Diss. ETH Nr. 7918

VERGLEICH DES GASAUSTAUSCHES MIT DER ENZYMKINETIK BEI DER

PHOTOSYNTHESE UND DER PHOTORESPIRATION VON WEISSKLEE

(TRIFOLIUM REPENS L.)

ABHANDLUNG

zur Erlangung des Titels eines Doktors der technischen Wissenschaften der EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE ZÜRICH

> vorgelegt von BERCHTOLD LEHNHERR Dipl.Ing.Agr.ETH geboren am 18. Januar 1950 von Spiez (BE)

Angenommen auf Antrag von Prof. Dr. J. Nösberger, Referent Prof. Dr. Ph. Matile, Korreferent

INHALT

Kapit	lel	Se	ite
I.	EINLEITUNG		1
	Das Enzym Ribulose-1,5-bisphosphat-Carboxylase-Oxygenase .		2
	Die Temperaturabhängigkeit des Gasaustausches und der		
	Enzymkinetik	• •	4
	Die CO2/O2-Spezifität		6
	Der CO2-Konzentrierungsmechanismus	•••	8
11.	MATERIAL UND METHODEN		11
	Die Versuchspflanzen		11
	Das Enzym (Ribulosebisphosphat-Carboxylase-Oxygenase)		12
	Die Extraktion und Aktivierung		12
	Der getrennte Carboxylase- und Oxygenasetest		12
	Der kombinierte Aktivitätstest	• •	13
	Die Enzymberechnungen		14
	Die Gasaustauschmessungen		14
	Die Nettophotosynthese		14
	Die Bruttophotosynthese		16
	Die Gasaustauschberechnungen		17
	Die Datenverarbeitung		20
ш.	RESULTATE UND DISKUSSION		21
	Die Eigenschaften der gereinigten Ribulosebisphosphat-		
	Carboxylase-Oxygenase	• •	21
	Die Eigenschaften des Gasaustausches im Vergleich mit den		
	Enzymeigenschaften		28

.

	Der	Licht	einfl	uss	aı ati	ıf	de	¥2	V	er	hä	ltı	ıis	d	leı	• 1	?h	ote	os	yn	th	es	e	zu	r			29
	Der	Einfl	uss o	der	Te	emj	pe	ra	tu	r	un	d	de	•r	C	0,	- 1	Ko	nz	en	tr	ati	on	1	·	·	•	20
	_	auf	das	Ph	oto	sy	nt	he	ese	e/1	Ph	ote	ore	esl	pri	iat	io	ns	ve	rh	äl	tni	is	•	•	•	•	30
	Der	Einflu auf	uss o das	ier Ph	oto) ₂ .	-K nt	on he	se	ent e-l	ra Ph	tio oto	on ore	w est	ah oir	ire at	io:	ns	de ve	r rh	An äl	izu tni	ıci is	nt .				36
	Der	Einflu	155 (ler	C)2	٠K	on	ze	ent	ra	tio	m	w	äh	re	enq	1 (de	r	Ar	zı	ıcl	ht				
		auf	die	Net	to	phe	oto	282	yn	th	es	6	•	•	•	•	•	•	·	•	·	•	٠	•	•	·	·	42
IV.	SCHLUSSI	DISKU	SSIO	N	•	•	•	•		•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	46
v.	ZUSAMME	NFASS	UNG			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	52
VI.	SUMMARY	• •	•••			•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	54
VII.	LITERATU	JR.			•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•		•	•	56
Anhar	ng					•	•	•		•			•			•	•				•	•	•				•	60
A.	VERDANK	UNGEI	NI.	•••		•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		60
В.	LEBENSLA	UF.				•	•		•	•					•		•	•				•	•			•		61

ø

Kapitel I

EINLEITUNG

Bei der Photosynthese wird Lichtenergie zum Aufbau von Kohlenhydraten verwendet. Dabei wird CO₂ enzymatisch auf Ribulosebisphosphat übertragen, welches dadurch carboxyliert wird. Das daran beteiligte Enzym, die Ribulosebisphosphat-Carboxylase-Oxygenase (RuBPCO), vermag aber auch unter Anwesenheit von O₂ Ribulosebisphosphat zu oxygenieren, wodurch die Reaktionsfolge der Photorespiration eingeleitet wird, bei der CO₂ - jedoch ohne Energiegewinn - freigesetzt wird (Figur 1). Die Nettophotosynthese der C₂-Pflanzen kann durch die Photorespiration besonders bei höheren Temperaturen erheblich vermindert werden.

Vom agronomischen Gesichtspunkt aus würden C₁-Kulturpflanzen ohne Photorespiration eine Ertragserhöhung in Aussicht stellen. Die Eliminierung der Photorespiration gelang aber bis heute nicht. Jordan und Ogren (1983) zeigten, dass sich das Verhältnis von Carboxylierung zu Oxygenierung im Laufe der Evolution der Pflanzen zugunsten der Carboxylaseaktivität verschoben hatte. Es besteht die Frage, ob die Carboxylasefunktion der RuBPCO einer Zuchtsorte erhöht und die Oxygenaseaktivität verkleinert werden könnten, um eine grössere Nettophotosyntheserate zu erreichen. Aber die kinetischen Eigenschaften der RuBPCO haben sich bisher weder durch Mutation noch durch chemische Modifikation grundlegend beeinflussen lassen.

Das Verhältnis von Photosynthese zu Photorespiration wird im wesentlichen durch das Verhältnis der Konzentrationen der Substrate CO_2 zu O_2 im Chloroplasten bestimmt. Eine Erhöhung des Verhältnisses von Photosynthese zu Photorespiration könnte somit durch eine Erhöhung des Konzentrationsverhältnisses von CO_2 zu O_2 erreicht werden. Diese Substratkonzentrationen lassen sich im Stroma nicht direkt messen, ohne das Blatt zu zerstören und die Chloroplasten zu berühren. Deshalb ist eine indirekte Messmethode angezeigt. Sie wird in dieser Arbeit beschrieben: Einerseits werden die Photosyntheseund Photorespirationsraten an unversehrten Weisskleeblättern gemessen und andererseits die Carboxylierungs- und Oxygenierungsraten des extrahierten Enzyms, der RuBPCO, im Reagenzglas bestimmt. Aus dem Vergleich dieser beiden Messungen lässt sich indirekt auf das Konzentrationsverhältnis von CO₂ zu O₂ im Blatt schliessen. Eine Erhöhung der CO2-Konzentration am Fixierungsort wird bei Algen durch das Hineinpumpen von Bicarbonat erreicht. Bei den C₄-Pflanzen wird dagegen Malat als CO₂-Transportform benützt. das in den Chloroplasten der Scheidenzellen eine erhöhte CO₂-Konzentration bewirkt. In diesen Chloroplasten, wo sich auch die RuBPCO befindet, herrscht gleichzeitig eine verminderte O₂-Konzentration. well der aus der Photolyse des Wassers stammende Sauerstoff ausserhalb. nämlich in den Chloroplasten der Mesophylizellen freigesetzt wird, und damit die Oxygenase der RuBPCO praktisch ohne Substrat bleibt. Deshalb weisen C.-Pflanzen - wie auch Algen - keine wesentliche Photorespiration auf, die aufgrund der in vitro geprüften Enzymkinetik ihrer RuBPCO viel bedeutender sein miisste.

3

r

Als Beispiel für höhere C₂-Pflanzen wird hier die Diskrepanz des Gasaustausches in vivo bel Weisskleeblättern zur Enzymkinetik ihrer RuBPCO in vitro untersucht. Aufgrund der Unstimmigkeit wird auf die Wirksamkeit eines CO₂ Konzentrierungsmechanismus im Blatt geschlossen. Dieser tritt dann in Erscheinung, wenn das Verhältnis der Photosynthese zur Photorespiration grösser ist als dasjenige der Carboxylase- zur Oxygenaseaktivität.

1.1 DAS ENZYM RIBULOSE-1,5-BISPHOSPHAT-CARBOXYLASE-OXYGENASE

Dieses Enzym katalysiert sowohl die Fixierung von CO_2 in der Photosynthese, als auch die Aufnahme von O_2 in der Photorespiration. Dadurch hängen die Aktivitäten der Carboxylase und der Oxygenase eng mit dem Gasaustausch intakter Blätter zusammen. Beim Experimentieren mit dem extrahierten Enzym im Reagenzglas können die Konzentrationen der Substrate CO_2 und O_1 genau kontrolliert werden. Dagegen sind die Gaskonzentrationen in den Chloroplasten intakter Blätter an der Stelle, wo sich die RuBPCO *in vivo* befindet, nicht genau bekannt und ohne Zerstörung des Systems heute noch nicht direkt bestimmbar.

Auf dem Weg von der Aussenluft in die Chloroplasten muss das Substrat CO_2 eine Reihe von Widerständen überwinden (Figur 1). Das CO_2 gelangt

- 2 -

durch die Spaltöffnungen in den Interzellularraum. Mit dem Uebertritt in die Zellwände wechselt es aus der Gas- in die Flüssigphase über, wobei seine Fortbewegung verzögert wird. CO_2 löst sich in Wasser und bildet, katalysiert durch die Carboanhydrase (CA), HCO_3 , das in der Flüssigphase das CO_2 begleitet, und dessen Anteil vom pH-Wert abhängig ist. Der anorganische Kohlenstoff gelangt durch das Plasmalemma in die Zelle und durch die Chloroplastenhülle ins Stroma zur RuPBCO. Gleichzeitig wird das Blatt auch vom Sauerstoff umspült, der leichter als CO_2 in die Organellen und zur RuBPCO vordringt. Im Falle der Carboxylierung entstehen aus Ribulosebisphosphat (RuBP) und CO_2 zwei Moleküle Phosphoglycerat (PGA), die im Calvinzyklus weiter verarbeitet werden. Im Falle der Oxygenierung von RuBP entstehen je ein Molekül Phosphoglycerat und Phosphoglycolat, wobei letzteres im Photorespirationszyklus decarboxyliert wird. Das photorespirierte CO_2 wird refixiert oder entweicht wieder aus dem Blatt.

1.2 DIE TEMPERATURABHÄNGIGKEIT DES GASAUSTAUSCHES UND DER ENZYMKINETIK

Bisherige Vergleiche zwischen der RuBPCO-Kinetik und dem Gasaustausch beschäftigten sich namentlich mit der Temperaturabhängigkeit. Die Photorespiration und die Photosynthese werden von der Temperatur in ungleichem Masse beeinflusst, wie auch unsere Messungen der ¹⁴CO₂-¹²CO₂ Aufnahme zeigen (Figur 2). Von 10°C bis 20°C nahm die Photorespiration um mehr als das Doppelte zu, während sich die Bruttophotosynthese um den Faktor 1,4 erhöhte.

Es stellt sich die Frage, ob dieser Unterschied durch die Enzymkinetik der RuBPCO bedingt sei oder auf der Verfügbarkeit der Substrate CO_2 und O_2 im Blatt beruhe. Einerseits beeinflusst die Temperatur die maximalen Carboxylase- und Oxygenaseraten unterschiedlich (Laing, Ogren und Hagemann, 1974; Badger und Collatz, 1977); andererseits ist die Löslichkeit von O_2 und CO_2 ungleich temperaturabhängig (Ku und Edwards, 1977a).

Bezüglich der Temperaturabhängigkeit der Enzymkinetik bestehen widersprüchliche Angaben in der Literatur. Es ist unklar, inwieweit der Temperatureinfluss auf die Photosynthese und Photorespiration der RuBPCO-Kinetik zugeschrieben werden kann (Hall und Keys, 1983, Jordan und Ogren, 1984). Die Bestimmung der kinetischen Eigenschaften der RuBPCO ist auch

schwierig. Zwar wurden die Methoden in den Jahren 1970-1980 verbessert. So fanden Lorimer, Badger und Andrews (1977), dass zur Enzymaktivierung CO₂ und Mg²+ vorhanden sein müssen, und Jordan und Ogren (1981) verringerten den Versuchsfehler, indem sie beide Reaktionsgeschwindigkeiten gleichzeitig und im gleichen Gefäss (Sauerstoffelektrode) bestimmten.

1.3 DIE CO2/O2-SPEZIFITÄT

Der Vergleich des Verhältnisses der Carboxylase zur Oxygenase mit dem Verhältnis der Photosynthese zur Photorespiration kann anhand der CO_2/O_2 -Spezifität vollzogen werden. Die CO_2/O_2 -Spezifität wurde von Jordan und Ogren (1981) als 'substrate specificity factor' bezeichnet. Diese Grösse entspricht *in vitro* dem Verhältnis der Carboxylase- zur Oxygenaserate bei bestimmtem Verhältnis der O₂- zur CO₂-Konzentration. Zugleich kann sie aus den kinetischen Konstanten der RuBPCO abgeleitet werden (Laing et al. 1974):

$$S_{in vitro} = v_c / v_o \cdot O / C = V_c K_o / V_o K_c$$
(1);

wobei v_c und v_o die Carboxylierungs- und Oxygenierungsraten sind und O und C die Sauerstoff- und Kohlendioxidkonzentrationen. V_c und V_o entsprechen den Maximalraten der Carboxylierung und Oxygenierung, K_c und K_o den Michaeliskonstanten für CO₂ und O₂.

In analoger Weise kann die CO_2/O_2 -Spezifität auch *in vivo* bestimmt werden. Bei der CO_2 -Kompensationskonzentration (l') ist die photosynthetische CO_2 -Aufnahme gleich der respiratorischen CO_2 -Abgabe. Nach Laing et al. (1974) entspricht:

$$S_{in \text{ wino}} = \frac{1}{2} \cdot O / \Gamma \qquad (2);$$

wobei der Faktor 1/2 für das Verhältnis des photorespirierten CO_2 zum O_2 steht, das durch die Oxygenase fixiert wird.

Mit dieser Gleichung verglichen Ku und Edwards (1977b) den Gasaustausch der Blätter direkt mit der Enzymkinetik, wobei sie allerdings die 'Dunkelrespiration' im Licht nicht berücksichtigten. Zudem erfolgte die Gegenüberstellung nicht bei normalem CO_2 -Partialdruck von 33 Pa $p(CO_2)$, sondern bei niedrigen CO_2 -Kompensationskonzentrationen.

Auch in der vorliegenden Arbeit wurde die RuBPCO-Kinetik mit dem Gaswechsel verglichen. Dabei wurde Photosynthese und Photorespiration aus der unterschiedlichen Aufnahme von ¹⁴CO₂ und ¹²CO₂ ermittelt und die CO_2/O_2 -Spezifität *in vivo* nach der Gleichung (3) bestimmt, um ihn der CO_2/O_2 -Spezifität *in vitro* gegenüber zu stellen.

- 6 -

$$S_{in vivo} = P' / 2(P'-F) \cdot O / C_i$$
 (3);

wobei P' der Bruttophotosynthese, F der Nettophotosynthese und C_i der interzellulären CO₂-Konzentration entsprach. In Bezug auf Gleichung (1) entspricht P' der Carboxylierungsrate (v_c) und 2(P'-F) der Oxygenierungsrate (v_o). Mit der Gleichung (3) kann zwar die Dunkelrespiration auch nicht von der Photorespiration getrennt werden, aber die CO₂/O₂-Spezifität kann bei variablen CO₂- und O₂-Konzentrationen bestimmt werden.

Im Unterschied zur Bestimmung der CO_2/O_2 -Spezifität in vivo durch die CO_2 -Kompensationskonzentration in der Gleichung (2), hat die Anwendung der ${}^{14}CO_2-{}^{12}CO_2$ -Methode den Nachteil, dass die Bruttophotosynthese infolge der Refixierung von photorespiriertem ${}^{12}CO_2$ unterschätzt wird, und dass die CO_2 -Konzentration im Stroma nicht direkt bekannt ist. Diese Probleme sind teilweise berücksichtigt worden, indem die Bruttoaufnahme von interzellulärem CO_2 und die CO_2 -Konzentration der Interzellularen in der Gleichung (3) eingesetzt worden sind. Die Bruttoaufnahme des CO_2 aus dem Stroma des Chloroplasten und die dort herrschende CO_2 -Konzentration können aber von diesen Bestimmungen abweichen, je nach den Leitfähigkeiten für CO_2 zwischen Interzellularraum und Chloroplastenstroma.

Das Modell von Mächler, Lehnherr, Schnyder und Nösberger (1985) berücksichtigt die durch Diffusionswiderstände bedingte Abnahme der CO_2 -Konzentration im Blatt und die Refixierung von photorespiriertem CO_2 . Es berücksichtigt auch, dass CO_2 möglicherweise aktiv durch Membranen des Cytoplasmas oder der Chloroplasten aufgenommen werden kann. Dabei geht das Modell von den Flüssen, Konzentrationen und Leitfähigkeiten des ¹⁴CO₂ und ¹²CO₂ aus und setzt die CO_2/O_2 -Spezifitäten *in vivo* denjenigen *in vitro* gegenüber:

$$S_{in vivo} = P' / 2(P'-F) \cdot O/C_1 = S_{in vitro} \cdot f \cdot k_{1}/k_{1-1}$$
 (4);

wobei f dem Verhältnis der CO_2 -Konzentration im Chloroplastenstroma zu derjenigen im Cytoplasma entspricht, und k_{l^1} und $k_{l^{-1}}$ die Leitfähigkeiten für CO_2 zwischen Interzellularraum und Cytoplasma bei der Hin- respektive Rückbewegung sind (Figur 3). Die aktive CO_2 -Aufnahme äussert sich in diesem Modell darin, dass der Faktor $f \cdot k_{l^1}/k_{l^{-1}}$ grösser als 1 wird.

Figur 3: Die Gasströme und Konzentrationen des ¹⁴CO₂ (punktierte Flächen) und des ¹²CO₂ im photosynthetisierenden und photorespirierenden Blatt. (P) bezeichnet die Bruttophotosynthese, (P') die Bruttoaufnahme des interzellulären CO₁ und (F) die Nettophotosynthese. Bei den Konzentrationen bezeichnet (C_a) den CO₂- Gehalt der Umgebungsluft und (C₁) denjenigen des Interzellularraumes, (C_c) des Cytoplasmas und (C_s) des Chloroplastenstromas. Die Leitfähigkeiten des CO₂ in der Gasphase wird durch (k_g) beschrieben und in der Flüssigphase zwischen dem Interzellularraum und Cytoplasma durch (k₁) für den Hin- und (k₁₋₁) für den Rücktransport.

1.4 DER CO₂-KONZENTRIERUNGSMECHANISMUS

Viele Algenarten zeigen die Charakteristiken der C₄-Pflanzen: tiefe photosynthetische Kompensationspunkte, geringe Photorespiration. Algen wie Chara und Wasserpflanzen wie Elodea, sind fähig, anorganischen Kohlenstoff anzuhäufen. Durch diesen Mechanismus wird gleichzeitig der Einfluss der Photorespiration begrenzt. So erweist sich der CO_2 Konzentrierungsmechanismus als eine Möglichkeit, die Hemmung der Photosynthese durch Sauerstoff zu verkleinern. Dieselbe Strategie wenden auch C₄-Pflanzen an, indem sie die CO_2 -Konzentration in den Leitbündelscheidenzellen durch die Zuführung von Malat als CO_2 -Träger erhöhen. Im Gegensatz zu dieser organischen Kohlenstoffverbindung nehmen C₁-Wasserpflanzen und Algen anorganisches Bicarbonat als CO_2 -'Carrier' auf. Es drängt sich hier die Frage auf, ob eine aktive Bicarbonat-Aufnahme als ein der Fixierung vorgelagerter Prozess auch bei C.und CAM-Pflanzen erfolgen könnte. Dies ist besonders interessant, weil HCO, das eigentliche Substrat bei der Carboxylierung durch die Phosphoenolpyruvat Carboxylase darstellt. Eine umfassende Antwort darauf kann hier nicht gegeben werden. Weitere Untersuchungen des vermuteten CO₂ Konzentrierungsmechanismus in höheren C1-Pflanzen müssten auch die Carboanhydrase einbeziehen. Sie ist verantwortlich für die rasche Einstellung des Gleichgewichts zwischen CO₂ und HCO₂ und somit für die Freisetzung von CO2, das durch die RuBPCO in den Calvinzyklus eingespiesen werden kann. Diese Zulieferung erfolgt im Stroma der Chloroplasten. Sie wäre unkatalysiert zu langsam und ineffektiv, weil bei einem pH-Wert von 8 das Gleichgewicht auf Seiten des Bicarbonats liegt. Bei Adaptationsversuchen von Algen an niedrige HCO, - Konzentrationen wurde denn auch eine erhöhte Carboanhydrase-Aktivität beobachtet (Hogetsu und Miyachi, 1979). Damit scheint dieses Enzym eine Schlüsselrolle bei der Zuführung von anorganischem Kohlenstoff zu spielen. Bicarbonat selber wird möglicherweise durch eine Protonenpumpe aktiv aufgenommen. Bei erhöhtem pH-Wert des Mediums oder beim Ausgleich der durch die Bicarbonataufnahme veränderten elektrischen Membranpotentiale, muss vermutlich ein Ionenaustausch unter Energieaufwand Wie die im Detail beteiligten Prozesse aussehen, ist betrieben werden. umstritten und es bestehen erst Hypothesen, inwiefern die als HCO, -Assimilatoren bezeichneten Arten über die nötigen photosynthetischen Puffer verfügen. Auch ist noch wenig über die biochemischen Mechanismen zum Ausgleich der elektrischen Potentiale und pH-Gradienten bekannt (Lucas, 1983). Einige Algen und C1-Wasserpflanzen bewerkstelligen einen HCO1 -Transport auf Grund einer durch ATP-betriebenen Protonenpumpe. So ist der CO2-Konzentrierungsmechanismus möglicherweise durch Koppelung an die Photophosphorylierung indirekt von der Lichteinstrahlung abhängig.

Die Leitfähigkeit für CO_2 zwischen der Aussenluft und dem Chloroplastenstroma beeinflusst die Affinität der Photosynthese für CO_2 . Verschiedene Pflanzen erhöhten die Affinität für das photosynthetisch aufgenommene CO_2 , nachdem sie eine gewisse Zeit bei erniedrigter CO_2 -Konzentration photosynthetisiert hatten. (Badger, Kaplan und Berry, 1980; Tsuzuki und Miyachi, 1978; Kriedemann und Wong, 1984). Bei den Wasserpflanzen wurde eine Affinitätsänderung, sowohl der Aktivität der Carboanhydrase zugeschrieben (Hogetsu und Miyachi, 1979; Coleman, Berry, Togasaki und Grossman, 1984), als auch der Fähigkeit der Zellen, anorganischen Kohlenstoff aktiv anzuhäufen (Marcus, Zenvirth, Harel und Kaplan, 1982; Spalding und Ogren, 1982). Da sich beide Eigenschaften verstärken, wenn die CO_2 -Konzentration während des Wachstums verringert wird, ist offenbar die Carboanhydrase eng mit dem CO₂ Konzentrierungsmechanismus verbunden (Volokita, Zenvirth, Kaplan und Reinhold, 1984).

In höheren C₁-Pflanzen erfolgt der Zutritt von anorganischem Kohlenstoff hauptsächlich in Form von CO_2 , das in die Blätter hinein diffundiert (Espie und Colman, 1982). Volokita, Kaplan und Reinhold (1981) haben aber gezeigt, dass auch Landpflanzen teilweise HCO_3 aktiv ins Stroma aufnehmen können. Nun lässt sich ein CO_2 -Konzentrierungsmechanismus bei Landpflanzen nicht so leicht nachweisen wie zum Beispiel bei einzelligen Algen, deren Suspension im Reagenzglas erforscht werden kann. Er müsste sich aber analog zu den Algen in einer Diskrepanz zwischen der RuBPCO-Kinetik und dem Gasaustausch äussern.

Es ist zu erwarten, dass sich ein allfälliger CO_2 - Konzentrierungsmechanismus auch stärker in solchen Blättern höherer Pflanzen auswirkt, die unter verringertem CO_2 -Partialdruck gewachsen sind. Diese Hypothese stützt sich auf die Untersuchungen bei Wasserpflanzen. Sie wird auch in der vorliegenden Arbeit geprüft. Dabei wird mit der ${}^{1*}CO_2/{}^{12}CO_2$ - Methode festgestellt, ob sich die Blätter in ihrem Gasaustausch unterscheiden, die in erhöhter oder in erniedrigter CO_2 -Konzentration gewachsen sind. Es wird auch untersucht, inwieweit der Gasaustausch von der Enzymkinetik abweicht, und ob sich diese Diskrepanz mit dem CO_2 -Konzentrierungsmechanismus begründen lässt.

Kapitel II

MATERIAL UND METHODEN

2.1 DIE VERSUCHSPFLANZEN

Die Weisskleepflanzen stammten von einem durch Stecklinge vermehrten Weissklee-Oekotypen aus der Gegend von Chur. Sein ursprünglicher Standort und die anschliessende Anzucht am Institut für Pflanzenbau der ETH-Zürich sind bei Boller (1980) beschrieben.

Die Pflanzen wuchsen in Klimakammern (PGV-36, Conviron, Winnlpeg, Kanada) bei einer 15-stündigen Photoperiode mit einer photosynthetisch aktiven Strahlung von 400 umol Quanten $m^{-2}s^{-1}$. Die Temperatur betrug 20°C am Tag und 17°C in der Nacht. Die relative Luftfeuchtigkeit lag bei 70% und 90%. Im Verfahren mit erhöhtem CO₂ betrug der CO₂-Partialdruck tagsüber 100 Pa und nachts 30 Pa, während er im Verfahren erniedrigten CO₂- Partialdrucks am Tage 20 Pa und nachts 30 Pa aufwies.

Zur Photosynthesemessung wurden vollständig entfaltete Blätter verwendet, die der dritten oder vierten von der Stolonenspitze her gezählten Blattnummer entsprachen.

Als Rohmaterial zur Extraktion von Ribulose-1,5-bisphosphat- Carboxylase-Oxygenase (RuBPCO) dienten junge, noch nicht vollständig entfaltete Blätter.

2.2 DAS ENZYM (RIBULOSEBISPHOSPHAT-CARBOXYLASE-OXYGENASE)

2.2.1 Die Extraktion und Aktivierung

Die RuBPCO wurde nach Mächler und Nösberger (1984) aus dem Blattmaterial extrahiert und mittels Ammoniumsulfatfällung und Gelchromatographie gereinigt und dann gefriergetrocknet. Der Proteingehalt wurde photometrisch nach Bensadoun und Weinstein (1976) bestimmt.

Bei der getrennten Bestimmung der kinetischen Eigenschaften von Carboxylase und Oxygenase wurden bestimmte Mengen der gefriergetrockneten RuBPCO in destilliertem Wasser aufgelöst und mit gleichen Volumen von 200 mM Tris-HCl (pH 8,4) gemischt, die 40 mM MgCl₂ und 10 mM NaHCO₃ enthielten. Die Enzymlösung wurde bei 50°C während 20 Minuten aktiviert und dann auf Eis gestellt.

Bei der kombinierten Bestimmung der Carboxylase- und Oxygenaseaktivitäten wurde das Enzympulver in 100 mM Bicin-Puffer (pH 8,2) und 20 mM MgCl₂ sowie 5 mM NaHCO, und 10 mM Orthophosphat aufgelöst, während 30 Minuten bei 40°C aktiviert und dann auf Eis gestellt.

2.2.2 Der getrennte Carboxylase- und Oxygenasetest

Das Verfahren basiert auf der Methode von Lorimer, Badger und Andrews (1977). Die Carboxylase-Aktivitäten wurden in Teströhrchen und die Oxygenase-Raten in einer Sauerstoff-Elektrode (Hansatech Limited, King's Linn, Norfolk, U.K.) bei gleichen Temperaturen und in demselben Puffer gemessen. Die Testlösung (1 cm³) enthielt CO_2 -freie 100 mM Tris-HCl, 20 mM MgCl₂ und 0,4 mM Ribulose-1,5-bisphosphat. Der pH-Wert wurde bei 20°C auf 8,23 eingestellt. Der Temperatureinfluss auf den pH wurde gemessen und später bei der Berechnung der CO_2 -Konzentrationen berücksichtigt.

Beim Carboxylase-Test wurde eine Reihe verschiedener Konzentrationen von NaH¹⁴CO₃ in CO₂-freiem Destwasser hergestellt und der Testmischung zugefügt. Die Reaktion wurde durch Beigabe des Enzyms (ca. 100 µg Protein) ausgelöst und nach einer Minute mit 0,1 cm³ 2N HCl beendet. Ein Tell

der Testmischung wurde in einem Szintillationsgläschen bei 60°C über Nacht getrocknet und die säurestabile Aktivität mittels Flüssigkeits-Szintillation gemessen.

Beim Oxygenase-Test wurde der Puffer in der Sauerstoff-Elektrode mit verschiedenen O_2/N_2 -Konzentrationen begast. Die Gase wurden mittels Wösthoff-Pumpen (H. Wösthoff, Bochum, BRD) gemischt. Durch das Zufügen des aktivierten Enzyms, welches vorgängig ebenfalls mit den entsprechenden O_2 -Konzentrationen begast worden war, wurde die Reaktion ausgelöst. Anhand des Sauerstoffabfalls bei Reaktionsbeginn wurde die Oxygenaseaktivität festgestellt.

2.2.3 Der kombinierte Aktivitätstest

Nach dem Verfahren von Hall und Keys (1983) wurden unter gleichen Bedingungen beide Reaktionsgeschwindigkeiten der Carboxylase und Oxygenase in der Sauerstoffelektrode gleichzeitig ermittelt.

Der CO₂-freie Reaktionspuffer bestand aus 100 mM Bicin und 20 mM MgCl₂. Sein pH-Wert wurde bei 20°C auf 8,21 eingestellt. Die temperaturbedingten pH-Aenderungen wurden gemessen und später in der Berechnung der CO₂-Konzentrationen berücksichtigt. Zur Einstellung verschiedener O2- Konzentrationen wurde das Medium mit reinem O2/N2 begast. Anschliessend wurden NaH¹⁴CO₃ (2 mM, mit einer Radioaktivität von 3478·10⁶ Bq mol-¹), Carboanhydrase (50 U cm-³) sowie das Enzym RuBPCO (100 µg Protein) zugefügt und während einiger Minuten equilibriert. Die Sauerstoffkonzentrationen zu Beginn der Messungen lagen bei 20 kPa, 38 kPa, 66 kPa und 99 kPa $p(O_2)$. Durch Zufügen von 0,4 mM Ribulose-1,5-bisphosphat, das mit den jeweiligen O₂/N₂- Mischungen begast worden war, wurde die Reaktion ausgelöst und nach 2 Minuten mit 0,1 cm³ 2N HCl beendet. Die Aktivität der Oxygenase wurde aus dem O₂-Verbrauch während der Versuchsperiode bestimmt und die der Carboxylase mittels Szintillationsmessung der Radioaktivität der säurestabilen Kohlenstoffmetaboliten festgestellt.

2.2.4 Die Enzymberechnungen

Die CO₂-Konzentrationen in den Lösungen wurden mit Hilfe der Gleichung von Henderson-Hasselbalch berechnet und und die pK-Werte - unter Annahme einer Ionenstärke von 0,06 - den Tabellen von Harned und Bonner (1945) entnommen (die pK-Werte betrugen 6,326 bei 10°C; 6,281 bei 15°C; 6,242 bei 20°C; 6,210 bei 25°C und 6,184 bei 30°C). Die Löslichkeitskoeffizienten aus Standard-Tabellen dienten der Berechnung der gelösten Sauerstoffkonzentrationen.

Zur Bestimmung der Substrataffinitäten und maximalen Enzymaktivitäten wurden die Achsenabschnitte in doppelt reziproken Darstellungen nach der Berechnung von Wilkinson (1961) ermittelt. Die CO_2/O_2 Spezifität wurde sowohl aus den K_m und V_{max}- Werten (getrennter Test) wie aus dem Verhältnis der Carboxylierungs- zu Oxygenierungsraten (kombinierter Test) nach Gleichung (1) berechnet.

2.3 DIE GASAUSTAUSCHMESSUNGEN

2.3.1 Die Nettophotosynthese

In einem offenen Gassystem wurde die Nettophotosynthese nicht abgeschnittener Blätter anhand der CO₂-Abnahme mit einem Infrarotgasanalysator gemessen (Binos, Leybold-Heraeus, Hanau, BRD) und die Transpiration anhand der Feuchtigkeitsbestimmung mit einem Taupunktspiegel (General Eastern, Watertown, Mass. USA) erfasst. Das für die Messung verwendete Gas wurde aus Stickstoff, Sauerstoff und Kohlendioxyd in Gasmischpumpen gemischt. Das Messgas floss zur Befeuchtung durch Wasser (pH 4) in die Messkammer, die das Blatt enthielt. Die Durchflussrate betrug dabei 1 dm³ min-1. Die Messanlage mit horizontaler Lichtprojektion war auf einer Optikerschiene montiert (Figur 4). Als Lichtquelle diente ein Halogen-Projektionslämpchen (340 W, 36 V) mit Reflektionsspiegel (ERV, General Electric, Cleveland, Ohio, USA). Die Infrarotstrahlung wurde mit einem Calflex C-Filter (Balzers, Balzers, Fürstentum Liechtenstein) und einer 2 cm dicken Wasserschicht reduziert. Zur gleichmässigen Lichtverteilung sowie zur Infrarotabsorption diente ein grosser wassergefüllter Rundkolben, der vor der Lampe

stand. Die Küvette bestand aus Kupfer, das elektrostatisch schwarz angefärbt war, Chromstahl und Plexiglas und umfasste ein Volumen von 0,6 dm³. Ein kleiner, leistungsstarker Ventilator (Micronel Electronic, Tagelswangen, Schweiz) sorgte für Turbulenz und Wärmeaustausch in der Küvette. Die Lufttemperatur wurde durch Wasser reguliert, das im Mantel und Dach der Küvette zirkulierte. Die Blatttemperatur wurde mit einem 0,05 mm dicken Chromnickel-Aluminiumnickel-Thermofühler gemessen (Omega Engineering Inc., Stamford, CT, USA), welcher an die Blattunterseite geführt werden konnte. Vorgängig der Infrarotgasmessung wurde die Blattfläche unter Verwendung von lichtempfindlichem Pauspapier gemessen. Die Blätter wurden während 30-45 Minuten vor der eigentlichen Messung den experimentellen Bedingungen angepasst.

2.3.2 Die Bruttophotosynthese

Nach der Nettophotosynthesemessung im offenen System erfolgte im geschlossenen System die Bestimmung der ¹⁴CO₂-Aufnahme.

Eine kleine Gasdruckflasche (4 dm²) enthielt trockene synthetische Luft, die nach der Methode von Ludwig und Canvin (1970) mit ¹⁴CO₂ angereichert war. Mit einer Spritze wurden der Gasflasche 10 cm² Luft mit bekanntem ¹⁴CO₂-Gehalt entnommen und in die Küvette eingespritzt. Der Ventilator sorgte für eine rasche Verteilung des Gases. Nach 20 Sekunden wurde der Boden der Küvette, durch den der Blattstiel führte, rasch abgehoben, das Blatt innert 1-2 s in flüssigem Stickstoff abgetötet und anschliessend in einem Oxydationsautomaten verbrannt (Tri-Carb, Packard Instruments Inc., Downers Grove, IL, USA). Die Radioaktivität der Proben wurde im Szintillationszähler (LS-1500, Beckmann, Fullerton, CA, USA) bestimmt.

In einem vorgängigen Verfahren ohne Blatt wurde die Radioaktivität pro Gasvolumen in der Küvette bestimmt, indem eine Probe von 10 cm³ Luft entnommen und in Carbosorb aufgefangen wurde. Die ¹⁴CO₂-Aufnahme der Blätter verlief während 30 s linear. Die Markierungsdauer von 20 s war somit kurz genug, um eine Messung zu gewährleisten, die nicht durch photorespiriertes und refixiertes ¹⁴CO₂ überlagert war.

2.3.3 Die Gasaustauschberechnungen

Die Nettophotosyntheserate (F) wurde nach der Formel (5) (Čatský, 1971) berechnet:

$$F [\mu mol CO_2 m^{-2} s^{-1}] = \frac{\Delta C \cdot J \cdot 273 \cdot P_{act} \cdot \overline{T} \cdot \overline{P_i}}{A \cdot 22, 4 \cdot T \cdot 101, 33 \cdot \overline{T_i} \cdot \overline{P_{act}}}$$
(5);

wobei ΔC der CO_2 -Konzentrationsdifferenz [cm³ m-³] entsprach, A der Blattfläche [m²], J der Durchflussrate [dm³ s-¹], P_{act} dem aktuellen Barometer-Luftdruck [durchschnittlich 96,66 kPa], P_i dem Kalibrierungsluftdruck des Flussmeters [101,33 kPa], T der Umgebungstemperatur [durchschnittlich 293°K] und T_i der Kalibrierungstemperatur des Flussmeters [288°K].

Die stomatäre Leitfähigkeit (k_g) wurde aus den Temperatur- und Transpirationsmessungen nach Jarvis (1971) bestimmt. Dazu wurden die Partialwasserdampfdrucke (p(H₂O)) mit der Formel (6) berechnet:

$$p(H_2O) [kPa] = 10^{([8,524 T/(T+273)]} - 0,214)$$
 (6);

wobei T dem Taupunkt in °C entspricht (Lange, 1979).

Auch das Verhältnis der molekularen Diffusionskoeffizienten von CO₂ zu H_2O (bei 20°C betrug es 0,61) wurde in Berechnung von k_g einbezogen:

$$k_{g} \text{ [mmol } CO_{2}m^{-2}s^{-1}\text{]} = \frac{\left[p(H_{2}O)_{a} - p(H_{2}O)_{o}\right] \cdot 0, 61 \cdot J \cdot 273 \cdot P_{act} \cdot \sqrt{T} \cdot \sqrt{P_{i}}}{\left[p(H_{2}O)_{i} - p(H_{2}O)_{a}\right] \cdot 10^{3} \cdot A \cdot 22, 4 \cdot T \cdot 101, 3 \cdot \left(\overline{T_{i}} \right) \left(\overline{P_{act}}\right)}$$
(7);

wobei $p(H_2O)_a$ aus der Taupunkttemperatur der Küvette berechnet wurde, $p(H_2O)_o$ aus der Taupunkttemperatur des in die Küvette einströmenden Messgases und $p(H_2O)_i$ aus der Blatttemperatur (unter der Annahme, dass die interzelluläre Luft wassergesättigt war). Die stomatäre Leitfähigkeit wurde somit aus dem Verhältnis der Transpiration zum Gradienten des Wasserdampfdruckes zwischen Interzellularraum und Aussenluft berechnet. Durch die starke und gleichförmige Luftturbulenz in der Küvette wurde der Diffusionswiderstand der Blattgrenzschicht klein gehalten.

Die Bruttophotosyntheserate (P¹) wurde aus der ¹⁴CO₂-Aufnahme berechnet und dabei Folgendes berücksichtigt:

- Die Abnahme der spezifischen Radioaktivität in der Küvette infolge des aus dem Blatt austretenden photorespirierten CO2.

- 17 -

- Die Diskriminierung des ¹⁴CO₂ gegenüber dem ¹²CO₂ bei der Aufnahme ins Blatt. .

- Die geringe CO₂-Konzentrationsveränderung bei der Messung im geschlossenen System im Vergleich zur Nettophotosynthesemessung.

- Die Unterschätzung der Bruttophotosynthese infolge der Refixierung des photorespirierten CO_2 .

Dazu war vorerst die Bestimmung der CO₂-Konzentration in der Küvette bei Markierungsbeginn (Ca') nötig:

$$Ca' [cm^{3}m^{-3}] = \frac{[(Ce^{-\Delta C}) \cdot (Vk^{-}Vs)] + (Cs \cdot Vs)}{Vk}$$
(8);

wobei Ce der CO₂-Konzentration der einströmenden Luft [cm³m⁻³] entsprach, AC der CO₂-Konzentrationsveränderung während der Messung, Vk dem Küvettenvolumen [0,6 dm³], Vs dem Spritzenvolumen [0,01 dm³] und Cs der CO₂-Konzentration in der Spritze [1030 cm³m⁻³].

Die CO_2 -Abnahme während der Markierung ($\Delta Ca'$) wurde vorgängig bestimmt:

$$\Delta Ca^{1} [cm^{3}m^{-3}] = (F \cdot A \cdot t \cdot 22, 4) / Vk \qquad (9);$$

wobei t der Markierungsdauer von 20 s entsprach.

Da sich die Radioaktivität der Küvettenluft (DPML) im Laufe der Markierung infolge der Respiration verringerte, wurde ein durchschnittlicher Wert ermittelt (DPML'):

DPML' [cm³m⁻³] = DPML (
$$\frac{Ca'-\Delta Ca'-[\Delta Ca'(P-F)/F]}{[Ca'-\Delta Ca']}$$
 + 1) / 2 (10);

wobei für das Verhältnis (P-F)/F 0,1 bei 10°C eingesetzt wurde; 0,2 bei 20°C und 0,3 bei 30°C.

Damit konnte eine mittlere ¹⁴CO₂-Aufnahme (‡) berechnet werden:

$$\frac{1}{2} [\mu mol CO_2 m^{-2} s^{-1}] = \frac{DPMA \cdot Ca' \cdot 273 \cdot P_{act}}{DPML' A \cdot t \cdot 22, 4 \cdot T \cdot 101, 33}$$
(11);

wobei DPMA der Radioaktivität des Blattes [dpm] entsprach und t der Markierungsdauer.

Anschliessend wurde die ¹⁴CO₂-Aufnahme wegen der Diskriminierung des ¹⁴CO₂ gegenüber dem ¹²CO₂ bei der Diffusion in der Gasphase [k_{12}/k_{14} =1,0088] und bei der Carboxylierung [k_{12}/k_{14} =1,0568] (O'Leary, 1981) korrigiert:

$$1/\frac{1}{2}$$
 = 1/(1,0568 $\frac{1}{2}$)-1008,8/(1,0568kg[Ca¹- Δ Ca/2]) + 10³/(kg[Ca- Δ Ca¹/2]) (12);

wobei §¹ der ¹*CO₂-Aufnahme entsprach, die um den Betrag der ¹*C-Diskriminierung korrigiert worden war.

Die Einspritzung von 10 cm³ ¹⁴CO₂-haltiger Luft (103 Pa $p(CO_2)$) ins geschlossene System verursachte eine kleine Abweichung vom Wert der CO₂-Konzentration, die während der Nettophotosynthesemessung herrschte. Deshalb wurde [§]' mit Hilfe von Photosynthesemessungen bei verschiedenen CO₂ Konzentrationen korrigiert und die ¹⁴CO₂-Aufnahme nun als P" bezeichnet:

$$P'' [\mu mol CO_2 m^{-2} s^{-1}] = i' - m \cdot (Ca' - \Delta Ca'/2 - Ca)$$
(13);

wobei Ca der CO_2 -Konzentration [cm³m-³] in der Küvette entsprach, die vor der Einspritzung von ¹⁴CO₂ geherrscht hatte, und m der aus CO₂- Photosynthesekurven geschätzte Korrekturfaktor (zwischen 0 und 0,11 [µmol CO₂ m-²s-¹/ Δ cm³m-³ CO₂]) war.

Die Unterschätzung der Bruttophotosynthese infolge der Refixierung des respirierten CO₂ konnte teilweise berücksichtigt werden. Interzelluläres CO₂, das aus der Aussenluft und der Respiration stammte, wurde gleichermassen fixiert. Damit konnten die gesamte interzelluläre CO₂- Konzentration (C_i) sowie der mit ¹⁴CO₂ markierte Anteil (¹⁴C_i) nach dem ersten Fick'schen Gesetz berechnet werden:

$$C_{i} = Ca \cdot 10^{-6} - F / k_{g} \cdot 10^{3}$$
(14);
¹⁴C_i = Ca \cdot 10^{-6} - P'' / k_{g'} \cdot 10^{3} (15);

wobei Ca der CO₂-Konzentration in der Küvette während der Nettophotosynthesemessung und vor der Einspritzung des ¹⁴CO₂ entsprach [cm³m-³].

wobei Ca der CO₂-Konzentration in der Küvette während der Nettophotosynthesemessung und vor der Einspritzung des ¹⁴CO₂ entsprach [cm³m⁻²].

Die Bruttophotosynthese (P'), die um den Betrag des respirierten und refixierten CO_2 korrigiert worden war, liess sich nach der Formel (16) berechnen.

$$P' [\mu molCO_2 m^{-2} s^{-1}] = P'' \cdot (k_g \cdot Ca \cdot 10^{-3} - F) / (k_g \cdot Ca \cdot 10^{-3} - P'') \quad (16).$$

2.3.4 Die Datenverarbeitung

Die Messdaten wurden tells mit einem Handrechner verarbeitet und teils mit dem Computer der Universität Zürich. Die Photosyntheseserien und die graphischen Darstellungen wurden mit SAS-Programmen (Statistical Analysis System, Institute Inc. Cary, NC, USA) und die Kurvenangleichungen nach dam Modell von Marschall und Biscoe (1980) mit einem Programm von B. Boller ausgeführt.

Kapitel III

RESULTATE UND DISKUSSION

3.1 DIE EIGENSCHAFTEN DER GEREINIGTEN RIBULOSEBISPHOSPHAT-CARBOXYLASE-OXYGENASE

Die Charakterisierung der gereinigten RuBPCO bei verschiedenen Temperaturen wurde auf zwei verschiedenen Wegen vorgenommen. Einerseits wurden die kinetischen Konstanten K_m und V_{max} sowohl der Carboxylase als auch der Oxygenase ermittelt (getrennter Test). Andererseits wurden die Reaktionsgeschwindigkeiten der Carboxylase und Oxygenase gleichzeitig bei verschiedenen CO_2 - und O_2 -Konzentrationen gemessen (kombinierter Test). Aufgrund der Gleichung (1) war damit die CO_2/O_2 -Spezifität *in vitro* bestimmbar.

Die Aktivitäten der Carboxylase (Figur 5) und der Oxygenase (Figur 6) wurden in Abhängigkeit der Substratkonzentrationen gemessen und in doppelt reziproken Darstellungen aufgetragen. Die sich daraus ergebenden kinetischen Konstanten sind in der Tabelle 1 zusammengefasst.

Im folgenden werden die Messungen mit Daten aus der Literatur verglichen, und anschliessend wird die Temperaturabhängigkeit der kinetischen Konstanten und der Reaktionsgeschwindigkeiten beurteilt.

Weil CO_2 nicht nur Substrat ist, sondern auch zur Aktivierung der RuBPCO dient (Badger und Lorimer, 1976), ist die *in vitro* Bestimmung schwierig. So weisen denn auch die Literaturwerte der Substrataffinitäten Unterschiede auf, die wohl auf methodische Probleme zurückzuführen sind. Die aus der Literatur entnommenen Michaeliskonstanten und CO_2/O_2 Spezifitäten verschiedener höherer C_2 -Pflanzen sind in der Tabelle 2 zusammengestellt.

Figur 6: Lineweaver-Burk-Diagramm der Oxygenase. Die aus zwei Wiederholungen ermittelten Oxygenaseraten der gereinigten Weissklee-RuBPCO bei 10°C (●), 15°C (■), 20°C (▲) und 25°C (●) wurden durch Regressionsgeraden verbunden, die in den Schnittpunkten mit der Abszisse die Enzymaffinitäten für O₂ angeben und in den Schnittpunkten mit der Ordinate die maximalen Oxygenierungsraten.

Tabelle 1: Die Temperaturabhängigkeit der kinetischen Konstanten gereinigter Weissklee-RuBPCO. V_o und V_c sind die Maximalraten der Oxygenase und der Carboxylase; K_o und K_c die Michaeliskonstanten für O₂ und CO₂. Die mittleren Fehler (in Klammern) basieren auf sieben bis neun Bestimmungen.

Temp. [°C]	V ₀ {µmolO₂Min-¹ mg-¹Protein}	К _о {µМ}	V _c [µmolCO2Min- ¹ mg- ¹ Protein]	К _с [µМ]
10	0,12	520	0,10	8,5
	(0,008)	(93,3)	(0,003)	(0,69)
15	0,15	521	0, 17	11,0
	(0,003)	(26,7)	(0,004)	(0,59)
20	0,21	598	0,34	14,2
	(0,017)	(104,8)	(0,011)	(1,10)
25	0,27	619	0,60	20,8
	(0,023)	(104,9)	(0,016)	(1,16)

Tabelle	2:	Vergleich	von	Literat	urwerter	ı der	Carboxylase-	und	Oxygenase-
affinität	en (der RuBPC	о (к	und l	K _o) und	der (CO ₁ /O ₂ -Spezifi	tät (S	in vitro).

Pflanzenart	Temp. [°C]	Κ _c [μΜ]	Κ _ο [μM]	S in vitro				
Triticum aestivum 1)	20	15						
Atriplex glabriuscula ²)	25	27	328	67				
Nicotiana tabacum ³)	25	11	650	77				
Lolium perenne ')	25	16	500	80				
Trifolium repens *)	25	21	619	66				
¹) Mächler, Keys und C	ornelius (19	980)						
²) Badger und Collatz (1977)							
³) Jordan und Ogren (1	.983)							
) Lehnherr, Mächler und Nösberger (1985)								

Die Aktivierungsenergie bestimmt als energetisches Hindernis die Reaktionsgeschwindigkeit. Aus dem Arrhenius-Diagramm sind die Aktivierungsenergie der Carboxylierung ($E_c = 85, 6 \text{ kJ mol}^{-1}$) und diejenige der Oxygenierung ($E_o = 39, 1 \text{ kJ mol}^{-1}$) für den Temperaturbereich von 10°C bis 25°C ersichtlich (Figur 7). Die Carboxylierung nimmt also mit der Temperatur stärker zu als die Oxygenierung. Auch die Aktivierungsenergien der Michaeliskonstanten dienten der Beurteilung des Temperatureinflusses auf die Substrataffinitäten ($[E]K_c = 48, 8 \text{ kJ mol}^{-1}$ und $[E]K_o = 8, 1 \text{ kJ mol}^{-1}$). Die Michaeliskonstante der Oxygenase verhielt sich damit praktisch temperaturunabhängig, im Gegensatz zur Michaeliskonstante der Carboxylase, die mit der Temperatur anstieg.

Figur 7: Arrhenius-Diagramm der Carboxylase und Oxygenase. Die Maximalraten der Carboxylase (●) und der Oxygenase (■) gereinigter Weissklee-RuBPCO sind dargestellt.

Die Gleichungen (17) und (18) zeigen, wie die kinetischen Konstanten der CO_2/O_2 -Spezifität *in vitro* bestimmen, und wie sich dessen Aktivierungsenergie zusammensetzt.

Figur 8: Die Bestimmung der CO₂/O₂-Spezifität in vitro. Das Verhaltnis von v_o zu v_c in Abhängigkeit der Verhältnisse gelöster Konzentrationen von O₂ zu CO₂ wurde in kombinierten Tests der RuBPCO bei 10°C (●), 20°C (■) und 30°C (▲) bestimmt. Die Konzentration des NaHCO₃ blieb konstant, während die des Sauerstoffs variiert wurde. Der Kehrwert der Kurvensteilheit entspricht der CO₂/O₂-Spezifität in vitro. Die Punkte stellen Durchschnittswerte von zwei bis drei Bestimmungen dar.

Die Aktivierungsenergie der CO_2/O_2 -Spezifität in vitro betrug - berechnet nach der Formel (18) - nur 5,8 kJ mol⁻¹. Der Einfluss der Temperatur auf die CO_2/O_2 -Spezifität in vitro war gering, weil sich die Temperaturabhängigkeiten der kinetischen Konstanten gegenseitig aufhoben.

Die Temperaturunabhängigkeit der CO_2/O_2 -Spezifität *in vitro* wurde auch mit den Messungen des kombinierten Tests der RuBPCO bestätigt. Die CO_2/O_2 -Spezifität *in vitro* liess sich dabei nach der Gleichung (1) aus den Carboxylase- und Oxygenaseraten bestimmen. In der Figur 8 wurden die Verhältnisse der Oxygenase- zur Carboxylaseaktivität bei 10°C, 20°C und 30°C gegen die Verhältnisse der Konzentrationen von O₂ zu CO₂ aufgetragen. Nach Jordan und Ogren (1981) entspricht der Kehrwert der Kurvensteilheit in dieser Darstellung der CO_2/O_2 -Spezifität. Die Messpunkte lagen auf Geraden derselben Neigung. Daraus ist ersichtlich, dass die CO_2/O_2 -Spezifität *in vitro* von der Temperatur nicht berührt worden ist.

Durch die Experimente mit der gereinigten RuBPCO liess sich die CO_2/O_2 -Spezifität in vitro bestimmen. Sie dient im folgenden zur Charakterisierung der RuBPCO in vitro im Vergleich zu den Eigenschaften des Gasaustausches.

3.2 DIE EIGENSCHAFTEN DES GASAUSTAUSCHES IM VERGLEICH MIT DEN ENZYMEIGENSCHAFTEN

Zur Charakterisierung des Gasaustausches wurde die CO_2/O_2 -Spezifität in vivo bestimmt. Es stellte sich heraus, dass diese - im Unterschied zur CO_2/O_2 -Spezifität in vitro - abhängig war von der Lichtintensität, der Temperatur, der CO_2 -Konzentration während der Messung und von der CO_2 -Konzentration während der Anzucht. Die Einflüsse dieser Faktoren werden im folgenden besprochen.

3.2.1 Der Lichteinfluss auf das Verhältnis der Photosynthese zur Photorespiration

Auf Grund von ^{1*}CO₂-¹²CO₂-Messungen bei verschiedenen Lichtintensitäten an Blättern, die bei 20°C und bei 33 Pa $p(CO_2)$ gewachsen waren, wurde das Verhältnis der Photorespiration zur Bruttophotosynthese bestimmt und zwar bei 20°C, konstantem CO₂-Partialdruck (30 Pa) und varlierten O₂- Partialdrücken (2-80 kPa). Die Figur 9 zeigt die Verhältnisse von Photorespiration zu Bruttophotosynthese in Abhängigkeit der Konzentrationsverhältnisse von gelöstem O₂ zu gelöstem CO₂. Diese Darstellung der *in vivo* - Daten entspricht der Figur 8 mit *in vitro* - Daten. Die CO₂/O₂-Spezifität *in vivo* wird ebenfalls aus dem Kehrwert der Kurvensteilheit bestimmt.

Das Steigungsmass der Geraden war bei allen Lichtintensitäten ähnlich. Daraus folgt, dass sich die CO_2/O_2 -Spezifität in vivo praktisch lichtunabhängig verhielt. Die Verbindungsgeraden liefen bei hoher Lichtintensität beinahe durch den Achsenschnittpunkt. Bei geringer Lichtstärke schnitten sie die Ordinate ausserhalb des Nullpunktes, womit das Verhältnis von CO1 Abgabe zu CO₂-Aufnahme bei sehr kleinem O₂/CO₂-Verhältnis grösser als null Dies deutet auf die Dunkelrespiration hin, die bei geringer Lichtintenwar. sität stärker ins Gewicht fiel. Bei 2000 µmol Quanten m-2s-1 erfolgte allerdings keine nennenswerte Ueberlagerung der Photorespiration durch Dunkelrespiration mehr. Die weiteren Experimente sind bei dieser hohen Lichtintensität durchgeführt worden, um eine allfällige Interferenz mit der Dunkelrespiration zu vermindern.

Lichtintensitäten. Das Verhältnis von Photorespiration zu Bruttophotosynthese [2(P'-F)/P'] wurde gegen das Verhältnis gelöster Konzentrationen von O₂ zu CO₂ aufgetragen. Die reziproken Kurvensteigungen entsprechen den CO₂/O₂-Spezifitäten in vivo. Die Photosyntheseraten der Blätter, die bei 20°C und 33 Pa p(CO₂) gewachsen waren, wurden bei 2000 (●), bei 800 (■) und bei 400 (▲) µmol Quanten m⁻²s⁻¹ gemessen, jeweils bei 20°C, 33 Pa p(CO₂) und bei von 2 bis 80 kPa variiertem p(O₂). Die Punkte steilen Mittelwerte von zwei bis acht Messungen dar.

3.2.2 Der Einfluss der Temperatur und der CO₂-Konzentration auf das Photosynthese/Photorespriationsverhältnis

Mit der ¹⁴CO₂-¹²CO₂-Methode wurden Bruttophotosynthese und Photorespiration bei 10°C, 20°C und 30°C bestimmt. Dabei wurde einerseits der CO₂-Partialdruck bei 30 Pa konstant gehalten. andererseits der O₂-Partialdruck von 2 kPa bis 80 kPa varilert. Die Darstellung (Figur 10) zeigt Geraden, die den Achsenschnittpunkt kreuzen. Mit zunehmender Temperatur vergrösserte sich das Steigungsmass der Geraden. Damit fiel die CO2/O2-Spezifität in vivo mit steigender Temperatur ab. Sie betrug 123 bei 10°C und 69 bei 30°C.

Figur 10: Die Bestimmung der CO₂/O₂-Spezifität in vivo. Die Messungen erfolgten bei 10°C (●), 20°C (■) und 30°C (▲), jeweils bei 2000 µmol Qanten m⁻²s⁻¹, bei 33 Pa p(CO₂) und bei von 2-80 kPa variiertem p(O₂). Die Verhältnisse von Photorespiration zu Bruttophotosynthese [2(P'-F)/P'] wurden in Abhängigkeit der Verhältnisse gelöster Konzentrationen von O₂ zu CO₂, die sich im Gleichgewicht mit den Partialdrücken des Interzellularraumes befanden, aufgetragen. Die reziproken Werte der Kurvenneigungen entsprechen den CO₂/O₂-Spezifitäten in vivo. Die Symbole stellen Durchschnittswerte zweier Bestimmungen dar.

Figur 11 vergleicht die CO_2/O_2 -Spezifitäten in vivo und in vitro bei verschiedenen Temperaturen. Die CO_2/O_2 -Spezifität in vivo nimmt mit sinkender Temperatur zu, während dem sie in vitro paraktisch konstant bleibt.

Der Temperatureinfluss auf die CO_2/O_2 -Spezifität *in vivo* lässt sich auch mit Berechnungen aus Literaturdaten belegen (Tabelle 3). Er ist sowohl aus ¹⁴CO₂-¹²CO₂-Experimenten mit niedrigem CO₂-Partialdruck ersichtlich als auch aus Bestimmungen der CO₂-Kompensationskonzentration.

Pflanzenart	Methode	Temperatur [°C]	CO2/O2-Spezifität in vive					
			bei 20 Pa p(CO ₂)	bei 40 Pa p(CO ₂)				
Helianthus	¹⁴ CO ₂ -	16	126	73				
annuus ')	¹² CO ₂	25	118	78				
		33	71	61				
			bei 30 Pa	bei 90 Pa				
			p(CO ₂)	p(CO ₂)				
Trifolium	14CO2-	10	123	78				
repens ²)	¹² CO ₂	20	96	69				
		30	71	64				
			bei 3-6 Pa					
			p(CO ₂)					
Triticum	CO2-	13	134	•				
sativum ³)	Kompensations-	19	112					
	konzentration	31	73					
<u> </u>			bel 3-6 Pa					
			p(CO ₂)					
Lolium	CO2-	10	104					
perenne *)	Kompensations-	20	93					
	konzentration	30	59					
 ¹) Fock, Klu ²) Lehnherr ³) Jolliffe un ⁴) Azcon-Bie 	g und Canvin (197 et al. (1985) id Tregunna (1968) ito, Farquhar und	79)) Caballero (198)	1)					

Tabelle 3: Die CO_2/O_2 -Spezifität in vivo bei verschiedenen Temperaturen und CO_2 -Konzentrationen. Vergleich der Daten unterschiedlicher Bestimmungsart und Herkunft.

Figur 12: Der Einfluss des interzeilulären CO₂-Partialdruckes auf die CO₂/O₂-Spezifität in vivo bei 10°C (●) und bei 30°C (■). Das Verhältnis der Partialdrücke von CO₂ zu O₂ wurde während des Experimentes durch Anpassung des O₂-Partialdruckes konstant gehalten (15·10-*). Die Berechnung der CO₂/O₂-Spezifitäten basiert auf den Konzentrationen gelösten Sauerstoffs und Kohlendioxids. Die vertikalen Balken stellen die mittleren Fehler von drei bis vier Bestimmungen dar. Die CO₂/O₂-Spezifität in vitro ist als gestrichelte Linie eingetragen.

Die in der Einleitung angetönte Frage, worauf die Temperaturabhängigkeit des Verhältnisses der Photosynthese zur Photorespriation beruhe, lässt sich zum Teil beantworten: Sie ist weder durch die enzymkinetischen Eigenschaften bedingt, noch ist das temperaturabhängige Löslichkeitsverhältnis von CO_2 zu O_2 ausschliesslich massgebend. In Figur 12 wurde der Einfluss des Löslichkeitsverhältnisses berücksichtigt, indem die Konzentrationen gelöster Substrate verwendet wurden. Offenbar tritt hier ein Faktor in Erscheinung, der unabhängig von den Enzymeigenschaften ist, und der bei niedrigen Temperaturen ein Abweichen des Gasaustausches von der Enzymkinetik verursacht. Eine Bestätigung der Beobachtung, dass eine Diskrepanz zwischen dem Gasaustausch und der Enzymkinetik bei tiefer Temperatur vorliegt, brachte der Vergleich der CO_2 -Abhängigkeit der CO_2/O_2 -Spezifität bei 10°C und 30°C: Figur 12 zeigt, dass sich die CO_2/O_2 -Spezifität *in vivo* bei 30°C unabhängig von der CO_2 -Konzentration verhält, wie es aufgrund der Enzymeigenschaften zu erwarten ist; während sie bei 10°C mit abnehmender CO_2 -Konzentration zunimmt. Diese CO_2 -Abhängigkeit ist erstaunlich und steht im Gegensatz zur RuBPCO-Kinetik. Die CO_2/O_2 -Spezifität *in vitro* (gestrichelt eingetragen) ist von der CO_2 -Konzentration unabhängig. Er liegt bei 30°C leicht über der CO_2/O_2 -Spezifität *in vivo*. Bei 10°C und bei niedrigen CO_2 -Partialdrücken ist die CO_2/O_2 -Spezifität *in vivo* aber deutlich grösser als die CO_2/O_2 -Spezifität *in vitro*.

Auch Berechnungen unter Verwendung von Literaturdaten aus ${}^{16}CO_2 - {}^{12}CO_2$ -Experimenten, die bei verschiedenen CO_2 -Konzentrationen ausgeführt worden sind, belegen diese Abhängigkeit der CO_2/O_2 -Spezifität in vivo von der CO_2 -Konzentration (Tabelle 3).

Das Abweichen des Gasaustausches von der RuBPCO-Kinetik kann jedoch nicht durch den Einfluss der Dunkelrespiration erklärt werden: Falls die Dunkelrespriation, die bei 2 kPa O₂ gesättigt ist (Forrester, Krotkov und Nelson, 1966), einen Einfluss hätte, würden die geraden Linien in der Figur 10 nicht durch den Achsennullpunkt gehen. Die CO₂-Abhängigkeit der CO₂/O₂-Spezifität (Figur 12) kann nicht der Dunkelrespiration zugeschrieben werden, da diese - soweit uns bekannt ist - nicht von der CO₂-Konzentration berührt wird. Nach dem Modell von Farquhar, von Caemmerer und Berry (1980) beeinflusst die Dunkelrespiration das Steigungsmass der Geraden nicht; dieses wird aber mit der Temperatur verändert (Figur 10).

Die bei niedrigen Temperaturen auffällige Abweichung der CO2/O2-Spezifität in vivo von der RuBPCO-Kinetik in vitro lässt deshalb einen endogenen Mechanismus vermuten, der bei geringen Temperaturen und durchschnittlichen CO2-Konzentrationen das interne Konzentrationsverhältnis von CO₂ zu O₂ zugunsten des CO₂ verschiebt. Dieser hypothetische CO₂-Konzentrierungsmechanismus in den Mesophyllzellen könnte somit den Unterschied zwischen dem Gaswechsel und der RuBPCO-Kinetik erklären: Falls ein CO2-Konzentrierungssystem aktiv ist, wird nämlich die CO2 Konzentration am Enzym über die berechnete Konzentration im Interzellularraum hinaus erhöht.

Die Bestimmung der CO_2/O_2 -Spezifität *in vivo* nach der Formel (3) (siehe Einleitung) unter Verwendung einer zu tiefen CO_2 - Konzentration müsste zu Werten führen, die über den erwarteten CO_2/O_2 -Spezifitäten *in vitro* liegen.

Es ist anzunehmen, dass ein CO_2 -Konzentrierungsmechanismus bezüglich CO_2 einer Sättigungskinetik folgt und damit bei tiefen CO_2 -Konzentrationen am wirkungsvollsten ist. Daher kann auch erwartet werden, dass die Diskrepanz zwischen dem Gasaustausch und der RuBPCO-Kinetik bei tiefen CO_2 -Konzentrationen am grössten ist. Dies wird in der Figur 12 bestätigt: Die höchsten CO_2/O_2 -Spezifitäten werden bei niedriger CO_2 -Konzentration erreicht, die auch für die Pflanzen relvant ist.

3.2.3 Der Einfluss der CO₂-Konzentration während der Anzucht auf das Photosynthese-Photorespirationsverhältnis

Zur Prüfung der Hypothese. ob die Diskrepanz zwischen den CO_2/O_2 -Spezifitäten in vivo und in vitro auf einem CO_2 Konzentrierungsmechanismus beruht, wurden Weisskleepflanzen bei verschiedenen CO₂-Konzentrationen herangezogen. Bei Algen wirkt sich die Anzucht bei njedriger CO₂-Konzentration auf den CO₂ Konzentrierungsmechanismus aus (Marcus et al., 1982). Zur Beurteilung, ob in den Weisskleeblättern ähnliche Verhältnisse herrschen, wurde deren Gasaustausch nach Anzucht bei verschiedenen CO₂-Konzentrationen untersucht. Dabei wurden sowohl die Verhältnisse von Photorespiration zu Bruttophotosynthese der Blätter nach Anzucht bei 100 Pa p(CO₂) ermittelt als auch diejenigen der Blätter nach Anzucht bei 20 Pa p(CO₂). Dazu war die Bruttoaufnahme des interzellulären CO_2 und die Nettophotosynthese bei konstantem $p(CO_2)$ (30 Pa) und variierten $p(O_2)$ (2-80 kPa) zu bestimmen. Die Daten sind in der Figur 13 dargestellt. Analog zu den Figuren 8 und 10 entsprechen die reziproken Steigungsmasse der Verbindungslinien wiederum die CO_2/O_2 -Spezifitäten des Photosyntheseapparates (in vivo) oder der RuBPCO (in vitro) für die Substrate CO_2 und O_2 .

Die Pflanzen, die bei 100 Pa $p(CO_2)$ gewachsen waren, wiesen einen steileren Kurvenverlauf auf und somit eine kleinere CO_2/O_2 -Spezifität *in vivo* als Pflanzen mit der Wachstumsbedingung von 20 Pa $p(CO_2)$. Die Gerade der RuBPCO-Aktivität verlief steiler als diejenigen des Gasaustausches. Bei 10°C lag somit die CO_2/O_2 -Spezifität *in vivo* bei beiden Anzuchtsbedingungen über der CO_2/O_2 -Spezifität *in vitro*.

In der Folge wird der Einfluss der CO_2 -Konzentration während der Anzucht auf die CO_2/O_2 -Spezifität *in vivo* bei verschiedenen Temperaturen untersucht, dann bei verschiedenen CO_2 -Konzentrationen und schliesslich bei verschiedenen Lichtintensitäten.

Figur 13: Die Bestimmung der CO₂/O₂-Spezifität in vivo in Abhängigkeit der CO₂ Konzentration und der Anzucht der Blätter. (●): Anzucht bei 20 Pa p(CO₂), (■): Anzucht bei 100 Pa p(CO₂). Die Temperatur betrug 10°C und die Lichtintensität 2000 µmol Quanten m⁻² s⁻¹. Der CO₂-Partialdruck wurde bei 30 Pa konstant gehalten, während der O₂-Partialdruck von 2-80 kPa variiert wurde. Die Verhältnisse von Photorespiration zu Bruttophotosynthese [2(P¹-F)/P¹] wurden in Abhängigkeit der Verhältnisse gelöster Konzentrationen von O₂ zu CO₂ aufgetragen, die im Gleichgewicht mit den Partialdrücken des Interzellularraumes standen. Die Kehrwerte der Kurvenneigungen entsprechen den CO₂/O₂-Spezifitäten in vitro (gestrichelte Linie) und in vivo (ausgezogene Linien). Die Symbole stellen Mittelwerte aus zwei bis drei Bestimmungen dar.

Figur 14: Der Einfluss der Temperatur auf die CO₂/O₂-Spezifität nach der Anzucht der Blätter bei verschiedenen CO₂-Konzentrationen. Die gestrichelte Linie bezeichnet die CO₂/O₂-Spezifität in vitro (siehe Figur 11). Die ausgezogenen Linien bezeichnen die CO₂/O₂ Spezifitäten in vivo nach Anzucht bei 20 Pa (●), 33 Pa (■) und 100 Pa (▲) p(CO₂). Die Gasaustauschmessungen erfolgten bei einer Lichtintensität von 2000 µmol Quanten m-²s-¹ und bei 30 Pa p(CO₂). Die senkrechten Balken stellen die mittleren Fehler von zwei bis vier Bestimmungen dar.

In der Figur 14 sind die CO_2/O_2 -Spezifitäten in Abhängigkeit der Temperatur aufgetragen. Bei 30°C war die CO_2/O_2 -Spezifität ziemlich unabhängig von der CO_2 -Konzentration, die während des Wachstums geherrscht hatte. Mit sinkender Temperatur stieg sie aber je nach der Anzuchtsbedingung unterschiedlich an. Eine Temperatursenkung erhöhte die CO_2/O_2 -Spezifität *in vivo* bei Blättern nach Anzucht bei reduziertem CO_2 -Partialdruck stärker als nach Anzucht bei erhöhtem CO_2 -Angebot. Die Blätter, welche bei durchschnittlichem CO_2 -Partialdruck (33 Pa) gewachsen waren, wiesen eine mittlere Reaktion auf die Temperaturveränderung auf.

Figur 15: Der Einfluss des interzellulären CO₂-Partialdrucks auf die CO₂/O₂
Spezifität in vivo bei Blättern nach Anzucht bei 20 Pa (●) und bei 100 Pa (■) p(CO₂). Das Verhältnis von p(CO₂) zu p(O₂) der Umgebungsluft wurde während der Messung konstant gehalten (15: 10⁻⁴). Die Temperatur betrug 10°C und die Lichtintensität 2000 µmol Quanten m⁻²s⁻¹. Die vertikalen Balken bezeichnen den mittleren Fehler von zwei bis vier Messungen. Die CO₂/O₂-Spezifität in vitro ist als gestrichelte Linie eingetragen (siehe Figur 10).

Die Figur zeigt die 15 Abhängigkeit der CO₂/O₂-Spezifität vom CO2-Partialdruck bei 10°C. War der CO2-Partialdruck während der Messung hoch, so verhielt sich die CO2/O2-Spezifität in vivo unabhängig von der CO₂-Konzentration, die während der Anzuchtsperiode geherrscht hatte. Wurde CO2-Partialdruck während der Messung reduziert, der 50 nahm die CO_2/O_2 -Spezifität in vivo aber unterschiedlich zu. Ihr Anstieg war stärker bei Blättern, denen weniger CO2 während des Wachstums zur Verfügung gestanden hatte.

Figur 16: Der Einfluss der Lichtintensität auf die CO₂/O₂-Spezifität in vivo bei Pflanzen, die bei 20 Pa p(CO₂) (runde Symbole) und bei 100 Pa p(CO₂) (quadratische Symbole) gewachsen waren. Die Messtemperatur betrug 10°C (O,□) und 30°C (●,■). Die gestrichelte Linie bezeichnet die CO₂/O₂-Spezifität in vilro. Die senkrechten Balken stellen die mittleren Fehler von zwei bis vier Messungen dar.

In der Figur 16 wurde die Abhängigkeit der CO_2/O_2 -Spezifität *in vivo* von der Lichtintensität bei 10°C und 30°C verglichen. Die Blätter, die bei 20 Pa $p(CO_2)$ gewachsen waren, zeigten bei 10°C und bei allen Lichtintensitäten höhere CO_2/O_2 -Spezifitäten als die Blätter, die bei 100 Pa $p(CO_2)$ herangewachsen waren. Bei 30°C war die CO_2/O_2 -Spezifität unabhängig von der

Lichtintensität und wurde auch von der CO_2 -Konzentration während der Anzucht nicht beeinflusst. Sie lag unter dem Wert der CO_2/O_2 -Spezifität in vitro.

Bei 10°C war ein leichter Einfluss der Lichtintensität feststellbar, wobei die CO_2/O_2 -Spezifität mit zunehmender Einstrahlung anstieg. Vermutlich hängt dies einerseits mit der Dunkelrespiration zusammen, die mit steigender Lichtintensität weniger ins Gewicht fällt.

Der Vergleich des Gasaustausches bei Pflanzen, die unter verschiedenen CO_2 -Konzentrationen herangewachsen sind, zeigt, dass die Diskrepanz zwischen dem Gasaustausch und der Enzymkinetik nach Anzucht bei niedriger CO_2 -Konzentration ausgeprägter und die CO_2/O_2 -Spezifität *in vivo* höher war. Die Interpretation dieser Diskrepanz als Auswirkung des CO_2 -Konzentrierungsmechanismus wird dadurch gestützt.

3.2.4 Der Einfluss der CO₂-Konzentration während der Anzucht auf die Nettophotosynthese

Rückschlüsse auf die Verfügbarkeit von CO_2 am Ort seiner Fixierung lassen sich auch aus Messungen der Nettophotosynthese ziehen. Diese wurde an Blättern nach Anzucht bei erhöhtem beziehungsweise reduziertem CO_2 -Partialdruck in Abhängigkeit der Lichtintensität, der Temperatur und der CO_2 - Konzentration bestimmt.

Die bei 20 Pa p(CO₂) gewachsenen Weisskleeblätter zeigten bei 10°C eine höhere Photosynthese als die Blätter, die bei 100 Pa p(CO2) gewachsen waren. (Figur 17 A). Dieser Unterschied vergrösserte sich noch mit zunehmender Lichtintensität. Bei 30°C unterschieden sich allerdings die Nettophotosyntheseraten der Blätter mit verschiedenen CO2-Anzuchtsbedingungen kaum Mit veränderter Messtemperatur wandelte sich auch die mehr (Figur 17 B). Kurvenform. Bei 10°C bogen die Photosynthese-Lichtkurven der Blätter aus angereicherter CO2-Atmosphäre stärker ab, als die Kurven der Blätter, die mit verringertem CO₂ herangewachsen waren. Nach dem Modell von Marshall und Biscoe (1980) kann aus dem Kurvenverlauf auf den Faktor (0) geschlossen werden. Dieser bezeichnet das Verhältnis des CO2-Diffusionswiderstandes zum gesamten Widerstand einschliesslich des Widerstandes, der sich der enzymatischen Fixierung entgegenstellt. Bei 10°C war diese Verhältniszahl bei Blättern aus reduzierter CO_2 -Atmosphäre kleiner ($\theta = 0,3$) als bei solchen, die in angereicherter CO_2 -Atmosphäre gewachsen waren ($\theta = 0,9$). Dies wies darauf hin, dass der Diffusionsprozess bei Pflanzen aus reduzierter CO₂-Atmosphäre das bedeutend kleinere Hindernis in der CO₂-Fixierung darstellte als die enzymatische Fixierung. Bei 10°C schien die Fortbewegung des CO2 aus der Umgebungsluft zum Fixierungsort wesentlich leichter zu sein, falls den Blättern ein reduziertes CO₂-Angebot während des Wachstums zur Verfügung gestanden hatte. Bei 30°C (θ = 0,9) fiel der Diffusionswiderstand weit stärker ins Gewicht, als das durch die enzymatische Reaktion bedingte Hemmnis der CO₂-Fixierung.

(A) und bei 30°C (B). Das Symbol (●) bezeichnet die Nettophotosyntheseraten der Blätter, die bei 20 Pa p(CO₂) gewachsen sind, und (■) bezeichnet die Nettophotosynthese der Blätter nach Anzucht bei 100 Pa p(CO₂). Während der Messung betrug p(CO₂) der Umgebungsluft 30 Pa und p(O₂) 20 kPa. Die vertikalen Balken bezeichnen die mittleren Fehler von drei bis fünf Einzelmessungen.

Auch die Abhängigkeit der Nettophotosynthese vom CO_2 -Partialdruck während der Messung wurde vom CO_2 -Angebot während der Anzucht beeinflusst. Bei einer Temperatur von 10°C verlief die Photosynthese- CO_2 -Kurve bei den Blättern nach Anzucht bei 20 Pa $p(CO_2)$ steller als bei den Blättern, die bei 100 Pa $p(CO_2)$ herangewachsen waren (Figur 18).

Bei 10°C war somit die Carboxylierungseffizienz, die sich in der Anfangssteigung der Kurve ausdrückte, bei Blättern nach Anzucht bei 20 Pa $p(CO_2)$ höher als bei solchen nach der Anzucht bei 100 Pa $p(CO_2)$ (Figur 18 A). Bei 30°C war dagegen kein Einfluss der CO₂-Konzentration während der Anzucht auf die Carboxyllerungseffizienz mehr feststellbar. Beide Kurven zeigten eine ähnliche Anfangssteigung (Figur 18 B). Bei gesättigter CO₂-Konzentration lag aber die Photosyntheserate der Blätter nach Anzucht in reduzierter CO_2 -Konzentration leicht über derjenigen der Blätter nach Anzucht in erhöhter CO₂-Konzentration.

Kriedemann und Wong (1984) untersuchten den Einfluss der CO₂- Konzentration während des Wachstums auf die Photosynthese bei verschiedenen Pflanzenarten. Sie fanden, dass die Aenderung der Carboxylierungseffizienz von einer Abnahme der RuBPCO- und Hill-Aktivität (O2-Abgabe aus der Was-Mit diesen beiden Faktoren lässt sich aber der serspaltung) begleitet war. Unterschied zwischen den CO₂-abhängigen Photosynthesekurven der Pflanzen nach der Anzucht in erhöhter, respektive in reduzierter CO2-Konzentration nicht vollständig erklären. Der Einfluss der CO2-Konzentration während der Anzucht machte sich nur bei tiefen Temperaturen bemerkbar. So drängt sich die Suche nach weiteren Faktoren auf, die zur Erklärung der veränderten Photosyntheseleistung beitragen, und die unabhängig sowohl von der RuBP-CO-Aktivität als auch von der Hill-Aktivität (welche die RuBP-Regeneration ermöglicht) sind. Ein Faktor könnte dabei die veränderte Aktivität der Carbo-Als Teil des CO2-Konzentrierungsmechanismus spielt die anhydrase sein. Carboanhydrase - wie an Algen gezeigt worden ist - eine sehr wichtige Rolle.

Aus dem Verlauf der Lichtintensitäts- und der CO_2 -Konzentrationskurven der Nettophotosynthese können somit weitere Anhaltspunkte dafür gewonnen werden, dass diejenigen Blätter CO_2 leichter an den Fixierungsort befördern, die bei erniedrigter CO_2 -Konzentration herangewachsen sind.

Kapitel IV

SCHLUSSDISKUSSION

Bei der Photosynthese wird CO_2 mit Hilfe von Lichtenergie in Zucker gebunden. Dabei katalysiert die Ribulosebisphosphat-Carboxylase-Oxygenase (RuBPCO) sowohl die Aufnahme von CO_2 bei der Photosynthese als auch die Fixierung von O_2 bei der Photorespiration. Im Laufe der Photorespiration wird CO_2 auch wieder freigesetzt. Durch die komplizierten Verhältnisse der Fixierung, Freisetzung und Refixierung von CO_2 durch die Prozesse der Photosynthese und der Photorespiration sind die tatsächlichen Fixierungsraten schwierig zu bestimmen. Es steht aber fest, dass die Photorespiration und Photosynthese durch die Oxygenierung und Carboxylierung von RuBP bedingt sind und durch das Angebot von O_2 und CO_2 im Chloroplasten beeinflusst werden.

Damit CO₂ in die Chloroplasten gelangt, muss es die Spaltöffnungen, Interzellularräume, Zellwände, Plasmalemmas, Cytoplasmen und Chloroplastenhüllen durchqueren. Die CO2-Konzentration in der Luft ist sehr gering und kann im Blatt durch die Photosynthese und die Photorespiration verändert werden. Allgemein wird angenommen, dass CO₂ aufgrund eines Gradienten von der Umgebungsluft in die Chloroplasten des Blattes hineindiffundiert. In höheren C1-Pflanzen, wie hier am Beispiel von Weissklee gezeigt werden konnte, scheint offenbar anorganischer Kohlenstoff auch aktiv aufgenommen zu werden. Dabei übernimmt vermutlich Bicarbonat die Funktion eines CO2-'Carriers'. Ein bekannter Fall der CO2-Konzentrierung spielt sich in C4und CAM-Pflanzen ab. Hier tritt eine organische Verbindung, Malat oder Aspartat, als CO₂-'Carrier' auf. Dieses Photosynthesesystem ist allerdings energiebedürftiger als dasjenige der C₁-Pflanzen; es ist aber bei hohen Lichtintensitäten und Temperaturen infolge fehlender Verluste durch die Photorespiration effizienter. Andererseits vermögen Algen und Wasserpflanzen als C1-Pflanzen anorganischen Kohlenstoff in Form von Bicarbonat aktiv in die Zellen aufzunehmen. Möglicherweise erfolgt ein ähnlicher Prozess auch in den Mesophyllzellen der C₄- oder CAM-Pflanzen, indem Bicarbonat aktiv aufgenommen wird und als Substrat der Carboxylierung von Phosphoenolpyruvat zur Verfügung steht. Damit würde der aktive CO₂-Konzentrierungsmechanismus auch bei der intermediären CO₂-Fixierung von Bedeutung sein.

Die Frage, ob bei der Photosynthese in höheren C_2 -Pflanzen auch eine CO_2 -Konzentrierung stattfindet, kann hier zwar nicht umfänglich beantwortet werden, aber es lassen sich aus dem Vergleich der Enzymkinetik mit dem Gasaustausch bei Weissklee klare Hinweise dazu finden. Nach dem Modell von Mächler et al. (1985) kann nämlich die Verfügbarkeit des Substrates CO_2 im Chloroplasten anhand der CO_2/O_2 -Spezifitäten sowohl des Enzyms in vitro als auch des Gasaustausches in vivo beurteilt und daraus auf die Art und Weise des Zutritts von CO_2 ins Stroma geschlossen werden:

$$S_{in vivo} = S_{in vitro} \cdot f \cdot k_{l^{1}}/k_{l^{-1}}$$
(19);

wobei k_{l^1} die Leitfähigkeit für CO₂ vom Interzellularraum ins Cytoplasma darstellt und $k_{l^{-1}}$ dieselbe in umgekehrter Richtung, d.h. vom Cytoplasma in den Interzellularraum. Der Faktor f bezeichnet das Verhältnis der CO₂-Konzentration im Chloroplastenstroma (C_g) zu derjenigen im Cytoplasma (C_c) (siehe Figur 3, Einleitung).

Wenn das Verhältnis von S *in vivo* zu S *in vitro* kleiner als eins ist, dann erfolgt die Translokation des CO₂ von der Umgebungsluft zum Chloroplasten durch Diffusion aufgrund eines Konzentrationsgradienten ($f \cdot k_{11}/k_{1-1} < 1$).

Wenn aber das Verhältnis von S in vivo zu S in vitro grösser als eins ist, dann kann ein aktiver CO_2 -Konzentrierungsmechanismus vermutet werden, der im Plasmalemma (falls: $k_{l^1}/k_{l^{-1}} > 1$) oder in der Chloroplastenhülle (falls: f > 1) lokalisiert sein dürfte.

Die Daten zeigten, dass das Verhältnis von S in vivo zu S in vitro sowohl bei hoher Temperatur als auch bei erhöhter CO_2 -Konzentration generell kleiner als eins war, und dass unter diesen Bedingungen kein aktiver Transport nachgewiesen werden konnte. Hingegen lag das Verhältnis von S in vivo zu S in vitro über eins, wenn die Temperatur und die CO_2 -Konzentration niedrig waren. Dieses Verhältnis entspricht einem hypothetischen CO_2 -Konzentrierungskoeffizienten, der bei 10°C und 30 Pa $p(CO_2)$ bei 1,6 lag und mit steigender Temperatur abnahm.

- 47 -

Der postulierte CO_2 -Konzentrierungsmechanismus scheint folglich mit steigenden Temperaturen und zunehmender CO_2 -Konzentration an Wirkung einzubüssen. Dies lässt sich damit erklären, dass ein aufgebauter CO_2 -Gradient an einer Membran bei steigender Temperatur vermutlich infolge zunehmender Permeabilität wieder verloren geht. Der CO_2 -Konzentrierungsmechanismus folgt wahrscheinlich einer Sättigungskinetik, so dass seine Wirksamkeit nur bei geringer, durchschnittlicher CO_2 -Konzentration in der Aussenluft sichtbar wird. 4

Aus den Experimenten mit Algen ist bekannt, dass der CO_2 -Konzentrierungsmechanismus in Pflanzen nach ihrer Anzucht bei tiefer CO_2 -Konzentration viel effizienter ist als nach Anzucht bei erhöhter CO_2 -Konzentration (Hogetsu und Miyachi, 1979; Badger und Andrews, 1982). Der vermutete CO_2 -Konzentrierungsmechanismus bei Weissklee verhielt sich diesbezüglich gleich wie bei den Algen: Bei Messtemperaturen von 10°C bis 20°C zeigten die Blätter nach Anzucht bei niedriger CO_2 -Konzentration ein grösseres Verhältnis von S *in vivo* zu S *in vitro* als nach Anzucht bei erhöhter CO_2 -Konzentration. Ein Unterschied war jedoch während der Messung bei hoher Temperatur und hoher CO_2 -Konzentration nicht mehr erkennbar. Das Verhältnis von S *in vivo* zu S *in vitro* lag dann unter eins. Die Ergebnisse belegen damit, dass die CO_2 -Zufuhr bei der Photosynthese der C₁-Pflanzen nicht nur durch Diffusion sondern auch aktiv erfolgen kann.

Ein aktiver Transport würde die Beförderung ionisierter Teilchen, wahrscheinlich HCO_3 , gegen einen elektrochemischen Potentialgradienten bedeuten. Anhand der Abweichung der CO_2/O_2 -Spezifität *in vivo* von derjenigen *in vitro* kann vermutet werden, dass der CO_2 -Konzentrierungsmechanismus ein aktiver Transportvorgang ist. Die beobachtete Lichtabhängigkeit der CO_2/O_2 Spezifität *in vivo*, die sich zwar nur in geringem Masse äusserte, könnte auch darauf hinweisen, dass der CO_2 -Konzentrierungsmechanismus durch ATP limitiert wird. ATP wird vermutlich beim Transport von Bicarbonat durch das Plasmalemma benötigt. Im Symport mit Protonen dürfte Bicarbonat ins Cytoplasma gelangen, wo sich ein Gleichgewicht mit CO_2 einstellt (Figur 19).

1

٤

Die gesamte anorganische Kohlenstoffkonzentration im Cytoplasma wird vermutlich durch das Hineinpumpen von Bicarbonat erhöht. Entlang eines Gradienten gelangt CO_2 aus dem Cytoplasma durch die Chloroplastenhülle ins Stroma. In diesem alkalischen Milieu liegt das Gleichgewicht zwischen CO_2 und HCO; gänzlich auf Seiten des Bicarbonats. Infolge des pH-Wertes von 8 ist die maximal aufnehmbare Menge an anorganischem Kohlenstoff wesentlich erhöht. Der durch das Licht induzierte pH-Anstieg des Stromas ermöglicht somit nicht nur die Aktivierung von RuBPCO, sondern auch gleichzeitig die Auffüllung eines anorganischen Kohlenstoffspeichers in Form von Bicarbonat. Die Carboanhydrase katalysiert dabei die Nachlieferung von CO_2 aus dem Bicarbonat an die RuBPCO. Möglicherweise erleichtert die Carboanhydrase auch noch den Durchtritt von CO_2 durch die Chloroplastenhülle (Lucas, 1983). τ

۲

Ein photosynthetisch aktiver Organismus, der sowohl CO₂ als auch HCO₃aufnehmen kann, hat eine breitere Ernährungsbasis und ist damit konkurrenzkräftiger. Badger, Kaplan und Berry (1980) zeigten, dass im Cytoplasma Cyanobakterien anorganischer Kohlenstoff auf das Vielfache von der Aussenkonzentration angehäuft wird. Aus dem anorganischen Kohlenstoffvorrat der Zelle kann der Photosynthesezyklus vermehrt mit Substrat beliefert werökologische Bedeutung eines aktiven anorganischen Kohlenden. Die stofftransports leuchtet gerade bei den C₂-Pflanzen ein. Viele dieser Pflanzen sind in kühl-gemässigten Klimaten beheimatet und weisen somit ein tieferes Temperaturoptimum auf als C₄-Pflanzen (z.B. Mais). Der bei niedriger Temperatur besonders effiziente CO₂-Konzentrierungsmechanismus könnte erklären, warum C₃-Pflanzen bei kühlen Temperaturen eine überraschend hohe Photosyntheserate aufweisen.

Die Effizienz einer aktiven Beförderung von anorganischem Kohlenstoff könnte auch als Selektionskriterium bei der Züchtung von Kulturpflanzen verwendet werden. Eine vermehrte CO_2 -Aufnahme vergrössert die Photosynthese und reduziert den durch die Photorespiration bedingten Abbau von Kohlenhydraten und Energiebedarf. Die züchterische Bearbeitung des CO_2 - Konzentrierungsmechanismus könnte aber auch den Versuch überflüssig machen, die Oxygenasefunktion der RuBPCO auszuschalten, oder in den Photorespirationszyklus einzugreifen. Der Glycolatweg ist nämlich sowohl für die C_4 - wie C_2 -Pflanzen von physiologischer Bedeutung, indem er beispielsweise den Photosyntheseapparat bei hohem Lichteinfall und geringem CO_2 -Angebot vor Lichthemmung schützt und gleichzeitig Glycin und Serin bereitstellt. Der CO_2 -Konzentrierungsmechanismus wirkt sich in C_3 -Pflanzen offenbar bei niedrigen Temperaturen stärker aus. Er könnte indirekt die Ausbildung einer Kältetoleranz in photosynthetisch aktiven Geweben ermöglichen. Bedingt durch die erhöhte HCO₃-Konzentration im Cytoplasma, können vermehrt Malat und Zucker gebildet werden. Diese werden infolge verringerter Meristemaktivität bei tiefen Temperaturen nicht sofort benötigt und erhöhen den osmotischen Wert des Zellsaftes. Damit dürfte der erhöhte Gehalt an Malat und Zucker zu einer grösseren Kältetoleranz der Blätter führen.

Der vermutlich an Membranen aktive CO_2 -Konzentrierungsmechanismus wird möglicherweise durch Schadstoffe der Umgebung inaktiviert. Unsere Kulturpflanzen und Waldbäume (C_3 -Pflanzen) sind von der Umweltverschmutzung betroffen. Der Verlust der aktiven CO_2 -Zufuhr könnte die Photosynthese als Grundlage des Metabolismus beeinträchtigen und die Pflanzen in ihrer Vitalität schwächen.

Kapitel V

ZUSAMMENFASSUNG

Die Eigenschaften des Gasaustausches intakter Weisskleeblätter wurden mit der Enzymkinetik von Ribulosebisphosphat-Carboxylase-Oxygenase (RuBPCO) verglichen, um Näheres über das Verhältnis der Substratkonzentrationen von CO_2 und O_2 im Chloroplasten aussagen zu können. Dieses Substratverhältnis am Enzym bestimmt nämlich das Verhältnis der Carboxylierung zur Oxygenierung und damit auch dasjenige der Photosynthese zur Photorespiration.

Die kinetischen Eigenschaften der aus jungen Weisskleeblättern extrahierten RuBPCO wurden sowohl in kombinierten wie getrennten Tests bestimmt. Dabei zeigte sich, dass dessen CO_2/O_2 -Spezifität ($V_c/K_c \cdot K_o/V_o = v_c/v_o \cdot O/C$) praktisch temperaturunabhängig war: Die Aktivierungsenergie der CO_2/O_2 Spezifität *in vitro* betrug zwischen 10°C und 25°C nur 5,8 kJ mol⁻¹, währenddem sie für die maximale Carboxylierungsrate (V_c) 85,6 kJ mol⁻¹ und für die maximale Oxygenierungsrate (V_o) 39,1 kJ mol⁻¹ aufwies.

Der Gasaustausch gleichaltriger, vollentwickelter Weisskleeblätter wurde einerseits durch die Nettophotosynthese mittels Infrarotgasmessungen und andererseits durch die Bruttophotosynthese mittels Kurzzeitaufnahmen von ¹⁴CO, bestimmt. Das Verhältnis der Photosynthese zur Photorespiration konnte nun bei verschiedenen Temperaturen und CO2-Konzentrationen dem Verhältnis der Carboxylierung zur Oxygenierung gegenübergestellt werden. Bei 25°C und 30 Pa p(CO₂) stimmten diese Verhältnisse überein. Das Verhältnis der Photosynthese zur Photorespiration stieg jedoch mit abnehmender Temperatur an und stand damit im Widerspruch zum Verhältnis der Carboxylierung zur Oxygenierung der in vitro geprüften RuBPCO, welches praktisch temperaturunabhängig war. Die durch die CO2/O2-Spezifität in vitro charakterisierte Kinetik von RuBPCO deckte sich also bei tiefen Temperaturen nicht mehr mit der CO2/O2-Spezifität des Gasaustausches in vivo. Bei 30 Pa $p(CO_2)$ in der Umgebungsluft betrug die CO_2/O_2 -Spezifität in vivo bei 10°C 123, bei 20°C 98 und bei 30°C 69, währenddem sie in vitro in diesem Tempe-

raturbereich bei 78 lag. Die Diskrepanz zwischen der RuBPCO-Kinetik und dem Gasaustausch vergrösserte sich mit abnehmendem CO₂-Partialdruck, und umgekehrt verkleinerte sie sich mit zunehmendem CO₂-Partialdruck in der Umgebungsluft.

1

٠

Der Vergleich zwischen Enzymkinetik und Gasaustausch beruht auf der begründeten Annahme, dass das Verhältnis der Carboxylierung zur Oxygenierung der RuBPCO nicht veränderbar und deshalb *in vitro* wie *in vivo* gleich sei. Die festgestellte Diskrepanz zwischen der CO_2/O_2 -Spezifität *in vitro* und *in vivo* gründet folglich auf einer Unterschätzung der CO_2 -Konzentration im Chloroplasten. Anhand eines Photosynthesemodells (Mächler et al., 1985) konnte aus der Unstimmigkeit zwischen der Kinetik der RuBPCO *in vitro* und dem Gasaustausch *in vivo* gezeigt werden, dass ein CO_2 -Konzentrierungsmechanismus bei tiefen Temperaturen und geringem CO_2 -Partialdruck eine erhöhte CO_2 -Konzentration in den Chloroplasten bewirkt.

Bei Algen erhöht ein Absenken der CO_2 -Konzentration die Effizienz des postulierten CO_2 -Konzentrationsmechanismus. Auch die Weisskleeblätter nach Anzucht bei geringem CO_2 -Partialdruck (20 Pa) wiesen eine höhere CO_2/O_2 -Spezifität des Gaswechsels in vivo auf als die Blätter nach Anzucht bei 100 Pa $p(CO_2)$. Offenbar verfügen Weisskleeblätter über einen ähnlichen CO_2 -Konzentrierungsmechanismus, wie er bei Algen und Wasserpflanzen festgestellt worden ist.

Kapitel VI

SUMMARY

The properties of gas exchange of intact white clover leaves were compared with the kinetics of Ribulosebisphosphate Carboxylase Oxygenase (RuBPCO) in order to obtain information about the concentration of the substrates of CO_2 and O_2 in the chloroplasts. This ratio of the substrates at the enzyme site determines the ratio of carboxylation to oxygenation and consequently the ratio of photosynthesis to photorespiration.

The kinetics of RuPBCO, extracted from young white clover leaves, were determined in combined and separate assays. Its substrate specificity factor $(V_c/K_o \cdot K_o/V_o = v_c/v_o \cdot O/C)$ was virtually unaffected by temperature. Between 10°C and 25°C, the energy of activation for the specificity factor *in vitro* was 5.8 kJ mol⁻¹; whereas it was 85.6 kJ mol⁻¹ for the maximum rate of carboxylation (V_c) and 39.1 kJ mol⁻¹ for the maximum rate of oxygenation (V_o) .

The gas exchange of fully expanded white clover leaves of the same age was characterized by the net uptake of CO₂ measured by infrared gas analysis as well as by gross uptake measured by short time exposure to ¹⁴CO₂. The ratio of photosynthesis to photorespiration in vivo was compared with the ratio of carboxylation to oxygenation in vitro at different temperatures and These ratios were in agreement at 25°C and at 30 Pa CO₂ concentrations. $p(CO_2)$ but they differed at low temperatures at which the ratio of photosynthesis to photorespiration exceeded the ratio of carboxylation to oxygenation. At low temperatures, the results showed discrepancies between the kinetics of RuBPCO as characterized by the specificity factor in vitro and gas exchange in intact leaves which was characterized by the specificity factor in vivo. These specificity factors in vivo were 123, 98 and 69 at 10°C, 20°C and 30°C, respectively. The specificity factor in vitro was about 78 for the latter mentioned range of temperature. The discrepancies between the kinetics of RuBPCO and the gas exchange increased when CO₂ partial pressure was

decreased. On the other hand, a decrease was found when the CO_2 partial pressure of ambient air was increased.

.

\$

This comparison between enzyme kinetics and gas exchange is based on the fact that the ratio of carboxylation to oxygenation of RuBPCO can not be changed and is the same *in vitro* as *in vivo*. Consequentely, the measured discrepancy between the specificity factors *in vitro* and *in vivo* was due to an underestimation of the CO₂ concentration in the chloroplasts. By means of a model of photosynthesis (Mächler et al., 1985), the discrepancies between kinetics of RuBPCO and gas exchange were verified as being due to a CO₂ concentrating mechanism which raised the CO₂ concentration in the chloroplasts at low temperature and low CO₂ partial pressure.

In algae, a decrease in CO_2 concentration raises the efficiency of the postulated CO_2 concentrating mechanism. Similary, leaves of white clover plants grown at low CO_2 partial pressure (20 Pa) showed a higher specificity factor in vivo than leaves grown at 100 Pa $p(CO_2)$. Obviously, a CO_2 concentrating mechanism similar to that which has been found in aquatic plants must have affected the CO_2 concentration in white clover leaves at low temperatures.

Kapitel VII

LITERATUR

- Azcon-Bieto, J., Farquhar, G.D., und Caballero, A., 1981. Effects of temperature, oxygen concentration, leaf age and seasonal variations on the CO₂ compensation point of Lolium perenne L. *Planta*, <u>154</u>, 497 - 504.
- Badger, M.R., und Lorimer, G.H., 1976. Activation of ribulose-1,5-bisphosphate oxygenase. The role of M²+, CO₂ and pH. Archives of Biochemistry and Biophysics, <u>175</u>, 723-729.
- Badger, M.R., und Collatz, G.J., 1977. Studies on the kinetic mechanism of ribulose-1,5-bisphosphate carboxylase and oxygenase reactions, with particular reference to the effect of temperature on kinetic parameters. Carnegie Institution of Washington, Yearbook 76, 355 - 361.

ī,

- Badger, M.R., Kaplan, A., und Berry, J.A., 1980 Internal inorganic carbon pool of Chlamydomonas reinhardtii. Plant Physiology, 56, 407 -504.
- Badger, M.R., und Andrews, T.J., 1982. Photosynthesis and inorganic carbon usage by the marine cyanobactreium Synechococcus sp. Plant Physiology, <u>70</u>, 517 - 523.
- Bensadoun, A., und Weinstein, D., 1976. Assay of proteins in the presence of interfering materials. Analytical Biochemistry, 70, 241 - 250.
- Boller, B.C., 1980. Bestandesphotosynthese und Assimilatverteilung bei Oekotypen von Weissklee (Trifolium repens L.) unter verschiedenen Temperaturen und Tageslängen. Dissertation ETH-Zürich, 6564, 3 - 4.
- Čatský, J., 1971. General principles of using IRGA for measuring CO₂ exchange rates. In: Plant photosynthetic production. Manual of methods. 162 - 166. Z. Šesták, J., Čatský, und P.G. Jarvis (Eds.). Dr. W. Junk N.V. Publishers, The Hague.
- Coleman, J.R., Berry, J.A., Togasaki, R.K., und Grossman, A.R., 1984. Identification of extracellular carbonic anhydrase of Clamydomonas reinhardtii. Plant Physiology, 76, 472 - 477.

- Espie, G.S., und Colman, B., 1982. Photosynthesis and inorganic carbon transport in isolated Asparagus mesophyll cells. *Plant Physiology*, <u>70</u>, 649 - 654.
- Farquhar, G.D., von Caemmerer, S., und Berry, J.A., 1980. A biochemical model of photosynthetic CO₂ assimilation in leaves of C₃-species. *Planta*, <u>149</u>, 78 - 90.
- Fock, H., Klug, K., und Canvin, D.T., 1979. Effect of carbon dioxide and temperature on photosynthetic CO₂ uptake and photorespiratory CO₂ evolution in sunflower leaves. *Planta*, <u>145</u>, 219 -223.
- Forrester, M.L., Krotkov, G., und Nelson, C.D., 1966. Effect of oxygen on photosynthesis, photorespiration and respiration in detached leaves.
 I. Soybean. Plant Physiology, <u>41</u>, 422 - 427.
- Hall, N.P., und Keys, A.J., 1983. Temperature dependence of the enzymic carboxylation and oxygenation of ribulose-1,5-bisphosphate in relation to effects of temperature on photosynthesis. *Plant Physiology*, <u>72</u>, 945 - 948.
- Harned, H.S. und Bonner, F.T., 1945. The first ionisation of carbonic acid in aqueous solutions of sodium chloride. Journal of the American Chemical Society, 67, 1026 - 1031.
- Hogetsu, D., und Miyachi, S., 1979. Role of carbonic anhydrase in photosynthetic CO₂ fixation in Chlorella. Plant and Cell Physiology, <u>20</u>, 747-756.
- Jarvis, P.G., 1971. The estimation of resistances to carbon dioxyde transfer. In: Plant photosynthetic production. Manual of methods. 566 -631. Z. Šesták, J. Čatský, und P.G. Jarvis (Eds.). Dr. W. Junk N.V. Publishers, The Hague.
- Jolliffe, P.A., und Tregunna, E.B., 1968. Effect of temperature, CO₂ concentration, and light intensity on oxygen inhibition of photosynthesis in wheat leaves. *Plant Physiology*, 43, 902 - 906.
- Jordan, D.B., und Ogren, W.L., 1981. A sensitive assay procedure for simultaneous determination of ribulose-1,5-bisphosphate carboxylase and oxygenase activities. *Plant Physiology*, <u>67</u>, 237 - 245.
- Jordan, D.B., und Ogren, W.L., 1983. Species variation in kinetic properties of ribulose 1,5-bisphosphate carboxylase/oxygenase. Archives of Biochemistry and Biophysics, 227, 425 - 433.
- Jordan, D.B., und Ogren, W.L., 1984. The CO₂/O₂ specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Dependence on ribulosebisphosphate concentration, pH and temperature. Planta, <u>161</u>, 308-313.

Kriedemann, P.E., und Wong, S.C., 1983. Growth response and photosynthetic adaptation to carbon dioxide: Comparative behaviour in some C₁-species. In: Advances in Photosynthesis Research Vol. IV. 209-212. C. Sybesma (Ed.). Martinus Nijhoff/Dr W. Junk Publishers, The Hague/Boston/Lancaster.

٤

2

- Ku, S.B., und Edwards, G.E., 1977a. Oxygen inhibition of photosynthesis.
 I. Temperature dependence and relation to O₁/CO₂ solubility ratio. *Plant Physiology*, <u>59</u>, 986 - 990.
- Ku, S.B., und Edwards, G.E., 1977b. Oxygen inhibiton of photosynthesis. II. Kinetic characteristics as affected by temperature. *Plant Physiology*, <u>59</u>, 991 - 999.
- Laing, W.A., Ogren, W.L., und Hageman, R.H., 1974. Regulation of soybean net photosynthetic CO₂ fixation by the interaction of CO₂, O₂ and ribulose-1,5-diphosphate carboxylase. *Plant Physiology*, <u>54</u>, 678 - 685.
- Lange, 1979. Handbook of Chemistry. J.A. Dean (Ed.). McGraw-Hill Book Company, New York.
- Lehnherr, B., Mächler, F., und Nösberger, J., 1985. Influence of temperature on the ratio of ribulose bisphosphate carboxylase to oxygenase activities and on the ratio of photosynthesis to photorespiration of leaves. Journal of Experimental Botany, 36, 1117 - 1125.
- Lorimer, G.H., Badger, M.R., und Andrews, T.J., 1977. D-Ribulose-1,5-bisphosphate carboxylase oxygenase. Improved methods for the activation and assay of catalytic activities. Analytical Biochemistry, 78, 66 - 75.
- Lucas, W.J., 1983. Photosynthetic assimilation of exogenous HCO, by aquatic plants. Annual Revue of Plant Physiology, <u>34</u>, 71 104.
- Ludwig, L.J., und Canvin, D.T., 1970. Gas-exchange system for simultaneous measurement of the CO₂ and ¹⁴CO₂ fluxes from leaves. Canadian Journal of Botany, <u>49</u>, 1299 - 1313.
- Mächler, F., Keys, A.J., und Cornelius, M.J., 1980. Activation of ribulose bisphosphate carboxylase purified from wheat leaves. Journal of Experimental Botany, 31, 7 - 14.
- Mächler, F., und Nösberger, J., 1984. Influence of inorganic phosphate on photosynthesis of wheat chloroplasts. II. RuBPCO activity. Journal of Experimental Botany, 35, 488 - 494.
- Mächler, F., Lehnherr, B., Schnyder, H., und Nösberger, J., 1985. A CO₂ concentrating system in leaves of higher C₃-plants predicted by a model based on RuBP carboxylase-oxygenase kinetics and ¹⁴CO₂¹²CO₂ exchange. Journal of Experimental Botany, <u>36</u>, 1542 -1550.

Marcus, Y., Zenvirth, D., Harel, E., und Kaplan, A., 1982. Induction of HCO₁ transporting capability and high photosynthetic affinity to inorganic carbon by low concentration of CO₂ in Anabaena variabilis. Plant Physiology, 69, 1008 - 1012.

i

t

ł

- Marshall, B., und Biscoe, P.V., 1980. A model for C₃ leaves describing the dependence of net photosynthesis on irradiance. I Derivation. Journal of Experimental Botany, <u>31</u>, 29 - 39.
- O'Leary, M.H., 1981. Carbon isotope fractionation in plants, review. Phylochemistry, 20, 553 - 567.
- Spalding, M.H., und Ogren, W.L., 1982. Photosynthesis is required for induction of the CO₂-concentrating system in Chlamydomonas reinhardtii. FEBS Letters, <u>145</u>, 41 - 44.
- Tsuzuki, M., und Miyachi, S., 1979. Effects of CO₂ concentration during growth and of ethoxyzolamide on CO₂ compensation point in Chlorella. FEBS Letters, 103, 221 - 223.
- Volokita, M., Kaplan, A., und Reinhold, L, 1981. Evidence for mediated HCO, transport in isolated pea mesophyll protoplasts. Plant Physiology, <u>67</u>, 1119 - 1123.
- Volokita, M., Zenvirth, D., Kaplan, A., und Reinhold, L., 1984. Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaenba variabilis. Plant Physiology, 76, 599 - 602.
- Wilkinson, G.N., 1961. Statistical estimation in enzyme kinetics. Biochemical Journal, <u>80</u>, 324 - 332.

Anhang A

VERDANKUNGEN

Im Januar 1981 wurde ich in die Gruppe von Herrn Professor Nösberger am Institut für Pflanzenbau der ETH Zürich aufgenommen und stieg in das Forschungsgebiet der Ertragsphysiologie ein. Daneben kümmerte ich mich noch während drei Jahren um die Belange des Praktikantendienstes der Abteilung Landwirtschaft der ETH. Dank der Unterstützung meiner Frau und meiner Kollegen konnte ich diese Doppelbelastung meistern.

Mein Dank geht zuerst an Herrn Prof. Nösberger, der ein offenes Ohr hatte für die alltäglichen Sorgen, und an Herrn Prof. Matile, der freundlicherweise das Korreferat übernahm. Beide begeisterten mich schon als Studenten für die geheimnisvolle Welt der Pflanzen, die ich nun im Rahmen dieser Arbeit weiter ergründen konnte.

Felix Mächler half mir viel dabei, nicht nur in versuchstechnischen Fragen durch seine grosse Erfahrung, sondern auch in menschlicher Hinsicht durch seine Geduld und Beharrlichkeit, den wesentlichen Fragen nachzugehen. In gemeinsamen Diskussionen wurden die Grundpfeiler dieser Arbeit gelegt. Zusammen mit Hans Schnyder half er mir in kameradschaftlicher Weise, den Einstieg in die Photosyntheseforschung zu finden. Ihm möchte ich ganz besonders danken.

Der gute Geist, der in der Gruppe herrschte, liess die Mühen bei den Experimenten vergessen. Deshalb danke ich allen Kollegen, die zur guten Stimmung beitrugen. Meine Frau und die beiden Kinder halfen mir auch, den nötigen Abstand und Ausgleich zur Arbeit zu finden.

Allen, die mir während meiner Assistenzzeit geholfen haben, danke ich recht herzlich.

Zürich, im Herbst 1985

١

1

à.

1

- 60 -

Anhang B

4

X

2

ţ

.

LEBENSLAUF

1950, 18. Januar	geboren in Spiez als Sohn des Albert Lehnherr
	und der Berta, geb. Kuhn
1957-1966	Primar- und Sekundarschule in Spiez
1966-1969	Gymnasium Interlaken mit Maturitätsabschluss, Typus C
1969-1974	Studium an der Lehramtsschule der Universität Bern
	Patentierung als Sekundarlehrer phil. hist.
1974-1978	Studium an der Abteilung Landwirtschaft an der ETH Zürich
	Diplom als Ing. agr. ETH, Fachrichtung Pflanzenbau
1979-1980	Auslandaufenthalt in Uppsala am Institut für Pflanzenbau,
	Universität der Agrarwissenschaften, Schweden
1980	Heirat mit Ursula Briggen
1980-1983	Praxisberater der Abteilung Landwirtschaft der ETH
seit 1981	Assistent und wissenschaftlicher Mitarbeiter am
	Institut für Pflanzenbau der ETH
1982	Geburt von Reto
1985	Geburt von Karin