Synthese von 14-Oxy- und 14-Allo-Steroiden

Beitrag zur Stereochemie der digitaloiden Aglykone

VON DER

EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE IN ZÜRICH

ZUR ERLANGUNG

DER WÜRDE EINES DOKTORS DER TECHNISCHEN WISSENSCHAFTEN

GENEHMIGTE

PROMOTIONSARBEIT

VORGELEGT VON

KONRAD MEIER dipl, Ingenieur-Chemiker von Embrach (Zürich)

> Referent: Herr Prof. Dr. Pl. A. Plattner Korreferent: Herr Prof. Dr. L. Ruzicka

Zusammenfassung

In der vorliegenden Arbeit ist es gelungen, verschiedene in Hinsicht auf die Synthese digitaloider Aglykone interessante 14-Oxy-Steroide erstmals partialsynthetisch in guter Ausbeute herzustellen.

Die Synthese wurde an der 3β -Oxy-5-allo-ätiocholansäure-Reihe ausgearbeitet.

Zuerst wird die Herstellung des als Ausgangsmaterial benötigten Δ^{16} -3 β -Acetoxy-14,15 β -oxido-5-allo-ätiocholensäure-methylesters beschrieben.

Dieses Oxyd liess sich partiell zum gesättigten 14,15 β -Oxido-17-iso-methylester hydrieren.

Energischere Hydrierung lieferte die beiden an C 17 isomeren 14-Oxy-ester, deren Hydroxyle β -Stellung aufweisen. In diesen Verbindungen sind somit die Ringe C und D in cis-Stellung verknüpft.

Durch Wasserabspaltung wurden aus den beiden 14-Oxyestern zwei an C 17 isomere Δ^{14} -ungesättigte Ester erhalten. Die Hydrierung des an C 17 normalen Δ^{14} -Esters ergab den bekannten normalen 3β -Acetoxy-5-allo-ätiocholansäure-methylester.

Bei der Hydrierung des an C 17 Iso-Stellung aufweisenden Δ^{14} -Esters wurde der 3β -Acetoxy-5,14-diallo-17-iso-ätiocholansäure-methylester erhalten, welcher cis-Verknüpfung der Ringe C und D aufweist.

Die Oxydation der beiden isomeren Δ^{14} -ungesättigten Ester mit Persäuren ergab die entsprechenden 14,15a-Oxyde, die sich unter normalen Bedingungen nicht hydrieren liessen.

Durch Uebertragung der neuen Synthese auf die Aetiocholan-Reihe und Herstellung des von Hunziker und Reichstein aus Digitoxigenin erhaltenen 3β -Acetoxy-14-oxy-14-allo-ätiocholansäure-methylesters konnte bewiesen werden, dass die künstlich eingeführte 14-Oxy-Gruppé die gleiche sterische Lage

einnimmt, wie diejenige der natürlichen Aglykone; das heisst, die letzteren weisen ebenfalls cis-Verknüpfung der Ringe C und D auf.

Aus dem gleichzeitig als Hauptprodukt erhaltenen 14-Oxy-17-iso-ester wurde Wasser abgespalten, der entstandene Δ^{14} -17-Iso-ester hydriert und so der 3β -Acetoxy-14-allo-17-iso-ätiocholansäure-methylester gewonnen. Durch diese Synthese wurde die Konstitution eines von *Kuno Meyer* aus Gitoxigenin erhaltenen isomeren 3β -Acetoxy-ätiocholansäuremethylesters aufgeklärt und bewiesen.

Es zeigt sich also, dass bei der Hydrierung einer $\Delta^{14,15}$ -ungesättigten Aetiosäure eine gesättigte Säure mit trans- oder cis-Verknüpfung der Ringe C und D entsteht, je nachdem die ungesättigte Säure an C 17 normale oder Iso-Konfiguration aufweist.

Ferner wurden die Gründe angegeben, die dazu geführt hatten, die Seitenkette der natürlichen Steroide als β -ständig zu formulieren.