Conference Poster

Experimental comparison of spot, raster and line scanning and their effectiveness in mitigating tumor motion using rescanning

Author(s):
Klimpki, Grischa; Zhang, Ye; Fattori, Giovanni; Psoroulas, Serena; Weber, Damien C.; Lomax, Anthony; Meer, David

Publication Date:
2017

Permanent Link:
https://doi.org/10.3929/ethz-a-010883563

Rights / License:
In Copyright - Non-Commercial Use Permitted
Experimental comparison of spot, raster and line scanning and their effectiveness in mitigating tumor motion using rescanning

G. Klimpki1, Y. Zhang1, G. Fattori1, S. Psoroulas1, D.C. Weber1,2, A. Lomax1 and D. Meer1

1 Paul Scherrer Institute, Center for Proton Therapy, 5232 Villigen PSI, Switzerland
2 University of Zurich, University Hospital, Rämistrasse 100, 8091 Zurich, Switzerland

INTRODUCTION

• Particle therapy centers and vendors around the world offer three different types of beam scanning:
 ○ spot scanning (SS) (e.g. PSI, MD Anderson or IBA)
 ○ raster scanning (RS) (e.g. HIT or Varian)
 ○ line scanning (LS) (e.g. PSI or Sumitomo)
• They differ in their delivery dynamics and produce unequal interplay patterns in case of moving target irradiations.
• To compare the differences, we emulated all three scanning techniques on our Gantry 2.

RESULTS

• All three plans have identical dose-volume histograms if the target is static (ΔD,ΔV < 0.02%).
• We see this confirmed when measuring absolute dose distributions at center SOBP without moving the 2D array of ionization chambers (ICs).
• In free breathing (simulated with a programmable, sliding table), volumetric rescanning (green bars) decreases inhomogeneity inside the CTV further than layered (yellow bars), especially for LS.
• RS and LS deliver dose faster than SS saving ca. 40 and 50 sec., respectively, when rescanning six times in volumetric sequence.
• At the same time, SS and LS show comparable inhomogeneity scores (~6%). Residual inhomogeneity for RS remains higher at ~8%.
Conclusion: LS might be a fast and effective delivery technique to treat moving targets using rescanning.

REFERENCES

Acknowledgements: We appreciate the support of our software and electronics engineers. Furthermore, we wish to express gratitude to the Guillaume and Giorgio Stiftung Foundation for partially funding this project.

CONTACT

Grischa Klimpki
Doctoral Student
Center for Proton Therapy
Paul Scherrer Institute
phone: +41-56-310-5183
email: grischa.klimpki@psi.ch