First order perturbation calculation for the dynamical correlation function of a classical gas

Author(s): Petalas, Pericles

Publication Date: 1972

Permanent Link: https://doi.org/10.3929/ethz-a-000184278

Rights / License: In Copyright - Non-Commercial Use Permitted
First Order Perturbation Calculation for the Dynamical Correlation Function of a Classical Gas

A Dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the degree of Doctor of Natural Sciences presented by PERICLES PETALAS graduate in physics of the Swiss Federal Institute of Technology born February 7, 1943 citizen of Greece

Accepted on the recommendation of Prof. Dr. W. Baltensperger
Prof. Dr. R. Jost

Basel Buchdruckerei Birkhäuser AG 1972
First Order Perturbation Calculation
for the Dynamical Correlation Function of a Classical Gas

by P. Petalas
Seminar für theoretische Physik, ETH, Zürich
(9. 6. 71)

Abstract. For a classical gas with a finite two-body potential the dynamical correlation function has been evaluated to first order in the interaction. An extrapolation of this result is discussed for gases with more realistic interactions.

1. Introduction

In the theory of real gases and liquids various approximations and expansions for the static two-particle correlation [1, 2] have been given. Recently several approaches to a theory of the dynamical correlation have been discussed [1], [3-7]. The present paper proposes a perturbation expansion of the dynamical correlation function and evaluates the term linear in the interaction.

We consider a classical gas of identical particles without internal structure. We assume that the interaction between the particles is given by a finite two-body potential.

The dynamical correlation function for such a system is defined as:

\[G(r, t) = G_d(r, t) + G_s(r, t) \]

\[q \, G_d(r, t) = \frac{1}{N} \left< \sum_{i \neq j} \delta(r + r_i(0) - r_j(t)) \right> \]

\[q \, G_s(r, t) = \left< \delta(r + r_i(0) - r_i(t)) \right>. \]

Here \(\left< \cdots \right> \) is the canonical statistical average in the thermodynamic limit. \(N \) is the number of particles in the system, \(r_j(t) \) the position of the particle \(j \) at time \(t \) and \(q \) the particle density. The function \(G_d(r, t) \) is the distinct part and \(G_s(r, t) \) the self part of the dynamical correlation function.