Doctoral Thesis

Congruence and existence of differentiable maps

Author(s):
Wettstein, Brigitte

Publication Date:
1978

Permanent Link:
https://doi.org/10.3929/ethz-a-000149942

Rights / License:
In Copyright - Non-Commercial Use Permitted
CONGRUENCE AND EXISTENCE
OF DIFFERENTIABLE MAPS

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH
for the degree of
Doctor of Mathematics

presented by
BRIGITTE WETTSTEIN
Dipl. Math. ETH
born January 21, 1948
citizen of Zurich

accepted on the recommendation of
Prof. Dr. K. Voss
Prof. Dr. B. Eckmann

1978
INTRODUCTION

A fundamental theorem for submanifolds of spaces of constant curvature is the congruence and existence theorem which states that there exists up to isometries exactly one submanifold with prescribed first fundamental form and prescribed normal bundle with fibre metric, normal connection, and second fundamental form, satisfying the conditions of Gauss, Codazzi, and Ricci (For the local version see Eisenhart [5, p. 212], for the global version see Bishop and Crittenden [1, p. 202] and Szczarba [16], summarized by Chen [2, pp. 48-49]).

We give a comprehensive generalization of this congruence and existence theorem together with a direct geometric proof. Our general theorem concerns arbitrary differentiable maps f of a manifold M into an arbitrary riemannian manifold N or, more generally, into a manifold N which has a G-structure and a compatible connection ∇. It is formulated by means of the pullback f^*TN with the induced G-structure, the induced connection ∇^f, and the differential f_* considered as a map of TM into f^*TN (If f is an immersion and N is a riemannian manifold, the pullback f^*TN splits into the tangent and normal bundle, and ∇^f splits into the tangential and normal connection and the second fundamental form).

The general congruence theorem (see section 4) states that if f and g are differentiable maps of M into N (where M is connected), and if there exists a vector bundle isomorphism of f^*TN into g^*TN which preserves the G-structure and sends ∇^f to ∇^g and f_* to g_*, then there exists, under a certain assumption, a congruence transformation of N which sends f to g.