Doctoral Thesis

Biosynthesis and catabolism of cytochrome P-450b after induction by phenobarbital in rat liver

Author(s):
Gasser, Rodolfo

Publication Date:
1983

Permanent Link:
https://doi.org/10.3929/ethz-a-000304061

Rights / License:
In Copyright - Non-Commercial Use Permitted
VI. SUMMARY/ZUSAMMENFASSUNG

6.1. Biosynthesis of cytochrome P-450b.

The hypothesis of a preferential biosynthesis of the major phenobarbital-inducible form of hepatic cytochrome P-450 (P-450b) in mitochondria-associated rough endoplasmic reticulum (RER \textsubscript{mito}) was tested by measuring incorporation rates of $^{35}$S-methionine and $^3$H-6-aminolevulinic acid into the hemoprotein in adult rats. RER \textsubscript{mito}, rough microsomes (RM representing RER not associated with mitochondria) and smooth microsomes (SM) were quantitatively isolated from the same homogenate by rate zonal centrifugation and their levels of cytochrome P-450b determined by rocket-immunoelectrophoresis. Cytochrome P-450b was isolated by immunoprecipitation from detergent-solubilized membrane fractions. The time course and rate of incorporation of $^{35}$S-methionine into immunoprecipitable cytochrome P-450b of RER \textsubscript{mito} and from RM were similar at all time points studied (2 to 15 minutes) both under conditions of maximal induction and after a single injection of phenobarbital. Expectedly, the incorporation of $^{35}$S-methionine into cytochrome P-450b was lesser between 2 to 8 minutes, but similar to RER \textsubscript{mito} and RM after 15min.

In contrast, at short labeling periods (<8 minutes) more $^3$-6-aminolevulinic acid was found to be incorporated into cytochrome P-450b of RER \textsubscript{mito} than into cytochrome P-450b of RM and SM. After 8 minutes the incorporation became similar.

No significant accumulation of apocytochrome P-450b in vivo was found in either membrane fraction. These data indicate a
close coordination of the biosynthesis and assembly of apocytochrome P-450b and its prosthetic heme but do not support the hypothesis of a preferential site of apocytochrome P-450b synthesis within the RER.

6.2. Catabolic rate of cytochrome P-450b.

The catabolism of the heme and apocytochrome moieties of phenobarbital-inducible microsomal cytochrome P-450b was investigated. Adult male Sprague-Dawley rats were treated with phenobarbital for 5 days and were injected with $^{35}$S-methionine and the heme precursor $^3$H-6-aminolevulinic acid. Cytochrome P-450b was isolated by immunoprecipitation and quantitated by rocket immunoelectrophoresis. The isotope disappearance curves revealed a mean half-life ($T_{1/2}$) of 12.4 hours for the heme moiety and a $T_{1/2}$ of 19.1 hours for the apoprotein moiety of cytochrome P-450b. The apparently slower catabolic rate of the apoprotein may be due to reutilization of $^{35}$S-methionine and does not exclude synchronous breakdown of the two moieties. The data are consistent with the kinetics of the drug mediated induction of cytochrome P-450b.


ZUSAMMENFASSUNG

6.1 Biosynthese von Zytochrom P-450b

In der vorliegenden Arbeit wurde geprüft ob eine bevorzugte Biosynthese der Hauptform von Phenobarbital induzierbarem hepatischem Zytochrom P-450 (P-450b) im rauhem Endoplasmatischem Retikulum (RER) in engem Kontakt mit Mitochondrien (RER_mito) stattfindet. Dies wurde anhand der Einbauraten von \(^{35}\)S-Methionin und \(^{3}\)H-6-Aminolaevulinsäure ins Hämostein erwachsener Ratten geprüft. RER_mito, rauhe Mikrosomen (RM, d.h. RER welches nicht mit Mitochondrien in Kontakt ist) und glatte Mikrosomen (SM) wurden mittels Zonalzentrifugation quantitativ isoliert und der Anteil an Zytochrom P-450b wurde mittels Rocket-Immunoelektrophorese bestimmt. Zytochrom P-450b aus mittels Detergentien solubilisierten Membranen wurde durch Immunoprazipitation isoliert. Die Zeitverläufe und die Einbauraten von \(^{35}\)S-Methionin in immunpräzipitierbares Zytochrom P-450b aus RER_mito und aus RM waren ähnlich bei allen untersuchten Zeitpunkten (2 bis 15 Minuten) sowohl bei maximaler Induktion sowie nach einer einzelnen Gabe von Phenobarbital. Erwartungsgemäß war der Einbau von \(^{35}\)S-Methionin ins Zytochrom P-450b aus SM geringer zwischen 2 und 8 Minuten, jedoch ähnlich zwischen RER_mito und RM nach 15 Minuten. Im Gegensatz dazu war der Einbau von \(^{3}\)H-6-Aminolaevulinsäure ins Zytochrom P-450b aus RER_mito höher nach kurzen Einbauperioden (<8 Minuten) verglichen zu RM und SM. Nach 8 Minuten Einbau war jedoch kein Unterschied zwischen RER_mito
Es wurde keine nennenswerte Anreicherung von Apozytochrom P-450b in vivo in den verschiedenen Membranen gefunden. Diese Befunde weisen auf eine enge Koordination zwischen der Biosynthese und dem Zusammenbau von Apozytochrom P-450b und seiner prosthetischen Hämgruppe, unterstützen jedoch nicht die Hypothese eines bevorzugten Apozytochrom P-450b Syntheseortes.

6.2. Katabolismus von Zytochrom P-450b