Doctoral Thesis

Investigations on the odd-odd isotopes Ga-64, Ga-66, Ga-68 and the odd-even isotope Ga-67

Author(s):
Mukerji, Ambuj

Publication Date:
1952

Permanent Link:
https://doi.org/10.3929/ethz-a-000096647

Rights / License:
In Copyright - Non-Commercial Use Permitted
Investigations on the Odd-odd Isotopes Ga64, Ga66, Ga68 and the Odd-even Isotope Ga67

THESIS

presented to

THE SWISS FEDERAL INSTITUTE OF TECHNOLOGY, ZURICH

for the Degree of

DOCTOR OF NATURAL SCIENCE

by

AMBUJ MUKERJI

M. Sc.

of Calcutta, India

Accepted on the recommendation of

Prof. Dr. P. Scherrer and Prof. Dr. W. Pauli

Basle
E. Birkhäuser & Co., Ltd.
1952
Investigations on the odd-odd isotopes Ga64, Ga66, Ga68 and the odd-even isotope Ga67

by Ambuj Mukerji.

Summary. Disintegrations of the odd-odd isotopes Ga64, Ga66 and Ga68 have been investigated by spectrometer and coincidence measurements. The positron activity assigned in literature to Ga64 has to be attributed to some impurities. Disintegration schemes for Ga66 and Ga68 have been established. Spin assignments to ground states of Ga66 and Ga68 have been compared to those predicted by Nordheim’s rules regarding odd-odd nuclei.

Some new γ-radiations observed during the course of disintegration of Ga67 are reported in the supplement and a disintegration scheme proposed. The findings are difficult to reconcile with the predictions from shell model in its simplest form.

1. Introduction.

It is well known that all the odd-odd nuclei with the exception of 1H2, 3Li6, 5B10 and 7N14 are unstable. They, therefore, disintegrate into the corresponding stable even-even isobars. The nuclear spins of the nuclei with odd mass numbers can be predicted with the help of the nuclear shell model$^{1-4}$ in its simplest form of single particle picture. For the odd-odd nuclei Nordheim5 has formulated an empirical rule about the manner in which the odd proton and the odd neutron combine together to give the total spin of a nucleus of this type in its ground state. But till now only relatively few instances are known to verify the validity of this rule and it seems to be too premature to draw conclusions from it. Otherwise also, it seems important to know more about the combinations of spins of the odd-odd nuclei, as it is hoped that valuable informations about the properties of bound states of nuclei may be obtained from such studies. The precise investigation of the disintegration schemes of radioactive isotopes is a good method for assigning spins of the nuclear energy levels.

The work reported here is a part of a bigger programme of investigations that is being carried out in this laboratory to study the modes of decay of odd-odd nuclei and consequently, the excited states of the even-even nuclei.