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ABSTRACT: Systems Toxicology aims to change the basis of
how adverse biological effects of xenobiotics are characterized
from empirical end points to describing modes of action as
adverse outcome pathways and perturbed networks. Toward
this aim, Systems Toxicology entails the integration of in vitro
and in vivo toxicity data with computational modeling. This
evolving approach depends critically on data reliability and
relevance, which in turn depends on the quality of
experimental models and bioanalysis techniques used to
generate toxicological data. Systems Toxicology involves the
use of large-scale data streams (“big data”), such as those
derived from omics measurements that require computational
means for obtaining informative results. Thus, integrative
analysis of multiple molecular measurements, particularly acquired by omics strategies, is a key approach in Systems Toxicology.
In recent years, there have been significant advances centered on in vitro test systems and bioanalytical strategies, yet a frontier
challenge concerns linking observed network perturbations to phenotypes, which will require understanding pathways and
networks that give rise to adverse responses. This summary perspective from a 2016 Systems Toxicology meeting, an
international conference held in the Alps of Switzerland, describes the limitations and opportunities of selected emerging
applications in this rapidly advancing field. Systems Toxicology aims to change the basis of how adverse biological effects of
xenobiotics are characterized, from empirical end points to pathways of toxicity. This requires the integration of in vitro and in
vivo data with computational modeling. Test systems and bioanalytical technologies have made significant advances, but ensuring
data reliability and relevance is an ongoing concern. The major challenge facing the new pathway approach is determining how to
link observed network perturbations to phenotypic toxicity.
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■ INTRODUCTION

As a subset of systems biology, systems toxicology aims to
describe the resilience of biological systems to perturbation by
toxicants, i.e., the ability (or lack thereof) to return to normal
function. The toxicological community in the 21st century is
repositioning from empirical, animal-based testing to a
mechanistic understanding of chemical-induced biological
perturbation in toxicity pathways and networks,1 ushering in
a radical rethinking of safety assessment.
This repositioning has been driven by the revolution in

genomics and a systems-oriented perspective on biology that
aims to address biological processes as integrated systems of
diverse interacting components.2 An understanding of biology
from a systems perspective involves3 (1) collection of large sets
of experimental data by high-content technologies and/or by
mining molecular biology and biochemistry literature and
databases; (2) proposal of mathematical models that might
account for at least some significant aspects of this data set; (3)
accurate computer simulation of the mathematical models to
obtain numerical predictions; and (4) assessment of the quality
of the models by comparing numerical simulations with the
experimental data.
Systems Toxicology adds to this challenge a requirement to

describe the perturbation of these systems and their resilience,4

in response to potential hazardous exposures. An overarching
goal of Systems Toxicology is to relate complex exposures, via
susceptibility factors and alterations of biological processes with
impacts on a population level. A practical building block
involves reliable experimental model systems to measure key
events along pathways, which are really networks, and linking
them to adverse outcomes. Addressing such adverse outcome
pathways from a network perspective involves diverse strategies
for the integrative analysis of omics measurements. Finally,
observed network perturbations and the mathematical models
that describe them need to be linked with particular
phenotypes. This requires computational and empirical
approaches for prediction and qualification.
Building on a highly successful Systems Toxicology confer-

ence held in Ascona, Switzerland in 2013, a second Systems
Toxicology meeting was held in Les Diablerets, Switzerland, in
early 2016.5 The 2013 meeting set out to evaluate how state-of-
the-art systems biology tools can be used to elucidate toxicity
pathways and provide realistic exposure and outcome assess-
ments, as well as to establish a general framework for

interpreting and applying Systems Toxicology data to inform
chemical risk assessment policy and regulation.1 Three years
later, the aim was to explore in greater detail specific
applications of systems toxicology approaches. The objectives
of the conference were to (1) illustrate real-world examples of
how systems toxicology could be applied to elucidate toxic
modes of action and contribute to realistic exposure and
biological impact assessments; (2) learn how experimental and
computational elements could be integrated in systems
toxicology-based approaches; (3) reveal recent advances in
complementary and multidisciplinary research with the
potential to enhance further development and application of
systems toxicology; and (4) bridge scientific approaches in
systems toxicology with applications in human toxicological risk
assessment.
This perspective is based on presentations and discussions at

the 2016 Systems Toxicology meeting. It is a simple and
incomplete but we hope useful snapshot of current aspects of
this rapidly developing field. The perspective addresses first the
type of pathway information required for Systems Toxicology
and the requirements the model systems and omics measure-
ments have to satisfy to derive such information. Furthermore,
it addresses three key challenges, i.e., how to link network
perturbations to phenotypes, how to address uncertainty in
computational models, and how to develop pathway-based
testing strategies as a step toward systems toxicology risk
assessment. Finally, a number of emerging examples toward
systems toxicology are given, many of them recently highlighted
in a Chemical Research in Toxicology virtual special issue on
Pathway-Based Approaches for Environmental Monitoring and
Risk Assessment.6

■ TOXICITY PATHWAYS AND NETWORKS
Pathway-based toxicology is at the core of the 21st Century
Toxicity Testing vision (NRC 2007).7 Pathway-based mecha-
nistic analysis is particularly important in interpreting the
growing amount of chemical toxicity data based on high-
content8,9 and high-throughput screening (HTS).10 For
instance, how does one interpret the impact of toxicants on
hundreds of proteins and genes in multiple pathways? What
does it mean if multiple toxicants have shared mechanisms and
pathways? Many toxicants actually simultaneously activate
multiple pathways; this phenomenon has been termed
promiscuity in chemical toxicity, i.e., most toxicants act via
more than one discrete pathway. We need to consider
mechanisms to make sense of observed perturbations.8

The term “Pathway of Toxicity” (PoT)11 was coined for this
purpose. PoTs are defined on a molecular level, i.e., with a high
level of detail, which typically requires the generation of new
experimental information. They aim for quantitative relations
and fluxes. PoTs rely mostly on the untargeted identification of
molecular interactions, typically by omics technologies.
Mechanistic validation, i.e., establishing whether identified
mechanisms are relevant for human or environmental health
effects, has been suggested.12

Pathway-oriented approaches are largely based on an
assumed, principally linear sequence of events, i.e., A leads to
B leads to C, and if we block B, A will not lead to C. Ultimately,
however, there will be a need to combine linear pathways into
network models.13 This is the basic goal of Systems Toxicology:
Computational network models,14 e.g., virtual organ models,15

based on our pathway knowledge make predictions about
organs or whole organism responses (such as the virtual
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embryo palate closure model).16 Comparison of model outputs
with actual measurements will then show how close we are to
understanding the characteristics of living networked systems.

■ REQUIREMENTS FOR TEST SYSTEMS TO DERIVE
PATHWAY INFORMATION

The pathway knowledge to build Systems Toxicology to a large
extent still requires experimental models to derive such
information, typically by omics technologies. The complexity
of the organism, therefore, has to be reflected in the model.
Test systems increasingly aim to reflect such aspects of the
complexity of human physiology, for example, organotypic
cultures or microphysiological systems. 3D organoid cultures17

and their bioengineered environments move closer to this
goal18 by creating an organ-relevant model of multiple
collaborating cell types, perfusion, organ architecture, and
functionality. However, these elements are rarely combined in
typical model systems.19

The data generated by test systems need to be both reliable
and relevant. The OECD20 defines reliability in the context of
formal validation as a measurement of “the extent to which a
test method can be performed reproducibly within and between
laboratories and over time, when performed by using the same
protocol. It is assessed by calculating intra-laboratory and inter-
laboratory reproducibility and intra-laboratory repeatability.”
While it is obvious that such reproducibility is necessary in
experimental test systems, it is astonishing how seldom this
requirement is actually addressed in either in vivo or in vitro test
systems (except for a small number of formal validation
studies). This situation has undoubtedly contributed to the
current reproducibility crisis in science.21 Recognizing this for
in vitro testing, the Good Cell Culture Practice (GCCP)
guidance22 has recently been revamped23 in an International

GCCP collaboration.24 The upgrade includes work toward in
vitro reporting standards.25 In short: 21st century toxicology
starts with 21st century cell culture.26 The European Union
Reference Laboratory for alternatives to animal testing (EURL
ECVAM) is currently coordinating the development of an
OECD guidance document on Good In Vitro Method Practice
(GIVIMP) which may be adopted in 2017.27 GIVIMP should
contribute to increased standardization and harmonization in
the generation of in vitro information on test item safety.
What is measured must be not only reproducible but also

relevant. Sometimes we reliably measure the wrong end point.
The NIEHS (1997) definition of relevance indicates that it
“describes whether a test method is meaningful and useful for a
particular purpose. It is the extent to which the measurement
result and uncertainty can accurately be interpreted as reflecting
or predicting the biological effect of interest”.28 The way
forward must focus our efforts on developing human cell-based
in vitro systems,29 and the challenge is that such systems need
to permit the reliable measurement of end points of relevant
functional biological processes.
Thus, reliability and relevance are the cornerstones of formal

validation and should be a basis for the test systems used to
deduce pathways and networks.30,31 This assertion is not meant
to suggest that only formally validated test systems should be
used, only that it should be a goal. This is an iterative process,
whereby the most mechanistically relevant test systems are used
to further detail, challenge, and refine mechanistic under-
standing, which, in turn, can lead to improved test systems.

■ REQUIREMENTS FOR OMICS DATA TO DERIVE
PATHWAY INFORMATION

Omics data can be a basis for the identification of pathways and
networks,32 but many challenges remain, especially for

Table 1. Advantages and Limitations of Common Omics Technologies

technology advantages limitations

RNASeq (including
RASLseq and TempO
seq)

less costly and getting continuously cheaper number of transcripts (>27,000 genes plus others)
includes low abundance transcripts and noncoding RNA RNA changes do not imply protein changes
fully quantitative large data sets posing bioinformatics challenges

incomplete functional annotation
chip-based transcriptomics best standardized as to performance, reporting, and functional

annotation
number of transcripts (>27,000 genes plus others)

often strong signals (induction factors) RNA changes do not imply protein changes
interpretation by miRNA and transcription factor analysis
advancing

semiquantitative at best

proteomics sensitivity and specificity large number of (modified) proteins (up to 1 million) require
extensive method development and multiple measurementsdirect reflection of altered protein levels

may pick up direct compound−protein interactions
sensitivity of advanced mass-spectrometry-based methods
gradually approaching that of chip-based transcriptomics

protein quantity changes do not imply functional changes
only very few laboratories able to implement advanced proteomics
methods

less costly per measurement not all proteins in a sample can be identified and limited availability
of antibodies

metabolomics actual phenotypic change metabolite identification by MS
fewer number of substances (several thousands) low sensitivity of NMR
less costly per measurement small effect strengths, i.e., often only slight changes over background

activity
NMR analysis is robust, noninvasive, and quantitative, and
allows structural identification of metabolites

currently does not provide enough mechanistic information (this will
improve in the near future)

MS analysis is sensitive, quantitative, and detects a high number
of metabolites

little standardized as to performance, reporting, and functional
annotation

differences between platforms
incomplete extraction of metabolites depending on extraction
method
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metabolomics,33,34 which is important since it is closest to
phenotypical changes.35,36

The progress in omics technologies is impressive; new
generations of instruments and chips offer real advantages and
enable measurement of an enormous number of signals. Each
omics technology has its own advantages and limitations,37 as
exemplified in Table 1 for some of the more common
technologies.
Because of limited throughput and high cost, only a few

repeat measurements and experimental conditions can typically
be tested. Combined with considerable variability of the
measurements, this makes it difficult to separate statistically
significant and meaningful changes from measurement artifacts,
and small perturbations often escape detection. Cherry-picking
individual significant signals and simple clustering on pathways
often produces irrelevant results (as has been recently shown
for metabolomics34).
A promising approach is reduction in dimensionality of data,

e.g., by transcription factor analysis38,39 or miRNA network
analysis of transcriptomics data. A further promising approach
is multiomics data analysis (as pursued, for example, in the
Human Toxome project),40 whereby perturbations of the same
pathways in several orthogonal omics technologies support
greater confidence in reliability of pathway elucidation. One
promising example of the result is proteogenomics, as well as
the more challenging combination of transcriptomics with
metabolomics.
It is often unclear whether the molecular changes and

complex signatures detected by omics analyses actually
represent adverse effects, and this lack of clarity hinders the
broad application of omics measurements in safety assessments.
To establish causal relationships, experimental challenges based
on the Koch postulates or the Bradford-Hill criteria are
necessary.41

The same issue of relevance also applies to the use of omics
for exposome measurements42,43 involving the broad direct or
indirect measurement of exogenous and endogenous sub-
stances in (human) biofluids as an indicator of the totality of
exposure impacts. Thus, if we cannot interpret the patterns
measured by omics, their use for exposome analysis is limited.
Knowledge of mechanisms of toxicity could help identify
meaningful signals.44 This approach, giving rise to candidate
pathways of toxicity, could be expanded with targeted
measurements of components of the pathway as a basis for
explaining signatures in exposome measurements.

■ REQUIREMENTS FOR HIGH-THROUGHPUT AND
HIGH-CONTENT IMAGING DATA TO DERIVE
PATHWAY INFORMATION

The high-throughput screening (HTS) programs of ToxCast45

and Tox21 measure numerous cellular responses, and under-
standing the pathways by which such cellular responses can lead
to adverse outcomes is central in the interpretation and
validation of the HTS data46 and for designing future integrated
testing strategies.47−49 Kleinstreuer et al. used computational
clustering of ToxCast data from 641 environmental chemicals
tested in primary human cell systems to identify potential
chemical targets and mechanisms for elucidating toxicity
pathways.50

Similarly, high-content imaging (HCI) provides data
allowing the analysis of pathways. Shah et al. used HCI to
simultaneously measure multiple cellular phenotypic changes in
HepG2 cells induced by 967 chemicals in order to identify the

“tipping point” at which the cells failed to show recovery
toward a normal phenotypic state.51 The aim is to use such
cellular tipping points to define points of departure for risk-
based prioritization of environmental chemicals. These
examples show that high-throughput and high-content imaging
information can support pathway deductions, though experi-
ences compared to omics approaches are rather limited.

■ CHALLENGE OF LINKING NETWORK
PERTURBATIONS TO PHENOTYPES

Large-scale data streams can be used to develop an integrative
qualitative and quantitative view of complex networks operative
in cells and organs. Linking these networks to in vivo adversity,
however, remains a challenge.
Liu and colleagues used a machine-learning approach that

integrates chemical structure, bioactivity, and toxicity data to
classify rodent hepatotoxicants.52 While not directly aimed at
elucidating pathways for liver toxicity, their data-driven
approach empirically identifies putative biomarkers that could
be key events involved in pathways to hepatic injury,
inflammation, and neoplasia. Van den Hof et al. used gene
expression profiles in vitro in HepG2 cells as a proof of principle
for classifying known hepatotoxicants and nonhepatotox-
icants.53

In order to link exposure and effect, quantitative high-
content imaging of cellular adaptive stress response pathways
for chemical toxicity visualizing pathway activation serves as an
example. Garcia-Serna et al. computationally combined
chemical, structural, and biological hazard data of bioactive
small molecules to gain a better understanding of the
mechanisms leading to adverse effects.54 Angrish et al.
introduced a gas phase probe molecule into an in vitro system,
observed normal steady state, added chemicals of interest, and
quantitatively measured (from headspace gas) effects on
metabolism that could be linked back to a well-defined
corresponding in vivo effect.55 Similarly, Gonzalez-Suarez et
al. selected three well-known harmful and potentially harmful
constituents in tobacco smoke, established a high-content
screening in normal human bronchial epithelial cells using 13
indicators of cellular toxicity complemented with a microarray-
based whole-transcriptome analysis followed by a computa-
tional approach leveraging mechanistic network models, to
identify and quantify perturbed molecular pathways.56

■ CHALLENGE OF ADDRESSING UNCERTAINTY IN
COMPUTATIONAL MODELS FOR SYSTEMS
TOXICOLOGY

Computational models in Systems Toxicology can involve
multiple biological scales, from molecular signaling to tissue
dynamics to whole organisms, as well as time scales from
fractions of a second to human lifetimes. Small uncertainties at
one scale could cause large errors in predictions at another
scale. In building reliable predictive computer model systems, it
is therefore important to consider uncertainties,57 including (at
minimum): (1) Uncertainty in Systems Toxicology model
structure: assessing whether the equations/network in use are
appropriate. Would others fit the data equally well, but result in
different predictions? (model selection). (2) Uncertainty in
parameter values within the equations (minimization to fit data,
inverse problems, parameter identifiability, dealing with
variability): How sure are we that the numbers we are using
in the simulation are accurate? Can we define probability
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distributions for them?. (3) Uncertainty propagation: how does
the uncertainty in the model, parameters, and any inputs
propagate through to uncertainty in our predictions of end
points?
Assessing 1−3 is known as Uncertainty Quantification (UQ).

UQ approaches are well developed, and often applied as
standards in simple ADME compartmental concentration
models, but extending UQ approaches to signaling pathway
networks, adverse outcome pathways (AOP), and complex
physiologically based pharmacokinetic (PBPK) models58

requires more attention.

■ CHALLENGE OF PATHWAY-BASED TESTING
STRATEGIES

Systems Toxicology can be seen as the ultimate goal of
transitioning to a pathway-based approach in risk assessment, as
it aims for the integration of our pathway knowledge into
predictive models. This requires on the way, the generation of
pathway-based information and the integrated use of such
information to support risk assessment. By designing our
testing strategies around the emerging pathway- and network-
knowledge, we are converging with the Systems understanding
and providing the data for its modeling.
Chemical risk assessment comprises hazard identification

(adverse effects produced by a substance), hazard character-
ization (dose−response analysis of how much of a substance is
required to produce adverse effects), and exposure assessment.
Hazard characterization has traditionally used so-called “apical
end points” (typically animal organ pathology) and has been
plagued by interspecies and interindividual differences and the
need for high-dose to low-dose and short-term to long-term
extrapolations.59 Additional uncertainty in exposure assess-
ments arises due to multiple kinetic factors that can affect target
concentrations. As a consequence, uncertainty factors are added
in risk assessments to err on the “safe” side. Still, concerns
remain: Are we looking for the right adverse effects? Are those
observed effects relevant for humans? Do kinetics differ
between animals and humans? Are vulnerable human
subpopulations not addressed in animal studies? Could kinetics
and biological barrier functions differ in disease or at certain life
stages? Could coexposure to other toxicants (mixture effects)
alter exposure and hazard thresholds?
Some of these questions have been addressed by the World

Health Organization International Program on Chemical Safety
(WHO/IPCS) Mode of Action (MOA) framework, which
introduced the concept of a chain of causal key events leading
to toxicity.60−62 Using this framework, the question of human
relevance of animal data has been addressed for many well-
characterized toxicants.63,64

The MOA concept was subsequently adapted by the OECD
Adverse Outcome Pathway (AOP) framework,65−67 which aims
to identify key events in toxicity pathways between a molecular
initiating event (MIE) and an adverse outcome (AO). In
contrast to MOAs, AOPs are chemical-agnostic, i.e., they
attempt to describe common key events triggered by multiple
chemicals. Building a knowledgebase of these key events will
assist in establishing the relevance of test systems.
It is important to note that AOPs are designed to be

parsimonious descriptions that can be used for regulatory
purposes, rather than detailed mechanistic descriptions of
systems toxicity networks. The aim is to identify as many key
events as necessary but as few as possible.68 The different levels
of detail between AOPs and PoTs has led to the existence of

different repositories, i.e., the AOP-Wiki69 and Effectopedia70

for AOPs, versus the Human Toxome Knowledgebase under
construction.
In 2013, the Scientific Committees of the European

Commission Directorate General for Health and Consumer
Safety issued an opinion71 that “There is a trend/need to
change the basis of risk assessment from the one based on
standard tests to one that is centered on modes of action. In
investigations using laboratory animals, increasing importance
should be directed to characterizing the mode of action with
less emphasis to end points based on histopathological criteria,
body and organ weight, and blood chemistry.” This approach
was adopted in the EU research program SEURAT-1 (Safety
Evaluation Ultimately Replacing Animal Testing), funded by
the European Community’s Seventh Framework Programme
FP7,72 and subsequently in EUToxRisk,73,74 a large-scale, six-
year EU project aiming to integrate in vitro and in silico
toxicology, read-across methods, and adverse outcome path-
ways for the prediction of repeated dose systemic toxicity (liver,
kidney, lung, and nervous system) and developmental/
reproductive toxicity. It focuses on regulatory hazard and risk
assessment rather than on individual test methods. AOPs and
integrated approaches to testing and assessment (IATA) play a
central role in the EU-ToxRisk project. The goal is to develop
quantitative AOPs (qAOPs) for regulatory assessment of
chemical safety in humans.73 This is all part of a systematic
development of safety sciences.75

Many pieces of the puzzle are emerging from various places,
e.g., Allen and colleagues76 proposed a unified approach to
defining MIEs for risk assessment based on QSARs and
receptor activation. Once chemicals can be accurately mapped
to MIEs, potential AOPs can be inferred. This approach was
implemented by Mellor and colleagues77 by computationally
identifying structural alerts for nuclear receptor (NR) activators
from 12,713 NR agonists in ChEMBL, a manually curated
chemical database of bioactive molecules with drug-like
properties by the European Bioinformatics Institute (EBI), of
the European Molecular Biology Laboratory (EMBL). These
structural alerts can be used to prioritize chemicals by NR-
mediated pathways to hepatic steatosis. Similarly, Mekenyan
and colleagues78 computationally linked chemicals to MIEs
involved in respiratory sensitization based on absorption into
epithelial membranes (physicochemical rules) and electrophilic
reactivity (simulating metabolism). They further evaluated the
predictive accuracy of their approach using known respiratory
sensitizers. Similarly, Roberts and Aptula79 studied electrophilic
reactivity in the context of skin sensitization potency.
Vinken80 provides an overview of constructing AOPs

involved in drug-induced liver injury (DILI) with AOs steatosis,
cholestasis, and fibrosis. Potential applications of such AOPs
include read-across or chemical grouping based on MIEs using
cheminformatics, as well as integrated approaches to testing
and assessment (IATA).
From a regulatory point of view, IATAs are essential for

consistent and transparent evaluation of the relevance of AOP-
based (frequently in vitro) data for specific end points and
regulatory decisions.81−83 The first example of AOP-based
IATA development is for in vitro skin sensitization testing.82

Two in vitro test guidelines have been adopted by the OECD,
covering the molecular initiating event of the AOP for skin
sensitization (covalent protein binding; OECD Test Guideline
442C)84 and the second key event (keratinocyte inflammation;
OECD Test Guideline 442D).85 Combining the results of these
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two assays is more predictive than each assay alone,86 leading to
an industry proposal for an Integrated Testing Strategy87 based
on readouts from multiple key events, and an associated
decision support system for the risk assessor. On the regulatory
side, the U.S. Interagency Coordinating Committee on the
Validation of Alternative Methods (ICCVAM) is developing
integrated decision strategies based on in vitro, in chemico, and
in silico information derived from the skin sensitization AOP.88

It is clear that much work needs to be done to provide simple,
acceptable AOP-based IATAs for regulators.89

Outstanding regulatory challenges90,91 include the need for
reliable data and data analysis, in addition to quantifying
uncertainty due to genetic background, cell type and top-
ography, life-stage, and exposure temporality in dose−response
modeling.
Altogether, the AOP and PoT work is establishing the

pathway-based approach to safety testing, which forms the basis
of the adaption of Systems Toxicology at a later stage.

■ EMERGING BUILDING BLOCKS AND THEIR
APPLICATIONS FOR SYSTEMS TOXICOLOGY

Mechanistic toxicology is flourishing in academic research and
increasingly impacting additional or alternative evidence on the
regulatory process. A lot of this is contributing to the
development of Systems Toxicology. A few examples drawn
from the congress and a recent virtual issue of this journal and
Environmental Sciences and Technologies92 are used to illustrate
ongoing progress in the following.
Physiologically Based Pharmacokinetic (PBPK) Mod-

eling. Computational PBPK models are used to estimate
xenobiotic concentrations in various organs.93 Detailed
permeability-limited PBPK models of the liver, kidney, lung,
brain, intestine, and skin have been described.94−99 Both
chemical properties and modeled physiology can be altered to
investigate the effects of a given xenobiotic in individuals of
different ethnicities, ages (e.g., pediatric and geriatric), or
altered levels of organ function (e.g., renal and hepatic
impairment).100 The combination of PBPK modeling with in
vitro−in vivo extrapolation (IVIVE) permits bottom-up
prediction of absorption, clearance, and distribution of
xenobiotics.101,102

The combination of PBPK with pharmacodynamic or
toxicodynamic models enables investigation of safety risks
under conditions which are not amenable to clinical
investigation.103,104 For example, using permeability-limited
PBPK models, it was possible to predict the impact of a
transporter genotype on the pharmacodynamics of rosuvastatin
within the liver.105 PBPK models have also been coupled with
information about the effects of xenobiotics on heart tissue (ion
current disruption, contractility modification, and metabolic
pathways disturbance leading to cell apoptosis) to simulate the
cardiotoxicity of various agents. The verification of the
simulation results against clinically observed end points (i.e.,
QT prolongation) demonstrates the usefulness of such
combined modeling in drug safety assessment.106 Also, the
risk of human nephrotoxicity can be estimated from animal
studies by modeling drug-specific transporters to derive local
kidney concentrations.107

Hepatic Toxicity. One example of network modeling is a
large scale mechanistic simulation combining Flux Balance
Analysis of Genome Scale Metabolic Network of human
hepatocyte with a large-scale model of nuclear receptor
signaling.108 This model can qualitatively link gene activity

perturbation with bile acid homeostasis, thus permitting
mechanistic assessment of the role of genetic polymorphism
in toxicity and interpretation of omics data.

Cardiac Toxicity. Blockade of the hERG potassium channel
by direct binding of a drug molecule causes QT prolongation
and increases pro-arrhythmic risk. Since 2005, candidate drug
compounds must be screened for hERG binding (ICH S7B
guideline)109 and clinical long QT (ICH E14 guideline).110

These guidelines have been remarkably successful in preventing
compounds with increased pro-arrhythmic risk reaching the
market; this is a highly sensitive approach (few false negatives),
but many safe compounds on the market since well before 2005
would fail to meet these guidelines, suggesting that they may
have low specificity (many false positives). It has been
proposed that multiple ion channel block may explain the
discrepancy in sensitivity and specificity;111−113 put simply,
blocking additional ion channels may compensate for blocking
of hERG and reduce pro-arrhythmic risk.
In addition to multichannel effects, it is also important to

consider drug kinetics at particular ion channels. Does the drug
simply bind to the channel and block its current, or do we need
to consider which conformational states the drug can bind, and
how the channel behavior is affected by this?114−116

The development of improved test systems and bioanalytical
methods has enabled a systems approach for measuring drug
binding effects and simulating their consequences.117 First, new
cell-line technologies (overexpression of ion channels of
interest in immortal cell lines, together with automated patch-
clamp ion current screening platforms) have made it possible to
routinely screen compounds for blockade of multiple cardiac
ion channels.118 Second, mathematical models of cardiac
electrophysiology are very well established; they integrate the
information on multiple ion channel effects by describing how
action potentials are formed from a set of voltage-dependent
ionic currents.119 Predicted and measured drug-induced action
potential changes can be used as risk indicators. Notably,
interference with one ion channel alters membrane voltage and
thus the sensitivity to block of other ion channels. Modeling
involves not just the biochemistry of ion channels and gene/
protein networks but also the biophysics of membrane
electrophysiology. These mathematical models are now in
routine use to predict the results of safety tests120,121 and are an
integral element of new initiatives to replace existing guidelines
with more accurate preclinical assessments of pro-arrhythmic
risk than the existing clinical studies.122,123

Renal Toxicity. In recent years, the toxicological
community has shifted focus from animal studies to an in
vitro molecular understanding of chemical-induced biological
perturbations.124 The ability to map pathway activation at the
mRNA level has uncovered networks of toxicologically relevant
processes, including stress response pathways,125 that are
involved at the early stages of many chemical-induced
pathologies.126,127 Integrating transcriptomics with other
omics information (such as proteomics and metabolomics)
dramatically increases the depth of biological interpretation,
allowing us to establish where breaks in cellular homeostatic
regulation occur. We should be careful, however, to confirm the
relevance of this information in real world situations and to
normal human biology. Where possible, it is best practice to use
human, stable, noncancerous, differentiated cells, rather than
unstable, highly proliferating, glycolytic cells with practically
alien karyotypes (such as A549 cells or MCF7 cells).128 It is
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also important to include adequate exposure data when
interpreting high content toxicological data.
In the EU seventh Framework Project, Predict-IV, integrated

omics analyses were combined with intracellular dosimetry in in
vitro liver, kidney, and CNS test systems. Intracellular
dosimetry analyses using inductively coupled plasma mass
spectrometry (ICP-MS) and omics data (transcriptomics,
metabolomics, and proteomics) were captured during the
administration of renal toxicants for up to 14 days129−131 in the
in vitro human proximal tubule RPTEC/TERT1 cell line, which
has a close-to-normal cellular phenotype132−134 and can be
maintained as a tissue monolayer for months.132,135 Cyclo-
sporine A (CsA), an immunosuppressant agent and suspected
nephrotoxin, is highly lipophilic and thus not readily soluble in
aqueous solutions such as cell culture medium. At 15 but not 5
μM, CsA massively accumulated in the cells, likely due to the
saturation of the ABC extrusion transporters. Integrated
analysis of the exposure and omics data indicated that CsA at
15 μM floods the lipophilic compartments of the cell and
causes both ER and mitochondrial disruption; the cells manage
to stay alive by Nrf2 and ATF4 activation and by switching
back to glycolysis for energy requirements. Increased glycolysis
is reflected in increased lactate in the supernatant medium,
which can thus be used as a surrogate marker for toxicity.136

The therapeutic mode of action of CsA is binding to cyclophilin
and subsequent reduction of T cell activation and their immune
response. In the RPTEC/TERT1 cells, CsA induced apical
excretion of cyclophilin B (CyP-B) as a surrogate marker of
clinical efficacy at both 5 and 15 μM.
From the lactate and CyP-B data, an in vitro therapeutic

window is apparent for CsA, whereby strong CyP-B induction
starts at 3 μM, but enhanced glycolysis does not begin until
≥10 μM (Figure 1). Human kinetic data indicate that CsA at
therapeutic doses will not reach 10 μM in plasma,
demonstrating a narrow therapeutic window between efficacy
and toxicity.

It is understandable that there is some skepticism in
accepting safety data derived solely in vitro, and thus, it is
necessary to increase confidence by comparison with similar in
vivo data where available. Because of species differences,
comparing in vitro human cell data with in vivo animal data is
unsatisfactory. A way around this is to verify in vitro biomarkers
in clinical samples from diseased patients, which often have
similar underlying etiology. We have shown, for example, that

IL-19 is induced and secreted into the supernatant medium in
RPTEC/TERT1 kidney cells exposed to several nephrotoxins,
including zoledronate and antiviral compounds.137 IL-19 was
found elevated in the urine of CKD patients and exhibited a
negative correlation to the estimated glomerular filtration rate
(a measure of renal function) and a positive correlation to
urinary N-acetyl-beta-D-glucosaminidase and lipocalin 2 (bio-
markers of proximal tubule injury). This type of in vitro to in
vivo correlation increases the confidence in the relevance of
specific biomarkers and their pathways.138

■ CONCLUSIONS
Three developments are enabling the progress of the Systems
Toxicology approach: (1) reliable and relevant in vitro test
systems, (2) high-throughput and high-content methods
generating large-scale data streams, and (3) in silico model
systems. All require delineation of pathways of toxicity.
Development of pathway-based approaches in toxicology will
require a mountain of work. The state-of-the-art approach
summarized here is like a snapshot taken from the foothills. No
single picture of a mountain can capture its complexity, but we
believe that the current perspective will help us further plan the
route to the top.
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