Doctoral Thesis

Analogue four-quadrant multiplier in CMOS technology

Author(s):
Hong, Zhiliang

Publication Date:
1985

Permanent Link:
https://doi.org/10.3929/ethz-a-000342787

Rights / License:
In Copyright - Non-Commercial Use Permitted
ANALOGUE FOUR-QUADRANT MULTIPLIER
IN CMOS TECHNOLOGY

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH

for the degree of
Doctor of Technical Science

presented by
ZHILIANG HONG
Dipl. for Physics

CHINESE UNIVERSITY OF SCIENCE AND TECHNOLOGY

born July 23, 1946 in Zhejiang
The People's Republic of China

accepted on the recommendation of
Prof. Dr. H. Melchior, examiner
Prof. Dr. G. S. Moschytz, co-examiner

1985
Abstract

This thesis deals with the design, fabrication and analysis of new CMOS analogue-four-quadrant-multipliers. Such multipliers are useful in integrated circuits for signal filtering, modulation, and A/D and D/A conversion.

Prior to the presentation of the new multipliers, an overview will be given over the history of the development of analogue multiplier integrated circuits.

The CMOS multipliers developed in this thesis are based on MOS transistors operating in saturation, where there exists a quadratic relationship between the gate-source voltage and the drain-source current. According to this principle, three kinds of multipliers have been devised and realized in CMOS technology. They are the multiplier with resistors, the multiplier with switched capacitors and the multiplier consisting of MOS transistors only. These integrated multipliers have great dynamic ranges at their inputs extending almost to the supply voltages and a good linearity, but the output voltages are strongly dependent on the manufacturing process and temperature. Two improved circuits, namely the multiplier-divider with resistors and the multiplier-divider with switched capacitors which use active feedback techniques allow output voltages that are quite independent of the manufacturing process.

Another type of multiplier relies on lateral bipolar transistors with an exponential relationship between the emitter-base voltage and collector current. Their utilization of lateral bipolar transistors is consistent with MOS technology. This multiplier has a high precision. The distortion is smaller than 0.5% even when the input voltages are as large as one third of the supply voltages. Offset voltages are small ranging between zero and 50mV.

Details about CMOS process including process simulation by the computer program "SUPREM", the layout rules and performance date of the basic elements, namely the resistors, capacitors, MOS transistors and operational amplifiers complement this thesis.