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On the Diamagnetism of the Conduction Electrons

in the Alkali Metals

Summary The field independent diamagnetic susceptibility of the conduction

electrons in the alkali metals has been calculated The method for determining the

energy levels of Bloch electrons in a magnetic field, recently proposed by Y Yafet,

has been used Special attention is paid to magnetic field induced band transitions

In the case of lithium an s-p band model is us< d, while sodium is represented by
a p-s-p band model The s bands are considered to be parabolic in both cases The

band interaction is included to all orders Although a reasonable description of the

susceptibility is obtained in this way, higher bands play an important role Kjel-

daas and Kohn in an earlier calculation considered all bands, but the band inter

action up to fourth order only It is shown that the band interaction of higher order

cannot be neglected

Zusammenfassung Es wurde die feldunabhangige diamagnetische Suszeptibilitat
der Leitungselektronen in den Alkalimetallen berechnet Zur Bestimmung der

Energie-Niveaux der Bloch-Elektronen m einem Magnetfeld wurde die kürzlich von

Y Yafet vorgeschlagene Methode verwendet spezielle Beachtung wurde den

durch ein Magnetfeld induzierten Bandubergangen geschenkt Fur Lithium wurde

ein s-^>-Bander-Modell benutzt, wahrend Natrium durch ein p s p Bander Modell

dargestellt wird m beiden Fallen werden die s Bander parabolisch angenommen

Innerhalb dieser Voraussetzungen wird die Bandwechselwirkung exakt berück¬

sichtigt Obwohl man auf diese Weise eine zwei kmassige Darstellung der Suszep¬
tibilitat erhalt, musste sie noch durch Hinzunahme weiterer Bander ergänzt werden

Kjeldaas und Kohn behandeln in einer früheren Rechnung alle Bander Sie

berücksichtigen die BandWechselwirkung jedoch nur bis zur vierten Ordnung Es

wird gezeigt, dass die höheren Ordnungen der Bandwechselwirkung nicht vernach¬

lässigt werden dürfen

1. Introduction

Despite many attempts to explain the magnetic susceptibility of the

alkah metals theoretically, there still remains a discrepancy between

theory and experiment1) If we assume that the conduction electrons and
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the core electrons can be treated separately and if we moreover take into

account the fact that the spin orbit coupling in the alkali metals is very

small2), the total susceptibility can be written as a sum of three terms.

X = Xc + Xs + Xa- (i-i)

Here ic is the core susceptibility and is given by the familiar Langevin
formula3). Since the spin susceptibility %s, as calculated by Pines4)
agrees well with the experiments by Slichter5), we are led to the con¬

clusion that the discrepancy is due to a lack of understanding of %d, the

diamagnetism of the conduction electrons.

Since the fundamental paper of Landau6) on the diamagnetism of a

free electron gas, much work has been done to solve this problem for

electrons moving in a crystal lattice. A first step in this direction was

made by Peierls7), who proved the following important theorem. The

exact Hamilton function

where V(r) is the periodical potential, is approximately equivalent to the

hamiltonian, that one gets by replacing k in

E(k) = EHn{k) + H* e(k) (1.3)

by an operator K, satisfying the commutation relation

KXK,-K,KX=-£HZ. (1.4)

Here E„(k) is a function with the same dependence on the wave vector k

as the eigenstates En(k) of the hamiltonian without magnetic field. How¬

ever, E„(k) may still depend weakly on the magnetic field. The second

term in (1.3) is the level shift due to the magnetic field Hs). Peierls

himself worked out his theorem in the tight binding limit, but as has

been proved by Harper9), the theorem is more generally valid. It should

be emphasized that the mixing by the magnetic field of wave functions

belonging to different bands has been neglected in this procedure. For

that reason the band index n still occurs in (1.3). The theorem is also not

applicable to degenerate bands.

By means of the density matrix technique Peierls was able to derive

the susceptibility resulting from (1.3). He gets three terms, one of which

(Xt, in Peierls' notation) has no unique sign and no easy physical inter¬

pretation. The second (#2) is the analogue of the atomic diamagnetism,
whereas the third (^3) is a generalization of the original Landau formula.

Special cases of this theorem have been obtained by Luttinger10) and

later by Luttinger and Kohn11).
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These authors develop En{k) into a power series in k, up to second

order terms and substitute for k the operator p — (ejc) A. The susceptibil¬

ity obtained in this way is just the Landau susceptibility with the free

electron mass replaced by the zero field effective mass. They also dis¬

cussed the effect of spin orbit coupling. Luttinger12) generalized this

theory to degenerate bands, so it is applicable to semiconductors with

large band widths, for which the effective mass concept is particularly

appropriate.
An extension of the Luttinger-Kohn theory was given by Kjeldaas

and Kohn13) who develop E„(k) up to fourth order terms. The effective

hamiltonian then consists of two parts. A completely symmetrized term,

EJK) to fourth order in K (with K = p — [ejc) A), plus a remainder

R(K), which comes from the noncommutivity of the components of K.

En(K) results in a special form of Peierls' %3, whereas the contribution

from R(K) agrees with %% in the tight binding approximation.

Recently, Y. Yafet14) proposed a new method for determining the

energy levels of Bloch electrons in a magnetic field. This method is an

improvement over the Luttinger, Kohn, Kjeldaas versions in that it

is in principle valid for all k and allows for magnetic field induced band

transitions to all orders. The energy levels of the electrons in different

bands are obtained by solving a set of homogeneous linear algebraic
equations, instead of a system of coupled differential equations. In order

to be able to derive analytical expressions for the energy levels it is

necessary to limit the number of bands. It is the purpose of this paper

to discuss the effect of band interaction on the susceptibility in the case

of the alkali metals with the aid of this technique.
There exists another class of treatments, which do not calculate the

energy levels explicitly, but which use the density matrix formalism15)
16)17). Although the results are in principle exact (except that spin orbit

coupling is neglected and non degenerate bands are assumed throughout),
the final formulae for the susceptibility are so complex that no physical
interpretation or numerical application is possible.

Finally we want to mention a letter by Blatt1) who suggests that a

touching of the Fermi surface and the border of the first Brillouin zone

is responsible for the observed anomalies in the alkali metals. However,
this question is still unsettled18) and we shall not discuss it further.

In section 2 we give a description of the Yafet method. In sections 3

and 4 the energy levels within an s-p band model (in the case of Li) and

within a p-s-p band model (in the case of Na) are obtained. Here it is

assumed that the bands are parabohc. In section 5 the corresponding
susceptibilities are derived. In section 6 a discussion of the results is

given.
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2. Description of Yafet's method

In this section we shall give an account of Yafet's method for deter¬

mining the energy levels of Bloch electrons in a magnetic field. We shall,

however, only mention those features, which will actually be used in later

sections.

Let X0 and X be the Hamilton functions of an electron in the periodic
potential without and with magnetic field respectively. The eigenfunc-
tions of X0 are the Bloch functions ipn k and the corresponding eigenvalues
En(k), where n is the band index and k the wave vector running from

zero to the border of the first Brillouin zone.

The functions y>„ k are written as

where un k
is a function with lattice periodicity.

If we choose the magnetic field in the 2-direction and if we introduce

for the vector potential the special gauge

4=0, Ay = - Ez x, AZ = Q (2.2)

the Hamilton function with magnetic field becomes

X = X0+
s

xp +JLx* (2.3)

with s = e HJc.
In order to find the wave function f with the magnetic field present

we have to solve the Schrödinger equation

Xy=Ey>. (2.4)

For that purpose Luttinger and Kohn introduced a set of functions

Z,fc = «.o«<fc" (2-5)

in which y> is to be expanded. This set is complete and orthonormal if

the y>n k are. Expanding

f=Z I dk'AnW)XnV (2-6)

and inserting this in (2.4) we get a set of equations for the An(k), which

read:

£f dk' <n k | X | n> k') An.{V) = E An(k). (2.7)
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Here

in k | X | n' *'> = [(En(0) + ^-) <3„M, + -^' p'nn] d (k> - ft)

dkx

s2 ö2<5(fc'-ft)
2~m~ dkl

(2.8)

is the hamiltonian in the Luttinger-Kohn representation11). At this point
Luttinger and Kohn make this hamiltonian subject to a canonical

transformation in order to remove interband elements of first order in k.

Afterwards they neglect interband terms of the order k2 but keep the

intraband terms of this order. In this way these authors are led to the

following equivalence theorem. In order to find an approximate hamil¬

tonian for an electron moving in a periodic potential in the presence of

a magnetic field one has to develop En(k) into a power series of k up to

second order terms and replace % k by the operator (p — (e/c) A). Here

En[k) should be a non degenerate band. Kjeldaas and Kohn13) go a step
further and apply another canonical transformation to remove interband

elements of order k2. Now interband elements of fourth order in k are

neglected whereas intraband terms of this order are kept. By making a

sufficient number of canonical transformations to decouple bands, one

could get a very good one band approximation, but soon the formulae

become not very transparent. Moreover, this procedure does not work

so well in case the bands under consideration are degenerate.

Yafet14), however, found a method to replace the set of coupled dif¬

ferential equations (2.7) (2.8) by a set of coupled homogeneous algebraic
equations.
We now introduce the following operators

*, = »*,. ky = nK + isirx> ** = *** (2.9)

With the aid of these operators and with \ky = eik'r (2.8) can be

written

Fnn'(nk\X\nk'y = En(0) dnn. Ö (*' - k) + ***. <k\ka\ fe'>

(2.10)

Since (2.10) contains only derivatives with respect to kx it is clear that

solutions of (2.7), (2.10) are of the form:

AH{k) ~HK-K)&(K-^K.uHi.AK) (2-11)
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where FnjV ty{kx) is a function of kx only. It may still depend para-

metrically on n, k'y, k'z and /. Here / denotes the degree of freedom of kx.

By substituting (2.11) into (2.7) and (2.10) we find for the equations
for F(kx)

(E^ + 'h *2 - E) F^ +
ln E Kn- K FAK) = o (2.12)

n' % n

The indices /, k'y and k'z of F(kx) have been dropped and use has been

made of the fact that p%n = 0.

For Fn(kx) we make the Ansatz

Fn(kx) = e'*W« Gn(kx) (2.13)

where G„(kx) is again a function of kx only and which still contains the

parameters /, k'y and k'z.

By means of this transformation the variable ky is removed from (2.12)
as can be easily verified. Consequently the energy levels do not depend
on ky. After carrying out the transformation (2.13) the equation for Gn(kx)
can be written as

EM + ^-pt + v* -*-?>)-E}Gn(k,
1

+
^ E tän- k_ + p-n. k+ + fnn. k2) Gn,{K) = o

(2.14)

n =fc n

1
with *== ,

= lpx . ± i i>y ,)

and k
,
= % kr T s --,

-

.

Yafet made the observation that an approximate solution for can be

found if one puts

«„0 = Rb(r) YT (cp, 6) = Rb(r) eim*p<?(<p, 6) (2.15)

where Rb{r) is a radial function for the band b and Yf((p, 6) a spherical
harmonic for angular momentum I and a component of angular momen¬

tum m in the direction of the magnetic field. The band n is now charac¬

terized by the three indices b, I, m. The approximation (2.15) contains

implicitly the assumption that the energy bands, at least as far as the

filled portions are concerned, are spherical. This should be a good approxi¬
mation for the s bands of the alkali metals. What has also been neglected

by taking (2.15) is lattice broadening, i.e. the fact that when the energy

band is not spherical the Landau levels are broadened into a narrow

band19)20). This should only be of importance at the corners of the

Brillouin zones, and can presumably be neglected in the alkali metals.
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With (2.15) the matrix elements p^n, and p\n, obey the important selec¬

tion rule, that p±n, may only be different from zero if m = m' ± 1 and

that p"n n,
vanishes unless m = m'.

_

Next we notice that the reduced operators ax = k^2s% satisfy the

commutation relation

{a ,
a"1 1 (2.16)

which is just the harmonic oscillator commutator.

Therefore the eigenvalues of the operator a+ a
~

are integers and the

corresponding eigenfunctions the harmonic oscillator wave functions <p{.

Further a+ acting on q>t increases i by unity whereas a~ diminishes i by
unity.

Using these properties and the selection rules for p-n, and p'n „,
we find

that solutions of (2.14) are given by

Gn,^x)-C'r(k„j,s)q>i.

0

7 > m,

j <Cm

(2.17)

where j is an integer and C\ m(k2, j, s) are constants which indicate the

mixture of Landau wave functions <p,^m in different bands. The set of

coupled algebraic equations for these constants is immediately obtained

(£„(0) + ^, «" - E) Ci Z
n' 4= n

VPnn'P Cn! +Pnn'V Cn' +Pnn'° Ln! 0

(2.18)

where the summation over m has already been carried out. The coeffi¬

cients <xm, ßm, ym and dm follow from the well known harmonic oscillator

matrix elements.

ßm = (<P}-m-v k- %-J = f2sh l/r~~m ,

ym = (%-m+vk+ %_j = fzTn^i-m+i,
(2.19)

The equations (2.18) give rise to a secular determinant from which the

eigenvalues E are to be determined.

How this is actually done, will be shown in the next sections for a few

special cases.
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3/Energy levels in an s-p band model

We consider an s band and a higher lying ft band. Both bands are

assumed to have their energy extrema at k = 0 and these extrema are A

energy units apart. This model should be representative of lithium, be¬

cause here the 1 s band does not couple with the 2 s conduction band

through the matrix elements ft^n, and ftznn,, and the higher lying 3 s band

is energetically far away.

We now want to calculate the energy levels in the conduction band

in the presence of a magnetic field taking into account the interaction

with the ft band. For that purpose we need the following property of the

matrix elements ft±w and ftz„ „..
If we write ft~n> = p£h „y y< r_ m. and using

the symmetry operation qj -»— <p one can show, that

Pb.l, m, b', V, m'
~ Pb,l, -m, !>', V, -m" ß.l)

and

(Ptn')* = Pt>H-> (#„')* = &» (3-2)

where the star means complex conjugate.

Consequently the only matrix elements occurring in (2.18) are

Pb, 0, 0, V, 1, -1
= Pb, 0, 0, b', 1, 1

= A/, 1, 1, b, 0, 0
= Pb', 1, -1, b, 0, 0

= P

and

Pb, 0, 0, b', 1, 0
= Pb', 1, 0, b, 0, 0

= P

where b refers to the s band and V to the ft band. There are no transitions

within the ft band, because for such transitions the angular momentum I

does not change.
The number of equations (2.18) for the C\m reduces to four. The cor¬

responding secular determinant is

X -ft+yO l--p+ß° -^ft^o»
m

1
ft+yO

tn
r '

. a
s h

Z. + A + -

m

0 0

--p+ßo
m

r

0
m

0

1

i>*d° 0 0 X + A

= 0 (3.3)

where X = Eb{0) + (1/2 m) a0 - E. From (2.19) it follows that ß*1 = y°
and ^° = y', which fact has been used in (3.3). It should be emphasized
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Anfi
'

2'2m2

4H2k2p2A^^-k>+A*.«))+=

m2'ov
^k*-X+Eb(0)=E

X.ofvaluehighestthetakingandXforequationquadratic

thesolvingby(3.8)fromobtainedarebandstheoflevelsenergyThe

(3-8)•
0=P^A\-AX+b?Af+(X

writtenbecan(3.7)Thereforep2.=(^z)2=

2(fi+)2thatcoordinatespolarinifty)+{ftxwritingandY\Y\,Y"1,
Yfj,harmonicssphericaltheforexpressionsexplicitusingprove,canOne

J)2{.+(A (37)0_=^)l^A±(«2_^ljXA-+»

becomesX

thisforequationorderfourthTheE.—k?m)(Ä2/2+Eb(0)=Xmeaning

thehasnowXeigenvalueTheelements.diagonalthefrom%\msterm

thedroppingandrespectivelyk+%andk_%byy°andß°(3.3)inreplacing
byobtainedbecan(3.6)fromfollowswhichdeterminantsecularThe

ky.i±kx=k±where

(3.6)
+S

n
#

«'

%

"y<»x<

0=Cn'*,)P'nn'+Kn'K+[Ptn'k-X

t
=f=

n

areCnih\k-tk-constantstheforequationsthewhile

(3.5)k.nk,s;,Cnik.)-(k'zÖky)-(k'ydkx)-(k'x6~An(k)
"y,-x,

A+X0
m

0
m

^h
+A+A

'
m

y<>j>+--

'
m

**(3°
1

'r
m

~i>+y°X

formthethenhave(2.7)ofSolutionsk'y.n'|X0|k(n

nowarestatesLuttinger-KohnbetweenfunctionHamiltontheofments

ele¬matrixThefield.magneticaofabsencetheindeterminantsecular

thedownwritetousefulisit(3.4)and(3.3)equationsthesolvingBefore

(3.4)

determinantsecularwithequationsof

setanotherhavewe0=/For1.>/numberquantumthe(3.3)inthat
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which for small k (parabolic approximation) takes the form

E = E„(0) + -**- A* _ 5!
2m m

with the reciprocal effective mass

1
_

1

m* m

The fourth order equation for X, with the magnetic field present is

V2 ^°>+2A>2 (3.10)

2 p*
(3.11)

{X + A)*h* + XA
p*(K*k\ + sh (2 <!+!))

s2 h2 \p*
m* [m

*
m*

(A + zl)} = 0

(3.12)

which is the analogue of (3.8).
We develop A in a power series in s. For the temperature independent

susceptibility we need 1 only up to second order in s. With

X = A + Cs + Bs2

in analogy with (3.10) A satisfies the equation

A* + AA-^-k* + ^(2? + 1)>^2
0.

(3.13)

(3.14)

By substituting (3.13) into (3.12) we find immediately that C = 0 for

the s band. Thus we are left with A = A + B s2. The equation for B is then

+
h* \p
IX {A + Bs2 + A)

B (A + Bs2 + A)2{2A + Bs2 + A)

+. Ü^L -(A + Bs2)(A + Bs2 + A)\ = 0.
(3.15)

Since the s independent part of B is required in (3.13) we get for B from

(3.15)

5 (*-> + !) (^+/1)2(2^+zl)

If we again make the parabolic approximation, i.e.

A =
hiki+snL(21+i)

2p

where Ijfi = \\m — 1/m*, the final expression for the energy levels of the

s band in the presence of the magnetic field is

(3.16)

(3.17)

= E„(0)

(3.18)
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In much the same way one can find the zero point energy (/

(3.4)

E(kz) = Eb(0)+h-^sh -B'(kt)s, j
2 m*

0

where

+ A)
p2 H2 kj

B'(ks) =
-{a'{A'

(A'+A) (ZA'+A)

Here A' is the same as in (3.18), with y — 0.

If j is so large that am, ßm and ym in (2.19) can be written as

0) from

(3.19)

(3.20)

jm =-- W k\ + s % 2 j,

ß"' == |/2 S % j/y ,

ym
_

= ]jl s H (//
the energy levels which follow from (3.3) are

£= E

so that the total energy is

E = Eb{0) +
Kikiz + sn(21+l)

2 m*
B's.

(3.21)

(3.22)

(3.23)

In section 5 it will be shown that — B' s does not contribute to the sus¬

ceptibility. Therefore (3.23) gives the susceptibility which one would have

expected in a one band approximation. Using a semi classical picture,

large j means that the Landau orbits are large compared to the lattice

spacing d i.e. ]/?h cje H > d. This condition for the applicability of the

one band approximation has already been obtained by Zil'berman on

intuitive grounds21).

4. Energy levels in a p-s-p band model

A model of this type may be representative of the conduction band in

sodium. There is still a lower lyings band which couples strongly with the

lowest p band. This p band could give a contribution to the susceptibility
which however, we shall not calculate. For full bands the non parabolicity
plays an essential role. The Luttinger-Kohn representation will not give
reliable results in such cases, unless a sufficiently large number of bands

is included. There are indications that the contribution of the lowest p
band is rather small. These will be explained in section 6. We denote the

upper p band with index p and the lower with index q. The conduction
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band gets the index 0. The equation of seventh order for the case of zero

magnetic field is

x A(A + zü(A-z1

(X + Apf{X-Aqf
(4.1)

where Ap = Ep(0) - E0(0) and Aq = - £,(0) + £0(0).
The energy levels of the s band in the parabolic approximation are

readily obtained

with

E = £„('

1 l

m* m m

2 m*
k2 (4.2)

(ft
_

q*\

\AP 4,)

Analogous to (4.1) the secular equation with the magnetic field present
can be written

{X+ApY{X-Aqf[X{X + Ap)(X-Aq)

q*(1Pkl + sh(2j + l))

(A-4)

(*+ 4)1

'W-

4-J (X + ApY{X-Aq)X-s* {X-Aq)*(X + A,)X

+ ^2^(A + ^)+^^}(A-4)3
m* m

mi y m
v qi mi J

v P'

+ ^-{V kl + sH(2j + 1)}£ (A + Apf (X - Aq)

+ ^- {V kl + s S (2 ; + l)}-£ (A - J,)» (A + J,)

+ ^ A (A+ 4) (A-J,)

m» ( m

s4 ft4 I ?2
m4 [ m (A-zl,)+ ?-,*;-*l)(A + ^) = 0.

(4.3)
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Putting again X = A + Cs + Bs2 where A satisfies the equation

A(A+ Ap) (A - Aq) -
*

^^^
- ' -"- [A - Aq)

one finds that C for the conduction band is zero.

In the parabolic approximation

(4.4)

,4 = Jil+sh (2 7 + l)
"

2ft
(4.5)

with 1/n = \\m — \\m*, \\m* being defined by (4.2).
For B we obtain by substituting X = A + B s2 in (4.3)

B (*" j + j) = & [{A + Ap)S {A - Al A + (A-Aqr(A+ Ap) A

\i_ (^-^.)+ ?i-((^+^)3 (4.6)

-{-£2pA(A-Aq)*[A+At)}].

(A + Ap)~* (A - Aq)-*{A (A +AP) + A(A- Aq)

+ (A -Aq) (A+Ap) - ^-(pz + q*)}-1.
The energy levels of the conduction band are finally

B^i+Ds*. ;>1.

(4.7)

The secular equation for j = 0 leads to the zero point energy of the

conduction band

E(k,) = Eo(0)+ %~k^:h -B'[kz)s (4.8)
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with

B'(kz) = A {A> {A> + Apf (A' - Aq) + A' (A' - Aqf {A' + Ap

-P~(A'+Ap)(A'-Aq)2vA'

- q^(A' + Ap)(A'-Aq)2,uA'

(A' + zg-i (A' - Aq)^U' (A' + Ap) + A' (A' - Aq)

(4.9)

+ (A' + Ap) (A' - Aq) -^ {p> + q*)}-1.
where

A' = ^4±iA- (4.10)

in the parabolic approximation.
For large / one gets again the familiar expression for the energy levels

in the one band approximation.

5. Susceptibility

The energy levels E, as calculated in the two preceding sections, deter¬

mine the free energy F2V).

oo
+00

F = N C - 2'£- kB T £ f dkz In [1 + e«-E <*-' + (1/2))]/** rj
7 = 0 ^
'

- OO

+ oo

2e H
+ ±±JLkBT I dkzln[l + eX-E^°»lkBT] \ (5.1)

2eH

c A2 B
kBT / iÄ, In [1 + «K-*<*«»'** rl.

N is the number of conduction electrons per unit volume.

£ is the Fermi energy.

We calculate F up to second order in H, so that the magnetic field in¬

dependent susceptibility is
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s-fi model. Bv means of Euler's formula the sum in (5.1) can be trans¬

formed into

oo -j oo

leH

ch2
knT I dx j dkz In [1 + e[C "h{k* ""'**l (5.3a)

+_TO j dE(kz, x) \

+
12rÄ« j ^ 1+V^--Wo>T*Br • (5-3b)

- oo

We evaluate first the double integral in (5.3a).
It is convenient to introduce new variables

Tfi h2 s %
/- as

With (3.18), (3.16) and (3.17) the double integral then becomes

(5.5)
2^{2m*r{kBTr j y-^dy f dz

o

Here f(y, z) is

(5.6)
m A (y + z + A) + Ay - (y + z + A) (y + z)

2ß {y + z + A)2{2y + 2z + Ä)

and

t= X_ i=—^ - Ä =
—^ (5 7)

We develop (5.5) into a power series of H2. For the susceptibility we

need only the first order term, which is

CO oo

2*~ (2m*r {kB If" RH* I y^ dy f dz-
*>•*

-

. (5.8)
o o

1+e y z

Since we are only interested in the temperature independent susceptibil¬

ity, (5.8) can be written as

f C-y

\*- (2 m*)'1* (kB Tf2 R H2 I y~112 dy f dz f(y, z) . (5.9)

From now on the integration is elementary, and will not be shown

here. With (5.2) we find that the contribution to the susceptibility from

(5.3a) is



m.mass

electronfreethecontainingnowsusceptibilityLandautheis%LHere,

(5-15)Z«=-|zJ-

gives(5.3b)whilecancel,(5.1)interm

thirdandsecondtheofsusceptibilitythetocontributionstheAgain

B'(kz).forexpressioncorrespondingaand

s*(2/+l)))~1+(»«*:^m+/ (5.14)

s^^(Zl|-42)(2/+l)].

WK^.-

vs+S^.-[£(«=B(*-'+2-)
ha

becomes(4.6)thatso0,=Athatfollowsthenit(4.5)From

(4.2)).(see(f\Aq=p2\Apmeanswhichm*,=mthat

assumeweeasier,somewhatintegrationthemakeTomodel.^>-s-^>

(5.13)

!)+...»«9

w*13

j\
—~

(_^~j^^5I\Xl+
\lm*Im*\af/72

|
,

tI1mA\Xl\ZXal-
_

/1
^

8II—

m*/,m*

aretermstwofirsttheA,CIofseriespoweraindevelopedis
iXaIf

(5-12)Xal+Xt>l-=Xl

issusceptibilitytotal

thethatsocancel,(5.1)intermthirdandsecondtheofcontributions

thethatintegration,ofmethodsimilarafollowingshown,becanIt

(5-11)-UJ-=Z»i

isandway,sametheincalculatedbeenhas(5.3b)from

contributionThem*.masseffectivethewithsusceptibilityLandautheis

c2m*2ftjr224
.£1/2

m*(2
=2/

where

(5.10)

U/2£Im*4

y)arctan(^r)++(ybH
U/2tm*I,\5m/

\i/2

C»»*2

/
tanarcx

P

U/2
Cm*2

.4-I

3

\3/2

Cm*

/1 1\1mi1\3/2
Cm*

I

Jqm*\
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The integral (5.3 a) can be written in the form (5.9), where Rf is now

e2 Ä2

nfi c2 k

p* Av+Aa(A TAV-Aq 1

i+ 2^A^(v+-)r.
mAvAQ

(5.16)

After carrying out the integration we find for the total susceptibility of

the s band %2 = %a 2 + %b 2,
where

Z.. =
- Ul I 24 {l - (^y1/2- arc tan (E 01/2} - | %L \ 32

The symbol E has the meaning
2(ft2+ga)

mAJ)Al}

(5.17)

(5.18)

Developing #„ 2
into a power series of J, we get for the first two terms

24

Xa2=~ |*lI8^£ IXlI-^02
xA^-i'A-W- (5-19)

5 ^„j.

6. Discussion of results

In this section we give a numerical estimate of the above calculated

susceptibilities. Further we discuss the tight binding and weak coupling
limit respectively. And finally we compare our calculations more care¬

fully with those of Kjeldaas and Kohn.

s-fi model, numerical estimate. In section 3 we mentioned that this

model should be representative of lithium. We now look to what extent

this hypothesis is fulfilled. A reasonable value for the effective mass in

lithium lies between 1.40 m and 1.80 m. The Fermi energy consequently
varies from 3.37 eV to 2.62 eV. The energy gap A is not known and we

assume it lies somewhere between 3 eV and 10 eV. With these values we

Table 1

The relative susceptibility %iI\Xl\ as a function of the interband distance A for

two values of the effective mass m*

A

in eV
Zl/I XL 1 (m*lm == 1.4) Xil\ Xl 1 (m*lm = 1.8)

3 -0.39 -0.09

3.5 -0.85 -0.82

4 -1.16 -1.28

5 -1.50 -1.86

7 -1.75 -2.26

9 -1.76 -2.39



On the Diamagnetism of the Conduction Electrons 669

have computed Table 1 for %iI\Xl\- Here %t is defined by (5.10). From
Table 1 we see that the total suceptibility i\ in the case m* = 1.4 m lies

between — 0.39 \%L\ and — 1.76 \%L\. For m* = 1.8 m it lies between
- 0.09 [ Zl| and-2.39 |Zl|.

Experimentally %lexp = (— 0.7 ± 0.75) \xl\- The best value for A

which fits the experiment is therefore between 3 eV and 4 eV in the

case m* = 1.4 m as well as for m* = 1.8 m. As the experimental value

is not accurate, these results are not very conclusive.

Tight binding. To get a little more insight, we consider the tight bind¬

ing limit. If m* tends to infinity, the total susceptibility becomes

Zi= I |Zi.|8^(l--^) = -iV^i. (6.1)

Here N is the number of electrons per unit volume. Since in this limit

2 pz\m A = 1, the susceptibility can also be written

K = -N^--i^Ab-b-r==-N^z>»>-z»->>- (6-2>

Here we have used the relation

-inpzbb, = mAbb,zbh, (6.3)

which follows from the commutative properties of p and z with the

Hamilton function. zb b-
is the matrix element of the z coordinate between

the s band and the p band. The atomic diamagnetism is given by

Xatom« =-NiczTa (r*)bb (6-4)
6 m c2

which should be compared with (6.2). To give an idea we evaluate (6.2)
and (6.4) for hydrogen like 2s and 2p wave functions with effective

charge Z, This gives , „

where (r2)bb = 42 (aJZ)2. Here a0 is the Bohr radius.

This is too large by a factor 18/7 compared to (6.4). Although the use

of hydrogen wave functions may not be justified, this suggests that our

model is not complete, and higher bands are likely to contribute to the

susceptibility.
Weak coupling. In the weak coupling limit (m* -> m) the free electron

susceptibility is obtained correctly.
Comparison with the treatment of Kpldaas and Kohn. The treatment of

Kjeldaas and Kohn consists in the successive application of canonical

transformations. Each of these gives rise to a further term in a power

series expansion of the susceptibility as a function of f.

x = -\zL\{1 + «t + ß?+ ••}•
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Kjeldaas and Kohn evaluate a, which contains interband effects as

well as corrections from the non parabolicity. Using the expansion (5.13)
of our result (5.10) a comparison of the two treatments is possible in

several respects.

a) First of all we shall examine the validity of the parabolic approxi¬
mation, which we have made. For that purpose it is necessary to apply
the Kjeldaas-Kohn treatment to the s-p model. Formula (3.9) of refe¬

rence 13 evaluated for this restricted number of bands gives

i I [-, , o
£ m* I m* 1 \ 2 t, Im* A2)

Xi=~\Xl\{1
+ *a „-(-^--1)- 3 -A[m -1)} ^

where the effective mass m* is defined in (3.11).

Comparing this formula with the first order term of our expansion

(5.13) we see that there is an additive correction due to the non para¬

bolicity. Since numerically, it amounts to 5 per cent at most, the para¬

bolic approximation appears to be justified.

Table 2

The relative susceptibility up to the first order term in J

A in eV XiI\Xl\ (m*lm = 1.4) XiI\Xl\ {m*jm = 1.8)

3

9

-6.03

-2.68

-11.06

- 4.35

b) To see the importance of higher order terms in f we compare our

full result (5.10) with the first order term in (5.13). Comparing values in

Table II with those in Table I we find that higher terms give an consider¬

able paramagnetic contribution to the susceptibility. This suggests that

Kjeldaas' and Kohn's treatment is incomplete.

c) The influence of higher bands finally becomes evident by comparing
our first order term (Table II) with the full Kjeldaas, Kohn result

X
~
— \%l\ co ^o = + °-°3 \xl\ (with m*\m=\A\ see ref. 13). The

significant difference implies that higher bands play an active role.

p-s-p model. Here things are a little more complicated, because the

deeper lying 2 p band might contribute to the susceptibility. However

we believe its contribution is small. To explain this we use the very

general formulae for the susceptibility obtained by Hebborn and Sond-

heimer17). The terms containing the factor df0{Em)ldEm(f0(Em) is the

distribution function) are zero, because this p band is completely filled.

The term containing the factor dEJdk2 {Em is the energy band) should

be small because the p electrons are tightly bound. The only term we

need to consider is

2

dk
. (see ref. 17)z

1

F ~F
^iYnm —

dx dk„
dr0
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This term is zero in the weak coupling limit, and reduces to the atomic

diamagnetism in the tight binding approximation. Since the atomic dia¬

magnetism is small, and if we assume that interpolation is allowed, it

follows that the contribution of the f band might indeed be small.

A numerical application of the formula (5.19) is not very conclusive

because X% depends on the ratio ApjAq. The experimental value of the

susceptibility is Xexfi = (- 0.27 ± 0.40) \Xl\. Since Xib =
- \Xl\ a para¬

magnetism is needed. For Ap = Aq the correction to the Landau term has

the wrong sign. It is again evident that higher order terms in f give ap¬

preciable contributions.

Since in this model we only considered the case m* = m, the tight

binding limit cannot be studied here.

It should be noted that also in this model in the weak coupling limit

[A ~> oo) the free electron susceptibility is obtained.

7. Conclusion

There exist now two approaches to the problem of the diamagnetism
of Bloch electrons which have actually been applied to a simple metal,

like lithium. The merits of the two methods are displayed in Table 3.

In each of the three comparisons the more complete model is listed to

the left. Its susceptibility is in each case more paramagnetic. This is in

agreement with the general trend that experimental values for the sus¬

ceptibility are too paramagnetic if compared with trivial theories.

The main conclusion of this work is that interband effects give impor¬
tant contributions to the susceptibility. At present no numerically re¬

liable theory has been developed. A straight forward extension of the

Kjeldaas-Kohn treatment is cumbersome. On the other hand an lmprove-

Table 3

Comparison of our with Kjeldaas' and Kohn's treatment

Comparison of the models Difference in 'Q Conclusion

Kjeldaas-Kohn
model restricted

to s-p bands

s-p model

linear in £
small

parabolic

approximation

justified

Complete b-p
model

s-p model

linear in £
appreciable

higher terms

in f important

Complete

Kjeldaas-Kohn
model

\-p model

linear in £
appreciable

higher bands

important
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ment of our model seems hopeful in view of the following fact The

Luttinger-Kohn representation starts with bands containing free elec¬

trons However p electrons behave so differently, that their energy spec¬

trum is even inverted Therefore a model for which the highest and lowest

bands are s bands or d bands would be more satisfactory In the case of

lithium this is an s-p-s band model, while for sodium an s-p-s-p-d-s band

model would serve
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