Prom. Nr. 3390

Über ein vereinfachtes semiempirisches Verfahren zur Behandlung der Wechselwirkung zwischen π-Elektronen

Von der EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE IN ZÜRICH

zur Erlangung

der Würde eines Doktors der Naturwissenschaften genehmigte

PROMOTIONSARBEIT

vorgelegt von EUGEN WELTIN dipl. Naturwissenschafter E. T. H. von Zürich

> Referent: Herr Prof. Dr. E. Heilbronner Korreferent: Herr Prof. Dr. J. D. Dunitz

Juris-Verlag Zürich 1963

Leer - Vide - Empty

•

Meinen lieben Eltern

in grosser Dankbarkeit

Leer - Vide - Empty

Meinem verehrten Lehrer,

Herrn Prof. Dr. E. Heilbronner,

unter dessen Leitung ich die vorliegende Arbeit ausführen durfte, bin ich zu grossem Dank verpflichtet. Durch seine wertvollen Ratschläge und seine unermüdliche Hilfe wurde mir diese Arbeit ermöglicht.

.

Leer - Vide - Empty

I	n	h	a	l	t	s	v	е	r	z	e	i	с	h	n	i	\mathbf{s}	
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--------------	--

1.	Einleitung	9
2.	Semiempirische Behandlung aromatischer und ungesättigter Systeme	12
	2.1. Der LCAO-MO-Ansatz	12
	2.2. Mehrelektronensysteme	15
	2.3. Konfigurations-Wechselwirkung (C.IVerfahren)	20
	2.4. Das Absorptionsspektrum des Radialens	22
3.	Das reduzierte Verfahren nach Pople, Pariser und Parr	34
	3.1. Aufgabenstellung	34
	3.2. Beschreibung des Modells	35
4.	Resultate	38
	4.1. Eichung der Parameter	38
	4.2. Resultate	40
5.	Programm für die IBM 1620	50
	5.1. Maschinenausrüstung	50
	5.2. Programmaufbau	50
	5.3. Blockschema und Flussdiagramm	54
	5.4. Programmliste	69
	5.5. Karteneinteilung	89
	5.6. Bemerkungen zum Programm	93
	Zusammenfassung	74
	Literaturzitate und Anmerkungen	95

Leer - Vide - Empty

1. EINLEITUNG

Die beobachtbaren Grössen (Observablen) eines Systems elektrisch geladener Partikel, die sich in Coulombfeldern so bewegen, dass relativistische Effekte vernachlässigt werden dürfen, lassen sich mit Hilfe der Quantenmechanik im Prinzip beliebig genau berechnen. Diese ist deshalb in der Lage die Fragestellungen der Chemie nach den Energiezuständen, Elektronenverteilungen, Uebergangsmomenten u.s.w. eines Moleküls zu beantworten.

Um die Energie eines solchen Systems zu erhalten, hat man die Schrödingergleichung

mit dem hermiteschen Hamiltonoperator H zu lösen. Die Eigenwerte E_j , die diskret oder kontinuierlich verteilt sein können, sind die möglichen Energiezustände des Systems. Die dazugehörigen Eigenfunktionen Ψ_j bilden einen vollständigen, orthogonalen Funktionensatz. Mit Hilfe der verschiedenen Operatoren der Quantenmechanik lassen sich aus den Wellenfunktionen die Erwartungswerte der Observablen berechnen.

Leider ist es nur in ganz wenigen Spezialfällen des Potentialterms im Operator H möglich die exakten Wellenfunktionen Ψ analytisch anzugeben, so dass man gezwungen ist, die Behandlung von molekularen Systemen in praktisch allen Fällen mit Näherungsfunktionen F durchzuführen, die natürlich den Randbedingungen der exakten Ψ -Funktion unterworfen sein müssen. Ist ein Satz von Näherungsfunktionen F_0 , F_1 F_n so gegeben, dass die i^{te} Funktion F_i auf den Wellenfunktionen Ψ_k orthogonal steht,

 $\int \mathbf{F}_{i} \Psi_{k} \, d\tau = 0 \qquad k = 0, 1, \dots i-1$

so kann man leicht zeigen, dass die auf Grund der F_i als Näherung der Ψ_i berechneten Energien immer höher sind, als die exakten Eigenwerte E_i . Diese Tatsache liegt den meisten quantenchemischen Methoden zugrunde.

In einer Variationsrechnung werden die Parameter c_k einer Näherungsfunktion $F = F(c_1, c_2, \ldots, c_k, \ldots, c_n)$ so bestimmt, dass die zugehörige Energie $E = E(c_1, c_2, \ldots, c_k, \ldots, c_n)$ ein Minimum wird. Innerhalb der speziellen Näherungsannahmen liegt dann die beste Lösung vor.

Die zeitunabhängige Schrödingergleichung nimmt für ein molekulares System die folgende Form an:

Elektronen-Abstossung

In der Born-Oppenheimer-Approximation wird die kinetische Energie der Kerne von der Energie der Elektronen separiert. Die Kernabstossung kann somit (bei vorgegebener Geometrie) als konstanter Faktor betrachtet werden, da die Bewegung der Kerne verglichen mit derjenigen der Elektronen, langsam erfolgt. Es bleibt der Ausdruck für die Elektronenenergie E_{ol}

$$\left\{\sum_{i} (-\frac{\hbar^2}{2m_e} \Delta_i - \sum_{\mu} \frac{Z_{\mu}e^2}{r_{i\mu}}) + \sum_{i < j} \frac{e^2}{r_{ij}}\right\} \quad \Psi_{el} = \mathbf{E}_{el} \cdot \Psi_{el} \quad (1)$$

 Ψ_{el} ist nur noch eine Funktion von 4 n Koordinaten; pro Elektron je drei Orts- und eine Spin-Koordinate.

In den theoretischen Verfahren der Quanten-Chemie wird die Wellenfunktion nach einem Satz analytischer Näherungs-Funktionen F_i entwickelt und für diese die Gleichung (1) gelöst. Die dabei auftretenden mathematisch ausserordentlich verwickelten Integrationsprobleme führen dazu, dass heute nur drei- bis vieratomige Systeme mit etwa 20 Elektronen auf diesem Wege befriedigend behandelt werden können.

Auf eine theoretische a priori-Behandlung komplizierterer, chemisch interessanter Systeme muss vorläufig noch verzichtet werden; für diese grösseren Systeme wird man deshalb auf eine der empirischen oder semiempirischen Methoden zurückgreifen. Aus einer Modellvorstellung, die für das gewählte Verfahren, wie z.B. Hückel-MO, SCF-MO oder VB charakteristisch ist, wird dabei die Näherung F_i abgeleitet und die Energie

berechnet. Dieses Integral wird aber nicht mehr, wie in den theoretischen Verfahren, explizit berechnet, sondern, unter vereinfachenden Annahmen, in wenige Teilintegrale entwickelt, deren Werte als empirisch zu bestimmende Parameter behandelt werden. Durch ihre Justierung an experimentellen Daten hofft man dann, die schwer zu kontrollierenden Einflüsse der Vereinfachungen weitgehend zu korrigieren. Damit umgeht man die komplizierten Integrationen und braucht zudem die analytische Form der Wellenfunktion nicht explizit zu geben. Eine nähere Charakterisierung der Funktion erfolgt nur durch die Angabe ihres Symmetrieverhaltens und der Variationsparameter.

Durch die modellbezogenen Approximationsannahmen sind die erwähnten empirisch justierten Parameter nur innerhalb des speziellen Verfahrens streng definiert; ob sie darüber hinaus bedeutungsvoll sind, hängt im wesentlichen davon ab, wie weit das Modell für das betrachtete System representativ ist.

2. SEMIEMPIRISCHE BEHANDLUNG AROMATISCHER UND UNGESAETTIGTER SYSTEME

In den meisten aromatischen oder ungesättigten organischen Molekülen sind die Atome in einer Ebene angeordnet. Die Valenzelektronen besetzen zwei verschiedene Typen von Orbitalen, die sich durch ihr Symmetrieverhalten unterscheiden: Die 6-Orbitale sind symmetrisch, die \mathbb{T} -Orbitale antisymmetrisch zur Molekülebene. Deshalb kombinieren die 6 - und \mathbb{T} -Elektronen nicht miteinander, und man kann in guter Näherung das Potential von Atomkernen, Elektronen der innern Schalen und 6 -Elektronen zu einem Core-Potential zusammenfassen, das auf die \mathbb{T} -Elektronen wirkt. Im Folgenden sollen nur noch die Elektronen des \mathbb{T} -Systems betrachtet werden, wobei dem als nicht polarisierbar angenommenen 6 -Skelett die fixierte Molekülgeometrie zugeschrieben wird.

2.1. Der LCAO-MO-Ansatz

Die Darstellung der Einelektronen-Wellenfunktionen (Einelektronen-MOs Ψ_J) eines über das ganze π -System delokalisierten Elektrons als Linearkombination der an den Zentren μ des 6-Skeletts definierten AOs Ψ_{μ}

$$\Psi_{\mathbf{J}} = \sum_{\mu} c_{\mathbf{J}\mu} \Psi_{\mu}$$

hat sich als ausserordentlich fruchtbar erwiesen.

Die Theorie fordert von den AOs ψ nur, dass sie linear unabhängig sind und den Randbedingungen einer Wellenfunktion genügen. Die Näherungsfunktion ψ_J gehorcht damit automatisch denselben Randbedingungen und kann deshalb in einem Variationsverfahren verwendet werden. Zur Erleichterung der Rechnung werden die AOs als reell und normiert vorausgesetzt:

Die übliche Identifikation der φ mit $2p_z$ - Slater-Funktionen ist dagegen nicht zwingend und führt meistens zu einer erheblichen Diskrepanz zwischen theoretisch berechneten und empirisch ermittelten Parametern¹). Man stellt sich besser auf den Standpunkt, dass das nicht explizit bekannte AO mit einer $2p_z$ -Funktion nur das Symmetrieverhalten teilt, sich im übrigen aber dem Modellansatz besser fügt. Die Koeffizienten c_{μ} sind die offenen Variationsparameter, welche aus der Minimumsbedingung der Energie

$$dE = 0$$

$$E = \frac{\langle \psi^* | H_1 | \psi \rangle}{\langle \psi^* | \psi \rangle} = \frac{\sum_{\mu} \sum_{\nu} c_{\mu}^* | c_{\nu} \langle \mu | H_1 | \nu \rangle}{\sum_{\mu} \sum_{\nu} c_{\mu}^* | c_{\nu} \langle \mu | | \nu \rangle}$$

gefunden werden. Hierin sind die Koeffizienten voneinander unabhängig, da Ψ vorerst noch nicht normalisiert zu sein braucht. Die Forderung

$$d\mathbf{E} = \frac{\mathbf{\partial} \mathbf{E}}{\mathbf{\partial} \mathbf{c}_1} d\mathbf{c}_1 + \frac{\mathbf{\partial} \mathbf{E}}{\mathbf{\partial} \mathbf{c}_2} d\mathbf{c}_2 + \dots + \frac{\mathbf{\partial} \mathbf{E}}{\mathbf{\partial} \mathbf{c}_N} d\mathbf{c}_N = 0$$

verlangt deshalb, dass alle partiellen Ableitungen einzeln verschwinden, was zu dem bekannten Säkulargleichungssystem

$$\sum_{\mu} c_{\mu} (H_{\mu\nu} - S_{\mu\nu} E) = 0$$

$$\mu = 1, 2, \dots N$$

$$\nu = 1, 2, \dots N$$
(2)

$$H_{\mu\nu} = \langle \mu | H | \nu \rangle$$

$$S_{\mu\nu} = \langle \mu | \nu \rangle$$

führt.

Eine nichttriviale Lösung (nicht alle c $_{\mu} \equiv 0$) erhält man nur, wenn die zugehörige Säkulardeterminante Null wird.

$$\|H_{\mu\nu} - S_{\mu\nu} E\| = 0$$

Dies ist eine Gleichung n-ten Grades in E mit den gesuchten Eigenwerten E_J (J = 1, 2, ... n) als Wurzeln.

Die Koeffizienten $c_{J\mu}$ ($\mu = 1, 2, ..., n$) werden durch Einsetzen der E_J aus dem Säkulargleichungssystem (2) bis auf einen multiplikativen Faktor erhalten. Die physikalische Interpretation von $\Psi * \Psi$ als Wahrscheinlichkeitsverteilung bestimmt

diesen Faktor so, dass die Normierungsbedingung

erfüllt wird:

$$\sum_{\mu} \sum_{\nu} c_{\mu}^{*} c_{\nu} \langle \mu | \nu \rangle = 1$$

Wie das in den meisten LCAO-MO-Methoden geschieht, ist es aus mathematischen Gründen zweckmässig die Zero-Differential-Overlap-Annahme einzuführen

$$\varphi_{\mu} \quad \varphi_{\nu} \quad d\tau = 0 \qquad \mu \neq \nu \tag{3}$$

damit wird $\langle \mu | \nu \rangle = \delta_{\mu\nu}$ und die Normierung lautet dann einfacher:

$$\sum_{\mu} c^*_{\mu} c_{\mu} = 1$$

Dieser Formalismus lässt auch eine Matrixinterpretation zu: An Stelle des Hamiltonoperators tritt die hermitesche Matrix H mit den wie oben definierten Elementen

$$H_{\mu\nu} = \langle \mu | H | \nu \rangle$$

Die n linear unabhängigen AOs φ_{μ} sind die Basisvektoren eines n-dimensionalen Vektorraumes, die im Falle der Zero-Differential-Overlap-Näherung orthogonal aufeinander stehen. Ein MO ψ_{J} ist, als Linearkombination der AOs, ein Vektor C_{J} aus diesem Raum. Die Schrödingergleichung ist dann identisch mit dem Eigenwertproblem

$$H C = E C$$

d. h. C muss ein Eigenvektor und E ein Eigenwert der Matrix H sein.
 Die Normierungsbedingung lautet in Vektorschreibweise:

$$C_J^{\dagger} \cdot C_J = 1$$

Auf Grund der Eigenschaften hermitescher Matrizen folgt, dass die Energieeigenwerte E_{T} reell sind und die Eigenvektoren einen Orthogonalsatz bilden,

$$C_{I}^{\dagger} \cdot C_{J} = 0 \quad I \neq J$$

sofern keine Entartung vorliegt. Im Falle entarteter Niveaus ist diese Eigenschaft nicht von vorne herein gegeben, kann aber, z.B. nach dem Schmidt'schen Orthogonalisierungsverfahren, immer erzwungen werden.

Zu dieser Formulierung sei noch bemerkt, dass für die Basisfunktionen φ nur deren Orthonormalität und die Existenz des Integrals H_µ, vorausgesetzt wird. Dieselben Relationen gelten deshalb auch im Verfahren der Konfigurationswechselwirkung (= Configuration Interaction = C.I., siehe unten) in dem an Stelle der φ_{μ} die Basis durch Mehrelektronen-Spin-MOs gebildet wird.

2.2. Mehrelektronensysteme

Der Hamiltonoperator X für Mehrelektronensysteme lautet:

$$\mathcal{H} = \sum_{i} H_{i}^{c} + \sum_{i < j} \frac{e^{2}}{r_{ij}}$$
(4)

wobei der Einelektronenoperator H_i^c die kinetische Energie des i-ten Elektrons und sein Potential im Feld des positiven 6-Core beschreibt. Der Term $\sum_{i < j} \frac{e^2}{r_{ij}}$ enthält die gegenseitige Abstossung der π -Elektronen.

Die Gesamtwellenfunktion unspezifizierter Multiplizität eines Systems mit mehreren Elektronen lässt sich, in Uebereinstimmung mit dem Pauli-Prinzip, als antisymmetrisierte Produktfunktion (Slater-Determinante) der Einelektronenspin-MOs $\gamma_{I}(1) = \psi_{I}(1) \cdot S_{I}(1)$ darstellen

$$\Psi = \| \eta_1(1) \eta_2(2) \dots \eta_N(N) \|$$
 (5)

worin sich kein η_J wiederholen darf, da sonst die Determinante identisch verschwindet. Die Normierungsfaktoren sollen in dieser Schreibweise implizite enthalten sein.

In der Singulett-Ausgangskonfiguration eines Moleküls mit 2N Elektronen besetzen je 2 Elektronen antiparallelen Spins (unmarkiert: Spin α ; durch Querstrich markiert: Spin β) die N untersten Niveaus:

$$\Psi_{0} = \| 1 \overline{1} \ 2 \overline{2} \dots J \overline{J} \dots N \overline{N} \|$$
 (6)

Relativ dazu werden die angeregten Konfigurationen $\psi_J^{-1}\psi_T$ (Promotion eines Elektrons aus dem MO ψ_J nach ψ_T) durch die Linearkombination

$$\Psi_{\overline{J}}^{-1}\Psi_{\overline{T}} = \frac{1}{\sqrt{2}} \left\{ \|1 \overline{1} 2 \overline{2} \dots J \overline{T} \dots N \overline{N}\| \pm \|1 \overline{1} 2 \overline{2} \dots T \overline{J} \dots N \overline{N}\| \right\}$$
(7)

definiert, wobei das positive Vorzeichen der Singulett- und das negative der Triplett-Konfiguration mit der Spinkomponente $s_{\pi} = 0$ zugeordnet ist.

In der Hückel'schen MO-Theorie wird die Elektronenwechselwirkung als mittlerer, nicht explizit gegebener Korrekturterm V' des Core-Potentials in den Einelektronenoperator H^H miteinbezogen.

$$H^{H} = H^{C} + V'$$

Die Schrödingergleichung ist dann in Einelektronenprobleme separierbar.

Die Matrixelemente $H_{\mu\nu}$ werden in Funktion der zwei Parameter ∞ (Coulombintegral) und β (Resonanzintegral zwischen gebundenen Zentren) dargestellt:

$$H_{\mu\mu} = \langle \mu | H^{H} | \mu \rangle = \alpha$$

$$H_{\mu\nu} = \langle \mu | H^{H} | \nu \rangle = \langle \beta | \mu, \nu \text{ gebunden}$$

$$H_{\mu\nu} = \langle \mu | H^{H} | \nu \rangle = \langle \beta | \mu, \nu \text{ nicht gebunden}$$

die für alle Kohlenwasserstoffe als konstant angenommen werden. Die Gesamt- π -Elektronenenergie setzt sich additiv aus den Einelektronenenergien zusammen:

 $\mathbf{E}_{\pi} = \sum_{\mathbf{J}} \mathbf{b}_{\mathbf{J}} \mathbf{E}_{\mathbf{J}} = \sum_{\mathbf{J}} \mathbf{b}_{\mathbf{J}} \langle \mathbf{J} | \mathbf{H}^{\mathbf{H}} \mathbf{I} | \mathbf{J} \rangle$ $\mathbf{b}_{\mathbf{J}} = \text{Besetzungszahl}$

Neben ihrer Bedeutung als empirisches Verfahren lieferte die Hückel-Methode auf einfachste Weise einen symmetrierichtigen Orthonormalsatz von MO-Koeffizienten, der als gute Ausgangsbasis für eingehendere Rechnungen dienen kann.

Die gegenseitige Abstossung der π -Elektronen wird in der Hückel-Theorie im wesentlichen nur als partielle Abschirmung des Core-Potentials behandelt. Das führt unter anderem dazu, dass sich innerhalb dieses Modells Anhäufungen negativer Ladung nicht in einer Erhöhung der berechneten Energie auswirken. Deshalb werden z.B. bei nicht alternierenden Systemen viel zu grosse Dipolmomente gefunden. Zudem hat die Vernachlässigung aller Wechselwirkungen zwischen nicht gebundenen Zentren zur Folge, dass die Resultate unabhängig von topologischen Deformationen sind; die Hückel-MOs enthalten oft Pseudosymmetrien.

Diese Nachteile der einfachsten Methode können überwunden werden, wenn die Elektronen-Wechselwirkung explizit berücksichtigt und die Gesamtenergie des Grundzustandes Ψ_0

$$\langle \Psi | \mathbf{X} | 0 \rangle = 0$$

minimisiert wird. Die dabei gesuchten SCF-Einelektronen – MOs ψ_I der Singulettausgangskonfiguration eines Systems mit abgeschlossener Schale sind Eigenfunktionen des Hartree-Fock Hamiltonoperators F

$$F \cdot \Psi_{I} = \xi_{I}^{SCF} \cdot \Psi_{I}$$

$$F = H^{C} + \sum_{J=1}^{o.b.} (2 J_{J} - K_{J})$$
(8)

wobei der Coulomboperator ${\bf J}_{\bf J}$ und der Austauschoperator ${\bf K}_{\bf J}$ entsprechend den Relationen

$$J_{J} \Psi_{I} = (\int \Psi_{J}^{2}(2) \frac{e^{2}}{r_{12}} d\tau_{2}) \Psi_{I}(1)$$

$$K_{J} \Psi_{I} = (\int \Psi_{I}(2) \Psi_{J}(2) \frac{e^{2}}{r_{12}} d\tau_{2}) \Psi_{J}(1)$$

definiert sind.

Die Elemente $F_{\mu\nu}$ der Matrix F sind, auf Grund der Variation von \mathcal{E}_{0} , von Roothaan ³⁾ angegeben worden. Ein davon verschiedenes, rein formales Vorgehen zur Ableitung der SCF-Bedingungen sei hier kurz skizziert: Es sei ψ_{I} ein SCF-MO, das der Relation (8) genügt. Man multipliziert beide Seiten von (8) mit einem AO $\psi_{\mu}(1)$ und integriert über d \mathcal{T}_{1} . Dabei erhält man:

$$\begin{split} \epsilon_{I} & \int \phi_{\mu} \ \psi_{I} \ d\tau &= \int \phi_{\mu} \ H^{c} \ \psi_{I} \ d\tau \\ &+ \sum_{J=1}^{o.b.} \left\{ 2 \quad \iint \phi_{\mu}(1) \ \psi_{J}(2) \ \frac{e^{2}}{r_{12}} \ \psi_{I}(1) \ \psi_{J}(2) \ d\tau_{1} \ d\tau_{2} \\ &- \iint \ \phi_{\mu}(1) \ \psi_{J}(2) \ \frac{e^{2}}{r_{12}} \ \psi_{J}(1) \ \psi_{I}(2) \ d\tau_{1} \ d\tau_{2} \right\} \end{split}$$

Die Entwicklung in Ausdrücke über AOs durch Einsetzen der Linearkombinationen führt zu:

$$\begin{split} \epsilon_{I} \sum_{\nu} c_{I\nu} s_{\mu\nu} &= \sum_{\nu} c_{I\nu} H_{\mu\nu} \\ &+ \sum_{\nu} c_{I\nu} \sum_{J=1}^{o.b.} \left\{ 2 \sum_{\rho \in} c_{J\rho} c_{Je} < \mu \rho |G| \forall \forall \rangle \right. \\ &- \sum_{\rho \in} c_{J\rho} c_{Je} < \mu \rho |G| \notin \nu \} \end{split}$$

Dies ist eine Gleichung aus dem Säkulargleichungssystem

$$\sum_{v} c_{v} (F_{\mu v} - S_{\mu v} \xi) = 0$$

$$\mu = 1, 2 \dots N$$

$$v = 1, 2 \dots N$$

wenn den Abkürzungen folgende Bedeutung zukommt:

$$F_{\mu\nu} = H_{\mu\nu} + \sum_{\rho} \sum_{6} P_{\rho6} \left\{ \langle \mu \rho | G | \nu 6 \rangle - \frac{1}{2} \langle \mu \rho | G | 6 \nu \rangle \right\}$$

$$H_{\mu\nu} = \langle \mu | H^{c} | \nu \rangle$$

$$P_{q6} = \sum_{J=1}^{o.b.} 2 c_{J\rho} c_{J6}$$

$$\langle \mu \rho | G | \nu 6 \rangle = \iint \varphi_{\mu}(1) \varphi_{\rho}(2) \frac{e^{2}}{r_{12}} \varphi_{\nu}(1) \varphi_{6}(2) d\tau_{1} d\tau_{2}$$

Für die so definierten Ein- und Zweielektronenintegrale über die AOs hat Pople die folgenden Annahmen vorgeschlagen:

$$\begin{split} H_{\mu\mu} &= \langle \mu | H^{c} | \mu \rangle \\ &= \langle \mu | - \frac{\hbar^{2}}{2m} \Delta_{i} - \frac{Z^{c}_{\mu}e^{2}}{r_{i\mu}} | \mu \rangle - \sum_{\substack{\varrho \neq \mu}} \langle \mu | \frac{Z^{c}_{\varrho}e^{2}}{r_{i\varrho}} | \mu \rangle \\ &= U_{\mu\mu} - \sum_{\substack{\varrho \neq \mu}} Z^{c}_{\varrho} \kappa_{\mu \varrho} \end{split}$$

$$H_{\mu\nu} = \langle \mu | H^{C} | \nu \rangle$$

$$H_{\mu\nu} = \beta \quad \mu, \nu \text{ gebunden}$$

$$H_{\mu\nu} = 0 \quad \mu, \nu \text{ nicht gebunden}$$

Innerhalb der Zero-Differential-Overlap-Näherung (3) verschwinden von den Elektronenwechselwirkungstermen alle Drei- und Vier-Zentrenintegrale sowie die Zweizentrenintegrale, die vom Overlap herrühren

> $\langle \mu \rho | G | \sigma \rangle = 0$ wenn nicht $\mu = \sigma$ und $\nu = \rho$ $\langle \mu \nu | G | \mu \nu \rangle = \chi_{\mu\nu}$

Damit erhält man die Elemente der SCF-Matrix zu

$$\mathbf{F}_{\mu\mu} = \mathbf{U}_{\mu\mu} + \frac{1}{2} \mathbf{P}_{\mu\mu} \boldsymbol{\chi}_{\mu\mu} + \sum_{\boldsymbol{\rho} \neq \mu} (\mathbf{P}_{\boldsymbol{\rho}\boldsymbol{\rho}} - \mathbf{Z}_{\boldsymbol{\rho}}^{\mathbf{c}}) \boldsymbol{\chi}_{\mu\boldsymbol{\rho}} \qquad (9)$$

$$F_{\mu\nu} = H_{\mu\nu} - \frac{1}{2} P_{\mu\nu} \chi_{\mu\nu}$$
 (10)

Die MO-Koeffizienten (Eigenvektoren der Matrix) werden aus dem Gleichungssystem

gefunden. Dieses System ist jedoch nicht linear in den c_{μ} , da die Bindungsordnungen $P_{\mu\nu}$ und damit auch die $F_{\mu\nu}$ quadratische Funktionen der Koeffizienten c_{μ} sind. Diese müsser deshalb mit einem iterativen Rechnungsverfahren bestimmt werden, das zudem noch schlecht konvergiert.

Für ein π -Elektronensystem, das aus M AOs aufgebaut ist, erhält man genau M linear unabhängig Einelektronen-MOs Ψ_J , von denen in der Ausgangskonfiguration Ψ_0 die N untersten MOs je zweifach besetzt sind, wenn das System 2N Elektronen enthält. Nach der Formel (7) kann man die nicht besetzten MOs (T>N) verwenden, um reine angeregte Konfigurationen vom Typus $\Psi_J^{-1}\Psi_T$ zu definieren. Ein einfach angeregter Zustand, der, falls kein strenges Uebergangsverbot besteht, einem der beobachtbaren spektroskopischen Uebergänge zugeordnet ist, wird jedoch durch eine solche Funktion im allgemeinen nicht ausreichend beschrieben, da Konfigurationen, die dieselbe irreduzible Darstellung der Symmetriegruppe des Moleküls enthalten, noch miteinander kombinieren können. Die hybriden angeregten Zustände X_i sind als Linearkombinationen der angeregten Konfigurationen darzustellen:

$$X_{i} = \sum_{JT} c_{i, JT} \Psi_{J}^{-1} \Psi_{T}$$
(11)

wobei die Koeffizienten $c_{i,JT}$ aus einer linearen Variationsrechnung erhalten werden können.

Nachdem in den Slater-Determinanten (5) die Einelektronen-Spin-MOs orthogonal und normiert vorausgesetzt sind, lässt sich leicht einsehen, dass auch die angeregten Konfigurationen $\psi_J^{-1}\psi_T$ zusammen mit Ψ_o einen Satz von ortho-normierten Funktionen bilden:

$$\langle \Psi_{0} | \Psi_{J}^{-1} \Psi_{T} \rangle = 0$$

$$\langle \Psi_{J}^{-1} \Psi_{T} | \Psi_{I}^{-1} \Psi_{S} \rangle = \delta_{IJ} \cdot \delta_{ST}$$

Sie können deshalb als Basisvektoren des, im Abschnitt 2.1. erwähnten, Matrizenverfahrens aufgefasst werden. Die Koeffizienten $c_{i,JT}$ in (11) können somit als Eigenvektoren einer Matrix H erhalten werden, die über den Mehrelektronenoperator \mathcal{X} (4) zu definieren ist. Da \mathcal{X} durch eine Summe von Ein- (H^C) und Zweielektronenoperatoren (Elektronenwechselwirkung) darstellbar ist, lassen sich die Elemente der C.I.-Matrix, unter Berücksichtigung der Orthonormalität in Ort und Spin der SMOs, in Ausdrücke über Ein- und Zweielektronenintegrale entwickeln. Bezieht man sich auf die Energie \mathcal{E}_0 von Ψ_0 als Referenz, so findet man die folgenden Matrixelemente zwischen Singulettkonfigurationen:

$$\langle \Psi_{J}^{-1}\Psi_{T} | \mathcal{H} | \Psi_{J}^{-1}\Psi_{T} \rangle - \langle \Psi_{o} | \mathcal{H} | \Psi_{o} \rangle \approx F_{TT}^{-}F_{JJ}^{-} + 2 \langle JT|G|TJ \rangle - \langle JT|G|JT \rangle$$
(12)

Kreuzterme mit der Ausganskonfiguration

$$\langle \psi_{J}^{-1} \psi_{T} | \mathcal{H} | \Psi_{O} \rangle = \sqrt{2} F_{JT}$$
 (13)

Kreuzterme zwischen angeregten Konfigurationen

$$\langle \psi_{J}^{-1}\psi_{T} | \mathcal{X} | \psi_{I}^{-1}\psi_{S} \rangle = F_{TS} \cdot \delta_{LJ} - F_{LJ} \cdot \delta_{TS} + 2\langle \mathrm{IT} | \mathrm{G} | \mathrm{SJ} \rangle - \langle \mathrm{IT} | \mathrm{G} | \mathrm{JS} \rangle$$
(14)

Die entsprechenden Formeln für Triplett-Konfigurationen lauten:

$$\langle {}^{3}\psi_{\rm J}^{-1}\psi_{\rm T} | \mathcal{X} | \Psi_{\rm o} \rangle = 0$$

$$\langle {}^{3}\Psi_{J}^{-1}\Psi_{T}| \mathcal{X} | {}^{3}\Psi_{I}^{-1}\Psi_{S} \rangle - \delta_{IJ} \cdot \delta_{ST} \langle \Psi_{o}| \mathcal{X} | \Psi_{o} \rangle =$$

$$F_{TS} \cdot \delta_{IJ} - F_{IJ} \cdot \delta_{TS} - \langle IT|G| JS \rangle$$
(15)

Hierin sind die Einelektronenterme wie folgt definiert

$$F_{KI} = \langle K|F|I \rangle = \langle K|H^{c}|I \rangle + \sum_{J=1}^{N} \left\{ 2 \langle JK|G|JI \rangle - \langle JK|G|U \rangle \right\}$$

wobei der Operator F durch die Gleichung (8) gegeben ist. Erfüllen die Einelektronen-MOs die SCF-Bedingung, d.h. sind sie Eigenfunktionen von F so wird

$$\mathbf{F}_{KI} = \boldsymbol{\varepsilon}_{K}^{SCF} \cdot \boldsymbol{\delta}_{KI}$$

Insbesondere verschwinden dann alle Wechselwirkungsterme mit der Grundkonfiguration Ψ_0 , die somit identisch mit dem Grundzustand ist.

In der C.I.-Rechnung besitzt man eine Methode, die erlaubt, die Iterationen des SCF-Verfahrens zu umgehen. Werden genügend Konfigurationen berücksichtigt, so korrigiert die C.I.-Rechnung jeden Fehler, der in der Wahl der orthonormalen LCAO-MOs gemacht wurde (Pariser und Parr 5).

2.4. Das Absorptionsspektrum des Radialens⁶⁾

Als Beispiel für die hier beschriebenen Verfahren sei die Behandlung des π -Elektronensystems des Radialens angeführt. Die Resultate der Hückel-MO-Methode werden mit dem SCF-Verfahren nach Pople mit nachfolgender C.I.-Rechnung verglichen. Zudem wird, der speziellen Struktur des Systems entsprechend, die Näherung locker gekoppelter Doppelbindungen angegeben.

Das höchstsymmetrische Hexamethylderivat (I) des noch unbekannten Kohlenwasserstoffs Radialen (II) ist von Hopff und Wick $^{7)}$ dargestellt und beschrieben worden.

Ein Stuart-Briegleb-Modell von I zeigt, dass dieses Molekül nicht eben gebaut sein kann. In der höchstsymmetrischen Struktur, die mit den sterischen Bedürfnissen vereinbar ist, liegt der zentrale Sechsring in der Sesselform vor.

Wir beziehen uns in der Folge unter Vernachlässigung des Einflusses der sechs Methylgruppen auf das Π -Elektronensystem des Radialens (II), dem sowohl unter der Annahme einer ebenen oder einer Sesselstruktur eine höhere Symmetrie zukommt als der Molekel I.

	Symmetrie des Kohlenwasserstoffs				
Struktur	I	П			
eben	C _{6h} (6/m)	D _{6h} (6/mm)			
sesselförmig	s ₆ (3)	D _{3d} (3 m)			

Die eigentlichen Berechnungen wurden zunächst für ein π -Elektronensystem-Modell der vollen Symmetrie D_{6b} ausgeführt und die Reduktion auf die niedrigere Symmetrie C_{6h} bzw. D_{3d} erst später qualitativ berücksichtigt, da sie sich nur auf die Auswahlregeln und die Uebergangsintegrale auswirkt, während die Eigenwerte davon im wesentlichen nicht berührt werden (siehe weiter unten). Alle Abstände zwischen gebundenen Zentren wurden gleich 1,39 Å und sämtliche Bindungswinkel - wie es die Symmetrie D_{6h} verlangt - mit 120° angenommen.

I. Einelektronen-MOs

Wir bezeichnen die dem zentralen Ring angehörigen, normierten AOs mit φ_{μ} ($\mu = 0$ bis 5), die radial endständigen AOs mit ϑ_{ν} ($\nu = 0$ bis 5). Entsprechend den Symmetrien D_{6h} (eben) bzw. D_{3d} (sesselförmig) der Molekel II lassen sich die φ_{μ} und ϑ_{ν} zu normierten, orthogonalen Linearkombinationen Φ_{J} und θ_{J} zusammenfassen, die den irreduziblen Darstellungen der genannten Gruppen zugeordnet sind.

$$\Phi_{J} = \frac{1}{\sqrt{6}} \sum_{\mu=0}^{5} \varphi_{\mu} \exp \frac{2\pi i}{6} \mu J \quad \theta_{J} = \frac{1}{\sqrt{6}} \sum_{\nu=0}^{5} \Im_{\nu} \exp \frac{2\pi i}{6} \nu J$$
(16)

J =	0	1	2	3	4	5
D _{6h}	A _{2u}	E _{1g}	E2u	^B 2g	E _{2u}	E _{1g}
D _{3d}	A _{2u}	Eg	E _u	A _{1g}	E _u	Eg

Gesucht sind die ebenfalls den irreduziblen Darstellungen zugeordneten Linearkombinationen (17) und ihre entsprechenden Eigenwerte E_{T}

$$\Psi_{\mathbf{J}} = \mathbf{A}_{\mathbf{J}} \Phi_{\mathbf{J}} + \mathbf{B}_{\mathbf{J}} \theta_{\mathbf{J}}$$
(17)

1. Nach dem Verfahren von E. Hückel: Unter den üblichen Voraussetzungen der Hückel'schen Näherung (konstantes Coulomb-Integral & für alle Zentren, konstantes Resonanz-Integral β für alle Bindungen) erhält man das in der Tab. 1, links zusammengefasste Bild für die zwölf Einelektronen-MOs Ψ_J des π -Elektronensystems des ebenen Radialens. Quantenzahlen J mit negativem Vorzeichen beziehen sich auf die antibindenden MOs Ψ_{-J} , die alle einen die Bindungen $\varphi_{\mu} - \vartheta_{\mu}$ schneidenden Knotenzylinder aufweisen. Ψ_{T} und Ψ_{-T} gehören zur gleichen, durch J de-

finierten irreduziblen Darstellung, und die in ihnen enthaltenen Linearkombinationen $\dot{\Phi}_{I}$ und θ_{I} sind entsprechend (16) mit positivem J definiert.

2. Nach dem SCF-Verfahren ²): Ausgehend von den Hückel-MOs der Tab. 1 wurde nach dem SCF-Verfahren (vergl. 2.2.) die Wechselwirkung zwischen den Π -Elektronen berücksichtigt. Für $\gamma_{\mu\nu}$ wurde der von Pople vorgeschlagene Ansatz $\gamma_{\mu\nu} = R_{\mu\nu}^{-1}$ und für das Resonanzintegral H_{µν} der Wert 17175 cm⁻¹ entsprechend 2, 13 eV benutzt.

Aus den MO-Koeffizienten der (n-1)^{ten} Näherung wurden die Elemente F⁽ⁿ⁾ der SCF-Matrix berechnet, deren Eigenvektoren die MOs der n-ten Näherung darstellen. Das Resultat, zu dem diese SCF-Rechnung nach 9 Iterationsschritten (mit einer zwischengeschalteten graphischen Extrapolation nach der 4. Runde) konvergiert, ist in Tab. 1, rechts, angegeben.

		Hückel's	che Nähe	rung	····-		SCF-N	äherung	. <u></u>
	Term- Schema	Eigenwerte $W_{J} = \frac{E_{J} - \infty}{\beta}$	Eig funkt A _J	ionen B _J	Symme- trietypus ^D 6h ^D 3d	Eiger E _J - in eV	nwerte -F _{μμ} in cm ⁻¹	Eigenfu A _J	nktionen ^B J
Antibindende LCAO-MOs	-3 -4 -2 -5 -1 -0	2,4142 1,6180 0,6180 0,4142	0, 9239 0, 8507 0, 5257 0, 3827	-0, 3827 -0, 5257 -0, 8507 -0, 9239	$\begin{array}{c} \mathbf{B}_{2g} \mathbf{A}_{1g} \\ \mathbf{E}_{2u} \mathbf{E}_{u} \\ \mathbf{E}_{1g} \mathbf{E}_{g} \\ \mathbf{A}_{2u} \mathbf{A}_{2u} \end{array}$	10, 84 8, 76 5, 88 5, 17	87420 70690 47470 41660	0,8750 0,8059 0,5920 0,4841	-0, 4841 -0, 5920 -0, 8059 -0, 8750
	3	-0,4142	0, 3827	0, 9239	B _{2g} A _{1g}	- 5,17	-41660	0,4841	0,8750

0,5257 0,8507

0,8507 0,5257

0,3827

0,9239

Bindende

LCAO-MOs

2

1

-0,6180

-1,6180

-2,4142

E_{2u}E_u

 $E_{1g}^{E}E_{g}^{E}$ $A_{2u}^{A}A_{2u}^{A}$ - 5,88 -47470

- 8,76 -70690

-10,84 -87420

0,5920

0,8059

0,8750

0,8059

0,5920

0,4841

Tabelle 1 Schema der Hückel-MOs und der SCF-MOs des Radialens

Wie für alle alternierenden Kohlenwasserstoffe gilt, dass die π -Elektronendichten q_p sämtlicher 12 Zentren im Grundzustand des Systems - sowohl in der Näherung nach Hückel als auch nach dem SCF-Verfahren nach Pople - den Wert q_p = 1 annehmen. Für die Bindungsordnungen P_{p6} findet man:

	nach Hückel	nach SCF (Pople)
^P φφ	0, 385	0, 277
. ب P نو ۷	0,832	0, 919

Hierin bedeuten $P_{\phi\phi}$ die Bindungsordnungen zwischen zwei konsekutiven AOs ϕ_{μ} des zentralen Rings und $P_{\phi,k}$ diejenigen einer radialen Bindung zwischen zwei AOs ϕ_{μ} und ψ_{μ} von gleichem Index.

Wie ersichtlich, zeichnet sich der Grundzustand durch eine bedeutende Lokalisierung der radialen Doppelbindungen aus, die, im Hückel'schen Modell schon deutlich erkennbar, sich im SCF-Modell bei der Einführung der Elektronenwechselwirkung noch verschärft. Die niedrige Bindungsordnung zwischen den AOs φ_{μ} des zentralen Rings deutet darauf hin, dass die betreffenden Bindungen leicht verdrehbar sind und demzufolge der Uebergang vom Modell D_{6h} zum Modell D_{3d} ohne wesentlichen Verlust an Delokalisierungsenergie vor sich geht. Verwendet man die von Coulson angegebene Kurve der Abhängigkeit des interatomaren Abstandes von der Bindungsordnung⁸⁾, so lassen sich die folgenden Voraussagen über die Bindungslängen gewinnen: R $\varphi = 1,45$ Å, R $\varphi = 1,37$ Å. Im vorliegenden Fall ist allerdings zu erwarten, dass insbesondere R $\varphi \phi$ kleiner als angegeben ausfällt, da die Coulson'sche Kurve für $P_{q6} = 0$ durch den Punkt R = 1,54 Å läuft, der einer 6 -Bindung zwischen zwei sp³- und nicht zwischen zwei sp²-Hybriden entspricht (vgl. dazu De war & Schmeising⁹⁾).

II. Elektronisch angeregte Zustände

In Anbetracht der speziellen Struktur des Eigenwertschemas des π -Elektronensystems von II sind in der Folge bei der Berechnung der Konfigurationswechselwirkung mindestens die 9 niedrigsten reinen angeregten Zustände zu berücksichtigen. Sie sind in der Tab. 2 zusammen mit Angaben über ihre Symmetrie aufgeführt.

Zustand	Symmetrie D _{6h}	Symmetrie D _{3d}	
$\psi_{J}^{-1}\psi_{T}$	$\Gamma(\psi_{\mathbf{J}}) \stackrel{\cdot}{\mathbf{x}} \Gamma(\psi_{\mathbf{T}}) = \Gamma(\psi_{\mathbf{J}}^{-1}\psi_{\mathbf{T}})$	$\Gamma(\Psi_{\mathbf{J}}) \dot{\mathbf{x}} \Gamma(\Psi_{\mathbf{T}}) = \Gamma(\Psi_{\mathbf{J}}^{-1} \Psi_{\mathbf{T}})$	
Ψ _o	A _{1g}	A _{1g}	Grund- zustand
$\Psi_3^{-1} \Psi_{-o}$	$B_{2g} \dot{x} A_{2u} = B_{1u}$	$A_{1g} \dot{x} A_{2u} = A_{2u}$	einfach
$\Psi_{3}^{-1}\Psi_{-1}$ $\Psi_{3}^{-1}\Psi_{-5}$	$ B_{2g} \dot{x} E_{1g} = E_{2g} $	$A_{1g} \doteq E_{g} = E_{g}$	vierfach
$\Psi_4^{-1} \Psi_{-0}$ $\Psi_2^{-1} \Psi_{-0}$	$ \left. \right\} E_{2u} \dot{x} A_{2u} = E_{2g} $	$\mathbf{E}_{\mathbf{u}} \dot{\mathbf{x}} \mathbf{A}_{2\mathbf{u}} = \mathbf{E}_{\mathbf{g}}$	entartet
$\Psi_4^{-1} \Psi_{-5}$ $\Psi_4^{-1} \Psi_{-1}$	$\begin{cases} E_{2n} \dot{x} E_{1g} = B_{1n} \dot{+} B_{2n} \dot{+} E_{1n} \end{cases}$	$\mathbf{E}_{11} \dot{\mathbf{x}} \mathbf{E}_{2} = \mathbf{A}_{11} \dot{\mathbf{x}} \mathbf{A}_{21} \dot{\mathbf{x}} \mathbf{E}_{11}$	vierfach
$\Psi_2^{-1} \Psi_{-5}$ $\Psi_2^{-1} \Psi_{-1}$		~ g iu 2u U	entartet

Tabelle 2 Reine angeregte Konfigurationen

Die Matrixelemente für die Konfigurationswechselwirkungen wurden nach den Angaben von Pople berechnet²⁾, wobei für die Zweizentrenintegrale $\langle \mu \nu | G | \mu \nu \rangle = \langle \mu \nu \rangle$ im Falle von ζ_{11} , ζ_{12} und ζ_{13} die von Pariser und Parr⁵⁾ vorgeschlagenen Werte Verwendung fanden, während die höheren Glieder ζ_{10} nach dem R_{10}^{-1} Ansatz berechnet wurden.

Schema	Eigenwerte	Eigenfunktionen	D ₆	h	D3	d			
	.1			*)		*)			
	63900 cm ⁻¹	$\frac{1}{\sqrt{2}} (\psi_4^{-1} \psi_{-0} - \psi_3^{-1} \psi_{-5}); \ \frac{1}{\sqrt{2}} (\psi_2^{-1} \psi_{-0} - \psi_3^{-1} \psi_{-1})$	E _{2g}	verb.	Eg	verb.			
	60700 cm ⁻¹	$\Psi_{2}^{-1}\Psi_{-1}; \Psi_{4}^{-1}\Psi_{-5}$	E _{1u}	х, у	Eu	ж, у			
	56700 cm ⁻¹	$0,709 \ \psi_{3}^{-1} \psi_{-0} - 0,499 \ (\psi_{2}^{-1} \psi_{-5} + \psi_{4}^{-1} \psi_{-1})$	B _{1u}	verb.	A _{2u}	z			
	48800 cm ⁻¹	$1/\sqrt{2} (\psi_2^{-1}\psi_{-5} - \psi_4^{-1}\psi_{-1})$	B _{2u}	verb.	A _{lu}	verb.			
	45300 cm ⁻¹	$1/\sqrt{2} (\psi_4^{-1} \psi_{-0} + \psi_3^{-1} \psi_{-5}); \ 1/\sqrt{2} (\psi_2^{-1} \psi_{-0} + \psi_3^{-1} \psi_{-1})$	E2g	verb.	Eg	verb.			
	42800 cm ⁻¹	$0,705 \ \psi_{3}^{-1} \psi_{-0} + 0,502 \ (\psi_{2}^{-1} \psi_{-5} + \psi_{4}^{-1} \psi_{-1})$	^B 1u	verb.	A _{2u}	z			
		Ψ ₀	A _{1g}		A _{1g}				
*) Aus	*) Auswahlregeln: verb. = verbotener Uebergang								
	z = eriauter tebergang parallel zur z-Achse polarisiert								

Tabelle 3 Angeregte Zustände des T -Elektronensystems des Radialens

Die resultierenden Zustände, ihre Energien bezüglich derjenigen des Grundzustandes Ψ_0 und ihre Symmetrien sind im Schema der Tab. 3 zusammengefasst. Unter der Voraussetzung der Symmetrie D_{6h} gelten die folgenden Auswahlregeln: Erlaubt sind $A_{1g} \rightarrow E_{1u}$, verboten $A_{1g} \rightarrow B_{1u}$, $A_{1g} \rightarrow E_{2g}$ und $A_{1g} \rightarrow B_{2u}$. Geht das System in die Sesselform über, d.h. nimmt die Symmetrie D_{6h} bis auf D_{3d} ab, so lauten die neuen Regeln: Erlaubt $A_{1g} \rightarrow E_{u}$ und $A_{1g} \rightarrow A_{2u}$, verboten $A_{1g} \rightarrow E_{g}$ und $A_{1g} \rightarrow A_{1u}$.

Die Näherung locker gekoppelter Doppelbindungen: Wie die Berechnungen des Abschnitts I sowohl in der Näherung nach Hückel als auch nach der SCF-Methode gezeigt haben, ist die Bindungsordnung $P_{\psi\psi}$ der Ringbindungen des π -Elektronensystems von I bzw. II so niedrig, dass man die betreffenden Molekeln in guter Näherung als aus praktisch isolierten Doppelbindungen zusammengesetzt betrachten kann. Es ist von Interesse zu untersuchen, wieweit diese Näherung auch für die Beschreibung der angeregten elektronischen Zustände zutrifft. Auch dann, wenn zwei Molekülfragmente R und S nicht miteinander konjugieren, tritt eine Wechselwirkung zwischen den elektronisch angeregten Zuständen θ_s von S und θ_r von R auf. Die betreffenden Matrixelemente werden durch die rein elektrostatischen Wechselwirkungen zwischen denjenigen Uebergangsdichten (Uebergangsmomenten) bestimmt, die mit den lokalen Anregungen $\theta_0 \rightarrow \theta_r$ und $\theta_0 \rightarrow \theta_s$ verknüpft sind ¹⁰).

Die Laufzahl der einzelnen Doppelbindungen des Systems II sei μ ($\mu = 0$ bis 5). Ausserdem definieren wir den Zustand θ_{μ} als denjenigen, in dem sich die Doppelbindung μ im ersten angeregten Zustand, alle anderen fünf im Grundzustand befinden. Berücksichtigt man wie weiter oben die Symmetrie des Systems, so lassen sich die in Tab. 4 angegebenen, den irreduziblen Darstellungen des Systems entsprechenden angeregten Zustände ableiten. Die Grössen H_{µν} stellen die Wechselwirkungsterme zwischen den Uebergangsdichten der Doppelbindungen μ und ν dar.

Die Oszillatorenstärke f des π - π *-Ueberganges alkylsubstituierter Aethylene beträgt ungefähr f = 0,3 ¹¹⁾¹²⁾. Die entsprechende Bande setzt bei 52000 cm⁻¹ ein und erreicht bei rund 56000 cm⁻¹ ihr Maximum mit einem ε -Wert von 10000. Aus der Oszillatorenstärke f lässt sich der Uebergangsdipol nach der Formel (18) berechnen.

$$f = 4,704 \cdot 10^{29} \tilde{v} \mu^2$$
 (18)

In dieser ist \tilde{v} die Wellenzahl in cm⁻¹ der betreffenden Absorptionsbande und μ das Uebergangsmoment in elektrostatischen Einheiten. Nach (18) findet man für Aethylen den Wert $\mu^2 = 1,139 \ 10^{-35}$ (el. -st. Eht. cm)².

Die Matrixelemente $H_{\mu\nu}$ der Tab. 4 werden korrekterweise aus den Uebergangsdichten der einzelnen Teilsysteme berechnet. Man kann sie aber in guter Näherung aus den Dipol-Dipolwechselwirkungen von Punktdipolen, die im Zentrum einer jeden Aethylenbindung lokalisiert zu denken sind, erhalten, wenn man für die Grösse der Dipole den aus den f-Werten erhaltenen Betrag einsetzt. Bezogen auf die Molekel II der vollen Symmetrie D_{6h} und einen interatomaren Abstand von 1,40 Å zwischen allen gebundenen Zentren erhält man auf diese Art:

$$H_{01} = 0,867 \cdot 10^{35} \mu^2 = 0,96 \text{ eV} = 7740 \text{ cm}^{-1}$$

$$H_{02} = 0,231 \cdot 10^{35} \mu^2 = 0,26 \text{ eV} = 2100 \text{ cm}^{-1}$$

$$H_{03} = 0,090 \cdot 10^{35} \mu^2 = 0,10 \text{ eV} = 1530 \text{ cm}^{-1}$$

Wie erwähnt, liegt das Maximum der Aethylenabsorption, das einem elektronischen Uebergang ohne Aenderung der Geometrie entspricht, bei 56 000 cm⁻¹ (6,94 eV). Die Energien der angeregten Zustände des π -Elektronensystems von II (vgl. Tab. 4, letzte Spalte) betragen demnach:

Tabelle 4Angeregte Zustände des II -Elektronensystems des Radialensin der Näherung locker gekoppelter Doppelbindungen

Eigenfunktionen	Symmetrie D _{6h} D _{3d}	Energie
$\Psi_5 = \frac{1}{\sqrt{6}} (\theta_0 + \theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5)$	A _{1g} A _{1g}	$2 H_{01} + 2 H_{02} + H_{03}$
$\begin{split} \Psi_4 &= \frac{1}{2} \left(\theta_1 + \theta_2 - \theta_4 - \theta_5 \right) \\ \Psi_3 &= \frac{1}{\sqrt{12}} \left(2 \ \theta_0 + \theta_1 - \theta_2 - 2 \ \theta_3 - \theta_4 + \theta_5 \right) \end{split}$	$\left.\right\} \mathbf{E_{1u}} \mathbf{E_{u}}$	H ₀₁ - H ₀₂ - H ₀₃
$\begin{split} \Psi_2 &= \frac{1}{2} \left(\theta_1 - \theta_2 + \theta_4 - \theta_5 \right) \\ \Psi_1 &= \frac{1}{\sqrt{12}} \left(2 \ \theta_0 - \theta_1 - \theta_2 + 2 \ \theta_3 - \theta_4 - \theta_5 \right) \end{split}$	$\bigg\} \mathbf{E}_{2g} \bigg\} \mathbf{E}_{g}$	- H ₀₁ - H ₀₂ + H ₀₃
$\Psi_o = \frac{1}{\sqrt{6}} \left(\theta_o - \theta_1 + \theta_2 - \theta_3 + \theta_4 - \theta_5 \right)$	B _{1u} A _{2u}	- 2 H ₀₁ + 2 H ₀₂ - H ₀₃

 $E_5 = 9,48 \text{ eV} = 77200 \text{ cm}^{-1}$ $E_4 = E_3 = 7,54 \text{ eV} = 60100 \text{ cm}^{-1}$ $E_2 = E_1 = 5,82 \text{ eV} = 47700 \text{ cm}^{-1}$ $E_0 = 5,44 \text{ eV} = 43200 \text{ cm}^{-1}$

Die so gefundenen Energien entsprechen recht genau denjenigen, die für die Zustände gleicher Symmetrie nach dem im vorangehenden Paragraphen beschriebenen Verfahren gefunden worden sind. Es gelten natürlich die gleichen Auswahlregeln wie vorher, d. h. dass in der Gruppe D_{6h} nur der Uebergang vom Grundzustand A_{1g} in den angeregten Zustand E_{1u} erlaubt ist (60100 cm⁻¹). Geht das System in die Sesselform über, so dass sich die Symmetrie auf D_{3d} reduziert, so wird auch der Uebergang zum niedrigstliegenden angeregten Zustand A_{2u} erlaubt (43200 cm⁻¹).

III. Vergleich mit dem Experiment

In Fig. 1 ist das UV.-Absorptionsspektrum des Hexamethyl-radialens, gelöst in Cyclohexan, dargestellt $^{13)}$. Die sich daraus ableitenden charakteristischen Daten sind:

Fig. 1 Absorptionsspektrum des Hexamethyl-radialens Lösungsmittel: Cyclohexan

Band	λ _{max} in mµ	\tilde{v}_{max} in cm ⁻¹	E in eV	e _{max}	f ¹²⁾
A	260	38500	4,77	5700	0, 14
(B ¹⁴⁾)	(235)	(42500)	(5,3)	(4000)	(0,08)
С	205	48800	6,05	33000	1,2

Nimmt man in erster Näherung an, dass sowohl die längstwellige Bande bei 260 mµ als auch die ausgeprägte, intensive Bande bei 205 mµ symmetrisch sind und durch eine Kurve vom Typus der Gauss'schen Fehlerfunktion approximiert werden dürfen, so kommt man zum Schluss, dass zwischen den beiden genannten mindestens noch eine weitere Bande niedriger Intensität liegen muss. Diese wurde in obenstehender Zusammenstellung als Bande B bezeichnet (vgl. Fig. 2). Lage und Intensität dieses zusätzlichen Maximums lassen sich zwar nur mit beträchtlicher Unsicherheit bestimmen, doch kann an der Existenz einer oder mehrerer Banden zwischen A und C kaum gezweifelt werden.

Fig. 2 Vergleich der experimentellen und theoretischen Ergebnisse (Betreffend Aufteilung des Absorptionsspektrums in drei Teilbanden vgl. Text)

- a) Nach dem Verfahren von Pople, ausgehend von den SCF-MOs
- b) Nach der Näherung locker gekoppelter Doppelbindungen

Diese Deutung des Spektrums des Hexamethyl-radialens wird durch die theoretischen Untersuchungen des Abschnitts II gestützt, indem die Resultate vom qualitativen Gesichtspunkt aus genau der oben beschriebenen Situation entsprechen. Diese Uebereinstimmung ist um so signifikanter, als die Ergebnisse der Theorie im wesentlichen symmetriebedingt sind und nur in untergeordnetem Masse von der Wahl der Energie-Parameter abhängen.

Sowohl das SCF-MO-Modell als auch die Näherung der induktiv gekoppelten Doppelbindungen ergibt, dass unter der Voraussetzung der Symmetrie S₆ für das Hexamethyl-radialen (d. h. der Symmetrie D_{3d} für das unsubstitutierte Radialen) dem intensiven x, y-polarisierten $\Pi - \Pi^*$ -Uebergang $A_{1g} \xrightarrow{} E_u$ ein längstwelliger erlaubter Uebergang vorgelagert ist, der parallel der dreizähligen z-Achse polarisiert ist $(A_{1g} \rightarrow A_{2u})$. Zwischen diese beiden Banden fallen nun Uebergänge, von denen das SCF-MO-Modell drei erfasst (zwei verbotene $A_{1g} \rightarrow E_g$, $A_{1g} \rightarrow A_{1u}$ und einen erlaubten $A_{1g} \rightarrow A_{2u}$, letzterer ebenfalls entlang der z-Achse polarisiert), während die Näherung der locker gekoppelten Doppelbindungen nur den verbotenen Uebergang $A_{1g} \mapsto E_{g}$ liefert. Um auch die anderen beiden vom SCF-MO-Modell vorausgesagten Zustände dieses Intervalls zu erfassen, müsste die erwähnte Näherung durch die Einbeziehung von Ladungstransfer- bzw. Ladungsresonanz-Zuständen erweitert werden. Die strenge Gültigkeit der Auswahlregeln setzt voraus. dass wir es im Radialen und im Hexamethyl-radialen mit einem π -Elektronensystem der starren Symmetrie D_{3d} zu tun haben. In der eigentlichen Molekel werden natürlich verbotene Uebergänge des Modells durch Wechselwirkung mit den Schwingungen aktiviert, diese geben dann zu Banden niedriger Intensität Anlass. (Schwingungen vom Symmetrietypus \mathbf{E}_{u} aktivieren z.B. den Uebergang nach \mathbf{E}_{g} , solche vom Typus \mathbf{A}_{2g} oder E_g den Uebergang nach A_{1u}). Im Hexamethyl-radialen der Formel I ist entsprechend der Symmetrie S₆ nur der Uebergang A_{g} - $|\rightarrow E_{g}$ verboten ¹⁵⁾.

In Fig. 2 ist das empirisch in symmetrische Teilbanden aufgeteilte Absorptionsspektrum des Hexamethyl-radialens mit den "synthetischen" Spektren verglichen, die sich nach den beiden besprochenen Näherungsverfahren berechnen lassen. Die relativen Intensitäten der berechneten Bandenlagen wurden qualitativ in drei Kategorien eingestuft, die, durch zunehmende Höhe der Markierungsstreifen gekennzeichnet, folgende Typen von Uebergängen entsprechen:

1. Uebergänge, die sowohl im D_{6h} -Modell als auch im D_{3d} -Modell des Radialens verboten sind (in Praxis möglicherweise durch Wechselwirkung mit Schwingungen aktiviert).

2. Uebergänge, die im D_{6h} -Modell verboten, im D_{3d} -Modell aber, entlang der z-Achse polarisiert, erlaubt sind. Die Intensität dieser Banden wächst mit zunehmender Abweichung vom ebenen Modell.

3. Banden, die sowohl im D_{6h}^{-} als auch im D_{3d}^{-} Modell erlaubt sind. Dies sollten die intensivsten Banden sein. Ihre Intensität nimmt, im Gegensatz zu den vorher erwähnten Banden, mit zunehmender Abweichung der Molekel vom ebenen Modell ab.

Vom quantitativen Gesichtspunkt aus betrachtet fällt zunächst auf, dass alle berechneten Uebergänge zu kurzwellig zu liegen kommen. Dies ist zum Teil sicher darauf zurückzuführen, dass die sechs Methylgruppen, ähnlich wie in anderen Polyen-Systemen eine bathochrome Verschiebung der einzelnen Banden bewirken. Schätzt man diesen Einfluss auf ca. 5 mµ pro Methylgruppe (in Anlehnung an die bekannten Woodward-Regeln¹⁶⁾), so ergibt sich, dass die beiden, den angeregten Zuständen A_{2u} und E_u zugeordneten Terme durch den Einfluss der sechs Methylgruppen von 43000 cm⁻¹ und 61000 cm⁻¹ auf 39000 cm⁻¹ und 51000 cm⁻¹ korrigiert werden. Diese Werte stimmen mit den experimentellen Resultaten so gut überein, als vernünftigerweise überhaupt erwartet werden darf.

Die Zuordnung der einzelnen Teilbanden zu den berechneten Uebergängen ist eigentlich nur für die längstwellige Bande völlig eindeutig (angeregter Zustand A_{9..}). Berechnet man aus dem beobachteten f-Wert dieser Bande den Verbiegungswinkel ω , um den die einzelnen Doppelbindungen aus der Ebene des $\mathrm{D}_{6\mathrm{h}}$ -Modells herausgedreht sind, so erhält man $\omega = 15^{\circ}$, einen Wert der recht gut demjenigen entspricht, den man auf Grund des Stuart-Briegleb-Modells erwarten würde. Die intensive Bande bei 205 mµ muss aller Wahrscheinlichkeit nach mit dem Uebergang nach E. identifiziert werden; dafür spricht vor allem der hohe f-Wert von 1, 2. Er deutet an, dass diese Bande keinesfalls einem im starren Modell verbotenen Uebergang entspricht, der durch Wechselwirkung mit einer Schwingung aktiviert worden ist. Es bestünde allerdings die Möglichkeit, dass sie dem zweiten A_{2u} -Zustand zugeordnet werden muss, doch ist auch dies aus Intensitätsgründen recht unwahrscheinlich. Die in der angegebenen Zusammenstellung als B bezeichnete Bande (die in Anbetracht der hohen Unsicherheit einer Differenzbildung, wie sie in Fig. 2 angegeben ist, auch selbst wieder mehrere Teilbanden enthalten könnte) wird schliesslich einem - oder mehreren - der Zustände zugeordnet, die zwischen dem energetisch niedrigsten (A21) und dem entarteten Zustand E, liegen.

3. DAS REDUZIERTE VERFAHREN NACH POPLE, PARISER UND PARR

3.1. Aufgabenstellung

Die Elemente der in Abschnitt 2.3. definierten C. I. - Matrix lassen sich in Funk-

tion von 2 Parametersätzen ausdrücken: $\langle \mu | H^{C} | \nu \rangle = H_{\mu\nu}$ und $\langle \mu \nu | G | \mu \nu \rangle = \chi_{\mu\nu}$. $H_{\mu\mu}$ entspricht der Ionisationsenergie eines Elektrons im AO φ_{μ} korrigiert um die elektrostatische Wechselwirkung mit den positiven Zentren $\nu \neq \mu$ des 6-Skeletts. $H_{\mu\nu}~(\mu\neq\nu$) wird nur für gebundene AOs ϕ_{μ} und ϕ_{ν} als von Null verschieden angenommen und gleich dem Resonanzintegral $\beta_{\mu\nu}$ gesetzt. $\gamma_{\mu\mu}$, die Wechselwirkung zwischen zwei Elektronen im gleichen AO ϕ_{11} kann, nach einem Argument von Pariser und Parr als Differenz zwischen Ionisierungspotential und Elektronenaffinität eines neutralen Atoms im Valenzzustand aufgefasst werden $^{1)}$. Der Wert des Integrals $\gamma_{\mu\nu}$ wird, solange der interatomare Abstand $R_{\mu\nu}$ gross ist, anhand eines vereinfachten Modells für die Elektronendichteverteilung φ_{μ}^2 und φ_{ν}^2 berechnet. Für kleinere Abstände fordern die genannten Autoren zusätzlich, dass mit

 $\begin{array}{c} R_{\mu\nu} \longrightarrow 0 \ \text{das Integral } \chi_{\mu\nu} \ \text{stetig gegen } \chi_{\mu\mu} \ \text{strebt.} \\ \text{Ist für ein spezielles Problem der Satz von Einelektronen-Eigenfunktionen } \Psi_J \end{array}$ (meist Hückel-MOs) sowie die Abhängigkeit der Parameter $\beta_{\mu\nu}$ und $\gamma_{\mu\nu}$ vom interatomaren Abstand vorgegeben, so ist der Berechnungsweg nach dem Verfahren von Pople⁴), Pariser und Parr⁵ eindeutig festgelegt. Es eignet sich deshalb gut für den Einsatz digitaler Rechenautomaten, wie eine Reihe bereits vorliegender Programme beweist. Damit erscheint zunächst eine weitere Vereinfachung des Modells, welches der Berechnung zugrunde liegt nicht gerechtfertigt, wenn sie nicht von einer beträchtlichen Reduktion des Rechenaufwandes und damit der effektiven Rechenzeit begleitet wird. Diese wird aber im allgemeinen nicht durch eine Vereinfachung des Modells, sondern vor allem durch eine Beschränkung in der Zahl der berücksichtigten Konfigurationen erreicht werden.

Innerhalb der semiempirischen Verfahren und als Grundlage qualitativer Diskussionen ist der Versuch jedoch verlockend, das oben genannte Verfahren modellmässig weiter so zu vereinfachen, dass bei optimaler Anschaulichkeit die wesentlichen Effekte in semiquantitativ befriedigender Weise gerade noch erhalten bleiben. In diesem Sinne wurden bereits von Dewar und Longuet-Higgins¹⁷⁾ für die qualitative Beschreibung der Elektronenspektren benzenoider Kohlenwasserstoffe neben der Ausgangskonfiguration nur die vier energetisch günstigsten einfach angeregten Konfigurationen berücksichtigt. Ein analoges Verfahren wurde kürzlich von Koutecký, Paldus und Zahradník¹⁸⁾ angewendet. Als besonders attraktiv

hat sich eine von Salem und Longuet-Higgins ¹⁹⁾ vorgeschlagene Beschränkung in den Parametern auf die festen Grössen β' , γ'_{11} und γ'_{12} erwiesen. Die Werte dieser Parameter, die für alle am π -Elektronensystem teilhabenden C-Atome und C = C-Bindungen gleich sein sollen und unverändert von einer Verbindung in die andere übernommen werden können, werden durch Eichung anhand experimenteller Daten bestimmt.

Für die vorliegende Arbeit wurde folgende Aufgabenstellung gewählt:

1. Das Verfahren der Konfigurationswechselwirkung nach Pople, Pariser und Parr soll für ein Modell vereinfacht werden, in dem

- a) Hückel MOs ψ_{T} als Basis benützt werden,
- b) Die Zahl der einfach angeregten Konfigurationen auf zehn beschränkt wird: auf die Ausgangskonfiguration Ψ_0 und auf neun einfach angeregte Konfigurationen vom Typ $\psi_J^{-1} \psi_T$ und
- c) die Wechselwirkung zwischen diesen zehn niedrigsten Konfigurationen auf die Grössen β'_{uv} , δ'_{11} und δ'_{12} zurückgeführt wird.

Als numerisches Experiment ist die Brauchbarkeit dieser Reduktion an einigen ausgewählten Systemen zu prüfen.

2. Das reduzierte Verfahren soll für eine elektronische Rechenanlage IBM 1620 voll automatisiert werden, wobei vom Programm möglichst grosse Flexibilität verlangt wird.

3.2. Beschreibung des Modells

Die drei obersten, im Ausgangszustand Ψ_0 mit je zwei Elektronen antiparallelen Spins besetzten Hückel-LCAO-MOs werden, in Anlehnung an einen Vorschlag von Platt, unabhängig von der Zahl NB besetzter LCAO-MOs und nach steigender Energie geordnet, als Ψ_D , Ψ_E und Ψ_F bezeichnet. Entsprechend werden den drei untersten in Ψ_0 unbesetzten MOs die Symbole Ψ_G , Ψ_H und Ψ_I zugeordnet. Diese sechs MOs definieren neben Ψ_0 neun einfach angeregte Konfigurationen:

 $\Psi_{F}^{-1}\Psi_{G}, \ \Psi_{F}^{-1}\Psi_{H}, \ \Psi_{F}^{-1}\Psi_{I}, \ \Psi_{E}^{-1}\Psi_{G}, \ \Psi_{E}^{-1}\Psi_{H}, \ \Psi_{E}^{-1}\Psi_{I}, \ \Psi_{D}^{-1}\Psi_{G}, \ \Psi_{D}^{-1}\Psi_{H}, \ \Psi_{D}^{-1}\Psi_{I}$

Damit werden für ein beliebiges π -Elektronensystem mit abgeschlossener Schale nach den Formeln (12)-(14) bzw. (15) die Elemente einer C.I.-Matrix vom Grad 10 bestimmt, deren Eigenwerte und Eigenvektoren als hinreichend genaue Approximation der niedrigsten wahren Eigenwerte und Eigenfunktionen des interessierenden Systems betrachtet werden. Die Beschränkung in der Zahl der berücksichtigten Konfigurationen dient vor allem der Verringerung des Rechenaufwandes. Wie einschneidend sich dieses Vorgehen neben der Vereinfachung in den Parametern auf die erzielbare Uebereinstimmung mit dem Experiment auswirkt, und wie diese dann ausserdem vom Typ des betreffenden Π -Elektronensystems abhängt, kann nur auf dem Weg über numerische Experimente abgeschätzt werden.

Auf Grund des vereinfachten Modells gehen als Parameter in die Rechnung ein: Resonanzintegral β ': Die Hückel-LCAO-MOs ψ_J , die als Basis Verwendung finden, werden unter der Annahme berechnet, dass das Resonanzintegral β für alle gebundenen AOs den gleichen Wert annimmt und für alle nicht gebundenen AOs verschwindet. Im vorliegenden Modell wird zwar ebenfalls angenommen, dass der Wert von β ' nur für gebundene AOs μ , ν von Null verschieden ist; hingegen soll er vom interatomaren Abstand R_{uv} der betreffenden Zentren abhängen:

$$\beta'_{\mu\nu} = \beta'(R_{\mu\nu})$$
(19)

Da die R_{µv} im allgemeinen nicht bekannt sind, wird auf Grund des Zusammenhanges zwischen den Bindungsordnungen P_{µv}, wie sie sich aus dem Hückel'schen Verfahren ergeben und den Bindungslängen R_{µv}⁸, die Formel (19) durch den folgenden Ausdruck ersetzt:

$$\beta'_{\mu\nu} = \beta'(P_{\mu\nu})$$

Die zunächst noch unbekannte Funktion $\beta'(P_{\mu\nu})$ darf im interessierenden Bereich (P_{µν} ca. 0,3 bis 0,9) durch den Ansatz vom Typus (20) approximiert werden:

$$\beta'(P_{\mu\nu}) = k_2 P_{\mu\nu}^2 + k_1 P_{\mu\nu} + k_0$$
(20)

Elektronenwechselwirkungs-Integrale: Die Elektronenwechselwirkungs-Integrale $\gamma_{\mu\nu}$ sollen, dem erwähnten Vorschlag von Longuet-Higgins und Salem entsprechend nur für zwei Elektronen im gleichen AO ($\mu = \nu$) oder in zwei direkt aneinandergebundenen AOs (μ, ν) von Null verschieden sein. Ausserdem wird $\gamma_{\mu\mu}$ als von μ unabhängig betrachtet, so dass für alle $\gamma_{\mu\mu}$ der feste Wert γ_{11} verwendet werden kann. Desgleichen soll $\gamma_{\mu\nu}$ für alle Bindungen (μ und ν benachbarte Zentren) den festen Wert γ_{12} annehmen. (Berechnungen in denen γ_{12} analog β ' als quadratische Funktionen von $P_{\mu\nu}$ angesetzt wurde, ergaben keine signifikante Verbesserung der erzielbaren Resultate).
Versuche ergaben, dass die Behandlung sowohl von Systemen mit deutlicher Alternanz der Bindungslängen (z. B. Polyene) als auch von solchen mit im wesentlichen ausgeglichenen Bindungslängen nur dann innerhalb des vorgeschlagenen Verfahrens und mit einem festen Satz von drei Parametern für beide Typen zu befriedigenden Resultaten führt, wenn man β' im Sinne der Relation (20) als Funktion des interatomaren Abstandes zwischen den Zentren μ und ν ansetzt. Das hat zur Folge, dass nun auch die Kreuzterme zwischen einzelnen Konfigurationen von β' abhängen, da die Basis der Hückel-MOs ψ_J mit einem für alle Bindungen festen Wert β berechnet worden ist und diese somit nicht Eigenfunktionen eines Operators sein können, in dem β' im genannten Sinne von μ und ν abhängt.

In Anlehnung an einen Vorschlag von Mulliken wurde $\beta'_{\mu\nu}$ zunächst proportional zum Overlap $S_{\mu\nu}$ angesetzt. Es zeigte sich, dass die so berechneten Uebergangsenergien relativ zu den mit festem β' erhaltenen Werten zwar in der gewünschten Richtung verbessert wurden, dass aber der erzielbare Effekt zu klein war, um zu einer einigermassen befriedigenden Uebereinstimmung mit den bekannten experimentellen Daten zu führen. Da, wie weiter unten erwähnt, den von uns verwendeten Parametern nur formelle Bedeutung zukommt, schien es wenig sinnvoll, sie auf Grund theoretisch fundierter a priori Annahmen festzulegen. Deshalb wurde in der Folge auf rein empirischem Wege ein Ansatz (20) gesucht, der für eine Reihe von Testbeispielen eine gute Uebereinstimmung zwischen den berechneten Uebergangsenergien und den experimentellen Werten liefert.

Innerhalb des vollständigen Verfahrens von Pariser, Parr und Pople ist $\gamma_{\mu\nu}$ durch die Rechenvorschrift $\gamma_{\mu\nu} = \langle \mu \nu | G | \mu \nu \rangle$ und das gewählte Modell für die Ladungsverteilungen φ_{μ}^2 und φ_{ν}^2 festgelegt und demzufolge direkt berechenbar. Durch die Beschränkung auf die Sonderfälle $\mu = \nu$ und $\mu, \nu =$ gebunden, sowie die zusätzliche Annahme der Gleichheit aller $\gamma'_{\mu\mu} = \gamma'_{11}$ und aller $\gamma'_{\mu\nu} = \gamma'_{12}$ geht diese Eigenschaft verloren. Das Abbrechen der Reihe $\gamma'_{11}, \gamma'_{12}, \gamma'_{13} \cdots$ nach dem zweiten Glied ist, nach einem Hinweis von Ruedenberg 20) sowie von Salem und Murrell²¹⁾ deshalb in guter Näherung berechtigt, weil die $\gamma'_{1\mu}$ im wesentlichen durch

definiert sind und damit proportional zu $R_{1\mu}^{-2}$ abnehmen. Die numerischen Werte können aber, da sie de facto die vernachlässigten durchschnittlichen Wechselwirkungsterme zwischen weiter entfernten AOs in sich aufnehmen, nicht mehr der oben zitierten Rechenvorschrift entsprechen und müssen empirisch gefunden werden.

4. RESULTATE

4.1. Eichung der Parameter

Die C.I.-Behandlung des Benzols nach dem reduzierten Verfahren ergibt für die vier längstwelligen Banden (vergl. Longuet-Higgins und Salem¹⁹:

 $E_{B_a} = E_{B_b} = -2 \beta'_0 + \frac{1}{6} \gamma'_{11} + \frac{2}{3} \gamma'_{12}$ $E_{L_a} = -2 \beta'_0 + \frac{1}{3} \gamma'_{11} - \frac{5}{6} \gamma'_{12}$ $E_{L_b} = -2 \beta'_0 + \frac{1}{3} \gamma'_{11} - \frac{5}{6} \gamma'_{12}$

Ordnet man diesen Uebergängen die Energie $E_{B_{a,b}} = 6,76$ eV, $E_{L_a} = 6,12$ eV und $E_{L_b} = 4,90$ eV zu, so erhält man daraus:

 $\beta_0 = -2,347 \text{ eV}$ $\chi_{11}^{\prime} = 7,443 \text{ eV}$ $\chi_{12}^{\prime} = 1,240 \text{ eV}$

Die Anwendung dieser drei Parameter mit festem $\beta_{\mu\nu} = \beta'_0$ auf andere π -Elektronensysteme ergibt, insbesondere bei Systemen mit ausgeprägter Bindungsalternanz, dass die niedrigsten Anregungsenergien durchwegs zu klein und die Staffelung der Energieterme zu eng erhalten werden. Daraus darf geschlossen werden, dass sich, wie auch innerhalb anderer semiempirischer Verfahren, das hochsymmetrische Benzol nicht als Eichverbindung eignet.

Um eine bessere Uebereinstimmung der berechneten mit den experimentellen Daten zu erhalten, wurde der Zusammenhang zwischen $\beta'_{\mu\nu}$ und $P_{\mu\nu}$ durch einen quadratischen Ansatz (20) berücksichtigt, und $\beta'_0 = \beta'_0 P_{\mu\nu} = 2/3$ auf -2,5 eV erniedrigt.

Fig. 3 zeigt den Vergleich des experimentellen Spektrums des Naphthalins mit den berechneten Bandenlagen für verschiedene Funktionen $\beta'_{(P_{\mu}, \nu)}$. Als Ordinate ist dabei die Ableitung $\frac{\partial}{\partial} \frac{\beta' \mu \nu}{\mu \nu}$ an der Stelle $P_{\mu\nu} = 2/3$ aufgetragen. Die Abhängigkeit von den Elektronenwechselwirkungsintegralen γ'_{11} und γ'_{12} ist in Fig. 4 dargestellt. Für die darin vorgegebene Funktion

$$\beta' = -1,35 P^2 - 0,45 P - 1,60$$
 (eV)

entnimmt man die r'-Terme

 $\delta'_{11} = 7,00 \text{ eV}$ $\delta'_{12} = 1,70 \text{ eV}$

Alle in 4.2. zitierten Resultate wurden auf Grund dieses Parametersatzes erhalten.

<u>Fig. 3</u>

Fig. 4

Die Brauchbarkeit des reduzierten Verfahrens wurde anhand einiger ausgewählter Kohlenwasserstoffe geprüft. Für vier, möglichst verschiedenartige Reihen wurde die Rechnung mit einem Parametersatz (siehe 4.1.) durchgeführt. Von den alternierenden Systemen wurden die Polyene Hexatrien, Oktatetraen und Decapentaen, die Acene (bis Tetracen) sowie Phenanthren behandelt. Von den nicht-alternierenden Kohlenwasserstoffen wurden Fulven, Azulen und die drei isomeren Benzazulene und schliesslich, als Beispiele für geladene Systeme, eine Reihe von substituierten Tropyliumkationen untersucht.

Beim Vergleich der berechneten Uebergangsenergien mit den experimentellen Spektren sind einige Punkte zu beachten. Die Modellrechnung ergibt einen Uebergang, dessen genaue Lokalisierung innerhalb einer Bande meist sehr schwierig ist. Wie weit ausserdem die Uebertretung von Uebergangsverboten oder Lösungsmitteleffekte das Spektrum beeinflussen, ist schwer abzuschätzen.

Für die Acenreihe stehen von Zimmermann und Joop²²⁾ ausgeführte Messungen der Absorptions- und Fluoreszenz-Polarisation zur Verfügung, so dass dort eine Zuordnung der Spektren zu den berechneten Daten auf Grund von Symmetriebetrachtungen möglich ist. Inden Tabellen sind deshalb nur die experimentellen Werte dieser Reihe, sowie die beiden längstwelligen Banden der Polyene aufgeführt. In den übrigen Beispielen sei auf die graphischen Darstellungen der Spektren verwiesen.

Eine weitere Zuordnungsmöglichkeit besteht im Vergleich der Oszillatorstärke mit den berechneten Uebergangsmomenten. Es ist ein Programm in Vorbereitung, das die Uebergangsmomente der hybriden angeregten Zustände berechnet, doch stehen im Moment die entsprechenden Daten noch nicht zur Verfügung.

In den Tabellen sind die Symmetriesymbole der angeregten Zustände, die zehn Eigenwerte $\boldsymbol{\epsilon}_i$ der C.I.-Matrix relativ zur Energie Null der Grundkonfiguration und die neun Uebergangsenergien $\Delta \boldsymbol{\epsilon}_i$ eingetragen. Bei den Polyenen und den Acenen sind zudem noch die beobachteten Banden und ihre Bezeichnung nach der Nomenklatur von Platt²³⁾ aufgeführt. Alle Werte sind in eV angegeben.

I. Polyene

In all-trans-Polyenen sind nur Uebergänge vom Typus B²⁴⁾ erlaubt. Nach Platt wird der langwelligste Uebergang mit B⁰ bezeichnet, während die C Bande als cis-peak im Spektrum der cis-Isomeren erscheint. Die experimentellen Werte sind einer Arbeit von Merz und Heilbronner²⁵⁾ entnommen. Die Resultate in dieser Serie sind ausserordentlich empfindlich auf die Wahl der Parameter, und man kann bei einigen höheren Uebergängen durch geringe Modifikationen des Parametersatzes sogar eine Vertauschung der Sequenz der Zustände erhalten. Wahrscheinlich ist die Staffelung der höheren Uebergänge immer noch viel zu eng.

		rien			Oktate	traen	Decapentaen				
i	r	ε _i	Δŧ	exp	r	٤	Δε _i exp	r	٤ _i	Δ٤ _i	exp
0		- 0,30	-			-0,33	-		-0, 31	-	
1	вво	4,73	5,04	4,64	вво	3,73	4,06 4,08	в во	3,07	3,39	3, 71
2	А	5,95	6,25		AC	4,81	5,14 5,32	AC	4,03	4,34	5,12
3	В	7,20	7,50		A	5,96	6,29	A	5,00	5,31	
4	A	7,32	7,63		в	6,08	6,40	В	5,20	5,51	
5	в	7,95	8,26		в	6,59	6,92	в	5,59	5,91	
6	в	9,11	9,41		в	• 7,76	8,09	в	6,67	6,99	
7	A	9,57	9,88		A	8,08	8,41	A	6,91	7,23	
8	A	9,85	10,15		A	8,65	8,98	A	7,56	7,87	
9	в	10,74	11,04		в	9,61	9,94	в	8,48	8,79	

Tabelle 5 Polyene

II. Acene

Naphthalin, Anthracen und Tetracen gehören zur Symmetriegruppe D_{2h} . Entsprechend sind die B_{3u} -Uebergänge in Richtung der langen Molekülachse und die B_{2u} -Uebergänge in Richtung der kurzen polarisiert. Im Naphthalin und Anthracen stehen die theoretisch gefundenen Polarisiationsrichtungen in voller Uebereinstimmung mit den Messungen von Zimmermann und Joop²²⁾, wobei die von Platt als C_b klassifizierte Bande des Anthracens bei 5,65 eV zur Darstellung B_{2u} gehört und deshalb besser als B_a zu bezeichnen wäre. Beim Tetracen geben die genannten Autoren eine ausgeprägte Schulter des Polarisationsspektrums bei 3,85 eV an. Dies würde zwar energiemässig sehr schön mit dem berechneten B_{3u}-Uebergang (3,87 eV) übereinstimmen, doch liefert hier die Rechnung, wie auch im Falle des B_{2u}-Uebergangs bei 4,98 eV (exp. \mathbf{B}_{b} 4,55 eV), die falsche Polarisationsrichtung.

Im Phenanthren mit der Symmetrie C_{2v} sind die L_b und C_b Banden in Richtung der zweizähligen Achse polarisiert (A) während L_a und B_b (somit besser als B_a bezeichnet) senkrecht dazu (B) polarisiert sind.

	Benzol			Naphthalin					Anthracen			
i	Γ ε _i =	Δ٤ _i	exp	r	٤ _i	Δ٤	exp	r	ε _i	Δε _i	exp	
0	-	-			-0,05	-			-0,06	-		
1	B ₂₁₁ L _h 5,	2 8	4,90	B ₃₀ L _b	4,34	4,39	4,08	B _{2u} L _a	3,37	3,43	3,42	
2	B ₁ , L _a 5,	, 90	6,14	$B_{2u} L_a$	4,44	4,49	4,49	B _{3u} L _b	3,75	3,80	3,72	
3	Е. В. 7,	, 30	6.87	B _{3u} B _b	5,46	5,50	5,58	B _{3u} B _b	4,43	4,49	4,86	
4	^{-1u} ^{-ab} 7,	, 30	•,••	B _{1g}	5,82	5,86		B _{1g}	4,45	4,50		
5	E. 8,	, 92		$B_{2u}^{-b} B_{a}$	6,00	6,05	6,11	B _{1g}	5,11	5,17		
6	^{-2g} 8,	92		A _{1g}	6,13	6,18	ļ	Alg	5,40	5,46		
7	Б. ⁹ ,	, 55		B _{1g}	6,83	6,88	1	B _{2u} C _b	5,58	5,63	5,65	
8	^{-2g} 9,	, 55		A	7,54	7,59		A _{1g}	6,36	6,41		
9	B _{1u} 11,	, 76		B _{2u}	7,64	7,69		B _{2u}	6,56	6,62		
					Tetrace	n			Phenant	hren		
i				Г	Tetrace E _i	en Δε _i	exp	r .	Phenant £ _i	hren Δε _i	exp	
i 0				r	Tetrace E _i -0,05	οn Δε _i -	exp	<u>r</u> .	Phenant £ ₁ -0, 01	hren Δε _i	exp	
i 0 1				Г В _{2и} L _a	Tetrace [£] i -0,05 2,61	2n Δε _i - 2,66	exp 2,65	Г. А L _b	Phenant £ ₁ -0, 01 3, 98	hren Δε _i - 4,00	ехр 3,65	
i 0 1 2				$\frac{\Gamma}{B_{2u}}L_{a}\\B_{3u}L_{b}$	Tetrace ϵ_i -0,05 2,61 3,37	2n Δε _i - 2,66 3,42	exp 2, 65 3, 30	Γ. A L _b B L _a	Phenant £ ₁ -0, 01 3, 98 4, 13	hren Δε _i - 4,00 4,15	ехр 3,65 4,22	
i 0 1 2 3				$\frac{r}{B_{2u} L_a} = B_{3u} L_b = B_{1g}$	<u>Tetrace</u> E _i -0,05 2,61 3,37 3,45	$\Delta \epsilon_{i}$ - 2,66 3,42 3,49	exp 2, 65 3, 30	Γ A L _b B L _a B B _b	Phenant £ _i -0,01 3,98 4,13 4,72	$\frac{\text{hren}}{\Delta \varepsilon_{i}}$ - 4,00 4,15 4,73	exp 3,65 4,22 4,87	
i 0 1 2 3 4				<i>F</i> ^B _{2u} L _a ^B _{3u} L _b ^B _{1g} ^B _{3u}	Tetrace ε _i -0,05 2,61 3,37 3,45 3,82	$\Delta \epsilon_{i}$ - 2,66 3,42 3,49 3,87	exp 2, 65 3, 30 (3, 85*)	Γ A L _b B L _a B B _b A	Phenant £ _i -0,01 3,98 4,13 4,72 5,02	hren $\Delta \mathcal{E}_{i}$ - 4,00 4,15 4,73 5,04	exp 3,65 4,22 4,87	
i 0 1 2 3 4 5				$\frac{r}{B_{2u}} L_a \\ B_{3u} L_b \\ B_{1g} \\ B_{3u} \\ B_{1g} \\ B_{1g}$	Tetrace ϵ_i -0,05 2,61 3,37 3,45 3,82 4,13	2,66 3,42 3,87 4,18	exp 2, 65 3, 30 (3, 85*)	Γ A L _b B L _a B B _b A A	Phenant £ i -0,01 3,98 4,13 4,72 5,02 5,15	$\frac{hren}{\Delta \epsilon_{i}}$ - 4,00 4,15 4,73 5,04 5,17	exp 3,65 4,22 4,87	
i 0 1 2 3 4 5 6				$\begin{array}{c} r\\ B_{2u} \ L_a\\ B_{3u} \ L_b\\ B_{1g}\\ B_{3u}\\ B_{1g}\\ A_{1g} \end{array}$	Tetrace ε _i -0, 05 2, 61 3, 37 3, 45 3, 82 4, 13 4, 80	$\frac{\Delta \mathcal{E}_{i}}{2,66}$ - 2,66 3,42 3,49 3,87 4,18 4,85	exp 2, 65 3, 30 (3, 85*)	/ . A L _b B L _a B B _b A A B	Phenant £ i -0,01 3,98 4,13 4,72 5,02 5,15 5,22	$\frac{\Delta \varepsilon_{i}}{4,00}$ 4,00 4,15 4,73 5,04 5,17 5,23	exp 3,65 4,22 4,87	
i 0 1 2 3 4 5 6 7				$\begin{array}{c} r\\ B_{2u} \ L_{a}\\ B_{3u} \ L_{b}\\ B_{1g}\\ B_{3u}\\ B_{1g}\\ A_{1g}\\ B_{2u} \ B_{b} \end{array}$	Tetrace E _i -0,05 2,61 3,37 3,45 3,82 4,13 4,80 4,93	$\frac{\Delta \mathcal{E}_{i}}{2,66}$ - 2,66 3,42 3,49 3,87 4,18 4,85 4,98	exp 2, 65 3, 30 (3, 85*) 4, 55 ?	/ A L _b B L _a B B _b A A B A C _b	Phenant £ i -0,01 3,98 4,13 4,72 5,02 5,15 5,22 5,84	$\frac{\Delta \varepsilon_{i}}{4,00}$ 4,15 4,73 5,04 5,17 5,23 5,85	exp 3,65 4,22 4,87 5,82	
i 0 1 2 3 4 5 6 7 8				$\begin{array}{c} r\\ B_{2u} \ L_a\\ B_{3u} \ L_b\\ B_{1g}\\ B_{3u}\\ B_{1g}\\ A_{1g}\\ B_{2u} \ B_b\\ A_{1g} \end{array}$	Tetrace E i -0,05 2,61 3,37 3,45 3,82 4,13 4,80 4,93 5,50	$ \frac{\Delta \epsilon_{i}}{2,66} \\ - \\ 2,66 \\ 3,42 \\ 3,49 \\ 3,87 \\ 4,18 \\ 4,85 \\ 4,98 \\ 5,54 $	exp 2,65 3,30 (3,85*) 4,55 ?	A L _b B L _a B B _b A A B A C _b B	Phenant £ i -0,01 3,98 4,13 4,72 5,02 5,15 5,22 5,84 6,31	$\frac{\Delta \varepsilon_{i}}{4,00}$ 4,00 4,15 4,73 5,04 5,17 5,23 5,85 6,32	exp 3,65 4,22 4,87 5,82	

Tabelle 6 Acene

* Schulter im Polarisationsspektrum

- 43 -

III. Neutrale nichtalternierende Kohlenwasserstoffe

An Stelle des Spektrums des unstabilen unsubstituierten Fulvens ist dasjenige des 6,6-Dimethyl-Fulvens $^{26)}$ angegeben. Die Rechnung ergibt, dass die niedrigste Energie einem senkrecht zur Molekülachse polarisierten Uebergang zuzuschreiben ist und in guter Uebereinstimmung mit dem Spektrum steht. Der nächste Uebergang ist parallel polarisiert und wird, verglichen mit dem Experiment, mit einer zu hohen Energie erhalten. Dieser Effekt kann eventuell auf einen bathochromen Substituenteneinfluss zurückgeführt werden. Es ist zu erwähnen, dass in diesem Beispiel die Resultate sehr stark von der Wahl der Funktion β in abhängig sind.

Beim Azulen finden Zimmermann und Joop^(µ)Z7), dass die Banden bei 1,80 eV und 5,08 eV senkrecht zur Molekülachse und die beiden bei 3,51 eV und 4,35 eV parallel dazu polarisiert sind. Zusätzlich beobachten sie ein Minimum der Polarisation bei 4,20 eV. Die Zuordnung der parallel polarisierten Uebergänge ist eindeutig (ber. 3,38 eV bzw. 4,04 eV). Für die längstwellige Bande ergibt die Rechnung 1,92 eV. Ob von den senkrecht polarisierten Uebergängen (ber. 4,41 und 5,95 eV) einer dem erwähnten Minimum (4,20 eV) entspricht, kann nicht entschieden werden.

Die Spektren der Benzazulene sind einer Arbeit von Kloster-Jensen, Kováts, Eschenmoser und Heilbronner ²⁸⁾ entnommen.

							1,2	-	4,5	-	5,6	-
<u> </u>	Fulven			Azulen				Benzazulen				
i	Г	٤	Δ٤ _i	P	ε _i	Δ٤ _i	٤	Δ٤ _i	٤ _i	Δε _i	ε	Δŧ
0		-0,66	-		-0,15	-	-0,18	-	-0, 23	-	-0,18	-
1	8	2,53	3,19	в	1,76	1,92	1,70	1,88	1,64	1,87	1,86	2,04
2	A	4,78	5,44	A	3,23	3, 38	2,87	3,05	2,80	3,03	2,92	3,10
3	A	6,67	7,33	A	3,89	4,04	3,44	3,63	3,55	3,78	3,44	3,62
4	в	7,21	7,87	в	4,26	4,41	4,04	4,22	3, 91	4,14	3,86	4,04
5	A	7,52	8,18	в	5,80	5,95	4,29	4,47	4,15	4,38	4,30	4,48
6	в	8,82	9,48	в	6,69	6,84	4,50	4,68	4,35	4,58	4,34	4,52
7	A	9,10	9,76	A	6,69	6,84	5,18	5,36	5,10	5,33	5,12	5,30
8	A	10,76	11,42	A	7,62	7,78	5,76	5,94	5,64	5,87	5,50	5,69
9	в	11,08	11,75	в	9,53	9,69	6,77	6,95	6,68	6,91	6,50	6,68

Tabelle 7 Neutrale nichtalternierende Kohlenwasserstoffe

- 45 -

Fig. 6

IV. Tropylium-Kationen

Als Beispiel für geladene Systeme wurde das reduzierte Verfahren auf fünf Verbindungen der Tropylium-Kationen-Reihe angewendet, die einen 7-Ring, eine ungerade Zentrenzahl N und N-1 π -Elektronen enthalten. Die Spektren sind von Naville, Strauss und Heilbronner angegeben worden ²⁹⁾. Experimentelle Bestimmungen der Polarisationsrichtungen der Uebergänge standen nicht zur Verfügung.

Das Tropylium-Kation selbst bildet, zusammen mit Benzol, insofern einen Spezialfall, als die Einelektronen MOs schon SCF-MOs sind und alle einfach angeregten Konfigurationen berücksichtigt werden. Von den Energieniveaus eines Perimeters sind bei ungradzahligen Ringen das unterste Niveau nicht entartet, alle höheren aber zweifach entartet. Entsprechend der Entartung sind beim Tropylium-Kation alle vier antibindenden Niveaus in die Rechnung miteinbezogen worden. In der Tabelle sind zwölf Uebergänge eingetragen, von denen je zwei energetisch gleich sind.

	Tropy	ylium-Ka	lium-Kation Be			Senztropylium-Kation			Naphthotropylium-Kation			
i	r	٤ _i = ۵	۱٤ _i	Г	٤		Δ٤ _i	Г	ε _i	Δ٤ _i		
0		_			-0,0)3	-		-0,05	-		
1	F	4,6	38	в	2,9	96	2,99	В	1, 91	1,96		
2	- 3	4,6	58	A	3,7	71	3, 74	A	3,06	3, 11		
3	E	6,1	18	A	4,2	24	4,27	A	3, 35	3,39		
4	- 1	6,1	18	В	4,6	35	4,68	В	3, 71	3,75		
5	R	7,4	19	в	5,5	53	5,56	B	4, 44	4, 49		
6	12	7,4	19	A	5,9	97	6,00	В	4, 79	4,84		
7	E	8,'	76	в	6,4	10	6,43	A	5,04	5,09		
8	- 3	8,′	76	A	7,0	00	7,03	A	5, 55	5,59		
9	E	9,1	54	в	7,6	37	7,70	В	6, 12	6,16		
10	2	9,9	54									
11	E.	11,	04									
12	-3	11,0	04									
	1, 2; 3	3,4-					1,2	4,5-				
		D	ibenzt	ropy	ropylium-Kation							
i	r	ε _i	Δ٤.	i	Г	٤		Δ٤ _i	_			
0		-0,04	_			-0,0	02	-				
1	A	2,67	2, 71		Α	2,6	67	2,70				
2	в	2,78	2,82		в	3, 1	12	3,15				
3	A	3,94	3,98		В	3,6	52	3,65				
4	В	4,01	4,05		В	3,8	88	3,90				
5	A	4,59	4,63	8	Α	4,	52	4,54				
6	в	5,16	5,20)	A	4,8	89	4,91				
7	A	5,79	5,83	;	в	5,4	49	5,52				
8	в	5,88	5,92	2	A	6,	19	6,21				
9	В	6,66	6,70)	A	6,4	44	6,47	1			

Tabelle 8 Tropylium-Kationen

- 48 -

Zusammenfassend darf gesagt werden, dass die Lage der ersten drei bis vier langwelligen Banden durch das reduzierte Verfahren befriedigend berechnet werden kann. Auch die Polarisationsrichtung wird, soweit eindeutige experimentelle Daten vorliegen, im allgemeinen korrekt wiedergegeben.

Es ist dagegen nicht zu erwarten, dass die berechneten höheren Uebergänge sehr bedeutungsvoll sind, da durch die Beschränkung in der Zahl der Konfigurationen eine gewisse willkürliche Auswahl getroffen wird. Im allgemeinen werden nämlich die vernachlässigten Konfigurationen B-G oder F-K energiemässig tiefer liegen als die Konfiguration D-I, die in der Rechnung enthalten ist. Ebenso werden bei diesen höheren Uebergängen die nicht berücksichtigten zweifach angeregten Konfigurationen zunehmend an Bedeutung gewinnen. Andererseits ergibt die Rechnung mit einer grösseren Zahl von Konfigurationen im interessierenden Spektralbereich im allgemeinen eine enge Folge meist symmetrieverbotener Uebergänge deren Bedeutung fraglich ist.

Diese Faktoren müssen natürlich in der Beurteilung der Methode berücksichtigt werden, doch zeigen die Beispiele, dass das reduzierte Verfahren nach Pople, Pariser und Parr in der Lage ist, die Spektren aromatischer und ungesättigter Systeme im leicht zugänglichen Teil des UV mit einem Minimum an Ausgangsinformationen zu interpretieren. Wesentlich erscheint uns, dass ein einziger Parametersatz auf die verschiedenartigsten Systeme angewendet werden darf. Die Frage bleibt dabei offen, ob der hier verwendete Satz optimal sei, vor allem auch deshalb, weil sich ein eindeutiges Kriterium für dessen Beurteilung nicht definieren lässt.

5. PROGRAMM FUER DIE IBM 1620

5.1. Maschinenausrüstung

Die Programmlogik wird wesentlich mitbeeinflusst durch den Typ des zur Verfügung stehenden Rechenautomaten. Bei der IBM 1620 unseres Institutes handelt es sich um eine volltransistorisierte, relativ langsame Klein-Anlage mit Konsolschreibmaschine und Karten-Ein- und Ausgabe. Ihr Kernspeicher umfasst 20000 einzeln adressierbare Ziffern, wobei eine Instruktion 12 Stellen belegt, während die Wortlänge variabel ist. Von den Zusatzeinrichtungen benutzt das in SPS (Symbolic Programing System) geschriebene Programm die indirekte Adressierung und die Move-Flag Instruktion.

5.2. Programmaufbau

Das RPPV-Programm erfüllt eine Reihe von Anforderungen:

- a) Neben der Vollautomatisierung des reduzierten Verfahrens kann, mit zusätzlichen Eingabedaten, eine vollständige Rechnung nach Pariser und Parr durchgeführt werden.
- b) Die Parameter $\beta_{\mu\nu}$ und r_{12}^{\prime} werden flexibel gehalten, indem sie als konstant linear oder, nach Ansatz (20), quadratisch von P_{µν} abhängig eingegeben werden können.
- c) Es werden wahlweise Singulett- oder Triplett-Konfigurationen behandelt (Steuerung durch Konsolschalter 4).
- d) Das Programm soll die Behandlung von Systemen mit Heteroatomen erlauben. Dies bedingt, dass für einzelne Zentren oder Bindungen Parameter eingegeben werden können, die vom normalen Satz abweichen.
- e) Die C.I.-Matrix wird auf der Konsolschreibmaschine geschrieben und unmittelbar anschliessend diagonalisiert. Die Uebergangsenergien $\Delta \varepsilon_i = \varepsilon_i - \varepsilon_o$, die Eigenwerte ε_i und Eigenvektoren $c_{i,JT}$ werden darauf in Tabellenform herausgeschrieben. Zusätzlich kann die Ausgabe auch auf Karten erfolgen.
- f) Ohne Neueingabe der Parameter können mehrere Probleme hintereinander durchgerechnet werden, wobei natürlich die Forderung nach möglichst kurzer Rechenzeit grösste Beachtung fand.

Als Kompromiss mit dem verfügbaren Speicherplatz können maximal 22-Zentrensysteme behandelt werden. Die C.I.-Matrix ist auf den Grad 10 festgelegt und umfasst neben der Grundkonfiguration Ψ_0 die neun reinen angeregten Konfigurationen, in denen ein Elektron aus einem der drei besetzten Niveaus (D, E, F) in eines der unbesetzten (G, H, I) promoviert wird. Eine C. I. - Matrix beliebigen Grades kann durch mehrfache Anwendung des Programms erhalten werden, muss dann aber in einem separaten Eigenwertprogramm diagonalisiert werden.

Die Eingabedaten des reduzierten Verfahrens umfassen (vergl. 5.5.):

- 1. Die Parameter $\beta_{\mu\nu}$, ζ_{11}^{\prime} und ζ_{12}^{\prime} mit je zwei Kennziffern.
- 2. Den Namen des Moleküls.
- 3. Die Zahl N der Zentren, NB der besetzten MOs und eine Codenummer.
- 4. Die Koeffizienten $c_{J\mu}$ aller in Ψ_0 besetzten MOs in der Reihenfolge ψ_F , ψ_E , $\Psi_D \dots \psi_{u.b.}$ und der drei unbesetzten MOs ψ_G , ψ_H , ψ_I . Diese Koeffizienten sollten 6 Dezimalen (letzte Stelle gerundet) umfassen, da 5-stellige, wie aus der Tabelle von Coulson³⁰, zu hohe Rundungsfehler ergeben.
- 5. Die Bindungsmatrix B definiert durch die Elemente $B_{\mu\nu} = 1$ für μ und ν gebunden, sonst $B_{\mu\nu} = 0$.

Die Formulierung des Problems geschieht über Matrizen und Vektoren, so dass leicht, durch zusätzliche Eingabe einzelner Matrixelemente, Parameter für Heteroatome und höhere Y-Terme verarbeitet werden können.

Die Elemente der C.I.-Matrix dürften bei einem mittelgrossen System (N = 10 - 15) auf $\pm 0,0002$ eV zuverlässig sein. Der relative Fehler der Uebergangsenergien sollte 1%o nicht übersteigen, während die Koeffizienten mit einem höheren Fehler behaftet sind.

Die Organisation der Ausgabedaten lässt sich am einfachsten aus dem nachstehenden Beispiel (Fig. 8) ablesen:

RPPV

CCDE 000212121301000

NR. 21 NAPHTHALIN

EINELEKTRONEN-ENERGIE

a)	F	E	D
	- 17036	- 23069	- 31609
	G	н	1
	17036	23069	31609

KONFIGURATIONS-WECHSELWIRKUNG

L \	F-G	F-H	F-I	E-G	E-H	E-I	D-G	D-H	D-1
0)	0000 46681	0000 0000 48993	0000 0000 0000 63240	0000 0000 5574 0000 48992	0000 - 5760 0000 0000 59079	3786 0000 0000 0000 0000 68153	0000 0000 5082 0000 0000 63238	- 3787 0000 0000 0000 0000 7286 0000 68153	0000 1986 0000 0000 - 4048 0000 0000 0000 75105
	UEBERGAN	GS-ENERGI	E						
c)	44881	55034	68789	43886	60473	61802	58625	75907	76914
d)	01/0	00(010							
,	000000	000000	000000	000000	000000	-061495	000000	061508	000000
	931878	000000	000000	000000	362556	000000	000000	000000	-012482
	000000	707138	000000	707075	000000	000000	000000	000000	000000
	000000	000000	707176	000000	000000	000000	707037	000000	000000
	000000	-707075	000000	707138	000000	000000	000000	000000	000000
	-344218	000000	000000	000000	894559	000000	000000	000000	285092
	000000	000000	000000	000000	000000	704430	000000	-704424	000000
	000000	000000	-707037	000000	000000	000000	707176	000000	000000
	000000	000000	000000	000000	000000	707104	000000	707109	000000
	114527	000000	000000	000000	-261374	000000	000000	000000	958419

Fig. 8

Matrixelemente und Energie-Eigenwerte (a b c) erscheinen in der Darstellung $\langle 2, 4 \rangle$ ³¹⁾ wobei führende Nullen vor dem Komma unterdrückt werden. Die Koeffizienten der Tabelle (d) sind in der Darstellung $\langle 0, 6 \rangle$ angegeben. Zu den einzelnen Angaben des Beispiels ist zu bemerken:

a): Einelektronen-Energien. Diese Werte wurden aus den eingegebenen LCAO-MOs ψ_D bis ψ_I entsprechend der Vorschrift

$$\mathbf{E}_{\mathbf{J}} = \sum_{\mu} \sum_{\nu} c_{\mathbf{J}\mu} c_{\mathbf{J}\nu} \beta_{\mu\nu}$$

in eV berechnet.

b): Konfigurationswechselwirkung. Diese Tabelle stellt die obere Hälfte der symmetrischen C. I. - Matrix dar. Das Element $\langle \Psi_0 | \mathfrak{X} | \Psi_0 \rangle$ auf das sich die Elemente der Hauptdiagonalen beziehen wurde ausgelassen. Die Nummerierung der Kolonnen, d. h. die Symbole vom Typus J - T entsprechen den angeregten Konfigurationen.

c): Uebergangs-Energie. Die Diagonalisierung der unter b) angegebenen Matrix liefert einen hybriden Grundzustand χ_0 , welcher relativ zur Ausgangskonfiguration Ψ_0 eine Energiedepression von ε_0 aufweist und neun angeregte hybride Zustände χ_1 bis χ_9 , deren Energie ε_1 bis ε_9 betragen. Die Uebergangsenergien $\Delta \varepsilon_i$ bedeuten dann die Differenz $\Delta \varepsilon_i = \varepsilon_i - \varepsilon_0$. Sie liefern über die Bohr'sche Beziehung $\tilde{\nu}_i = \frac{\Delta \varepsilon_i}{hc}$ Voraussagen für die Lage $\tilde{\nu}_i$ (in cm⁻¹) der betreffenden Absorptionsbanden.

d): Die Liste der Energien ξ_0 bis ξ_9 der hybriden Zustände χ_0 bis χ_9 und der entsprechenden Koeffizienten der Linearkombinationen

$$X_{i} = c_{i,o} \Psi_{o} + c_{i,FG} \Psi_{F}^{-1} \Psi_{G} + \dots + c_{i,DI} \Psi_{D}^{-1} \Psi_{I}$$

ist in der folgenden Anordnung wiedergegeben:

5.3. Blockschema und Flussdiagramm

Die Programmierdetails sind aus der Programmliste ersichtlich. Auf eine zusätzliche Beschreibung der an das RPPV anschliessenden Ausgabeorganisation und des Diagonalisierungsprogramm HS 4 wurde verzichtet. Die wichtigsten Bezeichnungen und ihre korrespondierenden Symbole seien hier zusammengestellt:

N =	Zahl der AOs
NB =	Zahl der in ¥ ₀ 2-fach besetzten MOs (2 NB = Zahl Elektronen des ∏-Systems)
griechische Indizes	μ, ν = 1, 2, N Laufindizes über AOs
lateinische "	I, J, (ungestrichen) besetzte MOs K', L' (gestrichen) unbesetzte MOs

Indexmodifikationen erscheinen meist direkt als Adressmodifikationen, wobei parallel dazu die Zähler Z, Z_1 bis Z_4 mitlaufen. Die Symbole AD** beziehen sich dabei auf die Anfangsadresse (Feldadresse des ersten Elements) eines Arrays. Es wird die folgende schematische Anordnung der MOs vorausgesetzt:

Die Koeffizienten $c_{J\mu}$ eines MOs $\,\psi_J\,$ sind zu einem Vektor

$$\mathbf{C}_{\mathbf{J}} = \begin{pmatrix} \mathbf{c}_{\mathbf{J}1} \\ \mathbf{c}_{\mathbf{J}2} \\ \mathbf{c}_{\mathbf{J}\mu} \\ \mathbf{c}_{\mathbf{J}N} \end{pmatrix}$$

zusammengefasst.

Von den Matrizen

В	Bindungsmatrix
Р	Bindungsordnungsmatrix
H	H ^{core} - Matrix
F	SCF-Matrix
G	${\bf Elektronenwechselwirkungsmatrix}$

belegen B und H bzw. P und F je denselben Speicherplatz.

Ihre Beziehungen untereinander sind durch das folgende Diagramm gegeben:

Die Komponenten des Vektors VQ sind die Ladungsdichten bzw. die Ausdrücke $(P_{\mu\mu}-1)/2$. Die Produktvektoren in PVi sind wie folgt definiert:

in PV1
$$C_{JK'} = \begin{pmatrix} C_{J1} & C_{K'1} \\ \vdots \\ C_{J\mu} & C_{K'\mu} \\ \vdots \\ C_{JN} & C_{K'N} \end{pmatrix}$$
 J = 1, 2, 3
K' = 1', 2', 3'

in PV2
$$C_{JI} = \begin{pmatrix} C_{JI} \cdot C_{II} \\ \vdots \\ C_{J\mu} \cdot C_{I\mu} \\ \vdots \\ C_{JN} \cdot C_{IN} \end{pmatrix}$$
 $J, I = 1, 2, 3$

in PV3
$$C_{K'L} = \begin{pmatrix} C_{K'1} \cdot C_{L'1} \\ \vdots \\ C_{K'\mu} \cdot C_{L'\mu} \\ \vdots \\ C_{K'N} \cdot C_{L'N} \end{pmatrix}$$
 K', L' = 1', 2', 3'

Als Ein- oder Zwei-Elektronenintegrale über MOs treten auf:

$$F_{KL} = \tilde{C}_{K} F C_{L}$$

Mit K = 1, 2, 3 und L = 1', 2', 3' wird $\sqrt{2}$ F_{KL} in VW (Kreuzterme mit der Ausgangskonfiguration) gespeichert.

FIB enthält die Ausdrücke mit K, L = 1, 2, 3 und FIA diejenigen mit K, L = 1', 2', 3'.

$$G_{KL,MN} = \tilde{C}_{KL} G C_{MN}$$

Diese Ausdrücke mit K, M = 1, 2, 3 und L, N = 1', 2', 3' werden, mit 2 multipliziert, in MW (Wechselwirkungsmatrix der angeregten Konfigurationen) und die Terme mit K, L = 1, 2, 3 und M, N = 1', 2', 3' im Zwischenspeicher GI gespeichert.

BLOCKSCHEMA

Hauptprogramm

Block 1 : READ Parameter, Code

PRINT Tabellenkopf

Zwei Karten enthalten die Problemparameter: das Resonanzintegral $\beta_{\mu\nu}$ als Funktion von $P_{\mu\nu}$ beziehungsweise die beiden Elektronenwechselwirkungsintegrale γ'_{11} und γ'_{12} , wovon γ'_{12} ebenfalls in Funktion von $P_{\mu\nu}$ eingegeben werden kann. Es folgen eine alphabetische Karte mit dem Namen der Verbindung und eine numerische, die N, NB und eine 15-stellige Codenummer enthält. Die 6.-11. Stelle des Codes wird durch die drei zweistelligen Kennziffern der Parameter ersetzt. Auf der Schreibmaschine wird anschliessend der Tabellenkopf mit Datum, Titel, Code und Verbindungsnamen herausgeschrieben.

Block 2 : READ Hückelkoeffizienten, Bindungsmatrix

Die Koeffizientensätze müssen geordnet eingelesen werden und zwar zuerst die der drei besetzten Niveaus F, E, D, aus denen ein Elektron promoviert werden soll, dann die restlichen besetzten. Anschliessend folgen die Sätze G, H, I der Niveaus, in die das Elektron angeregt wird. Durch diese Anordnung kann beliebig festgelegt werden, wleche angeregten Zustände zu berechnen sind.

Der letzte Befehl dieses Blockes ist der Aufruf der Lesesubroutine für Matrixelemente, welche die Bindungsmatrix B (formal identisch mit der Hückel-Matrix) einliest.

Block 3 : COMPUTE Bindungsordnung

Matrizen P, H, G, Vektor VQ

In dieser Programmsequenz wird die allgemeine Bindungsordnung berechnet und als $P_{\mu\nu}/2$ gespeichert. Parallel dazu wird für das Indexpaar (μ, ν) in der Matrix B getestet, ob eine Bindung vorliegt. Ist $B_{\mu\nu} = 1$, so werden $\beta'(P\mu\nu)$ und $\delta'_{12}(P\mu\nu)$ mit Hilfe eines Horner-Schemas berechnet und in den Matrizen H bzw. G gespeichert. Der Grad der Funktionen kann dabei 0, 1 oder 2 sein je nachdem ob 1, 2 oder 3 Koeffizienten zum Horner-Schema mit anschliessender \ddagger auf den Parameterkarten eingegeben wurden.

Für $\mu = v$ wird im Vektor VQ die Ladungsdichte $(P_{\mu\mu} - 1)/2$ und in der Matrix G der Diagonalterm γ'_{11} erzeugt. Liegt keine Bindung vor, d. h. ist $B_{\mu\nu} = 0$ ($\mu \neq v$), so wird $G_{\mu\nu}$ und $H_{\mu\nu}$ gleich Null gesetzt. Ein zweiter Aufruf der Leseroutine (Label HETP) erlaubt an dieser Stelle Matrixelemente von H, G oder P durch Werte von Karten zu ersetzen. Damit kann zum Beispiel durch Eingabe aller höheren χ -Terme (χ_{13} u. s. w.) eine vollständige Rechnung nach Pariser und Parr durchgeführt werden. Enthält das System ein Heteroatom in Stellung S, so können die entsprechenden Parameter $H_{\varphi\varphi} = U_{Het} - U_{c};$ $H_{\varphi\mu} = \beta'_{c-Het}; \quad j' \varphi = \chi'_{11 Het}; \quad j' \varphi u = \chi'_{c-Het}$ und eine Core-Ladung Z'_{φ} eingegeben werden, sofern diese von 1 verschieden ist.

- Block 4 : COMPUTE Hückel-Einelektronenenergie
 Die Einelektronenenergien von D, E, F bzw. G, H, I werden aus den Koeffizienten und der Matrix H berechnet und herausgeschrieben. Diese Energiewerte sind für den weiteren Rechnungsgang bedeutungslos, liefern aber auf einfachste Weise einen ausgezeichneten Test auf die Richtigkeit der Bindungsmatrix und sechs der Koeffizientensätze.
 Anschliessend erfolgt die Entscheidung (SSW 4), ob Singulett- oder Triplett-Konfigurationen zu behandeln sind.
- Block 5: COMPUTE F-Matrix Die Elemente der Matrix F werden nach den Formeln (9,10) aufgebaut, wobei noch eine triviale Umformung von (9) zweckmässig ist:

$$F_{\mu\mu} = \underbrace{U_{\mu\mu} + Z_{\mu}^{c} \chi_{\mu\mu}}_{\text{in } H_{\mu\mu}} \underbrace{\frac{1}{2} P_{\mu\mu} \chi_{\mu\mu}}_{\text{gespeichert}} + \underbrace{\sum_{\mathbf{6}} (P_{\mathbf{66}} - Z_{\mathbf{6}}^{c})}_{\text{VQ (6)}} \chi_{\mu \mathbf{6}}$$

Block 6 : COMPUTE Wechselwirkungsterme (VW) mit Ausgangskonfiguration Unter Label EW1 wird zuerst die Speicherregion der C. I. -Matrix auf 6stellige Nullen gelöscht.

In enger Verschachtelung werden mit Hilfe der arithmetischen Subroutinen die Kreuzterme mit der Ausgangskonfiguration $\sqrt{2}$ F_{JK}, und die Produktvektoren aus PV1 berechnet und gespeichert. Bei der Behandlung von Triplett-Konfigurationen wird dieser Teil des Blocks 6 übersprungen. F-Integrale aus der C. I. -Matrix (MW)

Analog zur Sequenz in Block 6 werden die Produktvektoren aus PV2 und PV3 sowie die F-Integrale aus FIB und FIA in Zwischenspeichern entwickelt.

Block 8 : COMPUTE G-Integrale

In den zwei Teilen GI1 bzw. MGI1 werden in systematischer Weise die G-Integrale

 $G_{KL,MN} = \tilde{C}_{KL} G C_{MN}$

bestimmt. Für die Berechnung der Wechselwirkung von Triplettkonfigurationen wird der erste Teil (GI1) übersprungen.

Block 9 : COMPUTE C.I.-Matrix

Diese Programmsequenz stellt aus den verschiedenen Zwischenresultaten die Elemente der C.I.-Matrix zusammen.

Block 10: PRINT, PUNCH C.I.-Matrix

Die resultierende 10x10-Matrix wird auf der Schreibmaschine und wahlweise auch auf Karten (SSW 2 on) herausgegeben. Gleichzeitig geschieht die Vergrösserung der Felder von 6 auf 10 Stellen und die Umspeicherung in das modifizierte Eigenwert- Eigenvektorprogramm HS 4.

Blöcke

11 - 19 : Jacobiprogramm HS 4
 COMPUTE Eigenwerte und Eigenvektoren
 Dieser Programmteil wurde freundlicherweise von Herrn P. Straub
 zur Verfügung gestellt und soll hier nicht näher beschrieben werden.
 Die symmetrische C.I.-Matrix vom Grad 10 wird nach dem üblichen
 Jacobiverfahren diagonalisiert.

Block 20: PRINT, PUNCH Eigenwerte und Eigenvektoren Unter dem Titel UEBERGANGS-ENERGIE werden in einer Zeile die Differenzen ε_i - ε_o aufgelistet. Die daran anschliessende Tabelle enthält auf je einer Doppelzeile (vergl. Beispiel):
1. Zeile Eigenwert in <2,4 > eV (führende Nullen vor dem Komma werden eliminiert) und den Koeffizienten von Ψ_o in <0,6 > falls E_o ≠ 0 2. Zeile Koeffizienten der 9 angeregten Konfigurationen in <0,6>. Ist SSW 3 on, so werden die Eigenwerte und Vektoren auch auf Karten ausgegeben.

Subroutinen

Blöcke

21 - 23 : Arithmetische Subroutinen

SUB1 multipliziert einen Zeilenvektor V1 mit einer symmetrischen Matrix und speichert den resultierenden Vektor in VPM. Ist die Adresse des Kolonnenvektors V2 ADV2 = 0, erfolgt Rücksprung ins Hauptprogramm, andernfalls schliesst unmittelbar SUB2 an, wo VPM mit V2 multipliziert wird. Der resultierende Wert wird gerundet und erscheint in Darstellung <2,4> im Speicher SUM-2. Die Anfangsadressen ADV1. ADV2 und ADM der Vektoren, bzw. der Matrix werden durch das Hauptprogramm gesetzt. SUB3 wird in den Blöcken 6 und 7 benutzt und speichert in den PVi die Produkte der Komponenten von V1 und V2 mit demselben Laufindex.

Block 24: Leseroutine für Matrixelemente

Die Leseroutine liest und speichert Matrixelemente von einer beliebigen Anzahl Karten. Eine Leerkarte am Schluss bewirkt den Rücksprung in das Hauptprogramm. Die Identifikation der Matrix erfolgt durch 2 Buchstaben und zwar bedeuten

- Bindungsmatrix $(1 = \overline{0}00001)$ мнј
- MK $\int H^{core}$ Matrix in eV < 2,4>
- 11 MG
- MP
- $\gamma_{\mu\nu}$ -Matrix " " Bindungsordnungsmatrix ($P_{\mu\nu}$ /2 in <0,6>) Core-Ladung Z^C in VQ in Elementarladungen <2,4> QE

Mit Ausnahme von QE wird das durch (μ, ν) charakterisierte Matrixelement durch den Wert auf der Karte substituiert.

Wird dagegen von einer QE-Karte eine von 1 verschiedene Core-Ladung Z_{o}^{c} eingegeben, so hat das eine Modifikation von Speicherdaten zur Folge: Im Vektor VQ wird das Element $(P_{QQ} -1)/2 \operatorname{durch} (P_{QQ} -Z_Q^c)/2$ ersetzt und zum Matrixelement H₀₀ der Term (Z_{00} -1) r'_{00} addiert. Diese QE-Karten müssen deshalb unmittelbar vor der sequenzbrechenden

Leerkarte eingeordnet werden, während die Reihenfolge der übrigen Karten beliebig ist.

Blöcke

25 - 27 : Ausgabesubroutinen

Diese Routinen enthalten die Organisation der Ausgabe der Daten (Vorzeichen, Unterdrückung der führenden Nullen vor dem Komma) in Tabellenform, sowie die Zeilenschaltung mit Zähler und mehrfaches Tabulieren.

Blöcke

28 - 30 : Symboltabelle

Entsprechend den Erfordernissen des 1620-SPS müssen alle verwendeten Konstanten und Symbole mit Angabe der Stellenzahl in der Symboltabelle definiert werden. Durch Einfügen der verschiedenen DORG-Instruktionen wird erreicht, dass dieselbe Speicherregion in den verschiedenen Programmteilen durch verschiedene Symbole aufgerufen werden kann. Bei einiger Vorsicht erreicht man damit eine optimale Ausnützung des Speichers.

Block 31: PRINT Bedienungs-Anweisungen

Dieser Programmteil kann nur unmittelbar nach dem Laden des Programms benutzt werden, da er in den Datenfeldern liegt und deshalb während der Rechnung überschrieben wird. Nach der Meldung DATUM EINGEBEN hält die Maschine auf einem alphamerischen Lesebefehl und erwartet das Einlesen des Datums mit nachfolgender ‡ von der Schreibmaschine. Nach dem Ausschreiben der Anweisungen für den Operateur stoppt die 1620 mit Op. Code 48. Durch Drücken der Starttaste wird dann der Ablauf des RPPV-Programms ausgelöst.

BLOCK 3

- 67 -

- 68 -

		*	*	HAUPTPROGRAMM *
		*	~	
		* 0100	READ	PARAMETER, CODE
01	010		DORG	402
01	020	START	RNCD	INP
01	030		51	
01	040.		TR	BET+INP+2
01	060		RNCD	INP
01	070		SF	INP
01	080		TF	CNRI INP+3
01	100		TR	G11-5.INP+4
õī	110	PAR	втм	WRL • 4 • 10
01	120		BTM	TAB-12,8,10
01	130		WATY	DATUM
01	140		BIM	WRL92910 NAME
01	160		BNC4	*+24
01	170		TR	NAME + 2*68,TEXT7
01	180		BC2	*+24
01	190		BNC3	*+24 NAME
01	210		RNCD	TNP
ŏī	220		TF	N.INP+1
01	230		TF	NB, INP+3
01	240		TR	CNR INP+4
01	250		M	INP+1,1,10 INP+1.N
01	270		TF	RES,99
01	280		MM	RES+5+10
01	290		SF	96 NM-98
01	310		ŤF	CNR+10 CNRI
		*	PRINT	TABELLENKOPF
01	320		WATY	148+36,8,10 TITEI
01	340		BTM	WRL,3,10
01	350		втм	TAB+12,8,10
01	360		WATY	TEX14
01	380		BTM	WRL+3+10
01	390		TBTY	
01	400		WATY	NAME
01	410	*	BIM	WRL,5,10
		+ BLO	ск 2	
		*	READ	HUECKEL-KOEFFIZIENTEN
02	010		TDM	KSW2+1,1
02	020		TFM	K02+6,CB-5
02	030	K01	TEM	ADA, INP
02	050		RNCD	ADA
02	060		AM	ADA,73,10
02	070	KCMI	TD	K5W1+1,ADA,11
02	080	K2M1	SM	ADA • 1 • 10
02	100		в	K01+12
02	110		DORG	*~3
02	120	K02	TR	O, INP
02	130		AM	NUZTOILJIY

02 140		SM	Z1,1,10
02 150		ВP	к01
02 160	KSW2	В	K03-3*12
02 170		TDM	KSW2+1•9
02 180		TEM	Z1,3,10
02 190		TEM	K02+6,CA-5
02 200		8	ко1
02 210		DORG	*-3
02 220		M14 A M	
02 250		TEM	
02 240	K03		*+18*4*10
02 250	NO J	TE	0+NUL6
02 270		Ċ	*-6.99
02 280		BI	K03
	*	READ	BINDUNGSMATRIX
02 290		BTM	LE1,1,10
	*		
	* BLO	СК 3	
	* (COMPUT	E BINDUNGSORDNUNG
	*		MATRIZEN P, H, G
	¥		VEKTOR VQ
03 010	BO	TFM	ADA • VQ
03 020		TFΜ	H∍MH
03 030		TEM	P • MP
03 040		TEM	G • MG
03 050		TFM	Z1+01+10
03 060		TFM	B02+11,CB,
03 070	B 01	TFM	B02+23,CB
03 080		TFM	22,01,10
03 090	802	TEM	V1.0
03 100		TEM	V2,0
03 110		TE	
03 120	802	1 Г М	
03 140	005	ME	05-00
03 150		Δ	5UM-95
03 160		ĉ	73•NB
03 170		B7	804
03 180		AM	V1.LS.9
03 190		AM	V2,LS,9
03 200		АМ	23,01,10
03 210		в	BO3
03 220		DORG	*-3
03 230	B04	АМ	SUM-1,5,10
03 240		MF	SUM-2,SUM
03 250		TF	P,SUM-2,6
03 260		BD	*+36,H,11
03 270		TF	G+NUL6+6
03 280		в	805
	*		
03 290		TOM	HSW+1,1
03 300			HUR-5,BEI
03 310	401	1 F	SUM HUR
03 320			
03 340		м	
03 350		Δ	00-00
03 360		AM	94.5.10
03 370		MF	93,99
03 380		TF	SUM 93
03 390		TR	HOR-5,HOR+1
03 400		Α	SUM+HOR
03 410		8	но1
03 420		DORG	*-3
03 430	HSW	₿	B05-12

	3 3 4 4 5 6 7 8 9 4 9 0 1 5 2 3 4 5 6 7 8 9 0 1 5 2 3 4 5 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 6 7 8 5 5 5 5 6 7 8 5 5 5 5 6 7 8 5 5 5 5 5 6 7 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	000000000000000000000000000000000000000	B05	TDM TF TR B DORG TF AM AM C BZ AM AM B DORG DORG	HSW+1,9 H,SUM,6 HOR-5,6AM HO1-12 *-3 G,SUM,6 P,LW,10 Z1,Z2 BO6 G,LW,10 BO2+23,LW,10 Z2,1,10 BO2 *-3
	3 59 3 60 3 61 3 62 3 63 3 64 3 65	000000000	B06	TF S AM TF AM C BZ	ADA, SUM-2,6 ADA, HALB,6 ADA, LW,10 G,G11,6 G,LW,10 Z1,N HETP
0 0 0	3 66 3 67 3 68	0		AM AM B	B02+11,LW,10 Z1,1,1,10 B01
0 0	3 69 3 70	0	* HETP	DORG READ BTM	¥-3 HETEROPARAMETER LE1,1,1,10
			* BL(COMPU	TF HUFCKEL-FINELEKTRONEN-ENERGIE
0	4 01	0		WATY	T4
0	4 02 4 03 4 04	0	A1	BTM BTM WATY	TAB+36,8,10 TEXT1
õ	4.05	0		BTM	WRL,1,10
0	406 407	0	EW2	TDM	ESW+191
0	4 08	0		TEM	
0	4 05	0	EW3	TFM	Z1,1,10
0	4 11	0		TF	ADV2+ADV1
0	4, 12 4 13	30		TF	
0	4 14	0		BTM	PRINT,0,10
0	4 15 4 16	50		CM	21,03,10
Ō	4 17	0		8Z	ESW
0	4 18	30		AM	ADV1+LS+9
0	4 20	0		B	EW3+12
Ō	4 21	0	ESW	В	PR1
0	4 22	20		BTM	WRL91910 TAB+36-8-10
0	4 24	+0		WATY	TEXT2
0	4 25	50		BTM	WRL,1,10
0	4 26	50			1AB+3698910 FSW+1-9
ŏ	4 28	30		TEM	ADV1.CA
0	4 29	90		B	EW3
0	4 30	10	PRI	BTM	#=> WRI •4•10
0	4 32	20		WATY	TEXT5
Ó	4 3	30		TDM	FITA+13,1
0	4 34	+0 50		TDM BNC4	G11+1391 KOR1-36
	· + - J 2	~ ~			

~ ′			TDU	
04	350		TDM	F11A+13,9
04	380		WATY	TEXT7
04	390		BTM	WRL •2 •10
04	400		WATY	TEXT3
04	410		BTM	WRL,2,10
		¥		
		* BLO	СК 5	
		*	COMPU	TE F-MATRIX
05	010	KOR1	1 FM	ADV1+VQ+7
05	020			
05	0.00		B T M	
05	050		TEM	500191910 H • MH • 7
05	060		TEM	P•MP
05	070		TFM	G + MG + 7
05	080		TEM	ADA, VPM
05	090		TFM	21,0,10
05	100	KOR3	TFM	Z2.0.10
05	110		AM	21,1,10
05	120		A	H•G•611
05	140		A A	
05	140		А АМ	
05	160		B	*+36
05	170	VORF1	č	G • NUL 6 • 6
05	180		ΒZ	VORF2
05	190		м	P.G.611
05	200		ΆM	94,5,10
05	210		MF	93,99
05	220		TF	P+H+611
05	230		S	P,93,6
05	240	VORE 2	B TE	
05	260	VORF 2	Δ.M	Gel Wald
05	270		AM	P+LW+10
05	280		AM	H,LW,10
05	290	VORF 3	С	Z1 • N
05	300		BZ	EW1
05	310		C	22,21
05	320		DZ A M	RUR3
05	340		B	VORFI
05	350		DORG	*-3
		¥		
		* BLQ	CK 6	·
~ (*	COMPU	IE CI-TERME MIT GRUNDZUSTAND (VW)
06	020	CWI	TE	
06	020		см	
06	040		BZ	FITA
06	050		AM	EW1+18+6+10
06	060		в	EW1+12
06	070		DORG	*-3
06	080	FITA	TFM	ADM • MP
06	090		NOP	FI6,,, B FUER TRIPLETT
06	100		TFM	AW+6,VW
06	120			
06	130		TEM	71.3.10
06	140	FI1	TEM	22.3.10
06	150		TFM	ADV2,CA
06	160		BTM	SUB1,2,10
06	170	FI2	BTM	SUB3,3,10
06	180		м	SUM-2,WUR2
06	190		AM	95,5,10

•
06	200		MF	94.99
06	210		SF	89
06	220		AM	AW+6,LW,10
06	230	AW	TF	0,94
06	240		SM	22,1,10
06	250		BZ	FI3
06	260		AM	ADV2+LS
06	210		8	505294910
06	200		DORG	*-3
06	300	F13	AM	ADV1+LS
06	310		SM	Z1,1,10
06	320		BP	FI1
		*		
		* BLO	CK 7	
		* (COMPUT	
A 7	010	*	TOM	F-INTEGRALE AUS CI-MATRIX
07	020	10	TEM	
07	030		TEM	ADV1.CB
07	040		TEM	FI7+6+FIB
07	050	FIZ	TFM	Z1,1,1,10
07	060	F14	TF	22,21
07	370		TF	ADV2,ADV1
07	080		BTM	SUB1,4,10
07	090	F15	BTM	SUB3,5,10
07	100	F17	TF	0,5UM-2
07	110		AM	*-69£W910
07	120		CM B7	
07	140		ΔM	72.1.10
07	150		AM	ADV2.
07	160		втм	SUB2+6+10
07	170		В	F15
07	180		DORG	* -3
07	190	F18	СМ	21,3,10
07	200		BZ	FSW
07	210		AM	ADV1,LS
07	220		AM B	
07	250		DODG	F 1 4 #_3
07	250	ESW	B	GLI
07	260		TDM	FSW+1,9
07	270		TFM	ADPV, PV3
07	280		TFM	ADV1+CA
07	290		TFM	FI7+6,FIA
07	300		B	FIZ
07	310	*	DORG	*-3
		* BLO	ск в	
		* (COMPUT	E G-INTEGRALE
08	010	GII	TFM	ADM • MG
80	020		NOP	MGI1,,,B FUER TRIPLETT
08	030		TFM	21,0,10
80	040		TFM	22,0,10
08	050	610	IEM TE	ADV1 PV1
80	060	612	1F MM	AUV2 + AUV1
08	010		1*11*1 Δ	419791U 09.72
00	000		TE	RES.QQ
0.8	100		MM	RES I WIO
08	110		SF	95
08	120		AM	99 9 MW
08	130		TF	GI4+6,99
80	140	GI3	BTM	SUB1,10,10
08	150		Α	SUM-2,SUM-2

08	160 170 180	G I 4	A CM BZ	0,SUM-2 Z2,8,10 GI5
08	200		A M A M	
08	210		AM	22,1,10
80	220		BTM	SUB2,11,10
08	230		B	GI3+12
08	250	GI5	CM	Z1,8,10
08	260		BZ	MGI1
08	270		AM	ADV1,LS,9
08	290		TF	22,21
08	300		8	GI2
08	310	MGT1	DORG	*-3 MCT4+4-51
08	330	MOTI	TFM	Z1+1+10
08	340		TFM	ADV1 .PV2
08	350	MGI2	TFM	Z2,1,10
08	370	MGTA	BTM	AUV29PV3
08	380	MGI4	TF	0,SUM-2
08	390		AM	MGI4+6,LW,10
08	400		CM P7	22,6,10
08	420		AM	ADV2+LS+9
08	430		AM	Z2,1,10
80	440		BTM	SUB2,5,10
08	450		B	MGI4
08	400	MGI5	CM	z1+6+10
08	480		ΒZ	AN
08	490 500		АМ АМ	ADV1,LS,9 21,1,1,10
08	510		В	MGI2
08	520		DORG	*-3
		* BLO	ск 9	
		*	COMPU	TE WECHSELWIRKUNGS-MATRIX
09	010	AN	TFM	G,GI
09	020		TEM	Z1+0+10
09	050	AW1	MM	21,180,9
09	040		TFM	22,0,10
09	050		AM TE	999MW
09	080		TEM	23,0,10
09	090		TFM	Z4,0,10
09	100	6 M D	TFM	FA, FIA
09	120	AWZ	TE	23,60,10 W • ΔDA
09	130		A	W,99
09	140		S	W,G,611
09	150		5	W9FB9611 W9FA9613
09	170		AM	G,LW,10
09	180		AM	FA+LW+10
09	190		CM	Z3,2,10
09	210	AW3	AM	Z4,1,10
09	220		AM	W.LW.10
09	230		S A	W. 50,611
09	250		AM	WALWADII GalWalO
09	260		AM	FA+LW+10

09 270			Z4,2,10
09 290		AM	Z3,1,10
09 300		TF	Z4,Z3
09 310		B	AW2
09 330	AW4	CM	71.2.10
09 340		BZ	PRI-12
09 350	A W 5	AM	ADA +18 +10
09 360		AM	Z2+1+10
09 380		AM TEM	FB,LW,10 73.0.10
09 390		TEM	Z4.0.10
09 400		TF	W+ADA
09 410	AW6	S	W:FB:611
09 420		5	W+G+611
09 440		CM	73.2.10
09 450		BNZ	AW7
09 460		ÇМ	Z2,2,10
09 470		BNZ	AW5
09 490		AM TE	Z191910 72.71
09 500		АМ	FB,LW,10
09 510		в	AW1
09 520	AW7	AM	Z4,1,10
09 530		15	2 • 24
09 550		MM	2023 Zol Wol 0
09 560		TF	W1,W
09 570		Α	W1,99
09 580		ŤF	W2 . W
09 590		MM	Z • 54 • 10
09 610		ŝ	WC999 Wl •G•611
09 620		S	W2,G,611
09 630		AM	G+LW+10
09 640			Z4,2,10
09 660		AM	Z3+1+10
09 670		TF	Z4,Z3
09 680		AM	W+60+10
09 690		B	AW6
07 700	*	DORG	*~)
	* BLC	CK 10	
10 010	*	PRINT	. PUNCH CI-MATRIX
10 010	PRI	IFM TE	PRI+6,A
10 020	FNI	AM	PRI+6.10.10
10 040		СМ	PRI+6,V+1000
10 050		BNP	PRI
10 060	F 1 1 1	TFM	EINH+6,V- 9
10 070	EINH	IDM	V-9,1,11
10 090		CM	EINH+6911099
10 100		BNP	EINH
10 110		TDM	DRM
10 120		DC	1 +
10 130	01175	TFM	OUT2+6 ,NULR+5
10 140	0012	Δ.M	
10 160		CM	OUT2+6+NUL R+65
10 170		BNP	00[2
10 180		TDM	NULR+66
10 190		DC	1 = - = *

10	200		TFM	STDI+6,A+10	
10	210		TFM	STOF+6+OFF	
10	220		TR	OUT,BLANC	
10	230		BNC2	PR6	
10	240		TFM	OUT+2,10,9	
10	250		WNCD	OUT	
10	260	PR6	TFM	ZK1+1+9	
10	270		TFM	ZK2,2,9	
10	280		TFM	PR2+11,VW+6	
10	290	PR2	TE	DEPS+VW+6	
10	300		BTM	PUNCH 1 1 10	
10	310		C	ZK2+ZK1	
10	320		BE	SIDI	
10	330	STOP	11	OFFIEL	
10	340		AM	SIUF+6910910	
10	350		DODC	ENDSI N-2	
10	360	6701	TE	**) 	
10	310	5101	1 1	A 9 E L	
10	200	ENDET	AM	DP2+11.6.10	
10	590	ENDST	CM	782-10-0	
10	400		87	DD2	
10	410		TATY	FKJ	
10	420		AM	782-1-10	
10	440		8	PR2	
10	440		0086	*-3	
10	460	PR3	CM	ZK1+10+9	
10	470		87	PRS	
10	480		AM	ZK1.1.10	
10	490		BTM	WRL,1,10	
10	500		TFM	ZK2,2,9	
10	510	PR4	с	ZK2,ZK1	
10	520		BNN	PR2	
10	530		AM	ZK2,1,10	
10	540		TBTY		
10	550		AM	PR2+11,6,10	
10	560		В	PR4	
10	570		DORG	*-3	
10	580	PR5	TEM	ADROFFSOFF	
10	590		IFM DMGD	N91099	
10	600		BNCZ	SWEEP-24	
10	610	*	WNCD	BLANC	
		* 81.01	CKE	11 - 19	
		* .	JACOB	PROGRAMM HS 4	
		* (OMPU	E EIGENWERTE.	EIGENVEKTOREN
11	010		TF	ZETA, TEN	
11	020		в	BEGINN	
11	030	SWEEP	TF	ADR, ADROFF	
11	040		TF	SS, NULL	
11	050	KONT	М	ADR, ADR, 611	
11	060		Α	55,99	
11	070		AM	ADR:10:8	
11	080		BNR	KONT, ADR, 11	
11	090		SM	SS,999;8	
12	010		BNP	OUTEW	
12	020	BEGINN	TFM	TAU,0,9	
12	030		TEM	IND1,0,9	
12	040		1 FM	ADRISA-10,/	
12	050		1 F C	ADRIG ADROFF	
12	000	7781 1	ΔM	INDI-1-9	
12	080	6 I NL I	C	INDIAN	
12	090		BE	LOOP	
12	100		AM	ADRI,10,9	
12	110		A	ADRIG-1,N	

12 120 12 130 12 140 12 150 12 160 12 160 12 170 12 180 12 210 12 220 12 230 12 240 12 250 12 260 12 260 13 010 13 020 13 040 13 040 13 040 13 040 13 040 13 040 13 040 13 040 13 040 13 100 13 100 13 120 13 130 13 140 13 200 13 210 13 220 13 220 13 220 <td< td=""><td>ZYKLJ</td><td>SATTTSTACBAAASACBTSMMFFFFD H HMM FMFF M FSSCTABAMTTLDF SMFFFMFM PMM SACBFSMFFFFD H HMM FMFF M FM M FMFFD M</td><td>ADR IG-1, INDI ADR IG, 10, 9 INDJ, INDI ADR IJ, ADR IG ADRJ, ADR I ADR JJ, 10, 9 ADRJG, ADR IG INDJ, 10, 9 ADRJG, 10, 9 ADRJG-1, 10, 9 89, 99 89 79, NULL THETA, 50, 10 98, 99 89 79, NULL THETA, 98 89, THETA 80, ADRIJ, 11 ZETA, 79 ZYKLJ 84, 99999, 7 WEAK ADR, 70, 7 EXP, 0, 10 *+48, ADR, 11 EXP, 1, 10 ADR, 89, 6 ADR, 9, 10 ADR, 89, 6 THETA, ADR, 11 THETA, THETA ADR, 99, 7 ADR, EXP 80 79, NULL 89, ONLL 89, ONLL 89, ONLL 89, ONLL 89, ONLL 89, ONLL 80, T ADR, 69, 7</td><td></td></td<>	ZYKLJ	SATTTSTACBAAASACBTSMMFFFFD H HMM FMFF M FSSCTABAMTTLDF SMFFFMFM PMM SACBFSMFFFFD H HMM FMFF M FM M FMFFD M	ADR IG-1, INDI ADR IG, 10, 9 INDJ, INDI ADR IJ, ADR IG ADRJ, ADR I ADR JJ, 10, 9 ADRJG, ADR IG INDJ, 10, 9 ADRJG, 10, 9 ADRJG-1, 10, 9 89, 99 89 79, NULL THETA, 50, 10 98, 99 89 79, NULL THETA, 98 89, THETA 80, ADRIJ, 11 ZETA, 79 ZYKLJ 84, 99999, 7 WEAK ADR, 70, 7 EXP, 0, 10 *+48, ADR, 11 EXP, 1, 10 ADR, 89, 6 ADR, 9, 10 ADR, 89, 6 THETA, ADR, 11 THETA, THETA ADR, 99, 7 ADR, EXP 80 79, NULL 89, ONLL 89, ONLL 89, ONLL 89, ONLL 89, ONLL 89, ONLL 80, T ADR, 69, 7	
13 350 13 360		TF LD	79,NULL 89,ONE	
13 370 13 380		D TFM	80+T ADR+69+7	
13 390 13 400		A SF	ADR•EXP ADR••6	
13 410		AM	ADR,99,10	
13 420 13 430		MF TF	T ADR 911	
13 440		M A M	· T•T 81•1•10	
13 460		SF	81	
13 470 13 480		BTM TF	ROOT•90•7 C•90	
13.490		LD	90,0NE	

13 500		D	90,C
13 510		TE	2FR01.7FR0
13 530		в	TRANS
13 540		DORG	*-3
14 010	WEAK	TF	C+CONST
14 020			TEROL THETA
14 040		MF	T+89
14 050		м	T,ZERO1
14 060		MF	ZER01,99
14 070		BNF	#+369ZER01
14 090		B	TRANS
14 100		SF	ZERO1
15 010	TRANS	M	C+T
15 020		MF	90,99 91
15 040		TF	S,90
15 050		M	C • C
15 060		SF	81
15 070		T.F.	CC,90
15 080		SF	393 81
15 100		TF	55,90
15 110		M	S.C
15 120		MF	90,99
15 130		SF TF	SC-90
15 150		M	CC,ADRI,11
15 160		TF	H+99
15 170		м	SS,ADRJ,11
15 180		A	H+99
15 200		S	H+99
15 210		s	H.99
15 220		MF	H-9,H
15 230		SF	
15 250		ŤĒ	H•99
15 260		A	H,99
15 270		м	CC, ADRJ, 11
15,280		A M	H199
15 300		A	H+99
15 310		MF	H-9,H
15 320		SF	H-18
15 330		1F Te	ADRJ+H-9+6
16 010		TE	ADRIJAZERO1.6
16 020		AM	TAU,1,10
16 030		TF	NB,INDI
16.040		SM	NB,1,10
16 050		BZ TEM	MITTE
16 070		TF	IF ADROFF
16 080		SM	IF,10,10
16 090		A	IF-1,NB
16 100		TF	JF ADROFF
16 120		SM	JE-19INDJ
16 130	ZYKL1	BTM	SUBR1
16 140		AM	JG,1,9
16 150		A	IF-1+N
16 160		A c	JF-1,N
10 110		3	11-1970

-	79	

16 16 16 16 16 16	180 190 200 210 220 230 240	MITTE	S C BNE AM TF SM TF	JF-1,JG JG,INDI ZYKL1 NB,2,9 NC,INDJ NC,1,9 JF,ADRIJ
16 16 16 16 16 16 16 16 16	250 260 270 280 290 300 310 320 330 340	ZYKL2	A S M T F C B P B T M A M C	JF-1:NDI JF-1:NDI JF,10,9 JG,NB IF:ADRIG JG,NC SENKR SUBR1 IF:10,9 JG:1:10
16 16 16 16 16 16	350 360 370 380 390 400	SENKR	S A B AM TF AM	JF-1,JG JF-1,N ZYKL2 NC,2,9 IF,ADRIJ IF,10,9
16 16 16 16	410 420 430 440 450	ZYKL3	TF C BP BTM	JG+NC JG+N EIGENV SUBR1
16 16 16 17 17 17 17 17 17	460 470 480 010 020 030 040 050 060	EIGENV	AM AM B TFM TFM SF A	IF,10,9 JF,10,9 JG,1,9 ZYKL3 IF,V JF,V INDI,N 96 IF-1,99 INDJ,N
17 17 17 17 17 17 17 17 17 17 17	070 080 090 100 120 130 140 150 160	ZYKL4	SF A S TFM BTM AM AM C BNF	96 JF-1,99 IF-1,N JG,0,9 SUBR1 IF,10,9 JF,10,9 JG,1,9 N,JG ZYKLA
17 17 17 17	180 190 200 210	LOOP	B CM BNE	ZYKLJ TAU,0,9 LOOP1 ZFTA,MAXZET
17 17 17 17 17 17 17 17 17 17 17 17 17	220 230 240 250 260 270 280 290 300 310 320 330 340	LOOP1	BP SFF MFD DCP MSF	AUS N,N 99,N 97 ANA,99 ANA,5,10 ANA,98 94,TAU 92,ANA 92,70,7 *+48 ZETA,10,10 90

17 350		ΤF	ZETA,99
17 360		в	SWEEP
17 370	AUS	н	
17 380		В	SWEEP
18 010	CUDD1	DS	2
18 020	SOBKI	M	59JF911
18 040		M	C 1 F 1 1
18 050		S	99•H
18 060		MF	90,99
18 070		SF	81
18 080		TF	HC,90
18 090		м	S+1F+11
18 100		TF	H•99
18 110		M	
18 120		A ME	
18 140		SE	
18 150		TF	JF +H-9+6
18 160		TF	IF+HC+6
18 170		BB	
18 180		DORG	*-9
19 010		DS	5
19 020	ROOT	TF	WURZ,ROOT-1,11
19 030		TF	WURZ2,ROOT-1,11
19 040		BNF	*+26 • RUU1-1 • 11
19 050			WORNEG
19 000		DORG	*-9
19 080		AM	WURZ-5+1+9
19 090		TFM	WUC,15,9
19 100	ROOT1	LD	90, WURZ2
19 110		D	90, WURZ
19 120		A TE	89, WURZ
19 150		MM	WHR7.05.10
19 150		SF	89
19 160		TF	WURZ 98
19 170		SM	WUC . 1 . 9
19 180		BNZ	ROOT1
19 190		TF	ROOT-1,WURZ,6
19 200		BB	* 0
19 210	WUD7	DUKG	*-9
19 220		05	10
19 240	WUC	DS	3
19 250	WURNEG	DAC	8, RAD NEG-
	*		
	* BLO	CK 20	DUNCH EXCENSIONE UND VERTOREN
20 010		PRINT	PUNCH EIGENWERTE UND VERTOREN
20 010	OOTEN		TEXTS
20 020		BTM	WRI +2 +10
20 040		TEM	OUT1+11,A+10
20 050	OUT1	TF	E•A+10
20 060		S	E,A
20 070		AM	OUT1+10,1,10
20 080		BTM	PRE • 0 • 10
20 090		CM	0011+11-055
20 110		BL	OUT1
20 120		BTM	WRL,4,10
20 130		TFM	ADA , A
20 140		TEM	ZK,1,10
20 150		TR	OUT,NULR
20 160		C	A+FNUL

.

			0.1.7.0
20 170		BNZ	0013
20-180		TF	OUT+11,NINE
20 100		BTM	7FR .0.10
20 190		0111	
20 200		BIM.	WRL91910
20 210		TEM	ADV1+V+100
20 210		T D 14	
20 220		IDM	0015W+199
20 230		в	OUT4
20 240		DORG	*-3
20 240		DUKG	
20 250	QUT3	IDM	OUISW+1+1
20 260		TEM	ADV1 •V
20 200			
20 270	0015	TR	OUTINULR
20 280		ŤF	F ADA 11
20 200		DTH	DRE-0.10
20 290		DIM	PRESUSIO
20 300	OUTSW	в	OUT6-12
20 210		TRTY	
20 510		0.7.4	004 0 1011
20 320		BIM	PRV9991011
20 330		AM	ADV1,10,10
20 240	01174	DTM	WPL +1-10
20 340	0010	DTM	
20 350		втм	PRV,9,10
20 360	OUT4	BNC3	*+24
20 300		UNCO	
20 370		WINCD	001
. 20 380		СМ	ZK,10,10
20 200		87	0117
20 390		DZ.	0017
20 400		AM	ZK 9 1 9 1 0
20 410		ΔМ	ADA . 10 . 10
20 410		DTH	
20 420		BIM	MKF 1 1 10
20 430		в	OUT5
20 440		DOPG	*-3
20 440		DUKG	
20.420	0017	BIM	WRL 920 910
20 460		BNC1	PAR
20 470		а [.]	CTART
20 470		Sene	STRIC
20 480		DORG	*=3
	· *		
	¥	*	SUBROUTINEN *
	¥	*	SUBROUTINEN *
	*	*	SUBROUTINEN *
	* * * BLO	* ECKE	SUBROUTINEN *
	* * * BLO	* ECKE :	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN
	* * * BLO	* ECKE : ARITHI	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN
21 010	* * * BLO	* ECKE ARITHI DS	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2
21 010 21 020	* * BLO * ,	* ECKE ARITHI DS TF	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM
21 010 21 020	* * * BLO * SUB1	* ECKE ARITHI DS TF TFM	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P-VPM
21 010 21 020 21 030	* * BLO * SUB1	* ECKE ARITHI DS TF TFM	SUBROUTINEN * 21 - 23 WETISCHE SUBROUTINEN 2 AN3+11,ADM P+VPM 22 - 20
21 010 21 020 21 030 21 040	* * * SUB1	* ECKE ARITHI DS TF TFM TFM	SUBROUTINEN ★ 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P+VPM 23,11,10
21 010 21 020 21 030 21 040 21 050	* * BLO * 5UB1	* ECKE ARITHI DS TF TFM TFM TFM	SUBROUTINEN * 21 - 23 WETISCHE SUBROUTINEN 2 AN3+11,ADM P.VPM Z3,1,10 ME,0
21 010 21 020 21 030 21 040 21 050	* * * SUB1	* ECKE ARITHI DS TF TFM TFM TFM	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,1,10 ME,0 ZPES.NUL 9
21 010 21 020 21 030 21 040 21 050 21 050 21 060	* * BLO * 5UB1	* ECKE ARITHI DS TF TFM TFM TFM TF	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P.VPM 23,1,10 ME,0 ZRES,NUL9
21 010 21 020 21 030 21 040 21 050 21 060 21 060 21 070	* BLO * SUB1	* ECKE ARITHI DS TF TFM TFM TFM TF TF	SUBROUTINEN * 21 - 23 WETISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,1,10 ME,0 ZRES,NUL9 V1,ADV1
21 010 21 020 21 030 21 040 21 050 21 050 21 050 21 070 21 080	* * BLO * SUB1	* ARITHI DS TF TFM TFM TFM TF TF TFM	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,11,10 ME,0 ZRES,NUL9 V1,ADV1 24,11,10
21 010 21 020 21 030 21 040 21 050 21 050 21 060 21 070 21 080	* BLO * BLO *	* ARITHI DS TF TFM TFM TF TF TF C	SUBROUTINEN * 21 - 23 WETISCHE SUBROUTINEN 2 AN3+11,ADM P VVPM 23,1,10 ME.0 ZRES,NUL9 V1,ADV1 24,1,10 ME.0 ME.0U 6,6
21 010 21 020 21 030 21 040 21 050 21 050 21 050 21 050 21 080 21 090	* * BLO * SUB1 AN3	* ECKE ARITHI DS TF TFM TFM TF TF TF C C	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,11,10 ME,0 ZRES,NUL9 V1:ADV1 24,11,10 ME,NUL6,6 TETT
21 010 21 020 21 030 21 040 21 050 21 050 21 050 21 050 21 050 21 050 21 050 21 050 21 050 21 100	* BLO * SUB1) AN3) TEST2	* ECKE : ARITHI DS TF TFM TFM TF TF C BE	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P.VPM 23,1,10 ME.0 ZRES,NUL9 V1,ADV1 24,1,10 ME,NUL6,6 TEST3
21 010 21 020 21 030 21 040 21 050 21 050 21 050 21 050 21 050 21 050 21 050 21 100 21 110	* * BLO * SUB1 AN3 TEST2	* ECKE S ARITHI DS TF TFM TFM TF TFM C BE M	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P+VPM 23,11,10 ME+0 ZRES,NUL9 V1,ADV1 Z4,11,10 ME,NUL6,6 TEST3 V1,ME+611
21 010 21 020 21 030 21 040 21 050 21 100 21 100 210 2100 210	* * BLO * SUB1 AN3 TEST2	* ECKE ARITHI DS TFM TFM TFM TF TFM C BE MF	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,11,10 ME,0 ZRES,NUL9 V1,ADV1 24,11,10 ME,NUL6,6 TEST3 V1,ME,611 95,99
21 010 21 020 21 030 21 040 21 050 21 050 21 050 21 050 21 050 21 050 21 050 21 050 21 100 21 100 21 110 21 120	* * BLO * SUB1) AN3) TEST2	* ECKE ARITHI DS TF TFM TFM TF TF TF C BE MF	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P+VPM 23,11,10 ME.0 ZRES,NUL9 V1,ADV1 Z4,1,10 ME,NUL6,6 TEST3 V1,ME,611 95,99
21 010 21 020 21 030 21 040 21 050 21 100 21 120 21 120 21 130	* * BLO * SUB1 AN3 TEST2	* ECKETHI DS TFFM TFFM TFF TFF BE MF A	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,11,10 ME,0 ZRES,NUL9 V1,ADV1 Z4,11,10 ME,NUL6,6 TEST3 V1,ME,611 95,99 ZRES,95
21 010 21 020 21 030 21 040 21 050 21 100 21 120 21 130 21 140	* BLO * SUB1 AN3 TEST2	* ECKETHI DS TFFM TFFM TFF TFF CBE MF AC	SUBROUTINEN * 21 - 23 WETISCHE SUBROUTINEN 2 AN3+11,ADM P.VPM 23,1,10 ME,0 ZRES,NUL9 V1,ADV1 24,1,10 ME,NUL6,6 TEST3 V1,ME,611 95,99 ZRES,95 Z44,N
21 010 21 020 21 030 21 040 21 050 21 050 21 050 21 050 21 050 21 070 21 070 21 100 21 120 21 120 21 130 21 140	* * BLO * SUB1 AN3 TEST2	* ECKETHI DS TFFM TFFM TFF TFF CBE MF ACB7	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,11,10 ME,0 ZRES,NUL9 V1,ADV1 Z4,11,10 ME,NUL6,6 TEST3 V1,ME,611 95,99 ZRES,95 Z4,1N PF
21 010 21 020 21 030 21 040 21 050 21 100 21 120 21 120 21 120 21 120 21 120 21 120 21 120 21 020 21 040 21 100 21 100 2100 2	* BLO * SUB1 AN3 TEST2	* ECKETHI DS TFFM TFFM TFF TFF M FA C BZ	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P.VPM 23,1,10 ME.0 ZRES,NUL9 V1,ADV1 24,1,10 ME,NUL6,6 TEST3 V1,ME.611 95,99 ZRES,95 Z4,N RE
21 010 21 020 21 030 21 040 21 050 21 050 21 050 21 050 21 050 21 070 21 070 21 100 21 100 21 120 21 130 21 140 21 150 21 160	* * BLO * SUB1 AN3 TEST2	* CKETHI DTFM TTFM TFFM TFFM CBE MF CBZ MF CBZ AM	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,11,10 ME,0 ZRES,NUL9 V1:ADV1 Z4,11,10 ME,NUL6,6 TEST3 V1:ME,611 95,99 ZRES,95 Z4:N RE V1,LW,10
21 010 21 020 21 030 21 040 21 050 21 100 21 120 21 120 21 150 21 150 21 150 21 150 21 170	* * BLO * SUB1 AN3 TEST2 TEST3	* ECKETHI DSF TFFM TFFM TFF BM AC BZ AC C	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,11,10 ME,0 ZRES,NUL9 V1,ADV1 Z4,11,10 ME,NUL6,6 TEST3 V1,ME,611 95,99 ZRES,95 Z4,N RE V1,LW,10 Z4,23
21 010 21 020 21 030 21 040 21 050 21 060 21 060 21 070 21 100 21 100 21 120 21 120 21 140 21 150 21 160 21 170	* * BLO * SUB1 AN3 TEST2	* ECKETHI ARITFM TTFM TTFM TTFM TFFM ACBE MF ACBZ ACBN	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P+VPM 23,11,10 ME+0 ZRES,NUL9 V1,ADV1 Z4,1,10 ME,NUL6+6 TEST3 V1,ME+611 95,99 ZRES,95 Z4,N RE V1,LW,10 Z4,23 AN1
21 010 21 020 21 030 21 040 21 050 21 060 21 060 21 070 21 100 21 100 21 120 21 120 21 120 21 140 21 150 21 160 21 160 21 170 21 180	* * BLO * SUB1 AN3 TEST2 TEST3	* CALL CALL CALL CALL CALL CALL CALL CAL	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,1,10 ME,0 ZRES,NUL9 V1,ADV1 Z4,1,10 ME,NUL6,6 TEST3 V1,ME,611 95,99 ZRES,95 Z4,N RE V1,5LW,10 Z4,23 AN1
21 010 21 020 21 040 21 050 21 050 21 050 21 050 21 050 21 050 21 050 21 050 21 100 21 100 21 120 21 120 21 150 21	* * BLO * SUB1 AN3 TEST2	* HI ECRISFEM TTFFM TFFM MF CBM MF CBA NA CBA MA CBA MA CBA MA CBA	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P+VPM 23,11,10 ME.0 ZRES,NUL9 V1,ADV1 Z4,110 ME,NUL6,6 TEST3 V1,ME,611 95,99 ZRES,95 Z4,N RE V1,CW,10 Z4,23 AN1 ME,LW,10
21 010 21 020 21 030 21 040 21 050 21 060 21 070 21 070 21 100 21 100 21 120 21 140 21 150 21 150 21 160 21 160 21 160 21 160 21 160 21 160 21 160 21 160 21 200	* * BLO * SUB1 AN3 TEST2 TEST3 AN2	* : ECRISFERM TFFFFM BMFC BAC BAC BAC BAC BAC BAC BAC BAC BAC BA	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,11,10 ME,0 ZRES,NUL9 V1,ADV1 Z4,11,10 ME,NUL6,6 TEST3 V1,ME,611 95,99 ZRES,95 Z4,N RE V1,LW,10 Z4,23 AN1 ME,LW,10 Z4,1,10
21 010 21 020 21 030 21 040 21 050 21 100 21 200 21 200 200 200 200 200 200 200 200 200 200	* BLO * BLO * SUB1 AN3 TEST2 TEST3 AN2	* CALLER CONTRACTOR CO	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P>VPM 23,1,10 ME,0 ZRES,NUL9 V1,ADV1 Z4,1,10 ME,NUL6,6 TEST3 V1,ME,611 95,99 ZRES,95 Z4,N RE V1,LW,10 Z4,23 AN1 ME,LW,10 Z4,1,10 TEST2
21 010 21 020 21 030 21 040 21 050 21 060 21 070 21 070 21 100 21 100 21 120 21 120 21 140 21 140 21 150 21 160 21 160 21 160 21 160 21 170 21 180 21 200 21 200 21 200	* * BLO * SUB1 AN3 TEST2 TEST3	* : ECRISFMM TTFFM TFFFM ACBANNA BANNNA BANNA BANNA BANNA BANNA BANNNA BANNNA BANNNA BANNNA BANNNA BAN	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,11,10 ME,0 ZRES,NUL9 V1.ADV1 Z4,11,10 ME,NUL6,6 TEST3 V1.ME,611 95,99 ZRES,95 Z4,N RE V1.LW,10 Z4,23 AN1 ME,LW,10 Z4,13,10 TEST2 Z4,11,10 TEST2
21 010 21 020 21 030 21 040 21 050 21 060 21 070 21 070 21 100 21 110 21 120 21 120 21 140 21 150 21 160 21 160 21 160 21 160 21 170 21 180 21 190 21 200 21 210 21 200	* * BLO * SUB1 AN3 TEST2 TEST3 AN2 AN1	* CALLER STATES AND TELEVISION AND A CONTRACT AND A CONTRACTACT AND A CONTRACT AND A CONTRACT AND A CONTRACTACT AND A CONTRACT	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,1,10 ME,0 ZRES,NUL9 V1,ADV1 Z4,1,10 ME,NUL6,6 TEST3 V1,ME,611 95,99 ZRES,95 Z4,N RE V1,LW,10 Z4,23 AN1 ME,UW,10 Z4,1,10 TEST2 Z4,LW,10
21 010 21 020 21 030 21 040 21 050 21 060 21 070 21 070 21 070 21 100 21 100 21 120 21 140 21 140 21 140 21 140 21 160 21 180 21 180 21 200 21 050 21 070 21 050 21 050 21 050 21 050 21 050 21 050 21 050 21 100 21 200 21	* * BLO * SUB1 AN3 TEST2 TEST3 AN2 AN1	* I ECRISFERM TTFFFF EACDIFFFF EACDIFFF EACDIFFF EACDIF EA	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,11,10 ME.0 ZRES,NUL9 V1,ADV1 Z4,11,10 ME,NUL6.6 TEST3 V1,ME.611 95,99 ZRES,95 Z4,N RE V1,LW,10 Z4,23 AN1 ME,LW,10 Z4,11,10 TEST2 Z4,LW,10 ME,99 SUBROUTINEN *
21 010 21 020 21 030 21 040 21 050 21 060 21 060 21 070 21 100 21 100 21 120 21 120 21 120 21 140 21 150 21 160 21 160 21 170 21 180 21 190 21 200 21 040 21 100 21 200 21 200 200 200 200 200 200 200 200 200 200	* * BLO * SUB1 AN3 TEST2 TEST3 AN2 AN2 AN1	* T ECRIDEFEMM KETSEMMENTERSE KETSEMMENTERSE KETSEMMENTERSE KETSEMMENTERSE KETSEMMENTERSE KETSEMENTERSE KETSEN KET	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,1,10 ME,0 ZRES,NUL9 V1,ADV1 Z4,1,10 ME,NUL6,6 TEST3 V1,ME,611 95,99 ZRES,95 Z4,N RE V1,5LW,10 Z4,23 AN1 ME,LW,10 Z4,1,10 TEST2 Z4,LW,10 ME,99 AN2
21 010 21 020 21 030 21 040 21 050 21 060 21 060 21 070 21 070 21 100 21 100 21 120 21 140 21 150 21 140 21 150 21 160 21 170 21 180 21 200 21 210 21 200 21 210 21 220 21 220 21 220	* * BLO * SUB1 AN3 TEST2 TEST3 AN2 AN1	* CKITS ECRISE TTEFM TTEFM TTEFM TTEFM TTEFM TTES BM TTEFM TTES BM TTES BM TTES BM TTES BM TTES BM TTES BM TTES BM TTES BM TTES BM TTES BM TTES BM TTES BM TTES BM TTES BM TTES BM TTES BM TTES TTES TTES TTES TTES TTES TTES TTE	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P+VPM 23,11,10 ME+0 ZRES,NUL9 V1,ADV1 Z4,1,10 ME,NUL6+6 TEST3 V1,ME+611 95,99 ZRES,95 Z4,N RE V1,LW,10 Z4,23 AN1 ME,LW,10 Z4,1,10 TEST2 Z4,LW,10 ME,99 AN2
21 010 21 020 21 030 21 040 21 050 21 060 21 070 21 080 21 070 21 100 21 120 21 120 21 120 21 140 21 150 21 160 21 160 21 160 21 160 21 160 21 200 21 050 21 100 21 20 21 20 210	* * BLO * SUB1 AN3 TEST2 TEST3 AN2 AN2 AN1	* T ECRISE TTTTTTTCBMME ECRISE TTTTTTCBME ACBAABMA BORG BORG	SUBROUTINEN * 21 - 23 MTISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,11,10 ME,0 ZRES,NUL9 V1,ADV1 Z4,110 ME,NUL6,6 TEST3 V1,ME,611 95,99 ZRES,95 Z4,N RE V1,LW,10 Z4,23 AN1 ME,LW,10 Z4,23 AN1 ME,LW,10 Z4,23 AN1 ME,LW,10 Z4,23 AN1 ME,LW,10 Z4,23 AN1 ME,24,23 AN1 ME,LW,10 Z4,23 AN1 ME,LW,10 Z4,23 AN1 ME,24,23 AN2 AN2 *-3
21 010 21 020 21 040 21 050 21 100 21 120 21 120 21 150 21 150 21 150 21 150 21 150 21 150 21 150 21 150 21 200 21 200 20 200	* * BLO * SUB1 AN3 TEST2 TEST3 AN2 AN1 AN1	* I ECRISFEM KETHI CENTSFEM FERM FERM FERM FERM FERM FERM FERM F	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P+VPM 23,1,10 ME.0 ZRES,NUL9 V1,ADV1 Z4,1,10 ME,NUL6,6 TEST3 V1,ME.611 95,99 ZRES,95 Z4,N RE V1,4W,10 Z4,23 AN1 ME,LW,10 Z4,1,10 TEST2 Z4,LW,10 ME,99 AN2 *-3 ZRES-1,5,10
21 010 21 020 21 030 21 040 21 050 21 060 21 070 21 070 21 100 21 100 21 120 21 120 21 140 21 140 21 150 21 160 21 160 21 160 21 200 21 200	* * BLO * SUB1 AN3 TEST2 TEST3 AN2 AN1 AN1 AN1	* TFFM ECRISFE TFFFM TFFFM ACBANNAB ABDOM ABDOM ABDOM ABDOM ABDOM ABDOM	SUBROUTINEN * 21 - 23 MTISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,11,10 ME,0 ZRES,NUL9 V1,ADV1 Z4,1,10 ME,NUL6,6 TEST3 V1,ME,611 95,99 ZRES,95 Z4,N RE V1,LW,10 Z4,23 AN1 ME,LW,10 Z4,23 AN1 ME,LW,10 Z4,23 AN1 ME,S12 Z4,LW,10 TEST2 Z4,LW,10 ME,99 AN2 *-3 ZRES-1,5,10 7ESS-2,7ESS
21 010 21 020 21 040 21 050 21 100 21 120 21 120 21 150 21 150 21 150 21 150 21 150 21 150 21 150 21 150 21 200 21 21 200 21 220 21 200 21 200 20 200 20 200 20 200 200	* * BLO * SUB1 AN3 TEST2 TEST3 AN2 AN1 AN1	* T CKITSFMM CKITSFFMM F F F F F F F C B M F C C B A M M B C B A M B D M F C C M M B C B A C B M M B C B M M B C B M M B C B M M B C B M B C C C C	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P+VPM 23,1,10 ME.0 ZRES,NUL9 V1,ADV1 Z4,1,10 ME,NUL6,6 TEST3 V1,ME,611 95,99 ZRES,95 Z4,N RE V1,LW,10 Z4,23 AN1 ME,LW,10 Z4,23 AN1 ME,LW,10 Z4,23 AN1 ME,LW,10 Z4,51 Z4,5
21 010 21 020 21 030 21 040 21 050 21 060 21 060 21 070 21 070 21 100 21 100 21 120 21 120 21 140 21 140 21 150 21 160 21 160 21 200 21 200	* * BLO * SUB1 AN3 TEST2 TEST3 AN2 AN1 AN1 AN1	* CALL CONTRACTOR CONT	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,11,10 ME,0 ZRES,NUL9 V1:ADV1 Z4,11,10 ME,NUL6.6 TEST3 V1:ME.611 95.99 ZRES.95 Z4:N RE V1:LW,10 Z4:23 AN1 ME;LW,10 Z4:23 AN1 ME;LW,10 Z4:23 AN1 ME;LW,10 Z4:23 AN1 ME;LW,10 Z4:23 AN1 ME;LW,10 Z4:23 AN1 ME;LW,10 Z4:23 AN1 ME;LW,10 Z4:23 AN1 ME;LW,10 Z4:23 AN1 ME;LW,10 Z4:23 AN1 ME;LW,10 Z4:23 AN1 ME;LW,10 Z4:23 AN1 ME;LW,10 Z4:23 AN1 ME;LW,10 Z4:23 AN1 ME;LW,10 Z4:23 AN1 ME;LW,10 Z4:23 AN1 ME;LW,10 Z4:23 AN1 ME;LW,10 Z4:25 Z4
21 010 21 020 21 030 21 040 21 050 21 060 21 060 21 070 21 100 21 100 21 120 21 120 21 120 21 140 21 150 21 160 21 160 21 170 21 180 21 200 21 200 20 200	* * BLO * SUB1 AN3 TEST2 TEST3 AN2 AN1 AN2 AN1	* T ECRIDENT TTTTTCBMMACBACBAABMABOAMFFT KEITH KEITH KETTTTTTTCBMMACBACBAABMABOAMFFT G G STF	SUBROUTINEN * 21 - 23 METISCHE SUBROUTINEN 2 AN3+11,ADM P,VPM 23,1,10 ME,0 ZRES,NUL9 V1,ADV1 24,1,10 ME,NUL6,6 TEST3 V1,ME,611 95,99 ZRES,95 Z4,N RE V1,5LW,10 Z4,23 AN1 ME,LW,10 Z4,23 AN1 ME,LW,10 Z4,23 AN1 ME,LW,10 Z4,23 AN1 ME,LW,10 Z4,53 AN1 ME,SP9 AN2 *-3 ZRES-1,5,10 ZRES-2,ZRES ZRES-7 P,ZRES-2,6

2	1 300	TEST4	C	Z.3 • N
2	1 310		BN	MOD1
2.	1 330			AUV29097
2	1 340		6B	3002
2	1 350		DORG	; *-9
2]	L 360	MOD1	ΑM	P . LW . 10
21	1 370		MM	Z3,LW,10
21	1 380		A A 14	AN3+11,99
21	400		B	2391910 ÁN3
21	410		DS	2.*
22	2 010	SUBZ	TFM	P,VPM
22	2 020		TF	V2 ADV2
22	2 030		TE	SUM, NUL 9
22	2 040	6 N C	TEM	Z3•1•10
22	2 060	ANO	ME	P \$ V 2 \$ 6 1 1 95.99
22	070		A	SUM • 95
22	080		с	Z3,N
22	090		BZ	RU
22	100		AM	Z3,1,10
22	110		AM	
22	130		B B	
22	140		DORG	*-3
22	150	RU	AM	SUM-1,5,10
22	160		MF	SUM-2,SUM
22	170		SF	SUM-7
22	180		BB	
22	190		DORG	*-5
23	020	SUB3	TE	
23	030		TF	V2,ADV2
23	040		TF	PV, ADPV
23	050		TF	Z3•N
23	050	AN4	M A M	V1 • V2 • 611
23	070		MF	9495910
23	090		TF	PV 93 •6
23	100		AM	PV+LW
23	110		AM	V1.LW
23	120		AM	V2.LW
23	140		SM RD	23,1,10
23	150		AM	ADPV+LS
23	160		BB	
23	170		DORG	*-9
		*	.	
		* BLO	CK 24	
24	010	*	DC	DUTINE FUER MATRIXELEMENTE
24	020	LET	RNCD	
24	030		SF	INP
24	040	LE	DS	5,*
24	050		SF	INP+2
24	060	AL	DS	5,*
24	0.0		DORG	1NP+4
24	090	R	DS	2
24	100	SL	DS	2
24	110		СМ	INP+1,0,10
24	120		BP	LADUNG
24	140		ON BC	LEN
24	150		DOPC	*-0
• •	+-0		2010	·· ,

24	160	LADUNG	СМ	INP+1,85,10
24	170		BNZ	LEP
24	180		TFM	AL, INP+11
24	190		TF	ZRES+NUL9
24	200		TF	ZRES-2, INP+9
24	210		MF	ZRES, ZRES-2
24	220		S	ZRES+KO-1
24	230		TFM	I1,MH
24	240		TEM	I2,MG
24	250		TEM	13,970
24	260	ANSCHL		Z (AL (1)
24.	270		SM	Z 91910
24	280		(*1)*1 A	13-00
24	290		A M	13977
24	300		M	7 • - Δ1
24	320		TE	RES.99
24	220		мм	RES.3.10
24	340		SE	95
24	250		Δ	11.99
24	360		Δ	12.99
24	270		м	7RF5+12+11
24	380		SE	88
24	200			94.5.10
24	270		ME	03.99
24	400		Δ.	11.93.6
24	410		мм	7RES-5-1011
24	420		ME	98.99
24	430		Δ	9813
24	440		SE	93
24	460		СM	92.0.9
24	470		BNZ	ERK
24	480		TF	-13,98
24	490		AM	AL +4+10
24	500		SM	INP+3.1.10
24	510		BP	ANSCHL
24	520		B	LE1
24	530	FRK	WATY	FMELD
24	540		н	
24	550	11	DS	0 • * - 5
24	560	12	DS	0,*
24	570		в	LE1
24	580	13	DS	0,*
24	590	FMELD	DAC	23,LADUNGSDICHTE FRAGLICH -
24	600	LEP	CM	INP+1,47,10
24	610		BZ	LEB
24	620		TFM	LEA+11,MH
24	630		В	LEZ
24	640		DORG	*-3
24	650	LEB	1FM	LEA+119MG
24	660		BODC	
24	670		CH	*** 1ND+1-42-1011
24	680	LEN		1877194291011
-24	690		- D.4 T.C.M	
24	100		1 [5][9]	LLATIIT AL_INDI12
24	710	LEZ	TE TE	AL9117712 Ci . Al . 11
24	120		11	0577511 011
2.4	730		51	
24	740			R # 3L
24	150			LL9 (E1_1.P
24	760		15	LLI I I I
24	110		17	N 704 St. 1 51_1
24	780		117	D-1-10
24	790	LE3	<u>э</u> м те	
24	800		1 P C M	LL73L 1 E.1.10
- 24	810		SM	

24 820		M LE,SL
24 830		A 99, R
24 840		A .99,R
24 850		TF LE,99
24 860		MM LE,3,10
24 870		SF 95
24 880	LEA	AM 99,0,7
24 890		IF 99, INP+9,6
24 900		AM AL94910
24 920		BD 162+12
24 930		
24 940		DORG *-3
	*	
	* BL(DECKE 25 - 27
	¥	OUTPUTSUBROUTINEN
25 010	DUMEN	DS 2
25 020	PUNCH	TH ELSENUL
25 030		CM DEPS-1,0
25 040		
25 050		
25 070		
25 080		
25 090		BNF *+24.FI
25 100		TDM VZ • 0 • 11
25 110		WNCD OUT
25 120	PRINT	BNF PRI1.DEPS
25 130		WATY MINUS
25 140		CF DEPS
25 150		B *+24
25 160	PRI1	SPTY
25 170		CM DEPS-4,0,10
25 180		BZ PRI2
25 190		BD PRI3,DEPS-5
25 200		SPIT
25 220		BB
25 230		
25 240	PRIS	CF DEPS-5
25 250		WNTY DEPS-5
25 260		BB
25 270		DORG *-9
25 280		DS 2
25 290	ZER	TF DEPS,NUL6
25 300		SPTY
25 310	PRIZ	SPTY
25 320		SPIY
25 340		WNIT DEPS-3
25 350		
26 010		
26 020	PRF	AM E=3.5.10
26 030		
26 040		ME DEPS-E
26 050		TF OUT+5+DEPS
26 060		B PRINT
26 070	•	DORG *-3
26 080		DS 2
26 090	PRV	TEM PRK+6,0UT+17
26 100		TF E,ADV1,11
26 110		C E-3,FNUL-3
26 120		BZ PRV3+12
26 130		AM E-2,5,10
26 140		BD PRV1+E-9
20 150		BNF PRV3-12,E

26	160		WATY	MINUS	
26	170		B	PRV3	
20	180		SDTV	*-5	
20	200	PRV3	TDM	F-2	
26	210	FIX J	DC	1*	
26	220		WNTY	E-9	
26	230		MF	E-3,E	
26	240		SF	E-8	
26	250		AM	ADV1,10,10	
26	260		BNF	PRK+PRV-1	
26	270			PRV-1	
20	280		нг ВТМ	WPL = 1 = 10	
26	300		B	PRV+12	
26	310		DORG	*-3	
26	320	PRK	TF	OUT,E-3	
26	330		AM	PRK+6,6,10	
26	340		TBTY		
26	350		SM	PRV-1,1,10	
26	360		99	PRV+12	
20	380		DORG	*-3	
26	390	PRV1	WNTY	K0-7	
26	400	1	TF	PRK+6,NINE,6	
26	410		8	PRV5	
26	420	PRV4	TBTY		
26	430		SPTY	_	
26	440	0.0116	WNTY	K0-6	
26	450	PRV5	AM	ADVI 10 10	
20	400		SM RD	PRV-191910	
26	480		B	OUT4	
20	400	*	ZEILEN	ISCHALTUNG	
27	010		DS	2	
27	020	WRL	RCTY		
27	030		SM	RZ,1,10	
27	040		BZ SM	RL1 881-1-1-10	
27	060		BP	WRL	
27	070		BB		
27	080		DORG	*-9	
27	090	RL1	TFM	RZ,69,10	
27	100		BB	* •	
27	110	07	DORG	*-9	
21	120	*	TABULA	TOREN	
27	130		DS	2	
27	140		TBTY		
27	150	TAB	TBTY		
27	160		TBTY		
27	170		TBTY		
27	180				
21	190		TRTV		
21	200		RB B		
27	200				
27 27	200 210 220		DORG	*- 9	
27 27	200 210 220	*	DORG	*-9	
27 27	200 210 220	*	DORG *	*-9 SYMBOLTABELLE	*
27 27	200 210 220	* * *	DORG *	*-9 SYMBOLTABELLE	¥
27 27	200 210 220	* * * BL(DORG * DOCK 28	*-9 SYMBOLTABELLE	*
27 27 28	200 210 220	* * * BL(* CONST	DORG * DOCK 28 KONST	*-9 SYMBOLTABELLE ANTEN 10+0707106781	¥
27 27 28 28	200 210 220 010 020	* * * BL(* CONST ONE	DORG * DOCK 28 KONST DC DC	*-9 SYMBOLTABELLE ANTEN 10,0707106781 10,1000000000	*
27 27 28 28 28	200 210 220 010 020 030	* * BL(* CONST ONE TEN	DORG * CK 28 KONST DC DC DC DC	*-9 SYMBOLTABELLE ANTEN 10.0707106781 10.1000000000 10.10	*

28 28 28 28 28 28 28 28 28 28 28 28 28 2	050 060 070 080 090 100 110 120 130 140	FNUL NUL9 NUL6 ZERO WUR2 HALB MAXZET KO NINE DEPS	DS DS DS DC DC DC DC DC DS	0.NULL-10 0.FNUL-1 0.FNUL-4 0.FNUL 6.141421 6.500000 10.0050000000 8.100000- 6.9999999 6
28	150	BLANC	DC DNB	1 +
28	170	DEANC	DNB	38
28 28	180 190	CNR	DNB DS	30 1
28	200		DC	15,0-
28 28	210	DATUM	DAS	15 19-
28	230	MINUS	DAC	2,
28	240	TITEL	DAC	8, R P P V-
28	250	TEXT4	DAC	
28	270	TEXT2	DAC	23, G H I-
28	280	TEXT3	DAC	42, F-G F-H F-I E-G
28	290		DAC	37, E-I D-G D-H D-I
28	300	T4	DAC	22.EINELEKTRONEN-ENERGIE-
28	310	1EX15	DAC	30, KONFIGURATIONS-WECHSELWIRKUNG-
28	320	TEXIO	DAC	199UEBERGANGS-ENERGIE-
28	340	BET	DS	
28	350		DC	18,0-
28	360	G11	DS	6
28	370	GAM	DS	1
28	380		111	
28	200	CNRT	DS	18,0-
28	390	CNRI * BLO	DS	6 29 - 30
28	390	CNRI * BLO * :	DS ECKE SYMBO	6 29 - 30 LE
28 29	390 010	CNRI * BLO * :	DS ECKE SYMBO DS	6 29 - 30 LE 3
28 29 29	390 010 020	CNRI * BLO * NM NC	DS ECKE SYMBO DS DS	6 29 - 30 LE 3 0,*
28 29 29 29	390 010 020 030	CNRI * BLO * NM NC N	DS ECKE SYMBO DS DS DS	6 29 - 30 LE 3 0,* 3
28 29 29 29 29 29 29	390 010 020 030 040 050	CNRI * BLO * NM NC N NB Z	DS ECKE SYMBO DS DS DS DS DS	6 29 - 30 LE 3 0+* 3 3 2
28 29 29 29 29 29 29 29	390 010 020 030 040 050 060	CNRI * BLO * NM NC N NB Z Z1	DS ECKE SYMBO DS DS DS DS DS DS DS	6 29 - 30 LE 3 0+* 3 3 2 2
28 29 29 29 29 29 29 29 29	390 010 020 030 040 050 060 070	CNRI * BLO * NM NC N NB Z Z1 Z2	DS ECKE SYMBO DS DS DS DS DS DS DS	6 29 - 30 LE 3 0 ** 3 2 2 2
28 29 29 29 29 29 29 29 29 29	390 010 020 030 040 050 060 070 080	CNRI * BLO * NM NC N NB Z Z1 Z2 Z3 Z4	DS ECKE SYMBO DS DS DS DS DS DS DS DS	6 29 - 30 LE 3 0,* 3 2 2 2 2 2
28 29 29 29 29 29 29 29 29 29 29 29 29	390 010 020 030 040 050 060 070 080 090 100	CNRI * BLO * NM NC N NB Z Z1 Z2 Z3 Z4 VW	DS ECKE SYMBO DS DS DS DS DS DS DS DS DS DS DS DS DS	6 29 - 30 LE 3 0,* 3 2 2 2 2 2 3 6.10
28 29 29 29 29 29 29 29 29 29 29 29 29 29	390 010 020 030 040 050 060 070 080 090 100 110	CNRI * BLO * NM NC N NB Z Z1 Z2 Z3 Z4 VW MW	DS ECKE SYMBO DS DS DS DS DS DS DS DS DS DS DS DS DS	6 29 - 30 LE 3 0,* 3 2 2 2 2 2 3 6,10 6,27
28 29 29 29 29 29 29 29 29 29 29 29 29 29	390 010 020 030 040 050 070 080 090 100 110 120	CNRI * BLO * NM NC N NB Z Z Z Z Z Z Z Z Z Z Z Z Z W W W W	ECKE ECKE SYMBO DS DS DS DS DS DS DS DS DS DS DS DS DS	6 29 - 30 LE 3 0,* 3 2 2 2 2 2 3 6,10 6,27 5
28 29 29 29 29 29 29 29 29 29 29 29 29 29	390 010 020 030 040 050 070 080 090 100 110 120 130	CNRI * BLO * NM NC NC N Z1 Z2 Z3 Z4 VW W W W W	ECKE ECKE SYMBO DS DS DS DS DS DS DS DS DS DS DS DS DS	6 29 - 30 LE 3 0,* 3 2 2 2 2 2 2 3 6,10 6,27 5 5
28 2992992299229922992299229922992299229	390 010 020 030 040 050 060 070 080 090 100 110 120 130 140	CNRI * BLO * NM NC NN Z Z1 Z2 Z3 Z2 Z4 VW WW WW W1 W2	ECKE SYMBO DS DS DS DS DS DS DS DS DS DS DS DS DS	6 29 - 30 LE 3 0 * * 3 3 2 2 2 2 3 6,10 6,27 5 5 5
28 29 29 29 29 29 29 29 29 29 29 29 29 29	390 010 020 030 040 050 060 070 080 090 100 110 120 130 140 150	CNRI * BLO * NM NC NN Z Z1 Z2 Z2 Z2 Z3 Z4 VW WW WI W2 EB	ECKE SYMBO DS DS DS DS DS DS DS DS DS DS DS DS DS	6 29 - 30 LE 3 0 ** 3 3 2 2 2 2 3 6 • 10 6 • 27 5 5 5 5 5 5 5
28 29 29 29 29 29 29 29 29 29 29 29 29 29	390 010 020 030 040 050 060 070 080 090 100 120 130 140 150 170	CNRI * BLO * NM NC NN Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ECKE SYMBO DS DS DS DS DS DS DS DS DS DS DS DS DS	6 29 - 30 LE 3 0 ** 3 2 2 2 2 2 2 3 6 • 10 6 • 27 5 5 5 5 39 5 5
28 29 29 29 29 29 29 29 29 29 29 29 29 29	390 010 020 030 040 050 070 080 090 100 120 130 140 150 160 170 180	CNRI * BLO * BLO NM NC NN Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ECKE SYMBO DS DS DS DS DS DS DS DS DS DS DS DS DS	6 29 - 30 LE 3 0 ** 3 2 2 2 2 2 3 6 • 10 6 • 27 5 5 5 39 5 5 5 5 5 5 5 5 5 5 5 5 5
28 29 29 29 29 29 29 29 29 29 29 29 29 29	390 010 020 030 050 050 050 050 070 080 110 120 140 150 160 170 180 190	CNRI * BLO * BLO NM NC NN Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ECKE SYMBO DS DS DS DS DS DS DS DS DS DS DS DS DS	6 29 - 30 LE 3 0 ** 3 2 2 2 2 2 3 6 *10 6 *27 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
28 29 29 29 29 29 29 29 29 29 29 29 29 29	390 010 020 030 040 050 060 070 080 100 110 120 140 150 160 170 180 200	CNRI * BLO * BLO NM NC NN Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ECKEO ECKEO DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS D	6 29 - 30 LE 3 0.* 3 2 2 2 2 2 3 6.10 6.27 5 5 5 5 5 5 5 5 5 5 5 5 5
28 29 29 29 29 29 29 29 29 29 29 29 29 29	390 010 020 030 040 050 060 070 100 120 130 140 150 160 170 180 200 210	CNRI * BLO * BLO NM NC NN Z Z1 Z2 Z3 Z4 VW WW WW WW WW WW WW FB FA ADV1 ADV2 ADPV	ECKEO ECKBO DS DS D	6 29 - 30 LE 3 0.* 3 2 2 2 2 2 3 6.10 6.27 5 5 5 5 5 5 5 5 5 5 5 5 5
28 29 29 29 29 29 29 29 29 29 29 29 29 29	390 010 020 030 040 050 060 070 080 090 100 120 130 140 150 160 170 180 200 210 230	CNRI * BLO * NM NC N NB Z Z1 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2	ECKEBO DSSESYDS DSSDSSDS DSSDSSB DSSDSSB DSSB DSSB	6 29 - 30 LE 3 0 ** 3 2 2 2 2 3 6 • 10 6 • 27 5 5 5 5 5 5 5 5 5 5 5 5 5
28 29 29 29 29 29 29 29 29 29 29 29 29 29	390 010 020 030 050 060 070 080 090 100 120 130 140 150 140 150 1200 220 220 220 240	CNRI * BLO * BLO * NM NC NN Z Z1 Z2 Z3 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2	DS E E O ECKEBO DS DS D	6 29 - 30 LE 3 0 ** 3 3 2 2 2 2 3 6 • 10 6 • 27 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
28 2992992299229922992299229922992299229	390 010 020 030 040 050 060 070 100 120 130 140 150 170 180 210 220 230 240 250	CNRI * BLO * BLO NM NC NN Z Z1 Z2 Z3 Z4 VW WW W1 W2 FB FA ADV1 ADV2 ADPV PV P G G ME	DS E E O ECKEBO DS DS D	6 29 - 30 LE 3 0 ** 3 2 2 2 2 3 6 • 10 6 • 27 5 5 5 5 5 5 5 5 5 5 5 5 5
28 29929929922992299229922992299229922992	390 010 020 030 040 050 060 070 080 100 120 130 140 150 170 180 220 230 240 250 260	CNRI * BLO * BLO NM NC NN Z Z1 Z2 Z3 Z4 VW WW WW WW WW WW WW WW WW WW WW WW WW	ECKED ECKED DSSDSSDSSDSSDSSDSSDSSDSSDSSDSSDSSDSSDS	6 29 - 30 LE 3 0 ** 3 2 2 2 2 2 3 6 • 10 6 • 27 5 5 5 5 5 5 5 5 5 5 5 5 5
28 29929929922992299229922992299229922992	390 010 020 030 040 050 070 080 100 120 130 140 150 170 180 220 230 240 250 270	CNRI * BLO * BLO NM NC N NB Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ECKED ECKED DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS D	6 29 - 30 LE 3 0.* 3 2 2 2 2 2 3 6.10 6.27 5 5 5 5 5 5 5 5 5 5 5 5 5
28 299229 229229 229229 229229 229229 229229 2292229 2292229 2292229 2292229 2292229 2292229 229299 229299 229299 229999 229999 229999 229999 2299999 2299	390 010 020 030 040 050 070 080 100 120 140 150 140 150 140 150 2200 2300 2400 2500 2700 2800	CNRI * BLO * BLO * NM NC N NB Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ECKED ECKED DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS D	6 29 - 30 LE 3 0.** 3 2 2 2 2 2 3 6.10 6.27 5 5 5 5 5 5 5 5 5 5 5 5 5

29	300	SUM	DS	9
29	310	ADA	DS	5
29	320		DS	22
29	330	FIA	DSB	6.6
29	340	ADM	55	5
2/	250	AUN	DC	12
29	350	EID		1.7
29	360	F 1 D	055	0.0
29	370	VI	DS	5
29	380	V2	55	5
29	390		DS	8
29	400	RM	DC	1,-
29	410		DORG	VW-5
29	420	VQ	DSB	6,26
29	430	•	DS	1
29	440	HOR	DS	6
29	450		DS	13
29	460	INP	DS	1
20	400	1,	05	159
20	400	NAME	DAS	40
29	400	NAME	DADC	40 DM+1
29	490	C A	DORG	KMT1
29	500	CA	0.55	0,00
29	510		UC	1,-
29	520	св	DSB	6,66
29	530	PV1	DSB	6,198
29	540	PV2	DSB	6,132
29	550	мн	DS	0,PV2
29	560	PV3	DSB	6,132
20	570	VPM	DSR	6,22
27	580	•••	DC	1
29	500	MD		6.262
29	590	() ()	030	0,200
29	600	GI	US	U MP
29	610	MG	DSB	6,253
29	620	LW	DS	0.6
29	630	LS	DS	0,132
29	640	ENDE	DS	1
30	010		DORG	CA
30	020	ZETA	DS	10,
30	030	THETA	DS	10
30	040	нс	DS	10
30	050	Т	DS	10.
30	060	ċ	DS	10
20	0000	<u> </u>	DS	20
20	010	55	ns	10
20		cc		10
30	090		05	10
30	100	50	05	10
30	110	ZERO1	05	10
30	120	EXP	DS	3,
30	130	INDI	DS	3
30	140	INDJ	DS	3
30	150	κ	DS	3
30	160	TAU	DS	3
30	170	JG	DS	3
20	180	ADR	DS	5
20	190	TE	DS	5
50	200	IF	DS DS	ś
50	200	ADDOFE	05	5
30	210	ADRUFF	05	2
30	220	ADRI	05	2
30	230	ADRIJ	05	5
30	240	ADRJ	05	5
30	250	AADJ	DS	5
30	260	ADRIG	DS	5
30	270	ADRJG	DS	5
30	280	ANA	DS	5
20	290	E	DS	10
20	300	OUT	DS	1
30	000	7 1	0.0	1
30) 310	281	ΨS	2

		- 00 -
30 320 30 330 30 340 30 350	ZK2 DS VZ DS EL DS DORG	3 3 10 CUT
30 300 30 370 30 380 30 390 30 400	ZK DS COD DS DS	1 2 1 15
30 410 30 420 30 430 30 440 30 450	A DSB OFF DSB DRM DS	1 66 10,10 10,45 10
30 460	V D5B *	
	* *	OPERATING *
31 010 31 020	* BLOCK 31 * PRINT DORG KOM RCTY	OPERATING - ANWEISUNGEN 18000
31 030 31 040 31 050 31 060	WATY Bîm Raty Rcty	KOM5 TAB+12,8,10 DATUM
31 070 31 080	WATY RCTY	комі
31 090 31 100 31 110	WATY RCTY WATY	KOM2 TE1
31 120 31 130 31 140	RCTY WATY RCTY	TE2
31 150 31 160	WATY RCTY	TE3
31 170 31 180 31 190	WATY RCTY WATY	TE4
31 200 31 210	RCTY WATY	KOM4
31 220 31 230	HALT H B	START
31 240 31 250 31 260 31 270	KOM1 DAC KOM2 DAC KOM3 DAC KOM4 DAC	19,RANDSTELLER 14,93- 37,TABULATOREN 23,32,41,50,59,68,77,86 15,PAPIER RICHTEN- 6,START-
31 280 31 290 31 300	KOM5 DAC TE1 DAC TE2 DAC	15.DATUM EINGEBEN- 32.SSW ON 1 PARAMETER NICHT REP 31. 2 KARTENOUTPUT MATRIX-
31 320 31 330	TE4 DAC DEND	20, 4 TRIPLETT- KOM

5.5. Karteneinteilung

In Fig. 9 sind die Ein- und Ausgabekarten des Beispiels Fig. 8 ausgeschrieben. Blancs (Leerkolonnen auf der Karte) sind dabei als Nullen geschrieben. Ein Flag (hochgestellter Querstrich) hat über der ersten Ziffer eines Wortes die Funktion einer Wortbegrenzung (variable Wortlänge), über der letzten diejenige eines negativen Vorzeichens. Die Recordmark (‡) hat bei Satztransfer- und bei Schreiboperationen eine spezielle Bedeutung.

Eingabe Daten

Parameter

a)	β			
	Kol	1-2	:	zweistellige Kennziffer
	Kol	3-21	:	1 - 3 Koeffizienten mit Feldflag in < 2, 4>, unmittelbar
				anschliessend ‡
b)	۲ ،	und a	7 1	2
	Kol	1-4	:	2 zweistellige Kennzahlen für F ['] ₁₁ bzw. F ['] ₁₂
	Kol	5-10	:	V_{11} in eV, < 2, 4 >
	Kol	11-29	:	1 - 3 Koeffizienten in $\langle 2, 4 \rangle$, anschliessend ‡
Ei	ngabe	daten	fü	r ein spezielles System
c)	Alpł	nabetis	ch	e Titelkarte mit ‡ (max. 30 Zeichen)
d)	Cod	e-Kart	е	
	Kol	1-2	:	N = Zahl Zentren
	Kol	3-4	:	NB = Zahl besetzter Nievaus
	Kol	5-19	:	15-stellige Codenummer, wovon die Stellen 6-11 durch die
				Kennziffern der Parameter ersetzt werden
	Kol	20	:	‡
e)	Hüc	kel-Ko	ef	fizienten
	Kol	1-73	:	1-12 Koeffizienten in <0,6>, anschliessend \ddagger
	Kol	74	3	Kennziffer: 1 wenn noch eine Karte zum selben Eigenwert
				folgt, sonst 9
	Kol	75-80	:	beliebige Identifikation (vom Programm nicht benutzt; im
				Beispiel sind die besetzten Niveaus von $\overline{0}01$ bis $\overline{0}05$ und die
				unbesetzten von $\overline{0}\overline{0}\overline{1}$ bis $\overline{0}\overline{0}\overline{3}$ durchnummeriert)
				-

f) Matrixelemente

Kol 1-2	: Alphabetische Identifikation der Matrix (MH oder MK für B
	bzw. H; MG für G; MP für P und QE für Core-Ladung. Im
	Beispiel steht $\overline{4}8$ für MH).

- Kol 3-4 : Anzahl Indexpaare auf dieser Karte
- Kol 5-10 : Wert des Matrixelementes 000001 für $B_{\mu\nu} = 1$; Darst. <2,4> in eV für H, G; Darst. <2,4> in Elementarladungen für QE
- Kol 11-80 : Je vier Stellen ein Indexpaar (2 Stellen pro Index, Reihenfolge vertauschbar, Feldflag über der ersten Stelle)

Nach den Matrixelementen muss eine Leerkarte g) als Sequenzbrecher der Leseroutine folgen. Zusätzliche Parameterkarten (Parameter für Heteroatome oder höhere **Y**-Terme) wären zwischen den beiden Leerkarten des Beispiels einzureihen.

Ausgabe - Daten

Die Ausgabe der Resultate auf Karten wird durch Konsolschalter 2 und 3 angesteuert.

- h) Titelkarte : sobald einer der Schalter 2 und 3 on ist, wird ein Duplikat der Karte c) gestanzt (zusätzlicher Text (TRIPLETT), wenn SSW 4 on).
- i) Grad der Matrix
 - Kol 1-3 : Grad 10 (010)
 - Kol 70-80 : Codenummer Kol 70-74 gleich Kol 5-9von d), Kol 75-80 Kennziffern für die Parameter (a), b)).
- k) Matrixelemente $\neq 0$
 - Kol 1-6 : zwei 3-stellige Indizes von 1 10 mit Feldflag
 - Kol 10-19 : Matrixelement in < 3,7 >
 - Kol 9 & 19: Flag für negatives Vorzeichen
 - Kol 70-80 : Code wie i)
- 1) Schlusskarte

Kol 1-69 : Blanc Kol 70-80 : Code m) Eigenwerte und Eigenvektoren der C.I.-Matrix

Kol 1-6 : Eigenwert in <2,4> eV Kol 7-66 : 10 Koeffizienten c_{i,JT} in <0,6>(der Wert 1,0 wird als 999999 gelocht)

- Kol 67 :‡
- Kol 68-69 : i, von 1 bis 10 durchnummeriert
- Kol 70-80 : Code wie i)

* EINGABE-DATEN *

- c) NR. 21 NAPHTHALIN

* AUSGABE-DATEN *

h) NR. 21 NAPHTHALIN

5.6. Bemerkungen zum Programm

Speicherbedarf:

Programm und Daten (bei 22 Zentren) belegen 19922 Speicherplätze.

Uebersetzung:

Das vorliegende Programm benutzt etwa 285 Labels. Die Uebersetzung mit dem 1620/1710-SPS-Processor (1620-SP-020) kann auf einer 20K Maschine deshalb nicht in einem Teil erfolgen. Eine ausreichend grosse Symboltabelle steht in der 40K Version dieses Uebersetzers oder in der 20K Fassung des älteren Processors (1620-SP-009), der bis zu 320 Labels verarbeitet, zur Verfügung.

Zeitbedarf:

Die Rechenzeit wird im Wesentlichen durch die Zentrenzahl N und die Faktorisierung der 10x10 C.I.-Matrix in Teilmatrizen bestimmt. Die reine Schreibzeit für ein Problem (siehe Beispiel Fig. 9) beträgt 5' 20". Für drei Moleküle wurde der folgende Zeitbedarf gestoppt:

	N	Faktorisierung			т _{сі}		$^{\mathrm{T}}\mathbf{J}$		^{T}G		
Decapentaen	10	2	5x5				40"	4'	5"	10'	5"
Naphthalin	10	2	3x3,	2	2x2	1'	0"	1'	0"	7'	20"
Tetracen	18	2	3x3,	2	2x2	1'	50"	1'	10"	8'	20"

т _{сі}	:	Aufstellen der C.IMatrix
TJ	:	Berechnen der Eigenwerte und Eigenvektoren
•		(Jacobirotationen HS 4)
T _G	:	Gesamtzeitbedarf einschliesslich 5' 20" zum Schreiben der Resultate

Zusammenfassung

1. Das semiempirische C.I.-Verfahren von Pople, Pariser und Parr wurde zur Deutung des Spektrums des Radialens herangezogen und mit dem Hückel'schen Verfahren, sowie der Näherung lose gekoppelter Doppelbindungen verglichen.

2. Als Vereinfachung des C.I.-Verfahrens wurden die Elemente der C.I.-Matrix auf die drei Parameter β' , γ'_{11} und γ'_{12} zurückgeführt und die Zahl der berücksichtigten einfach angeregten Konfigurationen auf neun beschränkt. Die Brauchbarkeit des reduzierten Verfahrens wurde an Hand einiger ausgewählter Kohlenwasserstoffe geprüft, indem die berechneten Uebergangsenergien mit den spektroskopisch gefundenen Bandenlagen verglichen wurden.

3. Das reduzierte Verfahren wurde für eine elektronische Rechenanlage IBM 1620 programmiert, wobei das Programm möglichst flexibel und die Rechenzeit möglichst klein gehalten wurde.

Der Martha-Selve-Gerdtzen-Stiftung danke ich für die Gewährung eines Stipendiums.

Literaturzitate und Anmerkungen

Zu Kapitel 1 und 2

Für eingehende Beschreibungen der quantenchemischen Methoden und für mathematische Beweise sei auf die Textbücher hingewiesen, wo auch ausführliche Literaturzitate zu finden sind.

A. Streitwieser Jr., "Molekular Orbital Theory", New York, 1961.
R. Daudel, R. Lefebvre und C. Moser, "Quantum Chemistry", New York, 1959.
H. Preuss, "Grundriss der Quantenchemie", Mannheim, 1962.
H. Eyring, J. Walter und G. E. Kimball, "Quantum Chemistry", New York, 1944.

D. R. Bates, "Quantum Theory", Band I, New York 1961.

1) Vergleiche z. B. die Wechselwirkung γ_{11} zweier Elektronen im gleichen AO: Theoretischer Wert nach Mulliken (Slater $2p_{z}$ -AOs, Z=3, 18)

$$\chi_{11} = 16,93 \text{ eV}$$

Empirischer Wert nach Pariser und Parr

(Differenz zwischen Ionisierungspotential und Elektronenaffinität eines C-Atoms im Valenzzustand).

- 2) J.A. Pople, Trans. Faraday Soc. <u>49</u>, 1375 (1953).
- 3) C.C.J.Roothaan, Rev. mod. Phys. 23, 69 (1951).
- 4) J.A. Pople, Proc. physic. Soc. A68, 81 (1955).
- 5) R. Pariser und R. G. Parr, J. chem. Phys. 21, 466, 767 (1953).
- 6) E.Weltin, F.Gerson, J.N.Murrell und E.Heilbronner, Helv. <u>44</u>, 1400 (1961).
- H. Hopff und A. K. Wick, Helv. <u>44</u>, 19 (1961). Vgl. auch Helv. <u>43</u>, 1473 (1960).
- C. A. Coulson, Proc. Royal Soc. (London) <u>A207</u>, 91 (1951); J. M. Robertson, ibid. <u>207</u>, 101 (1951); C. A. Coulson, J. physic. Chemistry 56, 311 (1952).
- 9) M.J.S.Dewar & H.N.Schmeising, A Re-evaluation of Conjugation an Hyperconjugation: The Effects of Changes in Hybridisation on Carbon Bonds; in: Conference on Hyperconjugation (V.J.Shiner & E. Campaigne, Editors) London 1959.

- H.C. Longuet-Higgins & J.N. Murrell, Proc. physic. Soc. <u>A68</u>, 601 (1955).
- J.R. Platt, J. chem. Physics <u>18</u>, 1168 (1950); J.R. Platt, H.B. Klevens & W.C. Price, ibid. <u>17</u>, 466 (1949).

12) Oszillator-Stärke $f = 4,32 \cdot 10^{-9} \left[\epsilon(\vec{v}) d\vec{v} \right]$.

- 13) Aufgenommen mittels eines Beckman-Spektrophotometers DK-2.
- 14) Vgl. Fig. 2 sowie die weiter unten stehende Diskussion. Die Bande B kann nur durch Differenzbildung erkannt und ungefähr lokalisiert werden.
- 15) Es sei erwähnt, dass auch nicht periodische Deformationen des Systems (d. h. Abweichung der Symmetrie der Gleichgewichtslage der Zentren des π-Elektronensystems von D_{3d}) zu einer Aktivierung verbotener Uebergänge führen. Zum gleichen Resultat führt eine niedriger symmetrische Anordnung der Methylgruppen in einem zu I isomeren Hexamethylradialen.
- 16) R.B. Woodward, J. Amer. chem. Soc. 63, 1123 (1941); 64, 72, 76 (1942).
- M.J.S.Dewar und H.C.Longuet-Higgins, Proc. physic. Soc. <u>A67</u>, 795 (1954).
- 18) J.Koutecký, J.Paldus und R.Zahradník, J. chem. Physics <u>36</u>, 3129 (1962).
- L.Salem und H.C.Longuet-Higgins, Proc. Royal Soc. (London) A257, 445 (1960).
- 20) K.Ruedenberg, J. chem. Physics 34, 1861 (1961).
- 21) J.N.Murrell und L.Salem, J. chem. Physics 34, 1914 (1961).
- 22) H. Zimmermann und N. Joop, Z. Elektrochem. <u>64</u>, 1215 (1960); ibid. <u>65</u>, 66, 138, 342 (1961).
- J.R. Platt, Radiation Biology. (A. Hollaender, Edit.) Vol. III, New York, 1956.
- 24) Die Symbole A bzw. B bedeuten symmetrisch bzw. antisymmetrisch bezüglich der zweizähligen Achse in C_{2h} (all-trans-Polyene) beziehungsweise der Spiegelebene in C_{2v} (Polyene mit einer zentralen cis-Bindung).
- 25) J. Merz und E. Heilbronner, in Vorbereitung.
- 26) D. Meuche, J. Merz und E. Heilbronner, in Vorbereitung.
- 27) H. Zimmermann und N. Joop, Z. Elektrochem. 64, 1219 (1960).
- 28) E.Kloser-Jensen, E.Kováts, A.Eschenmoser und E.Heilbronner, Helv. 39, 1052 (1956).

- 29) G. Naville, H. Strauss und E. Heilbronner, Helv. 43, 1222 (1960).
- 30) C.A.Coulson und R.Daudel, Dictionnaire des Grandeurs théoriques descriptives des molécules, Paris.
- 31) Darstellung < a, b > bedeutet bei Fixkommaprogrammen, dass bei einer Gesamtwortlänge von a+b Stellen a Ziffern vor und b Dezimalstellen nach dem Komma angegeben werden (xxxxxx eV in < 2,4 > ist als xx, xxxx eV zu lesen).
- 32) Verschwinden alle Kreuzterme mit Ψ_0 , d.h. ist $\varepsilon_0 = 0$ und $c_{0,0} = 1$, so wird die Liste (d) modifiziert, indem die Koeffizienten $c_{0,0}$ und alle $c_{0,JT}$ sowie die $c_{i,0} = 0$ (i=1, 2, ... 9) nicht geschrieben werden.

Lebenslauf

Am 1.4.1936 wurde ich in Stäfa geboren. Die Primarschule besuchte ich in Stäfa und Horgen, wo ich anschliessend die Sekundarschule absolvierte. 1951 trat ich in die Oberrealschule Zürich ein, die ich im Herbst 1955 mit dem Maturitätszeugnis (Typus C) abschloss. Im gleichen Jahr immatrikulierte ich mich an der Abteilung X für Naturwissenschaften an der Eidgenössischen Technischen Hochschule und erwarb 1959 das Diplom der chemisch-physikalischen Richtung. Seither arbeite ich im Laboratorium von Prof. Dr. V. Prelog unter der Leitung von Prof. Dr. E. Heilbronner unter anderem an der vorliegenden Promotionsarbeit.