Doctoral Thesis

Effects of mass transfer in liquid phase catalytic consecutive hydrogenation of 2,6-dinitrotoluene

Author(s):
Yücelen, Füsun

Publication Date:
1984

Permanent Link:
https://doi.org/10.3929/ethz-a-000333514

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use.
EFFECTS OF MASS TRANSFER IN LIQUID PHASE
CATALYTIC CONSECUTIVE HYDROGENATION OF
2,6-DINITROTOLUENE

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH
for the degree of Doctor of Technical Sciences

Presented by
FÜSUN YÜCELEN
M.Sc. in Chemical Engineering Bosphorous University
born July 3, 1955
citizen of Turkey

accepted on the recommendation of
Prof. Dr. G. Gut, referee
Prof. Dr. J.R. Bourne, co-referee

1984
ABSTRACT

The effects of mass transfer resistances on the selectivity and reaction rates of a consecutive hydrogenation reaction in a stirred tank slurry reactor under constant temperature and pressure were investigated. As a model reaction the liquid phase consecutive hydrogenation of 2,6-dinitrotoluene in ethanol, over a 0.5% Pt/Al₂O₃ catalyst was studied. The temperature and pressure ranges were between 40-75°C, and 5-100 bar, respectively. The intrinsic reaction kinetics were described by a Langmuir-Hinshelwood model with the assumption that hydrogen and organic species were adsorbed on different active sites. In the mass transfer studies, mass transfer processes, the factors affecting them and their effects on observed reaction behavior were first analyzed theoretically in accordance with the intrinsic reaction model and the parameters obtained. Then the results of mass transfer experiments, which were performed with varying particle sizes, were investigated. The observed reaction behaviour was described quantitatively with a model, which was first order in organic substrates and zero order in hydrogen, and whose rate was limited by pore diffusion and liquid solid mass transfer resistances. The experimental selectivities agreed well with those predicted theoretically from the model. The results obtained in this work may suggest the use of selectivity as an experimentally observable check of the presence of global diffusion limitations.
ACKNOWLEDGEMENTS

I would like to express my deepest thanks to my Doctorfather, Prof. Dr. G. Gut not only for his guidance, instructive criticism and help but also for his friendly interest, understanding and sincerity in any problem, I came up with, and for his very special wise way of motivating me to learn many things with joy.

I would also like to thank very much to my co-referee, Prof. Dr. J.R. Bourne for his careful and quick investigation of my thesis work and for his kindness and help whenever I needed.

My special thanks to Mr. Walter Businger who taught me the language of high pressure apparatuses and always managed to make me laugh even if that day's experiment was a catastrophe or the stirrer made sudden music that horrified my ears.

My thanks are extended to my colleagues, Dr. O. Kut for his generous supply of literature and friendly interest in every day problems and to Dr. T. Bühlmann who introduced me to Computer.

Last but not the least, I would like to thank very much to my colleague Dr. N. Ergenç for his discussions through which I always found a way out of the problem, for his encouragement and help during the course of this work.