Investigations on the displacement of filtrate from filter cakes

Dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH
for the Degree of
Doctor of Technical Sciences

Presented by
ADEL MAHMOUD ABD EL-DAYEM
B. Sc. Chemical Engineering
Alexandria University
Citizen of the U.A.R.

Accepted on the recommendation of
Prof. Dr. A. Guyer
PD. Dr. B. Böhlen

Juris Druck + Verlag Zurich
1966
SUMMARY

- The effect of the different variables on the final moisture content of filter cakes have been studied. The factors recognized to influence this moisture content are,

 cake thickness(L), slurry concentration(C), viscosity(η)
 and surface tension(γ) of the feed liquid, blowing pressure(P) and the amount of air blown(V).

On the basis of a factorial experiment and through statistical analysis of the results, the singular effect of each variable has been quantitatively estimated. From the different interactions between these variables, those between $C-L$, $L-P$, $L-\eta$, $P-\gamma$, $P-V$ and $\gamma-\eta$ were found to be of important effect. The significant effect of these factors on the moisture content was found to be in the following order:

$$\eta > L > \gamma > P > V > C > \gamma - \eta > L-P > P-V > P-\gamma > C-L = L\eta.$$

- The vertical distribution of the moisture in the cake was found to decrease with the progress of blowing and is affected by the blowing pressure, liquid viscosity and cake thickness. The distribution is not affected by the direction of flow and by forces due to gravity.

- The rate of moisture removal from the cake was found to be high at the beginning of blowing and decreased with a decreased moisture in the cake. The rate is zero when the cake reached the equilibrium moisture content.

- On the basis of an empirical equation derived from theoretical aspects, the general effects of some operating variables on the rate of removal of moisture were studied. The experimental results agreed relatively well with this relationship. The results showed that the rate is proportional to the blowing
pressure and to the cake permeability, and inversely proportional to the liquid viscosity and to the square of the cake thickness. Different materials were used to find the effect of permeability. These materials were celite, MgCO$_3$ and kieselgur.

The process of washing of the filter cake could be divided into three stages. A primary displacement stage which is limited by the breakthrough of the wash liquid, a secondary stage during which the concentration of the effluent solution continuously decreased and a final stage in which the remaining filtrate is removed by diffusion. The effect of the different factors on each of these three stages is as follows:

i. The rate of washing has no effect at all on the first two periods of washing, and some effect was noticed during the last period where the percentage recovery increased with the decrease of the rate of washing. At a wash ratio of 3, the percentage recovery was increased from 94.2 to 97.1 due to the change of the rate of washing from 200 to 50 cm3/min.

ii. Thin cakes resulted in earlier breakthrough and less efficient washing than thick cakes. The recovery at breakthrough is 75.9 % for a 6 cm thick cake and this is reduced to 63.0 % for the 2 cm cake.

iii. The greater is the viscosity ratio of the two liquids, (displaced/displacing), the earlier is the breakthrough and the less efficient is the washing. The recovery at breakthrough is increased from 27.2 % to 87.7 % by the decrease of the viscosity ratio from 8 to 0.25. The values at a wash ratio of 3 are 77.7 % and 97.2 % respectively.

iv. Molecular diffusion is only significant at the low rate of washing and during the last stage.

v. The effect of the pore structure of the cake was studied
on three materials, namely celite, MgCO₃ and kieselgur, with and without the addition of a flocculating agent such as Separan. The results showed no effect on the point of breakthrough, and little effect was noticed after breakthrough. It was found that cakes with high degree of pore uniformity are less washable than those with wide pore size distribution. Because of the deficiency of sufficient data, more studies are needed to find the actual influence of the different properties of the cake on the washing process.

vi. The presence of the smallest cracks in the cake have strongly reduced the efficiency of washing.

Preliminary experiments were carried out on compressible cakes to show the application of the back-wash filtration process to the filtration of these cakes. Due to the very low rate of filtration, the results showed only significant values when the cake was broken by a short-time back blowing with air instead of the filtrate itself.
ZUSAMMENFASSUNG

Es wurde der Einfluss der verschiedenen Variablen auf den Restfeuchtigkeitsgehalt in Filterkuchen studiert. Folgende Faktoren wurden dabei in Betracht gezogen:

- Filterkuchendicke (L)
- Schlammkonzentration (C)
- Viskosität (η) und Oberflächenspannung (γ) des Filtrates
- Blasdruck (P)
- Luftmenge (V)

Aufgrund von Faktorenversuchen und durch statistische Auswertung der Resultate wurde der einzelne Effekt jeder Variablen quantitativ bestimmt. Unter den verschiedenen Wechselwirkungen zwischen diesen Variablen waren nur einige ($C-L$, $L-P$, $L-\eta$, $P-\eta$, $P-V$, und $\eta-\gamma$) von besonderem Einfluss. Der ausgeprägte Einfluss dieser Faktoren auf den Feuchtigkeitsgehalt wurde nach der Reihenfolge: $\gamma > L > \eta > P > V > C > \eta - \gamma > L-P > P-V > P-\eta > C-L = L \gamma$ befunden.

Der anfänglich grosse Unterschied im Feuchtigkeitsgehalt in verschiedenen Kuchenhöhen nahm mit fortschreitender Blasdauer ab und hängt vom Blasdruck, der Flüssigkeitsviskosität und der Kuchendicke ab, nicht aber von der Blasrichtung und der Schwerkraft.

Aufgrund einer empirischen Gleichung, erhalten aus theoretischen Überlegungen, wurden die allgemeinen Einflüsse einiger Arbeitsvariablen auf die Entwässerungsgeschwindigkeit studiert. Die Versuchsresultate stimmen relativ gut mit dieser empirischen Glei-
chung überein und zeigten, dass die Geschwindigkeit proportional zum Blasdruck und der Kuchendurchlässigkeit, hingegen umgekehrt proportional zur Flüssigkeitsviskosität und zum Quadrat der Kuchendicke ist. Verschiedene Materialien wurden untersucht, um den Effekt der Kuchendurchlässigkeit zu bestimmen (Celite, MgCO₃, Kieselgur).

Der Auswaschprozess des Filterkuchens konnte in drei Stufen aufgeteilt werden: 1) Verdrängung des Filtrates, begrenzt durch den Durchbruch der Waschflüssigkeit. 2) Kontinuierliche Abnahme der Waschflüssigkeitskonzentration. 3) Entfernung des Restfiltrates durch Diffusion. Dabei können folgende Einflüsse festgestellt werden:

- Die Waschgeschwindigkeit hat keinen Einfluss auf die ersten zwei Stufen und nur einen geringen Einfluss auf die dritte Periode, wobei der Wascheffekt mit abnehmbarer Waschgeschwindigkeit steigt. Bei einem Waschverhältnis von 3 stieg die Filtratrückgewinnung von 94,2 auf 97,1 % unter gleichzeitiger Senkung der Waschgeschwindigkeit von 200 auf 50 cm³/min.

- Dünne Filterkuchen ergeben einen frühen Durchbruch und einen kleineren Wascheffekt als dicke Kuchen. Die Rückgewinnung beim Durchbruch beträgt 75,9 % bei einem 6 cm dicken Kuchen und reduziert sich auf 63,0 % bei einem 2 cm Kuchen.

- Je größer das Viskositätsverhältnis der zwei Flüssigkeiten (Filtrat/Waschwasser) ist, umso früher tritt der Durchbruch ein und der Wascheffekt wird kleiner. Die Rückgewinnung beim Durchbruch steigt von 27,2 auf 87,7 % unter Abnahme des Viskositätsverhältnisses 8 auf 0,25.

- Molekulardiffusion tritt nur ausgeprägt in Erscheinung bei niedriger Waschgeschwindigkeit und während der letzten Stufe.

- Der Einfluss der Porenstruktur auf den Filterkuchen wurde an drei Materialien studiert (Celite, MgCO₃, Kieselgur), mit und
ohne Zusatz eines Flockulierungsmittels (Separan). Die Resultate zeigten keinen Einfluss auf den Durchbruchspunkt; ein geringer Einfluss ergab sich nach dem Durchbruch. Es wurde gefunden, dass sich Kuchen mit regelmässiger Strukturporz weniger gut eignen als solche mit unregelmässiger Struktur. Da hier nicht genügend Resultate vorliegen, sind noch weitere Untersuchungen nötig, um den Einfluss der verschiedenen Kucheneigenschaften auf den Waschprozess abzuklären.

Die Anwesenheit kleinster Risse im Kuchen beeinträchtigt in hohem Masse die Waschleistung

Es wurden auch Vorversuche an komprimierbaren Filterkuchen ausgeführt, um die Anwendung der Rückspülfiltration auf die Filtraton dieser Kuchen zu zeigen. Infolge der sehr kleinen Filtrationsgeschwindigkeit wurde nur ein merklicher Effekt erzielt, wenn der Kuchen durch eine kurzzeitige Rückspülung mit Luft anstelle von Filtrat gebrochen wurde.