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Abstract
Sensitivity analysis assesses the influence of input parameters on the conclusion of

a model. Traditional analysis methods—based on evaluating the model at a reference
parameter vector and changing one parameter at a time—are local, linear, and usually
do not capture interactions among the parameters. By contrast, the global sensitivity
analysis that we present summarizes the parameters’ importance over a range of
values, fully capturing nonlinearities and identifying interactions. Specifically, we
propose Sobol’ indices, which are based on variance decomposition, and exemplify
their use with a standard real business cycle model.

Standard approaches to variance decomposition require a large number of model
evaluations. To overcome this, we present the state-of-the-art approach for calculating
Sobol’ indices, which is based on building a polynomial representation of the model
from a limited number of evaluations. In addition, we use this polynomial representa-
tion to evaluate the univariate effects, which are conditional expectation functions
that can be interpreted as a robust impact of a parameter on the model conclusions.

JEL classification: C60; C63
Keywords: computational techniques, uncertainty quantification, global sensitivity
analysis

∗Center for Economic Research, ETH Zürich, {dharenberg, vwinschel}@ethz.ch. We gratefully acknowl-
edge financial support of Swiss Re Foundation and ETH Zürich Foundation.

†Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, {sudret,
marelli}@ibk.baug.ethz.ch

1



1 Introduction
The question whether quantitative results of an economic model are robust is important,
not only for the credibility of a specific study but also for the general advancement of
a quantitative approach to economic analysis. Since many studies have implications for
policymakers, there is a strong case to be made for structured sensitivity analyses to become
an essential part of quantitative studies of economic models. Moreover, a sensitivity analysis
can go beyond simple robustness checks and answer more detailed questions such as which
parameters—and which interactions between them—are driving the conclusions derived
from an economic model. Such an importance ranking informs the researcher on which
parts to focus on when calibrating or extending a model, or the policymaker on which
parameters need further scrutiny.

The economic literature is well aware of the need for a structured sensitivity analysis
for quantitative models.1 However, with few exceptions, current practice involves a high
degree of subjective and somewhat arbitrary judgments. Typically, some parameters are
chosen and individually changed to a different value to assess the partial influence on the
results. Such “one-at-a-time” approaches tend to be unstructured and, more importantly,
suffer from the fact that they are only local, i.e., highly dependent on the chosen parameter
values. Moreover, they cannot account for possible interactions between parameters and
nonlinear relationships that are often encountered in economic models.

The present paper aims at improving on these deficiencies by transferring recent advances
in sensitivity analysis methods from the engineering and applied mathematics fields to
economics. Powerful methods for global sensitivity analysis have been developed in the
last decade as part of the more general topic of uncertainty quantification.2 In contrast
to the usual sensitivity analysis, which is local, such global measures consider a range of
parameter values. They fully account for the nonlinearity in the mapping from parameters
to results, and allow for a decomposition into a direct effect and indirect effects through
interactions between parameters. The methods we propose are easy to deploy since they
are accessible as freely available software toolboxes and treat the economic model as a black
box, i.e., they are non-intrusive and require no changes to existing code.

Many global sensitivity analysis methods are described in the literature, characterized
1See Leamer (1985), Kydland (1992), Canova (1995), Hansen and Heckman (1996), among others, who

advocate a structured sensitivity analysis. Canova (1994) and Gregory and Smith (1995) propose global
sensitivity analysis as a means to partly answer to the statistical weaknesses of calibration.

2See, e.g., Sudret (2007) or Borgonovo and Plischke (2016) for an overview.
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by varying degrees of complexity, as well as underlying assumptions.3 In this paper we are
interested in the class of importance measures, as our aim is that of providing a robust
quantitative assessment of the importance of each of the input parameters with respect
to the model outcomes. Arguably one of the most widely accepted importance measures
in the engineering and applied maths communities is variance decomposition. Based on
the functional model decomposition introduced in (Sobol’ (1993)), variance decomposition
allows one to compute so-called total Sobol’ indices, which represent the fraction of the
variance of the outcome that is explained by each parameter. Moreover, higher-order Sobol’
indices identify the contributions due to the joint effects of groups of parameters at a
time, thereby exposing interactions in an economic model. As a result, we get a complete,
global importance ranking of all parameters and their interactions, which can be helpful
for interpreting model mechanics, as well as guiding model calibration and further model
development.

The global approach we propose starts by representing the uncertainty about each
parameter by a (potentially bounded) probability distribution. This parameter uncertainty
is propagated through the economic model by repeated evaluation at randomly drawn
parameter vectors. The required sampling from the parameter distributions could be done
by Monte Carlo simulation. However, due to the slow convergence properties of Monte
Carlo simulations, a very large number of draws would be required, in particular if higher-
order Sobol’ indices are to be estimated. We overcome this problem by approximating the
mapping from parameters to quantities of interest with a so-called sparse polynomial chaos
expansion. The Sobol’ indices are then computed analytically from the coefficients of the
polynomial with high accuracy and at no additional cost (see Sudret (2008)). Intuitively,
the efficiency gain of polynomial chaos expansion over Monte Carlo simulation is similar to
the gain of (adaptive) quadrature over Monte Carlo integration.

We exemplify the approach for the canonical Real-Business Cycle (RBC) model with
capital adjustment costs. This model has been widely studied and is well understood.4

Following the RBC literature, we focus on two quantities of interest, i.e., endogenous
outcomes: First, because of its simplicity, average production, and second, the ratio of the
variance of log production in the model over its empirical counterpart. This second variable,
which we will refer to as the variance ratio, has often been employed to assess how much

3See Iooss and Lemaître (2014) for a comprehensive review.
4For example, Aruoba, Fernández-Villaverde, Rubio-Ramírez, and Rubio-Ramírez (2006) use it to

compare different solution methods. Den Haan, Judd, and Juillard (2011) do the same for the multi-country
extension.
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of the observed fluctuations can be explained by the model (see, e.g., Canova (1995) or
Eichenbaum (1991)).

We find that the local sensitivity measures typically employed in economics—often under
the heading of robustness—can be highly misleading. For example, the relative importance
of variance and autocorrelation of total factor productivity (TFP) shocks in determining
the variance ratio flips depending on which parameter vectors are considered. Of course,
we know that it is the combination of both that drives the unconditional variance of TFP
and production, but this interaction cannot be picked up by a local measure where one
parameter at a time is changed individually. We also perform a kind of scenario analysis,
which—belonging to the local methods—is not able to identify interactions or nonlinearities
either. By contrast, the global Sobol’ indices we compute establish an unambiguous ranking
of autocorrelation and standard deviation and accurately quantify the contribution of the
interaction between the two parameters. More generally, our global analysis shows that only
few parameters and interactions matter for each quantity of interest, even though—being a
general equilibrium model—all parameters interact in theory. Therefore, when calibrating
such an RBC model, a researcher can focus on a small subset of the parameters.

Finally, we consider the univariate effect of each parameter on the quantities of interest.
These univariate effects are conditional expectations functions of a parameter that can be
directly computed from the polynomial representation. They are of interest to economists
because they show the direction of change and can be interpreted as a robust parameter
impact under parameter uncertainty. Thus, they can be very useful for policy analysis.

In the economics literature, there are only few papers that perform a global sensitivity
analysis (GSA). An early example is Harrison and Vinod (1992) who assume distributions
over the elasticities of a static, deterministic general equilibrium model of the macroeconomy
to study robustness. A specific field where GSA has received a bit more attention is the
economics of climate change. Anderson, Borgonovo, Galeotti, and Roson (2014) compute
various global sensitivity indices for the DICE Model of Nordhaus (2008). Dietz, Gollier,
and Kessler (2015) study the elasticity of climate damages with respect to a change in
aggregate consumption. Saltelli and D’Hombres (2010) show that the sensitivity analysis of
the Stern (2007a) report is not robust.

Canova (1994, 1995) proposes a global sensitivity analysis as the central step to put
the calibration analysis that is frequently performed in macroeconomics onto a statistically
more rigorous footing. He analyzes the RBC model and puts great effort into specifying the
distributions over the parameters, for which he uses existing studies. All of the above papers
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rely on Monte Carlo simulations and therefore cannot compute (accurately) interactions or
univariate effects.

Ratto (2008) advocates the use of Kalman-filtering to accelerate standard Monte Carlo
estimation of the Sobol’ indices to analyze DSGE models. He uses the high dimensional
model representation from Sobol’ (1993) to represent univariate effects. The main advantage
of polynomial chaos expansions as proposed in the present paper lies in the very fast
convergence rate in the estimation of Sobol’ indices (Sudret (2008), Le Gratiet et al. (2016)).
In addition, the presented methodology is non-intrusive and therefore suitable for any
kind of economic model of arbitrary complexity. We use the polynomial approximation to
identify interactions and calculate statistical moments as well as the probability density of
the quantities of interest.

The paper is structured as follows: in Section two, we introduce a general framework for
uncertainty quantification, followed by the theory and numerical techniques employed in
global sensitivity analysis. Section three shortly presents the economic model and Section
four the parameterization. In Section five, we present and discuss results for local sensitivity
analyses, and in Section six for our global sensitivity analysis. Section seven concludes.

2 Uncertainty Quantification Framework

2.1 Methods for Uncertainty Quantification and Sensitivity Anal-
ysis

2.1.1 Introduction

Uncertainty quantification aims at identifying the sources of uncertainty or lack of knowledge
that can affect parameters of a model and, subsequently, the predictions obtained from this
model. In this paper we call the computational model a mapping:

θ ∈ Dθ ⊂ RM 7→ y =M(θ) ∈ RQ. (1)

For the sake of simplicity in the presentation, we assume in this section Q = 1, i.e., we
consider one single scalar output quantity of interest (QoI) y. Due to uncertainties in the
model parameters, the latter are represented by a random vector Θ of prescribed joint
probability density function (PDF) fΘ defined over a probabilistic space {Ω, F , P}, where
Ω is the space of outcomes, F is the associated σ-algebra and P is the probability measure
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associated with the PDF fΘ. For instance, without any further information, the various
input parameters {Θi, i = 1, . . . ,M} may be considered as statistically independent, and
be assigned prescribed ranges.5

Uncertainty propagation techniques aim at characterizing the statistical properties of
the (random) output of the model

Y =M(Θ), (2)

i.e., estimate its statistical moments (mean µY , variance σ2
Y ) or its probability density func-

tion fY . Sensitivity analysis aims at determining which input parameters {Θi, i = 1, . . . ,M}
(or combination thereof) contribute the most to the uncertainty of the QoI. In particular,
methods for global sensitivity analysis developed in the sequel aim at apportioning the
variance σ2

Y to each input parameter Θi, pairs (Θi,Θj), etc. in order to determine those
parameters whose uncertainty explain most of the QoI’s variance, as well as to detect those
whose uncertainty has no impact on the predictions.

Figure 1: Uncertainty quantification framework

Figure 1 summarizes the different concepts presented above (after Sudret (2007)):

• In Step A, the computational model of interestM is defined, which requires to identify
input parameters and output quantities of interest (QoI).

• In Step B, the uncertainty in the input parameters is described by a proper PDF
5The following derivations however hold whatever the PDF (e.g., Gaussian, Beta, etc.) of these input

parameters.
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according to the available information. In the present case, bounds on the various
parameters will be selected based on literature review, see details in Section 4.

• In Step C, uncertainty propagation is carried out so as to analyze the moments and
distributions of the QoI, for instance by plotting histograms.

• Finally, in Step C’, sensitivity analysis is carried out to rank the input parameters
according to their impact onto the prediction uncertainty.

2.1.2 Monte Carlo Simulation

Monte Carlo simulation (MCS) is a standard technique to estimate statistical properties
based on random number generation. In the context of uncertainty propagation (Step C in
Figure 1), the procedure works as follows:

• A set X = {θ1, . . . ,θn} of (independent) realizations of the input vector is sampled
according to the input distribution fΘ;

• For each input realization the computational model is run, yielding the associated
QoI:

yi =M(θi) (3)

• The set of QoI Y = {y1, . . . , yn} is used to estimate statistical moments6

µ̂Y = 1
n

n∑

i=1
yi σ̂2

Y = 1
n− 1

n∑

i=1
(yi − µ̂Y )2, (4)

and to plot histograms or distributions obtained by kernel smoothing techniques (see,
e.g, Wand and Jones (1995)).

Due to random sampling, MCS is prone to statistical uncertainty: if the analysis is repeated
with another sample set X ′, the estimators will be slighty different. Only in the limit
n → ∞ does the process converge to the true values µY and σ2

Y . To address this issue,
MCS estimates shall always be given together with confidence intervals, see Rubinstein and
Kroese (2008). Although the procedure defined above is straightforward to implement, it
is not efficient in practice. Indeed, the number n of runs of the model to be carried out
for estimating accurately moments is in the order of 103. Thus MCS is not suitable when

6The hat .̂ is used to indicate estimators based on random sampling.

7



each single run of the modelM takes minutes to hours of CPU, which may be the case for
state-of-the-art models in computational economics.

This limitation of MCS has lead to the development of surrogate modelling techniques in
the last decade. Among others, Kriging (a.k.a. Gaussian process modelling, see Rasmussen
and Williams (2006)) and polynomial chaos expansions (Ghanem and Spanos (2003), Xiu
(2010)) are now popular in many fields of engineering and applied sciences. We focus on
the latter in this paper.

2.2 Polynomial Chaos Expansions

Instead of being represented through samples as in Eq. (3), the model output may be
represented as a series expansion in an abstract space of random variables (so-called spectral
representation). More specifically, assuming that Y has a finite variance, it belongs to
the Hilbert space of second-order random variables and may be cast as follows (Soize and
Ghanem (2004)):

Y =
∞∑

j=0
yj Zj. (5)

In the above equation, {Zj}∞j=0 is a numerable set of random variables (which form a basis
of the Hilbert space), and {yj}∞j=0 are coefficients to be computed. The latter may be
interpreted as the coordinates of Y in this basis. In the sequel we focus on polynomial
chaos expansions (PCE), in which the basis terms {Zj}∞j=0 are multivariate orthonormal
polynomials of the input vector Θ. Note that Eq. (5) is exact. Approximations are in
practice obtained by truncating the series to a finite number of terms.

2.2.1 Polynomial Basis

In the sequel we assume that the input variables are statistically independent, so that the
joint PDF is the product of the M marginal distributions: fΘ(θ) = ∏M

i=1 fθi(θi), where fθi ’s
are the marginal distributions of each variable {θi, i = 1, . . . ,M} defined on DΘi . For each
variable Θi and any two functions φ1, φ2 : θ ∈ DΘi 7→ R, we define the functional inner
product by the following integral (provided it exists):

〈φ1, φ2〉i def= E [φ1(Θi)φ2(Θi)] =
∫

DΘi

φ1(θ)φ2(θ) fΘi(θ) dθ. (6)
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where E [·] is the expectation operator. Using the above notation, classical algebra allows
one to build a family of orthogonal polynomials {P (i)

k , k ∈ N} satisfying
〈
P

(i)
j , P

(i)
k

〉
i

def= E
[
P

(i)
j (Θi)P (i)

k (Θi)
]

= a
(i)
j δjk, (7)

see, e.g., Abramowitz and Stegun (1970). In the above equation subscript k denotes the
degree of the polynomial P (i)

k , δjk is the Kronecker symbol equal to 1 when j = k and 0
otherwise and a(i)

j
def= ‖ P (i)

j ‖2
i =

〈
P

(i)
j , P

(i)
j

〉
i
corresponds to the squared norm of P (i)

j . For
standard distributions, the associated families of orthogonal polynomials are well-known.
For instance, if Θi ∼ U(−1, 1) has a uniform distribution over [−1, 1], the resulting family
is that of the so-called Legendre polynomials (Xiu and Karniadakis (2002)). The obtained
polynomials may be normalized as follows:

ψ
(i)
j = P

(i)
j /

√
a

(i)
j i = 1, . . . , d, j ∈ N. (8)

From the sets of univariate orthonormal polynomials one can now build multivariate
orthonormal polynomials by tensor product. For this purpose, let us define the multi-indices
α ∈ NM , which are ordered lists of natural integers α = (α1, . . . , αM) , αi ∈ N. One can
associate a multivariate polynomial Ψα to any multi-index α by

Ψα(θ) def=
M∏

i=1
ψ(i)
αi

(θi), (9)

where the univariate polynomials
{
ψ

(i)
k , k ∈ N

}
are defined in Eq. (8). Due to Eq. (7) and

the above tensor product construction, the multivariate polynomials in the input vector Θ
are also orthonormal, i.e.,

E [Ψα(Θ) Ψβ(Θ)] def=
∫

DΘ
Ψα(θ)Ψβ(θ) fΘ(θ) dθ = δαβ ∀α,β ∈ NM , (10)

where δαβ is the Kronecker symbol which is equal to 1 if α = β and zero otherwise. With
this notation, it can be proven that the set of all multivariate polynomials in the input
random vector Θ forms a basis of the Hilbert space in which Y =M(Θ) is represented
(Soize and Ghanem (2004)):

Y =
∑

α∈NM
yα Ψα(Θ). (11)

The representation of the random response in Eq. (11) is exact when the infinite series

9



is considered. However, in practice, only a finite number of terms can be computed.
For this purpose a truncation scheme A has to be selected. Since the basis consists
of multivariate polynomials, it is natural to consider all the polynomials up to a given
maximum degree. Let us define the total degree of a multivariate polynomial Ψα by
|α| def= ∑M

i=1 αi. The standard truncation scheme consists in selecting all polynomials such
that the total degree |α| is smaller than or equal to a given p. The maximal polynomial
degree p may typically be equal to 3−10 in practical applications. Note that the cardinality
of the truncation set AM,p =

{
α ∈ NM : |α| ≤ p

}
increases exponentially with M and p,

since card AM,p =
(
M + p

p

)
= (M + p)!

M ! p! . Thus the number of coefficients to be computed

increases dramatically when M is large, say M > 10. This complexity is referred to as the
curse of dimensionality. This issue is however solved satisfactorily using specific algorithms
to compute sparse PCE, see, e.g., Blatman and Sudret (2010), Blatman and Sudret (2011),
Doostan and Owhadi (2011).

2.2.2 Computation of the Coefficients by Least-Squares

The literature on polynomial chaos expansions proposes many alternative approaches to
compute the expansion coefficients denoted by {yα, α ∈ A}. Even when limiting the
scope to so-called non-intrusive approaches, which rely upon repeated evaluations of the
modelM for selected realizations of the input vector, one can mention projection methods
(Le Maître, Knio, Najm, and Ghanem (2001)), sparse grids (Keese and Matthies (2003),
Ganapathysubramanian and Zabaras (2007)), stochastic collocation (Xiu and Hesthaven
(2005)) and least-square minimization (Berveiller, Sudret, and Lemaire (2004), Berveiller,
Sudret, and Lemaire (2006)). In this paper we focus on the latter approach which is now
briefly summarized.

Considering a truncation set A ⊂ NM , the series expansion in Eq. (11) is cast as the
sum of the truncated series and a residual ε

Y =M(Θ) =
∑

α∈A
yα Ψα(Θ) + ε. (12)

The least-square minimization approach consists in finding the set of coefficients Y =
{yα, α ∈ A} which minimizes the mean square error E [ε2]. This set is computed at once
by solving:

Y = arg min
y∈RcardA

E



(
M(Θ)−

∑

α∈A
yα Ψα(Θ)

)2

 . (13)
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In practice one replaces the expectation operator in Eq. (13) by the empirical mean over a
sample set:

Ŷ = arg min
y∈RcardA

1
N

N∑

i=1

(
M(θ(i))−

∑

α∈A
yα Ψα(θ(i))

)2

. (14)

In this expression, XED =
{
θ(i), i = 1, . . . , N

}
is a sample set of points called experi-

mental design (ED) that is typically chosen so as to cover the input parameter space
DΘ. To solve the least-square minimization problem in Eq. (14), the computational
model M is first run for each point in the ED, and the results are stored in a vector
Y =

{
y(1) =M(θ(1)), . . . , y(n) =M(θ(N))

}T
. Then one calculates the information matrix

from the evaluation of the basis polynomials onto each point in the ED:

A =
{

Aij
def= Ψj(θ(i)) , i = 1, . . . , N, j = 1, . . . , card A

}
. (15)

The solution of the least-square minimization problem finally reads

Ŷ =
(
ATA

)−1
AT Y . (16)

The ED may be built from Monte Carlo simulation, Latin Hypercube Sampling (LHS, see
McKay, Beckman, and Conover (1979)) or quasi-random sequences (Niederreiter (1992)).
The size of the ED is of crucial importance for a robust analysis. Typical oversampling
rates N/card A = 2 to 3 are used in practice.

2.2.3 Error Estimation and Sparse PCE

As shown above, the proper truncation set (e.g., the maximal degree of polynomials to be
included in the truncated series) depends on the problem under consideration. In order
to assess the accuracy of any truncated series, the generalization error E [ε2] in Eq. (13)
shall be estimated. This could be done using a validation set Xval = {θk, k = 1, . . . , nval}
as follows:

err(Xval) def= 1
nval

nval∑

k=1

(
M(θk)−

∑

α∈A
yα Ψα(θk)

)2

, (17)

where the validation points may be sampled by Monte Carlo simulation, and where nval is
large enough, typically equal to 104−5. Such an estimator is however not affordable in the
general case since the very principle of constructing PC expansions is to limit the number
of runs of the original modelM. Reusing the ED XED in the above equation is not a viable
option due to overfitting. Indeed, doing so, the so-called empirical error err(XED) would
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strongly underestimate the true error E [ε2].
A good compromise between accuracy and efficiency is obtained using the leave-one-out

error estimator (Blatman and Sudret (2010), Le Gratiet, Marelli, and Sudret (2016)). The
principle is the following: a PC expansion MPC\i is constructed using an experimental
design XED\θ(i) def=

{
θ(1), . . . ,θ(i−1), θ(i+1), . . . ,θ(N)

}
, and the error is computed on the

point that has been left apart:

∆i
def= M(θ(i))−MPC\i(θ(i)). (18)

Then the operation is repeated for i = 1, . . . , N excluding each point in turn. The
leave-one-out error is defined by:

errLOO
def= 1

N

N∑

i=1
∆2
i = 1

N

N∑

i=1

(
M(θ(i))−MPC\i(θ(i))

)2
, (19)

and turns out to be, after basic algebra:

errLOO =
N∑

i=1

(
M(θ(i))−MPC(θ(i))

1− hi

)2

, (20)

where hi is the i-th diagonal term of matrix A(ATA)−1AT (matrix A is defined in Eq. (15))
andMPC(·) is now the PC expansion built up at once from the full experimental design
XED. As a conclusion, as soon as an experimental design is available, the size of which is
sufficiently large compared to the number of unknown PCE coefficients, the latter can be
computed from a mere least-square minimization (Eq. (16)) and a simple error estimator is
given by Eq. (20).

Values of errLOO ≤ 10−2 guarantee a sufficient accuracy in practice for moment- and
sensitivity analysis. This error estimator allows for degree-adaptive PCE construction.
Indeed, for a given ED, different truncation schemes AM,p (e.g., by varying the maximal
polynomial degree p) are tried out, and the best expansion according to Eq. (20) is finally
retained.

When the number of input parameters is large (e.g., M ≥ 10), the standard truncation
set AM,p may easily contain thousands to even millions of basis elements. Due to the
necessity of oversampling (i.e., having N > card AM,p), the basic least-squares approach
detailed above may not be feasible anymore due to time constraints. In the last few years,
algorithms for deriving sparse expansions have been proposed: in these approaches, instead
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of computing a possibly big set of coefficients the majority of which being eventually close
to zero, one searches directly for the non-zero coefficients. Techniques such as compressive
sensing (e.g., orthogonal matching pursuit (Pati et al. (1993)) or least-angle regression
(Efron et al. (2004))) have proven effective in selecting only a few basis polynomials out
of a large candidate basis set, and then compute the associated coefficients (Blatman
and Sudret (2011), Doostan and Owhadi (2011)). A detailed description can be found in
these publications and the literature therein. In the application examples of Section 3,
degree-adaptive sparse PCE based on least-angle regression (LAR) (see Blatman and Sudret
(2011)) is used.

2.2.4 Post-Processing of PC Expansions

As mentioned previously, the truncated PC expansion

Ŷ =MPC(Θ) =
∑

α∈A
ŷα Ψα(Θ) (21)

is a sample-free representation of the model output. It contains all the information about
the statistical properties of the random output Y =M(Θ). Due to the orthogonality of the
PC basis, mean and standard deviation of Ŷ may be computed directly from the coefficients
Ŷ (see details in Le Gratiet, Marelli, and Sudret (2016)):

µ̂Y
def= E

[
Ŷ
]

= E
[∑

α∈A
ŷα Ψα(Θ)

]
= ŷ0,

σ̂2
Y

def= Var
[
Ŷ
]

= E
[(
Ŷ − ŷ0

)2
]

=
∑

α∈A
α 6=0

ŷ2
α.

(22)

In other words the mean and variance of the random response may be obtained by a mere
combination of the PCE coefficients once the latter have been computed.

From a functional point of view, the function θ 7→ MPC(θ) in Eq. (21) can be viewed as
a surrogate of the original modelM, i.e., an analytical, easy-to-evaluate function that gives a
fair approximation of the true model outputM(θ). The quality of the approximation is not
ensured pointwise uniformly, but in the mean-square sense, as it can be seen from the very
derivations of the PC coefficients (Eqs. (13)-(16)). One can take advantage of this feature to
obtain accurate plots of the output distribution, i.e., the PDF of the output random variable
Y =M(Θ). For this purpose, a large Monte Carlo sample set X = {θ1, . . . ,θn} is drawn
from the input distribution fΘ, say n = 106. Then the surrogate modelMPC is run onto this
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sample set in no time. The sample set of PCE outputs YPC =
{
MPC(θ1), . . . ,MPC(θn)

}

is then plotted as a histogram, or using kernel density smoothing techniques (Wand and
Jones (1995)).

2.3 Sensitivity Analysis

2.3.1 Global Sensitivity Analysis

Global sensitivity analysis (GSA) aims at quantifying which are the input parameters
{Θi , i = 1, . . . ,M} or combinations thereof that best explain the variability of the quantity
of interest Y =M(Θ) (Saltelli, Chan, and Scott (2000), Saltelli (2008)). This variability
being described by the variance Var [Y ], the question reduces to apportioning the latter
to each input parameter {Θ1, . . . ,ΘM}, pairs (Θi, Θj), etc. For this purpose, variance
decomposition techniques (a.k.a. functional ANOVA) have gained interest since the mid
90’s. The Sobol’ decomposition (Sobol’ (1993)) states that any square integrable function
M with respect to a probability measure associated with a PDF fΘ(θ) = ∏M

i=1 fΘi(θi)
(independent components) may be cast as:

M(θ) =M0 +
M∑

i=1
Mi(θi) +

∑

1≤i<j≤M
Mij(θi, θj) + · · ·+M12...M(θ), (23)

that is, as a sum of a constantM0, univariate functions {Mi(θi) , 1 ≤ i ≤M}, bivariate
functions {Mij(θi, θj) , 1 ≤ i < j ≤M}, etc. Using the set notation for indices

u def= {i1, . . . , is} ⊂ {1, . . . ,M} , (24)

the Sobol’ decomposition in Eq. (23) reads:

M(θ) =M0 +
∑

u⊂{1, ... ,M}
u6=∅

Mu(θu), (25)

where θu is a subvector of θ which only contains the components that belong to the index
set u. It can be proven that the Sobol’ decomposition is unique when the orthogonality
between summands is required, namely:

E [Mu(θu)Mv(θv)] = 0 ∀ u, v ⊂ {1, . . . ,M} , u 6= v (26)
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Orthogonality with the constant term M0 implies in particular that E [Mu(θu)] = 0
∀u ⊂ {1, . . . ,M}. The existence and uniqueness of Eq. (23) together with the orthogonality
property in Eq. (26) now allow one to decompose the variance D def= Var [M(Θ)] as follows:

D = Var




∑

u⊂{1, ... ,M}
u6=∅

Mu(Θu)


 =

∑

u⊂{1, ... ,M}
u6=∅

Var [Mu(Θu)] =
∑

u⊂{1, ... ,M}
u6=∅

Du (27)

where the partial variances are defined by:

Du
def= Var [Mu(Θu)] = E

[
M2

u(Θu)
]
. (28)

2.3.2 Sobol’ Indices

The so-called Sobol’ indices Su are defined as the ratio of the partial variances Du to the total
variance D. Due to Eq. (27) they obviously sum up to 1. Hence each index is interpreted
as the share of variance that is explained by the group of parameters Θu. The first-order
indices correspond to single input variables, i.e., u = {i}:

Si = Di

D
= Var [Mi(Θi)]

Var [Y ] (29)

The second-order indices (u = {i, j}) read:

Sij = Dij

D
= Var [Mij(Θi,Θj)]

Var [Y ] (30)

etc. Note that the total Sobol’ index STi , which quantifies the total impact of a given
parameter Θi including all interactions with other parameters, may be computed by the
sum of the Sobol’ indices of any order that involve Θi:

STi =
∑

i∈u
Su. (31)

Sobol’ indices allow for an in-depth analysis of the relative impact of the uncertainties
affecting the model predictions. The formulæ above are interpreted as follows:

• Factor setting: the total Sobol index STi indicates the share of the total variance
D explained by the input parameter θi, alone or in combination with any other
parameter(s). If this is negligible (in pratice, if STi < 1%), this means that parameter
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θi could be set to a deterministic value without changing the distribution of the
quantity of interest.

• Screening: the first-order Sobol index Si indicates by what percentage the total
variance D would be reduced, should the parameter θi be perfectly known and set
to a fixed value. It allows to determine which parameter(s) shall be investigated in
priority, should one want to decrease the prediction variability.

Classically, Sobol’ indices are evaluated by Monte Carlo simulation. Detailed expressions
of the estimators of first-order and total indices can be found in Sobol’ (1993), Sobol’
(2001), Janon, Klein, Lagnoux, Nodet, and Prieur (2014). In practice, two sample sets of
the input vector Θ are used for computing each first-order (resp. total) index. Typically
nS = 103−4 samples are needed for accuratey estimating each index, leading to a total cost
of (M + 1) · nS. This high computational cost is affordable when the considered modelM
is analytical, or at least very fast to evaluate. Fortunately, the technique of polynomial
chaos expansions presented above allows for a straightforward evaluation of Sobol’ indices.

2.3.3 PC Expansion-Based Sobol’ Indices

Sobol’ indices are considered as the most versatile sensitivity measures for general compu-
tational models, since they do not rely on any assumption of linearity nor monotonicity
of the model M (Saltelli (2008)). Their estimation by Monte Carlo simulation is how-
ever computationally demanding, as mentioned above. To bypass this difficulty, Sudret
(2008) has proposed an original post-processing of polynomial chaos expansions for sensi-
tivity analysis. Indeed, the Sobol’ decomposition Eq. (23) of a truncated PC expansion
MPC(θ) = ∑

α∈A
ŷα Ψα(θ) can be derived analytically, as shown below.

For any subset of variables u = {i1, . . . , is} ⊂ {1, . . . ,M} let us define the set of
multivariate polynomials Ψα which depend only on u by

Au = {α ∈ A : αk 6= 0 if and only if k ∈ u} . (32)

One can observe that the Au’s form a partition of A since

⋃

u⊂{1, ... ,M}
Au = A. (33)

Thus a truncated PC expansion such as in Eq. (21) may be rewritten as follows by simple
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reordering of the terms:

MPC(θ) = y0 +
∑

u⊂{1, ... ,M}
u6=∅

MPC
u (θu) (34)

where:
MPC

u (θu) def=
∑

α∈Au

yα Ψα(θ) (35)

Consequently, due to the orthogonality of the PC basis, the partial variance Du in Eq. (28)
reduces to:

Du = Var
[
MPC

u (Θu)
]

=
∑

α∈Au

y2
α, (36)

i.e., again, a mere sum of squares of selected coefficients. The Sobol’ indices Su can then be
computing by dividing the above results by the total variance (Eq. (22)). In other words,
from a given PC expansion, the Sobol’ indices at any order may be obtained by a mere
combination of the squares of the coefficients. As an illustration the first-order PC-based
Sobol’ indices read:

SPC
i =

∑

α∈Ai
y2
α/D Ai = {α ∈ A : αi > 0 , αj 6=i = 0} (37)

whereas the total PC-based Sobol’ indices are:

ST,PC
i =

∑

α∈ATi

y2
α/D ATi = {α ∈ A : αi > 0} (38)

As a conclusion, polynomial chaos expansions not only provide a surrogate model for a
possibly computationally-expensive model as those used nowadays in economics, but also
yield at no cost the full set of sensitivity indices that are useful for a better understanding
of the single and joint effects of input parameters on quantities of interest. These techniques
will be applied to the economic model described in the next section.

2.3.4 Univariate Effects

While Sobol’ indices provide quantitative insight on the importance of a parameter, they
do not include information about the direction in which it affects the quantities of interest.
Which parameters have an overall positive, which a negative relationship? Is the relationship
of the input parameter to the model outcome linear or non-linear? In which regions of
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the parameter range is the sensitivity the largest? These questions can be answered with
univariate effects, originally introduced by Younes, Mara, Fajraoui, Lehmann, Belfort, and
Beydoun (2013). Univariate effects can be defined as the conditional expectation of a
quantity of interest as a function of a single parameter, where expectations are taken over
all other parameters:

M(1)
i (xi) = E [M(X|Xi = xi)] . (39)

They can thus be interpreted as an average or robust relationship between an input
parameter and the quantity of interest. In the case of PCE models, univariate effects have
an analytical closed form that is closely related to the first-order Sobol’ decomposition in
Eq. (37) (Deman, Konakli, Sudret, Kerrou, Perrochet, and Benabderrahmane (2016)):

M(1)
i (xi) = y0 +

∑

α∈Ai
yαΨα(xi), Ai = {α ∈ A : αi > 0, αi 6=j = 0} . (40)

3 Economic Model and Quantities of Interest
We apply the presented tools for uncertainty quantification to a canonical Real-Business-
Cycle (RBC) model with capital adjustment costs. This model is often used as a test bench
to introduce new numerical methods, see for example Den Haan, Judd, and Juillard (2011),
Brumm and Scheidegger (2016) or Winschel and Kraetzig (2010). The tools are, of course,
generically applicable to any economic model.

The allocation problem is described by the dynamic optimization

V (kt, at) = max
{ct,lt,it}∞

t=0
E0

∞∑

t=0
βt

(cχt (1− lt)1−χ)1− 1
τ

(1− 1
τ
) . (41)

The objective function is a discounted sum of utilities of consumption ct and leisure 1− lt in
each period, where β is the discount factor, τ is the intertemporal elasticity of substitution
(IES), and χ is the share parameter in the composite commodity. The decision variables are
consumption ct, labor lt, and investment it. The aggregate resource constraint is given by

qt = ct + it + φ

2kt
(
it
kt
− δ

)2
, (42)

where qt denotes the quantity of produced goods, kt the capital stock, and δ the depreciation
rate of capital. Production qt can be used for consumption and investment, the latter
being subject to a convex adjustment cost. These investment adjustment costs are modeled
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like in Den Haan, Judd, and Juillard (2011), with φ governing the size of the costs. The
production technology

qt = eatkαt l
1−α
t (43)

depends on productivity at, capital kt, labor lt and the technical substitution rate α. The
capital transition and stochastic productivity processes are given by

kt+1 = it + (1− δ)kt (44)
at+1 = ρat + et+1 (45)

where ρ is the autocorrelation coefficient of the productivity process with independent,
identically and normally distributed shocks et+1 ∼ N (0, σ).

Using the notation of the uncertainty quantification framework introduce above, we
have a parameter vector containing eight parameters

θ = {β, τ, χ, α, δ, ρ, φ, σ}. (46)

From an uncertainty quantification perspective, the parameter vector is the input to the
RBC model, which itself can be treated as a black box,M(θ). We consider two quantities
of interest, y = {y1, y2} =M(θ). The first is average production,

y1 = E [qt] , (47)

which we choose for its straight-forward interpretation. The second QoI is the ratio of
the variance of log production in the model over its empirical counterpart. This second
variable, which we will refer to as the variance ratio, is frequently the quantity of interest
in RBC models, where it is used to assess how much of the observed fluctuations can be
explained by the model (see, e.g., Canova (1995) or Eichenbaum (1991)). Denoting by σ̂2

q

the empirical variance of log production in the data, the variance ratio is

y2 = 1
σ̂2
q

Var [log(qt)] . (48)

We set σ̂2
q = 0.019, common value in the literature. The next section discusses the ranges

of θ that will be considered.
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4 Parametrization for Local and Global Sensitivity
Analysis

The baseline parameterization, θ0, closely follows Cooley and Prescott (1995), which are
considered standard, canonical values in the literature. They are displayed in the second
column of Table 1. Since Cooley and Prescott (1995) don’t have adjustment costs, we take
the value for φ from Juillard and Villemot (2011). As is typical in the RBC literature, the
values are for quarterly data.

The lower and upper bounds for each parameter, θi and θi, are set symmetrically around
each baseline value. In the context of sensitivity analysis, the bounds should be chosen
to represent values at the upper and the lower end of what most economists would still
find reasonable. For example, in an RBC model, a value for the capital share of α = 0.9 is
theoretically possible, but wouldn’t be considered plausible and is thus not included in our
range. The restriction that the bounds be symmetric around the mean is not necessary,
but facilitates the discussion of the local sensitivity analysis. It does, however restrict the
ranges that we can consider, for example for the discount factor β, since β < 1 is also
required. The bounds are displayed in the third and fourth column of Table 1 and are
broadly in line with those of Canova (1994), who bases them on a literature review.7

Table 1: Parameter values

Parameter Baseline, θ0
i Lower bound, θi Upper bound, θi

Discount factor, β 0.98 0.97 0.99
IES, τ 0.6 0.2 1
Leisure share in utility, χ 0.3 0.2 0.4
Capital share, α 0.35 0.2 0.5
Depreciation rate, δ 0.02 0.01 0.03
Capital adjustment cost, φ 0.5 0.00 1.00
Autocorrelation of TFP, ρ 0.95 0.92 0.98
Standard deviation of TFP, σ 0.007 0.005 0.009

The three values θ0
i , θi, and θi for each parameter are used in the local sensitivity

analysis in the next section. The global sensitivity analysis also uses them, but additionally
7Canova (1994) considers log utility and therefore does not have bounds for the IES. Instead, we cover

the same range of the IES as Juillard and Villemot (2011).
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specifies a distribution over each parameter, cf. Section 6.1.

5 Local Sensitivity Analysis
This section presents two local sensitivity measures that are often encountered in quantitative
economic work, namely one-at-time (OAT) finite differences and scenario analysis.8 Thereby,
we can compare them to the global sensitivity measures that are presented in Section 6.
Generally, local measures are intuitive and easy to implement, but suffer from three
important drawbacks. First, they are valid only locally at the chosen evaluation points and
may differ substantially for other, even close-by points. Second, they typically rely on a
linear approximation of the slope, so that non-linearities are not accounted for. And third,
they either don’t capture interactions between the parameters, or if they do, they can’t
isolate the importance of each parameter.

5.1 One-at-a-Time Finite Differences

One of the most common sensitivity analyses in numerical economics consists of changing
a single parameter value, while keeping all others fixed, and reporting the change in the
quantity of interest. Often this is interpreted as a robustness check. When performed for
all parameters in turn, this procedure is known in the uncertainty quantification literature
as one-at-a-time (OAT) finite differences (Borgonovo and Plischke (2016)).

We calculate OAT finite differences for all the parameters of the RBC model. The
quantities of interest are average production and variance ratio, cf. Eqs. (47) and (48).
To make the comparison of the impact of the parameters more meaningful, we report the
relative change in the quantities of interest. Specifically, we first change one parameter at a
time to its upper bound given in Table 1 while keeping all others fixed at their baseline
value. The resulting relative change in the QoIs is given by:

OAT 1
i = M(θ0

∼i, θi)−M(θ0)
M(θ0)

, (49)

where θ0
∼i means that all parameters but i take their baseline values. Since this is a local

method, we next compute the OATs at a second point. To keep the same direction of
8We also calculated elasticities, which can also be understood as a local sensitivity measure. Since they

are conceptually related to OAT analysis, we don’t report them in the paper, but results are available upon
request.
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change, we now start at the lower bounds given in Table 1 and change one parameter at a
time to its baseline value. Correspondingly, we report

OAT 2
i = M(θ∼i, θ

0
i )−M(θ)
M(θ) . (50)

(a) Average production (b) Variance ratio

Figure 2: One-at-a-time (OAT) sensitivity indices as defined in Eqs. (49) and (50) and for
parameter values displayed in Table 1.

Figure 2 plots the values of OAT 1
i in blue and OAT 2

i in red for average production (left
panel) and for variance ratio (right panel). We observe large and economically important
differences between OAT 1

i and OAT 2
i . Consider, for example, the impact of the capital

share, α, on average production. When we change α from its lower bound to its baseline
value, the sensitivity measure stands at OAT 2

α = 0.86, meaning that average production
changes by 86 percent. However, when we change α from baseline to upper bound, average
production increases drastically more, namely by approximately 240 percent. Recall that
the size of the change in α is the same in both cases. It may not be surprising economically
that the impact of α differs, since it enters non-linearly into the production function, but it
highlights the shortcomings of OAT as a sensitivity measure.

Moreover, the relative importance of the parameters depends on the evaluation point.
For example, in the left panel, α and the utility leisure share χ are of similar importance
when the change is from lower bound to baseline value (red bars), but χ becomes less
important and α much more important when the change is from baseline to upper bound
(blue bars), thereby making α much more important relative to χ. More importantly,
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the ordering of the importance ranking can be reversed. We observe this for the impact
of autocorrelation, ρ, and standard deviation, σ, of TFP shocks on the variance ratio,
displayed in the right panel. Of course, part of the reason for this reversal is that both
parameters interact in determining the unconditional variance of TFP shocks: the higher
one of the two, the stronger the impact of changes in the other. But the OAT sensitivity
measure can’t capture such interactions. One could vary two parameters jointly to capture
interactions, but that would still be highly dependent on the values chosen. Joint variation
of multiple parameters is known as scenario analysis, discussed in the next section.

Because of the shortcomings of OAT, it is not useful to discuss the values of all OATs
in Figure 2 in detail. It may be worth noting, though, that only three parameters, namely
α, β, and χ, have a significant impact on average production and only two, namely ρ and σ,
on the variance ratio. The three parameters τ , δ, and φ seem to have little to no impact on
either QoI, given the ranges considered in Table 1.

5.2 Scenario Analysis

Scenario analysis is another very common form of sensitivity analysis in economics.9 In
a scenario, typically several parameter values are changed simultaneously to reflect some
change in the economic environment.10 This is intuitively appealing and allows for more
complex parameter changes than the one-at-a-time finite differences of the previous section.
Thereby, scenario analysis is able to capture interactions between parameters, but it is not
straight-forward to isolate the effect of such interactions.

We consider four scenarios based on the parameter values in Table 1. Due to the
simplicity of the canonical RBC model, the scenarios are not meant to capture a particularly
plausible economic environment, but rather to exemplify the approach. One drawback that
becomes apparent is the high level of discretion typically involved in choosing scenarios and
corresponding parameter values, which is due to the local nature of this sensitivity measure.
The scenarios are:

1. Scenario “Baseline”: all parameters take their baseline values.

2. Scenario “High risk and risk aversion”: σ, and ρ are at their upper bounds and τ is
at its lower bound, so that risk aversion 1

τ
is high. All other parameters are at their

baseline values.
9See, e.g., Stern (2007b).

10More generally, a scenario can be defined as a set of assumptions. As long as the assumptions can be
nested using a real-valued parameter, they can be analyzed with the tools discussed in this paper.
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3. Scenario “High capital utilization and frictions”: α, δ, and φ are at their upper bounds,
all other parameters are at their baseline values.

4. Scenario “Enjoy life preferences”: β and χ are at their lower bounds, τ at its upper
bound, all other parameters are at their baseline values.

Figure 3: Scenario analysis, where each scenario represents a set of parameter values as
explained in the enumerated list in the main text.

Figure 3 plots the four scenarios in a graph with the two quantities of interest, average
production and variance ratio, as graph axes. Therefore, we can compare the scenarios and
evaluate the impact of joint parameter changes on the two quantities of interest. However,
scenario analysis does not allow us to tell which parameter or which interaction between
parameters is important in each case.

For example, the “Baseline” scenario has an intermediate level of average production
and the lowest variance ratio. The “High risk and risk aversion” scenario has a much higher
variance ratio, but we can’t say whether this is mostly due to the increase in autocorrelation,
ρ, or standard deviation, σ, of TFP shocks. From the results in the previous section, it
could be either, cf. Figure 2. One solution would be to combine the scenario analysis with
OAT finite differences to tease out individual parameter effects and interactions, known as
scenario decomposition or generalized Tornado diagrams (see, e.g., Borgonovo (2010) and
Borgonovo, Castaings, and Tarantola (2011)). However, such Tornado diagrams are rarely
encountered in economic studies and are outside the scope of this paper, since they also
suffer from the fact that they are local and linear.
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6 Global Sensitivity Analysis
In this section, we present the results of the global sensitivity analysis for the canonical
RBC model. In contrast to the local sensitivity measures of the previous section, the
global measures don’t depend on a specific evaluation point. In addition, they fully capture
the nonlinearity in the mapping from parameters to quantities of interest and allow us to
analyze interactions between parameters. Last, we present univariate effects, which are
conditional expectations functions of a parameter that provide a robust magnitude and
sign of the parameter’s impact on the QoIs.

All calculations in this section are performed with UQLab©, an actively maintained
Matlab© toolbox for uncertainty quantification (Marelli and Sudret (2014)), (Marelli and
Sudret (2015)).11

6.1 Parameter Distributions

As explained in Section 2, we need to specify a distribution for each parameter. Method-
ologically, there is no limitation on what distributions are allowed. This is determined
by the research question and data availability. In our case, the research question is how
sensitive outcomes are with respect to the parameters, and there is only very little data on
parameter distributions in an RBC model.

One way to find the most suited distributions is to invoke the principle of maximum
entropy (Jaynes (1982)). According to this principle, when no prior information is available
except for plausible bounds, then the uniform distribution best represents the underlying
uncertainty. A uniform distribution is also adequate for our research question, where we
want to understand the model sensitivities over plausible ranges of parameters. We do
not—and for lack of data could not—ask what empirical parameter distributions would
mean for the distribution of the quantities of interest.12 Therefore, we assume that all
parameters of our model are uniformly distributed with support given by the lower and
upper bounds in Table 1.

11The toolbox can be freely downloaded from www.uqlab.com.
12Canova (1994) derives ’a least informative (Bayesian) density’ for each parameter of the RBC model

using a literature review. He then analyzes this second question, namely the implied distribution of the
quantity of interest.
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Figure 4: Convergence of the PCE leave-one-out error estimator (Eq. (20)) as a function of
the size of the experimental design for both average production and variance ratio.

6.2 Polynomial Chaos Expansion of the Economic Model

Due to the computational costs associated to the economic model described in Section 3, a
total computational budget of 500 model evaluations was available. To demonstrate the
convergence of the PCE-based GSA, a set of nested experimental designs of increasing
size NED = {50, 60, ..., 500} was generated based on the Sobol’ pseudorandom sequence
(Blatman and Sudret (2011)). For each set, a sparse PCE was calculated based on least-
angle-regression with an adaptive degree selection in the range 3 ≤ p ≤ 20. The resulting
set of PCEs was then compared based on their leave-one-out error estimator calculated
with Eq. (20). The resulting convergence plot for each of the two quantities of interest,
average production and variance ratio, is given in Figure 4. Based on the guidelines given
in Le Gratiet, Marelli, and Sudret (2016), a leave-one-out error errLOO ≤ 0.05 was deemed
sufficient for the purposes of first and total Sobol’ indices. Therefore a total computational
budget of N = 150 model evaluations was selected for all the subsequent analyses, unless
explicitly specified.

6.3 Histograms of the Quantities of Interest

To see how the the parameter uncertainty propagates through the model, first consider the
resulting histograms of the two quantities of interest. To get the histograms, we evaluate
the surrogate model on a Monte Carlo sample of size one million. Such a large number of
evaluations would be prohibitively expensive for the RBC model. For smaller sample sizes,
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the histograms of the surrogate and the original model are virtually identical.

(a) Average production (b) Variance ratio

Figure 5: Histograms of the quantities of interest as calculate with the PCE surrogate on a
Monte Carlo sampling of size 1, 000, 000.

Section 6.3 displays the histograms of average production (left) and variance ratio
(right). Both distributions have a notable dispersion and are heavily right-skewed. The
values corresponding to the baseline, θ0, are indicated by vertical lines. They are neither
equal to the modal nor the mean value of either distribution.

6.4 Sobol’ Indices

6.4.1 Total and First-Order Sobol’ Indices

As described in Section 2.3.2, Sobol’ indices are an important tool to assess both the
absolute ranking of the input parameters (screening) as well as that of their interactions.
Total Sobol’ indices (Eq. (31)) are interpreted as the total effect of the variability of the
input parameters onto the model variance, including both non-linearities and interactions.
Therefore, small total indices are indicative of unimportant variables. First-order indices
(Eq. (30)) instead only account for linear and non-linear contributions of each single variable
to the total variance of the model response, excluding the interaction terms. It is therefore
common to compare the two sets of indices to identify the importance of interactions
between input variables: if total and first-order indices are very similar, the model is mostly
additive (no interactions), otherwise interactions play an important role. Figure 6 shows
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a comparison between total and first-order indices for both quantities of interest, namely
average production (left panel) and variance ratio (right panel).

(a) Average production (b) Variance ratio

Figure 6: Total vs. first-order Sobol’ indices

The total indices in Figure 6 show that each QoI is dominated by a different subset of
the input parameters, namely capital share α, utility leisure share χ, and discount factor β
for average production, and autocorrelation ρ and standard deviation σ of TFP shocks, as
well as capital share α, for the variance ratio. The remaining parameters, namely the IES
τ and the strength of adjustment cost φ do not play a significant role for either of the QoIs.
It is easy to show analytically that τ and φ drop out in the deterministic steady state, but
our results show that this extends to the stochastic simulations. Thus, for adjustment costs
to have an impact on average production or its variance, one would need to depart from
the specification that we take from Den Haan, Judd, and Juillard (2011).

While it may not be surprising that α is important in determining average production,
Figure 6 shows that it is much more important than all other parameters together, given
the distributions assumed. This quantitative statement requires a global sensitivity analysis
and is not limited to a specific evaluation point as were the OATs in Section 5.1. It tells
the researcher that, when calibrating the model to target average production (or related
variables, such as average capital stock), most effort should go towards determining the
capital share. Indeed, this quantity has received much empirical investigation, with values
ranging from two to five, depending on whether, e.g., nonfarm proprietors’ income or
intellectual property rights are included. Since most likely there is not a single correct way
to determine the capital share, a global sensitivity analysis should be an integral part of
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quantitative studies using a neoclassical production function.
In contrast to the local OAT analysis of Section 5.1, there importance ranking of the

parameters cannot be ambiguous. In fact, we observe that autocorrelation of TFP shocks,
ρ, is more important than the standard deviation, σ, in determining the variance ratio.
Recall that the two local evaluations, OAT 1

i and OAT 2
i did not agree on this. Again, there

is substantial disagreement in the literature on the empirical value of ρ since it depends on
how the time series are detrended, so that an uncertainty quantification may be in order
for quantitative RBC models.

The comparison between total and first-order indices shows that interactions between
two or more parameters also contribute significantly to the total variance of the QoIs,
albeit to a smaller extent than first-order effects. This is expected, since in a general
equilibrium model as this one, potentially all parameters can interact. Such interactions
are of substantial interest economically, since they help explain the model’s mechanics,
which often can’t be derived analytically. The figure therefore confirms the inadequacy of
OAT measures since they can’t take interactions into account. To see which of any two
parameter combinations interact, we next compute second-order Sobol’ indices.

6.4.2 Second-Order Sobol’ Indices

Based on the results given in Figure 6, it is clear that interaction terms play a role in
the model outcomes. However, accurate computation of higher-order indices requires an
experimental design of bigger size. Based on the convergence shown in Figure 4, N = 250
is chosen—corresponding to an errLOO ≈ 2 · 10−3—to estimate second-order indices. This
detailed analysis is of great economic interest, as it helps to understand the structure of
the economic model quantitatively by identifying interactions. It is not necessary when the
goal is simply variable ranking and detection of non-linearities.

The three largest second-order Sobol’ indices for average production and variance ratio
are shown on the left and right panels of Figure 7, respectively. They are consistent with the
total and first-order indices in Figure 6, as they show interactions between the parameters
with higher overall importance. All other interactions are essentially zero, which may be
somewhat surprising since in a general equilibrium model such as this one, all parameters
interact in theory. Indeed, the analytical solution of the deterministic steady state displays
also other two-parameter-interactions for average production, namely βδ and βχ. Thus, our
findings suggest that other interactions are either weak by construction or become relevant
only for parameter values that are not plausible.
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(a) Average production (b) Variance ratio

Figure 7: Three largest second-order Sobol’ indices for the two output quantities of interest
based on a sample size N = 250 model runs.

For average production, the discount factor β, the utility leisure share χ, and the
depreciation rate δ all interact with the capital share α, which is the most important
single parameter to determine average production as shown in the previous section. In the
analytical solution for the deterministic steady state, χα appears only through steady state
labor supply. Our result thus indicates that the interplay of relative wages and disutility of
labor is quantitatively important for average production in the RBC model. The product
αβ, on the other hand, enters only through steady state capital in the deterministic model.
This reflects the interplay of interest rates and preference for savings, which also plays out
in the stochastic RBC model, as Figure 7 shows.

For the variance ratio, we can’t resort to analytical solutions, since there is no deter-
ministic analogue. However, the fact that the interaction between autocorrelation ρ and
standard deviation σ is very important is not surprising, as these two parameters determine
the unconditional variance of TFP and thus of production. That both parameters interact
with α is due to the standard modeling of the TFP shocks being multiplicative to current
production which—as shown by the total Sobol’ indices—is determined mainly by α. If, for
example, one wanted to strengthen the interaction between level of capital and TFP shocks,
different specifications for the production technology could be compared using second-order
Sobol’ indices.

Finally, note that local OAT analysis can not identify such interactions. The ambiguous
results it provided regarding the relative importance of ρ versus σ were in part due to
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(a) First-order Sobol’ indices (b) Second-order Sobol’ indices

Figure 8: Convergence of estimates of first- and second-order indices. For average production,
Sα, Sχ, Sβ are shown in the left panel and Sχα, Sβα in the right panel. For variance ratio
Sρ, Sσ, Sα are shown in the left panel and Sρσ, Sαρ in the right panel. Error bounds are
calculated by bootstrap resampling of the PCE coefficients.

this deficiency, as these two parameters turn out to interact strongly. Since the economic
literature typically uses local sensitivity measures, there are nearly no studies that identify
interactions.13 The fast, accurate, and non-intrusive identification of parameter interactions
is an important advantage of the global methods we propose.

6.5 Convergence of Sobol’ Indices

As discussed in Section 6.2, the main rationale for choosing a minimum experimental size is
to achieve a sufficiently low generalization error for the PCE. However, it is worth giving
further insight on the convergence behavior of the Sobol’ indices. Therefore, in this section
we look at the estimates of the Sobol’ indices as a function of the experimental design size.

The convergence study consists of estimating total, first-order, and second-order indices
for a set of increasingly larger experimental designs with a maximum of of N = 500. The
experimental designs are constructed as described in Section 6.2. Confidence bounds for
each index estimate are calculated as the 95% empirical inter-quantile ranges by means of
NB = 100 bootstrap replications of the underlying PCE coefficients. The main results are
reported in Figure 8 for the three largest first-order Sobol’ indices (left panel) and the two

13One exception is Anderson, Borgonovo, Galeotti, and Roson (2014) who compute second-order Sobol’
indices for a subset of the parameters of the climate change model of Nordhaus.
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largest second-order indices (right panel). Total Sobol’ indices are not shown because their
convergence behavior is essentially identical to that of their first-order counterparts. From
the convergence behavior in Figure 8 it is clear that estimators of first-order (and total)
indices converge already with as few as N = 120 model evaluations, whereas second-order
indices require approximately N = 220 model evaluations.

Therefore, the empirical error bounds of errLOO ≤ 5 · 10−2 for total and first-order
indices as well as errLOO ≤ 5 · 10−3 for second-order indices are appropriate. For more
expensive models, it is possible to adopt a greedy strategy by gradually enriching the
experimental design until the target errLOO for the desired analysis is reached.

6.6 Univariate Effects

The univariate effects (see Section 2.3.4) associated to the eight input parameters are shown
in Figure 9 for average production (left) and variance ratio (right), respectively. According
to Eq. (39), the mean effect is included in each, so that the y-axis directly shows the
corresponding value of the quantity of interest. For example, as β ranges from 0.97 to 0.99,
expected average production increases from approximately 0.9 to 1.4, where the expectation
is taken over all other parameters.

For average production, IES τ , adjustment cost size φ, TFP autocorrelation ρ, and
TFP standard deviation σ are flat, consistent with the first-order Sobol’ indices, which
showed that these parameters have no effect on this quantity of interest. The discount rate
β and the utility leisure share χ display a positive slope and are linear, meaning that higher
values increase average production in an almost linear fashion. In our RBC model, such a
relationship would be hard to establish beforehand, since these two parameters enter the
equations highly nonlinearly and analytical solutions are not available. Even the analytical
solution of the deterministic steady state does not suggest such a relationship immediately.
The capital share α also has a positive slope, but its impact on average production is highly
nonlinear and much larger than that of β and χ. In particular, for values above α = 0.4, its
effect on average production becomes nearly exponential. Thus, the most commonly used
values—ranging from 0.25 to 0.4—can be considered safe in the sense that close-by values
wouldn’t change results connected to average production or capital stock too much. But
values greater than 0.4 in this and similar models should be treated with caution for their
strong, nonlinear impact. Our result implies that for such high values, the researcher should
invest extra effort to argue why they are justified. This strong nonlinearity is the main
reason why the local OAT analysis showed results for α that differed so strongly between
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(a) Average Production (b) Variance Ratio

Figure 9: Univariate effects for average production and variance ratio. Because the mean
effect is included in each, the y-axis represents the expected value of the quantity of interest.
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evaluation points.
The only parameter affecting average production in a negative way is the depreciation

rate δ. This is not surprising, since it directly reduces capital in the capital accumulation
equation (44). However, the slope appears linear, which is not obvious from the model,
as depreciation also enters the adjustment costs nonlinearly and in general equilibrium
indirectly affects the productivity of labor.

For the variance ratio, shown in the right panel, we again observe that parameters with
first-order Sobol’ indices close to zero (β, τ , χ, δ, and φ) display univariate effects that are
zero or negligibly small, while those corresponding to higher indices (α, ρ and σ) display
sizeable effects. It is noteworthy that the capital share α affects the variance ratio linearly,
but average production nonlinearly. Unsurprisingly, both ρ and σ display a positive slope,
but the univariate effect of σ on the variance ratio is close to linear while that of ρ is
convex. From the figure one can conclude that the empirically much investigated question
of whether TFP shocks have a unit root or not is most relevant when studying how much
of the business cycle a given model can explain.

All univariate effects of the RBC model turn out to be monotone in the ranges we
specified. Of course, non-monotonic behavior is possible and would be highly relevant for
calibrating a model. For example, a parameter could first have a negative impact on a
quantity of interest and, after crossing some threshold value, a positive impact. Identifying
and interpreting such relationships should typically be of substantial economic relevance.
As a point in case, an interesting application of univariate effects would be the study
of a policy reform, where the reform is governed by a real-valued parameter, say a tax
rate. If the quantity of interest is, for example, social welfare, then the univariate effect
can be interpreted as the robust impact of the tax rate on welfare, which often will be
non-monotonic and have local or global maxima. Finding such global optima that are robust
to parameter uncertainty should make policy recommendations stemming from economic
models more credible to policy makers.

7 Conclusions
This paper introduces Sobol’ indices as a tool for global sensitivity analysis (GSA) in
economics and shows how to accurately compute them with a limited computational budget
using polynomial chaos expansions. In contrast to the local sensitivity analysis usually
employed in economics, the proposed global analysis has important advantages: (i) it is
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independent of the chosen evaluation points, because it summarizes the sensitivity for
all plausible parameter values and combinations; (ii) it can detect nonlinearities in the
mapping from parameters to outcomes, and (iii) it can disentangle the direct effect of a
parameter from its interactions with other parameters. Because of these characteristics,
Sobol’ indices allow the researcher to get a complete ranking of the parameters according
to their importance, both on their own and in interactions with respect to the outcomes of
a model. On top of that, we present univariate effects, which show the magnitude and sign
of the impact a parameter has on the quantities of interest under parameter uncertainty.

We apply the new methods to the canonical Real-Business-Cycle model with capital
adjustment costs, and compare them to the traditional local methods, such as one-at-a-time
parameter changes and scenario analyses. While the objective of this paper is to use a
standard, well-understood model to introduce the new methods, we also find and discuss
interesting results. For example, for determining the variance of production, there is only
one non-linear relationship, which comes from the autocorrelation of TFP shocks. Its impact
increases disproportionately as its value rises. By contrast, the impact of the standard
deviation of TFP shocks is smaller and linear over the ranges specified. This nonlinearity
in the autocorrelation causes the usual, local one-at-a-time sensitivity analysis to yield
contradictory results, which depend on the chosen evaluation point.

Our proposed methods relate to the important discussion on the relationship between
calibration and the econometric estimation (Eichenbaum (1991), Canova (1994), Gregory
and Smith (1995)). Indeed, Canova (1995) proposes a GSA very similar to the one of
this paper in order to bridge the gap between both approaches. To see the connection,
note that the uncertainty over the parameters that needs to be specified for our GSA is
analogous to the prior distribution assumed for Bayesian estimation, and that the quantity
of interest in this econometric context is the likelihood. Concerning the advancement of
global computational methods in economics, the shift from a local to a global sensitivity
analysis is conceptually similar to the shift from local to global approximation methods
in the solution to an agent’s optimization problem, which has been extensively discussed,
e.g., in Aruoba, Fernández-Villaverde, Rubio-Ramírez, and Rubio-Ramírez (2006) ,and Den
Haan, Judd, and Juillard (2011). All these articles use a variant of the RBC model, too.

The analysis is done with the Matlab© toolbox UQLab, which is non-intrusive, i.e., it
treats the model as a black box. Therefore, no changes have to be made to an existing
model solution code and the proposed methods can readily be deployed. In addition, the
methods in this paper scale very well to large problems with hundreds of parameters and
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are straight-forward to parallelize.
For academic research, the insights offered by a GSA can inform economists where to

direct the efforts in order to further develop the analyzed model. For policy-oriented work,
a GSA is crucial for assessing the plausibility and credibility of policy recommendations.
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