Effets de structure nucléaire
en formation de paires internes

THÈSE
présentée à l'Ecole Polytechnique Fédérale, Zurich,
pour l'obtention du
grade de Docteur ès Sciences Naturelles

par

ROLAND LOMBARD
phys. dipl. E. P. F.
de Genève

Rapporteur: Prof. Dr. J.-P. Blaser
Corapporteur: Prof. Dr. K. Alder (Univ. Bâle)

Bâle
Imprimerie Birkhäuser S. A.
1964
Effets de structure nucléaire en formation de paires internes.

Abstract. The theory of internal pair formation has been studied for electric dipole transitions. Several spectra have been calculated in the Coulomb approximation in order to investigate the variation of the spectrum shape in function of the nuclear charge Z and the transition energy k. It is shown that the influence of the electronic shells on the internal pair formation can be neglected. An attempt is made to see under what conditions the nuclear structure effects may be detected in the internal pair formation. The results are similar to those obtained in case of internal conversion. Two transitions are analysed in Pb206 and Nd144. There is actually no experimental evidence for nuclear structure effects in these transitions. The Pb206 show a rather fast El character. In case of Nd144 a more precise determination of the total pair formation coefficient would be desirable. Further experiments are suggested, specially in the region of deformed nuclei.

Introduction

Les phénomènes électromagnétiques associés aux états nucléaires, ainsi que les effets connexes du type conversion interne, constituent un ensemble particulièrement important pour l'étude du noyau. S'il n'est pas possible d'en tirer des conclusions directes sur la nature des forces nucléaires, leur étude permet la confrontation des valeurs que prédisent les modèles avec les résultats expérimentaux. L'attrait et le succès de ce genre d'investigations reposent essentiellement sur le fait que les bases de l'interaction électromagnétique sont relativement bien établies. Ainsi le calcul des grandeurs électromagnétiques s'avère être une méthode efficace pour tester les fonctions d'onde.

Ceci n'est malheureusement pas absolu; il reste un certain arbitraire quant à la forme des opérateurs électromagnétiques, arbitraire qui provient de ce que les courants d'échanges mésoniques, à l'intérieur du noyau, sont mal connus. Il est évident que le champ mésonique entourant un nucléon est fortement influencé par la présence d'autres nucléons dans son voisinage immédiat. Une théorie exacte devrait donc tenir compte de ces courants d'échanges. En fait le théorème de SIEGERT permet d'affirmer que les grandeurs électriques ne sont pas influencées par ces courants. La situation est moins simple pour les grandeurs magnétiques et dans ce cas une divergence entre la théorie et l'expérience ne peut pas être imputée aux fonctions d'onde d'une manière univoque.

Les phénomènes du type conversion interne forment une classe à part. Il s'agit de trois modes de désexcitation nucléaire: la conversion interne, la formation de paires internes et la formation de positrons monoénergétiques. Dans ces processus, le noyau cède son énergie de transition soit en éjectant un électron des couches atomiques, soit en créant une paire électron-positron. L'interaction entre le noyau et le champ
Certaines transitions sont susceptibles de fournir un bon test pour les effets de structure, en particulier dans le Gd154, le Gd156 et l’Er168. Ce dernier possède une transition $\gamma 3^- \rightarrow 2^+$ de 1,463 MeV, $\Delta K = 3$. Cette transition est donc interdite par la règle de sélection K. Les opérateurs $r Y_{LM}$ et $r^3 Y_{LM}$ obéissent de la même manière à cette règle de sélection. Par contre ils ont des comportements différents vis-à-vis des nombres quantiques asymptotiques N, n_z et A. Dans le cas de l’Er168 nous avons une transition de proton $[5 2 3] \rightarrow [4 1 1]$ (voir Gallagher et Soloviev21).

5. Remarque sur les effets de structure

Jusqu’ici nous n’avons rien dit de la façon dont les effets de structure se manifestent. Pour une transition donnée, les fonctions c_1 et c_2 dépendent de E_+. Pour montrer cette dépendance, la valeur de c_1 est donnée dans le tableau V, pour $k = 4$, $Z = 49$ et 84. Ceci complète les informations obtenues pour le Pb206 et le Nd144.

<table>
<thead>
<tr>
<th>Tableau V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_1(E_+)$ pour $k = 4$, $Z = 49$ et 84.</td>
</tr>
<tr>
<td>E_+</td>
</tr>
<tr>
<td>$10^3 \cdot c_1$</td>
</tr>
<tr>
<td>$Z = 49$</td>
</tr>
<tr>
<td>$Z = 84$</td>
</tr>
</tbody>
</table>

Le facteur de phase est à peu près constant et égal à $\pi/2$, sauf en ce qui concerne les points proches de l’énergie limite, pour lesquels cette phase vaut environ $\pi/4$. L’influence de la structure nucléaire se traduit par une modification de la forme du spectre et une variation du coefficient total.

En première analyse, le coefficient total expérimental peut être égal au coefficient total coulombien. Dans ce cas les effets de structure provoquent une déviation des points situés près de l’énergie limite, soit dans un intervalle d’environ 10% de cette énergie.

Conclusions

Dans les deux transitions étudiées, les effets de structure nucléaire n’ont pas été mis en évidence. Le cas du Pb206 peut s’expliquer du fait qu’il s’agit d’une transition rapide par rapport à l’ensemble des transitions E_+ mesurées. En ce qui concerne le Nd144, une mesure plus précise du coefficient de formation de paires internes serait nécessaire pour conclure. Cependant, l’ordre de grandeur des fonctions c_1 et c_2 semble être une sériouse limite à la détection des effets de structure.

Notre intérêt s’est porté avant tout sur les transitions dipolaires électriques et sur leurs spectres de positrons de paires. Ce choix nous a été dicté par la ligne générale des études entreprises par le groupe de spectroscopie nucléaire de Zurich. En fait la formation de paires internes offre encore d’autres possibilités d’investigations. Dans certains cas, par exemple, les spectres d’électrons de paires pourraient se révéler plus favorables que les spectres de positrons. A côté des transitions E_+, deux autres multipolarités peuvent entrer en ligne de compte pour la détection des effets de structure : les transitions du type $E0$ et $M1$.
Un grand nombre de niveaux excités 0+ ont été observés ces dernières années. Les dés excitations 0+ → 0+ ne sont possibles que par conversion ou émission de plusieurs quanta. Les spectres de paires apporteraient donc une contribution valable à l'étude de ces niveaux.

En conversion interne, les M1 sont plus sensibles à la structure nucléaire que les E1. Il pourrait en être de même en formation de paires internes. Le coefficient total est plus faible pour les M1, mais pour k = 5, le rapport $\alpha_k(E1)/\alpha_k(M1)$ est d'environ deux, ce qui ne constitue pas une limite pour l'expérience.

Remerciements

Je tiens à remercier vivement Monsieur le Professeur J. P. BLASER pour le soutien qu'il a accordé à ce travail et pour l'intérêt constant qu'il a manifesté. Je remercie également Monsieur le Professeur K. ALDER pour ses nombreux conseils et les fructueuses discussions que nous avons eues.

Mes remerciements vont également à mes collègues du groupe de spectroscopie nucléaire de l'EPF, plus spécialement à Messieurs J. BRUNNER et C.-F. PERDRISAT pour la communication de leurs résultats expérimentaux.

Je remercie enfin Monsieur P. STRAUB, du groupe de calcul de l'ERMETH, qui s'est chargé des programmations nécessaires aux évaluations des diverses fonctions hypergéométriques utilisées dans ce travail.

Références

1) A. I. Akhiezer et V. B. Berestetsky, Quantum Electrodynamics, AEC-tr-2876.
10) P. Appel et J. Kampe de Feriet, Fonctions hypergéométriques (Gauthier-Villars et Cie, Paris 1926).
20) J. H. Brunner, communication privée.