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Introduction

The homotopy groups of topological spaces have been generalized by
Eckmann-Hilton to two-space homotopy groups IIn(X, Y) that contain

homotopy groups and cohomology groups (both with arbitrary coefficients)
as well as their exact sequences, as special cases; the classical homotopy and

cohomology are dual to each other in the sense of a simple (heuristic) duality
that consists in interchanging X and Y. Furthermore, there is, in the category
of modules over a ring — or more generally in any abelian category with

sufficiently many injectives and projectives — an analogous homotopy theory
and its dual (cf. Eckmann [1]); here, the duality is not only heuristic, as in the

category of spaces, but follows automatically. By the analogy in question, the

imbedding of a topological space X into the cone CX, for instance, corresponds
to the imbedding of a module X into an injective module X; the topological

suspension ZX = CXjX corresponds to the algebraic suspension UX = XjX;
and, in both categories, the homotopy groups may be defined with the aid of

iterated suspensions.
These two heuristic principles
(a) the duality in the category of spaces,

(b) the analogy between spaces and modules,
have much stimulated the development of the Eckmann-Hilton homotopy
theory. It will be shown in the present paper that these principles can be given
a theoretical foundation.

For this purpose, we shall develop a semisimplicial homotopy theory in the

framework of general categories, such that the homotopy theory of spaces and

the one of modules are included as special cases, as well as the homotopy theory
of maps of spaces, etc. Moreover, in all cases where this homotopy theory can

be defined, full duality is obtained automatically, from the general duality
principle in categories. Thereby, not only is a precise notion of the analogy
between the homotopy theories for modules and spaces achieved, but it is also

possible to simplify substantially some proofs. For instance, the exactness of

the homotopy sequences in the categories of modules, of spaces, of pairs of

*) This research was partly supported by the U. S. Department of Army through its

European Eesearch Office.
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modules, of pairs of spaces, of pairs of pairs, etc., may be established in one

and the same proof; and it is to be noted that this single proof gives, by strict

duality, both sides of the picture, e.g. the homotopy as well as the cohomology

sequences in the category of spaces.
Our main tool will be the semisimplicial standard construction, originally

devised by R. Godement [4] to generate flabby resolutions in the category
of sheaves. Since also the Hochschild homology theory of associative algebras
(cf. [4]) and, moreover, the whole theory of derived functors in the categories
of modules may be obtained with the aid of standard constructions, these turn

out to be one of the most powerful tools of homological and homotopical algebra.
The standard constructions may be considered as being a generalization

of the path space and cone constructions in topology. For instance, the triple
{E, k, p}, consisting of the path functor Ü7, of the natural fibre map k( Y) :E F-> Y

and of a hitherto scarcely noticed natural map p(Y): E Y -» EE Y, constitutes

a standard construction. Dually, the cone functor C, the natural imbedding
k(X): X-+ GX, and a certain map p(X): COX-> GX constitute a dual

standard construction.

Section 1 introduces the terminology to be used in this paper, section 2

contains the definition of the standard construction, and in section 3 the semi¬

simplicial complex associated with each standard construction is introduced,

together with a preliminary discussion of its Kan homotopy groups. In sectionö,
the homotopy groups in the categories of modules will be treated. To simplify
the pertinent proofs, large parts of them will be dealt with in the framework

of general categories (parts of section 3, and section 4). Section 6 discusses the

homotopy groups of topological spaces; section 7 contains, among other topics,
an interesting generalization of the singular complex of a space. In section 8,

the exactness of the homotopy sequence is proved for general categories.
Section 9 contains a treatment of fibrations and cofibrations; it turns out that

one may define the analogue, and establish the main properties, of the suspen¬

sion EX (the cofibre of k(X): X-> GX) and of the loop space QX (the fibre

of k( Y): E Y -> Y) in the framework of general categories.

The author is greatly indebted to Professor Eckmann for many hours of helpful and

stimulating discussions.

1. Categories and Functors

A category & consists of a non-empty class S? of objects X, Y, . .
., together

with sets Horn (X, Y) of morphisms u: X^> Y (X, Y £ ^), and of an associative

composition of morphisms o : Horn (X, Y) x Horn (Y, Z) ->• Horn (X, Z), (u, v) ->

-+vou, which has both-sided identities lx £ Hom(X, X).

A morphism u: X -> Y is an isomorphism if there exists a morphism
v: Y->X, such that no» and v o u are the respective identities. X and Y

then are said to be isomorphic.

An object 0 £ ^ is called a zero object if, for all X £ ®, the sets Horn (X, 0)
and Hom(0, X) consist of exactly one element 0XO and 0OX respectively. Two
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zero objects 0, 0' are always isomorphic, and we have 00 Y o 0Xo— ®o'y ° Qxo'-
If & has a zero object, then in each set Hom(X, Y) we have a distinguished

morphism 0 = QXY — 0oro 0XO, the zero morphism.
Let 5? and £ be arbitrary categories. A covariant functor F: 5? -> £ assigns

to each object X £S? an object .F(X) £ S, and to each morphism u: X -s- y

a morphism J'(m) : #(Z) -+F(Y), such that i^w o v)=F(u) o i^(«), and that

F(lx) = 1F(X). If both categories S? and £ contain a zero object, then we shall

mostly require that zero objects are preserved under F.

Let F, 0: $ -s- S. be covariant functors. A functor morphism (or natural

transformation) §:F -> G consists of a family of morphisms &(X):F(X) -> C? (X),
such that the following diagram is commutative for all objects X, y J? and

all morphisms u: X -> Y.

F(X) ^">—» J(7)

*OT 0(F)

ö(Z)—^—»-G(r)

The compositions F o G oi functors and #' o #" of functor morphisms are

denned in the obvious way. Mostly, we shall abbreviate FoG to FG. Each

functor morphism fr-.F-^G induces a morphism of the compositions of F and G

with covariant functors U, V:

U *&* V: UFV-> UGV
,

which is defined by (U * # * V) (X) = U(&(V(X))). If £7 (or V) is the identity
functor /, then we abbreviate U *& * F to # * F (or U *& respectively). The

identity morphism i: I -> / is defined by i (X) — lx', obviously, we have F * i

= i* F for any functor F.

For any category 5?, one defines the dual category S?', which consists of the

same objects as &; the set Horn' (X, Y) of morphisms X -> y in K' is identical

with the set Horn (Y, X) of morphisms Y -> X in 5?, and the composition of

two morphisms w, t> in W is defined as being the composition of v and u in

S:mo'c = !io«. Evidently, $' is a category, and we have ($?')' = 5?.

Thus, one may say that S? and S?' are the same things, being described in

two different languages; each statement S about the category J? may be trans¬

lated into a statement about $?', and vice versa. This seems quite trivial. Now

we consider a statement 8 about S?, which belongs to the theory of categories
(that means that S is composed only from logical terms and terms such as

"object", "morphism", etc., and thus makes sense in arbitrary categories); then

the same statement S makes sense in &', since S?' is a category. Hence, S in S?'

may be translated into a statement 8' about $; S' again belongs to the theory
of categories. These two statements S and S', both making sense in arbitrary

categories, are called dual to each other. It follows that, if S can be proved
from some axioms Ax, A2, . . .,

these axioms as well as the proof belonging to

the theory of categories, then the dual statement 8' can be proved from the

25*
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dual axioms A[, A'2, ....
This duality principle will be used extensively in the

sequel; mostly, however, it will be left to the reader to formulate the dual

definitions and theorems.

Sometimes, the explicit introduction of the dual category has not only
conceptual, but also technical advantages. For instance, a contravariant

functor F : S? -» £ is the same as a covariant functor F : ^' -» £ or F : & -+ £',
so that it suffices, at least in principle, to consider covariant functors only.
This works for S? = £, too; but if one tries to handle contravariant functors

with the aid of the duality principle, without introducing explicitly the dual

category, the case ^ = £ needs a rather awkward special treatment.

The following five formulas are valid for any covariant functors and any

functor morphisms, as soon as they make sense (cf. Godement [4], Appendice).

(I) (Uo F)*#= U*{V*&)

(II) &*(U o V) = (&* U)* V

(III) (U*&)*V=U*&*V=U*(&*V)

(IV) U * (§' o §") * V = (17 * &' * V) o {U * &" * V)

(V) (tp*G) o (U* q>) = (V* <p) o (y> * F)

for any two functor morphisms <p:F->G, ip: U -» V.

Rule (V) may be remembered with the aid of the commutative diagram:

UoF E1»L_* UoG

V*F v*a

VoF TH—+ VoG

2. Definition of the Standard Construction

Let 5? be an arbitrary category. A standard construction in ^ is a triple

{C, k, p}, consisting of a covariant functor G: $ -> &, and of two functor

morphisms lc: C-> I, p:C-> GC, such that the following two axioms (Gode¬
ment [4], Appendice) are satisfied:

(SCI) (Jc*C)op=--(C*k)op = i*C

(SC 2) (p * C) o p = (C * p) o p

Example. In any category, there exists the trivial standard construction

{/, i, i}, consisting of the identity functor and of the identity morphisms.
Each standard construction {C, k, p} generates a semisimplicial functor

that is, a sequence of functors Fn : ^ -> ^, together with face and degeneracy
morphisms

di:Fn^Fn_1

sin:Fn^Fn+l (0^i<n).
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F* is defined as follows. Let C° = I and C»+1 = CoC». Then

Fn = Gn+1

dln = Cl * k * C""1

sln = Gl *p* Gn~l.

Usually, we shall omit the lower indices of d%n and of s\.
Sometimes it is convenient to treat F_x = / separately, and to consider F^

as a semisimplicial functorF+ = (Fn, dl, s')n ^ 0
with augmentation d§ = k :F0-*I.

The face and degeneracy morphisms satisfy the usual semisimplicial
commutation rules:

(a) dld1 = d'~1di (i<j)

(b) sls' = s3+1sl (i^j)

(c) d*s' = s'-1dt (i<j)

(d) d's* = dt+1st = identity

(e) d,s1 = s3d%~1 (i>j+l).

This follows from (SC 1) and (SC 2) with the aid of the five rules at the end

of the previous section; in fact, (b) is equivalent to axiom (SC 2), and (d) is

equivalent to axiom (SC 1), whereas (a), (c) and (e) are valid in any case.

A dual standard construction is a triple {C, k, p} consisting of a covariant (!)
functor C: S? -> $, and of functor morphisms k: I -> C, p: CC -> C, such that

the axioms

(SC 1') po(k*C) = po(C*k) = i*C

(SK 2') po{p*C)=po(C*p)

are satisfied.

The duality principle implies that it suffices to consider only one kind of

standard construction, and then to dualize the results, if necessary. For

instance, it follows from duahty that the functor F* = (Fn, dl, sl) belonging to

a dual standard construction has a dual semisimplicial structure, i.e. the face

and degeneracy morphisms

dln:Fn~1->Fn

sln:Fn+1->Fn

go into the opposite direction and satisfy the relations dual to (a) —(e).

3. Homotopy Groups. T-trivial Constructions

If we apply the semisimplicial functor F* to an object Y £ $, we obtain

a semisimplicial object F+(Y) = (Fn(Y), dx{Y), «'(7))n^_i. One would like to

investigate the homotopy groups of F%(Y), but this is not possible in general,
since the Kan homotopy groups (cf. [7]) are defined only for semisimplicial
complexes, i.e. for semisimplicial objects in the category of sets. One could try
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to extend the definition of homotopy groups to more general categories —

similarly as homological algebra has been extended to abelian categories — but

here another way seems to be more promising: namely, to go over to an

ordinary semisimplicial complex with the aid of a functor T: ® -> 2ft with

values in the category of sets.

For instance, we may choose the functor Hom(X, ) of the category $,
with a fixed first argument X, to obtain a semisimplicial complex

Z* (X, Y) = Hom(X, F* (Y)) = (Hom(X, Fn(Y)), d\ s%a_,.

The Kan homotopy groups of Ä#(X, Y) will generalize the Eckmann-

Hilton groups.

If the objects of the category S? are sets, and if the morphisms u : X -> Y

are mappings of the set X into the set Y, and are composed in the natural way,

then we may choose, for instance, the functor T, which assigns to each object
its underlying set.

If $ contains a zero object and G preserves zero objects, then it is con¬

venient to choose for 371 the category of sets with base element, and to require
that T preserves zero objects. (The zero objects of 971 are those sets which are

reduced to the base element.) This assumption is verified for T = Hom(X, ).
The homotopy groups of TF# (Y) now may be defined in any of the usual

ways (cf. Kan [7]). First, we shall give a sufficient condition for them to be

trivial.

Definition 3.1. Let T: ^ ->- 921 be a covariant functor with values in the

category of sets. A standard construction {G, k, p) in 5? is called T-trivial if

there exists a functor morphism ft : 21 -> TG, such that

(T * k) o A = i * T
.

Example. The trivial construction {/, i, i} is ^-trivial for all T, with

A = t * T.

Theorem 3.2. Let {C, k, p} be a T-trivial standard construction. Then, the

semisimplicial complex TF% (Y) has the component set

7i0(TFi(Y)) = T(Y),

and each component has the homotopy groups

7in(TF+(Y)) = 0 (n>0).

Proof. We want to show that TF% (Y) is homotopy equivalent with the

complex L% defined by Ln = T(Y), d* = s* = identity. Obviously, L% is a Kan

complex, and the assertion of the theorem follows.

We recall the definition of the semisimplicial homotopy relation. Let P%,
Q% be arbitrary semisimplicial complexes. Two semisimplicial maps

/, g: P% -> Q% are homotopic (Moobe [10]) if and only if there exist functions

hn ' "n~* W»-n (O^i^n),
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such that

(1) < + 1h°n = 9«

(2) dl%\K = fn

(3) diW=h'~1di (i<j)

(4) d'+1V+1 = d'+W

(5) d'h1 = Vd*-1 (i >j + 1)

(6) sihi=hi+1si (i^j)

(7) sihi = h'si~1 (i >j) .

Now, we shall define a homotopy h\ between the identity map TF% (Y) -»

-> TF% (Y) and a map /, which is a retraction map to a subcomplex isomorphic
with L%. To simplify the notation, we shall write dln. s\ instead of T(dln{Y))
and of T(sln (Y)); the argument Y will be omitted in some other cases, too.

We define

jlo = h*Cn+1, (n^-1)

hi=(s°)iK-i(d°)i, (0^i<n).

h% verifies the following relations:

(A) d°+1A° = identity (ra^-1)

(B) #Vl*2 = *2-l4 (»^0)

(C) 4t++\^ = K+A (n3=0).

Proof.

(A) d°
+ 1h% =(T*k* Cn+l) o (A * 0"+!) = (T * fc o A) * C+1 = identity

(B) <ViÄ2 = T * (C+1 * * * C»-<) o A * 0+1

= ((TC * (C< * k)) o (A * Ci+1)) * C»-*

= ((A * C) o (T * (C* * k))) * Cn~l

— nn — lan

(C) si\\hl =T* (C+1 * p * Cn-') o A * 0 + 1

= (TC *(C'*p)oh* C* + 1) * C"-j

= ((A * C!'+2) o (21 * (C* * p))) * C»-*

= hn + 1sn .

The relations (1)—(7) now follow from (A)—(C) by a straightforward calcula¬

tion, which will be left to the reader. It turns out that / is the semisimplicia]
map defined by

/» = («°)"A(dO)» + i,

and that we have

(8) // = d*s*f = s{d'f = / .
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In particular, we have /„ = hd°, and hence, hd°f0 = /„. Since d°h = identity,
it follows that d° induces a 1 - 1 map of f0(TF0(Y)) onto T(Y). It follows by
induction that f(TF~$.(Yj) is isomorphic with the complex L%.

Furthermore, (8) implies that

f:TFi(Y)^L$cTFi(Y)

is a retraction map. Since / is homotopic to the identity map, it follows that

TF+ (Y) and L+ have the same homotopy type.
The above homotopy A^ need not be a deformation retraction (cf.

Moore [10]); but this is true if and only if we have

(T*p)oh=(h*C)oh.

Since we shall not need this result, the proof is omitted.

In the case of a T-trivial construction, the augmentation d°: TF0(Y) ->

-> T(Y) is epimorphic, since d°h = identity. Since the diagram

TF0(Y)-^-*T(Y)
U\ lid.

TF0(Y)-^T(Y)

is commutative, theorem 3.2 implies that TF,f.(Y) is the disjoint union of

components K^ defined by

Z%>= {&)-("+» (y), y£T{Y).

Usually, the homotopy sets are denned only for non-augmented semi-

simplicial complexes. However, sometimes it is useful to extend the definitions

to the augmented case, especially if semisimplicial groups are involved. More

generally, let K* be a semisimplicial object in a category of sets with base

element, satisfying the Kan condition. Then, according to Kan [7], one defines

7tn{K%), n Sg 0 as being the set of equivalence classes of

rn = {a Kn | fflo = 0 for all i} ,

modulo the homotopy relation ~.

This definition carries over to the augmented case without any change;
the above remarks and theorem 3.2 then imply that, in the case of a T-trivial

construction, the homotopy of TF%{Y) is trivial in all dimensions n ^ 0.

We do not define (— 1)-dimensional homotopy.

4. Induced Standard Constructions

Let ® and £ be arbitrary categories which are connected by a pair of

covariant functors F and Q:

F:®-+2, G:&->®.

Then, each functor C : ® -»- ® induces a functor C = FOG: £-> £.
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Now, we want to show that a standard construction {C, k, p} in the cate¬

gory $? induces a standard construction {C, k, p} in S, if F and G are adjoint
functors. First, we need a theorem on adjoint functors.

Theorem 4.1. Let F : X?-5- 2, G: £ -^5? be covariant functors. The following
two assertions are equivalent:

(a) There exists an isomorphism, of functors

y:Rom(F, )->Hom( ,G),

i.e., F and G are adjoint functors in the sense of Kan [8]. Usually, we shall

identify YLora(FX, F) = B.om(X, GY) by y.

(b) There exist two functor morphisms

C-.I-+GF

7]-.FG^I
which satisfy the relations

(r]*F)o (F * C) = 1 * F: F -+ FGF -> F

(G * rj) o (C * G) = 1 * G: G -> GFG -> G
.

Proof, (b) -» (a). We define

y : Hom(FX, Y) -*- Hom(X, G Y)

ß: Hom(Z, GY)^ Hom^X, Y)

by y(u) = G(u) o f (Z), ß(v) = rj(Y)o F{v).
The diagram

FX^^FGFXF-^FGY

(i'JXX)

Y

is commutative. Thus

r){Y) o FG(u) o(F*C)(X) = rj(Y)o F(G(u) o £(X)) = u ;

therefore, we have ß o y = identity. In the same way, one obtains y o ß
= identity. We have further to show that y is natural with respect to X and F,
i.e. that the diagram

Hom^X, F)^^-Hom(.FX', Y')

Horn (X, G Y) ^±+ Horn (X', G Y')

is commutative for all morphisms v: X' -> X, w: Y -> F', or, equivalently,
that we have

G(w) o y{u) o v= y(w o u o i^(v))

for all morphisms u: FX -> F. But this follows immediately from the definition

of y.
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(a) -> (b). We define f and r\ by

C(X) = y(lFX), v^) = Y-1dar)-

First, we show that f and rj are functor morphisms, i.e. that we have

£{X)ov = GF(v)o£(X')
and

r}(X) o FG(v) = v o rj(X'),

for all morphisms v : X' -> X. We have

H{X)ov=y(\FX)ov=y(F(v)),
and

GF(v) O £(X') = GF(v) O y(l,x.) = y(F(»)) ,

which proves the first assertion; the proof for t] is dual.

Furthermore, we have

G(r](Y)) o £(G(Y)) = G(y^(lGr)) o y{\F0Y) = y(r1der) o l,or) = 1BT

and

»^(X)) oJ(C(I))= y-Mlejx) oF(y(lFX)) = y-l{y(y-HlGFx)) o

0 7(W)) = 1h,
which proves (b).

Theorem 4.2. Z^ F: S? -> £, G(:£->^ &e covariant adjoint functors, such

that we may identify TIom(FX, Y) = TIom(X,GY). Then, each standard

construction {G, k, p} in fä induces a standard construction {G, k, p} in S, namely

(using the notations of theorem 4.1):

G = FCG

Tc = rjo{F*k*G)

p = F*((C*t*G)op)*G.

Proof. We have to verify the axioms (SC 1) and (SC 2). With the aid of

the rules (I)—(V) of section 1, and of the fact that (SC 1) is satisfied by the

construction {C, k, p}, we obtain

(k*C)op={r]oF*k*G)*FCGoF*(C*£*Cop)*G
= tj* FCG oF*(k*GFoC*£)*CGoF*p*G

= rj* FGG oF*(Cok)*CGoF*p*G

= r]* FCG oF*{C*Gok*Cop)*G

= (r)*FoF*C)*CG

(G * k) o p = FGG * (rj o F * k * G) o F * (G * £ * G o p) * G

= FCG *rjoFC*(GF*ko£*C)*GoF*p*G
= FCG *rjoFC*(Cok)*GoF*p*G
= FG*(G*r]oC*G)oF*(C*kop)*G
= FC*(G*r]c£*G).
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If, in addition, the assumptions of theorem 4.1 (b) are satisfied, then both

expressions are equal to i * FCG; hence, (SC 1) is valid. Since (SC 2) is satisfied

by the construction {C, k, p}, we obtain

(p * C) o p~ = F * (C * £ * C o p) * G * FCG o F * (C * C * C o p) * G

= F*(C*£* CGFC op* GFC oC*C*Cop)*G

= F*(C*£* CGFC o (p * GF o C * £) * C o p) * G

= F*(C*£* CGFC o (CC *£;op)*Cop)*G
= F*(C*(£* CGF oC*Q*Cop*Cop)*G
= FC* (GFC *£o£*C)*CGoF*(p*Cop)*G

(C *p)op = FCG*F* (C*£*Cop)*GoF*(C*£*Cop)*G

= F* (CGFC *£*CoC*(GF*po£*C)op)*G

= F * (CGFC *£*CoC*(£*CCop)op)*G
= F* (CGFC *£*CoC*£*CCoC*pop)*G

= FC * (GFC *£oC*C)*CGoF*(p*Cop)*G

Hence, (SC 2) is satisfied by the construction {C, k, p}, too.

By dualizing either in S? or in 2, or in both categories, we obtain three

additional types of induced constructions; an example will occur in section 5.2.

If {C, k, p} is the trivial standard construction, then the induced con¬

struction {C, k, p] is not necessarily trivial (cf. section 5.1). ^-triviality,

however, is hereditary in some sense:

Theorem 4.3. Let {C, k, p} be a T-trivial standard construction in ^, and let

F: S? -> 2, G : 2 -»- S? be adjoint functors. Then, the induced construction {C, k, p}
in 2 is T-trivial, with T = TG andh~= (T * £ * CG) o (h * G).

Proof. (T*k)oh~=TG*(r]oF*k*G)oT*£*CGoh*G
= TG*7]o(T* (GF *ko£*G)oh)*G
= TG * 7] o (T * (f o k) o h) * G

= T*(G*r]o£*G) = i*TG=t*T.

5. Examples of Induced Constructions

5.1. The projective homotopy groups of modules. Let 271 be the category of

sets with base element, and let 2 be the category of unitary left /l-modules

over a ring A with unit element. We define two functors F :'3R-+ 2, G: £ -* 2ft

as follows. F assigns to a set X the free module over X, with the only relation:

base element = 0; G assigns to each module its underlying set, with the zero

element as base element. We have a natural identification

Hom^X, Y) = Hom(X, G Y), (X £ m, Y £ 2);

hence, these two functors are adjoint. The trivial standard construction {/, i, i}
in 9ft induces a standard construction {C, k, p} in 2:

C = FG

k = r):FG->I

p = F*C*G:FG^ FGFG.
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Obviously, the semisimplicial module complex F£(Y) belonging to this

construction consists of free modules. Theorem 4.3 implies that {C, k, p} is

G-trivial, and theorem 3.2 and the remarks at the end of section 3 imply that

GFx (Y) and F„, (Y) have trivial homotopy groups.

J. C. Moobe has proved that the homotopy groups of a semisimplicial
abelian group complex (Kn, dl, sl) are eanonically isomorphic with the homology
groups of the chain complex (Kn, 3 = 27(— l)lcP) (Moore [10]; obviously,
the theorem remains true for augmented complexes).

Therefore, the chain complex (F^(Y), d) is a free, a fortiori projective,
resolution of Y.

Theorem 5.1. The Kan homotopy groups of the semisimplicial abelian group

complex

Kt (X, Y) = Hom(X, F* (Y)), (X, Y £ fi)

are eanonically isomorphic with the Bckmann-Hilton projective homotopy groups

nn (X* (X, Y)) = IIn +1 (X, Y) (n^O).

Proof. An application of Moore's theorem yields that the homotopy groups

nn(K%(X, Y)) are isomorphic with the homology groups of K+{X, Y), this

latter being considered as a chain complex with differentiation 3 = 27 (— 1)'<£'.
These homology groups are, by definition, the Eckmann-Hilton homotopy
groups — with a trivial shift of dimensions. (Since the (— 1)-dimensional Kan

homotopy groups are not defined, we may obtain II0(X, Y) as (— ^-dimen¬
sional homology group of K% (X, Y), but not as homotopy group).

Of course, one may use F* (Y) to obtain a "semisimplicial" definition of the

functors Ext and Tor, and of other derived functors; Godement has given a

similar definition of sheaf cohomology.
Now, we proceed to an explicit description of the construction {C, k, p}

and of the associated semisimplicial module complexF%(Y).

F^Y) = 7 is the module to be resolved. F0(Y) = O(Y) is the free left

A-module generated by the elements («/), y £ Y, with the single relation (0)= 0.

F1(Y) = C(C{Yj) is therefore generated by the elements

<M(Vi> + ^ Am(ymy)> h £A,yi£ Y, etc.

It suffices to define k (Y) and p (Y) on the generators of C (Y):

k(Y):(y)^y

2>m :<?>-*«»»•

Hence, dln(Y): Fn(Y)^-Fn_1(Y) acts on the elements of Fn(Y) by cancelling
the bracket number (*' + 1), sln (Y): F„ (Y) -> Fn +1 (Y) by doubling the bracket

number (i + 1), if the numbering of the brackets starts from outside.

Remark. The above procedure may be generalized to any arbitrary Abelian

category admitting a projective generator and infinite direct sums. (For the

notion of generator, see [5].)
5.2. The infective homotopy groups of modules. Let S. be the category of

left yl-modules, and 9t the category of right A-modules. We define two functors

17: 9*-^ £, V:2^<X as follows.
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Let Qx be the additive group of the rational numbers modulo the integers
(or, more generally, any divisible group containing this group). For each right
/1-module X, we define the left yl-module

U(X) = X' = Homz(X,Q1),

the module structure being induced by

(Xcp) (x) = cp(xX) .

Similarly, we define for each left /l-module Y a right /1-module

V(Y)=Y' = Komz(Y,Q1).

Since we have a natural identification

Hom^(X, T) = Horn (Y,X'), by <p(x) (y) = y,(y) (x),

these two contravariant functors U, V are adjoint.
The homomorphisms f:X -> X" and rj'. Y -> Y" are the natural imbeddings

into the "bidual" modules. The standard construction {C, k, p} of 5.1 induces

a dual standard construction {G, 1c, p} in 9^, which we shall investigate now.

First, we need some propositions concerning the functors U and V. Since they
are valid for both functors, we prefer the notation with primes: X', Y'.

Proposition 5.2. // X is A-projective, the X' is A-injective.
Proof. We shall treat only the case where X is a left /1-module. We have to

show that for each exact sequence of right yl-modules

0->A-+B,

the induced sequence

Horn,! {B, X') -> Hom^ (A, X') -> 0

is exact.

Since X is /l-projective, the sequence

0->A <s> X-^ B ® X
A A

is exact; since QT is 2-injective, it follows that the sequence

Homz{B ® X, Qj) -+ Homz(J ® X, Qx) -> 0
A A

is exact. The assertion now follows by an application of the associativity
formulas:

Homz(i? <g> X, QJ = ~RomA(B, Homz(Z, QJ), etc.
A

Proposition 5.3. // one of the sequences

A^B^C

is exact, the other is exact, too.

Proof. If the first sequence is exact, then the second is exact, since

Homz( , Qx) is an exact functor. Therefore, we assume that the first sequence
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is not exact; this means either that there is an element x£A, such that

vux 4= 0, or that there is a y £ Ker«, such that y $ Im«. In the first case, let

Gvux be the cyclic subgroup of C, generated by vux (C being considered as a

Z-module). Since Q1 contains cyclic subgroups of any finite order, there exists

a Z-homomorphism <p': Gvux^- Qlt which does not map vux onto zero. Since

Qx is Z-injective, <p' may be extended to a Z-homomorphism tp: G -> Q±. But

then we have (u*v* cp) (x) = <p(vux) 4= 0; thus, u*v* <p 4= 0, and the second

sequence is not exact. In the second case, let Hy be the cyclic subgroup of

BI(Imu), which is generated by yl(Imu). Here, too, there exists a .Z-homo-

morphism ip': Hv -> Qlt which does not map y onto zero. y>' may be extended

to a Z-homomorphism \p: B -> Qv tp maps Imw onto 0, and is therefore in the

kernel of it*. On the other hand, y>(y) 4= 0; thus, y> is not in the image of v*,

and hence the second sequence is not exact.

Now, let F* be the semisimplicial functor generated by {G, k, p}. We shall

show that the cochain complex

{Ft(X), 9} = {F"(X), d = Z(- l)*d%zo

is an injective resolution of X.

Proposition 5.2 implies that G=VCU assigns to each module X an

injective module (C(X'))'; hence, the modules Fn(X) are injective for n ^ 0.

Theorem 4.3 implies that the construction {G, k, p} is GU-trivial, since {C,k,p}
is C?-trivial. Therefore, the semisimplicial complexes Gr(f7(J7*(X))) and

U(F*(X)) have trivial homotopy groups, and the chain complex !jJ(F*(X)),d)
has trivial homology groups. Proposition 5.3 now implies that (F* (X), 3) has

trivial cohomology groups (here, use is made of the fact that U is an additive

functor). As in 5.1, we have

Theorem 5.4. The Kan homotopy groups of the semisimplicial abelian group

complex

E*{X, F) = Hom(^*(Z), 7)

are canonically isomorphic with the Eckmann-Hilton injective homotopy groups

jin(Rt(X, Y)) = nn +1 (X, Y) NO).

As in 5.1, IT0(X, Y) may be obtained as (— l)-dimensional homology group of

the chain complex, but not as Kan homotopy group.

6. The Topological Cone Construction

Let S? be the category of topological spaces with basepoint, Hom(X, Y)

being the set of basepoint preserving continuous maps X -> Y, with the natural

rule of composition. We shall define a dual standard construction {C, k, p} in ^.

The functor C is the cone construction:

GX = [0, 1] x X/{0} x X w [0,1] x {0} ,

[0, 1] denoting the real interval 0 g£ t sS 1, with the point 0 as basepoint.
k(X): X -> CX is the natural imbedding of X into the base of the cone,

defined by k(X) {x) = (l,x).
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p(X): OCX-+ CX is defined by p(X) (t0, tx, x) = (t0tv x).

First, we have to verify some points:

(1) p is compatible with the identifications being made in [0, 1] x [0,1] x X

to get the space OCX:

p(X) (0, tlt x) = p(X) (t0, 0, x) = p(X) (t0, tv 0) = 0
.

(2) k and p are functor morphisms; this is obvious.

(3) Axiom (SC 1') is valid, since

p(X) o k[CX): (t, x) -> (1, t, x) -+ (t, x)

p(X) o C(k(X)) : (t, x) -> (t, 1, x) -> (t, x) .

(4) Axiom (SC 2') is valid, since

p(X) o p(CX) : (t0, tt, t2, x) -> {t0tlt t2, x) -> (tatJz, x)

p(X) o C(p(X)) : (t0, tx, t2, x) -> (t0, t^, x) -> {Wz, x) .

Thus, the axioms (SC 1') and (SC 2') essentially express the fact that the real

interval [0, 1] is a multiplicative monoid.

The dual semisimplicial functor F* assigns to each topological space X a

sequence of topological spaces

F°(X) = CX, Fi{X) = CCX,...

together with continuous face and degeneracy operators. K%(X, Y)
= Kom(F*(X), Y), then, is an ordinary semisimplicial complex.

Theorem 6.1. The Kan homotopy groups of the semisimplicial complex

K% (X, Y) are canonically isomorphic with the Eckmann-Hilton homotopy groups

nn (K* (X, Y)) = nn +1 (X, Y) (n^0).

(For n = 0, only the right hand side carries a group structure.)
Proof. (1) First, one shows that K%(X, Y) satisfies the Kan condition.

This is an almost immediate consequence of the fact that the union of all faces,

except one, of an w-cube is a retract of this cube.

(2) In each set Kn{X, Y), the zero map 0: Cn+1X-> Y is distinguished.
The sets

r„ = {a £ Kn | d'o = 0 for all i}, (n ^ 0)

consist of those and only those maps a: Gn+1X -> Y which may be factored

through the (n + l)-fold suspension Zn+1X, q being the canonical map of

Cn+1X onto Zn+lX:

Gn+1X——*In+1X

Thus, we may identify r„ = Hom(2'n+1X, Y), (n ^ 0).
If we take the non-augmented complex K£ (X, Y), this description is valid

only for n >0. For n = 0, we have ro = KÜ(X, Y), since then in Ka no face

operator is defined.
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(3) The Kan homotopy sets are defined as the sets of equivalence classes

of rn modulo the semisimplicial homotopy relation:

Jtn(K^X,T)) = rnl~.

First, we shall investigate roj~ for the non-augmented case. Let a, x be

O-simplexes. a and x are semisimplicially homotopic if and only if there exists

a 1-simplex q, such that d°Q = a, (Pq = x. Therefore, we have maps

<t,t: [0, 1] xX-> T

q: [0, 1] x[0, 1] xI-> Y

satisfying
a(0, x) = a(t, 0) = t(0, x) = x(t, 0) = 0

q(0, tlt x) = Q(t0, 0, x) = Q(t0, tlt 0) = 0

q(1, t, x) = a(t, x)

q(t, 1, x) = x(t, x) .

The last two equations imply that a and x coincide on the base of the cone:

ct(1, x) = t(1, x).

q determines an ordinary homotopy &t of the maps a and x by

0t(s, x) = 0(t, s,x) = q(s+ t(l - s), s/(s + f (I - *)), x), (t, s) 4= (0, 0)

0(0, 0, x) = 0
.

Then, we have

0o(s, x) = q(s, 1, x)=r(s, x)

0x1s, x) = q(\, s, x) = a(s, x)

0,(0, x) = 0t(s, 0) = 0

0t(\, x) = q(\, 1, x) = ff(l, x) = t(1, a;) .

We shall see presently that 0 is continuous; thus, <Z>e is a basepoint-
preserving homotopy, which, in addition, leaves the base of the cone pointwise
fixed. Continuity of 0 at (0, 0, a;) may be proved as follows. Let U be an open

neighborhood of 0 £ Y. For each s £ [0. 1 ].we choose a cubic open neighborhood
V(s)= V0(s) x V^s) x V2(s) of the point (0, s, x), such that q(V(s))C U.

The sets V± (s) constitute an open cover of the compact interval [0, 1 ]; we may
choose a finite subcover F1(s1), . . ., V1(sm). We put

V0= ry V0(s{), V2= o F,(«,).

Then, we have q(V0 x [0, 1] x F2) C U, and continuity of ^ follows.

Conversely, if 0t is a homotopy of two maps a, x : CX -> Y satisfying the

above relations, then we may construct a semisimplicial homotopy by putting

q(u, v, x) = 0(u(\ — v)\(\ — uv), uv, x), (u, v) 4= (1,1),

q(\, 1, x) = 0(t, 1, x) = ct(1, x) = t(1, x) .

The 1-simplex g then gives the desired homotopy. The continuity of q may be

shown by a proof similar to that above for the continuity of 0.
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Hence, two O-simplexes a, x: OX-*- Y are semisimplicially nomotopic if

and only if the corresponding maps

(a) agree on the base of the cone, and

(b) are homotopic in the ordinary sense relative to the base of the cone.

In the case of the augmented complex, this may be simplified, since then

all simplexes of ro map the base of the cone onto 0. Therefore, we have then

7i0(K*{X,Y))=II(ZX,Y).
rj~, n >0, may be treated similarly. Two simplexes a,x £Tn are homo-

topic if there is a (n + l)-simplex q, such that dnQ = a, dn+1Q = x, and d*Q = 0,

i< n.

But now the bases of the various cones will be mapped onto the basepoint
of Y in any case; hence, we obtain for both the augmented and the non-

augmented complex:
Two w-simplexes a, x £-TM, n >0, are semisimplicially homotopic if and

only if the corresponding maps

a,x:In+1X-> Y

are homotopic in the ordinary sense. Therefore, the sets

nn(K+(X, Y)) and IIn+1(X, 7), n > 0
,

may be identified canonically.

(4) It remains to show that this canonical identification induces an iso¬

morphism of the group structures. This may be proved easiest by using the

fact that the group structure in nn(K+(X, Y)), n Sj 1, is natural with respect
to X and Y, If this group structure is carried over to IIn+1(X, Y) with the aid

of the canonical identification, we obtain a natural group structure in this

latter set; but, according to Hilton [6], the natural group structure of

IJn+1(X, Y) is uniquely determined for n >0. For n = 0, we have no group

structure in n0(K+(X, Y)).
Remark. The above semisimplicial definition of homotopy groups of two

spaces X, Y has a small flaw: it does not give us the set II (X, Y); and IJ^ (X, Y)
is obtained only without its group structure. This may be remedied as follows.

We replace the dual semisimplicial object F* (X) by the subobject F* (X)

consisting of the subspaces

$«(X) = {(t0, ...,tn,x) £F*(X) | t0h . . . t. =4]
with the induced face and degeneracy operators.

Fn (X) may be identified with the space

An x XjAn x {0},

where An is the Euclidean «-simplex, the face and degeneracy operators being
the usual ones. By taking logarithms, st= — log(iä)/log(2), we obtain the usual

parametrization of An, too: Zst= 1, st^ 0.

We put

Kt(X, Y) = Hom(i?*(Z), 7) = {Kom(P«{X), 7), d\ s%^0 .

Math. Ann. 144 26
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Theorem 6.2. The Kan homotopy groups of jS^X, Y) are canonically iso¬

morphic with the Eckmann-Hilton homotopy groups:

nn(£,(X, 7)) =nn(X,Y), (»=£<)),

and, if X = S0 is the 0-sphere, then K%(X, Y) may be identified with the singular

complex of Y.

Proof. Let rn be the set of w-simplexes of R%{X, Y) having faces d'a = 0

for all i. rn may be identified with the set of continuous maps

a: An x X -* Y

having the property

a(AnxX\jAnx{0}) = 0.

Therefore, after choosing suitable homeomorphisms, we may identify Fn with

the set of basepoint-preserving maps

2>X-> Y
.

If two simplexes a,x £ j
„
are semisimplicially homotopie, then there exists

a (n + l)-simplex q, such that

dnQ = a, dn+1o = r, d{Q = 0 (*< n) .

As above, one defines an ordinary homotopy @t between the maps a and t by

putting

0t(to, . . ., *„_!, S, X) = Q[t0, . . ., «„_!, S+t{l- S), 8l(s + t(l - «)), x) .

Of course, &t is defined only on the surface t^ . . . f„_1 s = -^-l .

Conversely, each ordinary homotopy 0t defines a semisimplicial homotopy,
as above.

The last part of the theorem is obvious.

7. Adjoint Constructions

Let us assume that the functor C in a dual standard construction {C, k, p)
admits a right adjoint E. In other words, we have a natural equivalence

y : Horn (OX, Y) -> Hom(X, E Y) .

Then, the functor morphisms k and p admit adjoint morphisms k' and p'

respectively, satisfying the axioms (SCI) and (SC 2); thus, {E, k', p'} is a

standard construction, k! and p' are defined by

k'(X) = y-i(lEX)ok(EX)

p'(X) = y{y(y-i(lEX)op(EX))).
The somewhat lengthy verification of the axioms will be omitted. It follows that

E generates a semisimplicial functor F#, which is adjoint to the functor F*

belonging to C; in fact, y induces an isomorphism of the semisimplicial com¬

plexes

Horn(F* (X), Y) -> Horn (X, F*(Y)) .

For instance, the topological cone construction C admits a right adjoint E:

the path functor (E Y is the space of paths beginning in the basepoint of Y,
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topologized by the compact-open topology). It follows that we obtain the same

homotopy groups by "resolving" either X by cone constructions, or Y by path

space constructions.

By the way, the above use of the word "resolve" is not quite correct and

should better be avoided. If, for instance, the space Y is a topological abelian

group, then the complex F£, generated by path space constructions, is a semi¬

simplicial topological abelian group complex. The associated chain complex

(obtained by putting 3 = E{— 1)*«!*); however, is by no means a resolution of the

group Y; its homology groups are, essentially, the homotopy groups of the

space Y.

The modified semisimplicial complex R%(X, Y) admits a very interesting
interpretation using adjointness. The right adjoint functor F* of F* assigns to

each space its singular complex, topologized by the compact-open topology.
More precisely, F%( Y) consists of the spaces

Fn(Y) = MaV(An, Y),

where Map(Zln, Y) denotes the set of (not necessarily basepoint-preserving)
continuous maps A n

-> Y, topologized by the compact-open topology, and having
the constant map /!„-> 0 as basepoint.

Then, the natural identification

y : Hom(Zl„ x X\An x {0}, Y) = Hom(Z, Map(zl„, Y))

induces an isomorphism of the semisimplicial complexes Hom.(F*(X), Y) and

Hom(J£, F„.(Y)), which proves the adjointness of F* and F%.
Thus, R* (X, Y) may be interpreted as being the set of basepoint-preserving

continuous maps of X into the topologized singular complex of Y.

If X is a Hausdorff fc-space (Kelley [9], p. 230), then wemay still go further.

Let Map'(-X", Y) be the subset of Map(X, Y), consisting of the basepoint-

preserving maps. Then, the identification

Map'(Jf, Map(zln, Y)) = Map(Jn, Map'(X, Y))

(Eckmann and Huber [3]) implies that R*(X, Y) may be identified with the

singular complex of Map'(Jf, Y). This applies to a rather large class of spaces,

since all Hausdorff spaces, which are either CW-complexes or locally compact,
or satisfy the first axiom of countability, are ^-spaces.

8. The Category of Pairs. Exact Sequences

Let S? be any category. Then, the category of fairs (or category of morphisms)
^3(S?), or simply <•$, is defined as follows. The objects u, v of 9ß are the mor¬

phisms of S?; the morphisms 0 : u -> v of ^3 are those pairs (<p±, <j92) of morphisms
of S? which make the diagram

U V

26*
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commutative. The composition of morphisms in 'jp is defined in the obvious way.

Each standard construction {C, k, p} in ® defines a standard construction

{C',k',p'}m%bj
C'(u) = C{u)

C'{cPl,<p2) = (C{n),C{<pj)

k'(u)=(k(X1),k(X2))

p'(u) = (p(X1),p(X2)).

It is easy to verify the axioms (SC 1) and (SC 2); since no confusion is

possible, we shall omit the strokes at C", k' and p' from now on.

These constructions allow the introduction of the semisimplicial complexes
K* (X, Y) and K% (u, v) in J? and ty respectively, and the definition of homotopy
groups

nn{X, Y) = nn(K^(X, Y)), and nn{u, v) = 7tn(K%{u, v)) .

It should be noted that the dimensional notation is practically forced on us

by the semisimplicial structure and does not quite agree with that introduced

by Eckmann and Hilton.

From now on, we shall suppose that the following two conditions are

satisfied:

(A) The category $ contains a zero object 0, and G preserves zero objects.

Obviously, ty then contains a zero object, too.

(B) The complexes K%(X, Y) and K%(u, v) satisfy the Kan condition for

all X, Y, u, v.

It is not known to the author whether (B) is really necessary; perhaps one

might avoid it by using Kan's functor Ex°°.

Now, we want to relate pair homotopy groups tz„ (u, v) with absolute groups

nn(X, Y). Obviously, we have for any v : Yx -> Y2

K*(Qox,v) = K*{X,Y2)

K*(0xo,v) = K*(X, *i).

Therefore, we may identify the corresponding homotopy groups.

Let u: X1->X2 be an object of "^3. The morphisms <x = (0OXl, lx2) an(i

ß = (Ooo; u) induce semisimplicial maps

By using the above identifications and choosing v = k (Y), we obtain the

following sequence of homotopy groups and natural group homomorphisms

nn(u, k{Y))—-+nn(X2, Y)—-jcn(X1, Y).

Theorem 8.1. There exists a -natural boundary homomorphism d, which turns

this sequence into an exact sequence

^7in(u,k{Y))^nn(Xi,Y)-^7iAX1,7)-L+7tn-l(u,k(Y))J!L*---
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Proof, 3 may be defined as follows. Let the morphism

tp:X1-+C*+1Y

be a representative of the class [99] ^^„(X1; Y); then, ^'99 = 0 for all i.

3 [99] now is defined as being the class of (93, 0):

X1—--+Cn(CY)

u C«(k(Y)) = d«

X2—?—*CnY
We have to show

(1) 3 depends only on the class [9?].
Let 99 ~ 99', then there exists a (n + l)-simplex rj, such that d°rj — q>,

dxr) = 9/, dirj = 0 (* > 1); (rj, 0) then defines a homotopy between (9?, 0) and

(9/, 0). (Here we use the fact that we obtain the same homotopy relation by

taking the first or the last face operators.)

(2) 3 is natural; this is obvious.

(3) 3 is a group homomorphism. Let n Sg 2, and let [#] = [93] + [y>], the

sum being defined by a (n + l)-simplex rj;d°r] = tp, d1^ = %, d?r) = cp, dlrj = 0

(i >2). The simplex (rj, 0) then yields [#, 0] = [93, 0] + [y>, 0].

(4) /9*a* = 0.

The semisimplicial map j3*a* : K*(u, fc(Y))-> K^(Xl3 Y) may be factored

through K*(lXi, k(Yj). This complex has trivial homotopy: let (99, y) 6

£ Kn (1^,, k(F)) be a representative of some homotopy class. Then, the (n +1 )-

simplex (sn+1 93, <p) defines a homotopy (93, y>) ~ (0, 0).

(5) 3/3* = 0.

Let cp be a representative of a homotopy class of 7zn(X2, Y). Then, 3/3* [9?]
= [<pu, 0], and the desired homotopy (q>u, 0) = (0, 0) is furnished by (sn cpu, 93).

(6) a* 3 = 0; this is obvious.

(7) Let ß* [99] = 0. Since ß* [99] = [99«], there exists a rj, with dn+1rj= <pu,

d'rj — 0 (i< n + 1). Then, a* [rj, 99] = [99].
(8) Let 3[99] = 0. Then we have a w-simplex (rj, &), such that dn+1rj = $w,

dn(rj, #) = (93, 0), dl(rj, &) = (0, 0) for i< n. It follows that &u ~ 99; hence,

(9) Let a* [99, y] = 0. Then we have a 77, such that dn+1rj = y), dlrj = 0

(i< n + 1). Now, consider the n + 2 (w + l)-simplexes at = Q (0 SJ i< n),

a„+1 = 9p, a„ + 2
= rju. By the Kan condition, we may find a (w + 2)-simplex a,

such that c^'ct = at (i 4= w). Then, the simplex (a, 77) defines a homotopy

(99, y) ~ (dna, 0); thus, 3[dn<r] = [99, y>].
This rather simple proof of the exactness of the homotopy sequence has

several great advantages, as compared with the proofs given previously by
Eckmann and Hilton :

(1) It is dualizable.

(2) It is valid in the category of modules as well as in the category of

topological spaces.
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(3) It is valid in the categories of pairs, of pairs of pairs, etc., of modules and

spaces respectively, since it is easy to verify that the respective semisimplicial

complexes satisfy the Kan condition.

9. Fibrations and Cofibrations in General Categories

It is even possible to introduce the notion of fibration and cofibration in

general categories with the aid of a standard construction.

First, we define the kernel and the cokernel of a morphism. Let S? be a

category containing a zero object, and let u: X -> Y be a morphism. A pair

(U, j) consisting of an object U and of a morphism j: U -> X is called a kernel

of u, if

(1) u o j = 0, and

(2) for each Z £ ^ and each v : Z ->• X with u o v = 0 there exists one and

only one morphism w : Z -> U, so that j o w = v

Ü-1—*X^^—Y

Obviously, (U, j) is uniquely determined up to equivalence, and j is a mono-

morphism (i.e., j o w = j o w' implies w = w'). By abuse of language, we shall

denote the object U as kernel and omit /.
The definition of the cokernel of u is dual.

Let 5? be a category containing a zero object, and let {C, k, p} be a standard

construction in ^, generating a semisimplicial functor F% and semisimplicial
complexes K^iX, Y) = Hom(X, F%(Y)). As usual, we assume that zero

objects are preserved under G.

Definition 9.1. A morphism u : X± -> X2 is called a cofibration if the in¬

duced semisimplicial map

u*:K*(Xt,Y)^Ki{XltY)

is a semisimplicial fibration for all Y £ ^. The cokernel X3 of u then will be

called cofibre of u (provided that this cokernel exists).
One may show that, in the category of topological spaces, each cofibration

in the ordinary sense (homotopy extension property for arbitrary range spaces)
is a cofibration in the above sense. It is not known to the author whether the

converse is true. A similar statement is valid for the fibrations, to be defined

later on.

The semisimplicial fibre of u* consists of the set of all morphisms
a: X2 -> Cn+1 Y, (n ^ — 1), satisfying a o u = 0. Thus, it may be identified

with K^(X3, Y).

Then, one may infer from the general theory of semisimplicial complexes
that we have exact homotopy sequences

• • -> nn{Xz, Y) ->- 7tn{Xä, Y) -s- TtniX-L, Y) -+ 7r„_1(X3, Y) -> •
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This result is valid even if K*(X, Y) does not satisfy the Kan condition,

but from now on we shall again consider only Kan complexes.
A comparison with theorem 8.1 suggests the following excision theorem:

Theorem 9.2. Let u: Xx-+X2 be a cofibration with cofibre (X3,v). Then,

(OxjO) v) induces an isomorphism

J-.7in(X3, Y)-ynn(u,k(Y)).

Proof. First, we show that J is epimorphic. Let (<p, xp)

X1—^-*Cn+1{CY)

X,—r—*Cn+1Y

be a representative of a homotopy class of 7t„(u, k(Y)). Since u* is a semi¬

simphcial fibre map, we may find a (n + l)-simplex t : X2 -> C+2 Y, such that

t o u = <p, dn+lr = y>, dix = 0 (i< n).

Then, (sn+1 <p, r) defines a homotopy (cp, xp) ~ (0, dnr). We have dnx o u = 0;

thus, there exists a co : X3 -> Cn+1 Y, satisfying dnr = co o v. Hence, J[co]
= [cp, xp]; thus J is epimorphic.

Now, we want to show that J is monomorphic, which is equivalent to

showing that (0, cov) ~ (0, co'v) implies co ~ co'. Let {?],&) be a homotopy
between (0, co«) and (0, co'v); i.e. dn+27] = & o u, dn+1(rj,&) = (0, co'v),

dn(r),$) = (0, co«), di(?],'&) = (0, 0), i< n. Since m* is a semisimphcial fibre

map, there is a cr: X2^ Cn+3Y, such that a o u = rj, dn+2a = &, dna = sncov,

dla = 0, i< to. We have (dn+1cr) o w = dn+17] = 0; thus, there exists a, %:X3-+
-> Cn+2 Y, satisfying ^w = cZn+1cr. Since « is an epimorphism, the relations

dn+1%v=co'v, dn%v=cov, di%v = 0, i<n, imply dn+1%=co', dn% — co,

d'% = 0, i < n. Hence, co ~ co'.

The dualizations of definition 9.1 and of theorem 9.2 show some interesting
features. The ordinary dualization procedure in categories leads to

Definition 9.3. Let fi Le a category containing a zero object, and let

K* (X, Y) be the semisimphcial complex induced by a dual standard construc¬

tion in 5?. Then, a morphism u: Y2 -> Y1 is called a fibration if the induced

semisimplicial map
u*:Kt(X, Yt)-+K*(X, YJ

is a semisimplicial fibration for all X £ S?. The kernel Y3 of w then will be called

fibre of u (provided that this kernel exists).
It follows, as above, that the semisimplicial fibre of u* may be identified

with K%(X, Y3), and that we have an exact sequence

rc„(x, Y3)-+7tn(x, Y2)->7in{x, r1)^-7r„_1(x, r.
3;

Theorem 9.4. Let u: Y2-+ Yxbea fibration with fibre (Y3, v). Then, (v, 0OY)
induces an isomorphism

J: nn(X, Ys) -> nn(k{X), u) .
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However, it is possible to introduce fibrations without dualizing completely,
that is, without replacing the standard construction by a dual one:

Definition 9.5. Let S be a category containing a zero object, and let

K*{X, Y) be the semisimplicial complex induced by an (ordinary) standard

construction in 5?. Then, a morphism u: Y2 ->- Y1 is called a fibration if the

induced semisimplicial map

u,:Kt(X,7,)-+Kt{X,T1)

is a semisimplicial fibration for all X £S?. If C commutes with kernels (i.e., if

C(Kerw) = Ker C(u)), then the kernel Y3 of u will be called fibre of u (provided
that this kernel exists).

The assumption that C commutes with kernels is needed to prove that the

semisimplicial fibre of u* may be identified with K#(X, Y3). The exact fibre

sequence then follows as above. Since the concept of fibration is defined only
relative to a specific standard construction, the definitions 9.3 and 9.5 cannot

conflict; moreover, if a pair of adjoint constructions is used, then the two

definitions are equivalent. Of course, definition 9.5 may be dualized too
. . .

Theorem 9.6. Let $ be a category containing a zero object, and let {C, k, p}
be a standard construction in S?, such that the complexes K%(X, Y) are Kan

complexes. Then, the morphism k(Y): G Y-> Y is a fibration.

Proof. Let / : K% (X, G Y) -> K* (X, Y) be the semisimplicial map induced

by k(Y). We have to show that for every n (n — l)-simplexes o0, . . ., (7%^,

<Jk+i> • • > an K*(X, G Y) satisfying dioi — di~1oi for i < j, and *, / =(= k, and

every w-simplex r £ K% (X, Y) satisfying dix = fait * 4= &, there exists a

«-simplex a £K%(X, C Y), such that dia = ai for i^k, and fa = r. If we

consider the a( as w-simplexes of K*{X, Y), then, by the Kan condition, we

may find a (n + l)-simplex a £ K+(X, Y), such that dla = ot for i 4= k, i ^ n

and dn+1a = r. This a, interpreted as w-simplex of K%(X, C Y), has the desired

properties.
Theorem 9.7. Under the assumptions of theorem 9.6, the object G Y has

trivial homotopy:
7tn(X,GY) = 0, ra^O.

Proof. Let a be a «-simplex of K#(X, G Y), such that dia = 0, (0 2a * S> n).
We interpret a as (n + l)-simplexof K^X, Y),iorm.Q = sn+1o, and reinterpret

q as (n + l)-simplex of K*(X, C Y). We have dn+1Q = a, dlq = 0 (i ^ n), and
therefore a ~ 0. (Here we consider, as usual, the augmented complex; for the

non-augmented one, the argument would have failed in dimension 0, since there

no face operator is defined.)
Theorem 9.8. Under the assumptions of theorem 9.6, together with the addi¬

tional assumptions that k (Y) has a kernel Q Y and that G commutes with kernels,
we have

7Tn(X,ÜY) = nn+1(X,Y), (n>0).

Proof. This follows immediately from the exact fibre sequence, and from

theorems 9.6 and 9.7.
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Thus, the fibre QY of k(Y):CY-+Y has properties approximately
corresponding to those of a loop space. It will be left to the reader to dualize

theorems 9.6, 9.7 and 9.8; the theorem dual to 9.8 states that the cofibre SX

of the morphism h(X): X -> CX of a dual standard construction has the

formal properties of a suspension.
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Drude: Brfthlsche Umversitätsdruekerei Gießen



Zusammenfassung in deutscher Sprache

Die Homotopiegruppen der topologischen Räume sind von Eckmann-

Hilton zu Gruppen IIn(X, Y) verallgemeinert worden, die von zwei Räumen

X, Y abhängen, und welche die Homotopie- und Cohomologiegruppen (für

beliebige Koeffizientenbereiche), nebst den entsprechenden exakten Sequenzen,
als Spezialfälle enthalten. Die klassische Homotopie und Cohomologie sind

zueinander dual im Sinne einer einfachen (heuristischen) DuaHtät, welche im

Vertauschen von X und Y besteht.

Eine analoge Homotopietheorie, samt einer dualen, existiert in der Kategorie
der Moduln über einem Ring — oder allgemeiner, in jeder abelschen Kategorie
mit genügend vielen injektiven und projektiven Objekten (vgl. Eckmann [1]);
hier ist die Dualität nicht nur heuristisch, wie in der Kategorie der Räume,
sondern gilt streng: für jeden beweisbaren Satz ist automatisch auch der duale

Satz beweisbar. In der fraglichen Analogie entspricht z. B. die Einbettungeines
topologischen Raumes X in den Kegel CX der Einbettung eines Moduls X in

einen injektiven Modul X; die topologische Einhängung UX = CXjX ent¬

spricht der algebraischen HX = XjX; und in beiden Fällen können die Homo¬

topiegruppen mit Hilfe iterierter Einhängungen definiert werden.

Diese beiden heuristischen Prinzipien
a) die Dualität in der Kategorie der Räume,

b) die Analogie zwischen Räumen und Moduln,
haben entscheidenden Einfluß auf die Entwicklung der Eckmann-Hiltonschen

Homotopietheorie gehabt. In dieser Arbeit wird nun gezeigt, daß die beiden

Prinzipien theoretisch begründet werden können.

Zu diesem Zweck wird eine Homotopietheorie im Rahmen allgemeiner
Kategorien entwickelt, welche die Homotopietheorien der Räume und der

Moduln als Spezialfälle enthält, ebenso wie die Homotopietheorie der Abbil¬

dungen von Räumen, usw. Außerdem liefert ein allgemeines Dualitätsprinzip
in allen Fällen, wo diese Homotopietheorie definiert werden kann, eine Dualität

im strengen Sinn. Dadurch wird nicht nur ein präziser Begriff der Analogie
zwischen den Homotopietheorien der Räume und der Moduln gewonnen, son¬

dern es ist auch möglich, gewisse Beweise wesentlich zu vereinfachen. Zum

Beispiel folgt die Exaktheit der Homotopiesequenzen in den Kategorien der

Moduln, der Räume, der Paare von Moduln, der Paare von Räumen, der Paare

von Paaren, usw., aus ein- und demselben Beweis, und es ist hervorzuheben,
daß dieser eine Beweis, vermöge der Dualität, beide Seiten des Bildes liefert,
also z. B. in der Kategorie der Räume die Exaktheit sowohl der Homotopie-
als auch der Cohomologiesequenz.



Unser wichtigstes Werkzeug ist dabei die semisimpliziale Standard¬

konstruktion, welche ursprünglich von R. Godement [4] erfunden und zur

Erzeugung der Garbencohomologie verwendet worden ist. Da auch die Hoch-

schildsche Homologietheorie der assoziativen Algebren (vgl. [4]) und die Theorie

der derivierten Funktoren in den Kategorien der Moduln mit Hilfe von Standard¬

konstruktionen erhalten werden können, erweisen sich diese als eines der

mächtigsten Hilfsmittel der homologischen und homotopischen Algebra.
Die Standardkonstruktionen können als eine Verallgemeinerung der topolo-

gischen Wegeraum- und Kegelkonstruktionen aufgefaßt werden. Zum Bei¬

spiel ist das Tripel {E, k, p}, bestehend aus dem Wegeraumfunktor E (der
jedem Raum Y den Raum E Y der im Basispunkt von Y beginnenden Wege
zuordnet), aus der natürlichen Faserabbildung k(Y) :E Y -» Y (die jedem Weg
seinen Endpunkt zuordnet) und aus einer sonst kaum beachteten natürlichen

Abbildung p(Y):EY-+EEY, eine Standardkonstruktion in der Kategorie
der topologischen Räume mit Basispunkt. Dual bilden der Kegelfunktor C

(der jedem Raum X den Kegel CX über X zuordnet), die natürliche Einbet¬

tung k (X): X -> CX von X in die Grundfläche des Kegels und eine gewisse
Abbildung p(X):CCX-> CX eine duale Standardkonstruktion in derselben

Kategorie.
Abschnitt 1 dient zur Einführung der Terminologie, Abschnitt 2 enthält

die Definition der Standardkonstruktion, und in Abschnitt 3 wird der zu einer

Standardkonstruktion gehörende semisimpliziale Komplex eingeführt, dessen

Kansche Homotopiegruppen die Eckmann-Hiltonschen Gruppen verall¬

gemeinern werden. In Abschnitt 5 werden die Homotopiegruppen in der Katego¬
rie der Moduln behandelt. Die sogenannten projektiven, resp. injektiven Homo¬

topiegruppen werden mit Hilfe von zwei verschiedenen Standardkonstruk¬

tionen erzeugt.
Die erste, {C, k, p}, besteht aus dem Funktor C, der jedem Modul Y den

freien Modul C Y über der Menge Y zuordnet; k(Y) ist die natürliche Projek¬
tion von C Y auf Y, die jedem Basiselement von C Y das gleichbezeichnete
Element von Y zuordnet, während p(Y) jedem Basiselement von CY das

gleichbezeichnete Basiselement von CCY zuordnet. Die zweite, {C, k, p),
hängt eng mit der ersten zusammen; der Funktor C ordnet jedem Modul X

einen injektiven Modul CX zu, während k(X):X-> CX eine natürliche Ein¬

bettung ist. Es wird gezeigt, daß die Kanschen Homotopiegruppen der ent¬

sprechenden semisimplizialen Komplexe gerade die Eckmann-Hiltonschen

projektiven, resp. injektiven Homotopiegruppen sind. Zur Vereinfachung der

entsprechenden Beweise wurden Teile davon in den allgemein-kategorie¬
theoretischen Rahmen vorverlegt (Abschnitte 3 und 4). Abschnitt 6 leistet

das entsprechende für die Homotopiegruppen der Räume; als Standardkon¬

struktionen werden die Kegel- und Wegeraumkonstruktionen benützt. Ab¬

schnitt 7 enthält unter anderem eine interessante Verallgemeinerung des

singulären Komplexes: ebenso, wie man die Hurewiczschen Homotopiegruppen
7tn(Y) eines Raumes Y auch als Kansche Homotopiegruppen des singulären

Komplexes von Y deuten kann, können die Eckmann-Hiltonschen Gruppen



IIn(X, Y) auch als Kansche Homotopiegruppen eines verallgemeinerten singu-
lären Komplexes von Y aufgefaßt werden, der in den gewöhnlichen singulären

Komplex übergeht, falls X die Nullsphäre ist. In Abschnitt 8 wird die Exaktheit

der Homotopiesequenz für allgemeine Kategorien bewiesen. Abschnitt 9

enthält eine Untersuchung der Faserungen und Cofaserungen; es wird gezeigt,
daß man bereits im Rahmen der allgemeinen Kategorien die Analoga der Ein¬

hängung SX (d. h. der Cofaser von k(X):X -> CX) und des Schleifenraumes

QY(d.h. der Faser von k (Y):E Y -> Y) definieren und ihre Haupteigenschaften
beweisen kann.
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