Sur le groupe de Brauer d'un anneau de polynômes en caractèreistique P et la théorie des invariants

Author(s):
Hurlimann, Werner

Publication Date:
1980

Permanent Link:
https://doi.org/10.3929/ethz-a-000214946

Rights / License:
In Copyright - Non-Commercial Use Permitted
Thèse No 6634

SUR LE GROUPE DE BRAUER D'UN ANNEAU DE POLYNOMES EN CARACTERISTIQUE P ET LA THEORIE DES INVARIANTS

présentée à
1'ECOLE POLYTECHNIQUE FEDERALE ZURICH

pour l'obtention
du titre de Docteur ès sciences mathématiques

par
WERNER HURLIMANN
mathématicien diplômé EPFZ
né le 23.2.1953
originaire de Winterthour, canton de Zurich

acceptée sur proposition
du professeur M.A. Knus, rapporteur
du professeur U. Stammbach, corapporteur

1980
Abstract.

The simplest commutative ring of prime characteristic p whose Brauer group is not well known is the polynomial ring in two indeterminates $R = \mathbb{F}_q[X,Y]$ over a finite field with $q = p^r$ elements. We know that the Brauer group $\text{Br}(R)$ is an infinite countable direct sum of copies of $\mathbb{Z}/(p^\infty)$ (Knus-Ojanguren-Saltman, Lecture Notes in Mathematics 549). Our work contributes to understand the structure of $\text{Br}(R)$ and in particular it determines completely the subgroup $\text{Br}_p(R)$ of elements of order p if $q = p > 2$. The natural action of the linear group $G = \text{SL}(2,q)$ on R induces an action of G on the Brauer group $\text{Br}(R)$.

The study of this action was suggested by Amitsur.

We first show that the group $\text{Br}_p(R)$ has a natural structure of $\mathbb{F}_q[G]$-module. Then we construct an injective equivariant map from R to $\text{Br}_p(R)$. Therefore the representations of G in R give representations of G in $\text{Br}_p(R)$. In particular, we obtain that $\text{Br}_p(\mathbb{F}_q[X,Y])$ contains all kinds of finite dimensional $\mathbb{F}_q[G]$-modules. Then if characteristic $p > 2$, we give explicitly an isomorphism of $\text{Br}_p(\mathbb{F}_q[X,Y])$ with $p^2 - 1$ copies of the additive group of $\mathbb{F}_q[X,Y]$.

The study of the action of $\text{SL}(2,q)$ on $\text{Br}_p(R)$ leads us to the invariant theory of R. For the characteristic $p \neq 0$, we found only partial results in the literature. We therefore construct the rings of invariants $k[X,Y]^G$ for all finite subgroups G of $\text{SL}(2,k)$, k a field of characteristic $p > 2$, and we obtain necessary and sufficient conditions for them to be polynomial rings.

Finally, we study the homomorphism from $\text{Br}(R^G)$ to $\text{Br}(R)^G$ induced by the inclusion of R^G in R. If S is the field of fractions of R, then the map from $\text{Br}(S^G)_p$ to $\text{Br}(S)^G_p$ is surjective for all subgroups G of $\text{GL}(2,q)$. If p does not divide the order of G, this is even an isomorphism. The study of the map from $\text{Br}(R^G)$ to $\text{Br}(R)^G$ is more difficult since
the extensions R/R^G are not Galois. We prove that the map from $\text{Br}(R^G)$ to $H^0(R/R^G, \text{Br})$ in Amitsur cohomology is surjective if R^G is regular. On the other hand, if G is a subgroup of $\text{SL}(2,q)$ whose order is divisible by p, then the map from $\text{Br}(R^G)$ to $\text{Br}(R)^G$ is not surjective. The cokernel of this map contains even a copy of R^G. For fields, we give also a sufficient condition for the map from $\text{Br}(.)^G$ to $\text{Br}(.)^G$ to be surjective. For example, the map from $\text{Br}(F_q(X))^G$ to $\text{Br}(F_q(X))^G$ is surjective for all perfect subgroups G of $\text{PGL}(2,q)$.