less constant. The obtained
RMS values are around 0.05m/s, whereas a large amount is caused by the noisy mo-
tion capture estimates. If compared to the filter presented in [10] the RMS errors for
the velocity estimates as well as for the roll and pitch angles are roughly halved for
this experiment (for pitch there is even a factor 10). This comes at costs of accu-
racy on the position and yaw angle. However, as mentioned earlier those quantities
are of secondary interest and their estimation could be improved by integrating more
suitable sensor modalities like vision or LIDAR.
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Figure 8.5: Velocity estimates of the main body for the sequence depicted
in Figure 8.1. Red: estimated velocity values. Red dashes: 3σ covariance
bounds. Blue: motion capture data. The RMS values for the three velocity
estimates are: 0.0546m/s, 0.0406m/s, 0.0348m/s.

6 Conclusion and Future Work

In this paper we presented a novel state estimation approach for legged robots based
on kinematic velocity measurements at the ground contacts. The obtained information
is fused with measurements from an on-board IMU by means of an unscented Kalman
filter. The provided nonlinear observability analysis shows that, for general robot
motions, all states are observable except for the global position and the yaw angle.
This results in a filter which accurately estimates the inclination angles (roll and pitch)
as well as the velocities of the robot. It also avoids unnecessary assumptions on the
shape of the floor or on the employed gait pattern and is robust to a certain amount
of foot slippage. Implemented on our legged robot StarlETH, it enables dynamic
locomotion over uneven and labile terrain.
While the position and the yaw angle of the robot are quantities which are less

critical for a local stabilization of force controlled legged robots, they are important
for global navigation. Future work will thus include evaluating different methods for
integrating further sensor modalities which are more suited for navigation and terrain
perception.
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1 Introduction

The use of cameras as light-weight egomotion sensors has been studied very broadly
in the past few decades. The main advantage of a camera is that rich information can
be obtained at relatively low power consumption. However, this information richness
also poses the main difficulty, as the vast amount of information needs to be handled
properly before the egomotion can be inferred.

Within the computer vision community, Davison [28] presented one of the first
algorithms that is able to accurately track the 3D pose of a monocular camera. His
idea was to design an Extended Kalman Filter (EKF) which simultaneously tracks
the pose of the camera as well as the 3D position of points of interest, whereby the
reprojection errors of the perceived features serve as innovation term. In the following,
different authors presented adaptations in order to tackle different weaknesses of this
approach, such as feature initialization [98] and limited map size [26].
Compared to the above mentioned non-delayed approaches, delayed methods also

take past robot poses and measurements into account. The delayed approaches have
become popular with the work of Klein and Murray [81]: Based on a subset of camera
frames (keyframes) a bundle adjustment algorithm [135] optimizes a map, while the
actual pose of the camera is tracked by minimizing the reprojection error between map
and camera. Strasdat et al. [130] argued that in terms of accuracy and computational
costs it would be more beneficial to increase the number of tracked features rather than
the number of frames they are tracked in. In the following, the limits of vision-only
state estimation and mapping where pushed even further by various other elaborate
delayed frameworks [76, 95, 131].

In parallel to the “vision-only” based approaches, other researchers started including
inertial measurements into their estimation algorithms. Relying on a known visual
pattern, Mirzaei and Roumeliotis [96] showed one of the first online methods for ex-
trinsic Inertial Measurement Unit (IMU)-camera calibration and IMU bias estimation.
Later, Kelly and Sukhatme [79], Jones and Soatto [73], as well as Weiss et al. [139] pre-
sented different frameworks for visual-inertial navigation including the co-estimation
of calibration parameters. All of these authors emphasize the importance of analyz-
ing the observability characteristics of the underlying system and discuss the related
issues. Recently, Leutenegger et al. [83] presented a delayed framework in which the
authors included visual and inertial error terms into a extended nonlinear optimiza-
tion in order to estimate the motion of a stereo camera as well as the landmarks in
the map.
Efforts have also been done in order to find other visual error terms for combining

the image information with inertial measurements. For example, Diel et al. [29] di-
rectly use the epipolar constraint between two matching features in subsequent frames
as innovation term for their Kalman filter and thereby fuse the visual information with
the accelerometer measurements (the gyroscopes and attitude are handled separately).
By making the assumption that all features lie on a single plane, Omari et al. [107]
derive a visual error term for optical flow measurements and combine it with inertial
measurements by means of an UKF. Both approaches have in common that the 3D
position of the features are not included into the state of the filter which significantly
reduces the computational costs. Similarly, Mourikis and Roumeliotis [99] also exclude
the position of the features from the states of their filter and introduce a measurement
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model in order to account for the information when a feature is measured in multiple
camera frames.

The primary goal of the present work is to propose a simple and reliable framework
for the estimation of quantities which are critical for the safe operation of autonomous
robots. We want to emphasize that we do not focus on achieving high-precision
position and attitude accuracy, rather, our goal is to achieve a robust estimation of
the velocity and inclination angle of the robot. This is especially important for systems
which are controlled through dynamic motion, such as legged robots or quadrocopters.
For this reason, we introduce visual error term which can directly extract information
from a single feature match and does not rely on repeated measurements of the same
feature. The above mentioned work of Diel et al. [29] is the closest to the present
approach. In contrast to it, we propose the use of a different visual error term and
co-estimate the inverse scene depth. By means of an UKF, we carry out a tight
fusion of the visual and inertial measurements, whereby gyroscope and accelerometer
measurement are included during the prediction step and the visual error terms serve
as innovation during the update step. The presented approach is supported by a full
nonlinear observability analysis and evaluated on data from real experiments.

The remainder of this paper is structured as follows: After introducing the most
important notations and conventions in section 2, we describe the structure of the
filter including the prediction and update steps in section 3. In section 4 we show
and discuss the result of the nonlinear observability analysis. The experimental setup
is described in section 5. Finally, we discuss the obtained results in section 6 and
conclude with section 7.

2 Prerequisites

For better readability we give a short overview on the employed notations and con-
ventions. The coordinates, expressed in a frame A, of a vector from a point P to a
point Q are denoted by ArPQ. If B is a second coordinate frame, then CBA maps
the coordinates expressed in A to the corresponding coordinates in B. The rotation
between both frames is generally parametrized by the unit quaternion qBA, with the
corresponding mapping C : qBA 7→ CBA. Throughout the paper, we add a subscript
k to a quantity v, if we want to talk about its value at a time tk, i.e., vk = v(tk). Two
coordinate frames are of interest: the world fixed coordinate frame W and the sensor
frame B. For the sake of simplicity the following derivation assumes that the camera
and the IMU coordinate frames are aligned with B.

We handle rotations as elements of SO(3), where, together with the exponential
and logarithm map, difference and derivatives are defined on R3. This is of high
importance for the setup of the filter as well as for the corresponding observability
analysis. Please note, that for this reason, also derivatives containing quaternions
will be three dimensional in the corresponding directions, e.g. q̇ = −ω ∈ R3. More
information on this can be found in our previous work [11].
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3 Filter Setup

3.1 Optical Flow and Visual Error Term
Based on the assumption of a static scene the following identity can be directly derived
using kinematics relations only:

0 =BvB + (Bw
×
Bmi + ui)λi +miλ̇i, (9.1)

where BvB and BwB are the robot-centric velocity and rotational rate. The quantities
mi, ui and λi are related to the optical flow of a static feature i and represent the
unit length bearing vector, the optical flow vector, and the depth of the feature. The
challenge here is to find a way to properly extract information out of the equation
without having to co-estimate the depth (and it’s derivative) for each single optical
flow measurement. A very common approach is to employ the continuous epipolar
constraint which results from the above equation if left-multiplied bymT

i (Bw
×
Bmi +

ui)
×:

0 =mT
i (Bw

×
Bmi + ui)

×
BvB . (9.2)

This corresponds to an analytical elimination of the depth and its derivative. The
problem is that this reduction does not consider the stochastic nature of the system
and draws the estimation process towards singularities, e.g. zero velocity, which don’t
correspond to the maximum likelihood estimate (which is in general a desirable target
for estimation). As a trade-off we propose to eliminate the derivative of the depth
analytically by left-multiplying the equation by a 2× 3 matrix M i which fulfills:

M imi = 0 ∧ M iM
T
i = I2. (9.3)

Additionally we make use of an inverse-depth parametrization, αi = 1/λi, and obtain

0 =M i

(
BvBαi + (Bw

×
Bmi + ui)

)
. (9.4)

In comparison to the continuous epipolar constraint, this term retains more of the
original constraint and is less susceptible to singularities. However, it also still contains
one additional unknown, αi, per visual feature. In order to cope with this, we will
assume that the inverse depths αi exhibit a Gaussian distribution around a mean α
with standard deviation σα. The new parameter α corresponds to the inverse scene
depth and will be co-estimated in the estimation process.

3.2 Filter States and Prediction Equations
The states of a filter have to be selected such that appropriate prediction and mea-
surement equation can be derived. We define the following filter states:

x :=
(
r,v, q, c,d, α

)
, (9.5)

:=
(
W rWB ,BvB , qWB ,Bbf ,Bbω , α

)
, (9.6)
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where r is the world position of the sensor, v represents its robot-centric velocity, q
parametrizes the rotation between the sensor and the world coordinate frame, and c
and d are the biases of the accelerometer and gyroscope. The additional state α is the
inverse scene depth which is used for incorporating the optical flow measurements.
The advantage of the robot-centric choice of states is that we thereby partition the
state into non-observable states (absolute position and yaw) and observable states and
thus avoid numerical problems related to non-observable states. A small drawback is
that the noise of the gyroscope propagates onto the velocity state as well. Since, as
will be shown later, the robot-centric velocity is fully observable, the additional noise
can be compensated by the filter.
Analogous to other fusion algorithms including inertial measurements, we embed

the proper acceleration measurement f̃ and the rotational rate measurement ω̃ of
the IMU directly into the prediction step of the proposed filter. Assuming that both
measurements are affected by white Gaussian noise, wf and wω , and additive bias
terms, c and d, we can write down

f̃ = f + c+wf , (9.7)
ω̃ = ω + d+wω . (9.8)

Both quantities are related to the kinematics of the sensor by

f = C(qBW ) (W v̇B − g) , (9.9)
ω =− q̇BW , (9.10)

where g is the gravity vector inW . By evaluating the total derivative of the filter states
and combining it with the inertial measurements we obtain the following continuous
time differential equations:

ṙ = C(q)v +wr, (9.11)

v̇ =− (ω̃ − d−wω)×v + f̃ − c−wf +CT (q)g, (9.12)
q̇ = C(q)(ω̃ − d−wω), (9.13)
ċ = wc, (9.14)

ḋ = wd, (9.15)
α̇ = wα. (9.16)

The additional continuous white Gaussian noise processes wc and wd model a certain
drift affecting the bias terms. wα is included in order to handle varying inverse scene
depths and wr is included for being able to excite the full filter state and for modeling
errors caused by the subsequent discretization of the states. For all white Gaussian
noise processes, the corresponding covariance parameters, Rr, Rf , Rω , Rc, Rd, and
Rα describe the magnitude of the noise. Except for Rr and Rα which are tuning
parameters, all covariance parameters can be identified by considering the Allan plots
of the IMU measurements [32].
The discretization is based on a simple Euler forward integration scheme. Please

note that for the rotational states, the step forward can be taken on the corresponding
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sigma algebra and then be mapped back onto SO(3). This corresponds to:

q(tk) = exp (∆tkq̇(tk−1))⊗ q(tk−1), (9.17)

with

∆tk = tk − tk−1. (9.18)

This leads to:

rk = rk−1 + ∆tk
(
Ck−1vk−1 +wr,k

)
, (9.19)

vk =
(
I −∆tk

(
ω̃k − dk−1 −wω,k

)×)
vk−1

+ ∆tk

(
f̃k − ck−1 −wf,k +CTk−1g

)
, (9.20)

qk = exp
(

∆tkCk−1(ω̃k − dk−1 −wω,k)
)
⊗ qk−1, (9.21)

ck = ck−1 + ∆tkwc,k, (9.22)
dk = dk−1 + ∆tkwd,k, (9.23)
αk = αk−1 + ∆tkwα,k. (9.24)

3.3 Measurement Equations
The measurement equations are directly based on the findings of section 3.1. For
each available optical flow measurement i we directly define the corresponding 2D
innovation term for the filter:

yi =M i

(
v αi + (ω×mi + ui)

)
. (9.25)

As discussed above, we introduced the inverse scene depth as a filter state and thus
model deviations of the single inverse depths αi as measurement noise:

αi = α+ nα,i, nα,i ∼ N (0, σ2
α). (9.26)

Furthermore, we also have to model noise on the bearing vectorsmi and optical flow
vectors ui. For typical scenarios the major part of the uncertainties originate through
ui, which lies in the orthogonal subspace of mi. Thus, we can introduce an additive
lumped noise term on ui, whereby it is sufficient to excite directions orthogonal to
mi only. This can be achieved by means of the previously defined matrix M i (nu is
two dimensional):

ũi = ui −MT
i nu, (9.27)

nu ∼ (0,Ru). (9.28)

With this the innovation term becomes:

yi =M i

(
v(α+ nα,i) + (ω×mi + ũi)

)
+ nu. (9.29)
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The parameter Ru describes the accuracy of the visual measurements and the param-
eter σ2

α depends on the variance of the inverse depths in the scene.
An interesting effect is that whenever the velocity is small or when the inverse

scene depth tends towards zero (i.e. the scene is far away), the innovation term will
be equivalent to a visual gyroscope:

y∗i =M i

(
(ω×mi + ũi)

)
+ nu. (9.30)

3.4 Unscented Kalman Filter and Outliers Detection

An unscented Kalman filter (UKF) is employed as filtering framework. The main
reason for this is that the UKF can handle correlated noise between prediction and
update by using a single set of augmented sigma points for both steps. All equations
required for its implementation are the prediction equation (9.19)-(9.24) and the up-
date equation (9.30), whereby the single innovation terms of the multiple features are
stuck together. The twofold use of the gyroscope measurement can be directly seen
in these equations. Please note that the implementation has to take into account
that, although the attitude is parametrized by a unit quaternion, the corresponding
noise and perturbations are always on a 3D subspace. For a detailed discussion on
the employed UKF itself please refer to [74].

In order to handle the high sensitivity of Kalman filters to outliers, we implement
a simple outliers detection method on the innovation terms. Using an analogous
approach as Mirzaei et al. [96], we reject a visual measurement whenever the Maha-
lanobis distance of the corresponding innovation terms exceeds a certain threshold.
The predicted covariance of the innovation is used as weighting for the Mahalanobis
distance and the threshold is chosen in such a manner that, in theory, 5% of the
inliers are rejected. Considering that the underlying probability distribution is a χ2-
distribution with two degrees of freedom the threshold is set to p = 5.99. In summary,
the criteria for rejecting a measurement i is given by (where Si is the predicted co-
variance matrix):

yTi S
−1
i yi > p. (9.31)

4 Observability Analysis

A nonlinear observability analysis is carried out for the proposed system. A detailed
discussion of the theory behind it was provided by Hermann and Krener [57]. In the
scope of this paper we only outline the rough procedure of the analysis. Based on
the nonlinear representation of the system an observability matrix is derived in order
to assess the observability characteristics of the system. The system can be written
as follows, whereby the noise quantities can be ignored since they don’t affect the
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observability analysis:

ẋ =


Cv

ω̂×v − f̂ +CT g
−Cω̂

0
0
0

 , (9.32)

hi(x) =M i

(
v α+ (−ŵ×mi + ũi)

)
, (9.33)

with the shortcuts

f̂ =− f̃ + c, (9.34)
ω̂ =− ω̃ + d. (9.35)

The observability matrix is composed of the gradient of the Lie derivatives of the
above system, whereby f̃ and ω̃ are, in the context of this analysis, the inputs to
the system. We can show, that if there are three optical measurements with non-
coplanar bearing vectors and if the inverse scene depth is not zero we can simplify the
observability matrix to the following term (if α = 0 only the gyroscope bias and the
inverse scene depth itself (if v 6= 0) are observable):

O =


0 I 0 0 0 1

α
v

0 0 0 0 I 0

0 0 CT g× −I 0 CT g − f̂
0 0 ω̂×CT g× 0 0 ω̂×CT g

 . (9.36)

Throughout the analysis only rank-preserving row operations are carried out which
keeps the relation between each column and a specific state of the filter. We also have
to keep in mind, that f̃ and ω̃ represent system inputs in this analysis, and thus a
single line in the matrix can be duplicated by inserting different values for f̃ and ω̃
(see [57]). By inserting two non-colinear values for ω̃ (through ω̂) in the last row of
the matrix we can further simplify the matrix to:

O =


0 I 0 0 0 1

α
v

0 0 0 0 I 0

0 0 0 −I 0 −f̂
0 0 CT g× 0 0 CT g

 . (9.37)

The rank of this matrix is 12 (independent of the choice of C, v, or f̂) and the
dimension of the right null-space is consequently 4, which is spanned by the following
matrix:

N =


I 0
0 0
0 g
0 0
0 0
0 0

 . (9.38)
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Figure 9.1: ASL visual-inertial SLAM sensor employed for evaluating the
presented optical flow and inertial measurement fusion approach.

In an informal way, the perturbations along the directions spanned by N cannot be
perceived at the filter output. While the first column corresponds to the absolute
position of the system, the second column represents a rotation around the gravity
axis, i.e., global position and yaw angle are not observable. Mathematically this can
be written as:

r∗ =r + δr, (9.39)
q∗ = exp (gδψ)⊗ q, (9.40)

where δr and δψ are perturbations. r and q cannot be distinguished from r∗ and q∗,
respectively.
All in all, the above nonlinear observability analysis allows us to state that for

all points in the state-space (except if α = 0) there exists some input f̃ and ω̃
(corresponding to a certain motion of the sensor) such that all states are locally
weakly observable, except for the global position and yaw angle.

5 Experimental Setup

To validate the proposed scheme, the Unscented Kalman filter was implemented in
C++. The filter was tested on data that were recorded using the ASL visual-inertial
SLAM sensor (see fig. 9.1), with synchronized global-shutter camera (Aptina MT9-
V034 at 20 Hz) and IMU (Analog Devices ADIS16488 at 200 Hz). The pose of the
sensor was additionally tracked using a Vicon motion tracking system at 100 Hz.
The image features are tracked using a Lukas-Kanade-based tracker. Salient image

features that are used for tracking are extracted by first applying a FAST corner
detector, computing the Shi-Tomasi score for each extracted corner and then selecting
those corners which have the highest score while ensuring a uniform distribution of
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the features in the image. A uniform feature distribution is ensured by masking parts
of the images that are already populated with strong features and by only adding
new, weaker features in unpopulated image regions.

Feature extraction and LK-tracking for 150 features is taking less than 2.5 ms in
total on a single core of an Intel i7-3740QM processor for one frame. Equivalently, a
measurement update step using 50 optical flow features is performed in 10 ms. During
the experiments an average feature count of 50 features was used. The rather bad
scalability of the filter update can be easily overcome by changing to the information
form of the filter, which will be part of future work.

6 Results and Discussion

The presented approach was evaluated on different datasets from an indoor environ-
ment where the feature depths range between 0.5m and 5m. The motion of the sensor
included rotational rate of up to 3 rad/s. Our main goal was to develop a filter for
delivering high-rate and reliable state estimates rather than being mainly focused on
estimation accuracy. Furthermore, the main states of interest are the velocities and
the inclination angles since they are of major importance if it comes to control of
dynamic robot motions. Using a 2 minute long dataset where the sensor was excited
along its different degrees of freedom, the following RMS values where obtained:

• Attitude (rad): 0.027 (roll), 0.005 (pitch) , 0.074 (yaw)

• Velocity (m/s): 0.058 (x), 0.070 (y), 0.075 (z)

whereby the velocity is always evaluated in the sensor frame B. When using different
datasets with similar motions the RMS values fluctuate around the above values,
except for the RMS of the yaw angle which increases with the estimation time (since
it is not observable). The estimated IMU biases converge relatively fast depending on
the motion of the system. While we have no ground truth values for the bias terms,
figure 9.2 and 9.3 show the typical convergence of the biases when the system is being
excited along its different directions. Figuring out which direction needs to be excited
for improving the estimation of a certain state can be a very difficult problem and
is not within the scope of this paper. The 3σ-bounds of the covariance matrix are
plotted as dashed lines.

Figure 9.4, 9.5, and 9.6 present the results from a dataset where after some initial
motion the sensor holds still for awhile before being moved again. This can be clearly
seen between 33 − 43 seconds. In contrast to the standard epipolar constraint, the
employed visual error term still extracts information from the optical flow measure-
ments analogous to a visual gyroscope. Still, during this phase additional uncertainty
accumulates in the different states. However, as soon as the sensor is moved again, the
observable states very quickly converge back to the reference. This can be nicely ob-
served for the velocity estimates. Note as well, that although the position of the sensor
is unobservable, it can be corrected and loose uncertainty to some extent through the
cross-correlation it maintains with the other states.
When replacing the presented visual error term by other terms such as the simple

continuous epipolar constraint or normalized forms of it, the observed results became
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Figure 9.2: Estimated accelerometer biases. Red: estimated values. Red
dashed line: 3σ-bound. The initial converges is supported by motion of the
sensor. The estimate is more accurate along the x-axis because it is more
often aligned with the gravity axis.

worse. Very often the estimation process would be drawn to zero (e.g. for the contin-
uous epipolar constraint) or very quickly lead to bad tracking or divergence.
All in all the filter exhibits a rather average performance in terms of accuracy

when compared with the state of the art visual-inertial algorithms. However, when
considering that only frame to frame (20 Hz) information is included into the filter,
the obtained results are relatively surprising, especially since other quantities like
the IMU biases have to be co-estimated simultaneously. A major advantage of this
approach is that the filter is free of any complex initialization procedure and only
relies on single feature matches between subsequent frames. It does not require the
long term tracking of some feature and is thus much less affected by fast motions.

7 Conclusion and Future Work

In this paper we presented a relative simple approach for fusing optical flow and
inertial measurements. By deriving a special optical flow error term and embedding it
into an UKF framework, we were able to derive a filter for estimating the egomotion
of the sensor, the IMU biases as well as the inverse scene depth. By carrying out a
nonlinear observability analysis we showed that all states except for the global position
and yaw angle are locally weakly observable. The results obtained on a real dataset
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Figure 9.3: Estimated gyroscope biases. Red: estimated values. Red
dashed line: 3σ-bound. The states here converge faster than the accelerom-
eter biases since the optical flow measurement have a direct impact on the
angular rates.

confirmed that the filter was able to estimate the different observable states.
One important aspect of future work will be the combination of the presented ap-

proach with other visual localization methods. While the strength of the presented
approach lies in its robustness and speed, it could be combined together with some
static feature tracking in order to improve its accuracy and long term stability. Other
possible extensions include the implementation on multiple cameras or the combina-
tion with further sensor modalities.
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Figure 9.4: Estimated sensor position. Red: estimated values. Red dashed
line: 3σ-bound. Dashed blue line: motion capture ground truth. The posi-
tion state is affected by increasing uncertainty since it is not observable and
represents the integration of the velocity estimate.
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Figure 9.5: Estimated sensor velocity expressed in the sensor coordinate
frame itself. Red: estimated values. Red dashed line: 3σ-bound. Dashed
blue line: motion capture ground truth. The robot-centric velocity is fully
observable and consequently has a bounded uncertainty. Even after a phase
of increased uncertainty it is able to recover if sufficient excitation is available.
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Figure 9.6: Roll, pitch, and yaw angle of the sensor. Red: estimated val-
ues. Red dashed line: 3σ-bound. Dashed blue line: motion capture ground
truth. Pitch and roll are observable and consequently exhibit a nice tracking
behavior. Yaw is not observable and slowly drifts away.
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Abstract
In this paper, we present a monocular visual-inertial odometry algorithm
which, by directly using pixel intensity errors of image patches, achieves ac-
curate tracking performance while exhibiting a very high level of robustness.
After detection, the tracking of the multilevel patch features is closely cou-
pled to the underlying extended Kalman filter (EKF) by directly using the
intensity errors as innovation term during the update step. We follow a
purely robocentric approach where the location of 3D landmarks are always
estimated with respect to the current camera pose. Furthermore, we decom-
pose landmark positions into a bearing vector and a distance parametrization
whereby we employ a minimal representation of differences on a corresponding
Lie-Algebra in order to achieve better consistency and to improve the com-
putational performance. Due to the robocentric, inverse-distance landmark
parametrization, the framework does not require any initialization procedure,
leading to a truly power-up-and-go state estimation system. The presented
approach is successfully evaluated in a set of highly dynamic hand-held ex-
periments as well as directly employed in the control loop of a multirotor
unmanned aerial vehicle (UAV).
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1 Introduction

Navigation and control of autonomous robots in rough and highly unstructured envi-
ronments requires high-bandwidth and precise knowledge of position and orientation.
Especially in dynamic operation of robots, the underlying state estimation can quickly
become the bottleneck in terms of achievable bandwidth, robustness and speed. To
enable the required performance for highly dynamic operation of robots, we combine
complementary information from vision- and inertial sensors. This approach has a
long history and has been successfully applied to navigate unmanned aerial robots
[139], [119], walking robots [128], [141] or cars [44].

Within the field of computer vision, Davison et al. [28] proposed one of the first
real-time 3D monocular localization and mapping frameworks. Since then, a lot of
improvements have been contributed from various research groups and further ap-
proaches have been proposed. A key issue is to improve the consistency of the estima-
tion framework which is affected by its inherent nonlinearity [21, 75]. One approach
is to make use of a robocentric representation for the tracked features and thereby
significantly reduce the effect of nonlinearities [21, 25]. As alternative, Huang et al.
[61] propose the use of a so-called observability constrained extended Kalman filter,
whereby the inconsistencies can be avoided by using special linearization points while
evaluating the system Jacobians.
A somewhat related problem is the choice of the specific representation of the

features. Since for monocular setups, the depth of a newly detected feature is unknown
the initial 3D location estimate of the feature exhibits a high (infinite) uncertainty
along the corresponding axis. In order to integrate this feature from the beginning
into the estimation framework, Montiel et al. [98] proposed the use of an inverse-depth
parametrization (IDP). With this parametrization, each feature location is represented
by the camera position where the feature was initially detected, by a bearing vector
(parametrized with azimuth and elevation angle), as well as the inverse depth of the
feature. The resulting increase in consistency was analyzed in more detail for the IDP
and other feature parametrization in [126].
While most standard visual odometry approaches are based on detected and tracked

point features as source of visual information, so-called direct approaches directly use
the image intensities in their estimation framework. Especially with the recent advent
of RGBD cameras, so called dense approaches, where the intensity error over the full
image is considered, have gained a lot of attention [3, 80]. In comparison to traditional
vision-based state estimators, dense approaches have a significantly larger error term
count and require appropriate methods in order to tackle the additional computational
load. By employing highly optimized SSE-vectorized implementations, first real-time,
CPU-based approaches for dense- or semi-dense motion estimation using a RGBD [80]
or a monocular RGB camera [33, 40] have recently been proposed.

Incorporating inertial measurements in the estimation can significantly improve the
robustness of the system, provides the estimation process with the notion of gravity,
and allows for a more accurate and high bandwidth estimation of the velocities and
rotational rates. By adapting the original EKF proposed by Davison et al. [28], ad-
ditional IMU measurements can be relatively simply integrated into the ego-motion
estimation, whereby calibration parameters can be co-estimated online [73, 79]. Leu-
tenegger et al. [83] describe a tightly coupled approach in which the robot trajectory
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and sparse 3D landmarks are estimated in a joint optimization problem using inertial
error terms as well as the reprojection error of the landmarks in the camera image.
This is done in a windowed bundle adjustment approach over a set of keyframe images
and a temporal inertial measurement window. Similarly, in [99] the authors estimate
the trajectory in an IMU-driven filtering framework using the reprojection error of
3D landmarks as measurement updates. Instead of adding the landmarks to the filter
state, they immediately marginalize them out using a nullspace decomposition, thus
leading to a small filter state size.
In the present paper we propose a visual-inertial odometry framework which com-

bines and extends several of the above mentioned approaches. While targeting a
simple and consistent approach and avoiding ad-hoc solutions, we adapt the struc-
ture of the standard visual-inertial EKF-SLAM formulation [73, 79]. The following
keypoints are integrated into the proposed framework:

• Point features are parametrized by a bearing vector and a distance parameter
with respect to the current frame. A suitable σ-Algebra is used for deriving the
corresponding dynamics and performing filtering operations.

• Multilevel patch features are directly tracked within the EKF, whereby the
intensity errors are used as innovation terms during the update step.

• A QR-decomposition is employed in order to reduce the high dimensional error
terms and thus keep the Kalman update computationally tractable.

• A purely robocentric representation of the full filter state is employed. The
camera extrinsics as well as the additive IMU biases are also co-estimated.

Together this yields a fully robocentric and direct monocular visual-inertial odometry
framework which can be run real-time on a single standard CPU core. In several
experiments on real data we show its reliable and accurate tracking performance
while exhibiting a high robustness against fast motions and various disturbances.
The framework is implemented in c++ and is available as open-source software [15].

2 Filter Setup

2.1 Overall Filter Structure and State Parametrization
The overall structure of the filter is derived from the one employed in [73, 79]: The
inertial measurements are used to propagate the state of the filter, while the visual
information is taken into account during the filter update steps. As a fundamental
difference we make use of a fully robocentric representation of the filter state which
can be seen as an adaptation of [25] (which is vision-only). One advantage of this
formulation is that problems with unobservable states can inherently be avoided and
thus the consistency of the estimates can be improved. On the other hand noise from
the gyroscope will affect all states that need to be rotated during the state propagation
(see section 2.2). However, since the gyroscope noise is relatively small and because
most states are observable this does not represent a significant issue.
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Three different coordinate frames are used throughout the paper: the inertial world
coordinate frame, I, the IMU fixed coordinate frame, B, as well as the camera fixed
coordinate frame, V. For tracking N visual features, we use the following filter state:

x :=
(
r,v, q, bf , bω , c,z,µ0, . . . ,µN , ρ0, . . . , ρN

)
, (10.1)

with:

• r: robocentric position of IMU (expressed in B),

• v: robocentric velocity of IMU (expressed in B),

• q: attitude of IMU (map from B to I),

• bf : additive bias on accelerometer (expressed in B),

• bω : additive bias on gyroscope (expressed in B),

• c: translational part of IMU-camera extrinsics (expressed in B),

• z: rotational part of IMU-camera extrinsics (map from B to V),

• µi: bearing vector to feature i (expressed in V),

• ρi: distance parameter of feature i.

The generic parametrization for the distance di of a feature i is given by the mapping
di = d(ρi) (with derivative d′(ρi)). In the context of this work we mainly tested the
inverse distance parametrization, d(ρi) = 1/ρi. The investigation of further parame-
trization will be part of future work.

Rotations (q,z ∈ SO(3)) and unit vectors (µi ∈ S2) are parametrized by following
the approach of Hertzberg et al. [59]. This is required in order to perform operations
like computing differences or derivatives as well as representing the uncertainty of the
state in a minimal manner. For parametrizing unit vectors we employ rotations as
underlying representation, whereby we define a �-operator which returns a difference
between two unit vectors within a 2D linear subspace. The advantage of this parame-
trization is that the tangent space can be easily computed (which is used for defining
the �-operator).
By using the combined bearing vector and distance parameterization, features can

be initialized in an undelayed manner, i.e., the features are integrated into the filter at
detection. The distance of a feature is initialized with a fixed value or, if sufficiently
converged, with an estimate of the current average scene distance. The corresponding
covariance is set to a very large value. In comparison to other parameterizations
we do not over-parametrize the 3D feature location estimates, whereby each feature
corresponds to 3 columns in the covariance matrix of the state (2 for the bearing vector
and 1 for the distance parameter). This also avoids the need for re-parameterization
[126].
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2.2 State Propagation
Based on the proper acceleration measurement, f̃ , and the rotational rate measure-
ment, ω̃, the evaluation of the IMU driven state propagation results in the following
set of continuous differential equations (the superscript × denotes the skew symmetric
matrix of a vector):

ṙ =− ω̂×r + v +wr, (10.2)

v̇ =− ω̂×v + f̂ + q−1(g), (10.3)
q̇ =− q(ω̂), (10.4)

ḃf = wbf , (10.5)

ḃω = wbω , (10.6)
ċ = wc, (10.7)
ż = wz , (10.8)

µ̇i = NT (µi)ω̂V −
[

0 1
−1 0

]
NT (µi)

v̂V
d(ρi)

+wµ,i, (10.9)

ρ̇i = − µTi v̂V/d′(ρi) + wρ,i, (10.10)

where NT (µ) linearly projects a 3D vector onto the 2D tangent space around the
bearing vector µ, with the bias corrected and noise affected IMU measurements:

f̂ =f̃ − bf −wf , (10.11)
ω̂ =ω̃ − bω −wω , (10.12)

and with the camera linear velocity and rotational rate:

v̂V =z(v + ω̂×c), (10.13)
ω̂V =z(ω̂). (10.14)

Furthermore, g is the gravity vector expressed in the world coordinate frame, and
the terms of the form w∗ are white Gaussian noise processes. The corresponding
covariance parameters can either be taken from the IMU specifications or have to be
tuned manually. Using an appropriate Euler forward integration scheme, i.e., using the
�-operator where appropriate, the above time continuous equation can be transformed
into a set of discrete prediction equations which are used during the prediction of the
filter state [59].
Please note that the derivatives of bearing vectors and rotations lie within 2D and

3D vector spaces, respectively. This is required for achieving a minimal and consistent
representation of the filter state and covariance.

2.3 Filter Update
For every captured image we perform a state update. We assume that we know
the intrinsic calibration of the camera and can therefore compute the projection of
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a bearing µ to the corresponding pixel coordinate p = π(µ). As will be described
in section 3.2, we derive a 2D linear constraint, bi(π(µ̂i)), for each feature i which
is predicted to be visible in the current frame with bearing vector µ̂i. This linear
constraint encompasses the intensity errors associated with a specific feature and
can be directly employed as innovation term within the Kalman update (affected by
additive discrete Gaussian pixel intensity noise ni):

yi = bi(π(µ̂i)) + ni, (10.15)

together with the Jacobian:

Hi = Ai(π(µ̂i))
dπ

dµ
(µ̂i). (10.16)

By stacking the above terms for all visible features we can directly perform a standard
EKF update. However, if the initial guess for a certain bearing vector µ̂i has a
large uncertainty the update will potentially fail. This typically occurs if features
get newly initialized and exhibit a large distance uncertainty. In order to avoid this
issue we improve the initial guess for a bearing vector with large uncertainty by
performing a patch based search of the feature (section 3.2). This basically improves
the linearization point of the EKF by using the bearing vector obtained from the patch
search µ̄i for evaluating the terms in eqs. (10.15) and (10.16). Please note that the
EKF update equations have to be slightly adapted in order to account for the altered
linearization point. A similar alternative would be to directly employ an iterative
EKF.

In order to account for moving objects or other disturbances, a simple Mahalanobis
based outlier detection is implemented within the update step. It compares the ob-
tained innovation with the predicted innovation covariance and rejects the measure-
ment whenever the weighted norm exceeds a certain threshold. This method inher-
ently takes into account the covariance of the state and measurements. For instance
it also considers the image gradients and thereby tends to reject gradient-less image
patches easier.

3 Multilevel Patch Feature Handling

Along the lines of other visual-inertial EKF approaches ([73, 79]) we fully integrate
visual features into the state of the Kalman filter (see also section 2.1). Within the
prediction step the new locations of the multilevel patch features are estimated by
considering the IMU-driven motion model (eq. (10.9)). Especially if the calibration
of the extrinsics and the feature distance parameters have converged, this yields high
quality predictions for the feature locations. Additionally, the covariance of the pre-
dicted pixel location can be easily computed and the computational effort of a possible
pre-alignment strategy can be adapted accordingly. The subsequent update step com-
putes an innovation term by evaluating the discrepancy between the projection of the
multilevel patch into the image frame and the image itself. Considering the cross-
correlation between the states the EKF spreads the resulting corrections throughout
the filter state. In the following the different steps and algorithms involving feature
handling are discussed in more details. The overall workflow for a single feature is
depicted in fig. 10.1.
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Figure 10.1: Overview on the workflow of a feature in the filter state. The
heuristics for adding and removing features are adapted to the total number
of possible features.

3.1 Structure and Warping

For a given image pyramid (factor 2 down-sampling) and a given bearing vector µ a
multilevel patch is obtained by extracting constant size (here 8x8 pixels) patches, Pl,
for each image level l at the corresponding pixel coordinate p = π(µ). The advantage
is that tracking such features is robust against bad initial guesses and image blur.
Furthermore such patch features allow a direct intensity error feedback into the filter.
In comparison to reprojection error based algorithms this allows to formulate a more
accurate error model which inherently takes into account the texture of the tracked
image patch. For instance it also enables the use of edge features, whereby the gained
information would be along the perpendicular to the edge.
By tracking two additional bearing vectors within the patch, we can compute an

affine warping matrix W ∈ R2×2 in order to account for the local distortion of the
patches between subsequent images. We assume that the distance of the feature is
large w.r.t. the size of the patch and can thus choose the normal of the patches to
point towards the center of the camera. Also, when a feature was successfully tracked
within a frame, the multilevel patch is re-extracted in order to avoid the accumulation
of errors.

3.2 Alignment Equations and QR-decomposition

Throughout the framework we make use of intensity errors in order to pre-align fea-
tures or update the filter state. For a given image pyramid with images Il and a given
multilevel patch feature (with coordinates p and patches Pl) the following intensity
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errors can be evaluated for image level l and patch pixel pj :

el,j = Pl(pj)− Il(psl +Wpj)−m, (10.17)

where the scalar sl = 0.5l accounts for the down-sampling between the images of
the image pyramid. Furthermore, by subtracting the mean intensity error m we can
account for inter-frame illumination changes.

For regular patch alignment, the squared error terms of eq. (10.17) can be summed
over all image levels and patch pixels and combined into a single Gauss-Newton op-
timization in order to find the optimal patch coordinates. However, the direct use of
such a large number of error terms within an EKF would make it computationally
intractable. In order to tackle this issue we apply a QR-decomposition on the linear
equation system resulting from stacking all error terms in eq. (10.17) together for
given estimated coordinates p̂:

b̄(p̂) = Ā(p̂)δp, (10.18)

where Ā(p̂) can be computed based on the patch intensity gradients. Independent of
the rank of the matrix Ā(p̂), the QR-decomposition of Ā(p̂) can be used to obtain
an equivalent reduced linear equation system:

b(p̂) = A(p̂)δp, (10.19)

with A(p̂) ∈ R2×2 and b(p̂) ∈ R2. Since we assume that the additive noise magnitude
on the intensities is equal for every patch pixel we can leave it out of the above
derivations (it will remain constant for every entry).
One interesting remark is, that due to the scaling factor sl in eq. (10.17), error

terms for higher image levels will a have weaker corrective influence on the filter state
or the patch alignment. On the other hand, their increased robustness w.r.t. image
blur or bad initial alignment strongly increases the robustness of the overall alignment
method for multilevel patch features.

3.3 Feature Detection and Removal
The detection of new features is based on a standard fast corner detector which pro-
vides a large amount of candidate feature locations. After removing candidates which
are close to current tracked features, we compute an adapted Shi-Tomasi score for
selecting new features which will be added to the state. The adapted Shi-Tomasi
score basically considers the combined Hessian on multiple image levels, instead of
only a single level. It directly approximates the Hessian of the above gradient matrix
with H = Ā

T
(p̂)Ā(p̂) and extracts the minimal eigenvalue. The advantage is that

a high score is directly correlated with the alignment accuracy of the corresponding
multilevel patch feature. Instead of returning the minimal eigenvalue, the method
can return other eigenvalue based scores like the 1- or 2-norm. This could be use-
ful in environments with scarce corner data, whereby the presented filter could be
complemented by available edge-shaped features. Finally, the detection process is
also coupled to a bucketing technique in order to achieve a good distribution of the
features within the image frame.
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Table 10.1: Timings of Presented Approach per Processed Image
Tot. Features 10 20 30 40 50
Timing [ms] 6.65 10.50 14.87 21.48 29.72

Due to the fact that we can only track a limited number of features in the EKF,
we have to implement a landmark management system to ensure that only reliable
landmarks are inserted and kept in the filter state. Here, we fall back to heuristic
methods, where we compute quality scores in order to decide whether a feature should
be kept or not. The overall idea is to evaluate a local (only last few frames) and a
global (how good was the feature tracked since it has been detected) quality score and
remove the features below a certain threshold. Using an adaptive threshold we can
control the total amount of features which are currently in the frame.

4 Results and Discussion

4.1 Experimental Setup
The data for the experiments were recorded with the VI-Sensor [104], equipped with
two time-synchronized, global-shutter, wide-VGA 1/3 inch imagers in a fronto-parallel
stereo configuration. The cameras are equipped with lenses with a diagonal field of
view of 120 degrees and are factory-calibrated by the manufacturer for a standard
pinhole projection model and a radial-tangential distortion model. The imagers are
hardware time-synchronized to the IMU to ensure mid-exposure IMU triggering. In
the context of this work only the image stream from one camera is required.
Ground truth is provided through an external motion capture system for the pose of

the sensor. The rate of the IMU measurements is 200Hz and the image frame rate is
20Hz. The employed IMU is an industrial-grade ADIS 16448, with an angular random
walk of 0.66 deg/

√
Hz and a velocity random walk of 0.11m/s/

√
Hz. The maximal

number of features in the state is set to 50 and the algorithm is run using image
pyramids with 4 levels. Whenever possible, covariance parameters are selected based
on hardware specifications. Strong tuning was not necessary, and the framework
works well for a large range of parameters. The initial IMU-camera extrinsics are
only roughly guessed (the translation is set to zero), and the initial inverse distance
parameter for a feature is set to 0.5m−1 with a standard deviation of 1m−1. A
screenshot of the running framework is depicted in fig. 10.2.

4.2 Experiment with Slow Motions
An experiment with slow to medium fast hand-held motions of about 1min was carried
out to evaluate the performance of the framework with different numbers of total
features (from 10 to 50 in steps of 10). The performance was assessed by computing the
relative position error w.r.t. the traveled distance [50]. Furthermore we compared the
obtained results to a batch optimization framework along the lines of [83]. Figure 10.3
depicts the extracted relative error values. The achieved performance tends to be
similar to the one of the batch optimization framework and often achieves slightly
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Figure 10.2: Screenshot of the running visual-inertial odometry framework.
The 2-σ uncertainty ellipses of the predicted feature locations are in yellow,
whereby only features which are newly initialized (stretched ellipses) and
features which re-enter the frame have a significant uncertainty. Green points
are the locations after the update step. Green numbers are the tracking counts
(1 for newly initialized features). In the top left a virtual horizon is depicted.

higher accuracy. While these results depend on the specific dataset and parameter
tuning, we also have to mention that the relatively high rotational motion (average of
around 1.5 rad/s) favors approaches which can handle arbitrarily short feature tracks.
Given the undelayed initialization of feature within our approach, the resulting filter
is able to extract visual information from a feature’s second observation onwards.

Surprisingly, the performance was relatively independent of the total amount of
tracked features. A significant drop in accuracy could only be observed with feature
counts below 20. This observation can have different reasons. One could be the type
of sensor motions with relatively high rotational rates, which can lead to more bad
features or outliers. Another point is also that our approach considers 256 = 4×8×8
intensity errors per tracked features and thus we cannot directly compare to standard
feature tracking based visual odometry frameworks, which typically require much
higher feature counts. More in-depth evaluation of this effect will be part of future
work. The timings of the proposed framework are listed in table 10.1 for a single core
of an Intel i7-2760QM. The setup with 50 features uses an average processing time of
29.72ms per processed image and can thus easily be run at 20Hz.

4.3 Experiment with Fast Motions
Here, we evaluate the robustness of the proposed approach w.r.t. very fast motions.
We recorded a hand-held dataset with mean rotational rate of around 3.5 rad/s and
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Figure 10.3: Gray lines are the relative errors of the presented approach,
where the darkest lines corresponds to 50 features and the brightest line to
10 features respectively. The dashed green line represents the performance of
the reference batch optimization framework.

with peaks of up to 8 rad/s. The motion capture system exhibited a relative high
number of bad tracking, whereby we filtered them out as good as possible. We in-
vestigate the tracking performance of the attitude and of the robocentric velocities,
where the corresponding estimates with 3σ-bounds are plotted in figs. 10.4 and 10.5
respectively. It can clearly be seen that the estimates nicely fit the ground truth data
from the motion capture. As known from previous work the inclination angles and
the robocentric velocities of visual-inertial setups are fully observable [85], and we can
nicely observe the initial decrease of the corresponding covariance (especially when
the system gets excited). On the other hand the yaw angle is unobservable and drifts
slowly with time.

Figures 10.6 and 10.7 depict the estimation of the calibration parameters. Again,
the estimates together with their 3σ-bounds are plotted. Depending on the excitation
of the system the estimated values converge relatively quickly. It can be observed,
that the translational term of the IMU-camera calibration requires a lot of rotational
motion in order to converge appropriately. For the presented experiment, the ac-
celerometer bias exhibits the worse convergence rate but is still within a reasonable
range.

Furthermore, we also observed a divergence mode for the presented approach. It
can occur when the velocity estimate diverge, e.g., due to missing motion or too many
outliers. The problem is then, that the filter attempts to minimize the effect of the
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Figure 10.4: Euler angle estimates. Red: estimate, blue: motion capture,
red dashed: 3σ-bound. Only the yaw angle is not observable and exhibits
a growing covariance. The inclination angles (roll and pitch) exhibit a high
quality tracking accuracy.

erroneous velocity on the bearing vectors by setting the distance of the features to
infinity. This again lowers any corrective effect on the diverging velocity resulting in
further divergence. All in all this was very rarely observed for regular usage, especially
if the system was properly excited at the start.

4.4 Flying Experiments

Implementing the framework on-board a UAV with a forward oriented visual-inertial
sensor, we also performed preliminary experiments on a real robot. The special aspect
here is that the visual-inertial odometry framework was initialized on the ground
without any previous calibration motions, i.e. the calibration parameters had to
converge during take-off. The output of the filter was directly used for feedback
control of the UAV. Figure 10.8 depicts the estimated position output of the framework
during take-off, flying and landing. If compared to the motion capture system the filter
exhibits a certain offset which can be mainly attributed to the online calibration of
the filter.
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Figure 10.5: Velocity estimates. Red: estimate, blue: motion capture, red
dashed: 3σ-bound. The robocentric velocity is fully observable and thus
exhibits a bounded uncertainty. It very nicely tracks the reference from the
motion capture system (and probably also exhibits a higher precision).

5 Conclusion

In this paper we presented a visual-inertial filtering framework which uses direct in-
tensity errors as visual measurements within the extended Kalman filter update. By
choosing a fully robocentric representation of the filter state together with a numeri-
cally minimal bearing/distance representation of features, we avoid major consistency
problems while exhibiting accurate tracking performance and high robustness. Espe-
cially in difficult situations with very fast motions or outliers the presented approach
manages to keep track of the state with only minor drift of the yaw and position
estimates. The framework can be run on-board a UAV with a feature count of 50 at
a framerate of 20Hz and was used to stabilize the flight of a UAV from take-off to
landing.
Future work will include more extensive evaluation of the multilevel patch features

in context of intensity error based visual-inertial odometry frameworks. Furthermore
we would also like to try to extend the online calibration in order to include the camera
intrinsics. Also, the framework could be relatively easily adapted in order to handle
multiple cameras. This could improve the filter performance, especially for cases with
lack of translational motion. Another option to avoid divergence would be to use
some heuristics based methods in order to detect such modes and to add zero-velocity
pseudo-measurements in order to stabilize the filter. A detailed observability analysis
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Figure 10.6: Estimated IMU biases. Top: gyroscope bias (red: x, blue:
y, green: z), bottom: accelerometer bias (red: x, blue: y, green: z). The
gyroscope biases exhibit a better convergence than the accelerometer biases,
probably due to the more direct link of rotational rates to visual errors.

could also be performed, where the dependency of unobservable modes w.r.t. sensor
motions would be of high interest.
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Figure 10.7: Estimated IMU-camera extrinsics. Top: translation (red: x,
blue: y, green: z), bottom: orientation (red: yaw, blue: pitch, green: roll).
Especially when sufficiently excited, the estimates converge quickly. The
reached values correspond approximately to the ones obtained from an offline
calibration.
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Figure 10.8: Estimated trajectory (red) on-board a UAV compared to
groundtruth (blue) from the motion capture system. During take-off, fly-
ing, and landing the output of the filter is used to stabilize and control the
UAV. Calibration is performed online.
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Direct Photometric Feedback
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Siegwart

Abstract
This paper presents a visual-inertial odometry framework which tightly fuses
inertial measurements with visual data from one or more cameras, by means
of an iterated extended Kalman filter (IEKF). By employing image patches
as landmark descriptors, a photometric error is derived, which is directly in-
tegrated as an innovation term in the filter update step. Consequently, the
data association is an inherent part of the estimation process and no addi-
tional feature extraction or matching processes are required. Furthermore, it
enables the tracking of non-corner shaped features, such as lines, and thereby
increases the set of possible landmarks. The filter state is formulated in a
fully robocentric fashion, which reduces errors related to nonlinearities. This
also includes partitioning of a landmark’s location estimate into a bearing
vector and distance and thereby allows an undelayed initialization of land-
marks. Overall, this results in a compact approach which exhibits a high level
of robustness with respect to low scene texture and motion blur. Further-
more, there is no time-consuming initialization required and pose estimates
are available starting at the second image frame. We test the filter on dif-
ferent real datasets and compare it to other state-of-the-art visual-inertial
frameworks. The experimental results show that robust localization with
high accuracy can be achieved with this filter-based framework.

Published in:
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1 Introduction

Robust and high-bandwidth estimation of ego-motion is a key factor to enable the
operation of autonomous robots. For dynamically controlled robots, such as aerial
vehicles or legged robots, a reliable state estimate is essential: Failures of the state
estimator can quickly lead to damage of the hardware and its surroundings. Thus,
as autonomous robots become more capable and extend their range of applications,
it is essential that the corresponding ego-motion estimation can perform well in in-
creasingly difficult environments. The corresponding selection of sensors should be
kept as lightweight and low-cost as possible in order to employ them on a wide range
of robotic systems robotic systems. Furthermore, in the context of vision-based es-
timation, extreme conditions such as strongly varying lighting, missing texture, fast
motion, or dynamic objects may need to be accounted for.

Past research has shown that combining the complementary information from an
Inertial Measurement Unit (IMU) and visual sensors can be a very capable approach
in terms of accuracy and reliability. Consequently this approach has been successfully
applied to robotic systems such as unmanned aerial robots ([119, 139]) or legged
robots ([92, 128]). Since assessing the precision of an algorithm is often simpler than
evaluating its robustness, many researchers have focused on optimizing the accuracy
of their approaches. The evaluation is typically done by measuring the accumulated
position error over given traveled distances. Depending on the experimental setup,
state-of-the-art algorithms reduce position errors to 0.1% of the traveled distance
([41, 84, 136]). Such a demonstration of high accuracy can serve as surrogate for the
well-functioning of an approach. However, all odometry frameworks inherently suffer
from drift and, if the primary goal is localization accuracy, a back-end framework
doing global mapping, re-localization and loop closure will be indispensable (e.g. [90]).
Furthermore, if the ego-motion estimation is employed within a feedback loop on an
autonomous robot, other aspects like reliability and estimation time-delay become
important as well.
The well-established Kalman Filtering techniques represent sensor fusion frame-

works that allow computationally efficient and high-bandwidth state estimation. Due
to the inherent marginalization, the filter states at each timestep can refer to dif-
ferent physical quantities, e.g., a landmark’s position can be estimated w.r.t. the
moving sensor frame (and thereby represent a varying quantity over time). This
enables the use of a fully robocentric formulation of the state and thereby reduces
observability/nonlinearity related issues ([21]). To mitigate the problem of intrinsic
unobservability of a landmark’s initial distance from the observer, the landmark po-
sition can be parameterized by its bearing vector and distance ([98]). Consequently
a landmark’s distance can be initialized with a high uncertainty without affecting its
bearing vector estimate (which can be initialized with a low uncertainty). Especially
for scenarios with fast motions and short feature tracks, this becomes invaluable as
it allows a seamless initialization of landmarks and thereby the extraction of visual
information out of a landmark’s second observation onwards. Bearing vectors can
be represented as members of a 2D-manifold, with a corresponding Lie-Algebra be-
ing used for filtering, leading to a minimal and consistent representation of bearing
vectors and their uncertainty ([59]).
The proposed approach combines an iterated extended Kalman filter (IEKF), a fully
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robocentric formulation of visual-inertial odometry, and a photometric error model.
This is achieved by associating every landmark with a multilevel patch feature, where
the innovation term is derived by projecting the patch into the current image and
computing the photometric error for every patch pixel. To keep the computational
effort tractable, a QR-decomposition based reduction is applied for obtaining an equiv-
alent 2D innovation term per observed landmark. This method takes into account the
local texture of a landmark and thereby gains more information along the directions
where the patch gradients are stronger. In addition, this offers the possibility to track
non-corner shaped features, such as lines, increasing the set of possible image features
which is beneficial in scenarios with missing texture.
In contrast to our previous work ([14]), which implemented a regular extended

Kalman filter (EKF), the employed IEKF allows per-landmark iterative updates. This
inherently takes care of landmark tracking where a landmark’s position estimate is
iteratively updated by simultaneously considering the current IMU-based prior and the
observed patch texture. To the best of our knowledge, this tight combination of data
association and information fusion is novel for visual-inertial odometry. This approach
is similar to dense visual algorithms which avoid separate data association through
image alignment techniques. All in all, this yields a fully robocentric and direct visual-
inertial odometry framework which runs in real-time on computationally constrained
platforms. To increase robustness and usability, we implement multi-camera support
(with or without overlapping field of view) and enable online calibration of camera-
IMU extrinsics. An in-depth derivation and evaluation of the framework is provided,
including experiments on publicly available datasets [20]. Our framework, which we
refer to as Rovio (RObust Visual-Inertial Odometry), is implemented in C++ and is
available as open-source software 1.

2 Related Work

Within the field of computer vision, [28] proposed one of the first real-time 3D monoc-
ular localization and mapping frameworks. Similarly to the work in this paper, the
author made use of an EKF framework where he co-estimates the absolute position
of 3D landmarks. Since then, various research groups have contributed improvements
and proposed further approaches. A key issue is to improve the consistency of the
estimation framework that is affected by its inherent nonlinearity ([21, 75]). One ap-
proach is to make use of a robocentric representation for the tracked landmarks and
thereby significantly reduce the effect of nonlinearities ([21, 25]). As an alternative,
[61] propose the use of a so-called observability constrained extended Kalman filter,
whereby the inconsistencies can be avoided by using special linearization points while
evaluating the system Jacobians.
A somewhat related problem is the choice of the specific representation of a land-

mark’s location. Since the depth of a newly detected landmark is unknown for monoc-
ular setups, the initial 3D location estimate exhibits a high (infinite) uncertainty along
the corresponding axis. To integrate this landmark from the beginning into the esti-
mation framework, [98] proposed the use of an inverse-depth parametrization (IDP).
They parametrize each landmark location by the camera position where the landmark
1https://github.com/ethz-asl/rovio
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was initially detected, by a bearing vector (parametrized with azimuth and elevation
angles), as well as the inverse depth of the landmark. The increase in consistency for
the IDP and other parametrization methods was further analyzed and confirmed by
[126].

While most standard visual odometry approaches are based on detected and tracked
point landmarks as source of visual information, so-called direct approaches directly
use the image intensities in their estimation framework. [71] propose to model the
environment as a collection of planar patches and to derive a corresponding photo-
metric error between camera frames. Their work is similar to ours in that they also
embed the photometric error directly into a filtering framework (but they do not use
any inertial data which limits them to slow motions). [97] also track locally planar
image patches in a filter-based SLAM framework. By employing gradient-based image
alignment, they also co-estimate surface normals but keep data association separated
from the subsequent EKF-based information fusion. [122] also use planar regions and
minimize the photometric error with respect to a reference frame in order to estimate
the relative motion as well as other parameters like illumination parameters and patch
normals. They then subsequently merge the output in an EKF. By employing highly
optimized SIMD (Single Instruction Multiple Data) implementations, first real-time,
CPU-based approaches for semi-dense motion estimation using a monocular camera
([33, 40]) have recently been proposed.

Incorporating inertial measurements in the estimation can significantly improve the
robustness of the system, provides the estimation process with the notion of gravity,
and allows for a more accurate and high bandwidth estimation of the velocities and
rotational rates. By adapting the original EKF proposed by [28], additional IMU
measurements can be relatively simply integrated into the ego-motion estimation,
whereby calibration parameters can be co-estimated online ([73, 79]). [84] describe
a tightly coupled approach in which the robot trajectory and sparse 3D landmarks
are estimated in a joint optimization problem using inertial error terms as well as
the reprojection error of the tracked landmarks in the camera images. This is done
in a windowed bundle adjustment approach over a set of keyframe images and a
temporal inertial measurement window. Similarly, [99] estimate the trajectory in
an IMU-driven filtering framework using the reprojection error of 3D landmarks as
measurement updates. Instead of adding the landmarks to the filter state, they im-
mediately marginalize them out using a nullspace decomposition, thus leading to a
small filter state size. Since inertial measurements are often obtained at a higher rate
than image data, methods for combining multiple inertial measurements are desirable
to reduce the computational costs. [41] have presented a concise IMU measurements
pre-integration method such that they can be efficiently included in a factor graph
framework. Recently, [136] have extended their previous work on dense visual odom-
etry ([33]) in order to integrate inertial measurements. They minimize a joint energy
term composed of visual and inertial error terms in order to estimate the ego-motion
of their sensor.
Probably the most comparable work to ours was developed by [132], who imple-

mented an EKF-based framework for merging patch-based photometric errors with
IMU measurements. They parameterize their landmarks by the pose of the camera
when the landmark was detected as well as the corresponding bearing vector and in-
verse depth (analogously to [98]). Our work differs in that it uses a fully robocentric
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formulation of the current state, which has various implications on the filtering and
visual processing framework. We also integrate a QR-decomposition based measure-
ment space reduction and perform per-landmark update iterations, which are both
key to the efficiency and accuracy of our system.

3 Prerequisites on Rotations and Unit Vectors

3.1 Notation
For better readability and comprehensibility, we give a brief overview of the employed
notations and the algebra of 3D rotations and unit vectors. Three different coordinate
frames are used throughout the paper: the inertial world coordinate frame, I, the
IMU fixed coordinate frame, B, as well as the camera fixed coordinate frame, C. Only
in section 6, where multi-camera setups are discussed, the distinction between the
different camera frames will be made. The origin associated with a specific coordinate
frame is denoted by the same symbol. In this context, a term of the form IrBC
denotes the coordinates of a vector from the origin of B to the origin of C, expressed
in the coordinate frame I. Furthermore, qBI is employed in an abstract manner
for representing the rotation between a frame I and B (the actual implementation
is mainly based on unit quaternions). A good way to think of a rotation is as a
mapping qBI : R3 → R3 between the two associated coordinate frames: Given a
physical vector rBC , a rotation maps the corresponding coordinates from the right
index frame to the left index frame, e.g., BrBC = qBI (IrBC). We also employ the
mapping C(q) : SO(3)→ R3×3 which is defined such that q(r) , C(q)r and basically
returns the 3× 3 rotation matrix.
As further abbreviations, we use vB for denoting the absolute velocity of B, and

ωIB for the vector describing the relative rotational velocity of the coordinate frame
B w.r.t. the coordinate frame I. In some cases we use further denotations like tildes
(measurements) or hats (estimates) if we want to highlight a specific aspect of a
quantity. The superscript × is used to denote the skew symmetric matrix v× ∈ R3×3

of a vector v ∈ R3.

3.2 Representation of 3D Rotations
Since rotations are part of the special orthogonal group SO(3) (with group opera-
tion ⊗), there is no direct notion of addition or subtraction (and consequently no
differentiation either). Fortunately, since SO(3) is a Lie group, a logarithmic and an
exponential map exist which map to and from a corresponding Lie algebra R3:

log :SO(3)→ R3, (11.1)
qBI 7→ log(qBI) = θBI ,

exp :R3 → SO(3), (11.2)
θBI 7→ exp(θBI) = qBI .

There is a certain amount of freedom in selecting these maps. Here, we select the
exponential and logarithmic maps such that θBI in the above equations coincides

137



Paper VII: IEKF-based VIO using Direct Photometric Feedback

with the passive rotation vector of the rotation qBI . We can write the following
identities (the last identity is known as Rodrigues’ formula):

exp(−θ) = exp(θ)−1, (11.3)

exp(q(θ)) =q ⊗ exp(θ)⊗ q−1, (11.4)

C(θ) =I −
sin(‖θ‖)θ×

‖θ‖
+

(1− cos(‖θ‖))θ×
2

‖θ‖2
. (11.5)

The exponential and logarithmic maps can now be used to introduce a boxplus
(�) and a boxminus (�) operator, which adopt the role of addition and subtraction
operators for rotations ([59]). Using a slightly different notation, we define:

� :SO(3)× R3 → SO(3), (11.6)
q,θ 7→ exp(θ)⊗ q,

� :SO(3)× SO(3)→ R3, (11.7)

q,p 7→ log(q ⊗ p−1).

Similarly to regular addition and subtraction, both operators fulfill the following iden-
tities (axioms proposed by [59]):

q � 0 = q, (11.8)
(q � θ) � q = θ, (11.9)
q � (p � q) = p. (11.10)

This approach distinguishes between actual rotations which are on SO(3) (Lie group)
and differences of rotations which lie on R3 (Lie algebra). The above operators take
care of appropriately transforming the elements into their respective spaces and allow
a smooth embedding of rotational quantities in filtering and optimization frameworks.

The definition of differentials involving rotation can be adapted by replacing the
regular plus and minus operators by the above boxplus and boxminus operators. For
instance the differential of a mapping q(x) : R→ SO(3) can be defined as:

∂

∂x
q(x) := lim

ε→0

q(x+ ε) � q(x)

ε
. (11.11)

The same can be done for the other way round where we have a mapping x(q) :
SO(3)→ R:

∂

∂q
x(q) := lim

ε→0


x(q�(e1ε))−x(q)

ε
x(q�(e2ε))−x(q)

ε
x(q�(e3ε))−x(q)

ε


T

(11.12)
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where e1/2/3 are orthonormal basis vectors. This results in the following frequently-
used derivatives (these may vary depending on conventions):

∂/∂t (qBI(t)) = BωIB(t), (11.13)

∂/∂q (q(r)) = (q(r))× , (11.14)

∂/∂q
(
q−1

)
= −C(q)T , (11.15)

∂/∂q (q ⊗ p) = I, (11.16)
∂/∂q (p⊗ q) = C(p), (11.17)
∂/∂θ (exp(θ)) = Γ(θ), (11.18)

∂/∂q (log(q)) = Γ−1(log(q)). (11.19)

The derivative of the exponential map is given by the Jacobian Γ(θ) ∈ R3×3 which
has the following analytical expression:

Γ(θ) =I −
(1− cos(‖θ‖))θ×

‖θ‖2
+

(‖θ‖ − sin(‖θ‖))θ×
2

‖θ‖3
. (11.20)

A more detailed discussion and derivations can be found in [16].

3.3 Representation of 3D Unit Vectors
While the above handling of rotations has been used similarly in previous filtering
frameworks (e.g. [11, 85]), we extend the methodology to 3D unit vectors on the
2-sphere S2. This is done analogously to [59], whereas we employ a parametrization
yielding simple analytical derivatives and guarantee second order differentiability. A
main issue with 3D unit vectors is to select orthonormal vectors for spanning the
tangent space such that a suitable difference operator can be defined. Assigning or-
thonormal vectors to every point on the 2-sphere creates a vector field and as stated by
the “hairy ball theorem”, there is no continuous way of doing so over the full 2-sphere.
To solve this issue we employ a rotation, µ ∈ SO(3), as underlying representation for
unit vectors and define the following quantities:

n(µ) := µ(ez) ∈ S2 ⊂ R3, (11.21)

N(µ) := [µ(ex),µ(ey)] ∈ R3×2, (11.22)

where ex/y/z ∈ R3 are the basis vectors of an arbitrary orthonormal coordinate
system. The actual unit vector is given by n(µ) which results when rotating ez by
µ (if the context is clear we directly refer to the unit vector using µ). The matrix
N(µ) is composed of the rotated ex and ey and spans the tangent space. While
such a construction of the tangent space is not deterministic since infinitely many
rotations µ provide the same unit vector n(µ), we have the advantage that smooth
transformations of the rotation µ induce smooth transformations of the associated
tangent space.
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n( )

N(1)( )

N(2)( )

n( )

N( )u = θ(n(μ),n(ν))

exp(N(μ)u)

N(μ)T

N(μ)

u=n(ν) n(μ)

R2

u

Figure 11.1: Representation of 3D unit vectors: The 3D unit vector n(µ)
is represented as the result of applying the rotation µ onto the z-axis of an
arbitrary inertial coordinate system. The images of the x- and y-axis are used
to define an orthonormal plane to the unit vector. This plane then represents
the tangent space used for the construction of the boxplus and boxminus
operations. The boxminus operator takes two 3D unit vectors and represents
their difference in R2. Conversely, the boxplus operator takes an element
from R2 and applies it on a 3D unit vector.

The tangent space can be used to define the following boxplus and boxminus oper-
ators:

� :SO(3)× R2 → SO(3), (11.23)
µ,u 7→ exp(N(µ)u)⊗ µ,

� :SO(3)× SO(3)→ R2, (11.24)

ν,µ 7→N(µ)T θ(µ,ν),

where θ maps two unit vectors to the minimal rotation vector between them:

θ(n(µ),n(ν)) =
acos(n(ν)Tn(µ))

‖n(ν)× n(µ)‖
n(ν)× n(µ). (11.25)

A visualization of the 2-sphere and the tangent space for a specific µ is given in
Figure 11.1.

The concept is slightly more complicated than in the case of 3D rotations since we
truly over-parameterize a 3D unit vector (no constraint is imposed on the underlying
rotation). To overcome this, we use a different notion of equivalence where we define
that two unit vector parametrizations µ and ν are equivalent (µ ∼ ν) iff n(µ) =
n(ν). With this, the axioms proposed by [59] are again fulfilled:

µ � 0 = µ, (11.26)
(µ � u) � µ = u, (11.27)
µ � (ν � µ) ∼ ν. (11.28)
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A technical detail with this parametrization is that whenever representing a difference,
u ∈ R2, we have to keep track of the corresponding tangent space. Mathematically,
if we have two rotations µ and ν with µ ∼ ν, it does not necessarily follow that
(µ � u) ∼ (ν � u).
Similarly to the derivatives given in section 3.2, the most commonly used derivatives

for terms involving 3D unit vectors are given by:

∂/∂t (µ(t)) = −N(µ(t))Tn(µ(t))× (11.29)
· ∂/∂t (n(µ(t))) ,

∂/∂µ (n(µ)) = n(µ)×N(µ), (11.30)

∂/∂µ
(
N(µ)T r

)
=−N(µ)T r×N(µ). (11.31)

The first identity relates the time derivative of a 3D unit vector on its manifold to
its time derivative in the 3D vector space. The second expression is the derivative
of the unit vector in 3D w.r.t. to its minimal 2D representation. Those identities
can be very useful when computing Jacobians, whereby the chain rule can be applied
for computing the derivatives of more complex terms. An example will be provided
when discussing the process model of the bearing vector state of 3D landmarks (see
section 5.3 and section 9).
All in all, the proposed unit vector parametrization yields analogous advantages as

obtained when employing the well established minimal 3D rotation parametrization.
This includes a singularity-free parametrization which comes with relatively simple
differentials. Furthermore the parametrization of the tangent space is orthogonal
and the direction of the boxminus operation is in accordance with the shortest path
between two given unit vectors (taking a step along ν�µ is optimal for going from µ
to ν, see Figure 11.1). Other parametrizations, such as azimuth and elevation angles,
do not meet these properties and often exhibit singular configurations.

4 Multilevel Patches and Photometric Error

4.1 Multilevel Patch Features
Along the lines of other landmark-based visual odometry approaches ([28]) we model
landmarks as distinguished stationary 3D locations in the environment. Each land-
mark is associated with a multilevel patch feature P = {P0, . . . , PL}, which is com-
posed of multiple n×n image patches, Pl, extracted at the projected landmark location
on image level l. In the current default implementation we extract 6×6 image patches
on the second and third pyramid level (down-sampling factor of 2). These parameters
can and should be adapted to the actual hardware setup and application scenario. An
example is given in Figure 11.2. The simultaneous use of multiple pyramid levels leads
to cross-correlations between the pixel intensities. These are not explicitly modeled
but can be handled to a certain extent by tuning the corresponding error weighting.
In comparison to a standard feature descriptor, a patch-based descriptor allows

to compute a photometric error and thereby to avoid the use of reprojection errors.
Taking the information of every pixel gives much richer information about the environ-
ment, which not only helps improving the robustness in bad lighting conditions, but
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Figure 11.2: The construction of a multilevel patch out of an image pyra-
mid. Here each single patch is composed of 8× 8 pixels and 3 pyramid levels
are depicted. These settings may vary in the actual implementation.

also inherently takes into account the texture of the tracked image patch. For instance,
it enables the integration of edge-shaped features, whereby the gained information is
along the perpendicular direction of the edge. In comparison, reprojection error based
approaches typically attempt to minimize the distance between the predicted and de-
tected feature location. This ignores the local texture around the landmark and, if no
additional measures are taken, all landmarks are weighted equally.

4.2 Projection Model and Linear Warping
Given the bearing vector µ of a landmark, the pixel coordinates in a specific camera
frame can be retrieved by using the camera model π. Assuming a known intrinsic
calibration, the pixel coordinates p can directly be expressed by p = π(µ). If the
camera is moving, the feature moves through the image and is seen from a different
perspective. To account for a certain patch distortion effect, a linear warping matrix
is tracked with each feature. This is done by concatenating all Jacobians when trans-
forming a landmark location. For instance, if we detect a feature in some frame at
pixel p1, transform the corresponding bearing vector µ1 = π−1(p1) with a process
model µ2 = f(µ1), and then re-project the bearing vector in a subsequent frame
p2 = π(µ2), we obtain the following linear warping matrix:

D =
∂π(µ2)

∂µ2

∂f(µ1)

∂µ1

∂π−1(p1)

∂p1

∈ R2×2. (11.32)

In essence, this maps the two patch axes from the point of patch extraction (which
where aligned with the image axes) to the two distorted patch axes in the projection
image. This approach tracks the distortion locally around the patch and ignores any
larger scale information like the geometric shape of a patch. To avoid large distortions
and the accumulation of errors, the patches a re-extracted regularly and the warping
matrix is reset to identity.
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4.3 Photometric Error and Patch Alignment
The photometric error between a given multilevel patch feature and a specific image
is computed by extracting a warped patch at the estimated location and evaluating
the pixel-wise intensity error. For a given multilevel patch feature (with coordinates
p and multilevel patch P = {P0, . . . , PL}) at a specific image level l and patch pixel
pj , the photometric error can be formalized as follows:

el,j(p, P, I,D) = Pl(pj)− a Il(p sl +Dpj)− b, (11.33)

where Il is the image at the pyramid level l and sl = 0.5l is a scaling factor to account
for the down-sampling. The linear warping matrix D is used to map patch pixel
coordinates to image coordinates. Furthermore, inter-frame illumination changes are
taken into account by employing an affine intensity model composed of the scalars a
and b (both get marginalized out). Figure 11.3 depicts the photometric error between
a patch and its measurement in an image at a predicted location p.
If we minimize the squared error terms for a multilevel patch, we obtain a patch

alignment algorithm which is very similar to the well-known Kanade-Lucas-Tomasi
(KLT) feature tracker ([89, 120]). A slight difference is given by the fact that we
optimize over multiple image levels at once. The minimization can be solved by a
Gauss-Newton method which iteratively linearizes the optimization problem around
an estimated patch location p̂:

b(p̂+ δp, P, I,D) = A(p̂, I,D)δp+ b(p̂, P, I,D), (11.34)

where b(p̂, P, I,D) represents the stacked error terms from eq. (11.33) and A(p̂, I,D)
the corresponding Jacobian. The corresponding normal equations are then given by:

A(p̂, I,D)TA(p̂, I,D)δp = −A(p̂, I,D)T b(p̂, P, I,D), (11.35)

which can be solved for the correction δp. This is analogous to one iteration step of
the KLT feature tracker (but is not used as such in Rovio). In section 5.4 we will
demonstrate how eq. (11.34) is leveraged into the innovation term of the employed
IEKF.
Note that due to the scaling factor sl in eq. (11.33), error terms for higher image

levels will have a weaker corrective influence on the filter state or the patch alignment.
On the other hand, they exhibit increased robustness w.r.t. image blur or bad initial
alignment and thus strongly increase the robustness of the overall alignment method.

4.4 Detection and Scoring
The detection of new landmarks is based on the FAST corner detector ([115]) which
provides a large amount of candidate feature locations. After removing candidates
which are close to currently tracked features, we compute a patch gradient based score
for selecting new features which are added to the state. This basically represents an
adaptation of the Shi-Tomasi score ([120]) by considering the combined Hessian on
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Figure 11.3: Illustration of the (signed) photometric error between a pre-
viously extracted patch (green) and its projection into an image (measured,
red) at a predicted location p. The bottom left grey tone of the difference
patch represents 0. Only a single image level is depicted. This photometric
error can directly be used as the innovation term in an IEKF.
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multiple image levels, instead of only a single level. The combined Hessian can be
directly retrieved from the normal equations (11.35):

H = A(p̂, I,D)TA(p̂, I,D), (11.36)

where the minimal eigenvalue ofH corresponds to the adapted Shi-Tomasi score. The
advantage is that a high score is directly correlated with the alignment accuracy of the
corresponding multilevel patch feature. Instead of returning the minimal eigenvalue,
the method can return other eigenvalue based scores like the 1- or 2-norm. This is
useful in environments with scarce corner data, whereby also edge-shaped features
can be considered. Finally, the detection process is also coupled with a bucketing
technique to achieve a good distribution of the features within the camera frame.

5 Filter Framework

5.1 Iterated Extended Kalman Filtering
The regular Kalman filter can be interpreted as the recursive optimal solution to
the maximum likelihood estimation problem formulated over two subsequent time
steps ([5]). Analogously, the EKF can be associated with a nonlinear maximum
likelihood estimation and can be shown to yield the same result as the first iteration
step of a corresponding Gauss-Newton optimization. However, in contrast to its linear
counterpart, the EKF cannot guarantee to retrieve the optimal solution, whereby
linearization errors tend to become larger if the linearization point is further away
from the real solution. A possibility to improve this aspect is to make use of an IEKF
which is basically the recursive form of the Gauss-Newton optimization ([5]).
A nonlinear discrete time system with state x, innovation term y, process noise

w ∼ N (0,W ), and update noise n ∼ N (0,R) can be written as:

xk = f(xk−1,wk−1), (11.37)
yk = h(xk,nk). (11.38)

In eq. (11.38) we made use of an implicit formulation of the measurement model which
directly yields the Kalman innovation yk. This provides more flexibility in the design
by allowing the direct integration of residuals. Given an a-posteriori estimate x+

k−1

with covariance P+
k−1, the prediction step of the IEKF is analogous to the EKF and

yields the a-priori estimate at the next time step:

x−k = f(x+
k−1,0), (11.39)

P−k = F k−1P
+
k−1F

T
k−1 +Gk−1W k−1G

T
k−1, (11.40)

with the Jacobians

F k−1 =
∂f

∂xk−1
(x+
k−1,0), (11.41)

Gk−1 =
∂f

∂wk−1
(x+
k−1,0). (11.42)
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Analogously to the EKF, the update step of the IEKF can be linked to an optimiza-
tion problem considering the deviation from the prior x−k and the innovation term
h(x+

k ,0):

min
x+
k

‖x+
k � x

−
k ‖P−−1

k

+ ‖h(x+
k ,0)‖(JkRkJTk )−1 . (11.43)

However, in contrast to the EKF, an iterative scheme is employed where the problem
is linearized around continuously refined linearization points x+

k,j starting with x+
k,0 =

x−k :

min
∆xk,j

‖x+
k,j � x

−
k +L−1

k,j∆xk,j‖P−−1

k

+ ‖h(x+
k,j ,0) +Hk,j∆xk,j‖(JkRkJTk )−1 (11.44)

where the Jacobians are updated every iteration step:

Hk,j =
∂h

∂xk
(x+
k,j ,0), (11.45)

Jk,j =
∂h

∂nk
(x+
k,j ,0), (11.46)

Lk,j =
∂(x−k �∆x)

∂∆x
(x+
k,j � x

−
k ). (11.47)

The Jacobian Lk,j of the boxplus operator is required to account for the special
linearization of certain states such as rotations or bearing vectors. Its inverse L−1

k,j is
the corresponding Jacobian of the boxminus operation w.r.t. to the left operand and
is required to linearize the deviation of the prior in (11.44). Please note that due to
the special notion of differentials on manifolds the Jacobian Lk,j is a square matrix
(see eq. (11.11)). Also, in the case of pure vector spaces this Jacobian will be the
identity matrix.

Setting the derivative of the cost function (11.44) w.r.t. the incremental update
∆xk,j to zero and employing some matrix calculus yields the following recursive so-
lution:

Sk,j = Hk,jL
T
k,jP

−
k Lk,jH

T
k,j + Jk,jRkJ

T
k,j , (11.48)

Kk,j = LTk,jP
−
k Lk,jH

T
k,jS

−1
k,j , (11.49)

∆xk,j = Kk,j

(
Hk,jLk,j(x

+
k,j � x

−
k ) (11.50)

− h(x+
k,j ,0)

)
−Lk,j(x+

k,j � x
−
k ),

x+
k,j+1 = x+

k,j �∆xk,j , (11.51)

whereby the iteration is terminated when the update ∆xk,j is below a certain thresh-
old. Finally, the covariance matrix is only updated once the process has converged
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after n iterations:

P+
k = (I −Kk,nHk,n)LTk,nP

−
k Lk,n. (11.52)

Especially in setups with large initial uncertainties, the IEKF can provide a sig-
nificant gain in convergence and accuracy. Using a termination criteria based on the
magnitude of the performed correction, the computational overhead can be limited to
cases with large update corrections (e.g. the initial measurements of a newly included
landmark). Once the state has properly converged, the number of iterations can be
kept to a minimum and the computational effort remains similar to the regular EKF.

5.2 Filter Setup and State Definition
Similar to other visual-inertial filtering frameworks, the inertial measurements are
employed to propagate the filter state, while the visual measurements are processed
and integrated during the filter update step ([73, 79]). The proposed filter setup
differs in that it makes use of a fully robocentric formulation of the filter state, which
has previously been tested in vision-only approaches [25]. The advantage of this
formulation is that the position and yaw states, which are unobservable, can be fully
decoupled from the rest of the filter states. This decreases the noise magnitude and
improves the consistency of relevant states such as velocity or inclination angles. On
the other hand, noise from the gyroscope affects all states that need to be rotated
during the state propagation (see section 5.3). However, since the gyroscope noise is
often relatively small and because most states are observable, this does not represent
a significant issue.
The state of the filter is composed of the following elements (including N visual

landmarks):

x :=
(
r,v, q, bf , bω , c,z,µ0, . . . ,µN , ρ0, . . . , ρN

)
(11.53)

with:

• r := BrIB: robocentric position of IMU,

• v := BvB: robocentric velocity of IMU,

• q := qIB: attitude of IMU (map from B to I),

• bf : additive bias on accelerometer (expressed in B),

• bω : additive bias on gyroscope (expressed in B),

• c := BrBC : linear part of IMU-camera extrinsics,

• z := qCB: rotational part of IMU-camera extrinsics,

• µi: bearing vector to landmark i (expressed in C),

• ρi: distance parameter of landmark i.
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The generic parametrization for the distance di of a landmark i is given by the mapping
di = d(ρi) (with derivative d′(ρi)). In the context of this work we mainly tested the
inverse distance parametrization, d(ρi) = 1/ρi. A brief comparison with the regular
distance parametrization is provided in section 7.2.

Rotations (q,z) and bearing vectors (µi) are parametrized as detailed in section 3.2
and section 3.3. This means that quantities like differences, uncertainties, or errors
are represented as elements of a vector space with minimal dimension, i.e., 3D for
rotations and 2D for bearing vectors. By using the combined bearing vector and
distance parametrization, landmarks can be initialized in an undelayed manner and
can be integrated into the filter at detection time. The distance of a landmark is
initialized with a fixed value or, if sufficiently converged, with an estimate of the
current average scene distance. The corresponding covariance is set to a very large
value. In comparison to other parametrizations, we do not over-parametrize the 3D
landmark location estimates, whereby each landmark corresponds to 3 columns in
the covariance matrix of the state (2 for the bearing vector and 1 for the distance
parameter). This also avoids the need for re-parametrization ([126]).

A singularity-free parametrization of bearing vectors on the full unit sphere is essen-
tial here. It enables the proper representation of bearing vectors and their uncertainty
estimates even if outside the field of view of the camera. Furthermore, limiting the
validity of the parametrization to a certain region would render online camera-IMU
extrinsics calibration and multi-camera support more difficult.

5.3 State Propagation
The state propagation is driven by the proper acceleration measurement, f̃ = Bf̃B,
and the rotational rate measurement, ω̃ = Bω̃IB. Both measurements are modeled
as noise and bias affected leading to the following bias corrected but noise affected
estimates:

f̂ =f̃ − bf −wf , (11.54)
ω̂ =ω̃ − bω −wω . (11.55)

Together with the estimated camera linear velocity and rotational rate

v̂C =z(v + ω̂×c), (11.56)
ω̂C =z(ω̂), (11.57)

this yields the following set of continuous differential equations:

ṙ =− ω̂×r + v +wr, (11.58)

v̇ =− ω̂×v + f̂ + q−1(g), (11.59)
q̇ =− q(ω̂), (11.60)

ḃf = wbf , (11.61)

ḃω = wbω , (11.62)
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ċ = wc, (11.63)
ż = wz , (11.64)

µ̇i = N(µi)
T

(
ω̂C + n(µi)

× v̂C
d(ρi)

)
+wµ,i, (11.65)

ρ̇i = − n(µi)
T v̂C/d

′(ρi) + wρ,i. (11.66)

The term N(µi)
T projects a 3D vector onto the 2D tangent space at the bearing

vector µi (see Figure 11.1). Furthermore, g is the gravity vector expressed in the
world coordinate frame, and the terms of the form w∗ are white Gaussian noise
processes. The corresponding covariance parameters can either be derived from the
IMU specifications or can be tuned manually.
Note that the derivatives of bearing vectors and rotations lie within 2D and 3D

vector spaces, respectively. This is required for achieving a minimal and consistent
representation of the filter state and covariance. While most of the above derivatives
are relatively well known, the dynamics of the bearing vector and distance parameter is
a novelty in this work. We give a sketch of the corresponding derivation in section 9. It
relies on the assumption that a 3D point landmark F remains stationary with respect
to an inertial frame I:

IrIF = IrIC + q−1
CI (µ d(ρ)). (11.67)

In eq. (11.66) we can observe that the derivative of the distance parameter only
depends on the velocity in direction of the bearing vector. On the other hand, the
derivative of the bearing vector, eq. (11.65), is the sum of a velocity and rotational
rate effect, whereby the magnitude of the velocity effect is proportional to the inverse
distance of the specific landmark.
Using an appropriate Euler forward integration scheme, i.e., using the boxplus op-

erator where appropriate, the above time continuous equation can be transformed into
a set of discrete prediction equations which are used during the prediction of the filter
state. For the attitude, the rotational IMU-camera extrinsics and the bearing vectors
the discretization yields:

qk+1 =qk � (−∆t qk(ω̂k)),

= exp(−∆t qk(ω̂k))⊗ qk,

= qk ⊗ exp(−∆t ω̂k)⊗ q−1
k ⊗ qk,

= qk ⊗ exp(∆t(bω,k +wω,k − ω̃k)), (11.68)
zk+1 = zk �∆twz,k,

= exp(∆twz,k)⊗ zk, (11.69)

µi,k+1 = exp
(

∆t
((
I − n(µi,k)n(µi,k)T

)
ω̂C

+ n(µi,k)×
v̂C

d(ρi,k)
+N(µi,k)wµ,i

))
⊗ µi,k. (11.70)

The derivation of the bearing vector discretization is given in section 9.

149



Paper VII: IEKF-based VIO using Direct Photometric Feedback

In typical visual-inertial sensor setups, the IMU measurements are often obtained at
a higher rate than the images. As the proposed propagation step is driven by the IMU
measurements this can result in a high computational burden. A classical approach
to mitigate this issue is to make use of IMU pre-integration techniques ([41]) in order
to merge multiple IMU measurements into a single prediction step. However, since
the duration between two consecutive images remains relatively small we employ a
simpler pre-integration approach where the Jacobian is evaluated based on the mean
of the IMU measurement. Thus, even if multiple IMU measurements are available
between two consecutive images, eq. (11.40) is evaluated only once. Compared to the
regular solution no notable performance loss could be observed.

5.4 Direct Innovation Term and Update
In section 4.3, we discussed how to construct a photometric error term based on the
pixel-wise intensity difference between a previously extracted patch and its predicted
location in a given image frame. Within an IEKF this can be directly used as inno-
vation term. However, for the multilevel patch format that we use, this would lead to
a 6× 6× 2 = 72 dimensional error term per patch inducing very high computational
cost. Fortunately, looking at eq. (11.34), one can observe that the entire error term
corresponding to a patch Pi and an image I is only dependent on the estimated pixel
coordinates pi = π(µi). Thus, the only direct filter state dependency of this error
term is given by the bearing vector and an equivalent reduced 2D error term can be
derived. This can be achieved by means of a QR-decomposition of the gradient matrix
in eq. (11.34):

A(pi, I,Di) = Q(pi, I,Di)R(pi, I,Di), (11.71)

=
[
Q1(pi, I,Di) Q2(pi, I,Di)

] [R1(pi, I,Di)
0

]
where the upper-triangular matrix R1(pi, I,Di) has full row-rank 2 for regular fea-
tures, row-rank 1 for line features, and goes towards 0 for uniform patches.

Considering the above decomposition, the innovation term for the jth iteration step
for a patch i yields:

yi,j = Q1(π(µ+
i,j), I,Di)

T b(π(µ+
i,j), Pi, I,Di). (11.72)

This has a maximal dimension of 2 and loses dimensions for degenerate cases like
line-shaped or uniform patches. Since this represents a left-multiplication with an
orthonormal matrix, the noise characteristics are assumed to be of the same magnitude
on every single error term. To account for potentially different noise properties of the
intensity errors, a weighting based scheme could be introduced. The Jacobian for the
innovation term is given by

Hi,j = R1(π(µ+
i,j), I,Di)

dπ

dµ
(µ+
i,j). (11.73)

Within the IEKF, the tracked landmarks are updated one after another, each un-
dergoing a certain number of iterations. While the robocentric state formulation
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moved parts of the nonlinearities from the update into the propagation step, signifi-
cant nonlinearities remain with the pixel intensity generation. The update iterations
are taking care of aligning the patches in the current image and, simultaneously, to
spread the gained information throughout the filter state. Thus, all the landmark
detection and tracking functionality is intrinsically contained in the filter. In the case
where a landmark’s predicted image coordinates exhibit a large uncertainty (e.g. for
newly initialized landmarks), multiple hypothesis are select within the uncertainty
bound. Figure 11.4 provides a simplified sketch of the tracking concept. An advan-
tage of this is that non-corner features can be properly tracked by considering the
prior provided by the IMU-driven process model. In the case of line-shaped features,
for instance, a corrective update only applies along the perpendicular direction to the
line, while the other direction remains unaffected. In the degenerate case of uniformly
textured patch features, the iteration finishes after one step without changes to the
filter state (since no information is contained in the patch). Figure 11.5 shows the
tracked landmarks in a frame. Each iteration for a landmark update is depicted by a
yellow dot. Especially for the newly added landmarks (the four most right ones), the
initial uncertainty (yellow) ellipse and the number of iterations are increased.
To account for moving objects or other disturbances, a simple Mahalanobis based

outlier detection is implemented within the update step. It compares the obtained
innovation residual with the predicted innovation covariance and rejects the mea-
surement whenever the weighted norm exceeds a certain threshold. This method
inherently takes into account the covariance of the state and measurements. It also
considers the image gradients and thereby tends to reject gradient-less image patches
more readily. In addition, a threshold on the total intensity error of a patch is intro-
duced, whereas a patch measurement is rejected if the threshold is exceeded. Also, a
landmark quality check is performed by sampling 4 nearby locations and evaluating
the corresponding innovation residual. Tracking tends to be bad if not at least two
locations exhibit a significantly higher residual than the matched landmark (see the
bottom left landmark in Figure 11.5).
The computation of the photometric error relies on an image patch from a previous

frame. If parts of this image patch have influenced the filter state in the past, the
resulting photometric error will exhibit a correlation with the current filter state. This
correlation is not modeled in the current framework and doing so would significantly
increase the computational burden (one possible approach would be to co-estimate
the patch pixel intensities). This is an issue which is also commonly encountered
in dense approaches where cross-correlations between localization and mapping are
often neglected. In our case however, the cross-correlation with the environment
geometry is tracked and accounted for and the problem is limited to the texture of
the environment. A refinement step on the patch intensities could reduce the pixel
intensity noise and thereby reduce this effect. Investigations in this direction will be
part of future work.

5.5 Landmark Management
The IEKF does not exhibit good scalability in terms of the size of the filter state.
Consequently, only a limited number of landmarks can be tracked and they have to
be selected and managed carefully in order to obtain good results. In section 4.4,
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1 2 3 4

Figure 11.4: Overview of the landmark tracking concept. Step 1: a patch
feature (blue square) is extracted for the landmark (blue dot). Step 2: the
estimated landmark image coordinates (yellow dot) and the corresponding
covariance (yellow ellipse) are provided by the filter’s IMU-driven process
model. Step 3: depending on the magnitude of the uncertainty multiple
candidates (yellow dots) are initialized. Step 4: for each candidate an iterative
update (black arrow) is performed which integrates patch intensity errors
together with the motion prior. Outlier detection and quality checks are
performed to select the best valid tracking (green vs red squares). Steps 3
and 4 are completely integrated in the iterative filter updates.

we outlined an intensity based scoring which describes how informative the content
of a patch can be. This is mainly used to decide what landmarks are added to the
filter state. In addition to this, we maintain tracking and visibility information of
a landmark, and a combined heuristic quality score is computed for each landmark
which is being tracked. The quality score is composed of three sub-scores:

• The global quality: how often has a landmark been tracked since initialization

• The local quality: how often has a landmark been tracked when expected to be
in the field of view (limited to recent frames)

• The local visibility: how often was the landmark in the field of view (limited to
recent frames)

If a landmark exhibits a high global quality, i.e. it has often been tracked since initial-
ization, the pruning threshold on the two local sub-scores is kept more conservative.
Using an adaptive thresholding, we can control the total amount of landmarks which
are currently in the frame. E.g. if we reach the maximal number of landmarks in the
filter state and only a minor part is properly tracked, we make the landmark pruning
stricter to get space for new landmarks.

6 Multi-Camera Setup

One issue with monocular visual-inertial setups is that they require sufficient motion
in order to properly estimate the complete filter state. Also, a particular camera can
be blind at times, because of fast lightning changes or very bad texture. Adding an
additional camera can therefore improve the robustness of the overall system. In the
case where a multi-camera setup has overlapping fields of view, multiple measurements
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Figure 11.5: Live screenshot of the tracked landmarks. The projected
patches (final iteration) are depicted by squares (green if successful, red if
rejected). The predicted uncertainty of the landmark location are repre-
sented by yellow ellipses and each update iteration candidates is marked by a
yellow dot. The final location is highlighted with a small red dot surrounded
by four green or red dots. The surrounding locations are checked for higher
innovation residuals (green). If more than two surrounding locations exhibit
no increased innovation residuals (red) then the match is rejected (e.g. the
bottom left landmark).

of the same landmark are received at a given time. This provides information about
the landmark’s distance and the extrinsic calibration of the corresponding camera
frames. Still, some excitation of the states is necessary to estimate the calibration
parameters. Once the calibration estimates have converged, the distance of landmarks
in overlapping fields of view becomes observable, even if the sensor remains stationary.
New landmarks are still detected in single camera frames only and the parametriza-

tion of the corresponding bearing vector and distance parameter is kept with respect
to the detection frame. In the case where the newly detected landmark can be seen
in more than one camera frame, the initial distance estimate can be computed by
triangulation.
For all subsequent time steps, the landmarks get projected in every camera frame.

If the predicted pixel coordinates lie within a camera frame, an iterative update is per-
formed (see section 5.4). If the measurement camera frame Cm (where the landmark
is observed) is not the same as the detection camera frame Cd (where the landmark is
parametrized), the corresponding bearing vector must be transformed into the mea-
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surement frame first. This can be done by

Cmµi = zm(cd + z−1
d (Cdµi d(ρi))− cm) (11.74)

where the terms of the form c∗ and z∗ represent the linear and rotational extrinsic
IMU-camera calibration of the corresponding camera. Together with the parame-
trization of the landmark location (Cdµi, ρi), they are contained in the filter state.
This represents the main difference to the monocular setup, whereas the innovation
Jacobian in eq. (11.73) has to be right-multiplied by the Jacobian of eq. (11.74).

7 Experimental Results

The evaluation of the presented approach and its implementation, Rovio, is split into
three parts. Whenever possible, the publicly available EuRoC datasets are employed
([20]). In the first set of experiments, the filter convergence is analyzed. One of the
most critical quantities in this respect is the estimated distance of the landmarks which
is unknown at initialization. Having good convergence properties is crucial for the
performance of the filter. The convergence of different online calibration parameters
such as IMU-camera extrinsics and IMU biases is also analyzed.

In a second part, we investigate the performance of the approach in terms of accu-
racy. We compare different filter parameters with each other and evaluate the results
against the state-of-the-art visual-inertial odometry framework Okvis ([84]). Basic
comparison with the frameworks of [41] and [136] is also provided. Finally, results
are presented where Rovio is used within a feedback control loop on a MAV (Micro
Aerial Vehicle) performing aggressive maneuvers. In this context, we investigate the
control critical estimates such as velocity and inclination angles. This also includes
an analysis of the estimated covariances.
All experiments are performed with the same selection of filter parameters except

where explicitly mentioned. Our baseline implementation only employs the second
and third image pyramid level. While taking into account the first image level can
increase accuracy, it is not really useful for highly dynamic and difficult cases. The
same parameters are selected for the monocular and stereo setup. We use a patch size
of 6×6 together with 25 filter landmarks. Some parameter variations are investigated
in section 7.2.

7.1 Convergence Evaluation
As landmarks are initialized with a very high distance uncertainty, the convergence
of the corresponding covariance is a critical aspect. While a decreasing uncertainty
is desired since it allows for more accurate tracking of the sensor pose, spurious and
inconsistent convergence must be avoided. Especially in the monocular case, the
uncertainty should only be decreased if the sensor is moving and sufficient baseline is
acquired. In order to investigate the consistency of the distance estimates, a dataset
was recorded where a horizontal surface was the only visible object (the camera was
directed towards the floor). The virtual groundtruth of the sensor height is inferred
by averaging over the height of all converged landmarks (see Figure 11.6). This allows
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Figure 11.6: Dataset observing a horizontal plane with a monocular setup.
Estimated landmark heights (grey) together with their average (red) and em-
pirical standard deviation (red dashes, 1-σ). The groundtruth (blue) is esti-
mated by averaging the height estimates once converged. In the top plot, the
average of the estimated standard deviation over multiple landmark heights
is provided (green dashes, 1-σ). The bottom plot depicts the normalized error
(height error divided by estimated standard deviation) together with the 1%
confidence threshold.

to evaluate the convergence of the landmarks heights (which are strongly coupled to
the distance estimates).

Figures 11.6 and 11.7 show the estimated height of the tracked landmarks over time.
Since the landmarks are initialized at a fixed distance, which in this experiment tends
to relate to points below the surface, a significant estimation error can be observed at
initialization. Due to the motion of the sensor, however, the height estimates quickly
converge. In the top part of both figures, the estimated standard deviation (average
of the estimated standard deviations) is compared against the measured standard
deviation (empirical standard deviation of the actual height errors). In both cases,
the estimated standard deviation encompasses the measured one. Since we averaged
over many landmark tracks, this is not a strict check of consistency but still shows
that the estimated covariance must lie within a reasonable range on average. A better
analysis is provided in both lower plots which depict the normalized height error
(height error divided by estimated standard deviation). In both experiments we can
show that the normalized error remains below the 1% confidence threshold, i.e., there
are no unreasonably large height estimate errors if compared to the corresponding
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Figure 11.7: Dataset observing a horizontal plane with a stereo setup.
Stereo initialization is disabled. Estimated landmark heights (grey) together
with their average (red) and empirical standard deviation (red dashes, 1-σ).
The groundtruth (blue) is estimated by averaging the height estimates once
converged. In the top plot, the average of the estimated standard deviation
over multiple landmark heights is provided (green dashes, 1-σ). The bottom
plot depicts the normalized error together with the 1% confidence threshold.

uncertainty estimates.
The results of the monocular and the stereo setup are similar due to the significant

amount of motion present in the recorded data. The final standard deviation of the
height errors amounts to 0.0119m for the monocular setup and 0.0073m for the stereo
setup.
Other parameters which have to converge for a proper functioning of the filter are

the online calibration parameters, which are composed of the IMU biases and the IMU-
camera extrinsics. The later should remain nearly constant for different datasets with
the same sensor setup, and we can thus evaluate the extrinsics on multiple datasets
and compare the values they have converged to. Figure 11.8 shows the final estimate
of the rotational and translation part of the extrinsics if running the proposed filter on
all 11 EuRoC datasets. To make the task more difficult, the initial values were selected
as zero translation and closest orthogonal rotation (corresponding to all zero angles in
the figure). The resulting estimates, including uncertainties, seem to exhibit a large
amount of accordance between the different datasets and between monocular and
stereo setup. In comparison to the first half of the datasets, the second half includes
datasets with less motion which pose more difficulties for a proper estimation of the
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Figure 11.8: Final camera-IMU extrinsics estimates for all 11 EuRoC
datasets for monocular and stereo setups. The length of the lines corresponds
to the 3-σ bounds of the estimates. The order of the lines corresponds to the
datasets V1_01–03, V2_01–03, and MH_01–05.

extrinsics. Consequently, the estimated uncertainty (length of bar) remains larger as
well. In general, the stereo setup only brings a marginal reduction of the uncertainties
as long as sufficient motion is available. On the contrary, the stereo setup exhibits
more difficulties for converging to the proper extrinsic calibration, as can be seen in the
lower plot where a single roll angle converges to a biased value. This is due to wrong
stereo matches, whereby a single wrong match can bias the estimation, especially if
there is not sufficient motion for correcting the wrong convergence.

For completeness, we also investigate the convergence of the IMU bias estimation.
We only evaluate them on a single dataset (V1_03) since they exhibit intra-dataset
variability. Since we have a stereo setup, we can perform two distinct monocular
as well as one stereo evaluation with the same dataset. The results are depicted in
Figures 11.9 and 11.10, where the estimate over time is plotted together with the 3-σ
bounds. In particular, the gyroscope biases seem to converge very rapidly and exhibit
only a very small variability. Also the accelerometer biases converge with sufficient
excitation of the system. They typically converge faster along the gravity direction
which is given by the x-axis at the beginning of the dataset.
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Figure 11.9: Estimated gyroscope biases for dataset V1_03. Estimates
(darker lines) together with the 3-σ bounds (brighter lines). Results for two
monocular (left and right camera) and one stereo evaluation are depicted.
The estimates converge very quickly and are less motion dependent than the
accelerometer biases.

7.2 Accuracy Evaluation

Accuracy remains an important criteria for visual-inertial odometry and can be eval-
uated quantitatively. To a certain extent, it can also serve as a surrogate measure for
the well-functioning of an approach. Here we evaluate different parameter setups in
order to determine the influence of different aspects of our approach. We also provide
a comparison against the state-of-the-art visual-inertial odometry framework Okvis
([84]). Most evaluations are performed on the EuRoC dataset V1_03. To allow com-
parisons with other visual-inertial frameworks we also provide the results obtained on
the long circular dataset which was used by [84], [41], and [136].
To evaluate accuracy we contemplate the root mean square estimation error per

traveled distance ([49]). For instance, if we want to evaluate the accuracy after 10m
of traveled distance and have a dataset which is 80m long, we split the obtained
estimation results into 8 chunks of 10m. The chunks are then aligned with the corre-
sponding bit of groundtruth data and the accumulated error after 10m is evaluated.
Box-plots are employed to depict the corresponding median and quartiles. Assuming
that the odometry output exhibits random walk drift with increasing traveled distance
(which is often a good approximation as long as the yaw error remains small), the
observed errors should increase as square root of the traveled distance. We select the
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Figure 11.10: Estimated accelerometer biases for dataset V1_03. Esti-
mates (darker lines) together with the 3-σ bounds (brighter lines). Results
for two monocular (left and right camera) and one stereo evaluation are de-
picted. The accelerometer bias converges quicker along the gravity direction
which is mostly along the x-axis.

spacing of the traveled distance samples quadratically, and should therefore observe
a linear error increase in the plots. The following results can vary depending on the
selected dataset and should not be over-interpreted.

Influence of Number of Landmarks and Patch Size

Since the total number of landmarks in the filter state has a major influence on
the computational cost of the framework, this is the first parameter that we evaluate.
Figure 11.11 shows the position error with respect to the traveled distance for different
amounts of landmarks. Surprisingly, increasing the number of landmarks does not
improve the accuracy of the output once a certain amount of landmarks is reached
(roughly 20). While for vision-only systems it has been shown that the number of
landmarks is a crucial parameter ([130]), it seems to be different for visual-inertial
systems. In visual-inertial systems the IMU provides a good prior on the motion of
the systems and basically needs to be stabilized using recurrent stationary landmarks
observations. Consequently, the amount of required landmarks could be depending on
the quality of the employed IMU, whereas an IMU of lower quality would benefit more
from higher landmark counts. Within this context we also noticed a relatively strong
influence of non-rejected outliers on the output’s accuracy, whereas we selected the
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Figure 11.11: Accumulated position error over traveled distance for differ-
ent landmark counts. The number of landmarks from left to right are 10, 15,
20, 25 (red), 30, 35, 40, 45, 50. The patch size is fixed to 6. The median and
the quartiles are depicted.

outlier rejection parameters to be rather strict. We noticed that properly tracking few
high-quality landmarks often leads to better results than tracking many landmarks
with an increased risk for non-rejected outliers.
In our previous work ([14]) we fixed the patch size to 8×8. Here, we also investigate

smaller patch sizes since this reduces the computational load. Results for patch sizes
down to 2 × 2 are depicted in Figure 11.12. It shows that we can reduce the patch
size without significantly losing accuracy. Only the case with 2 × 2 patches exhibits
notably increased errors. This could probably be tackled by increasing the amount
of pyramid levels which is similar to having larger patches. All in all we propose to
employ the combination of patch size 6×6 together with 25 filter landmarks which we
highlight in red in all box-plots. On a single core of an Intel R© CoreTM i7 at 2.4MHz
the resulting framework uses 30-50% of the CPU load.

Effect of Inverse Distance, Photometric Error, and Update Iterations

We investigate the contribution of key components of the proposed framework: the
inverse distance parametrization, the update iterations, and the photometric error
feedback. In order to assess the effect of inverse distance parametrization we imple-
ment the framework with a regular distance parametrization. For the update itera-
tions we limit the update to a single iteration step. The photometric error feedback
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Figure 11.12: Accumulated position error over traveled distance for differ-
ent patch sizes. The patch sizes from left to right are 2, 4, 6 (red), 8. The
landmark count is 25. The median and the quartiles are depicted.

is compared to the traditional reprojection error. This is slightly more involved as
a an explicit feature tracker is required. Here we implement the KLT tracker men-
tioned in section 4.3 (including initial guess from the IMU propagation and using
patch warping). In all experiments, the settings are kept as similar as possible. For
the reprojection error a different measurement covariance is required, which is tuned
to achieve best performance in terms of accumulated position error on the evaluation
dataset (V1_03).

The results are depicted in Figure 11.13. The use of a regular distance parametri-
zation leads to significantly increased tracking error. This is due to the less accurate
stochastic model on the distance if compared to inverse distance parametrization and
confirms previous results ([98]). The EKF implementation exhibits only a slightly
increase error metric. This indicates that a single update is often sufficient for proper
tracking. This may become more critical if the prediction of the landmark location is
less accurate, such as when the initial landmark distance estimate is bad or in cases
with high linear velocities. Also the reprojection error based implementation does
not lead to much larger tracking error. The reason for this are the abundant corner
features in the dataset which are relatively well captured by the regular reprojection
error. In the extreme case were no corner features are available (see Figure 11.14) the
KLT tracker fails and the advantage of the inherent feature tracking becomes more
evident.
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Figure 11.13: Accumulated position error for different Rovio setups. The
proposed Rovio setup (red) is compared to an implementation with regular
distance parametrization (grey), an implementation without update itera-
tions (blue), and an implementation which uses the reprojection error instead
of the photometric error feedback (green). While overall the proposed setup
exhibits the smallest tracking error, only the setup with the regular distance
parametrization shows a significant accuracy loss.

Comparison with Stereo Setup and Okvis

Figure 11.15 summarizes multiple results. The baseline monocular and stereo Rovio
setups are compared against the stereo Okvis framework. When comparing monocular
and stereo setups, very similar tracking errors can be observed. This observation
can be dataset dependent, but in datasets with a lot of motion (which is the case
here), the performance of both setups tends to be very similar. The last set of box-
plots corresponds to the results obtained with Okvis, which is the open-source release
version of the work of [84]. For this dataset, the performances are comparable and
show that our approach can compete with state-of-the-art visual-inertial frameworks.
Finally, the accuracy of the presented approach was also evaluated on the 1.4 km

long circular dataset employed by [84], [41], and [136]. Figures 11.16 and 11.17 show
the position error and the yaw error over traveled distance for the standard monocular
and stereo Rovio setups as well as for Okvis. The performance of Rovio is slightly
inferior to Okvis for the 360m of traveled distance. Again, the performance is strongly
depending on the selected tuning parameters which were kept constant for all experi-
ments. [41] and [136] both provide results which show 0.3m position error after 360m.
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Figure 11.14: Tracking behavior without strong corner features. Snapshot
taken at the end of a 20 s dataset with lines only. The inherent feature
tracking can handle such situations due to the additional prior it receives
from the IMU-driven state propagation.

Caution should be taken when interpreting these results since only 3 non-overlapping
segments of length 360m are contained in the 1.4 km long dataset (low statistical
significance). Rovio seems to perform better for shorter distances and shows similar
performance to all other visual-inertial frameworks, especially for a traveled distance
of 10m (n=140), where it exhibits a median error of less than 0.1m. One reason for
the decreased long term performance can be found in the increased yaw error which
has a strong impact on the position performance for longer distances.
We observed that the above error could be further reduced by choosing stricter

outlier rejection parameters and including the first pyramid level into the residual
computation (below 0.4m for 360m). In the end, however, large scale accuracy
should be provided by an enclosing back-end system performing loop closures and
re-localization, rather then over-tuning the front-end visual-inertial odometry at the
cost of increased computational costs and lower overall robustness.

7.3 Robust MAV Control
In this final evaluation section we investigate the applicability of Rovio for feedback
control on a MAV for fast aggressive flights under bad lighting conditions and motion
blur. The system is initialized on the ground and remains stationary for 30 s. After
take off, it performs three fast circular loops before landing at the same location. The
trajectory’s position and attitude are depicted in Figures 11.18 and 11.19, respectively.
The 3-σ bounds for the estimates are plotted as well. The observable roll and pitch
angles very quickly converge from their initially large uncertainties and accurately
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Figure 11.15: Accumulated position error over traveled distance for a
monocular and a stereo Rovio setup as well as for Okvis. Red: standard
monocular Rovio (6×6 patches, 25 landmarks). Blue: standard stereo Rovio
(6 × 6 patches, 25 landmarks). Green: stereo Okvis with online parameter
estimation. All frameworks exhibit similar tracking errors.

track the MAV’s inclination angles after take off. The global yaw angle and positions,
on the other hand, accumulate uncertainty over time, what confirms the inherent
unobservability of those states. All in all, the experiment shows that Rovio can
handle fast motions and difficult scenes while providing a reliable state estimation for
feedback control of an autonomous MAV.
Figure 11.20 shows the robocentric velocity of the MAV. Due to the robocentric

formulation of our filter, the observable states are entirely decoupled from the unob-
servable states. Hence, the uncertainties are bounded and the estimation error remains
minimal which is essential for feedback control. Additionally, velocity estimates are
provided where Rovio was reset every 5 s. The estimates very quickly converge to
the true velocities for all resets. This highlights the very simple and robust initializa-
tion of our robocentric filtering approach where ego-motion estimates are immediately
available.

8 Conclusion

This paper presented an IEKF-based framework which tightly fuses inertial measure-
ments and image data. The originality and strength of the proposed approach lie in its
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Figure 11.16: Accumulated position error over traveled distance for the long
circular dataset. Red: baseline monocular Rovio. Blue: baseline stereo Rovio.
Green: stereo Okvis with online parameter estimation.

fully robocentric formulation combined with the direct feedback of photometric error
as the Kalman innovation term. This leads to a more robust implementation, since the
observable states are not influenced by the growing global covariance. We introduce
an iterative update scheme which inherently takes care of landmark tracking. While
simplifying the structure of the overall framework, data association is robustified by
the tight coupling with the IMU-driven process model. The employed minimal repre-
sentations of rotations and bearing vectors improve the numerical consistency of the
approach and reduce the computational effort. The extensive experimental evaluation
shows that the presented approach can compete with state-of-the-art visual-inertial
fusion techniques. Interestingly, our approach achieves comparable ego-motion esti-
mation accuracy with a significantly lower landmark count. Robustness with respect
to fast motions and bad lightning conditions as well as the instantaneous initializa-
tion procedure where demonstrated in a real autonomous MAV flight experiment.
Additional features, such as optional GPS measurements, are included in the updated
version of the publicly available open-source software package 1.

1https://github.com/ethz-asl/rovio
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Figure 11.17: Accumulated yaw error over traveled distance for the long
circular dataset. Red: baseline monocular Rovio. Blue: baseline stereo Rovio.
Green: stereo Okvis with online parameter estimation.

9 Bearing Vector Calculus

Assuming a stationary 3D point landmark F with bearing vector µ and distance
parameter ρ, the corresponding differential equations can be obtained by totally dif-
ferentiating the kinematics:

d

dt

{
IrIF = IrIC + q−1

CI (µ d(ρ))
}
. (11.75)

For this we requires the following partial differentials:

d

dt
(IrIC) = IvC , (11.76)

∂

∂qCI
(q−1
CI (µ d(ρ))) =− q−1

CI (µ d(ρ))×C(q−1
CI ), (11.77)

=−C(q−1
CI )µ×d(ρ), (11.78)

d

dt
qCI = ωC , (11.79)

∂

∂µ
(q−1
CI (µ d(ρ))) = C(q−1

CI )µ×N(µ)d(ρ), (11.80)
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Figure 11.18: Estimated MAV position for aggressive flight. Red: esti-
mated position. Light-red: 3-σ bounds. Blue: Vicon groundtruth. The
unobservable position accumulates uncertainty over time.

∂

∂ρ
(q−1
CI (µ d(ρ))) = C(q−1

CI )µd′(ρ). (11.81)

In eq. (11.77) we use the chain rule together with eqs. (11.14) and (11.15), in eq. (11.79)
we directly employed eq. (11.13), and eq. (11.80) relies on eq. (11.30). The total
differential then yields and can be simplified to (left multiplication with C(qCI)):

0 = IvC −C(q−1
CI )µ× ωCd(ρ) (11.82)

+C(q−1
CI )
(
µ×N(µ)µ̇ d(ρ) + µ d′(ρ) ρ̇

)
,

0 = vC − µ×ωC d(ρ) (11.83)

+ µ×N(µ)µ̇ d(ρ) + µ d′(ρ) ρ̇.

From this the dynamics for the bearing vector and distance parameter can be obtained
by pre-multiplication with 1/d(ρ)N(µ)Tµ× and 1/d′(ρ)µT respectively:

µ̇ = N(µ)T
(
ω̂C + n(µ)×

v̂C
d(ρ)

)
+wµ, (11.84)

ρ̇ = − n(µ)T v̂C/d
′(ρ) + wρ. (11.85)

Here we used the identities N(µ)Tµ×µ× = −N(µ)T and N(µ)TN(µ) = I. Also,
some additive process noise has been added.
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Figure 11.19: Estimated MAV attitude for aggressive flight. The yaw-pitch-
roll decomposition is employed to separate the unobservable yaw from the two
inclination angles (only visualization). Red: estimated attitude. Light-red:
3-σ bounds. Blue: Vicon groundtruth.

Applying the Euler-forward discretization scheme on the continuous time differential
equation of the bearing vectors (11.65) yields:

µk+1 = µk � ∆t
(
N(µk)

T
(
ω̂C + n(µk)

× v̂C

d(ρk)

)
+wµ

)
,

µk+1 = exp
(

∆tN(µk)
(
N(µk)

T
(
ω̂C + n(µk)

× v̂C

d(ρk)

)
+wµ

))
⊗ µk,

µk+1 = exp
(

∆t
((
I − n(µk)n(µk)

T )
ω̂C + n(µk)

× v̂C

d(ρk)
+N(µk)wµ

))
⊗ µk.

(11.86)

Here we applied the definition of boxplus (11.23) and used the identity N(µ)N(µ)T

= I − n(µ)n(µ)T . The three components influencing the bearing vector prediction
can be observed here: the perpendicular part of the rotational rate, the linear velocity
weighted by the inverse distance, and the additive noise.
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Figure 11.20: Estimated MAV velocity for aggressive flight. Red: estimated
velocity. Light-red: 3-σ bounds. Blue: Vicon groundtruth. Grey: estimated
velocity when reseting Rovio every 5 s. Since the velocity is expressed in the
robocentric IMU coordinate frame it is fully observable and the uncertainty
remains bounded.
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