Galois-Theorie für unendliche, rein-inseparable Körpererweiterungen vom Exponenten 1

ABHANDLUNG

zur Erlangung der Würde eines Doktors der Mathematik der

EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE ZÜRICH

vorgelegt von

HANS ULRICH KUBLI

dipl. Math. ETH geboren am 9. August 1940 von Netstal (Kt. Glarus)

Angenommen auf Antrag von Prof. Dr. B. Eckmann, Referent Prof. Dr. M.A. Knus, Korreferent

Juris Druck + Verlag Zürich 1971 Es genügt zu zeigen, dass in $\mathfrak D$ eine Derivation existiert, die auf x_1,\ldots,x_{n-1} Null, auf x_n verschieden von Null ist.

V. Beweis des Lemmas IV.5

Beweis durch Induktion: Für n=1 ist die Behauptung offensichtlich richtig. Sie sei richtig für n=k. Wir zeigen, dass in $\mathfrak D$ eine Derivation existiert, die x_1,\ldots,x_k annulliert, und die auf x_{k+1} verschieden von Null ist. Wir nehmen an, dies sei nicht möglich. D.h. wir nehmen an, dass für jedes $\mathfrak D \in \mathfrak D$ mit $\mathfrak D x_1 = \mathfrak D x_2 = \ldots = \mathfrak D x_k = 0$ auch $\mathfrak D x_{k+1} = 0$ ist.

V.1 Hilfssatz: Seien D_1 , D_2 , ..., D_k die nach Induktionsvoraussetzung in $\mathfrak D$ existierenden Derivationen, derart, dass $D_i \times_j = \delta_{ij}$ ist, für $1 \le i, j \le k$. Sei D eine Derivation aus $\mathfrak D$ mit der Eigenschaft $[D,D_i] \times_j = 0$ für $1 \le i, j \le k$. Dann operiert jede Derivation von der Form $[[D,D_{i_1}],D_{i_2}],\ldots,D_{i_m}]$, $(1 \le i_1,i_2,\ldots,i_m \le k)$, trivial

auf $x_1, ..., x_k$, und $D_1^{\nu_1} D_2^{\nu_2} ... D_k^{\nu_k} x_{k+1}$, $(\nu_1 \ge 0, m \ge 1)$.

Beweis mit Induktion nach der Summe $y_1 + \ldots + y_k$.

Für $\mathbf{v}_1 = \mathbf{v}_2 = \dots = \mathbf{v}_k = 0$ ist die Behauptung evident, da jeder Klammerausdruck in \mathbf{D} liegt, nach Voraussetzung auf \mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_k verschwindet und daher auch auf \mathbf{x}_{k+1} verschwindet.

Die Behauptung sei richtig für \mathbf{v}_1 + ... + \mathbf{v}_k = s-l . Sei nun die Exponentensumme s , und sei \mathbf{v}_j der erste von Null verschiedene Exponent unter den \mathbf{v}_1 , ... , \mathbf{v}_k . Man erhält

$$\begin{bmatrix} \left[\dots \left[D_{i} D_{i_{1}} \right], \dots, D_{i_{m}} \right] D_{j}^{v_{j}} \dots D_{k}^{v_{k}} \times_{k+1} = \\ \\ \left[\left[\dots \left[D_{i} D_{i_{1}} \right], \dots, D_{i_{m}} \right], D_{j} \right] D_{j}^{v_{j}-1} D_{j+1}^{v_{j+1}} \dots D_{k}^{v_{k}} \times_{k+1} \\ \\ + D_{j} \left[\left[\dots D_{i} D_{i_{1}} \right], \dots, D_{i_{m}} \right] D_{j}^{v_{j}-1} D_{j+1}^{v_{j+1}} \dots D_{k}^{v_{k}} \times_{k+1} .$$

Die Terme auf der rechten Seite sind beide nach Induktionsvoraussetzung Null. Damit ist die Behauptung bewiesen.

Korollar 1: D und alle D_i vertauschen miteinander auf den Elementen x_1, \ldots, x_k , $D_1^{\nu_1} \ldots D_k^{\nu_k} \times_{k+1} (\nu_1, \ldots, \nu_k \ge 0)$. Daher lässt sich speziell jedes Element $D_{i_1}^{\nu_1} D_{i_2}^{\nu_2} \ldots D_{i_k}^{\nu_k} \times_{k+1}$ ersetzen durch $D_1^{\nu_6(i)} \ldots D_k^{\nu_6(k)} \times_{k+1}$, wobei G die Permutation $\begin{pmatrix} i_1 & \ldots & i_k \\ 1 & \ldots & k \end{pmatrix}$ ist.

Korollar 2: Es gibt nur endlich viele $D_1^{\mathbf{v_i}} \dots D_k^{\mathbf{v_k}} \times_{k+1}$, da für $\mathbf{v_i} = \mathbf{p}$ gilt: $D_1^{\mathbf{v_i}} \dots D_i^{\mathbf{p}} \dots D_k^{\mathbf{v_k}} \times_{k+1} = D_1^{\mathbf{v_i}} \dots D_i^{\mathbf{p}} \dots D_k^{\mathbf{v_k}} D_i^{\mathbf{p}} \times_{k+1}$. $D_i^{\mathbf{p}} \times_{k+1}$ ist Null, da $D_i^{\mathbf{p}}$ auf $\mathbf{x_1}, \dots, \mathbf{x_k}$ verschwindet.

Korollar 3: Der von x_1 , ..., x_k , $D_1^{v_i}$ $D_2^{v_2}$... $D_k^{v_k}$ x_{k+1} , (v_1 , ..., $v_k \ge 0$), über Γ erzeugte Körper C wird von allen Derivationen D_i in sich abgebildet.

Korollar 4: Wenn D $\in \mathfrak{D}$ auf x_1, x_2, \dots, x_k Null ist, dann ist D auf ganz C Null.

D erfüllt ja die Voraussetzungen von Hilfssatz V.1 und vertauscht daher mit allen D_i ($i=1,\ldots,k$). Somit gilt $DD_1^{\nu_i}\ldots D_k^{\nu_k} \times_{k+1} = D_1^{\nu_i}\ldots D_k^{\nu_k} D\times_{k+1} = 0$.

Zwei Derivationen aus $\mathfrak D$, die auf x_1,\ldots,x_k übereinstimmen, stimmen daher auf $\mathbb C$ überein. Hieraus folgt, dass die Einschränkung $\mathfrak D_{\mathbb C}$ von $\mathfrak D$ auf $\mathbb C$ als K-Vektorraum k-dimensional ist. Denn jede Derivation $\mathbb D \in \mathfrak D$ stimmt nach dem Vorangehenden mit $\sum_{i=1}^k (\mathbb D x_i) \mathbb D_i$ auf $\mathbb C$ überein. Ein Element $\mathfrak f \in \mathbb C$, das von $\mathbb D_1$, ..., $\mathbb D_k$ annulliert wird, wird somit von allen $\mathbb D \in \mathfrak D$ annulliert, liegt also in $\mathbb T$.

Betrachten wir nun D_1 , ..., D_k als Derivationen beschränkt auf C. Nach Korollar 3 liegen D_1 , ..., D_k in $Der_{\Gamma}C$. Die von diesen Elementen erzeugte restringierte C-Lie-Algebra $\widehat{\mathbf{D}}_{\mathbb{C}}$ bildet C in sich ab und wird als C-Vektorraum erzeugt von D_1 , ..., D_k . Somit ist $\dim_{\mathbb{C}}\widehat{\mathbf{D}}_{\mathbb{C}}=k$. Die k-dimensionale restringierte C-Lie-Algebra $\widehat{\mathbf{D}}_{\mathbb{C}}$ ist nach [2,4,6] gleich $Der_{C_0}C$, wobei C_0 der Körper der $\widehat{\mathbf{D}}_{\mathbb{C}}$ -Konstanten ist. Es gilt $[C:C_0]=p^k$. Jedes Element aus C_0 wird von D_1 , ..., D_k annulliert, liegt in C und muss daher in Γ liegen, d.h. $C_0=\Gamma$. Nun ist $\Gamma \subseteq \Gamma(x_1,\ldots,x_k) \subseteq C$ und $[C:\Gamma(x_1,\ldots,x_k)]\cdot[\Gamma(x_1,\ldots,x_k):\Gamma]=[C:\Gamma]=p^k$, also muss $C=\Gamma(x_1,x_2,\ldots,x_k)$ sein. Dax_{k+1} nach

Konstruktion in C liegt, kann x_{k+1} nicht p-unabhängig von x_1 , x_2 , ..., x_k über Γ sein. Mit diesem Widerspruch zur Voraussetzung ist das Lemma IV.5 bewiesen.