
���������������	�
�	��

���
�
�����������	�	���
�����������������
�����
�	����������
�����	�������������������	��������������

�������������	���
�����
��

��������������������
�������	��� �!�����
���������"�����#����� �����$�!�����
�%���&�������
���"���'�
�������!���(�	���
���"���)�	�
�*�*�������!�����&��������

�
�����������������������������
��
�����+�,

�
�
���������
����������������
�������-�$�.�/�/�����������	� �/�+�����0�1���1�/�������*���
�����+���2�1�,�3�,��

�����	�������������������
�����
��
�4���������-���	��� �����������5�����������&�&���	�
���
�����6�$�����'���	�&����������

�������$���-�
� �����7�
�$��� �������	�
���������
�������&�
�����
�
�����������-�����������7�������
�������	���&�������������������8���	���
���������$���
�	�
���������������
����������
�)���	���&���	�������������	�&�
���������!���-�����
�$�����
�����$���������������������	�&�$�����������$����

https://doi.org/10.3929/ethz-a-010897472
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Scale-Corrected Monocular-SLAM for the AR.Drone 2.0

Daniel Gehrig, Maximilian Göttgens, Brian Paden, and Emilio Frazzoli

Abstract— This paper describes an open source software
package in the Robot Operating System (ROS) framework
for conducting robotics research with the Parrot AR.Drone
2.0. The software builds upon existing tools by adapting the
ORB-SLAM library with a ROS driver for the drone so that a
scaled monocular-SLAM based map and accurate pose estimate
is available for navigation and control processes. A focus of
the discussion is on robust scale estimation for the monocular
SLAM generated map using sensor data from the drone's on-
board sensors. The purpose of this package is to provide an
easy to use platform for experimental testing of autonomous
navigation and control techniques for micro aerial vehicles.

I. I NTRODUCTION

In recent years micro aerial vehicles (MAV) have greatly
increased in popularity due to their versatility and relatively
low cost. Some promising applications include package de-
livery [1], [2], search and rescue [3] and industrial inspection
[4]. The increase in popularity is due in part to their high
�exibility, maneuverability and sensing capabilities. These
are results of advances in embedded control and sensor
fusion algorithms which are becoming more viable as the
cost for on-board sensing and computation decreases. These
are vital for autonomously operated robotic systems, which
must run a wide range of processes to interpret sensor data
and take appropriate action to accomplish a task.

Typical processes include navigation modules to determine
safe motions through an environment, feedback control mod-
ules to faithfully execute reference motions, and mapping and
localization modules which provide a map of the obstacles
in the environment as well as an estimated pose relative to
that map.

A driving force for the development of such algorithms
is open source software development and low-cost robotics
hardware which is streamlining collaboration in robotics
research and creating exciting educational opportunities. A
good example for this is the AR.Drone 2.0. This quadcopter
has gained a lot of interest as an educational tool and research
testbed due to its low cost and large variety of on-board
sensors. As such, existing developments for the AR.Drone
2.0 include a driver [5] that provides an interface to the Robot
Operating System (ROS) framework, a package providing
tools for manual �ight [6], and a package for pose estimation
and basic control functionality [7].

The software package providing pose estimation, de-
scribed in [8], performs high �delity drone localization in
GPS denied environments thanks to state of the art pose
tracking algorithms which combine visual and inertial data

The authors are with the Institute for Dynamic Systems and Control at
ETH (email: {padenb,mgoettgens,dgehrig,emilio.frazzoli}@ethz.ch).

derived from on-board cameras and inertial sensors. In
particular visual pose tracking is performed using monocular
simultaneous localization and mapping (SLAM) based on
parallel tracking and mapping (PTAM) [9], [10]. However,
monocular SLAM algorithms suffer from the well known
limitation that they can determine pose and landmarks only
up to an unknown scale factor. The solution presented in [8]
is based on a maximum likelihood estimate that incorporates
inertial data to determine an appropriate scale factor. While
the implementation of this approach, available in [7], works
well, there is potential for improvement:

1) The PTAM routine has to be initialized (bootstrapped)
manually which limits autonomy

2) Mapping information is not provided prohibiting path-
planning or other obstacle avoidance applications

3) PTAM is limited to local operation because it performs
limited continuous mapping

In this work we utilize the maximum likelihood estimator
proposed in [7], but replace the PTAM library with the
more recently developed ORB-SLAM library to overcome
the issues described above. In doing so, we also provide a
reproducibility study of the maximum likelihood estimator's
performance with an alternative mapping tool.

ORB-SLAM is based on the ORB descriptor [11] and
presented in [12]. The ORB descriptor has the advantage
of being invariant to large view point changes [11], a
feature that is not shared with the features from accelerated
segment test (FAST) descriptor which is used in PTAM.
ORB-SLAM additionally features automatic bootstrapping
[12] and large-scale operability through continuous mapping
of the surroundings. This is possible thanks loop-closures
which avoid map duplication, eliminate drift, and lead to
more ef�cient data storage. In general it has been shown
that ORB also performs better in relocalization [12] leading
to a more robust system.

The remainder of the paper is organized as follows:
Section II presents an overview of system hardware and
software. Section III reviews the scale estimator proposed in
[7] as well as practical implementation details not described
in [7]. In Section IV, we present the experimental test results
evaluating the performance of the system and modi�cations
to the scale estimation scheme.

II. SYSTEM OVERVIEW

The system hardware is composed of an AR.Drone 2.0
unit along with an external computer for data process-
ing and computations. A connection between both devices
is established via a WLAN network. The drone's on-
board sensor suite consists of a forward facing camera, an

� �

������

���	
������
����	���������

��
	���������

���	������	�����

�����������

�������������

��������

�����

Fig. 1. The main ROS nodes (round boxes) exchange data via speci�c
topics (rectangular boxes). The connection for a low-level data exchange to
the drone hardware is established via a WLAN connection managed by the
drone driver node.

IMU, a downward-facing ultrasonic distance sensor, and a
downward-facing camera.

The on-board controller of the AR.Drone 2.0 only man-
ages low level tasks such as sensor data acquisition, basic
data-processing, and bidirectional forwarding over WLAN.
All high level processes are run remotely from a laptop
computer using the ROS software framework.

ROS provides utilities for running several processes
(nodes) simultaneously and provides easy-to-use interprocess
communication tools. Messages are passed between pro-
cesses through channels called topics. Theardrone_driver
node from the ardrone_autonomy package provides the ROS
interface to the AR.Drone 2.0 quadcopter. Similarly, the
ORB_mononode de�ned in the package ardrone_orb inter-
faces the ORB-SLAM library with the AR.Drone 2.0. While
there is already ROS support for ORB-SLAM package, this
node provides an interface speci�c to the AR.Drone 2.0. This
includes necessary transformations to align the AR.Drone 2.0
driver's coordinate frame with the ORB-SLAM frame, and
publishes an unscaled pose estimate and point cloud of the
detected features. Thescale_estimatornode de�ned in the
package ardrone_orb estimates a scale between the ORB-
SLAM and the drone driver coordinate frames. Together,
these nodes provide a scaled pose estimate of the drone.

A. Coordinate Frames for the AR.Drone 2.0

Accurate pose estimation requires keeping track of sev-
eral transformations between coordinate frames. The drone
driver publishes a base coordinate frameodom over the
navdata topic according to ROS REP 105. This signal is
subject to drift over time. Drift can be eliminated from this
estimate by incorporating localization information published
by the ORB-SLAM wrapper node.

Three features of the AR.Drone 2.0/ORB-SLAM have
to be considered for a transformation from the driver's
odom frame to the drone's body �xed frame (pose estimate).

1) The �rst pose estimated by ORB-SLAM is not equal to

the origin of the ORB-SLAM baseframe
2) ORB-SLAM data is expressed in a camera reference

coordinate frame ([13]) for the front camera whereas
the driver pose estimations are expressed in aodom-
aligned frame

3) Upon take-off, a rotation in the base-link transformation
published by the drone driver occurs

To incorporate these properties, we establish a transforma-
tion chain, which is initialized directly after ORB-SLAM ini-
tialization. Once the transformation chain is successfully set,
all static transformations in the chain can be consolidated into
one �xed transformation. As a result, only one transformation
multiplication is needed in order to get the �nal transfor-
mation of the pose (odom ! orb_pose_unscaled).
However, to achieve this, all parts of the transformation chain
have to be collected successively at the correct time. The
complete transformation tree is illustrated in Figure 2.

1) odom to second_keyframe:Upon ORB-SLAM
initialization at time t init (successful bootstrapping),
the frames second_keyframe_base_link and
second_keyframe_cam are de�ned. Call these
S and S� . Together with the odom frame, O,
these de�ne the transformationTOS 2 SE(3)
which transform data in frameS to frame O when
multiplied the vector from the left. They have the
same rotation relative toO asardrone_base_link and
ardrone_base_frontcam respectively at initialization.
Note that S and S� have the same origin but different
orientations according to [13]. We will switch between
camera and odom-aligned frames with the transformation
R = TAA � such thatTOA � = TOA R where A is an
arbitrary frame.

2) second_keyframe to �rst_keyframe:The �rst pose re-
turned by ORB-SLAM is the pose of the second keyframe of
the bootstrapping process. However, all poses and landmarks
from ORB-SLAM are expressed with respect to the �rst
keyframe. This means that at initialization we can only
determine the �rst ORB-SLAM pose with respect to a
frame first_keyframe_cam , denotedF � which was
generated at an unknown time point in the past. This is
because ORB-SLAM sets the �rst keyframe dynamically and
dependent on whether it can initialize well or not. The �rst
received pose de�nes the transformationTS � F �

The transformation to the desired frameF � can be ob-
tained through the multiplicationTOF � = TOS � TS � F � .

3) �rst_keyframe to pose_unscaled: The drone
pose and point cloud can now both be expressed in
F � . The pose is de�ned over its body �xed frame
orb_pose_unscaled_cam , denoted B� , which can
be reached through pose information gathered from ORB-
SLAM of the formTB � F � (t) and depends on the timet since
it is a moving frame. These time varying transformations
de�ne the framesB� and B� , orb_pose_unscaled ,
over the multiplication TOB � = TOF � TB � F �

� 1 and
TOB = R� 1TOF � TF � B �

Lastly a quirk of the the drone driver node is
that it introduces a rotation around the z-axis of

ardrone_base_link upon take-off. This occurs at the
moment the �rst altitude readings become available in
the drone driver node and introduces a new frame which
we will denote Ô and is oriented toward magnetic
north. We determine the transformationTÔO by computing
the difference of transformationsTOL (published by the
driver) before and after take off, whereL denotes the
ardrone_base_link frame. This yields the correction
TÔO = TO � L TOL

� 1. The introduced frames and necessary
transformations are summarized in Figure 2. We can express
the current body �xed frame of the drone after take off ex-
pressed in theodom frame by following the transformation
tree down toorb_pose_unscaled and multiplying the
passed transformations in succession. Doing this we arrive
at:

TÔB (t) = TÔO TOS RTS � F � TB � F � (t) � 1R� 1 (1)

This transformation also de�nes the pose of the drone
as measured by ORB-SLAM. Once the scale has been
estimated correctly the true drone pose is de�ned by the
frame orb_pose_scaled denoted byP and is de�ned
by the following transformation:

TÔP (t) = � TÔB (t) (2)

where

� =
� 1

� I3� 3 0
0T 1

�
:

Note that this is a pure scaling matrix applied to the 3-
dimensional position vector.

III. SCALE ESTIMATION

One of the challenges that arises when using monocular-
SLAM for localization and mapping is determining a length
scaling factor for the generated map and robot pose. In this
work, the maximum likelihood approach in [8] was used
since it has been experimentally validated on the AR.Drone
2.0.

A. Mathematical Derivation

Let x(t) and y(t) denote position measurements in the
same coordinate frame from an unscaled and metric sensor
respectively. We would like to derive a model relating these
measurements to determine an estimator for the visual scale.
When comparing the raw measurements we see that they
are related over a scaling factor and an unobserved offset
since their coordinate frames are not necessarily collocated.
We can avoid estimating this offset if we consider the time
derivatives of the position measurements,_y(t) and _x(t) since
velocity vectors should also obey the same scaling law.

In prior works [14], [8] this differentiation was approxi-
mated with �nite differences between measurements.

Fig. 2. The transformation setup consists of all correction transformations
speci�c to the AR.Drone 2.0. To pass from one frame to the next the vectors
expressed in the parent frame must be multiplied by the transformation
de�ned at the branch leading to the target frame. Note that the scaled pose
is directly published in theodom frame for simplicity - all transformations
on the right side are still needed in order for this transformation to be
realized.

Measurements at two consecutive time-steps are given by
x(t i); x(t i +1); y(t i) and y(t i +1). Then measured displace-
ment over that time-step is

� xi = x(t i +1) � x(t i);

� yi = y(t i +1) � y(t i):
(3)

It is assumed that the the actual displacement is� � i which
is scaled by a constant� , for the unscaled measurement, and
corrupted by i.i.d. Gaussian noise.

� xi � N (� xi j� � � i ; � 2
x I d);

� yi � N (� yi j� � i ; � 2
y I d);

(4)

where� 2
y and � 2

x are variances for additive Gaussian noise.
The covariances are assumed isotropic and scale inde-

pendent. These assumptions are valid in particular for the
variance of the visual sensor whenxi is renormalized after
initialization such that the initial point cloud has unit depth
[15]. This is because the variance correlates with the average
landmark depth in the �rst frame.

Given a dataset of measurementsX = f � xi gN
i =1 and

Y = f � yi g
N
i =1 the negative log likelihood function has the

following form:

L (X ; Y) /
NX

i =1

k� xi � � � � i k
2

2� 2
x

+
k� yi � � � i k

2

2� 2
y

(5)

Minimizing yields a globally optimal solution for�

�̂ ML =
sxx � syy + sgn(sxy)

q
(syy � sxx)2 + 4s2

xy

2� � 1
x � y sxy

(6)

wheresxx = � 2
y

P N
i =1 � xT

i � xi , syy = � 2
x

P N
i =1 � yT

i � yi

andsxy = � y � x
P N

i =1 � xT
i � yi .

B. Application to AR.Drone 2.0

The above approach is generic and must be adapted to
speci�c sensor readings from the drone. Possible candidates
for position measurements include acceleration from the
IMU, horizontal velocity estimates from optical �ow in
the bottom facing camera and height information from the
ultrasonic sensor.

We observed that the horizontal motion (in the plane
of the drone's body �xed frame) estimated by the
navdata channel was unreliable due to drift in the estimate
and occasional data corruption. On the other hand, the alti-
tude component was the most reliable measurement for scale
estimation. This observation is also consistent with what is
reported in other works [16], [8] where ultrasonic altitude
measurements yielded good results and fast convergence.

In the following discussionzslam (t) and znav (t) will
denote quad-copter's vertical pose coordinate as estimated
by ORB-SLAM and thenavdata channel respectively. We
will try to �nd a model which describes the distribution of
local velocity estimates. Note that for small time intervals
we can make the following approximation

_zslam (t i) � � zslam ; i

� t ;

_znav (t i) � � znav ; i

� t

(7)

Using the stochastic model equations (4) for small dis-
placements we arrive at

_zslam (t i) � N (_zslam (t i)j� _� (t i); �̂ 2
slam);

_znav (t i) � N (_znav (t i)j _� (t i); �̂ 2
nav);

(8)

where _� (t i) := � � (t i)
� t is the true local velocity and̂� 2

nav :=
� 2

nav
� t 2 and �̂ 2

slam := � 2
slam

� t 2 are the variances of both velocity
measurements. This illustrates that we can use the same
estimator as in (6) to estimate the scale by simply replacing
small displacement segments by local derivatives.

C. Processing asynchronous measurements

Note that equations (8) imply that� zslam ;i and � znav ;i

are measured at the same timet i .
However, thenavdata channel publishes a pose esti-

mate at200 Hz while the SLAM process publishes a pose
estimate at roughly10 - 20 Hz depending on the computation
time of ORB-SLAM for the incoming frames. This means
that care must be taken to synchronize the measurements.

To handle these asynchronous measurements, a linear time
invariant (LTI) system is used to pre-�lter the data and
synchronize the measurements. Each LTI system is updated
with time-input pairs(t i ; zi). The state of the LTI system is
then forward integrated up to timet i from the last update
t i � 1 with the input de�ned by a �rst order hold fromzi � 1

to zi on the time interval[t i � 1; t i],

z(t) = zi � 1 +
(zi � zi � 1)
(t i � t i � 1)

� (t � t i � 1); t 2 [t i � 1; t i] (9)

10 0 10 2
-20

-10

0

10

20

30

40

50

60

70

80

Pure Derivative
Derivative with filter

Fig. 3. The pre-�lter for the measurement data (red) is compared to a pure
differentiator (blue). The pre-�lter acts like a differentiator at low frequency
to remove the offset between the onboard odometry estimate's coordinate
frame and the monocular slam coordinate frame. The low-pass behavior then
rejects high frequency noise that is otherwise ampli�ed by the differentiation
operation.

An LTI system G(s) is de�ned by its frequency domain
transfer function

G(s) =
n0 + n1 � s + n2 � s2 + ::: + nk � 1 � sk � 1

d0 + d1 � s + d2 � s2 + ::: + dk � sk ; (10)

and the input-output mapping from the measurement signal
z(t) to the �ltered signalẑ(t) is determined by integrating a
state-space realization of (10) given by,

ẑ(t) = cT x(t); _x(t) = Ax (t) + bz(t): (11)

The inputz(t) to (11) is determined from measurement data
according to (9). The state space realization used in our
experiments is given by

A =

0

B
B
B
@

0 1 0 0

0 0
...

...
0 0 � � � 1

� d0
dq

� d1
dq

� � � � dk � 1

dk

1

C
C
C
A

; b =

0

B
B
B
@

0
0
...
1

1

C
C
C
A

; c =

0

B
B
B
@

n0

n1
...

nk � 1

1

C
C
C
A

:

(12)
Filtering the measurement datazslam (t) and znav (t) with
this LTI system removes some of the noise present in the
measurements and allows for the outputẑslam (t) andẑnav (t)
to be sampled at regular time intervals to synchronize the
data.

The transfer function used to �lter the altitude data is the
following

G(s) =
s

(s + 60�)2 : (13)

This transfer function has a zero at the origin which is
responsible for differentiating the signal and two poles at
s = � 60� (corner frequency at30 Hz) which apply some
smoothing for high frequency noise. This is because one
issue with pure differentiation is that it ampli�es noise at
higher frequencies. The amplitude response of the pre-�lter
relative to a pure differentiator is shown in Figure 3. Figure

0 20 40 60 80 100 120

0

0.1

0.2

0.3

0.4

0.5

0

1

2

3

4

5

Fig. 4. The drone z-coordinate as measured by ORB-SLAM routine (blue)
and the ultrasonic sensor (red). While the drone is �ying up and down there
is a strong correlation between the signals. Note the difference in scale and
origin of both signals.

4 shows the un�ltered data signals from the altitude sensor
and ORB-SLAM. Note that the signals do not have the same
origin and have different scales. For about 30 seconds, the
drone is �ying up and down followed by level �ight. It can be
seen that the signals are highly correlated during the up and
down maneuver. However, purely horizontal motion leads
to poor signal-to-noise ratios and poorly correlated signals.
Moreover, the visual estimate varies discontinuously as loop-
closures and relocalizations are detected. This behavior vi-
olates the assumption of Gaussian noise meaning that other
procedures must be used to �lter out certain data.

D. Further Modi�cations

The calculations in Section III-A are based on the as-
sumption that the noise distributions in 4 are Gaussian.
However, Figure 4 shows that this assumption is not valid
and motivates including some additional elements to the
scale estimation. This includes an initial size �ltering step
followed by sign �ltering and �nally a 1-point random
sample consensus (RANSAC) on the remaining data points.

1) Size Filtering: The �rst step in �ltering is to discard
individual signals based on their absolute magnitude. Limited
vertical motion generates low signal-to noise-ratio measure-
ments with little information for estimating the scale. On the
other hand, very large signals that are likely caused by large
jumps violate the Gaussian noise assumption and are thus
not suitable for the proposed scale estimator. In the case of
visual signals, we discard data points based on an upper and
lower threshold, whereas for ultrasonic signals we only use
a lower threshold as the ultrasonic sensor is not prone to
signi�cant discontinuities.

2) Sign Filtering: Another indicator of signal-to-noise
ratio measurements is when visual and inertial measurements
are anti-correlated and have opposite sign. This would indi-
cate a negative scale associated with that data pair which is
not physically possible. When the two sensor measurements
have different signs, that pair of data points is discarded.

3) 1-point-RANSAC:Despite initial �ltering of the data
there are still samples that corrupt the signal and lead to
issues with convergence. To identify inliers and perform
robust estimation of the �nal scale a 1-point-RANSAC
algorithm was used. This method was already used in [7] and
described in detail in [17]. In particular [17] have derived an
ef�cient O(n) algorithm to remove outliers. A brief overview
will be given below.

Let Zslam := f ẑslam (t i)gN
i =1 and Znav := f ẑnav (t i)gN

i =1
denote the data collected from the LTI system. Further,
let � := f � i gN

i =1 denote the set of scale point estimates
computed from a single data pair(ẑslam (t i); ẑnav (t i)) . For a
single data pair, equation (6) reduces to

� i =

8
>><

>>:

ẑslam (t i)
ẑnav (t i)

; if ẑnav (t i)ẑslam (t i) � 0

�
� 2

slam

� 2
nav

ẑnav (t i)
ẑslam (t i)

; if ẑnav (t i)ẑslam (t i) < 0
(14)

In the further analysis we considered the logarithms base
10 of the scales and their distribution. This is because we
observed that the density follows a symmetric distribution
which looks like a bimodal Gaussian mixture as can be
seen in Figure 6. Note that this is an approximation since
it does not follow from the assumed distribution over the
data. However, making this assumption helped gain insight
into the statistics of the process.

Denote the setL := f log � i gN
i =1 .

Figure 6 illustrates the distribution of log point scale
estimates for a test �ight with the drone. Inliers lie within a
band around the median of the distribution. Let� � l denote
the half-width of this band around the median. The RANSAC
inliers of the distribution can be described as follows:

l � = median(L) ;

L � = f l 2 L jl � � �l < l < l � + �l g:
(15)

Taking the exponential of the data, we arrive back at the �nal
inlier set representation,

� � = median(�) ;

� � = f � 2 � j� � � � 1 < � < � � � g:
(16)

The �nal scale estimate is calculated according to (6) with
the data associated with the inlier set� � .

Experimental testing of this scale estimator is described
in the next section.

IV. EXPERIMENTAL EVALUATION

To determine the quality of the scale estimator proposed
in Section III 8 test �ights were performed. The visual scale
was estimated on-line with data samples being generated at
15 Hz. Each �ight started with three up and down �ying
maneuvers similar to the ones described in Section III-C
for the scale estimate to converge. This procedure is also
suggested in [8] to speed up convergence. Once the scale
estimate converged, the drone was controlled to �y 4 meters
forward from the starting position followed by another 4

Fig. 5. A view of the scene in RVIZ. The framework generates a point cloud
and path trajectory of the drone (represented by its body �xed coordinate
frame) in real-time. The bottom left inset shows the current view with
tracked features. The top right inset shows a schematic drawing of the
experimental setup. The drone takes off on the left-most pad and performs
an initialization maneuver. The drone then �ies from the left-most to the
right-most pad and performs a stop in between. The pads are placed 4 meters
apart. This length-scale is later used to determine the true scale of a speci�c
ORB run.

meters. At each step the visual pose was compared to the
true displacement and used to determine the true scale� � .
This method of measuring the distance is accurate to about
10 cm which corresponds to an accuracy of about 1.25% in
scale.

Figure 5 illustrates the experimental setup and a graphical
representation of the scene in RVIZ. The true dimensions and
schematic of the setup are in the top right inset. The drone's
pose is represented by its body �xed coordinate frame and
is surrounded by recently seen landmarks. Its trajectory and
initialization procedure is shown in purple. The view from
the drone's front-facing camera is shown in the bottom left
together with tracked features by ORB-SLAM.

A. Signal Filtering

Figure 6 shows a histogram of 500 scale samples collected
over one �ight. Table I shows the median scale and the scale
estimator computed for the entire set after each step of data
�ltering. Note that the true scale in this case is� = 0 :1. It can
be seen that the pure raw data yields a very poor estimate
of the scale at 0.0659. Additionally the median is located
at 0.2261 which is also far off from the true scale. The
discrepancy between median and estimator is a consequence
of the bimodal distribution of the raw data. To improve the
estimator we must focus on the strong maximum occurring
at log � = � 1:3. Filtering by signal size removes excessively
large and small scale samples which are colored blue. We
see a small improvement in the scale estimate of 0.0659 and
the median of 0.1755 due to size �ltering. Scale samples
with anti-correlated data points are shown in yellow and
removed during sign �ltering. Note that these samples make
up a signi�cant number and contribute to the secondary peak
seen in the distribution. The sign �ltering step signi�cantly

TABLE I

SCALE SAMPLE FILTERING STEPS(� � = 0 :1)

Raw Step 1 Step 2 Step 3
median 0.2261 0.1755 0.1062 0.1060
estimator 0.0659 0.0682 0.0976 0.0973

Fig. 6. A histogram constructed from the logarithm of 516 scale point
estimates. The histogram exhibits a strong peak but is corrupted by a
large number of outliers. Scale samples corresponding to too small or large
visual/inertial signals are in blue while samples corresponding to signals of
opposite sign are in yellow. Good scale samples are in green. The median
of remaining samples islog � � = � 0:97. Inliers of this set are located
within a distance� l = 1 :4 from log � � . This is equivalent to� � 25 and
� � = 0 :1062.

improves the scale estimate to 0.1062 and the median to
0.0976. The closeness of these two values indicates that the
remaining green inliers exhibit a unimodal distribution which
is visible in the Figure. Finally 1-point-RANSAC manages
to catch all inliers in green but we see little difference in the
scale. This is because we chose large boundaries which add
to the robustness of the estimator.

B. Scale Accuracy

To determine the accuracy of the scale estimate 18 ORB-
SLAM runs were performed on 6 bags and for each proce-
dure the true scale� � was determined as described. Two
�ights were neglected because they exhibited signi�cant
motion blur during initialization which almost always yielded
inaccurate scale estimation. To understand exactly why these
�ights have bad properties further research is needed.

To compare scales derived from individual �ights a nor-
malized scale was used�� := �̂

� � which should converge to
1 for all data sets. Figure 7 shows the time evolution of
the average normalized scale. The green line is the mean
of the normalized scales while the shaded area represents
one standard deviation of distance from the mean. As can be
seen the average scale converges after about15 seconds with
a steadily decreasing standard deviation which bottoms out at
15%. The best scales were recorded after around 20 seconds
but then continued to drift until after 40 seconds there is
about a7:44%bias. However, compared to a variance of 15%
this bias is not signi�cant. Other works report a convergence
rate of about 7 seconds and a standard deviation of 2.75 %

TABLE II

SCALE CONVERGENCE

Convergence
speed (s)

Bias Standard
Deviation

this work 15 7.44% 15%
[15] 7 - 2.75%

Fig. 7. Normalized scale�� = �̂
� � averaged over 18 ORB-SLAM runs

(green). accuracies and the associated errors over time. After 40 seconds
the average error is 7.44% with a standard deviation of 15%.

[15]. A comparison is detailed in Table II. This could be due
to lower sampling frequenciesof about 1 Hz compared to our
sampling frequency of13 Hz. This signi�cantly increases
the signal to noise ratio which leads to lower variance. To
adapt our system to lower sampling frequencies however,
the assumption of small time steps must be sacri�ced which
makes the approximations?? and 8 inaccurate. Further
research is needed to improve the estimator. It is also possible
that properties of ORB-SLAM affect the noise distribution.
The �ltering processes in this work must be further optimized
to achieve the best scale estimation.

Some �ights were disregarded as they exhibited too rapid
movement during initialization. This lead to bad tracking
when ORB-SLAM was running due to motion blur which
lead to bad height estimates. We have observed that scale
estimates showed signi�cant errors and were prone to drifting
is these cases.

V. CONCLUSION

In this work, we described a ROS package for scale
corrected monocular-SLAM on the AR.Drone 2.0. This
package makes use of the ORB-SLAM library, a state of
the art SLAM library. This package allows researchers to
get an experimental testbed for motion planning and control
algorithms up and running quickly.

We were able to build upon earlier research on monocular-
SLAM scale estimation for the AR.Drone 2.0 and integrate
these techniques with the ORB-SLAM library.

The next steps include incorporating a real-time motion
planning algorithm to generate collision free motions through

the environment, and a feedback controller to provide the
control inputs to execute the planned motions.

VI. A CKNOWLEDGEMENT

We would like to thank the IDSC at ETH Zürich for
funding this research.

REFERENCES

[1] C. A. Thiels, J. M. Aho, S. P. Zietlow, and D. H. Jenkins, “Use of
unmanned aerial vehicles for medical product transport,”Air medical
journal, vol. 34, no. 2, pp. 104–108, 2015.

[2] J. Stolaroff, “The need for a life cycle assessment of drone-based
commercial package delivery,”LLNL-TR-652316, Lawrence Livermore
National Laboratory, CA USA, 2014.

[3] Y. Naidoo, R. Stopforth, and G. Bright, “Development of an uav for
search amp; rescue applications,” inAFRICON, 2011, pp. 1–6, Sept
2011.

[4] J. Nikolic, M. Burri, J. Rehder, S. Leutenegger, C. Huerzeler, and
R. Siegwart, “A uav system for inspection of industrial facilities,” in
Aerospace Conference, 2013 IEEE, pp. 1–8, IEEE, 2013.

[5] “Ardrone autonomy package.” http://wiki.ros.org/
ardrone_autonomy . Accessed: 2017-03-1.

[6] “Ar-drone tutorial.” http://robohub.org/up-and-flying-
with-the-ar-drone-and-ros-getting-started/ . Ac-
cessed: 2017-03-1.

[7] “Tum ardrone package.” http://wiki.ros.org/tum_
ardrone . Accessed: 2017-03-1.

[8] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of
a low-cost quadrocopter,” inIntelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on, pp. 2815–2821, IEEE,
2012.

[9] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” inMixed and Augmented Reality, 2007. ISMAR 2007.
6th IEEE and ACM International Symposium on, pp. 225–234, IEEE,
2007.

[10] “Parallel tracking and mapping library.”https://github.com/
Oxford-PTAM/PTAM-GPL . Accessed: 2017-03-1.

[11] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An ef�cient
alternative to sift or surf,” inComputer Vision (ICCV), 2011 IEEE
International Conference on, pp. 2564–2571, IEEE, 2011.

[12] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a
versatile and accurate monocular slam system,”IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[13] “Rep 105, coordinate frames for mobile platforms.”http://www.
ros.org/reps/rep-0105.html . Accessed: 2017-03-15.

[14] M. Saska, T. Krajník, J. Faigl, V. Vonásek, and L. P�reu�cil, “Low cost
mav platform ar-drone in experimental veri�cations of methods for vi-
sion based autonomous navigation,” inIntelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pp. 4808–4809,
IEEE, 2012.

[15] J. Engel, “Autonomous camera-based navigation of a quadrocopter,”
TUM University Thesis, 2011.

[16] I. Sa, H. He, V. Huynh, and P. Corke, “Monocular vision based
autonomous navigation for a cost-effective mav in gps-denied en-
vironments,” in Advanced Intelligent Mechatronics (AIM), 2013
IEEE/ASME International Conference on, pp. 1355–1360, IEEE, 2013.

[17] D. Scaramuzza, F. Fraundorfer, and R. Siegwart, “Real-time monoc-
ular visual odometry for on-road vehicles with 1-point ransac,” in
2009 IEEE International Conference on Robotics and Automation,
pp. 4293–4299, May 2009.

	Introduction
	System Overview

