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Preface

The following study of the secondary flow in curved pipes was made at the

Institut fur Aerodynamik der Eidgenossischen Technischen Hochschule in

Zurich under the scientific direction of Professor Dr. J. Ackeret. The study
includes an experimental investigation of the secondary flow phenomenon
followed by a theoretical investigation of the initial or starting phases of the

secondary flow in slightly bent pipes made through an application of the

equations of motion of an incompressible inviscid fluid.

I would like to take this opportunity to express my indebtedness to Pro¬

fessor Dr. J. Ackeret for his most helpful suggestions and unfailing interest

during the progress of this work, as well as the permission to use the experi¬
mental apparatus. Thanks are due also to Mr. Sprenger of the Institut fur

Aerodynamik for his assistance with the experimental equipment. I also want

to acknowledge the financial support received, during this work, through a

Fellowship granted by the National Research Council, Washington, D. C.

R. W. Detra
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Definitions of the Important Symbols

r, <p, z = cylindrical coordinates

p, & = polar coordinates as used in Chapter II

y (r, <p) = h (r) cos <p = axial component of vorticity
rx = outside radius of circular cross-section

u = radial velocity component
v = tangential velocity component
w = axial velocity component
ifj = stream function

w = average mass-flow axial velocity

Re = — = Reynolds Number

p = mass density
p = pressure

/ = body force per unit mass

R = radius of curvature of the bent pipe
r

dimensionless radius
'i

w0 = maximum value of the axial velocity
w

dimensionless inlet-velocity distribution

8 = — = dimensionless distance from the inlet of curved pipe
ri
T

A = -£ = dimensionless ratio of radii

6 = A 8 = angle of bend of the curved pipe

air)) cos op = ;r~— = dimensionless secondary flow stream function

$,<p,z = elliptic cylindrical coordinates

a,b = semi-major and-minor axes of the elliptic cross-section

£ = secondary flow loss coefficient
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Chapter I. General Considerations

§ 1. Introduction

The goal of every engineer is to always improve the efficiency and perfor¬
mance of the machines and equipment he designs. In order to do so it is

important to understand the phenomena and processes associated with these

machines. As a result of this understanding, the sources of the losses and

inefficiencies can more easily be found, and subsequently their magnitudes and

effects evaluated.

It has been known for some time that when fluid with a non-uniform

velocity flows in a curved pipe, there arise losses which are greater than those
for the corresponding length of straight pipe. Therefore, there must be a

phenomenon present in the flow in a bend, which is not present in a straight
pipe, from which these losses originate. Another consequence of this pheno¬
menon is that it distorts the shape of the axial-velocity distribution as the

flow moves around the bend of the pipe. To obtain a knowledge, about this

flow in a curved pipe, is desirable and important from both the scientific and

practical view-points. It was, thus, the purpose of this investigation to obtain

an understanding of the flow processes involved, and subsequently to develop
a theory for predicting these processes. Recognizing the undisputed value of

having a physical comprehension of a problem, the investigation was carried

out using, where possible, a close connection between physics and theory.
Applications of the results of an investigation of the flow in curved pipes

are rather apparent. For example, the airplane, which today shows, indeed, a

great improvement in performance and efficiency over those of the previous
decade, still offers opportunities for improvements. Its overall efficiency is, of

course, determined by the efficiencies of its various components, which with

the complexity of the present-day airplane are numerous. Herein lie the pos¬
sibilities of an application of this information. It can be used to good advantage
in the design of the many flow passages used to conduct air from one place to

another within the airplane, for example the air intakes to the engines. In

addition, the advent of the turbo-jet and rocket engines, as applied to air¬

planes, has opened many fields where the knowledge about flow in curved

passages and pipes is a necessity if these machines are to be designed for

maximum efficiency. To be sure, the information can be applied to stationary
machines as well, the airplane being simply one example.

In the following work a study is made of the fluid flow in a curved pipe.
Discussed first from a physical point of view, a basis for the origin of the

phenomenon which arises is suggested. The results of experiments on the flow

in curved pipes, which were conducted at the Institut fur Aerodynamik der

E.T.H., Zurich, support this physical argument, thus indicating that the de¬

ductions are sound. Drawing on the above information, a first order theory is

developed to predict the flow phenomenon in a curved pipe whose cross-
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sectional dimensions are small compared to its radius of curvature and whose

angle of bend is small. As such, the theoretical study is a study of the initial

phases of the secondary flow phenomenon in a curved pipe. An application of

this theory is then made, the results of which are compared with the results

of the above mentioned experiments.

§ 2. Definition of Secondary Flow

Many basic fluid-motion studies are made by assuming that the motion is

irrotational. Irrotational motion is defined by that motion for which the curl

of the velocity vector is zero. The curl of the velocity vector is called the

vorticity, which is defined physically as twice the angular velocity of the fluid

particle. Irrotational motion is equivalent to or constitutes motion free of

vorticity. Since the curl of every gradient is identically zero, it is possible,
when irrotational motion exists, to write the velocity vector as the gradient
of a scalar function. This scalar function is called the potential function and

the motion that exists under these conditions is called potential flow. The

necessary as well as the sufficient condition that must be satisfied in order to

have a potential flow is that the flow be irrotational. Restricted to the con¬

sideration of an incompressible fluid, the differential equation satisfied by the

potential function is Laplace's equation. From this one scalar potential func¬

tion the three mutually perpendicular velocity components of a general flow

problem can be found and thus an extreme simplification has been achieved.

Much attention in the past has been given to the problem of finding solutions

of Laplace's equation as applied to fluid motion. The general problem of

solving Laplace's equation, which constitutes Potential Theory, is the subject
of a great literature. The irrotational assumption is also equivalent to saying
that the stagnation pressure is the same along all streamlines, in fact through¬
out the whole flow field.

In practice, however, it often happens that the stagnation pressure is not

the same along all streamlines, but varys slightly from one streamline to

another. This then means the flow is not irrotational but only approximately
so, and hence the definition of a scalar potential function for the flow is impos¬
sible. The difference between the potential flow and this approximately poten¬
tial flow in the normal plane is called secondary flow. Consequently the

secondary flow must contain vorticity. This vorticity, in turn, constitutes a

motion of the fluid particles, which is not necessarily restricted to involve

motion of the fluid particles along the streamlines of the potential flow, but

can define other streamlines. If this difference, which describes the secondary
flow, is small, then it is conceivable that the velocities and, subsequently, the

losses of this secondary flow are correspondingly small.

§ 3. The Secondary Flow Phenomenon in Curved Pipes

According to the definition of secondary flow there arises a vorticity in the

flow field. Since the vorticity is defined mathematically as being equal to the
curl of the velocity vector, this vorticity must arise from a velocity gradient.
It is clear that a non-uniform axial-velocity distribution in a straight pipe will

produce vorticity in the flow due to the non-uniform distribution. If this (low
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then moves around a curve in the pipe this vorticity will still be present, so

that it cannot be considered as a result of the effects of the bend itself. Since

we are interested in the phenomena caused by the bend itself we must therefore

ask if there is any other possible source in a curved pipe flow, which could

provide an origin of the vorticity in the secondary flow. We shall therefore

investigate the possibility of whether a non-uniform velocity distribution and

subsequentily a vorticity distribution can originate in the cross-section of the

pipe perpencicular to its longitudinal axis.

Consider now simply a fluid flow moving in a curved path. Each particle
of the fluid, as it moves in the curved path, is acted upon by a centrifugal
force. The definition of a fluid particle as used here is a very small element of

mass of the fluid which still displays the general characteristic properties of a

large sample of the fluid. This assumes the fluid is continuous and homogenous
in structure. From the results of mechanics of solid bodies, we know the centri¬

fugal force, present during curvilinear motion of a body, is directly proportional
to the square of the body's velocity and indirectly proportional to the radius

of curvature of its path. Drawing an analogy from this result, the centrifugal
force acting on each fluid particle is taken to be directly proportional to the

square of the particle's velocity and indirectly proportional to the radius of

curvature of its path. It must be emphasized, however, that since the fluid is

considered as a continuum, each fluid particle cannot be treated itself as a

solid body. During a fluid motion every particle, as considered here, is being
deformed continually and hence it does not satisfy the requirement of the

definition of a solid body. Also, since the fluid particles are, in fact, touching
each other, the motion of one will influence the motion of the others within

the fluid region. Under the action of this centrifugal force each of the fluid

particles is forced toward the outside of the curved path in the direction of a

line drawn through the path from the center of curvature of the path.
Now by applying this information to the flow in a curved pipe, the origin

of the secondary flow in a plane perpendicular to the longitudinal axis of the

pipe can be seen. Under the condition of a non-uniform axial-velocity distri¬

bution, the centrifugal forces acting on the fluid particles within the cross-

section of the pipe are clearly of different magnitude. These centrifugal forces

acting in the plane of the pipe perpendicular to its longitudinal axis then

create a motion of the fluid particles in this plane. The fluid particles with the

higher axial velocity are acted upon by a larger centrifugal force than the

slower moving particles. Thus if the size of the particles is chosen such that

the mass of every particle is the same, the particles having the higher axial

velocity will have a correspondingly higher velocity within the cross-section

of the pipe, due to the centrifugal forces. The resulting motion will then have

a non-uniform velocity distribution within the cross-section of the pipe,
giving rise to a vorticity in this plane and thus satisfying our definition of a

secondary flow.

Having concluded that the flow in a curved pipe provides the necessary

source for the origin of a secondary flow, it is of interest to investigate the

consequences of this secondary flow. Consider the flow in a curved circular

pipe, with an inlet stagnation-pressure distribution, which is symmetrical
about the longitudinal axis of the cross-section (see Fig. 1).

The fluid particles in the center of the pipe will be forced harder, under the

action of the centrifugal force, to move toward the outside of the bend than
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the particles which are located in the region closer to the wall, i.e. the lower

velocity region. So as the higher stagnation-pressure particles move toward

the outside of the bend, they displace the particles with the lower stagnation

pressure. Since the cross-section of the pipe is closed and since the continuity
conditions within the cross-section must be satisfied, the lower stagnation-

pressure particles will be forced to move along the wall of the pipe toward the

//

I

Fig. 1. The streamlines of the secondary flow in a curved circular pipe resulting from a

symmetrical inlet stagnation-pressure distribution.

inside of the bend. This motion, set up by the outward movement of the

particles with the higher stagnation pressure and the simultaneous movement

of the lower stagnation-pressure particles along the wall of the pipe toward

the inside of the bend, constitutes the secondary flow.

The shape of the streamlines, as shown in Fig. 1, resulting from such a

motion in a circular pipe, resemble the streamlines due to a vortex pair located

inside of a circular cylinder.

(a) (b)

Fig. 2. Lines of constant stagnation pressure at: (a), the entrance and (b), within the bend

of a curved pipe.

One of the primary effects of this secondary motion is to change the shape
of the stagnation-pressure distribution. For discussional purposes, let us say
that the inlet stagnation-pressure distribution of a flow in a curved circular

pipe is symmetrical about the pipe's longitudinal axis. A plot of the Unes of

constant stagnation pressure at the entrance is a system of concentric circles

(Fig. 2), the smaller circles indicating the higher velocity in the central region
of the pipe and the larger circles indicating the lower velocities. At a section
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in the bend of the pipe, that is after a given angular displacement of the fluid,
a secondary motion of the fluid particles will have arisen and subsequently
affected the shape of the stagnation-pressure profile. The result is that the
lines of constant stagnation pressure, which were circles at the inlet, are no

longer circles. The curves defining the constant stagnation-pressure regions
will have moved toward the outside of the bend and at the same time will
have been distorted in shape. The portions of the curves toward the outside
of the bend assume, in general, the cross-sectional shape of the pipe, in this

case a circle. However, the portions of the curves toward the inside of the

bend, being affected by the reverse flow of the fluid along the wall of the pipe,
are, in general, flattened and may exhibit the indentations as shown in Fig. 2.

Under the conditions of a symmetrical inlet stagnation-pressure distribution,
as discussed here, it is expected that the resulting secondary motion will be

symmetrical about the diameter of the pipe drawn in the plane of the bend.

Therefore, the lines of constant stagnation pressure will also be symmetrical
about this line.

Another consequence of the secondary flow is that it represents a loss.

Clearly, if no secondary motion exists in the inlet flow but in the bend a

secondary motion does exist, it means energy must have been supplied from

some available source to promote this motion. In this case, the source of

energy is the kinetic energy of the axial fluid motion plus the work of the

entrance surface forces. The energy in the secondary flow represents a definite

dissipation, unless it is recovered by some useful means.

For the flow in a curved pipe whose angle of bend is large, the limiting case

being where the bend angle tends toward infinity, it is conceivable that the

secondary flow also tends toward a stationary state where it is no longer
dependent on the bend angle. This situation can be pictured as follows: Within

the bend the centrifugal force will always be present and will produce the

effects discussed above. If this were the only phenomenon present one would

believe that after all the fluid particles with the higher stagnation pressure
were forced toward the outside of the bend the secondary motion would cease.

However, acting simultaneously are the viscous forces whose effects permit an

explanation supporting the contention that the secondary motion continues.

As we have seen, the effect of the centrifugal force is to cause an increase in

the stagnation-pressure gradient on the outside of the bend. With respect to

the viscous forces this increased gradient corresponds to an increase in dis¬

sipation. This increase in dissipation on the outside of the bend would cause

a decrease in the stagnation pressure of these fluid particles, resulting once

again in a stagnation-pressure distribution where the greater stagnation
pressure is in the central region of the pipe. This corresponds to the initial

conditions used to discuss the effects of the centrifugal force and so under the

action of the centrifugal force these higher stagnation-pressure fluid particles
in the central region of the pipe would be forced to move toward the outside

of the bend thus repeating the process described. When the simultaneous

effects of the centrifugal force and the dissipation come into balance, the

secondary motion will be independent of the bend angle, but a secondary fluid

flow will exist. This type of secondary flow, which is independent of the bend

angle, is called fully developed bend flow. Clearly, the transition of the secon¬

dary motion from its initial phases to fully developed bend flow progresses more

rapidly as the effect of the viscosity increases.
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Since we are interested in the initial phases of the secondary flow, the

assumption of no dependence on the bend angle, i. e. fully developed bend

flow, is not made. Therefore, the results of the following investigation show a

dependence on the bend angle of the pipe.

§ 4. Previous Work on the Flow in Bends

The existence of the secondary flow which occurs in bends has been known

for some time. Thomson [1] *) discussed it from the standpoint of the flow in

the bends of rivers. With the respect to the flow in curved pipes it was realized

that curved pipes have a greater pressure drop than the corresponding length
of straight pipe. It was then deduced that perhaps these losses which occur

could be related to the geometry of the pipes and the Reynolds number of the

flow. Consequently early experimentors were interested only in defining a

bend loss coefficient as a function of various parameters. The ultimate goal
being that of proposing an empirical equation for predicting the losses and of

finding design possibilities for minimizing these losses. On the other hand,
theoretical investigations, starting with the equations of motion, to predict
the secondary flows in curved pipes and their losses from a purely theoretical

basis have been relatively few.

Dean [2] made a theoretical study of the viscous flow in a bent circular

pipe, assuming fully developed bend flow, so that the solution is the same in

every cross-section of the bend. The equations of motion, obtained by assuming
the ratio of the radius of curvature of the bend to the diameter of the pipe is

large compared to one, are solved by an expansion about the Reynolds number.

The convergence of the solution restricts it to Reynolds numbers smaller than

approximately 400. For this region of application of his theory, he found the

resistance in a curved pipe to be a function of the parameter Be 1-^1 \ where

Re is the Reynolds number and
-p

the ratio of the pipe radius to the radius

of curvature of the bend. In a series of tests using both oil and water as the

flow medium, White [3] confirmed this functional relation between the resis¬

tance and the parameter Re I
-^

I '. Later, Adler [4] also studied the laminar

flow in bent circular pipes using the same approximation concerning the radius

of curvature and the pipe diameter as Dean. His solution, resulting from an

application of the Prandtl boundary-layer theory, is valid for large Reynolds
numbers in the laminar flow region. The results of this theory also show that

the resistance of a bent pipe is a function of the parameter Re 1-^1
Nip-pert [5], [6] and Richter [7] conducted extensive tests on curved pipes

with circular and rectangular cross-sections. In particular, investigations were

made to determine the loss in the pipes as dependent on the various factors

determining the geometry of the cross-section and the bend. Wasielewski [8]
investigated the secondary flow losses in the bend of a circular pipe as a func¬

tion of the bend angle. The measured losses, which include the secondary flow

effects between the station 9 diameters upstream and the station 50 diameters

downstream of the bend, indicate the secondary flow losses are a linear func-

*) The numbers in square brackets refer to the Literature References.
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tion of the bend angle up to a bend of 221/2 degrees. Taylor [9], in an experi¬
mental study of the secondary flow phenomenon, showed visually the pre¬
sence of the circulation in the cross-section of a circular pipe. This was done by
injecting colored fluid through a small hole in the wall of a coiled glass pipe
and then observing the motion of the colored fluid under the effect of the

secondary flow. The motion of the colored fluid in the plane of the cross-

section followed paths similar to the secondary flow streamlines suggested
in§ 3.

A more recent theoretical study was made by Squire and Winter [10], who,

by neglecting viscosity developed a theory for the secondary flow in a cascade

of airfoils with a non-uniform approach velocity. Their approach to the pro¬
blem is made from channel flow considerations rather than using the Prandtl

wing theory. Hawthorne [11] analyzed the flow in a bent circular pipe with an

entrance velocity distribution which varies-in only one direction, that is it

varies linearly across the cross-section. He found this flow gives rise to a spiral
motion of the fluid in the bend. The differential equation obtained for the

fluid motion is analogous to the equation of motion of a pendulum, hence the

theory predicts that the spiral motion is oscillatory as the flow moves around

the bend. Eichenberger [12] found, from tests in a 90 degree bend of rectangular
cross-section, that the streamline pattern appeared to be only slightly changed
by a change in the Reynolds number. He also found that, of the total loss,

approximately one half occurs within the bend and the other half occurs

downstream of the bend. His measurements of the secondary flow velocities

after a bend angle of 90 degrees indicate that the energy in the secondary flow

is relatively small.

Chapter II. Preliminary Theoretical Investigations

§ 1. The Vorticity Distribution and Stream Function

According to the definition of secondary flow, the fluid motion is not

irrotational but contains vorticity. The discussion of the secondary flow pheno¬
menon in a circular pipe from the physical stand-point led to the deduction

that the resulting secondary flow streamlines resembled those of a vortex pair
located inside of a circular cylinder. However, it was also deduced that the

source of the secondary flow, namely the axial-velocity gradient, is distributed

over the cross-section of the pipe rather than being concentrated at two points
as is the case for a vortex pair. This suggests that the streamlines of the

secondary flow corresponds to those of a distribution of vortices over the

cross-section. The question that then arises is: What vorticity distribution

produces streamlines of this shape ? A knowledge of the general form of this

distribution and the resulting stream function will be helpful in a theoretical

analysis of the secondary flow, which is made through an application of the

equations of motion.

Considering a plane circular cylinder, the problem then is to find the stream

function due to a system of vortices distributed over a region bounded by a

circle. Let the radius of this plane circular region be denoted by rx and the

strength of the infinitesimal vortices be denoted by y (p, &) where p and &, the

13



usual polar coordinates, indicate the strength of the vortices is a variable

depending on the location of the vortex. In order to satisfy the boundary
condition that the circle of radius rx be a streamline, each vortex of strength y,

located inside the circle at the point (p, &), must be accompanied by its image

vortex of strength -y, located at the image point (—,#), [13]. Thus in cal¬

culating the velocity components at any point (r,<p), the contribution of each

vortex plus its image must be taken in consideration.

For the motion of an inviscid incompressible fluid, the polar velocity com¬

ponents induced at the point (r, <p) by an infinitesimal vortex of strength y

located at the point (p,&) are given by the equations, [14]

8tt(r;9)) = _rMli7Sinas^
2-77 r

Sw(r,a>) = +TiElf>. IcosaS^l
Ztt r

where the hu and 8v indicates that these velocity components are only the

contribution of an infinitesimal vortex. The length r' is the distance between

the vortex and the point (r,<p) and 8 A is the area covered by the vortex. The

angle a is defined in Fig. 3. In order to obtain the final velocity at any point

(a) (b)

Fig. 3. The velocity components induced at a point (r, <p) by a vortex located inside

a circle of radius rx at (p, &), (a); and its image vortex located at I
—, #1, (b).

(r, <p), the above equations must be summed over the entire distribution of

vortices within the circle and the corresponding system of image vortices. As

the position of the vortices within the circle vary from p = rx to p = 0 the

r
2 r,2

position of the corresponding image vortices vary from — = »"1 to — = oo, thus

this summation must be carried out over the entire plane.
By evaluating r', sin a and cos a from the geometry shown in Fig. 3, the

total velocity components due to the whole system of vortices and images are

given by
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2 77 r, 2 77

*(r'v)—2^JdpJ ^ +2^PPJ V
(la)

0 0 0 0

and

fl 2l J1, 2 77

0 0 0 0

where

— I — 2r J-cos((p —i?).

The consideration of the case with a symmetrical entrance-velocity distri¬

bution led to the deduction that the secondary flow streamlines are symmetri¬
cal about the diameter of the pipe lying in the plane of the curve. This then

requires that the secondary flow velocities display a symmetry within the

cross-section and hence also the secondary flow stream function. We therefore

choose the distribution of the vortices within the circular region to be given by

y(p,&) = h(P)eos&. (2)

Substitution of this relation into (la) and (lb) yields the following equations:

r, 2rr r, 2 it

» -If,,,,, fcos& sin (w-&)d& r,2 f 7 , w fcos#sin(a>-#)d# ,„ ,

U(r'(p) = 2^rj Phb)dp) rJ +^J h(p)dPj r^^~ (3a)

0 0 0 0

v(r,<p) = + ^rjph(p)dpj
l-
Hrt

- +
—jph(P)dpj

r, 277 n lit

~cos#[r-pcos(()£>-#)]d# 1 f fcos#[>12//!>cos((p-#)-r]di?'

0 °
*

(4a)

If the assumed relation for the vorticity distribution (2) is correct, then

the integration of (3 a) and (4 a) will yield the desired velocity components for

obtaining streamlines of the general form as suggested in Chapter I. The

integration with respect to the variable & can be carried out immediately.
We consider first the integration of (3 a). A substitution of the form <p

— # = i/<
into the first integral with respect to & yields the following two simplier

integrals

277 cp—277 q>
— 277

f cos#sin(<p-#)d# 1 i C simlicosJidJi
.

fsm2ibdJj)
-£ '

=

5 ^f COS 09
—-t ^-r^+SHKp —M (3b)

J r2 r2 + p2{ TJ 1-ecosi/r J 1-ecosi/i]
0 <P V

WhCTe =

72^2-

It can be shown that the first integral on the right hand side of (3b) is zero.

The second integral can be further simplified by making the half angle substi¬

tution

Ji 2dt
« = tan-; ^ =

IT^-
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(*)"+rz

p

2r^
where

(6g)Ji-toos09sin

l(jCOS

IT2—(p

simjjdifi
1-T(J

Sil/rCOSf
2ir—

(p

(cp-&)d&

r,J
TcostT'sin
2rr

integralstwotheproducesi/j=cp-&substitutionThemanner.followingthe

inmadeis&torespectwitha)(3ofintegralsecondtheofintegrationThe

(3f)

p>r.

p<r

_
99sin77

&)d&—cos#sin(<p/
(sin77

asb)(3byindicatedintegrationtheofresultthewritethuscanWe

(3e)

p>r.

p<r

p2+r2

_

p2+r2

ecosi/<—1

ifidipsin2

!
IT2—(p

integraltheofvaluethefacts,theseUsing.

p-+rz

becomes(3d)

inresultse2—^1termthe

Thenr<p.thatso(r,<p)pointthethanoriginthefromfurtherisvortexthe

wheniscaseotherThe
p2+r2

resultthegives/i_2termther,<pisthat

vortex,thebycausedvelocityradialthecalculatingarewewhichatpoint
thethanoriginthetocloserisconsiderationundervortextheIfcases.possible
twobetweenmadebemustdistinctioncalculationtheofpointthisAt

J '

J2(-eCOSi/r
(3d)-2tr(1-^^i).

=
y''-gg!i7d^

resultthe
yielding[15]evaluatedeasilyarec)(3ofsidehandrighttheonintegralsThe

t(<p)t(cp)t(<p)

(3C)t*]'+tJ(J_l)2(1+^2)2J£_1l+<2Jei^-l)2+l-eCOSiOJ

integrals:simplethreefollowingtheinfractionspartialby

expandedbecanttorespectwithintegralThis
y——.

=£bydennedis£where

+n*(ut2)
t(<p)<p

(1Je+1l-6C0S!/r_J
f

8sin2^d^j

r t2dt
f

8

_

sm2ifjdtlt

t((p-2ir)<t-2-n

becomesb)(3ofintegralsecondthesubstitutionthismakingUpon



The first integral on the right hand side of (3g), Uke that one of (3b), is zero.

The second integral being similar to the second integral of (3b) is evaluated

in a like fashion using the half angle substitution. However, since the integral
(3g) gives the contribution of the image vortices, which are all located outside

the circular region, only one value for the integral is obtained. It is

2H

f
cos & sin ((p — &)d& ir sin 9

(?)"
(3h)

Using the results of the integrals (3f) and (3h), the radial velocity due to this

system of vortices becomes

n r r,

u(r,9)=^{~jph(p)dp-y2jP*h(p)dp-^h(p)dp}. (3i)

The integration of the integrals for evaluating the tangential velocity (4a)
is done in a similar manner, resulting in the following equation.

v (r, <p)
COS (p

r n rx

{y2jp2h(p)dp + ~jp2h(p)dp-jh(p)dp}. (4b)

So if the vortex distribution h (p) as a function of the radius is known the

values of the polar velocities at any point (r, 95) due to this distribution of

vortices can easily be found.

We now investigate a simple case by choosing the radial vortex distribution

h (p) as a linear function of the radius, i. e.

h(p) = hp.

Substitution of this vorticity distribution

into equations (3i) and (4b) allows the

evaluation of the polar velocity compo¬

nents which yields

u(r,(p)
k

(r2 ) sin 99

and

v (r, tp) = — (3 r2 — r-j2) cos <p.

(5)

(6)

We introduce a stream function defined

by the relations

r 0

1 djs_
9

and v = —

8r

Fig. 4. The streamlines due to a distri¬

bution of vortices over the surface of

a bounded circular area. The distri¬

bution of the vortices is given by
y (p, &) = k p cos &.

from which, by using the values of the velocity components as given by (5)
and (6), the stream function can be found as
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rC T

i/r = —-(rx2 — r2) cos <p + Const. (7)
o

A plot of the streamlines given by (7) is shown in Fig. 4. We see that the

streamlines do exhibit the same general shape as those predicted by the physi¬
cal conjectures of Chapter I. This then suggests that the stream function of

the secondary flow, as obtained from an analysis made through an application
of the equations of motion, should have the same general form of equation (7).
In particular, the stream function should appear, for a given bend angle, as a

trigonometric function of the polar angle times a functional dependence on the

radius of the cross-section. In this analysis the functional dependence of the

vorticity distribution on the radius of the cross-section is arbritary. From the

previous discussion of the origin of the secondary flow in curved pipes, it is

believed that the inlet stagnation-pressure distribution plays a predominant
role. This then suggests that the inlet stagnation-pressure distribution will

exert a strong influence in determining the radial dependence of the vorticity
distribution and hence the secondary flow velocities and stream function.

Chapter III. Experimental Investigations

§ 1. Introduction

Experiments were conducted at the Institut fur Aerodynamik, E.T. H.>
Zurich, to investigate the secondary flow, which arises when fluid flows in a cur¬

ved pipe. For this investigation of the starting phases of the secondary flow, the

experimental tests were conducted on curved constant-area circular pipes with

a small ratio of diameter to radius of curvature as compared to one and a

small angle of bend. To obtain a visualization of the effect of the bend and

subsequently the secondary flow in changing the stagnation pressure distri¬

bution, these distributions were measured at the inlet and the exit of the

curved pipes. Wall pressure measurements made along the length of the pipes
and at different locations on the circumference of the cross-section show the

variation of the wall static pressure as the flow expands to atmospheric pres¬
sure at the exit of the pipe.

§ 2. Experimental Apparatus

The flow medium used for these experiments was air. It was supplied from

an electric-motor-driven centrifugal compressor, which exhausted the air into

a diffusion chamber. In the diffusion chamber were installed three turbulence

screens, Fig. 5. The first screen (1) contained square passages (8x8 mm)
parallel to the axis of the diffusion chamber. The length of these passages was

6 cm. The second screen (2) was sheet metal preforated with 8 mm diameter
holes. The third screen (3) was a wire screen of 2 mm mesh. Leaving the

diffusion chamber the air passed through an accelerating nozzle. The mano¬

meter (Mj) was used to select the desired working velocity of the air flow.

Attached to the accelerating nozzle was a 100 cm length of 10 cm diameter

straight wooden pipe. The test pieces of curved pipe were then installed on

the end of this straight pipe.
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Fig. 6. The accelerating no/.zle and wooden pipes used for the experiments.

Because the stagnation pressure distribution at the exit of the accelerating
nozzle was \erv neai'ly rectangular, the straight section of pipe was used to

allow the boundary layer to grow and thus give a slightly pointed distribution.
To produce further \ariations in the stagnation-pressure distribution at the

inlet of the curved pipes various combinations of a nozzle-insert and a wire

ring. (Fig. <S) installed in the straight pipe were used. The nozzle-insert had

a length of 15(1 nun and a throat diameter of "<> mm. The diameter of the

wire used tor the ring was ."i nun.

Two wooden curved circular constant-area test pipes were employed tor the

cxpetnnents. Each had a diameter of 10 cm and a length of KM) cm, measured
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along the longitudinal axis. Pipe I had a radius of curvature of 27IS cm and an

angle of bend of 21 degrees. Pipe II had a radius of curvature of I'M cm and

corresponding angle of bend of 42 degrees. Both pipes were fitted with fid

pressure taps to measure the wall pressure. The holes in these pressure tap.s
had a diameter of I mm. Longitudinally along the pipe six taps were located

at each cross-section ot the pipe at one diameter intervals, beginning one half

of a diameter from the inlet. Within the cross-section the six pressure taps
were located at 3d degree intervals starting at a =15° where a = d° indicates

the inside of the bend.

Fig. 7. The arrangement of the compound trmerse and the total pressure probe used to

measure the total pressure at the exit of the test pipes.

To measure the stagnation-pressure distribution at the exit of the test pipes
a total pressure probe, installed on a compound traverse, was used. This probe
had an outside diametei of 2.."> mm, an inside of I mm and the end was tapered
to zero wall thickness. The tia\erse pro\ ided a means of mo\ ing the pressure

probe in the plane of the exit cross-section of the pipe and at the same time

identified the position of the probe. The general arrangement of this traverse

is shown in Fig. 7. Assuming that atmospheric static pressure existed at the exit

cross-section of the test pipe and with the pressure probe located precisely at

the exit of the test pipe, the manometer, \ented to atmospheric pressure,
indicated directly the dynamic pressure.
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§ 3. Test Procedure and Results

A. Test Procedure

Manometer (Mj), measuring the difference between the stagnation pressure
in the diffusion chamber and the static pressure in the accelerating nozzle, was

used to select a desired average flow velocity based on mass flow. This average
mass-flow velocity provided a convenient reference velocity. Nozzle calibration

curves were used to determine the manometer reading corresponding to a

certain value of average mass-flow velocity. The nozzle calibrations were con¬

ducted by Mr. Sprenger of the Institut fur Aerodynamik previous to the

beginning of the subject experiments.
Using the total pressure probe mounted on the traverse, the stagnation

pressure distribution at the exit of the straight section of pipe was first measured

with the curved pipe removed. The distribution, so measured, was taken as

the inlet stagnation pressure distribution of the curved pipes, which were then

attached to this section of straight pipe. Since the measurements were made

at the exit of the straight pipe, after the expansion of the flow to atmospheric
pressure, the manometer indicated the dynamic pressure at each measured

point. The axial velocity was then calculated from this dynamic pressure. The

curved test pipe was then installed and using the same value of average mass-

flow velocity as used for the above measurements, lines of constant stagnation
pressure were measured at the exit of the curved pipe. Here again, since the

measurements were made at the exit cross-section after the expansion to

atmospheric pressure, the measured pressures indicated the dynamic pressure,
from which the axial velocity was calculated. The regions of high stagnation
pressure which form in the cross-section toward the outside of the bend then

appeared at the exit of the curved pipe as regions of high axial velocity. The

difference in the shape of the stagnation pressure distribution at the inlet and

exit of a curved pipe, as measured above, shows the effect of the bend with

the static pressure eliminated, since both distributions are measured with

respect to the same static pressure throughout the cross-section.

B. Experimental Results

Tests were conducted on pipes I and II using four different inlet stagnation
pressure distributions. These inlet distributions are denoted by the letters

A, B,C, andZ). The exit axial-velocity distributions resulting from using these

inlet distributions in the test pipes appear respectively in Figs. 8, 9, 10, and

11. The curves plotted are lines of constant axial-velocity ratio wjw. The w

indicates the average mass-flow velocity and w is the local axial velocity. The

average velocity in the accelerating nozzle and the nozzle diameter were used

to define the Reynolds number.

In Fig. 8 are shown the results of tests on pipe I using the approximately
rectangular inlet distribution A. This is the distribution as measured at the

exit of the accelerating nozzle. For this test the 100 cm length of straight pipe
was not used. Here the displacement of the particles with the higher stagnation
pressure toward the outside of the bend is evident, however it is relatively
small. From a first glance, one might conclude that the deductions made in

Chapter I about the effects of the secondary flow are false. In the higher
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velocity region, the lines of constant axial velocity show no symmetry or

regular form. If the secondary flow does arise from a total pressure gradient,
then in this case the contributions com« only from a small region close to the

wall. Since this region is small, a small non-symmetry of the entrance distri¬

bution can show an amplified effect in causing a non-symmetrical secondary

to

0.5

1.0

——*->

'

(a) (b)

Fig. 8. Measured lines of constant axial velocity at the exit of: (b), pipe I, with an angle
of bend of 21 degrees, resulting from (a), the inlet distribution A, where «; = 4150 cm/sec.

and-R,, = 258600.

(a) (b) (c)

Fig. 9. Measured lines of constant axial velocity at the exit of: (b), pipe I, with an angle
of bend of 21 degrees, and (c), pipe II, with a bend angle of 42 degrees, resulting from (a),

inlet distribution B, where w = 4160 cm/sec. and Re = 256000.

flow. Hence, due both to the non-symmetrical inlet distribution and the non¬

symmetrical secondary flow, it is doubtful that the axial velocity after a bend

will show any symmetry. However, the curves in the lower stagnation-pressure
region do exhibit a symmetrical shape. Also evident is an increase in velocity
of the fluid in the central region of the pipe. Because of a growth of the boun¬

dary layer thickness, the effective cross-sectional area of the pipe is decreased,
necessitating an acceleration of the fluid in the region outside of the boundary
layer in order to satisfy the continuity conditions.
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Pig. 9 shows the results of tests on pipes I and II using inlet distribution B,
a slightly pointed distribution. This is the distribution measured at the exit

of the 100 cm long straight pipe with the wire ring inserted 95 cm from the

exit. In the figures showing the measured exit axial-velocity distribution the

effect of the secondary flow is quite evident. The particles with the higher
stagnation pressure have clearly been displaced toward the outside of the

bend. The curves of constant axial velocity exhibit, in general, a symmetrical
characteristic indicating the secondary flow was approximately symmetrical.
From the results of pipe II, corresponding to a 42 degree bend, it is clear that

the displacement of the higher stagnation-pressure particles toward the out¬

side of the bend has forced the particles with the lower stagnation pressure to

move along the wall of the pipe toward the inside of the bend. As a result of

this motion, clearly defined regions of low stagnation-pressure fluid are located

at the inside of the bend.

(a) (b) (c)

Fig. 10. Measured lines of constant axial velocity at the exit of: (b), pipe I, with an angle
of bend of 21 degrees, and (c), pipe II, with a bend angle of 42 degrees, resulting from (a),

inlet distribution C, where w = 4200 cm/sec. and Re = 250000.

The results of tests on pipes I and II using the distribution C, which is only
slightly different from B, are shown in Fig. 10. This distribution was obtained

by installing the nozzle-insert in the short constant-area section of the accele¬

rating nozzle. The distribution was then measured at the exit of the 100 cm

length of straight pipe. The results show the same general character as those

using distribution B. The displacement of the higher stagnation-pressure fluid

particles toward the outside of the bend is slightly larger than the case above.

The entrance distribution C, however, has a slightly larger velocity variation

than distribution B. This then indicates that the effect of the secondary flow

increases as the stagnation-pressure gradient increases. The regions of low

velocity fluid at the inside of the bend of pipe II are well defined and are

showing a tendency to become closed regions.
The results of tests using pipes I and II and a more pointed inlet distri¬

bution D, are given in Fig. 11. These results, displaying the same tendencies

as those above, also confirm the deductions made in Chapter I about the effect

of the secondary flow on the stagnation-pressure distribution. The rather

sharply pointed characteristic of the inlet distribution has been to some extent
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Fig. 11. Measured lines of constant axial velocity at the exit of: (b), pipe I, with an angle
of bend of 21 degrees, and (c), pipe II, with a bend angle of 42 degrees, resulting from (a),

inlet distribution D, where w = 4180 cm/sec. and Be = 252000.

9 L/D 10

9L/D10

Fig. 12. Wall static pressure variation along curved pipes I and II, resulting frora inlet

distribution B. a= 0= inside of bend. g= 9789 dyn/cm2.
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flattened as the fluid moved around the bend. This is the result of the usual

characteristics of a pointed velocity distribution, at high Reynolds numbers,
to transform into the customary turbulent velocity distribution.

The wall static pressure variations for pipes I and II, which resulted from

using distribution B, are shown in Fig. 12. The distance along the length of

the pipe, plotted as the abscissa, is measured by the number of diameters

downstream from the entrance. The ordinate is the dimensionless difference

between the wall static pressure and atmospheric pressure. The angles noted

on each curve denote the location of the pressure tap on the circumference of

the cross-section, where a = 0° is on the inside of the bend.

The curves show the usual expansion to atmospheric pressure, however

there is evident a difference in the circumferential wall static pressure at any
one cross-section. This then indicates the effect of the bend in the respect that

there is a deviation from the single straight line which would occur for a

straight pipe. A comparison between the results from pipe I and II shows that

as the angle of bend increases the spread in the curves of the pressure on the

inside and outside of the bend also increases. From this we can see the

transition from a straight pipe to a curved pipe. A straight pipe would yield
only one curve and as the pipe is slightly bent the curves would separate a

small amount, this separation then increasing as the bend in the pipe is increased.

The wall pressures on the outside of the bend remain above atmospheric
pressure during the expansion while those on the inside of the bend reduce

below atmospheric pressure. If the flow entered the curve as potential flow the

higher velocity on the inside of the bend would first cause a decrease in the

wall pressure while the lower velocity on the outside of the bend would cause

an increase in the wall pressure. In the bend the fluid particles would tend

toward the inside of the bend and then under the action of the centrifugal
force this concentration of high velocity fluid on the inside of the bend would

be forced to move toward the outside of the bend causing a further decrease

in the pressure on the inside of the bend and an increase on the outside of the

bend. In the plotted curves the effect of the flow in the bend on the wall static

pressure is coupled with the expansion to atmospheric pressure.
For comparision, the pressure drop in the straight pipe is also plotted

(dashed curve). The static pressure drop due to the bend losses, indicated by
the ordinate difference at one half of a diameter upstream of the entrance to

the curved pipes, are 0.016 q for pipe I, corresponding to a bend angle of

21 degrees, and 0.027 q for pipe II, corresponding a 42 degree bend angle.

Chapter IV. Theory for the Secondary Flow in Curved Pipes

§ 1. The General Problem

As was seen from the experimental results, which support the physical con¬

jectures already made, a secondary flow phenomenon does arise when a fluid,
with a non-uniform inlet stagnation-pressure distribution, flows in a curved

pipe. The effect of this phenomenon is to displace the fluid particles with the

higher stagnation pressure toward the outside of the bend and at the same

time cause a region of low stagnation pressure fluid to form on the inside of
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the bend. The problem is then to formulate this secondary flow and its sub¬

sequent effect on the principal flow, through an application of the equations
of motion.

In reality, the solution of this problem should be obtained from a solution

of the complete Navier-Stokes equations of motion, in which the viscosity as

well as the inertia effects are brought into consideration. However, the solution

of these equations for the general case remains one of the classical unsolved

problems. To be sure, the Navier-Stokes equations can be solved exactly for

a few very special cases, but unfortunately the problem at hand does not lie

within this catagory of simplification. In the following analysis all of the

viscous effects will be neglected and therefore the viscous terms in the Navier-

Stokes equations will be omitted. Under these conditions, i.e. the assumption
of an inviscid fluid, the problem is reduced to the study of the flow of an

"ideal" fluid. In addition, only the steady-state incompressible phenomenon
will be investigated.

Into this study of an "ideal" fluid flow we wish to introduce the fact that

the stagnation-pressure at the inlet of the curved pipe is non-uniform. From

the physical arguments of Chapter I it would be expected that no secondary
flow arises from a uniformly-constant inlet-stagnation-pressure distribution.

These non-uniform distributions, to be considered, must however satisfy cer¬

tain conditions. In particular, they are required to have finite non-zero velo¬

cities along the wall of the pipe. Suppose, for example, that the velocity is

taken as zero on the boundary. Then to apply the theory to a fully developed
turbulent flow, it would be necessary to have a very large velocity gradient in

the region close to the wall of the pipe. We know, however, from the results

of the theory of fluids of small (but not zero) viscosity, that the shearing stress

in a viscous fluid is proportional to the velocity derivatives. So under these

circumstances of large velocity gradients, the inviscid-fluid approximations no

longer apply and it is necessary to retain the viscous terms in the equations
of motion. On the other hand, it is known that the "ideal" fluid flow results

give a good approximation to the actual outside of the boundary-layer and

other regions of large velocity gradients. So the assumption of a finite velocity
on the pipe wall is in accordance with the "ideal" fluid approximations.

The general steady-state Eulerian partial differential equations of motion

for any frictionless fluid are

where u = velocity component
p = pressure

p = mass density
/ = body force per unit mass.

The flow must also satisfy the continuity equation which reads, for an incom¬

pressible fluid

cxk

To apply these equations to the problem of flow in a curved pipe, they must

of course be expanded in terms of appropriate coordinates. We choose the
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Fig. 13. The coordinate system for the general problem.

coordinate system indicated in Fig. 13, with the radius of curvature assumed

to be constant. The line element in terms of these coordinates becomes

{ds)2 = {dr)2 + r2 (d<p)2 + (R + r sin <p)2(dd)2.

Expanding the equations of motion in terms of the velocity components and

coordinates as indicated and with ft = 0, we obtain the following system of

equations ([16] gives the equations of motion in general orthogonal coor¬

dinates).

,8u' v' 8u' w' 8u' v'2

dr r dcp R + r sin <p 8 9 r

,
8v' v' 8v' w' 8v' u'v'

dr r 8(p R + r sin y 8 0 r

w
*
sin 93

R + r sin <p

w'2cos<p
R + r sin 9

w 8w'8w' v'8w'

8r r 8cp i? + rsin<p 86

d
, ,.

8v' r

8 r 8(p R + r sin 9

+
w

R + rsmt

8w'
- +

- (u' sin (p + v' cos y) = -

1 dp'

p 8r

1 1 dp'

p r 8(p

1

(8a)

-& (8b)

1 dp'

8 6 R + r sin <p

p R + rsincp 86

(u' sin <p + v' cos 9) = 0. (8d)

The velocities in the above equations represent the total values, that is the

initial value plus any variation, 'so that the equations are non-linear. The

system, with four equations and four dependent unknowns, is sufficient for

eliminating three of the unknowns to obtain one equation with one unknown.

Unfortunatly, there is little hope of solving the resulting non-linear partial
differential equation of at least the fourth order. Consequently, a new method

of approach to the problem will be applied, one whose solution can readily
be found.

§ 2. A New Approach and its Solution for Circular Pipes

We consider here a circular pipe of constant cross-sectional area. Let us say
that the pipe remains straight and that each fluid particle is acted upon by a

body force, acting in the plane perpendicular to the longitudinal axis of the

pipe. The magnitude of this body force is taken to be a constant times the
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square of the particle's axial velocity. We choose this constant such that the

body force corresponds to the centrifugal force which would be present for a

particular bent pipe. That is to say, the constant is equal to the reciprocal of

the radius of curvature of the path of the fluid particle flowing in this bent

pipe.
Under these considerations, the equations of motion can be written in terms

of cylindrical coordinates as

.du' v' du' ,8u' v'* 1 dp' ,

u -r— H -r— + w — =
^— + fr

dr r 8<p cz r p or
(9a)

,8v' v' dv'
,
8v' u'v' 1 1 8p' ,

u'— + — -7T- + W -^- +
=

ir- +
/?>

8r r 8cp dz r p r 8<p
v

(9b)

,8w' v' dw'
,
dw' I dp'

u —— + w— + w -7—= —-,
dr r dtp oz p dz

(9c)

and the continuity equation becomes

d
.

„
dv' dw'

7-(ru') + lr- + r-—- = 0.
or ocp oz

(9d)

The coordinate system and the direction of the velocity components are shown

in Fig. 14. The body force / is zero for z < 0.

Fig. 14. The coordinate system for the new approach.

As we have seen from the experimental wall pressure distributions along
the length of the curved pipes, the spread of the curves representing the wall

pressure at the different circumferential locations of the cross-section decreases

as the angle of bend decreases. For small bend angles the spread of these

curves should likewise be small, for in the limiting case of no bend they merge
into one single straight Hne. This limiting case, as applied to a frictionless fluid

flow, corresponds to the case of no pressure drop along the length of the pipe
and consequently no change in the longitudinal velocity. For this investigation
of the initial phases of the secondary flow, which then corresponds to the study
of the flow in a slightly bent pipe, it is assumed that each particle's axial

velocity remains constant at its inlet value. To obtain the change of the axial-

velocity profile due to the secondary flow, each particle will be displaced from
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its inlet position within the cross-section to a new position as required by the

secondary flow, but still retaining its initial inlet-axial velocity.
The above equations can be linearized by making the following assumptions.

We say that in the inlet flow, i.e. zg0, the secondary flow does not exist. The

secondary flow velocities are assumed to grow, but not rapidly, as the flow

moves beyond the section 2 = 0. Then the secondary velocity components u'

and v' can be considered small compared to the inlet velocity w'. If the velo¬
cities %' and v' are small in comparison to the axial velocity, the secondary
flow can be considered as a perturbation superimposed on the principal flow.

From continuity it follows that the derivatives of the secondary velocities are

of the same order of magnitude as the secondary velocities themselves and

can be handled accordingly. The validity of the perturbation approximations
requires that the correction on the principal flow always be small. We notice

here, that if the case of an inlet stagnation pressure distribution with zero

velocity on the wall of the pipe were considered, the secondary flow velocities

in the region close to the wall could be of the same order of magnitude as the

axial velocity. Under these circumstances the above assumption would cer¬

tainly break down near the wall of the pipe. Using this assumption in the

equations of motion, all terms containing products, squares or higher powers
of the secondary flow quantities can be neglected.

With the small perturbation approximation and with the assumption of no

change in the value of the axial velocity, the total velocity components and

pressure, which appear in (9), can be written as follows:

u' = 0 + u w' = w

v' = 0 + v p' = p0 + p

Substituting these relations into (9) and neglecting the higher order terms, we

obtain the following system of equations.

du 1 8p , ,,..

dz p dr

dv I I dp ,

WJz-=-JT4
+ f* (U)

£<'»>+£r°- (12)

With the assumption of no variation of the magnitude of the longitudinal
velocity and by considering the secondary flow as a small perturbation on the

principal flow, the variation in the static pressure in the cross-section and

along the length of the pipe has been essentially eliminated. To be sure, (10)
and (11) show that a static pressure variation will arise from the secondary
flow, but if the secondary flow is small then this variation in static pressure
will also be small. The results of a theory developed under these assumptions
will then show the effect of the secondary flow in bends, approximately
independent of the variations in the static pressure. Since the results of the

experimental investigations are also based on the same static pressure at the

entrance and exit cross-section of the curved pipes, this makes a comparison
between the theory and the experiments more feasible.
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Equation (12) can be integrated immediatelyby introducing a stream function

defined by
1 8<p dt/t

u = v =

8r
(13)

By putting these definitions into (10) and (11) and after eliminating the

perturbation pressure by cross differentiation, the following equation results:

_8_ (w 82<f, \ 8_ / d2^ \
_

8<p\r 8cp8zj
+
8r\W8r8z)~ a^(W-^W-

The velocity w is taken as only the inlet velocity and is therefore not a function

of z, thus this equation can be integrated with respect to z yielding

{jllhH'^)-i>-Tr^h^
8(p\r dcpj 8r\ 8rf \8<p

But at the inlet section, i.e. 2 = 0, we have assumed that the secondary flow

is zero, so u = v = 0. Therefore g (r, <p) = 0 and,

\ r c<p/ or \ or]
= z

0(p

8 (tr)-£z(rf9)
8r

(14)

Prom our previous discussion about the body force /, we require its components
to be

/,
wr

R (l + -^sin(pj
sin 93; /,=

w

R 11 + -= sin 991
COS 99,

where R 11 +-5 sin 99) is the radius of curvature of the path of the particle.

Since we are considering only curved pipes whose ratio of radius to radius of

curvature is much less than one

R 1 -t-max(R sin 99 = R 1 +
R

R,

Having now evaluated the body force we can see the transition from the

general case of § 1 to this new approach. A comparison of the terms of equations
(8, 9a, b) shows the body force, as used here, also appears in (8a, b). The

simplification of equations (9c, d) as compared to (8c, d) results from the

differences in the coordinate systems.
Introducing the body force as approximated above into (14) leads to

8r%
+
\r w or J or

+
1 8w 8i{j 1 82ip

+ -T5
r2w 8<p d<p r2 8

2z

It

1 ow 8w
—

7—- sin 99
—

^— cos 99
r c<p or

(15)

The stream function satifying (15) will yield the desired solution for the

secondary flow. For a given problem with w(r,tp) a known function, the

solution can be obtained numerically by the methods of relaxation of other

numerical methods. However further simplifications result if the inlet-velocity
distribution is assumed to be symmetrical about the longitudinal axis, that is

o = co (r) only. Clearly, this assumption has obvious mathematical advantages
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and is not greatly restrictive in the practical sense, since in many applications
the actual velocity distribution can be approximated closely as being sym¬
metrical. Under these circumstances (15) reduces to

8*dj (1 ldw\8Jj 1 d2di 2z dw

or1 \r w dr) or r* dcp2 R dr

We see immediately that this partial differential equation can be reduced

to an ordinary differential equation by making the substitution of the form

tfi ~cr(r) cos cp.

The form of this stream function is recognized as the same as the stream

function predicted in Chapter II. Thus the streamlines will have the same

general shape as those obtained there. At the same time we introduce the

following dimensionless parameters:

T

q =
~, where r

1
= outside radius of the pipe

'i

w

]8 =

—,
where w0 = maximum value of the inlet velocity

= 8
z

r

-j| = A
,

thus 6 = AS, the bend angle.
K

a (77) cos (

A § rx w0'

Upon substitution of the above relations into (16), we arrive at the following
ordinary differential equation

d2<j II 1_^8\ da__ a
_

_2dj8
drj2 \r] /3 d-q) drj r)2 dr/

The boundary conditions to be satisfied by cf(tj), the solution of (17), are

<r(l) = 0; ct(0) = 0.

The first boundary condition comes simply from the requirement that there

be no flow through the wall of the pipe, that is the wall of the pipe must be

a streamline. We justify the second boundary condition with the following
argument. Since the independent variable 9 was eliminated from the differential

equation by the substitution of cos <p, the resulting streamhnes of the secondary
flow will be symmetrical about a line through the center of the pipe and parallel
to the body force /. Now along the line cp = 0 and in the immediate vicinity of

77 = 0 the flow must appear approximately as parallel flow. Thus for very

small values of 77 the function cr (17) must have the form a (77) ~-q. Conse¬

quently, for 77 = 0 the function a (77) must also be zero.

A solution of (17) can be obtained by series integration. The singularity of

the differential equation at 77 = 0 is non-essential, so that according to Fuchs

theorem a convergent development of the solution in a power series about the

singular point is possible. The details of this method are presented in [17]. The
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differential equation does not admit a solution in terms of known functions

such as hyper-geometric or Bessel functions. We therefore elect to find an

approximate solution of (17) in the form of the finite series

v(v) = Zakyk- (18)
fc=i

Upon substituting this assumed solution into (17) and collecting terms we

obtain
» 1 dR n d,R

2 (fc»-l)afc17*-» + 7r ^ 2 kak ,,*-! = -2-£. (19)

Since the function fl(r)) is known throughout the interval 0^ -q £ 1, we can

evaluate (19) in any selected number of points and thereby obtain a system
of algebraic equations for the determination of the coefficients ak. For example,
if we wish to satisfy (19) at, say, j points, then in the solution we will have

k = j + 1. With (19) satisfied at / points, and along with (18) evaluated at >? = 1,
that is

n

<r(i) = 2X = °>
i

we obtain j+ 1 algebraic equations. The simultaneous solution of these equa¬
tions yields the /+1 constant coefficients. Obviously, as j increases the solution

more closely approximates the exact solution. An example showing the con¬

vergence characteristics of this method of solution is given in Appendix A.

Upon inspection of (19) when expanded for the value t} = 0, we find that

a2 = 0 if (~) = 0. Since we have already assumed symmetry for the inlet-

velocity distribution, this simply requires that /? be a smooth function as it

passes through the point ~q = 0. Cases where this is not true are only of aca¬

demic interest. Thus, in the summations of (19) the value k = 2 can be omitted.

By using the above method, a solution for the secondary stream function

can be obtained as

n

i/j = X8r1'w0'^aler]k cos <p, (20)
l

from which the secondary velocities are given by

n

u = — A § w0 2 % vk~1 sm 9
1

(21)

v = —\8w0J]Jcak 7jk~1 cos <p.
l

We now superimpose these secondary velocities on the principal flow to

investigate their effect on changing the shape of the axial-velocity distribution.

Since it was already assumed that each fluid particle's axial velocity remains

constant, we fix our attention on a given particle and observe its motion under

the influence of the secondary flow. The differential equations for determining
the path of a particle are

dr u rd<p v

dz w dz w
'
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or upon substituting the values of u and v from (21), these becone

and

A "

~~o H ak 1]fc~:t sm 9 § d S

P i

A n

-^ J] kak r]k~2 cos 99 S d §
.

P 1

The above equations are solved as follows

A(V-V)
^ 7? = *?2

~

Vl
= -"

19 = 92
-

<Pl
=

2/3

A(§22-V

2/3

.1

sin 9^
J4

2 ^akV
1

*:-i

(22)

cos <Pa>

where the subscript A indicates the average value between the cross-sections

1 and 2 is to be taken. The accuracy of these average values can be increased

by iteration. To use these equations we simply select a definite particle at the

entrance and calculate its path as denned by A 77 and A 99 as it moves around

the bend. This then requires a step-wise computation from one cross-section

to the next, proceeding around the bend. The accuracy of these calculations

is increased as the interval between the stations 1 and 2 is decreased.

The secondary flow stream function obtained from (17) is dependent on the

inlet-velocity distribution. This same stream function is then used at all

stations downstream of the inlet. Clearly, the secondary flow is a function of

the local axial-velocity distribution. Hence, it would be necessary to solve

anew for the secondary flow velocities at each cross-section where (22) are

applied, using the local axial-velocity distribution. In view of the approxi¬
mations already made, this refinement is of problematic value.

As discussed previously, the secondary flow in the plane of the cross-section

of the pipe contains vorticity. In particular there will be a definite distribution

of vorticity within the cross-section as determined by the gradients of the

secondary flow velocities. From the definition of the vector vorticity, i. e. the

curl of the velocity vector, the axial component representing the vorticity in

the plane of the cross-section of the pipe is given by

1 c 1 cu

y(r,<p) = — -7r{rv) —.
'

r cr r c<p

Using the secondary flow velocities (21) as obtained in the above analysis,
this vorticity is given by

6 w n

y(^9?) = —r-5 2 (k2-l)akr)kcos<p.

Thus we see the vorticity distribution is symmetrical about a line perpen¬

dicular to the plane of the bend of the pipe and exhibits a functional depen¬
dence on the radius of the pipe. This functional dependence on the radius is

determined in part by the inlet-velocity distribution, since the constant

coefficients ak are determined from the solution of (17), in which the inlet-

velocity distribution shows a strong influence.
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§ 3. The Relation between the Vorticity and the Axial Velocity

An interesting extension of the theory can be made to show the relation

between the vorticity and the axial velocity by using the results of Chapter II

and the simplified equations of motion of the last section.

The polar velocity components (3i) and (4b), due to a distribution of

vortices over a plane bounded circular area, satisfy uniquely the continuity
equation (12). So by considering the velocities (3i) and (4b) as the small per¬
turbation velocities of the secondary flow, we have along with (10) and (11)
a system of four equations and four unknowns. The unknowns here are the

preturbation velocities u and v, the perturbation pressure p and the vorticity y,
which appears as a function of the radius only.

Using once again the assumptions that the axial velocity w does not vary

along the length of the pipe, and that at the inlet it is symmetrical about the

longitudinal axis, equations (10) and (11) become after elimination of the

pressure and integration with respect to z:

18,, 1 8u
(rv)

r 8r r 8<p

v dw z

w dr wr

j-(fr)—jrz(rf<p)
ow or

v

r r, r,

^7 |—a J P2 h (p) dP +
^2 J P2h (/>) dP - J h (/>) dP } •

We recognize the first term in this equation as the vorticity in the plane of

the cross-section of the pipe. So by writing the vorticity as y (r,<p) = h(r) cos <p
and introducing the body force components, as evaluated for a circular pipe
in § 2, the above equation reduces to

7
.

,
v dw 2z dw

h(r) cos <p-\ z— = —

-j— cos w.

w dr E dr
T

The tangential secondary flow velocity component can be eliminated by
using (4b), and there results the following integral equation

-li \
ondw 1 d*

' '

h{r)
— 20— —

dr Iw

o o

The above integral equation shows the relation between the vorticity and
the inlet-axial velocity, in that the vorticity is equal to twice the angular
displacement of the fluid multiplied by the first derivative of the inlet velocity
minus a term in which the vorticity and the inlet velocity are coupled. Squire
and Winter [10] found for curved flow in a passage bounded by two circular

arcs, where the complete basic motion is represented approximately by uni¬
form approach flow and with uniform flow downstream of the bend, that the
axial vorticity in the exit stream is equal to the velocity gradient in the

approaching stream multiplied by twice the angular displacement.
For a given inlet-velocity distribution the solution of the above integral

equation will yield the corresponding axial vorticity y (r, <p) in a bent circular

pipe. From the other point of view, the reverse problem of finding the inlet

velocity which produces a given vorticity distribution can also be solved with
this equation. In this case, if the vorticity is known or assumed, the integrals
can be immediately evaluated and hence the integral equation is reduced to
an ordinary differential equation. In the practical sense, however, the inlet

velocity is known and it is from this known condition that the secondary flow

problem must be solved.
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§ 4. The Theory for Elliptic Pipes

In this analysis we follow the same approach as used in the last section, in

that it is assumed that the pipe remains straight and each fluid particle is

acted upon by a body force which is a function of the particle's axial velocity.
Under this assumption elliptic cylindrical coordinates can be introduced which

are defined by:
x = ccoshgcoscp; y = csmh£sin<p; z = z.

For these coordinates the line element is given by:

(d s)2 = c2 (sinh2 f + sin2 9) (d £)2 + c2 (sinh2 f + sin2 <p) (d <p)2 + d z2.

The foci of the confocal ellipses and hyperbolas are located at x = + c. If now

we let a given value of |, say £0, define an entire ellipse, then the limits of the

variables £ and 9 must correspond to:

Let us say the ellipse defining the boundary of the pipe is given by £ = £0. The
semi-major and -minor axes then become

from which

a = c cosh £0
b = c sinh £0,

£0
1

,
a + b

x In r
2 a-b

= fc

The Eulerian differential equations of motion in these coordinates become

1 1 8p'u' 8u v' 8u' ,8u' u'v

^Gjf
+
^G~8lp+WJz~

+
^G^8

8 i>'2 8

u' 8v v' 8v' ,8v' u'v' 8

^Gjf
+
^GJ^

+ WJz~ + ^HP'8f
{cG)~

8

c2 G2 8<p
(cG) = -

p cG 8$

1

+ %f

1 Sp' _,

p cG 8<p

u' 8w' v' 8w' ,8w' 1 dp'

^Tf
+
~cG~8~^

+
W~8z~=~J~8z~'

and the continuity equation is

4t{Gu') + ^{Gv') + c~{G*w') = 0,
81; 8<p 8z

where the velocities u', v' are indicated

in Fig. 15, w' is the axial velocity and

G = /sinh2 $ + sin2 9.

Upon introducing the same approxi¬
mations as were used for the cylindrical
case, i. e. the small perturbation approxi¬
mation and m>#=/(z), the above equations
reduce to:

L, u'

TTm \
>

II?''
|-—a—J

Fig. 15. The coordinate system for

elliptic pipes.
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Under these circumstances (32) and (33) can be solved throughout the entire

cross-section by the usual numerical methods.

However, if the inlet velocity has a confocal elliptic distribution, so that

oj = w(£) only, then in equations (32) and (33) further simplifications can be

made so that the following equations result respectively.

d2Ji 1 dw dib d24> %az
i »dw _ ,

V
+
¥ -Ji H+W

=

-^r^fooshijj (34)

and

82ib 1 dw ddt d2ih 2az
. , „

dw
,„ ,

V+«^ ~dt H+W= -^-oo89Bmh(-^. (35)

Substitutions of the form

ip1 = c<T1(g)sm<p
and i/r2 = c CT2 (I)cos 9

made in (34) and (35), respectively, reduce these partial differential equations
to total differential equations. For convenience we introduce also the following
dimensionless parameters:

w

P = — where w0 is the maximum value of the inlet-velocity distribution.
w.

o

q =
— where £0 defines the outside of the elliptic cross-section.

a M

1
= ^(^siiKp, in (34);

^2
= az(rj) cos <p, in (35).

?-^o2^=-2foTrsinh^o'?)- (37)

SXaw0
'

SXaw0

The resulting equations are

dv*
+

p dv dv
^° ffl ~ *°dv cosii^oV) W

and

d2a2 1 dp dcr2
f2 f dp^

d-q* p at] drj dr]

The boundary conditions to be satisfied by the solutions of these equations are

ffl(0)=a2(0) = 0

a1(l) = ora(l) = 0.

With the inlet-velocity distribution, i.e. /}(ij) known, the solution of (36)
and (37) can be obtained, as was done for the circular pipe case, in the form

of a finite power series in t], simply by satisfying the differential equation in

a finite number of points.
Assuming finite power series solutions of the form

n n

<*l(v) = Hbkl": CT2 = ZXVS
1 1
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the stream functions for the secondary flow in the elliptic pipes appear respec¬

tively as

ifi1 = X8aw0^bkrjk sin <p

and
n

i/>2 = \8aw0 2 ckrjkcos(p.
1

From these stream functions the secondary flow velocity components are

found by using the definitions (28) to be

X8w0 "

%(^?) =—gJiZbkTC0S(P>

«i0?.9>) =-T7r2*6ftij*-18in9>;
and

. ASw„ , .

These velocity components permit the vorticity in the plane of the cross-

section of the pipe to be evaluated, which is respectively for the two cases

considered above:

and

v ASw0 » /
. fc(i-l) fr

„\
y2 (1,9) = -^2- 2 cfc \vk—p—^-2j cos <p.

The same sort of analysis, as used above, can be applied equally well to

pipes of arbritary cross-section. However, when the inlet-velocity distribution

exhibits no symmetrical properties in terms of the chosen coordinates, simpli¬
fications in the differential equation for the stream function of the secondary
flow, as obtained above, cannot be made.

Chapter V. Application of the Theory

Using the theory developed for a bent circular pipe, as presented in § 2,
Chapter IV, a numerical application is made and compared with experiment.
The specifications of the bent pipe considered correspond to pipe I, described

previously as having a diameter of 10 cm, a radius of curvature of 273 cm and

an angle of bend of 21 degrees. The inlet-velocity distribution /3(tj) was taken
from the measured distribution B. The theoretical inlet-profile is the sym¬
metrical average value of distribution B. This theoretical curve is terminated

on the wall of the pipe at an axial-velocity ratio of wjw = 0.80, see Fig. 17,
thus ignoring the region of large velocity gradient. This is in accordance with

the assumption made in developing the theory.
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The solution of equation (19) for obtaining ct(tj) was carried out using the

procedure explained in Chapter IV. For this approximate solution the equation
was satisfied uniquely at the points 77 = 0, 0.2, 0.4, 0.6, 0.8, and 1.0. Since the

theoretical inlet-velocity distribution has a zero slope at 77 = 0, the coefficient

a2 = 0. Thus there resulted / +1 = 6 algebraic equations. The finite power
series solution for <t(ti) will contain six terms of ascending powers of 77 with

the term -rf missing. The simultaneous solution of these six algebraic equations
yielded the six constant coefficients for the finite series expansion of the

secondary flow stream function. The stream function for this case is:

i/< = 0rawo[-O.13767i + 0.106177s + 0.2076 774-0.4070 77s + 0.2257 if + 0.0052 77'] cos (p.

The streamlines given by this stream func¬

tion are plotted in Fig. 16. The shape of

these curves is similar to those obtained

in Chapter II, and also confirms the sug¬

gested streamlines of the physical argu¬
ment in Chapter I.

The secondary flow velocities obtained

from this stream function were then ap¬

plied, according to equations (22), to cal¬

culate their effect on changing the shape
of the axial-velocity distribution. In this

step-wise calculation around the bend to

21 degrees, the axial-velocity distribution

was computed at the stations 0 = 5°, 10°,

13°, 16°, 19°, and 21°. At each cross-section, Fig. 16. The secondary flow stream-

one iteration was used to obtain a more lines due to inlet-velocity distribution

accurate average of the quantities indica- B with (wlw)vma — 0.80.

ted in (22).
The variation of the shape of axial-velocity distribution as the flow moves

around the bend can seen from the results plotted in Figs. 17 and 18. Clearly,
the deformation begins slowly, being small for small angles, but increases

sharply for larger angles of bend. This results from the fact that the displace¬
ment of a particle is a function of the square of the distance from the inlet,
measured along the longitudinal axis. The resulting velocity distribution after

a bend of 21 degreees is shown in Fig. 17. For comparison purposes the

measured velocity distribution has been plotted on the same figure. The com¬

parison shows that the results of this theory are in good agreement with the

experimental results. The curves of constant velocity in the higher velocity
region are of the correct shape. The regions defined by the theoretical curves

of constant velocity have not increased in area, but have merely changed in

shape, since no variation of the particle's axial-velocity magnitude has been

considered. The corresponding regions, defined by the measured curves, exhibit

an increase in area due to the growth of the boundary layer, which causes an

acceleration of the fluid in the central region of the pipe. The curves of constant

velocity in the lower velocity region, while having the correct shape in the

region of the cross-section on the outside of the bend, do not exhibit the

indentations on the inside of the bend as do the measured curves. It will be

shown, however, that this characteristic can also be obtained from the theory.
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Fig. 17. Theoretical (solid) and measured (dashed) lines of constant axial velocity at the

exit of: (b), pipe I, with a bend angle of 21 degrees, resulting from (a), inlet ristribulion B,
where w = 4160 cm/sec. and (wjw)wau = 0.80.

(a) (b)

Fig. 18. Calculated lines of constant axial velocity in pipe I at: (a), 10 degree bend angle,
and (b), 16 degree bend angle resulting from inlet distribution B with (wjw)waji= 0.80.

As a check of the validity of the assumption that the secondary flow velo¬

cities be small compared to the axial velocity, the following results are given.
The maximum value of the radial velocity component occurs at tj = 0 and

9 = 90°. The maximum value of the tangential velocity component occurs at

7] = 1 and cp = 0°. The resulting equations are

max

max

= 0.1376 9

= 0.3665 0.
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These equations evaluated at 0 = 21° give the following values:

= 5.04%max

max

Wn

w„

?=21c

?=21c

: 13.43°/

Thus we see from the maximum value of the tangential velocity at a 21 degree
bend angle, the upper limit of the small perturbation approximation is being
approached.
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Fig. 19. Theoretical (solid) and measured (dashed) lines of constant axial velocity at the

exit of: (b), pipe I, with a bend angle of 21 degrees, resulting from (a), inlet distribution B,
where w = 4160 cm/sec. and (wfw)wan = 0.65.

To show that the indentations exhibited by the experimental curves on the

inside of the bend can be obtained from the theory, the following calculation

was made. The assumed inlet-velocity distribution was the same as used for

the above example except that it was terminated on the wall of the pipe at a

velocity ratio of wjw = 0.65, see Pig. 19. By making this variation we are

essentially taking into consideration a portion of the boundary-layer gradient.
The solution for the secondary flow stream function, obtained by satisfying (19)
in the same points as for the example above, is

,/, = Qriw0[-0.2201 7] + 2.3516 ^-11.8122 7^ + 24.3487 77s-22.1641 t?6 +

+ 7.4961 7i7]coS(p.

This secondary flow solution was used to calculate the change of the axial-

velocity distribution due to the bend, the resulting distribution at a bend

angle of 21 degrees being shown in Fig. 19. Obviously, the theoretical curves

are excessively displaced, but the general character of these curves is correct.

With the assumed inlet-velocity distribution, for this example, consideration

has been given to a portion of the bondary layer, that is a small region of high
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velocity gradient on the wall. This resulted in larger secondary flow velocities

and hence a larger distortion of the axial-velocity distribution. We know,
however, that the viscous forces become large under these circumstances of

large velocity gradients and they would therefore resist the effects of the

secondary flow. However, the theory is based on the inviscid fluid approxi¬
mations so that this resisting effect is not included. We can conclude that

these indentations of the constant velocity curves on the inside of the bend

have their origin from the effect of the fluid in the high velocity gradient
region close to the wall. As shown by the previous example, the theory gives
good results if the large velocity gradient of the entrance velocity distribution

is neglected, as was originally assumed in the theoretical development.

(a) (b)

Fig. 20. Calculated lines of constant axial velocity in pipe I at: (a), 25 degree bend angle,
and (b), 28 degree bend angle resulting from inlet distribution J3 with (wjw)wan= 0.65.

To show that the theory will produce well defined regions of low velocity
fluid on the inside of the bend, this calculation was carried out for bend angles
larger than 21 degrees. The resulting axial velocity distributions for bend

angles of 25 and 28 degrees are shown in Fig. 20. The shape of the constant

velocity curves display the general shape of the experimental curves obtained

from the tests on pipe II, in that the regions of low axial-velocity are well

defined, and the curves are showing the tendency to form closed regions of

this low axial-velocity fluid.

From the above numerical examples and the comparison of the results with

experiment it can be concluded that an important factor for the secondary
flow phenomenon within a bend is the axial-velocity distribution upstream of

the bend. Since in the theoretical development only the inlet axial-velocity
distribution was used to determine the secondary flow rather than the local

axial-velocity distribution, the results are applicable only for small angles of

bend, i.e. the initial phases of the secondary flow, where the local velocity
profile is not greatly different from that one at the inlet of the curved pipe.
The examples above show that the theory does produce constant axial-velocity
curves in the bend of the pipe of the correct shape and approximately the
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correct displacement if proper respect is given to the approximations that are

made. In particular, the region of high velocity gradient near the wall of the

pipe, as is present with a turbulent velocity profile, must be omitted from the

theoretical inlet velocity distribution.

It is to be noted that the stream function for the secondary flow, as obtained

here, is a linear function of the angle of bend. This might lead one to believe

that this same stream function could be used for a pipe of arbritary radius of

curvature. However it must be remembered that the theory is applicable only
for pipes whose cross-sectional dimensions are small compared to the radius of

curvature.

2.4

QUJ0 cos?
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'0 0.2 0.4 0.6 0.8 ~ 10

Fig. 21. The vorticity distribution due to the secondary flow in pipe I resulting from

inlet distribution B, with (w/w)wau = 0.80.

In general, this theory shows the extent to which a first order "ideal fluid"

theory can be used to calculate the secondary flow in a slightly bent pipe.
Improvements could of course be expected from a second order theory in

which the effect upon the secondary flow of the local stagnation pressure
distribution within the bend is taken into consideration.

It is of interest to investigate the vorticity distribution that results from

the secondary flow velocities obtained in the above example. Having the

constant coefficients as obtained for the series solution for the secondary flow

stream function, we simply apply the equation for the vorticity distribution

as developed in Chapter IV. The dimensionless vorticity resulting for the first

example above, which has an axial-velocity ratio on the wall of the pipe of

w/m; = 0.80, is shown in Fig. 21.
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Chapter VI. The Losses Due to the Secondary Flow

§ 1. The Loss Coefficient and its Application

Since fluid with a non-uniform axial-velocity flowing in a curved pipe gives
rise to a secondary flow, whereas there was no secondary flow at the entrance

of the bend, it represents a certain loss of energy from the principal axial flow.

With respect to the friction losses, there appears within the cross-section a

given distribution of those losses. A result of the faster moving particle dis¬

placing toward the outside of the bend is to increase the axial-velocity gradient
in this region while decreasing the gradient on the inside of the bend. There¬

fore, the dissipation due to the viscous forces will be larger in the cross-section

of the pipe toward the outside of the bend than those on the inside of the bend.

Apart from the viscous forces, the energy in the secondary flow can be con¬

sidered as a loss, in which we shall be interested here. The dissipation of energy
due to the secondary flow, when considered independent of the friction losses,
can be thought of as an induced drag similar to that obtained from wing
theory.

The energy passing through each cross-section of the pipe per unit time

must be a constant. The energy consists of the kinetic energy plus the work

of the surface forces. Thus we can write

J p+-—(lV2 + U2 + V2) wdA = const.

Since it was assumed that the axial velocity does not change its magnitude as

the fluid moves around the bend the kinetic energy of the axial flow is also

constant. If the above integral is evaluated between the inlet to the bend and
a cross-section in the bend the kinetic energy of the axial flow gives no con¬

tribution to the resulting value, that is

2

| ^w3dA = 0,

i

where the limit 1 indicates the inlet and 2 any arbritary cross-section in the
bend.

Thus we see from the first integral above, the energy in the secondary flow

corresponds to a pressure drop. From the pressure difference calculated
between the inlet cross-section and any arbritary cross-section in the bend,
a secondary flow loss coefficient is defined by

^ = -^ = ^11^+^^

A

where A = area of the cross-section

w,u,v = velocity components at the cross-section in question.

w = average mass-flow velocity = — I w d A
.
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The above equation for the loss coefficient, written in terms of the variables

introduced for the circular pipe, is

TTWi J J
0 0

The loss coefficient for the first theoretical example given has been cal¬

culated. With the downstream section taken at an angle of bend of 21 degrees,
the calculated loss coefficient indicates the loss due to the secondary flow from

the entrance to this cross-section. The theoretical values of the velocities,
obtained at the station 0 = 21°, were used in the integration indicated above.

The integration was carried out numerically using Simpson's rule. The number

of points in the cross-section used was 360. The resulting value of £ is 0.00253.

The calculation was repeated, but here the inlet-velocity distribution was

used instead of the local axial-velocity distribution obtained at a bend angle
of 21 degrees. All other values in the integration remained the same. Since the

inlet-velocity distribution is symmetrical about the longitudinal axis, the

integration with respect to the variable <p can be evaluted analytically. There¬

fore the numerical method is required only for the integration with respect
to 7], Hence the amount of computations, to evaluate the integral, are greatly
reduced. The loss coefficient resulting from this calculation is 0.00249. The

difference of this value from that obtained above is small, being 1,6%, so that,
for small angles of bend, loss calculations using this simplified method give
a good approximation to the exact value.

These losses which represent the energy in the secondary flow are relatively
small. Eichenberger [12] found by measuring the secondary flow velocities in

a curved square pipe that after a 90 degree bend angle the energy in the

secondary flow is only about 1 % of the energy in the principal flow. Comparing
the calculated values with the measured pressure drop in pipe I from which

Apjq = 0.016, we see the energy of the secondary flow represents only about

15% of the total loss. This then indicates that the dissipation due to viscosity
plays a more important role in the bend losses of a constant-area curved pipe
than the energy in the secondary flow. It can be seen that this viscous dis¬

sipation has a definite distribution within the cross-section of the pipe. Because

of the increased gradient of the stagnation pressure distribution toward the

outside of the bend the viscous dissipation in this region will also be increased

and hence a greater portion of the viscous losses will occur in the region
toward the outside of the bend. This increased gradient represents an increased

viscous dissipation with respect to the axial flow. In addition of course there

occur viscous losses due to the secondary motion in the plane of the cross-

section.

For the case of a curved diffusor, which would be an interesting continuation

of the study of secondary flows, the relative importance of the secondary flow

energy and the viscous dissipation may be reversed from the case of a constant-

area pipe. Since the size of the cross-section grows larger as the flow moves

around the bend, there is more opportunity for the velocities in the plane of

the cross-section to become larger. Thus the energy in this motion would show

a corresponding increase. At the same time, with the simultaneous variation

due to both the enlarging cross-section and the secondary motion, the viscous

sin<

2 Ida
+ l-r—COSc

\dr>
Wt] dt] dq>.
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dissipation due to the variation of the stagnation pressure distribution gradient
may not increase as rapidly. In this case the energy in the secondary motion

would be the predominant factor of the bend losses. Thus an inviscid fluid

theory for the secondary flow in curved diffusors could perhaps predict the

actual bend losses more closely than the inviscid fluid theory for curved

constant-area pipes.
The losses calculated above represent only those secondary flow losses which

occur in the bend of the pipe. However, since the secondary flow has been

initiated, it will continue, even though the pipe is no longer curved, until it is

dissipated by friction. Therefore, in addition to the losses within the bend

itself, appreciable viscous losses due to the secondary flow can occur down¬

stream of the bend. Wasielewski [8] measured the secondary flow losses in a

curved circular pipe between the stations 9 diameters upstream of the bend

and 50 diameters downstream and found the losses vary linearly with the bend

angle up to an angle of 221/2 degrees. The measured secondary flow loss in

pipe I, which corresponds to a bend angle of 21 degrees, is slightly less then

one half of the value found by Wasielewski. This indicates the losses down¬

stream of the bend can be as important and worthy of consideration as the

losses within the bend.

§ 2. The Loss in Circular and Elliptic Pipes

It is of interest to compare the secondary flow losses in pipes of different

cross-sections. For the present discussion we consider a circular pipe and a

differently oriented elliptic pipe. It is quite easy to see which of these pipes
will have the greatest loss due to the secondary flow. As was seen from the

study of the secondary flow in a circular pipe, the effect was to displace the

circular lines of constant stagnation pressure towards the outside of the bend
and at the same time distort these lines from their circular shape. The displace¬
ment of these lines is a function ofthe secondary flow velocities. For discussional

purposes consider the analogical problem of two co-axial circular cylinders
where the inner cylinder is suddenly made to move tangentially with a given
velocity. It will experience a certain resisting force due to its apparent mass.

Now if these cylinders are elliptical in cross-section obvious differences result.
The apparent mass of an elliptic cylinder moving parallel to its major axis is

smaller than when it moves parallel to its minor axis. Therefore, the resisting
force, due to the apparent mass, experienced by the elliptic cylinder moving
parallel to its major axis inside of another elliptic cylinder is smaller than if
this motion were parallel to the minor axis. Hence under the action of a given
disturbing force, which for motion in curved pipes corresponds to the centri¬

fugal force, the elliptic cylinder moving parallel to its major axis will move

faster than the cylinder moving parallel to its minor axis. Carrying this analogy
over to the flow in curved pipes, the motion of the internal cylinder gives a

measure of the secondary flow velocities. Thus the case of a bent elliptic pipe
oriented with its major axis lying in the plane of the bend will have the larger
secondary velocities of the two cases considered here and hence will have the

greater secondary flow losses.

For comparison purposes the secondary flow losses in a circular and an

elliptic pipe are made. The inlet-velocity distribution used for the circular pipe
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was parabolic in shape. The velocity on the wall of the pipe was taken as 0.7

of its maximum value in the center.

The elliptical cross-section used had a major axis to minor axis ratio of

2:1. The confocal elliptic inlet-velocity distribution had the same maximum

and wall value as used for the circular pipe. The area was chosen so that the

average mass flow velocity was the same as that of the circular pipe. This

resulted in the ratio r1/a = 0.740, where r1 is the radius of the circular pipe
and a is the semi-major axis of the elliptic pipe.

To different cases were considered for the elliptical pipe. For the first case,

the pipe was oriented so that the centrifugal force acted parallel to the major
axis of the ellipse. For the second case the centrifugal force acted parallel to

the minor axis of the ellipse. The secondary flow solutions were obtained by
satisfying the respective differential equations uniquely at 77

= 0, 0.25, 0.50,
0.75, and 1.0, yielding a five term series solution. The loss coefficient calculations

were made using the inlet axial velocity distribution as discussed in § 1.
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Fig. 22. Calculated secondary flow loss vs angle of bend for circular and elliptic pipes
with (w/w0)watt = 0.70.

The results of these calculations are plotted in Fig. 22. All of the loss

coefficient curves are parabolic since the loss is proportional to the square of

the angle of bend. The losses due to the secondary flow in the elliptic pipe
oriented with its major axis parallel to the centrifugal force are approximately
51/2 times as great as those for the elliptic pipe oriented with its minor axis

parallel to the centrifugal force. A knowledge of this information can be

employed to good advantage when pipes of non-circular cross-section are used

in an installation. A general rule can be stated: The secondary flow losses in

a curved pipe of arbritary cross-section but fixed radius of curvature and

angle of bend can be minimized by orienting the pipe so that its largest cross-

sectional dimension is perpendicular to the line of action of the centrifugal force.
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These ideas have been used in the design of the passages in the diffusor

section of centrifugal compressors, since it was found, from experience, that

the use of non-circular passages oriented according to the above rule increased

the efficiency of these compressors.

Appendix A. Convergence of the Method of Solution for the

Secondary Flow

The convergence characteristics of the method for integrating the differen¬

tial equation satisfied by the secondary flow are demonstrated. The method

involves satisfying the differential equation uniquely at* a finite number of

points within the interval of integration. This procedure yields a system of

algebraic equations. The number of unknowns in these equations is the same

as the number of equations. The simultaneous solution of the system of equa¬
tions produces the constant coefficients used in the finite series expansion of

the solution of the differential equation.

0.08

-G*

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0
0 0.25 0.50 0.75

^
1.0

Fig. 23. Convergence of the numerical method of solution for the secondary flow in a

bent circular pipe.

For this demonstration, a circular pipe is considered. The symmetrical
inlet-velocity distribution is parabolic in shape, having a velocity value on the

wall equal to 0.7 of its maximum value in the center of the pipe, i. e.

j8(t?) = 1-0.3tj2.
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Using this inlet-velocity distribution, solutions of equation (19) are obtained

as follows:

a) Satisfying the differential equation at 77 = 0 and 77 = 1.0 yields

<72 (rj) = - 0.1909 tj + 0.1909 if.

b) Satisfying the differential equation at 77 = 0, 0.5, and 1.0 yields

ff3(7?) = -0.1488 77 + 0.1058 773 + 0.0430 77*.

c) Satisfying the differential equation at 77 = 0, 0.33, 0.67, and 1.0 yields

0-4(77) = -0.151177 + 0.1507 77s-0.0305 77*+ 0.0309 t?5.

d) Satisfying the differential equation at 77 = 0, 0.25, 0.50, 0.75, and 1.0 yields

05(77) = -0.1505 77 + 0.1335 77s + 0.0214774-0.02307j5 +0.0186yf.

These solutions are plottes in Fig. 23. The solutions converge rapidly as the

number of matching points is increased.

The example shows, that with a smooth inlet-velocity distribution, the

number of matching points required is relatively small. In this case the five

points used to obtain the last solution are sufficient. However, if the entrance

velocity is not so smooth as the one used here, the number of matching points

necessary will probably increase.
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