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Introduction and Problem Statement

The purpose ©f designing a controller for a dynamical system is to achieve a certain
desired behaviour of the output variables. I many practical applications this design
goal may be expressed in terms of a performance index. If the performance index and
additional restrictions (such as the differential equations  of the dynamical system,
constraints on states and controls)  are "reasonably" formulated  the optimal control
input to the system may be determined by minimizing the performance index subject
to the given constraints with  respect to all feasible control inputs.. Necessary and

sufficient conditions for  optimality of a control are ftreated within the framework of

optimal  control theory [1,2], These conditions give a guideline for the design of

nonlinear optimal controllers. Unfortunate|y the resulting equations  cannot be solved
analytically in most cases but iterative numerical methods must be gpplied to find a
solution. Approximate  suboptimal ~ control  laws mgy be obtained by appropriate

linearization of the original problem. A very powerful approach to the derivation of

nearly optimal control  laws is the gpplication of singular  perturbation theory  [32-35,
40-42]. It is applicable if the behaviour of the dynamic system is characterized by the
simultaneous occurance of very slow and yery fast processes. This allows the
identification and decoupling  of different time scales and the decomposition of the
original  problem (which often is of high order) into asequence Of low order problems

which are ysually much easier to solve.

As a consequence ©f the principle  of optimality ~ [3] the optimal control at current time
depends on the current system state and the future behaviour of the system. The latter
property ~ often  requires  the prediction of certain  system parameters.  Moreover, in
many cases a number of gystem states cannot be measured. Therefore an estimator

(filter) is required to estimate the current values of the unknown quantities. Thus, for

the derivation of implementable (Sub-)optima| control  laws three subproblems have to

be solved:
- the optimal control  problem
- the filtering problem
the prediction  problem
In genera| these problems have to be solved simultaneously. In order to obtain simple
approximate  solutions  they are usually treated  separately. In the following  they are

investigated for the planar intercept  problem. Singular perturbation theory is applied

to analyze both the gptimal control problem and the filtering problem.



Statement of the Problem:

Consider  the planar intercept scenario  depicted in figure 1. In  the following
investigation the  pursuer ™ is a short-range air-to-air missile. The evader T is

typically = fighter ~ aircraft

In an air combat scenario the missile is launched after target  acquisition by the
attacking aircraft During the initial boost phase the missile then accelerates to
maximum velocity and after fuel burn out is decelerated by the aerodynamic drag.

(For cost reasons throttable engines are usually not used for short range missiles,)

In order to close in on the target the missile uses onboard sensors producing

information about the missile motion and the missile-target relative geometry. These

signals are preprocessed and then fed into the guidance law. The guidance algorithm

computes an acceleration command ac which s input to the autopilot acting on the

fipper ~ servos in order to produce the desired acceleration.
There are two jmportant restrictions in this scenario:

a) Since  thrust control is  not possible as mentioned above the commanded

acceleration is always directed perpendicular to the missile axis (see figure 2).

h) After launch the missile does not receive gny information from a third observer
such as the launching aircraft or a ground radar station. Information is available
from the missile's own sensors only (two-point-guidance). The sjgnal flow  for

this  situation is depicted in figure 3

Guidance law design is of course crucial to ensure intercept The most widely used

guidance law in the described scenario is proportional navigation  (PN) [1,9,15,20,21].

The outstanding advantages ©of PN are its simplicity and the wuse of only Ilite

information about the missile-target relaive  geometry namely R and  (figure 1).
These measurements are readily available with  a radar seeker. If the missile is
equipped Wwith a passive seeker (infrared) only the A.measurement is available. In
many cases PN works even with this single information because R mgy often be
assumed constant and can be estimated. Thus PNis yery easy to implement and has
proven to be yery effective against non- or weakly-maneuvering targets. ~ Modern
air-combat  scenarios  are, however, dominated py high target accelerations that result

in a substantial degradation of PN performance. Therefore great efforts have been



made since the 1960s to derive new guidance laws that are effective in the case of
strongly evasive target ~maneuvers. Most of the investigations have been carried out
within  the framework of optimal control  theory [1,2], An overview on research topics

of the USAF associated  with guidance and control of tactical missiles s given in
[21,23].

It is well known that the application of optimal control theory yie|ds control laws
requiring ful  state information at each point of time. In view of the restricted
information about the target state that s available by radar or passive seekers it

becomes clear that the implementation of guidance laws based on optimal control

theory is not at al straightforward. The soluton  of the tracking problem, ie the
estimation of unknown states associated with the target motion is a prerequisite to the
implementability of modern guidance algorithms. ~ Essentially ~ the tracking problem is a
nonlinear filtering problem.  Several  approaches to this problem ranging from

extended Kalman filters (EKF) to multiple model estimators have been gyggested. A
survey S given in [69] For maneuvering targets most of these estimation  algorithms
exhibit serious  stability problems. These difficulties become even harder if the
estimator is based on bearing or bearing-rate-only measurements which s
unavoidable if a passive seeker is used. The stahility problems are due to the lack of
observability under certain geometric conditions and modeling errors that arise mainly
because of the unknown target dynamics. While the observability and  stahility
problems associated with bearings-only tracking analysis have been discussed for
non-maneuvering targets  [62-65,69) the analysis has not yet been extended to
maneuvering targets. Moreover the interaction of estimator and guidance law has not
been sufficiently addressed: The guidance law may be affected by the possible
divergence of the estimator. On the other hand the performance of the estimator

depends heavily on the guidance law.

This thesis tries to point out the possibilities and limits of optimal control  theory for
the derivation of implementable guidance laws and to enhance the closely related
problems of target  tracking mentioned above. It turns out that in fact the solution of

the tracking problem is much more important than optimality =~ of the guidance law.
The main topic Wwill therefore be the derivation of a new adaptive tracking fiter  for

maneuvering targets based on bearing-rate-only measurements.



R,LOS T(t)
M(t)
initial LOS
M(tQ) T(tn)
M: missile R range
T target LOS: line of sight
I point of intercept <  bearing angle

figure 1 geometry of the planar intercept problem

L/m
D/m
L clift a : missile acceleration
D :drag ac: commanded acceleration
CL: missile center line a : angle of attack
m ;. missile  mass v . missile velocity

figure 2: aerodynamic forces
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1. Derivation

In this chapter an overview is given on how gptimal

for the derivation of missile guidance laws. The advantages
resulting  guidance algorithms ~ with respect to their practical
There are essentially three  approaches for guidance
framework of gptimal control  theory:

a) Pontryagin's
b) dynamic programming

c) differential game theory

Only the first be discussed

apply

approach  wil

to the others as well

however,

1.1 Review of Pontrvaein's

here

of Guidance Laws via Optimal

minimum principle

Minimum Principle

control

realization

law derivation

in detall

Control Theory

theory has been gpplied

and drawbacks of the

are discussed.

within the

12
[13]
[13]

Many of the conclusions,

Consider the nonlinear dynamic system given by the f0||owmg set oOf first order
differential equations:
x = fixu) Rn (1.L.1)
subject to the initial conditions
Q) —x RN (112
and the final conditions
a] -° Rk ken (L13)
with
X Rn state vector
u RMcontrol  vector
ol =M C R time (independent variable)
tQ, {f initial, final  time
d
0 — differentiation with  respect to time
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The control  vector is restricted as follows:

u G c R Mioraltinl (1.1.4)

The optimal control  problem consists  of determining the control  y(t) in | such that the

performance index

Q. ulk — | Leunn o+ ) (115)
is minimized  subject to the constraints (1,1_1) to (1_1,4), L and *= denote scalar real
valued penalty functions wich are continuously differentiable with respect to all  their

arguments.

It ut) s the optimal control  satisfying (111) t (115  the following necessary

conditions hold for t I:

*

u = arg Min  H(XX,u,}) Pontryagin's ~ Minimum Principle (1.1.6)

uG
with

H=Lxu) + X1 fxu) R Hamiltonian (1.1.7)

~_ i) A il Rn (119
dx ax dx
3<& dr

WP)  — —xan) 4+ pl —0<(U>  transversality ~ condition (1.1.9)

. 3x ' 3x '

where () denotes the transposed.

X is called the gadjoint vector, and is an p-tuple of Lagrange multipliers. For a more
general formulation of the problem and sufficient conditions for  optimality see [12].

Aspects ©f implementation of (1.1.6) are discussed in the next section.
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1.2 Application of Optimal Control to Missile Guidance: Basic Problems

Theoretically optimal guidance laws can be derived by stating the intercept  problem as
an optimal control  problem. The guidance law is then given by (L16). This equation
can in general, however, only be evaluated by simultaneously solving (L.11), (L.1.6)
and (118) subject to the houndary conditons (112), (113) and (119). Usually this

two-point-boundary-value problem (TPBVP) has to be solved iteratively by numerical
methods [1‘4.8],

In principle  equation (1.16) <can be jmplemented as a feedback law by interpreting t as
initial time, x(t) as associated initial condition and continuously solving the TPBVPon

*

[tt]3 in order to determine the optimal control u(x(t)), There are three severe
1

drawbacks of this approa_ch:

i) Real time solution of TPBVPs is not realistic due to the severe numerical

difficulties that arise with this type of pr0b|ems in most cases.

i The control law (1.1,6) requires  the knowledge of all components of the state
vector x. IN many cases, however, only a part of the states can be measured. This

is especially true for the intercept problem where little information about the

target state is available.

i) According to (L16) uf) depends on X() which in tun depends via (1.1.9) on the
final  state X(tf). This means that the optimal ~ control strategy ~ depends on the
future  behaviour of the system. AS a consequence the determination of an optimal
control  law for an interceptor requires  the knowledge of the future target
maneuver. The latter s of course unknown. Therefore guidance law derivation via
the  minimum principle s always based on assumptions ~ about the target

behaviour —and guidance law performance may be heavily degraded by deviations

from the assumed nominal conditions.

N summary 1t can be stated that optimal guidance laws are not mplementable

because

the associated TPBYVPcannot be solved in real time
the required full  state information is not available

the future target maneuver is unknown.
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Remarks:
The difficulties ii) and iii) arise in the dynamic programming approach as well whereas
) is replaced by the need of golving the Hamilton-Jacobi-Bellman partial  differential
equation [L23]. The application  of differential gametheory avoids i) by determining
an interceptor ~ guidance law based on an optimal evader strategy [1,3,10,18,26,28]. This
problem is even more difficult to solve than the TPBVPassociated with the minimum
principle.
The following possibilities exist to overcome the above mentioned difficulties:

In order to avoid the on-line solution of a TPBVP, linearization methods are used

that allow the derivation of guidance laws that can be represented in closed form or
at least can be evaluated numerically in real time. Clearly these guidance laws are

suboptimal.

The problem of only partia”y measurable system states can be overcome by the
application of estimators. As mentioned earlier the development of practicable
estimators is crucial to the implementability of modemguidance laws and will be

discussed in later sections.

The determination of the future target maneuver is a prediction problem. It can be

"solved" by assuming a target maneuver or by extrapolation of information
gathered about the past maneuver. A good extrapolation is possible  across several

target time constants and therefore useful during the endgame. Predictions across

long periods of time can only be based on assumptions.

In the following ~ sections  approximate ~methods to derive syboptimal — implementable
guidance laws are discussed.
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1-3 Guidance Laws Based on the LQ-Method

In this secton a class of guidance laws based on a linear  gpproximation of the

intercept  dynamics and a quadratic ~ cost criterion  Jis presented.

13.1 Review of the LQ-Method
(see [1.2))

Consider the linear plant equation

< — A xt) + B ul) (1.3.1a)
Q) — xo0 (13.1h)
XRN,uRmM (1.3.1¢)

and the quadratic performance index

- IR+ KX - wOROY e 132
with
A(t) Rn " © system matrix
B() RN™™  control  matrix

Fo) RNXN . symmetric postive  semidefinite  weighting

matrices penalizing the states x
R(t) Rm © symmetric  positive ~ definite  weighting ~ matrice

penalizing ~ the controls  u
For the ease of notation the time dependency will  be dropped in the SGQUEL

Solving (1.16) to (119) for (131) and (132) yields a linear optimal control law of

the form:

«— RVk (133
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where the (nxn)-matrix Kis positive  definite and solves the Riccaﬂ_equation

k- AK ka+ KBR"B"C o (1.3.4)

subject to the final condition

) - F (135

Discussion:

AN important feature  of this solution is that the Riccati equation (1.34) s decoupled

from the state x. Hence K(t), t [fy l]] can be calculated and stored off-line by
il

backward integration of (1,3_4/5), With K(t) known u(t) can easily be evaluated. The

implementation ~ of (1.3.3) requires the knowledge of al states x.

132 Application to the Planar Intercept ~ Problem

In order to gpply the LQ-method to the planar intercept  problem the dynamic
equations have to be cast in linear form and a quadratic  performance index has to be

chosen. For this purpose consider the situation depicted in figure 13.1.

In the cartesian coordinate system (xy) the kinematical equations  of the intercept

problem are linear:

AX = yTx-vx — AvX (1.3.62)
AY = yTy-vy=Avy (L3.60)
AX = aTx-ax — AVX (1.3.6c)
AY = aTy-ay= Avy (L3.6d)

necessary and sufficient conditon  for intercept  at final time is:

A) —© (1.3.7)

AYt) — O (13.7b)
Problems arise in the formulation of the missile autopilot dynamics ie the transfer
function relating the commanded acceleration a_ to the actual missile acceleration a.

It has already been mentioned that due to the absence of thrust control the
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commanded acceleration s perpendicular to the missile center line (ﬁgure 2). For

small - angles of attack it may be assumed that

aN. v (1.38)
In other words only the acceleration component g (see figure 131) can be
controlled.
v R,LOS", VT(t)
Ay
a* ~
r\( 1>
vaD M(t) A
initial LOS
M(tQ) T(tn)

figure 13.1: planar intercept geometry



16

From figure 1.3.1 follows:

ax —-aL Sy ~ aDcosy (1.3.9)
ay — alcosy- aDsiny (13.10)
b= (13.11)
\4
v ="aD (13.12)
In case of a "perfect" autopilot al may be replaced by is commanded value .

However, aD is a highly nonlinear  function of the missile  velocity and the angle of

attack  (see appendix 1.1).

In order to obtain a simple linear model of the missile dynamics it is assumed that a®
can be controlled rather than a+  This assumption is true for small heading angles .

For the momentit is further ~assumed that the time-to-go

tgO=tf-t 1313)

is  known. Equation (1.3.7b) is then a sufficient condition for intercept and the

kinematic  equations in x-direction (1.3.6alc) become obsolete. ~ Note that to principle

(1.3.6alc) and (13.7a) could be used to determine t The equations of the planar

intercept ~ problem can now be stated as follows:

Ay =vTy"vy (1.3.14a)
Ay :aTy-ay (1.3.14b)
a-]y = fT(t) (1.3.14d)

where {A designates  a linear  function  approximating the dynamics of the missile

autopilot and £p describes  the target maneuver. Ay is sometimes called missile-target

separation.
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By specifying  fA = quadratic  performance todex J and making assumptions about the

unknown tagrget maneuver fT various guidance laws of the form

ac — UAY. Ay gy an () (1.3.15)

can be derived.

Typical models for fA are:

a0 — v (perfect autopilot) (1.3.16a)

T ip(ay'U). TA = const (1.3.16h)

For the target motion one ysually chooses:

apy ~° (1.3.17a)

or

fT =0 ap ~ const * O (1.3.17b)

The basic goal of the control (1.315) is to null or at least minimize the miss distance

Ay(tD At the same time one is interested in keeping low the control effort measured
by

tfo

Ju2(t)dt (1.3.18)

t

to order to minimize the aerodynamic drag losses. Thus a typical optimal  control

formulation of the intercept prob|em is:

Find the control u minimizing  J subject to the constraints (1.3.14)  with

> - CIAVA) - o Ju2ft)t (13.19)

d 2 — consL (1.3.20)

Guidance laws based on (1.3.19) have been derived to [1,12,17,21,24).
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The Riccati equation associated  with (1.3.14/19) can be solved analytically and the

resulting control laws are of the form:

v = kjAy * kiAy * k3ay * kdaj (1.3.21)

with

K~ ko, TA) 171284 (1322)

Optimization with respect to (1.3.19) does not null the miss distance because the

penalty term on u causes a trade-off between miss distance and control effort The

performance todex
Hf
J = |j u2(t)dt (1.3.23)
t

with the additional constraint
) = © (1329

ensures zero Miss with rntoimum control  effort ~ However, the gains k tend to infinity

as t  approaches zero [1227].

Therefore the additional constraint

|u|]<umax (1.3.25)

is added to [2528] Note that due to (1.325) the minimization is not an LQ-Problem

any more. Other approaches differing ~ from the | Q-method are given to [1516] with

J = |Ay(tf)| (1.3.26)
and (1.3.25).

A more detailed literature overview is given to [23,29]. Comparisons of classical and

modern guidance laws can also be found to [27,29,31].
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133 Considerations on Guidance Law I[mplementation

The general form of the guidance laws discussed to the last subsection s

u = u(Ay, Ay, iy ah th) (1.3.27)

The implementation ~ of (1.3.27) requires the knowledge of al state variables and t

With the exception of a® which can be measured by accelerometers there i no means

of directly measuring the other variables. In the most favourable  case measurements

for R, R, ¢ (radar seeker) and g (toettidl  or strapdown navigation)  are available.  In

the worst case only g can be measured. With R, R, g and g known Ay and Ay can

gasily be determtoed. In the case of unknown g (no toertial angular measurements) a

Kalman fiter ~ was designed to [15] for the estimation of Ay, Ay, and .. ~based on

ajy

measurements 0of g and accurate knowledge (noise free measurement) of R and R.
Other approaches will  be discussed later. Most frequently the unknown variables are

approximated by making the following  assumptions:

) Ay < R (1.3.284)

i R =s constant (1.3.28b)
From (1_3,28) follows:

> - —/;y (1.3.29)

'go as -R/R (1.3.290)

With (1329) u from (1327) may be expressed to terms of polar coordinates

measured py the target tracker:

u=UuR, R, 99, apy) (1.3.30)
Here arj. has been replaced by aTy to indicate that an estimated or assumed value of
the target acceleration is used. INn some cases (Small LOS-rate, present LOS -«
reference | OS) further  simplifications are possible allowing to drop the dependency

on Rand g |eaving:
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v = y(R,9.aTy) (1.331)

After  replacing R by an estimate R (1_3,31) becomes a guidance law suitable for

implementation ~ Wwith a passive seeker.

13.4 SomeGeneral Conclusions on Guidance Law Performance

The majority of guidance laws based on (1_3,14-26) have proven to be quite efficient
although implementable  versions are based on severe assumptions as discussed to the

last  subsection. Deviations from these assumptions affect optimality but not

necessarily  stability of the guidance loop. Heuristically this fact becomes clear py
observing  that a sufficient condition  for intercept is:

oz 0 (1.3.32a)
R< 0 (1.3.32b)
(1.3.32a) guarantees that the missile-target relative  velocity IS always directed  along
the LOSwhich ensures intercept
For  non-maneuvertog targets  (1.3.32) determtoes  the time-optimal interceptor
trajectory. In case Of a target maneuver (1.332) sl guarantees intercept  but the
associated toterceptor trajectory is neither time-optimal nor does it minimize the

control effort Since most guidance laws try to at least approximately establish

(1.332a) (simply by O9-feedback) and differ to compensation terms for autopilot
dynamics, target dynamics etc. their relative  robustness is plausible. There gre,

however, some important experiences that should not be left unmentioned:

a) Guidance law performance can be significantly improved by taking into account
the autopilot ~ dynamics according to (1.3.16b) rather than ysing the sjmple model
(]_,3,16a)_ Onthe other hand these guidance laws are very sensitive to estimation

errors 10 TA R and t [25,27]. Note that TA iS not a constant as assumed for
]

guidance law derivation. Inspection  of (1.3.10-12), (13.14c) and (13.16b) shows
that TA depends on the missile heading angle vy, the missile velocity v and angle

of attack a since it is the component ar that is controlled by the autopilot rather

than a In" a more sophisticated model one could replace the time constant TADby

a function
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TA = TAy, Vv &) (1.3.33)

This function should be known to advance for all t [fy y to order to solve the

Riccati  equation (1.3.4). In addition the t -estimate given by (1.3.29h) is far

from accurate  especially during the boost phase with |arge axial ~accelerations that

lead to strong violations of assumption (1,3,28b), The effect of improved
t  -estimation is discussed to [24],
In view of these uncertainties the use of a model like (1_3,16b) seems

questionable  except for short t  Le. during the endgame.

b) Guidance laws derived py taking into account limited controls according to

(1_3.25) result to much higher feedback gains k. than guidance laws based on a

quadratic ~ control penalty ~term without  saturation. This  again leads to high

sensitivity to errors to the design assumptions especially TA and t  [1516]

Moreover high gains degrade guidance law performance t the presence O©f noise
[25].

C) A substantial improvement of guidance law performance can be achieved by

taking into account the target acceleration &r [20,25] rather than gssuming a zero

acceleration nominal target  trajectory.

Based on these experiences a guidance law that wil be referred to as Extended

Proportional Navigation (PE) wil be derived to the next section.

13.5 Extended Proportional Navigation  (PE)

In this section a guidance law designated as extended proportional navigation  (PE) is
derived by applying the previously =~ discussed | Q-approach. The guidance law is
compared Wwith proportional navigation (PN) and to later sections with other nonltoear
suboptimal  guidance laws. It turns out that PElends itself to some "optimal" way (t0
be specified later) ~ for implementation to connection with an extended Kalman filter

that solves the tracking problem.
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1351 Derivation of Guidance Law

Consider the scenario depicted to figure 132. At time wu the missile and the target are
to their respective initial positions M(tg) and T(tg) The direction of the initial LOS

determines the orientation of a nonrotatto missile-fixed cartesian
MEDT(Q) onrotattog

coordinate system (X'y), Intercept occurs to the collision potot | at final time tf The

target maneuvers glong the path T(tQ)l

-Ay(t)

M(t0) T(tn)

figure 1.3.2: intercept geometry associated with PE
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The optimal  missile  path with  respect to (1.319) or (1.3.23/24) s a straight
zero-maneuver trajectory (broken line to ﬁgure 132) The determination of the

associated collision course vy requires a priori knowledge of the target ~mManeuver
cs

which is uysually ~unknown. Therefore (1332) wil be exploited to guarantee intercept
From figure 131 follows:

Stoy- -VSto
VT oloy y L

o- 1 (13.34)
with

YTs = YT~ 9 (1.3.35)

Ys ~ Y 9 (13.36)

(13.32) and (13.34) vyield:

vT
Stoyg = stoyTs V' [OA (1337)
For a non-maneuvering target v is identical to the collision course InN case of a

maneuvering target (1.3.37) results to the missile trajectory M(QM(t)]  depicted to

figure 132

From (1.3_32) follows:

=0 (1.3.38)
Differentiation of (1.3.34) with respect to time renders:
r:Jny_ _2Rj , 33,
R R

where ap S denote the target and missile  acceleration components perpendicular to

the instantaneous  LOS(figure 1.3.2).

(1.3.32/38/39) result in the nominal control
N o= aty (1-340)

Obviously the steering law (1.340) s atarget maneuver compensation associated  with
the nominal missile path defined  py (1,3_32), In order to keep the missile on its

nominal path to the presence Of disturbances a guidance law of the form
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3y~ at + Au (1.3.42)

is sought Au is determtoed to such a way that (1.3.32) is stabilized. Note that py

(1.341) aperfect autopilot  response according to (1.3.26a) is assumed.

Consider a deviation  from the nomtoal path indicated Py the missile position ~ M*(t) to

figure ~ 132. This deviation  produces =a missile-target separation  Ay(t). Note that
deviations directed along the LOS don't affect the nomtoal condition (1,3,32) and

therefore  don't have to be considered. It is sufficient to control Ay, For this pyrpose

the state vector

L — (ay, Ay) (1.3.42)

is formed. With (1341) and (1.3.14h) =z satisfies the simple equation

2x — Ifi) (1.3.43)

zj — Au() (1.3.43h)

LI o (1.3.43c)
In order to ensure collision with  minimum additional control  effort the followtog

optimization ~ problem s solved:

Minimize
Y,
J=E Tul)]dt (1344
>
subject to
) —©° (1.3.45)
and (1.3.43).

The problem s solved by application of the minimum principle (see section 11). The

Hamiltonian is:
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with the adjoint variables satisfying

X, = =0 == X,i = const
' azx
3H
X0 — __ —_ >
2
922 '

With (1_3,44/45) the transversality condition (1.]_,9) reduces to:
X - O

The optimal  control is H-minimizing and from (1_3.46) follows:

The solution  of (1.3.47 -49) is:

oA~ v xe o

and with (1350) the optimal control  becomes:

AU = ()X
where the constant X, is sl unknown but can be determtoed by exploittog

Integration ~ of (1.3.43) with Au from (1.352) yields:

N - ziog x0T e 12
M) +Lw Y3 ram o
N ha WM\ pev P8

()

With (13.45) one obtains:

o) —°- ) +z20) ff Q) ' oxx@ -3

(1.3.47)

(13.48)

(13.49)

(13.50)

(1.3.51)

(1352)

(13.45),

(1.3.53)

(L3-54)

(1.3.55)
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After replactog A by the current time t and solving for X, one finally arrives at

ZI)  + Z2(nt
X — 3% - 82 (1.3.56)
3
go
with

t =tft time-to-go (1.3.57)

(1.356) in (1.3.52) yields the optimal control

zNO 4+ zMOt

N 8°
Au(zls  zj tgg_) =3 4 (1.3.58)
go

Ustog the assumptions (1.3.28) the followtog  approximations  hold (figure  1.3.2).

Zl
o (1.3.59)
R
Rzx
M T - h = + (1.3.60)
R R2
Rss- Rtort (1.3.61)
go
Substituting (1.3.61) to:(1.3.60) yields "
: ) MW
o - - 0 go (1.3.62)
Rt
go
and with (1,3,58) one ends yp with
Au = 3R9 (1.3.63)

Remark: (13.63) is the well known proportional navigaton  (PN) the general form of

which is

PN: AU = - XQRg (1.3.64)

XQ: navigation constant
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The optimal value of XQaccordtog  to (13.63) was fist derived to [f] After gsybstituting

(1.3.64) to (1341) the complete guidance law becomes:

PE: u=ap XQR9 (1.3.65)
Discussion:

a PE is a combination of target maneuver  compensation and PN. For
non-maneuvering targets it is identical to PN. This is desirable since PN has

proven be very effective to this case. The only but severe (ifficulty to

implementing (1.3.65) s the need to estimate ai.

b) An important feature of PEis that this guidance law is not based on any
assumptions about the future target maneuver but uses instantaneous information

only. Therefore  the sensitivity problems associated  with the extrapolation of
wrong System parameters into  the future to order to solve the TPBVP

(1.1.1-1.1.9 are avoided (see discussion in section 134),

¢) By substituting (13.65) into (13.29) one obtains:
o — ( X0- Z)SL (1.3.66)

It follows immediately that (1,3,32) is stable only for XQ>2(note that R<0). This

is awell known result from PN[g]_

d) A\ derivation of (1.3.65) can also be found in [20]. Other versions based on an
assumed constant target acceleration are given to [12,2527] but here the

sensitivity problems mentioned in p) occur.

In the next subsection some simulation results comparing PNand PEare presented.
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1352 Comparison: PEversus PN

In this section  simulation results comparing the performance of PE and PN are

discussed.  First some remarks on the implementation of (1.3.65) are necessary.

Implemented version of PE/PN
Accordtog to (1.341) wuis the commanded acceleration perpendicular to the LOS. As
mentioned earlier  the only acceleration component that can actually be controlled is

al (small angles of attack assumed, see figures 2 and 131). Therefore a commanded

value for al denoted by ac will  be calculated from .. Neglecting  the aerodynamic drag

aD(ﬁgure 13.1) ac can be determtoed from figyre 1.33. It follows:
a -t~ L (- -nro (1367)
CcOSy COSy v
In the absence of an toertial measurement unit ,, is unknown however. A good

approximation ~ for  is the lead angle yL (figure  1.3.2) which is ysyally calculated  prior

to launch. A preferable  approach s replacing y by a design parameter that
accounts for the intercept geometry given by the collision course  (figure 132) and
drag losses due to aD< The final version of PE as implemented in the simulation

program then becomes:

PE: - aov-XOF 9 (1.3.68)
= gy (apy-XQF.9)

initial LOS

figure 13.3: commandedacceleration
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By omitting gy, (13.68) one obtains the implemented version of PN. Experience

from many simulation runs shows that the value

A

cosyL — 08 (1.3.69)

produces good results  for all jnvestigated intercept scenarios. This value is therefore

used for al subsequent simulations.
Simulations

The purpose of the followtog simulations is to illustrate the effect of target mManeuver

compensation on guidance law performance.  The target maneuvers considered  here

are constant speed maneuvers ie. the target acceleration aj is directed  perpendicular

to the velocity vector 7 (figure 134).  During the tiial  phase t [tQ,t‘] the target

moves unaccelerated. For t > to the target acceleration changes from zero to a constant
value = accordtog to equation (1.3.70) and figure 135
ap = 0 tQ =t < te (1370a)

t te
aT — apQl 1 exp( )]t (1.3.70b)

{f is the time of closest approach of missile and target The associated distance s

called miss distance and wil be denoted by Rf Due to the missile's warhead
effectiveness the target is considered to be hit if
Rf < Rmax— >m (L3-71>

For Rf > Rmax the missie  missed the target Rf s a measure of guidance law

performance and will  be investigated as a function  of

At = tite (1.3.72)

At is the time that is left for the missile to react to the targets evasive maneuver. The

function Rf(At) is therefore suitable to reveal the effect of target maneuver

compensation for maneuvers of type (1.3.70).
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initial LOS, RO
M(t0) T(tQ)
figure 134 inial intercept geometry
TO
H
At
f|gure 135: target acceleration prof”e
TwWO engagement scenarios  wil  be toyestigated. For both scenarios
parameters are fixed:
target maneuver: aTO:Gg

N =0.1s

the  followtog
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intercept ~ geometry: RQ:3_5km' h =10 km

The intercept scenarios are defined py the remaining parameters yO and yTQ.

scenario 1 yio 90°»T0 - 20°
scenario 2 yTQ -0 ‘ YQ -0

The functions R/At) obtatoed for the guidance laws PN and PE are depicted to

figures 136 and 137 for scenario 1 and 2, respectively.

Discussion  of results:

Figures 13.6 and 137 show that DRf is nearly todependent of At for the guidance law
PE and At > 08 s A sharp rise  of Rf occurs for target evasive maneuvers shortly

before intercept (At <08 ), Here the missile  has no time to correct s path due to its

dynamic lags.

In contrast to PEthe results of PNshow astrong dependence on At For small At PN
produces the same miss distance as PE because the missile does not maneuver any

more in both cases. For scenario 1 al results lie well within the hit rgnge Rmax

However, in scenario 2 PNproduces large miss distances  (see table 131]) when used

with the “optimal"  navigation  constant  y() = 3 (see equation 1.3.63) that was used for
al  simulations of scenario 1. Only after choosing XQ: 6 PN yields acceptable miss

distances ~ with a sharp fise in RAfor small At.

The guidance law behaviour for both scenarios indicates that PMNis yery sensitive to
both intercept scenario and tagrget maneuver Whereas PEbehaves rather indifferently.

The sensitivity of PNis easily understood by sybstituting

PN: gt — AY XQRQ (1.3.73)

into (1.3.39) resulting  in:
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o - ~ (X0-2)R9 (13.74)

From (13.74) it becomes clear that any target maneuver ap perpendicular to the
LOS destabilizes the nomtoal condition (1,3_323) resulting to large miss distances. This
can be prevented by choosing = high navigation  constant XQt order to keep o small

as was done in scenario 2. In scenario 1 PN with XQ = 3 produces low miss distances

despite the target maneuver. Here the tgrget acceleration is mainly directed along the

LOS. Hence, ajv is small and the performance of PN is not seriously affected (figure

138). Onthe other hand the target performs a strong maneuver perpendicular to the
LOSIin scenario 2 (figure 1.39) arid therefore degrades PN performance. This is why

in practice Xf is selected within the range of 25 to -8 according to the intercept

scenario. Target maneuver compensation  eliminates these  sensitivity problems and

allows for the use of a navigation constant that is todependent of the engagement

Moreover the feedforward of a’ results  to fast reaction to tgrget evasive maneuvers

reducing the miss distance especially for small At

At [g] RfM
7.50 317

6.35 386

5.54 38.8

4.16 33.21
371 23.94
2.70 13.93
1.67 5.78
0.64 0.68
0.14 0.23

table 1.3.1: miss distances ofPN with \Q = 3in scenario 2
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miss distance [m]

o—oPE
0.2 +—+PFPN
0.1 6
O -+
o o o o o 6 <5
1 | Af[s]
figure 1.3.6: miss distances in scenario 1
miss distance [m]
1.0 x O—OPE
X x PN (XQ=6)
+— +PN (XQ — 3)
0.5
#X
ono .
O o _I,l( %r _E*. - r OX X OX-
1 3
At [S]

figure 13.7: miss distances in scenario 2
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o MISSILE

L.OS
A TARGET
olfli=11Hrin, L innnrnrTiL i
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
X CM] *10
figure 138 typical missile and target Aflight path in scenario 1
-
o MISSILE
A TARGET
T Pi ITTTir fi o IV P
0 1000 2000 3000 4000 5000 6000
X [MI

figure 1390 typical missile and target flight path in scenario 2
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13.6  Summary

In this section an overview about the derivation of guidance laws based on LQ-design
and related  gpproaches was given. The approximation of the intercept  dynamics by
linear time invariant equations is commonto al these approaches enab”ng one to

solve the resuling  optimal control  problem analytically to most cases. Thus guidance

laws are obtained to closed form. Most of them maybe viewed at as extensions of PN.

One version of extended proportiona| navigation taking toto account the (target
maneuver by a simple compensation term was derived. A\ simulation study revealed
that target maneuver compensation leads to substantial  improvements of guidance law

performance and makes adaption Of the navigation  constant XQtw the engagement

scenario  obsolete. The main obstacle to the jmplementation of PEis the problem of

target mManeuver estimation. This topic will be adressed to chapter 2

In the following  sections guidance laws derived by application  ©of singular  perturbation
theory will be tovestigated. These guidance laws are a useful reference to judge the

performance ©of PN and PE. Moreover singular  perturbation theory gives a deep
insight into  the structure of modern guidance laws and reveals the advantages and

limits  of optimal control  theory in this field.
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1.4 Guidance Laws based on Singular Perturbation Theory

Perturbation methods are an importam tool for the analysis of ordinary and partial

differential equations. These methods are applicable if the problem under
consideration exhibits "small” perturbation terms which, after adequate  scaling,
manifest themselves by the occurance Of one or several perturbation parameters ¢ <<

1L In many cases it s possible to construct  expansions 0 terms of  that approximate
the exact soluton  with reasonable accuracy. The importance of perturbation methods
lies to the fact that the calculation of these approximations is often much easier than

the determination (f possible at alj of an exact solution and leads to a substantial

reduction  of the computational effort  if the problem is solved numerically.

The question of existence and properties of expansions associated with perturbed
problems are treated to perturbation theory.  An introduction to perturbation methods

is given in [32-34).  Applications to control  theory are summarized to [35 and [43],

A special  class of perturbed  problems are singularly  perturbed  problems. They are of
special ~ interest here. A well known agpproach to solve this type of problems is the
method of matched asymptotic  expansions (MAE) [32,33,34,36]. The MAE-method
will be applied here to obtain approximate solutions to the optimal control

formulation of the planar totercept problem. First the basic definitions and ideas of

this method will be introduced.

14.1 Basic Definitions of Perturbation Theory

The following discussion  will be restricted to the jnvestigation of ordtoary differential

equations  of the type

z = h(zte) (14.1)
with

ZzRn dependent variables

t R independent variable (time)

e R "small"  perturbation parameter
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With the assumption that (14.1) has aunique solution  for a gjven initial condition

2 — zq (142)
the exact solution  of (1_4_1/2) on the interval t 1 = [|q’ tﬂ will be denoted as
2(tzQ.e) (1.4.3)

Assume for the followtog that 2z is scalar. Extension to the vector case is sfraight-

forward. gt 2 g) is usually not available to closed form. In many cases, however, it is
1l

possible to solve (1.41) analytically for + = 0. This motivates an expansion of (14.3)

to terms of known functions 4, of the followtog form:

N-I
2t 7q, € <2t 79, 8 — ) (1.4.4)

i=0

Since to general (14.3) cannot be represented exactly by afinitt expansion there wil

be a truncation error

%!& 9 — U zq )zt Zq, «) (1.45)

due to the neglection of terms of order >N. The behaviour of Rj/\t, e) as e approaches

0 determtoes whether (14.4) s a meaningful expansion or not ie. whether it can be

used to approximate  z(t Zq, e), In the followtog definitions the Landau symbols [32,34]

are introduced. They wil be used to describe the properties of (14.4). Consider the

two scalar functions  ff, ¢), gt e).

Definition 1. If there exist A >0 and tQ > 0 such that

f(t7)l< Aottell  Vl|ej<cO (146)

then one writes

f(t,E) = O[g(t,O] as «-»0 (1.4.7)

Definition 2. If Aand en are todependent of t | then (147) is umfbrmly valid on |
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Remark: (146) maybe replaced by

lim <oo (14.8)
e-*x0  g(te)

Consequently (1.4.7) holds uniformly —on I if (148) is valid for al t I

Definition 3: If there exists eQ> 0 such that

\KU e)| = « |g(t‘ e)| VvV «>0 and v |e| S «q (149)

then one writes

ft e =0fgt € a >0 (1.4.10)

Definition 4: If eQis todependent of t | then (1,4,10) holds uniformly on |

remark:  (149) maybe replaced by

. %
im 0€) g (1.4.12)
e*0 gt

Consequently (1.4.10) holds uniformly — on I'if (1.411) is valid for al t I

The notation introduced above is now used to state the properties of meaningful

expansions  (1.4.4).

Definition 5. Asequence Oof functions SAXC) is called asymptotic  sequence f

6%e) ~ofejk)] = - O (14.12)

Definition 6: z(t, e) is called an asymptotic  expansion if and only if
N-I

) - £ )~ o e O (1413

i=0
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Definition 7 (1,4,13) is called a Potocare expansion if
e —gf) «@® (1.4.14)
Remarks:

) Asymptotic expansions may Pe divergent, e

N-»00

Rj/\t,*) > oo for any value of (1,4,15)

Nevertheless  these expansions can be used to approximate z(t, e) if

im RUt, t) =0 for any finte N (1.4.16)

ie. if the truncation error can be made arbitrarily small by choosing e sufficiently
small  (for examples see [32]). Note that (1.4.16) s a property of Potocare”
expansions.

i)  The representation (1413) s not ynique. However, the coefficients af) of the
Potocare" expansion (1,4,14) are  uniquely determined once the functions «_(«)

have been gpecified.

Definition 8: The expansion

N-I
o - £ o + RPN e (1.4.17)
i=0
is said to be yniformly valid on I if
RN(te) — 0[«N(t,€)] uniformly ~ for al t | (1.4.18)
Otherwise  (1.417) s nonuniformly ~ vald on | and is called a singular perturbation
expansion
Remarks:
i) In most cases asymptotic expansions are nonuniform. The reasons of non-

uniformity and techniques to circumvent them are discussed to detal to [32,33].

Here only one type ©of nonuniformity is of interest that  occurs if the highest
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derivatives to (1_4,1) are  multiplied by « This problem and the method of MAE

that restores  uniformity will be discussed to the next section.

i The following abbreviated notation  of (1_4,17) will  be used to the sequel:

Z(t)EV.(LE) (14.19)

1.42 The Method of Matched Asymptotic Expansions (MAE)

Consider (1,4.1/2) with

t — (xty RnNn (1.4.20)

and
iz v o —f o ' gz ) RN (1421)

(141) can then be rewritten to the followtog form:

x =1 vy o) R (1.4.22a)

vy = gxyt) R ° (1.4.22b)

n *e2 =N (1.4.22¢)
with

Xlg) ~ xQ (14.233)

yOg) ~ yo (1.4.230)

The goal s nowto develop asymptotic expansions

x - X = V+j(t, €) (1.4.243)

<
|
<
Py
I

A{.(t, 6) (1.4.24b)

that gpproximately =~ solve (1.4.22/23).
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A commonchoice for 4 and { are the powers of ¢ e

xhel (L4.253)
yiW (1.4.250)

An jmportant  advantage ©f asymptotic  expansions to terms of powers Of o is that

besides addition and subtraction also multiplication of power series is well defined, ie.

yields again an asymptotic  expansion. In general this is not tue. QOperations like
exponentiation and differentiation with respect to t or o are ysually not well defined,

not even for power series.  They result  to nonuniformities. For details see [32] Note
also that (1.4.24/25) is aPoincar6-type  asymptotic  expansion.

By (1425 the problem of determining 4 and { is reduced to calculating the
independent ~ coefiicients  X?) and Y2t This can be done by inserting  (1.4.24/25)

into (1.4.22)  yielding:

-0 o ,27o,
Xt + £ Xl 4+ g Xl'y -+

(xg ~ =X ~E2xE+  ygrey 2y (1.4.263)

EYq+£2yj+£3y£+ —
o X+ exj ~E2xE + o yg ey B2y (L4.26b)

Expansion of the right hand sides in terms of powers Of £ up to fist order yields;

XX + ¢ Xj . fg + e f] + (L4.27a)
eyg + £2y° + - g9+ =g ~ (1.4.27h)

with
fg —fcxg, yg v (L.4.28a)

"OySOx - f{xo"yo0"™ <Lazap>

.0 o .
and . defined
90, g analogously.
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Since (1.4.27) must be valid  for arbitrary values of £ equality holds  only if coefficients

of equal powers Of £ are identical. Thus one obtains  the followtog set of equations  for
X? and y?.
X fg (1.4.29)
2 (1.4.29)
° - qg (1.4.30a)

gj (L4.30b)

y9

Substitution of (]_.4.24/25) into (1,4,23) renders:

o) + Q)+ - xg o9 L4zt
o)+« yt) - yo for @l . (1.4.31b)
which results to the foIIowing initial conditions for (1.4,29/30);
Xt - xo (14.323)
kgktO) -0 2. (1.4.32h)
v&m) ~y0 (1.4.33a)
yQ) — © 1=1.2,... (1.4.33b)

In order to solve (1.4_29/30) for Xg and yg equation (1,4,30a) is  written more

explicitly using (1.4.28a):

g9 —9o( Xy Y9, 0 —°© (L4.34)

Assume for the moment that Xg is known. (1,4.34) then is a set of n2 nonlinear

algebraic  equations ~ with 5 unknowns yg([) It is further assumed that (1434) has a

unique root
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o)~ "ot (14.35)

(1435) can now be substituted toto (1429&) yielding:

Xg — fxg, xg() 1.0 (1.4.36)

After integration ~ of (1.4.36) with (14.32a) the zero-order  approximation )(g(t) of x is
obtained and yg(t) is determtoed via (1,4_35), Evaluation of (1_4.35) for t = tQ and

comparison Wwith  (1.433a) reveals, however, a contradiction to the initial conditions

since in generaj

Tro(tQ)AQL* Yq (L4.37)
Moreover from (1,4,32b/33b) follows that the initial conditions cannot be matched py
higher order terms. Therefore the expansion (1.4.24/25) is nonuniform  on [lQ, tﬂ with
the nonuniformity occuring to the neighbourhood  of . The reason for this behaviour
becomes clear by observing that (1.4.29a/30a) s a system of [ differential equations
and 5 algebraic  equations. ~Thus the system order has been reduced from originally  n
in (1422) t . Consequently only a of the n inial  conditons  (1423) can be

satisfied. (1.4.32/33) will  therefore be replaced by the foIIovvtog sl unknown initial

conditions:

X(tQ= x0 « i —o1a. (14.38)

Yg(tQ)="1xg0,q] (1439)
Vit)= y0 - 2. (1.4.40)

The fist order approximations of x and y can be calculated by substituting (1.4.35)
into (1.4.30h). With (1.4.280) one obtains:

Tl 0 = X0+ gy i) (L441)

with

AN (1442
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Provided that ¢ is nonsingular (1441) can be solved for yl([) With y](t) known
X?(t) is obtained by forward ntegration of (1.4.29h) subject to the initial condition

(1.4.38). In this manner al higher order coefficients of X?, y7, i > 0 can be found
successively by fist  solving an o dimensional  glgebraic  equation for y? and then
integrating a . dimensional  system of differential equations  rendering X?. Note that
both (1429) and (1430) are linear for i > O [3, Note also that the y’)Q are
determined by X|q similiarly as yg([Q) and therefore X|q are the onIy unknowns of

this  problem.

The equations  (1.4.35/36) that define the zero-order  gpproximations )(g(]f)l yg(t) can

also be obtained by seting = — O in (1422). Therefore one has

Urno x(t)= Xg([) (1.4.43a)

£->»
t fixed

im -y = yo) (1.4.43b)

t fixed

With (1.4.25) it follows from (1.4.43) that condition (1_4,16) is satisfied., ie. (1.4.24) is

a meaningful  approximation ~ for z() Onthe other hand the system order to (14.22)

reduces from n to nA and therefore only nA initial conditions can be satisfied as
mentioned earlier. In general it is therefore  valid:
lim Zg(t) = lim [ lim ] < lim [ lim g (1.4.44)
t-»tQ t>Qe~ O £~»0t-»tQ
(14.44)  expresses the nonuniformity of the asymptotic  expansion in Q ie. the
expansion s valid for al t I except a neighbourhood of tg.
yg([) from (1435 is the quasistationary soluton  of (1.4,22h), ie. the solution

obtained by neglecting the dynamics of this subsystem. For small ¢ and

i) = Ofg(zl)] (1.4.45)

the states y change mMmuch faster than the states «x. In the sequel x will  therefore be

referred to as slow and as fast variables I tively. Under certain tabilit
y , espectively stability
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conditions mentioned later y reaches its gquasistationary solution almost immediately

as ¢ - 0. This justfies  neglection  of the y-dynamics for t > 1Q In the neighbourhood

of Q the behaviour of y is, however, determined Py the transition y]_ from the totitial

conditions to the quasistationary solution y (ﬁgure 1.4_1)_ The associated time

interval is called boundary layer. The expansion (1.4.24/25) approximates  x, y outside

the boundary layer and is called outer solution A new expansion called inner solution

and denoted py X\ y]_ is required to represent x, y inside the boundary layer where the

y dynamics must not be neglected.

overlapping  zone

H

boundary layer

figure 14.1: behaviour of the fast variables in the boundary layer

For the construction of the inner solution the time scale transformation
t-tr
T — (1.4.46)
is  introduced (for a motivation of this transformation and more general
transformations see [33¥ chapt|2])_ By this transformation the neighbourhood  of tg is

mapped to the interval [0,00[ as ¢ - 0.  is called the time scale of the fast variables.
From (1.4.46) follows

d_ "d (14.47)
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Substitution of (1_4.47) toto (]__4,22) yields:

X = eflx, y, & + tQ)
v = oxyTE + Q)
N
with 0 =
dr
subject to the initial conditions:
Xt =0 = Xq
yT =0 yQ

Xl and ir will be represented in the same manner as x and y In
(1.4.24/25)  one obtains:

D U VXI,(t) £k

k

y I Y e

(1.4.482)
(1.4.48b)

(1.4.48¢)

(1.4.49a)
(1.4.49b)

analogy to

(1.4.50a)

(1.4.50b)

Substitution of (1.4.50) into (1.4.48) and expanding of f and g '© powers of ¢ results in:

A A * . 2 v+
Xq +e i/\ 2 &< %2 4..=£ fQ+ £2 f/\+

. . ; .,
yo tEy\ = gQ+eg;]|i

with

I —<x0 YT

~
I

f< i y0» > X|+ ~(XO)) 4 > *i

and likewise  for g” and gl

Since the inner solution  represents the transient  behaviour in the boundary

demands that

(1.4.51a)

(1.4.51b)

(1.4.52a)

<L4-52b>

layer one
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X(r) ’

iim - [lim | = (1.4.53)
-Or-Oy \Y0J
Equating equal powers of ¢ yields:
XF — o (L4543)
= (1.4.54b)
0" = g0 (1A 552)
yll» - gl (14.55)

The initial conditions  for (1.4.54/55) are obtained by inserting (1450) into (1.4.53):

X0(0) = xo0 (L4.56a)

k) —o Vvk=o (1.4.56b)

yl0) ~ vo (1.4.560)

i) -o vk=o (1.4.56d)
From (1.4.54a/563) follows:

Xq(t) = constant = XQ (]_.4.57)

yo(r) ean be calculated by inserting  (1.4.57) into (1.455a) and integrating forward
with  (1.4.56c). Once Va(t) s known (1454h) can be integrated  subject to (1.4.56b)

rendering xA(r). This in turn can be used to solve (1.455h)  with (1.4.56d). In this

manner all coefficients XL and a can be determined successively. As was the case for

y

the outer solution all equations  associated with  k > O are linear. Equations  (1.4.54a)
and (1455&) can be obtained by Setting ¢ = 0in (1448) expressing the fact that
lim  z(r)= 2« (1.4.58)

£-0
¢ fixed
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From (1.458) follows  with (1.4.56)

im fim 2] = Z0) = zg= tim fim 2 (1459)
T-»0£-»0 £-»0t->0

Hence the expansion Zl represents  z uniformly  on ¢ [0, o0

Up to this point two asymptotic expansions for =z namely the outer solution Z° and the
inner  solution 71 have been constructed. z° represents z outside the poundary layer
while 21 is uniformly valid within  the boundary layer that has been blown up by the
stretching transformation (1.4.46). In the followtog the two solutions  will be combined

to form a composite solution that is uniformly valid on t [to tﬂ This procedure is

called boundary layer matching. Since the inner  solution discribes the transient
behaviour from the initial conditions to the guasistationary solution it is evident that Z1

should satify  the toitial conditions at t=0. This matching condition has already been

established to (1.4.53) and was used to construct 2. In  addition z should
asymptotically approach the outer solution as t > oo as the transient dies out and the
system becomes quasistationary. This condition can be stated in the following way
[36]:

. N

im [, o X't g —o (L4.60a)

£-»0

t-tQ

T-+00

. A

im [ g YT e —o (L.4.60b)

£-»0

T-»00

The matchtog procedure  essentially serves the determination of the unknown initial
conditions (1.4,38), It depends on the number of terms considered to the expansions
(1.4.24), (1.4.50). Simple expansions are usualy only obtatced if Z° and 2l are
truncated after the zero-order term. In view of |later applications to the totercept
problem the matching wil be demonstrated only for this case here. For matching of

expansions including the first order terms the reader is referred to [32, 34, 36, 37].
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The zero-order  expansions of x and y are:

X°(t)= xg(t) outer solution (1.4.61a)
X - XqE) — Xq inner  solution (1.4.61b)
y(t)= yg([) outer solution (1.4.61c)
y*([) - IOM inner  solution (1.4.61d)

With (1,4,61) one Obtains from (1.4.60);

xg(tQ) = %0 (14.62)

Note that (1.4.62) is valid regardless of the number of terms considered to the

expansions X° and X1 [3p]

Theorem 14
The matching condition (1.4.60b) s always satisfied if yg([) s a stable root of (14.34)

and the intial  condition (XQ yQ) is to the domain of attraction of this root [39-42].
!

Under the conditions of this theorem the expansions Z° and Il exist and with

(1.4.56/57) and (14.62) their zero-order  gpproximations are determtoed.  For a short

discussion of the theorem see gppendix 12 In a last step the two solutions will  be

combined to render a composite solution ZC which is uniformly valid on [tQU The
,U.

simplest form of ZC is the additive composition

of) =) + 2\ ) e (1.4.63)
where  was replaced by (1.4.46) in Il

Other forms of ZC are discussed in [32,34,40]. Z™ denotes the "common part"  of z°

and 2l in the overlapping zone Of inner and outer solution marked with t* to figure
1.4.1. It is defined by the matching  conditions (1,4.60)_ With (]__4,6]_) it follows

immediately  that

P~ w0 - xo (1.4.64a)
yCP (1.4.64h)

I
\<
=
—

(=)
=
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Hence the composite expansions for x and y become:

o - oxf) XCI('A) xq 0@ — xf) o (L4.652)
o oyl - AT Mot a A65b)

Discussion:

The zero-order composite  solution for x is identical to the zero-order outer solution

Xg(t) This is easily understood py observing  that Xg([) satifies the initial conditions

according to (1.4.62)_ Therefore  no boundary layer correction of the slow variables is
necessary for the zero-order  gpproximation. Inspection  of (1.4.65h) shows that the

terms yg cancel out as t _»th Thus y(t) is represented  correctly by the inner solution

yQ in the boundary layer which py (1_4.56) satisfies the initial conditions. Outside the
boundary layer, ie for t > the terms y“ and yg([Q) cancel out under the conditions

of theorem 14. y(t) is then represented by the quasistationary solution yg([)'

Note that py construction of the composite  solution (1.4.65) determtoation of t* s
avoided. For later  applications the calculation of the zero-order approximations is

summarized:

1. outer solution:

Set ¢ = 0in (14.22) One obtains  a gystem Of nA differential equations  for the slow
variables x and nj algebraic equations (1.4.34) for the fast variables y. Since the
system order has been reduced from n to n, only n, inital conditions (1.4.233) can be

satisfied. The outer solution is obtained by solving the algebraic equations for y

resulting in the outer solution

yo) = "Il (1.4.66)

Note: In general this solution is not ynique. By theorem 1.4 it must be stable and the

initial conditions Zq must lie in its domain of attraction. Otherwise  a boundary layer

correction for y does not exist
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Xg(t) is calculated  py forward integration of the reduced gystem

xg -~ Hal) oty (1467

subject to the initial conditions
Q) g (1469)

While Xg([) is the uniform|y valid zero-order approximation of x ont [tQ’ tﬂ’ yg([)

converges honuniformly in tQ and must be corrected  to the boundary layer.

2. inner solution:

The expansions of x, y to the boundary layer are called toner solution y], They exist

only under the stahility conditions of theorem 14. Their calculation is done py

performing  the time-scale  transformation (1.4.46)  vyielding  the system equations

(1_4,48) in the stretched . - time-scale. For XQ one obtains:
X0~ xtQ) (1.4.69)
ve(t) is calculated by integrating

0O = o, yom, (1470)

with
y0(0) ~ y(t0) d-4.71)

3. composite  solution:

The zero-order  composite solution is given by
- xgl) + 0w (L4.72)
yo - y) ~+ VC](A“‘) ) + ow (L473)

Concluding remarks:

While the calculation of a zero-order uniformly valid expansion for the singularly
perturbed  system (1.4.22/23) s relatively simple the determination of higher order
terms is considerably =~ more complicated. @ The difficulties arise  mainly to the boundary

layer matching. It turns out that to contrast to Xg the higher order terms X£ with
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k > 0 have a boundary layer correction xk with initial conditions that involve limits of

integrals that in general cannot be solved analytically [36] In view of (]_4]_5) it is not

even guaranteed that accuracy Wil actually improve by taking toto account higher

order terms. This is why in most cases only the zero-order approximations are used.

The MAE-method has been illustrated here for initial value problems. The application
to TPBVPsis discussed in [34,35]36,37]39,43], In the next subsection a review of the

MAE-method as applied to multiple-time-scale problems s given.

143 Multiple Time Scale Problems

In this section the gpplication of the MAE-method to multiple-time-scale problems
will  be discussed  shortly. ~ The procedure s a straightforward generalization of the
method described in the preceding section.  The theoretical foundations can be found

in [41,42]. Only zero-order approximations will  be discussed here.

Consider the following system of n-+mdifferential equations:
x = fx oy o Rn (L4.74)
e yx gl v PR (L4.753)
py2 gk vl PR (1.4.75b)
mic
ekyk — gk(x,v.) = (1.4.75¢)

CoQ

with

yAtYi.72 Jil  Rin <L4-76)

k
—=\m| (14.77)
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lim =N 0 (1.4.78)
«j+" f
£. -*0
initial conditions:
XtQ) — xq (1.4.799)
Vj(tO) “ 0 i =12 kK (1.4.79b)
Remark:
Since only the zero-order approximation is considered here the subscript ()Q denoting
the zero order term has been omitted.
Equation  (1.4.78) ensures that y,+1 is fast with respect to y. In this problem one
therefore has a slow time scale of the x-variables and k fast time scales decoupled by
(1_4.78)_ For the outer solution one o0btains, as in section (1,4,2), an expansion that
holds nonuniformly  on [tQ’ N]. Uniformity ~ of the expansion is restored by constructing
an inner solution in the boundary layer of each time scale.
The outer solution X°, y° is calculated exactly as described in section 14.2. Setting
e — 0. | — 12.k (1.4.80)
in (1,4,75) results in (1,4,34/36) with
0 =1 4-- 4) (1A81>
The solution is given by (1.4.66-68). The boundary layers are determined by
sequentially applying the time-scale  transformation
t-1Q
- - | = 12k (1.4.82)
J £-
In this way one obtains  k decoupled boundary layer equations of order m, .o
The original problem of order Nn+m is therefore broken up into a
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sequence ©f k+1 subproblems of orders n \ya gy o This feature is  especially

important for the approximate solution of optimal control  problems since a suitable
time-scale  separation  (which should be physically  meaningful  of course) allows for the
construction of subproblems that can be solved easily. The boundary layer calculation

proceeds as follows:

Applying the jth  time-scale stretching (1_4.82) and setting & — O for all j results  with

(1478) in

slow variables

of j-th  boundary-layer (1.4.83)
VA=°
Womgigar) v oty n480
S+
guasistationary solution  of fast (1.4.85)
variables  of j-th  boundary-layer
0o = gk

where () is defined in (1.4.48c).

Since the inner solutions must satisfy  the initial conditions it follows from (1.4,83);

M) = o (1.4.86a)
M(T]) = yi0; | - 1AL (1.4.86b)
After  sohing  (1485) for P\+> . . Jyk (1484) can be integrated  forward  with

(1.4.86). Under analogous conditions as mentioned in section (1_4.2) the inner solution

‘]YJ wil gpproach the quasistationary solution  associated  with
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g~ ° (14.87)

that is

lim JyJA) =K, yA il Yk tﬂ] (1.4.88)

where *. is a stable root of (1_4,87)

J

Composite solutions  can be constructed  accordtog to (1.4.72/73).

Remarks:

Avery commonchoice for g 0. £k is:
e =J =2k (1.4.89)

Obviously  (1.4.89) satisfies (1.4.78). Note that the zero-order expansions

independent  of .. The sgcaling of differential equations is therefore done to a

heuristic manner rather than actually figuring out numbers for ..

Agpecial case |eading to substantial  simplifications is:

n—mA—m2— — mk-— ! (1.4.90)

Here a gsequence O©Of scalar problems has to be solved. However it is emphazised

that the scaling of differential equations is not arbitrary but should reproduce

physical  properties ~ of the system (x, y). Otherwise the resultihng  expansions

not approximate the actual system behaviour. This fact must be kept in mind

especially if the scaling s done py heuristic methods as mentioned above.

approach to estimate - is discussed in the next section where guidance laws will

be derived by applying the MAE-method.



56

144 Scaling of the Intercept  Problem

The purpose ©of this section is to find a scaled representation of the nonltoear

equations  of the planar intercept  problem. The apalysis  will fist  be restricted to a

horizontal plane. Extensions to a vertical plane are delivered  to section 1.4.8.

The scaling procedure Wil reveal several time scales in the gsystem dynamics and lead

to estimates of the associated perturbation parameters e introduced in (1.4,75), First

consider the unsealed equations of the planar intercept problem to a cartesian

coordinate  system (Xy) according to figure 142 and gppendix 1.1:

missile-target relative motion:
AX = yj cosy-, Vcosy (1.4.91a)
Ay = yT siny- v siny (1.4.91h)

missile  dynamics:

: T-D
v (1.4.92a)
L

y (1.4.92h)

: M

q | (1.4.92¢)

8 —q (1.4.92d)
target  trajectory:

vT — VI(Y) (1.4.93a)

yT ~ YTl (1.4.930)
with

Ax, Ay: missile-target relative  position

v, yT  Missile velocity,  target velocity

voyT . missile  heading, target heading i (xy)

T . missile thrust vector

D drag, D=D(h,v,0,fi) (1.4.94a)
L it L=L(h,v,a,«) (1.4.94b)
M : aerodynamic torque, M=M(h, v« 8 Q) (1.4.94c)

CL: missile center line



: angle of attack

6 : flipper deflection

g : pitch rate

0 : pitch angle

m: missile  mass

1 . missie moment of inertia
figure 1420 planar

Simplification:

For the type of missile under nvestigation

fuel burn out. Therefore the missile  thrust
derivation and one has:

T=0
It follows that the missile

mass rmand the moment of inertia

57

intercept  geometry

here the guidance loop is activated after
need not be considered for guidance law
(1.4.95)

| remain constant
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In the following, dimensionless states denoted by superscript ~ are defined:

Ax = & pR Ay =AY RR v =V R (1.4.96a,b,c)
v =Y*YR . ° =$*3$R «

L — 1¥A D =D*DR.  ™~™M- M*MR (1.4.98a,b,c)

- RR
to=t - vT = vTVR yt:Y*;yr (1.4.99a,b)

(1.4.97ab,c)

I

o
>

o)
Py

The reference values denoted by subscript R are chosen in such a way that the
maximum values of the scaled quamities ()* are 0(1). They are summarized in the

following  table:

reference: typical ~ values:

RR: initial range 2 km 10 km
VR: average missile velocity 1.5 Ma 25 Ma
yR: total  missile  heading angle increment 0 deg 90 deg
OR: total missile  pitch angle increment 0 deg 110 deg
qR: maximum pitch  rate — 0.5 rad/s

Lj/\i maximum lift — 2000 kp

DR: maximum drag — 900 kp
MR:maximum aerodynamic  torque ~ 200 kpm

table 1.4.1: reference values

After substitution of (1_4.95-99) into (1.4_91/92) and applying the time scale

transformation

d 'R d 'R
o RR RR (14400



59

one oObtains:

X< 4c0S(yRy*V*COS(yRy)
y'= Visto(yRy!)-VEstolyRyY

E1v* =-D*
£2y - IT
£3gr= M
F4x= q*
with
RR R°R
VR M
£2 ¥
-%Yrvrmm
Vrqg |
£3 R
RRT MR
£4 -
RR <R
Definitions:
N
t W= R characteristic tim
max* v
VR
VR _
aa D= average axial acceleration
Imax
VRyR _
3 L= average lateral  acceleration

Imax

(1.4.101a)
(1.4.101b)
(1.4.102a)
(1.4.102b)
(1.4.1020)

(1.4.102d)

(1.4.103a)

(1.4.103h)

(1.4.103¢)

(1.4.103d)

(1.4.104a)

(1.4.104b)

(1.4.104c)



gmax

gmax

(1.4.104/105)

gR

max

Imax

MR

- gR

to (1.4.103)
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average pitch acceleration

average pitch rate

maximum axial acceleration

maximum lateral  acceleration

maximum pitCh accleration

maximum pitch rate

yields:
aa
£1~
aamax
\
c2~
almax
q
c3~
gmax
q
c4~

max

(1.4.104d)

(1.4.104e)

(1.4.105a)

(1.4.105b)

(1.4.105¢)

(1.4.1050)

(1.4.106a)

(1.4.106b)

(1.4.106c)

(1.4.106d)
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Discussion:

The scaling parameters t are of the form:

g = 2— (1.4.107)
smax

s is the average Value of s and smax is its maximum value. Due to the scaling, the

right hand sides of (1.4.101/102) are al ((1). Fast dynamic behaviour —with respect to

(1.4.101) the scaling factor of which is 1is therefore  characterized by:
! (1.4.108)

This means with (14,107) that the fast states produce trajectories with changes that are

low to the zyerage but can be Jarge locally. Typical values for . calculated from the

reference  values to table 141 are given below:

RR= 2 km RR= 10 km

£1 15 0.3

01 (yR:]_0°) 002 (4R =10°)

£2 0 o
09 (yR :90) 02 (R :90)
£3 0.008 0.002
005 (gR =10 ) 001 (tR =10°)
C4 04  ( 6R :900) 008 (OR :900)

table 1.4.2: scaling parameters
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The estimates obtained in table 142 show that (1,4,108) is best satisfied by ¢ and g,

suggesting that the missile  pitch motion s well decoupled from the missile-target

relative motion. Comparison of « with the other scaling parameters reveals the

decoupling of the pitch rate dynamics from al other states which justifies the usual
autopilot-design procedure based on a linearization of (1492c) with constant v and ,
[44. The v- and y-dynamics depend strongly —on the intercept  scenario.  Clearly, v has
to be considered a slow variable here sharing the time scale of Ax and Ay. If thrust
control s possible v may be chosen as a fast variable decoupled from (1.4.101) as was
done in [38]. N many cases y may be considered decoupled from Ax, Ay and v. Only
in the case oOf very short-range high-maneuver scenarios it shares the time scale of
(14.101) and (14102a). Therefore the followtog scaling s suggested:

slow variables CAX, Ay, Vv
fast variable Ly
very fast variables: q $

table 1.4.3: time scales

The subsequent application of the method of MAE Il be restricted to the

construction of  zero-order approximations. Since these approximations are
independent  of the values of _ it is feasible  to introduce an artificial scaling of the

equations (1,4,9]_/92), The scaling will  reflect the time scale selection given to table
143 but uses the griginal variables rather than their scaled counterparts. The scaling
must satisfy (1.4.78)  which is guaranteed by the use of (]_489) Thus one obtains the

following ~ perturbed equations:

AX —\TcosyT~ Veosy (1.4.109a)
Ay =yT stoyT v siny (1.4.109Db)
v (1.4.109c)

ey T (1.4.110)

£2q —y- (1.4.111a)

e2e _q (1.4.111b)
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initial conditions:

AX(Q) =Ax0 - V({Q) =vQ, (q(tQ)=qo (L4.112ab,c)

AvOg) =Ay0 - y(t0) =yq, tFM)N (14.112de,0
Remark: The artficial scaling of the original  problem is sometimes called forced
singular  perturbation [38. It can easly be proved that the original scalng and the
artificial scaling render equivalent zero-order  solutions [55],

1.45 Derivation of Guidance Law

In this section a guidance law s sought that solves the following minimum-time

problem:

J=Jdt (1.4.113)
*0
subject to the final constraints:
Ax(t) = © (L4.114a)
Ayt) —© (1.4.114b)

and the dynamic constraints (1.4.109-111).

The choice of (1.4.113) is motivated by the desire to minimize the time for target

evasive maneuvers While (14114) guarantees totercept ~ The exact problem can only

be solved numerically as discussed in sections 11 and 12. In the followtog the
procedure described to sections 1.4.2/3 wil be applied to derive a zero-order  solution

of the perturbed problem formulated above.

1451 Outer Solution

Setting = = Oin (1.4.109-111)  vyields the reduced system:

AX" —\T cosyT V© COSY0 (L4.1152)
AY°=VT singT v siny0 (1.4.115b)
(1.4.115¢)
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LO
0 - = (1.4.116a)
(o]
wo
o — %2 (1.4.116b)
o - (1.4.116c)

The matching conditon  (14.62) yields:

AX0M) - AxQ (1.4.1173)
At)) - ayQ (L4.117b)
Vi) - vo (14.117¢)

AN gnalogous matching at final  time tf renders with (1.4.114):

Ax(t) =o (14.118a)

At)  =o (1.4.118h)
From (1.4_116) follows:

L* =M° —q° -0 (1.4.119)
(14.119)  describes  a straight-line missile  trajectory. Clearly, on this path one has:

a0 — o (1.4.120a)

6° =0 (1.4.120b)

Substitution of (1.4120) into (1.4.94) vyields:

D° — ph, V', a0«°) (1.4.121)

The Hamiltonian associated with the reduced equations (1.4_115) with  (1.4.113) s

H® =1+ X (T cogyr V7 COSYO) + X° (4T sinyT V" stoy0)  X°

(1.4.122)
with

H® — o (14.123)

since the final time is free.
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Note that the fast variables y°, q° and 0° may be regarded as control  variables of the

reduced  problem  [36,38,51,54]. J° is aready determtoed py (14119) and from
(1.4.120a) follows  (see figure 1.4.2):

6° —y° (1.4.124)

This leaves y° as the only control  variable. Accordtog to secton 11 the pecessary

conditions of optimality are:

3H
X —- —0 - X° constant (1.4.125a)
3AX°
X° — -25- o - X° constant (1.4.125h)
3AY°
9OH
xe oM . XS - X 1
) T COSy0 . Siny0 Sl o (1.4.126)
v 3v
subject to the transversality condition:
XO(tf) -0 since V(tf) is free. (1.4.127)
The gptimal heading Yy°  minimizes H°, hence:
. —~ are min H
Y°c[]]t = g min Ho (1.4.128)
Y
and is determined by
3H ~\Oe,;, "O \OrmJ) (1A129)
20 =0=Xlsin*pt-A2COSV
‘opt
resulting i
XO
8 T°t = = constant (1.4.130)

Al
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Since X?, XE are unknown, y° wil  be determined by exploittog (1.4.118).
Observing  that y° ls constant it is easily seen that the optimal missie path s a
straight ~ line  connecting  the toifial  position ~ and the potot of totercept y° is the

colision  course (figure  1.4.3).

figure 14.3: optimal flight path

The calculation of y° has to be done iteratively by choostog = value Y?, integrating

(1.4.115), checking the end conditions (1.4.118), and determining a corrected value
y?' based on the error in (1.4.118). This procedure can only be carried out if the

target mManeuver s known. It amounts to a prediction of the collision point In order to

develop = prediction  algorithm  the following  target maneuver is assumed:

4, b VT (1.4.131a)
yT — constant (1.4131b)

Substitution  of (1.4131) into (14.115) yields with (14.117);

If vV

AC) =0 —vr [0S yTly @ cos ¥ VT A+ axQ (L4.1323)
to lo
Lp Lp

W) <o T

sin yT(t) dt  sin yopt | Ve odt Ay0 (1.4.132b)
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(]__4_132) is a set of two equations for the two unknowns y° and tf or the

time-to-go:
They can be solved for y°  yielding:

tf
AyQ + VT J" sin yT(t) dt

* A— ’ (1A134)

AX« + V] | COSyT(t) dt

With (]__4_134) only one of the equations (]__4_132) needs to be iterated for t The

prediction algorithm  can now be stated  as follows:

1. choose starting  value for t

2 integrate  (L4.115c) and V°, then evaluate (14.132a) with y°  from (1.4134)

3 check AXo(tD if Ax<>('[f)f > tolerance  correct t  and gg to 2),

otherwise store oObtained values for y° ot and VW(tf)

table 1.4.4: prediction  algorithm

A realization of this scheme is gjyen in section 1462  Note that the only integrations
involved  concern the determination of the missile's straight fight ~ path. This can be

calculated off-line and stored for several altitudes h so that on-line ntegrations may

be replaced by table ook-up and interpolation.

For later ysage the adjoint variables X?, XE and X? are now determined.

(1.4.122/123) can be solved for X° Using (1.4.130) one obtains:

X3 = /N X VT cosT Vs N (VT ST @ )t
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At final time (]_.4.]_27) can be exp|oited to solve (1.4.135) for the constant Lagrange

multipier X"

i L
V° e —~O 4. to »0 rv o VO «. ,O
VTCOSYTf-  vfCOSy°pt ~ tgy°pt[VTstoYTf- Vistoy°pt]
cosy’
o (1.4.136)
jo \~ ,0
VTCOS(yTf-yopt)-Vf
with
Ve — V() (1.4.137)
Substitution into (1.4.135)  yields:
X — ] (1.4.138)
D®  vrcosyTi- y° ) V°
From (1.4.130) one obtains:
siny?
X9 = X° g y° 22 (1.4.139)

VTCOS(yTH-yOpt)-V°

The outer solution is now completely determined. In the next step the fist  boundary

layer, ie. the transient  will be derived.

1.45.2 First Boundary Layer

This  boundary layer describes  the y-transient from the initial condition yO to the

outer  solution y° Since no end conditions on y have been jmposed there is no

terminal boundary layer for this state. Following again section (1_4,3) the time scale

transformation

r:-/\.,(«)' _ N EN (L4.140)

dr dt
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s applied to (1.4.109-111). For + — O the transformed equations become:
y:x() (1.4.141a)
V - ¥ (1.4.141b)
y:vO (1.4.141c)
. L
V) - V() -, (1.4.142)
mvQ
0 - (1.4.143a)
o =V (1.4.143h)

where the notation of section (1,4,3) has been adopted. Note that (1,4_141) is a

matching condition (see section 142). The Hamiltonian associated  with (14.113) and

(14.141/142) s

HL — 1+ yqquTcosyT VACOSV) + xopwrsingT  VQSinIyl)

1Di 1L
30 -\ (L4.144)
m mvQ
with
H oo (1.4.145)
XkQ ~— Xk{t0): K — 123 (1.4.146)

The fast variables of this time scale are q]_ and \V which play the role of control
1 i i
variables. Since a is determined by (1_4,143[)) Lel remains as the only control. Its

optimal value is determined py :

0f  — 4y min 1HI (1.4.147)

From figure 1.4.2 follows:

Y -V Yy (1.4.W8)
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(1,4_147) can therefore be rewritten as:

«L* in1/ — arg Min[- Xft + h{A -[-
Ll s 2‘”1 = e g - e ,t“]v_ (1.4.149)
lai lai mv0
with
W= 1m0 loi, L) (1.4.150a)
DI~ pg, v0 10, 14) (1.4.150b)

Note that lal is determined by (1.4.143a) with (1.4.94c).

Definition:

IH'(la, V): =1 + xqq@TCosyT  VQOSLY)
+ X20(vTsinyT-  VQSulV)

-X30— (1.4.151)

ie. H® is the value of the outer Hamiltonian in the first boundary layer. Substitution

of (14.151) into (14144) and soling (14.145) for [\ vyields:

a o mvng (1.4.152)

(14.149) with (L4.152) s an implict  equaton for *¢E_* since % depends on *«*»

The minimization (1,4,149) must therefore be carried out iteratively. This result has
not been obtained in the literature because simplified missile  models using the It as a
control  variable and expressing D as a function of L rather than 4 have been used
[38,46,47]49], AS a consequence the structure of the boundary |ayer control law

(1.4.149) namely the minimization of a weighted sum of drag and lft has not been

revealed.

It can be shown (see appendix 1.3) that Ixl tends to zero as Vapproaches the outer

solution y° For IXl — o the control law (1_4,149) minimizes the drag which results

in La* = 0. This result is in accordance with the fact that the outer solution is a
opt

time-optimal ~ trajectory ~ and hence must be drag-minimizing. Clearly (1.4.149) controls

the course error
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— - 40
eT \V4 [ pt (1.4.153)
The choice of V' is a tradeoff between time-optimal correction  of o ie. it
opt

maximization (for X-Q = 0) and minimization of induced drag losses (XX| = 0) that
increase  time-to-go.

*ak . _

a , may be transformed to an acceleration command. Substituting aont toto

(1.4.150)  vyields:

1L3)pt=Un V0 kqpt, V) (14.1542)
D)pt= ot g, VA, V) (L4.154b)

According to figure 2 the commanded acceleration becomes:

ac=""pt"pi+Hpt"Hpt) (1A155)
Note that the sign of L is determined by the sign of e (1,4,155) is the zero-order

guidance law associated with the perturbed problem (1.4.113/114)  with (1.4.109-111).

1453 Second Boundary Layer

According to section (]_.4.3) one could proceed now by app|y|ng the time scale

transformation

to (1.4.109-111), set ¢ — (0, and solve the resulting optimal control  problem in the time
scale of the fast variables q, 6 This procedure amounts to the design of an autopilot as
indicated in section 144. The task of the autopilot is to establish the commanded
acceleration (1,4.155). Since the autopilot is not of interest here the analysis of this

boundary layer will not be carried out
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1454 Summary

The singular  perturbation analysis ~ of the planar totercept  problem shows that the

optimal guidance scheme consists  of three elements:
a) a predictor that calculates the collision course based on a predicted  collision
point
b) the guidance law (14149/155) that corrects the course error While keeping
induced drag losses low
¢) the autopilot

It is evident that the mato drawback of this guidance scheme is the use of a predictor

requiing  knowledge of the wysually unpredictable target ~maneuver. The sensitivity

problems associated  with inaccurate  extrapolation of system parameters (here a- and

yT) have already been adressed in the context of |LQ-design based guidance laws in

section 13. They are especially dramatic if the guidance scheme is used in conjunction

with estimators  for ap and yT (see chapter 2).

146  Aspects of Implementation

In this section the basic difficulties in the jmplementation of the guidance scheme

developed in section 145 are discussed. Attention is focussed on the problem of

deviaton ~ from the scaling assumptions, on algorithms to solve the prediction  problem

as well as the minimization (1.4.149), and on information requirements.
1.4.6.1 Deviation from the Scaling Assumptions

The guidance law (1.4.149) is based on the assumption that the time scale of the

missile-heading-angle dynamics s decoupled from Ax, Ay and v. These states are
assumed "frozen" in the y-time scale. It s, however, easy to take into account changes
in the slow variables by updating the outer solution. tQ can be interpreted as current

time.  Consequently the initial conditions (1.4.117) become the current values of the
slow variables. After  replacing al initial values by the respective current  values to

(14.134/141/142/144)  equation (14149) becomes a feedback law of the form:

floPt = IflUv v soht e~ (1A157>
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The continuous update of the outer solution improves  accuracy of the zero-order

approximation given by (14.149) and extends s validty to the case of only mildy
decoupled time scales  [38,48]. This is an jmportant condition for the applicability of
SP-theory to the short-range  totercept  problem where the scaling assumptions may Pe

violated ~ for certain  scenarios  (see table 142). In practical applications the ypdate will

be carried out with a finte  ypdate interval Tg

1.4.6.2 The Prediction Algorithm

The structure of the predic‘[ion algorithm has already been given to table 143. The

Newton method wil be gpplied to carry out the correction oft to step 3 If fg is the

current time (1,4_132a) can be written as

At = F(igQ) (1.4.158)
In the i+1-st iteration step the corrected value oft is:

i+1 i Fo

(Eb: '!_O' fo- d-4.159)

F(t0)
with

F(t&o):-’\~ (1A160)

go

In order to evaluate F and F a coordinate frame must be choosen. Since no toertial

angular measurements  are available a straightforward choice is the cartesian frame
defined py the LOS at time tg = t This frame wil be called seeker frame and is
denoted by

Zs — (xs, ys) (1.4.161)

Zs il be kept fixed for all calculations of the prediction algorithm. From figure 1.44

follows that in ZS one has:

AxQ — RO (1.4.162a)
AyQ — © (1.4.162b)
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V(tg0)

figure 144 intercept geometry in the seeker frame

with (14134) one obtains:

lgo
vT J stoyTs(T)dT

0

*k0)  —
go

RO + vT \] COSyTS(T) dr
(0]

where the subscript s denotes values with respect to er Sith (1.4.162)

(1.4.4) F becomes:

t t
go

Fig) — VT | eos #Tsf) aTeos o | V) o7 + R

0 o)

(1.4.163)

and figure

(L4-164)
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Substitution into (1.4.160)  yields:

aF 3F ?y<i0
(1.4.165)
go «tf  otgo
with (see appendix 1.4)
3r Y As(t80)  AMrTs(tg0)  yTs(tg0)  cosTTS(t80)
«~V=V1
RV
(1.4.166)
I.go
XTs(gQ) — RO =T J eonyTs) —
0]
go
yTsltgo) = v { °" yTs) o (L4.167)
(0]
R\ =tXTs(tgo)+yTs(tg) (1A168)
Mechanization of the prediction a|gorithm is done by Choosing the state vector
d=vow oy JS0yTse) e Jeos yrg) 001 (14169
with
- AU NO) — v (1.4.170a)
2P —° (1.4.170h)
~ (14.170c)
o 30y ;
4 =3 «0) = sinyTg() (1.4.170d)
£5 = COS3(r) 50) = COSyTg() (1.4.170e)

1{0,tgo] 6~ ]:O (L4471)
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The prediction  algorithm  now proceeds as follows:
step 1 i=0, choose toitial  value f
step 2 solve (14170) for . [, t*]- [
step 3 compute predicted target position:

X's= RO+ 1 A yN = T )

step 4 compute range-to-go:

2 2

RAIATC) -
ey A-YD)

step 5 compute collision  course (see figure 1.4.4):

Si,y0i=i3i} COSy°i=Mi

R1 R1
yOl = arctg &1
cosY0l
'S
- 01
oy )
step 6 compute ———= Yol
atgo
xjssin{3-  Y"SCOS 3
oy S

R1

step 7 compute F(t*):

F(tgo) ~ vTcos3- «llcosTIl+ yf

step 8 calculate F(tij

F(i0)=4s-4cos’oi
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. . i+1
step 9 compute improved estimate t

*i:

K1- 10+HO

step 10: if At go < tolerance th = th

otherwise: i=i+l, go to 2

table 145 prediction  algorithm

Remarks:

) In order to execute the algorithm the following information must be available:

current  missile velocity : v([)

straight-flight drag coefficient

for DD -calculation "D

missile mass Com

current range R(t)

current  target heading YTS(I)

target  velocity vT

target acceleration profile apM (11 th]

table 1.4.6: information  requirements for prediction  algorithm

Knowledge of v({f) R({)) m, and CJA 5 necessary to predict the missile flight path. v(f)
and R(t) can be measured or estimated (Kalman filter), mis a known constant and COI\

is usually available in the form of tabulated data as a function of altitude and
Ma-number. In order to save on-line computing time it is possible  to precompute and
store the straight line missile-trajectories. Note that for the constant-altitude case only
one trajectory for each altitude has to be stored. On-line integration of (1_4,1703/[3)

may therefore  be replaced by interpolation in appropriate  tables.
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The current target  state y-tcCO. vt» and a—pCO cannot be measured but magy be available

from an estimator like a Kalman-filter. However, no information is available about

a/\(r) for ¢ > 0. Therefore assumptions about a/\r) must be made to solve the

prediction problem. It is evident that deviations of the assumed tgrget acceleration
prof”e from the actual one wil cause |arge prediction errors especia”y in the case of

large t and wil therefore  heavily degrade guidance law performance.

i) The prediction has to be carried out at every update of the outer solution. Let A

and W, be two consecutive  ypdate times, ie

tk¥] —\ * TS <L4-172)

If t k) is the value of t found at y a good estimate for t +1) is
. 290

tgO(k+])  ~ tgO(k)-Ts (14.173)

With this  start value the prediction algorithm  achieves  sufficient accuracy With at most

two iteration steps.

1.4.6.3 H1 minimization

In order to develop an algorithm to carry out the minimization (1,4,149) the equation

iS cast into a more suitable  form. With (1.4,136/139/151/152) *X} becomes:
|I‘J/1 i \ o
11. mvo D(aopt)

fiL

\VAVA VAR v BN oA

(1.4.174)
Inserting  (1.4.138)  with (1.4,146) renders:
” Vv«ecose Vf Vv,
i _ S><“Aqo «nnt> . ) L pnil )
4 301 ( opt7 7Av 0 ix i (1.4.175)
L
( aapt>
where
ey ~ \V4 yo . course error (14176)
AV =g W0 (1.4,177)

Dn — D°(v<0 (14.178)
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Substitution  of (1.4.175) into (1.4.144) yields:

xkw) - N\ [W/\) VHpt* 1n <L4-179)
with
D0 w™)) vOcosey-v°®
« (U o L 2EL_ 2 |_L] (i.480)
L opt NS Do Av
opr

It can be shown (appendix 15) that:

sign(x30) — * (1.4.181)

With (1.4.179/181) the minimization (14.149) may therefore  be replaced by :

ot~ < ") VropPlL(a)L aate

Let X? and XL(O.) denote the optimal value of X, according to (14.180) and the
replacing 1 <« py ~ estimate o respectively. Using XL(0.) in

(14.182) instead of yf yields:

«(«k) — arg min/\a) XL(«R) 1|-i(a)] (1.4.183)
hence "a* _is the solution  of:
opt
2ak) — ax (1.4.184)

The following iteration scheme is used to solve (1.4.184):

step O : k=0, choose inital value ..

step 1+ calculateXL(a.)from(1.4.180)
step2 :calculateo(a.)from(1.4.183)

o *qk
step 3 if a— a < tolerance = a
opt

otherwise:  k=k-+I, «k = « goto 1

table 1.47: determination of optimal angle of attack
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A sufficient condition for the convergence ©f the above iteration scheme on the
interval | — [V/\ - Ao, V/\ + Aalis [58]:
da(ct.)
-1< 2-<l v-ClI (1.4.185)
do,, K
k

In the following it is shown that under the assumptions

a) 200 at least once continuously differentiable and
b)VOpt exists

there is always Ao > 0 such that (14185) is safisfied,  guaranteetog local convergence

of the iteration scheme.

Proof: ~ With (1.4.151) 1H1 from (1_4_144) may be written  as:

Itrv 1h- lijo, <, Li L(«)
— . A 10/;
0, y) = Hf@ y)* xaa (?_.4.186))(

mvQ

For arhitrary a and fixed V(1-4.152) renders:
1h%o)

1 1, e

Na) mvQ (1.4.187)

The optimal value is given by:

x4~ Nopt* (1A188>
Since 1@l minimizes  H one has:
opt
_/\ . L(
AV V) + * = W.. V) +>>; V — o
4 °p| 4
mvQ mvQ
(1.4.189)
With (1.4.187) it follows immediately
X* = Ix’\(o) (1.4.190)
Conclusion: X! maximizes the function *\(a) With  assumption  a) this  implies
locally:
aVv
gy =° (1.4.1914)

da opt
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or with (1.4.180):
_))r/\v =0 (1A191b)

From (1.4.183) follows  with (1.4.191b):

§(Hpt) - /\/((ls_)l(pt) -0 (14.192)

Existence  of the convergence interval | given by (1.4.185) is guaranteed by (1.4.192)

with assumption  a).

Discussion
In order to perform the iteration given in table (147) the following toformation must

be available:

a) the missile  aerodynamic coefficients (missile model) for lit and drag evaluation

o .
by 'y and V0. for calculation of ey and Av
¢) the values of \/(current value of y) and v« (current value of v as discussed in

section 1,4_6_1) for the calculation of e Ay, and DQ

The main obstacles to the implementation of the boundary control law are due to the
lack of information about the missile aerodynamic  coefficients (which  are usually
subject to large inaccuracies) and about the missie heading angle y y should be

known in the reference system ZS(k) used for the determination of y° Since a direct

measurement IS jmpossible could be obtained via  (1.4.148 with o- and $-
p y

measurements. Measuring = is, however, costly and not common to short range

missiles. Moreover the gccuracy Of these measurements must be enhanced for example

by use of a Kalman fiter. Since this approach is based on the missile model, the
accuracy Of the o  estimates is linked to the accuracy Of the missile-data. Therefore
the poundary layer control law is yery sensitive to errors in the missiie model which
affect the minimization process  directly via (]_.4_182) and indirectly via the 4

estimation.
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146.4 Summary of the Guidance Scheme and Introduction of a Simplified First

Boundary Layer (FBD-Control Law

The guidance scheme derived in sections 1.45/6 consists of a predictor and the FBL

control law. The predictor output is the desired heading angle yo based on the

predicted  point of intercept ~ Prediction is performed by assuming the unknown future

target maneuver and ysing the missile's straight-flight characteristics for the

flight-path calculations. In addition to the optimal heading angle a weighting  factor

is determined which influences the performance index of the statc minimization to
XL p
the fist  boundary layer.

The FBL control law serves the correction of the course error ey to such a way that a

weighted sum of It and drag is  minimized. s output is the commanded lateral

acceleration aQ The choice of xL leads to a compromise between minimizing the time

to correct ey (e. maximizing ) and minimizing induced (rag losses.

The information requirements include the current and future target state as well as the
knowledge of the missile state and gerodynamic data. The structure of the guidance

loop s depicted in figure 145

The guidance scheme described above wil be referred to as OCHE(QOptimal Course
Error  Control) since it evaluates an optimal acceleration command based on the
course  error. The target ~ state estimator shown to figure 145 wil be discussed to

chapter 2 of this thesis.

An obvious approach leading to substantial simplifications of the FBL-calculations is

the use of proportional course error  control (PCE), ie. the optimization process

(1.4182) s replaced by the proportional controller:

ac ~ Fey (1.4.193)

where K is a npavigaton gain which depends on the intercept geometry. A guidance
law with the same structure is also investigated in [22]. Clearly (1.4,193) does not
optimize induced drag losses agny more and hence wil result in a longer time-to-go

than OCE. Onthe other hand the missile aerodynamic  coefficients need not be known
for  implementation of PCE Comparison of OCEand PCE in the subsequent
simulations will  show how much time can be gained by taking into  account induced

drag losses in the FBL-control.
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target motion

r
o_
onboard sensors target state
estimator
missile  motion
«,.KL
N \ FBL control law collision point
autopilot O<«<—— (1.4.182) with prediction
Toaf (1.4.155) (table  1.4.3)
>
Yopt' == AV Yr=v
aT,R

L board computer

figure 1450 stucwre  of guidance loop based on singular perturbation  analysis
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147  Simulations

In this section the (near) optimal guidance law OCHEuwil be compared with the simpler
but not time optimal guidance laws PCEand PE (Section 135). PCEuses the same

predictor as OCEand therefore sl ties to establish  the time optimal outer solution

given by a straight line through the predicted point of intercept  Induced (rag losses
are, however, not considered gny more during course error corrections. Therefore  the
comparison of OCEand PCEwil reveal the savings of time due to shaping the

acceleration profile in such a way that drag losses are minimized.

The guidance law PEdoes not perform any prediction but tries to keep the LOS-rate

zero Which is a sufficient condition  for totercept The resulting fight ~path is to general

not time optimal and the comparison with OCHEuwil show the time losses which result

if no predictor is used.

Two intercept scenarios  will be discussed. In scenario A the initial range is large and

the problem duration  Jong. The scaling assumptions inherent in the guidance laws
OCEand PCE are satisfied (see section  14.4), In scenario B the initial range and

problem duration are short and the missile maneuvers with its maximum acceleration

capability most of the time. Here the scaling assumptions are violated.

First consider scenario A depicted in ﬁgure 146 with

Vg — 0.9 Mainitial missile  velocity
vT = 99 Matarget velocity  (constant)
ap -69 target lateral  acceleration (constant)

Rq — 7.5km intial  range

h = 10km altitude

A"aT

V0 R, LOS VT

Z 0

figure 14.6: scenario A
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The iniial  missile-target configuration is "head-on".  The target performs an evasive
maneuver With constant speed and constant lateral acceleration. This maneuver is
assumed to be known for collision potot prediction by OCEand PCE For PE the

current  target  state (yT, VT, a/\) is assumed to be known. The mato simulation results

are summarized in the following table:

guidance law miss distance  [m] problem duration  [g] figures
OCE 1.21 14.29 147
PCE 1.16 14.80 1.4.8
PE 1.05 16.05 1.4.9

table 1.4.8: simulation results of scenario A

Discussion  of results:

Before the simulation results  are analyzed, some remarks on guidance law activation
and missile lateral acceleration limits ~ are necessary. For the type of missie under
consideration here the guidance law is activated after  fuel-burn-out which  occurs
about 2.2s after launch. Consequently there iS no missile maneuver during the initial

boost phase. The missile  velocity profile is characterized by a steep increase in velocity

until  fuel-burn-out and a subsequent decrease due to drag losses (figure 1.4.11Q.
Since the gaerodynamic forces are proportional to the squared velocity, the missile’s
maximum lateral acceleration is determined by the velocity profile and hence
decreases after  fuel-burn-out If the commanded acceleration exceeds the current

maximum possible  acceleration flipper ~ saturation occurs  (figure 1.4.8¢). The flipper
deflection limits are +26 deg, -26  deg. During the period of flipper saturation the
missile performs a damped pitch oscillation which s seen in the acceleration profile
(figure  1.4.8).

A look at the missile flight path obtained  with OCE(figure 1,4,73) shows that the
missile  heading angle y reaches the outer solution  after an toitial transient The missile
maneuvers on a nearly straight line  with low but nonzero lateral acceleration (figure

1.4.7C,d). Exact Straight.ﬂight conditions (|e zero course error and zero lateral
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acceleration) are, however, never reached. This is due to the induced drag
minimization to the first boundary layer which prohibits the wuse of excessive
accelerations that would be npecessary to correct the course error completely. Only at

final  time, when the missile  velocity and therefore  drag losses are minimal, complete

course error Ccorrection occurs (figure 1,4,7@) to order to achieve zero miss distance.

In  contrast to OCE, PCEnulls the course error 10 a strong initial maneuver With
maximum acceleration (figure 1,4,8c,dye), After course error correction the missile
moves on a straight  line with zero lateral  acceleration. Clearly, induced drag losses  are

not minimized because the maneuver takes place during the period of maximum
velocity. The comparison of the problem durations of OCEand PCEt table 1438
shows, however, that the time loss due to increased drag losses to PCEis neg|egib|e,
On the other hand a significant increase to flight time results with application of PR
Since PEtries to null the LOS-rate the resulting LOS-rate  profile (ﬁgure 1.4.90) and

fight ~path (figure 1.4.9a) are far from the time qptimal trajectories (figures  1.4.7ah).

The above simulations suggest that savings in flight time are mainly due to the flight

path planning based on the prediction of the point of intercept, while  shaping the

acceleration profile for induced drag minimization has practically no effect on the

problem duration.
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MISSILE AND TARGET POSITION
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MISSILE AND TARGET POSITION
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Table 149 shows the main simulation

guidance law miss distance  [m]

OCE 27.64
PCE 0.38
PE 0.03

table 1.4.9: simulation results

RO .LOS
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results:

problem duration [5]
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Discussion  of results:

In this scenario OCEyie|ds a Iarge miss distance. The reason becomes clear from
figures (14.11c,d.e). The missile  maneuver stats with maximum acceleration. In order
to reduce (rag losses the acceleration is reduced after about 55 seconds (after  launch)
resulting to a considerable final  course error (ﬁgure 1,4_11e), The effort to null this
error close to final time fals, because the required acceleration exceeds the maneuver

capability ~ of the missile (flipper  saturation).

The guidance law PCEgpplies maximum acceleration untli  the course error Vvanishes
(ﬁgure 1.4.12c,d,e) and thus achieves low miss distance. Note that the periodic

disturbance to the flipper deflection and acceleration profiles of OCEand PCE are

due to the update of the outer solution (course error update).

The guidance law PEdoes not only yie|d the lowest miss distance but also the shortest
fight ~ time to this scenario, implying that frying to reach the straight-line totercept
course IS not time optimal to this case. From figure 1.4.12e it becomes clear that the
main part of the trajectory consists  of the - boundary layer and only the last second
is on the outer solution (e = (). Hence the scaling  assumptions, especially the

decoupling of the y - dynamics from the position dynamics according to (1.4.109/110)
are no |onger valid. Therefore the SPguidance scheme is not time optimal any more.

N summary the followtog conclusions  can be drawn from the simulation results:

) For long ranges time-optimality of a guidance law is mainly achieved by predicting
(correctly) the point of intercept  and choosing the time optimal path through this
point Taking into account induced (rag losses does not vyield significant savings to

fight time. However, it results in a final course error entailing large miss distances

if the correction requires a lateral acceleration that exceeds the missile's maneuver
capability. In fact the path planning in the outer solution should be done py taking
into account the missile's lateral acceleration limit. But since this limit depends on

the missile velocity and the velocity loss depends on the missile maneuver, the
fight  path planning is coupled to the rotational dynamics. Therefore  acceleration
limits cannot be treated with the SP-approach described in section 145

ii) The guidance law PEyields time losses for "long-range” totercept scenarios  since
the associated fight ~ path is not time optimal. In short range Scenarios  with high
maneuvers PEIs gyperior to OCEand PCEsince the scaling assumptions ensuring

optimality of OCEand PCEare not valid due to the missile's acceleration limits.
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iij The savings in flight time obtained by OCEand PCEto certain  scenarios are due to
the accurate prediction of the target maneuver as Mmentioned  before. Since
accurate  prediction is usually  impossible the theoretical savings to time will be
strongly ~reduced if not offset by errors to the predicted target motion (chapter 2).

148 Remarks on Interception in a Vertical Plane

The preceding analysis of the planar intercept  problem was restricted to a horizontal
plane. In this  section the main aspects of in’[erception in a vertical p|ane will  be

discussed.

The equations of the planar intercept problem in a vertical plane differ  from
(1_4.91-93) in the appearance of gravitational terms and the altitude h as an additional
state variable. They are given below without the missile pitch dynamics which are not

needed for guidance law derivation as discussed before.

missile-target relative motion:
A = VT cosyT Vv cosy (1.4.194a)
AY = vT sinyT v siny (1.4.194b)

missile  dynamics:

v — g siny (1.4.195a)

y — £ cosy (1.4.195b)
altitude:

h = Vsiny (14196)
target trajectory

vT — V() (1.4.197a)

v = YT() (L4.197h)
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v y<N
/g
A- y

figure 14.14: intercepton  in avertical  plane

The main differences between vertical and horizontal interception stem from the
dependence of the missile aerodynamic coefficients on the altitude h. The type of
solution obtained  py an SP-analysis depends on the scaling of the equations

(1.4.194-197). There are two jmportant scaling assumptions that concern

a) the coupling of the h- and Ax-dynamics

b) the coupling of the h- and y-dynamics

If the distance travelled in x- direction (figure 1,4,14) is much larger than the altitude
range of the missile, h may be treated in a faster time scale than x. This decoupling is
justified ~ for long-range  missiles.  The coupling ©of h and vis governed by the exchange
of kinetic and potential energy. The investigation of the minimum time-to-climb

problem [50,51,52,57] has shown that the use of the gpecific  energy

2
E_h+IH, e_-X"2V (1.4.198a,b)
2 g mg

as a state variable rather than v is very appropriate to describe this effect and allows a
decoupling of the h- and E-dynamics since changes in Eare much slower than changes

in h. The missile model with (1.4,198) instead  of (1.4.195a) is called  energy-state

model.
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The intercept problem  using the model has
[45,46,48,53,56] with  E decoupled
and E. [45,48149,56] treat  the

extension

energy-state

three  dimensional case Which is

of the planar problem. Qualitatively the optimal missile  flight

of an initial h-boundary layer to the 0ptima| cruise  altitude h*,

missile has reached straight flight conditions with  lift Compensating

decoupled from Ax, h* is determined by the maximum missile

velocity.

| the missile leaves the cruise arc on a terminal

of intercept

While this  solution s valid for |ong range mMissiles

it does not apply

scenarios  where the dynamics ©of Ax, Ay, h, and Eare coupled.

(1.4.194-197)

discussed Consider

in the sequel. with the following  scaling:

— VT cosyt Y cosy

AY = T ShiyT v sinY

h  =vsuiy

£Y — ——-coOsy
myv \V4

thrust is zero

In (14.199)  the

been neglected

according to (1.4.95)

compared to the drag losses. The Hamiltonian

been

a straight

Onthe cruise

boundary layer
to short

This case will

and the gravitational

of the outer

solved in

from Ax and in [49] using the same time scale for Ax

forward

path consists

path the

weight If Eis

Near the point

through !
range

shortly  be

(1.4.199a)
(1.4.199b)

(1.4.199¢)

(1.4.200)
(1.4.201)

force has

solution is:

H =1 QT cospt V7 C0SY) + X° T gy V* sinv0)

-\0 fL_ + xo vo sinjo = o
m 4

3

with  X?, X? constant according to (1.4.125) and
o aH X3 3DO0
4 ah m ah
where X"(@f)
since the final altitude is free.

(1.4.202)

(1.4.203a)

(1.4.203b)
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The optimal missile  heading s given by:

3H°
-0 (1.4.204)
dy°
yielding:
i0e?«..0 \o.w... .o N =o-rtero .
*1sln N\~ X2 cos 'opt+ x4 'Opt <1A205)
gy, -2 F (1.4.206)
°PI %0
Al
In contrast to (14.130) Yy° is not constant any more since X?is time-varying. The

outer solution  could be determined by estimating V(tf) and h(tf) integrating backward
(L4199200)  with Axi) = ) -~ X(f) = o and y°  fom (14206  and

iteratively correcting V(tf) and h(tf) untl  the given initial conditions AX(tQ), A}/(IQ),

V(tQ), h(tQ) are satisfied. Estimates  for h(tn and V(tf) to start the iteration can easily be

obtained from the outer solution of section (1,4.5.1), Note that the angle of attack is
not zero Iin the outer solution (in contrast to the horizontal problem) because of the

nonzero it needed for weight compensation in (1.4.201).

with (1.4.203b)  follows that the flight path given in (1.4.206) approaches the straight
line defined by (1.4.130) near final  time. Note that (1.4.130) is the flight path

determined  py the shortest distance between the current missile positon ~ and the potot
of intercept. It is therefore obvious that sjgnificant deviations from this path will only
take place for long problem durations  that allow excursions to gptimal altitude levels

for periods long enough to offset the time losses due to the increased range-to-go.

As the simulations of the last section gyggest, the outer solution is never reached for
many SCenarios, ie. al the motion takes place in the  -boundary layer. It also turned
out that the effect of drag minimization is minor compared to the savings in time

obtained by choosing the shortest path to the collision point For the type of missile

investigated here the ntercept problem in the vertical plane may therefore be treated

like the constant-altitude case.
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15 Summary and Conclusions

In the fist part of this thesis two approaches to guidance law derivation via optimal
control  theory have been discussed. First  guidance laws based on linearization of the
intercept ~ problem were reviewed, then the time scale separation by SP-theory was
investigated. It was pointed out the the mato drawback of the resulting  guidance
schemes is the need to predict the future target maneuver. This is adirect consequence
of formulating the intercept  problem as an optimal control  problem Wwhich inevitably
leads to a two-point-boundary-value problem  requiring knowledge of the future
target ~maneuver. Since the target mManeuver is  unknown, assumptions  must be made

that degrade guidance law performance if the actual tgrget behaviour s different A

guidance law (PE) was derived  that avoids these difficulties. It is based on a
linearization around the sufficient condition for intercept
9 =0 (1.5.1)

and subsequent solution  of an LQ-problem. The nominal control needed to establish
the nominal trajectory associated  with  (151) s a target ~maneuver compensation
(TMC) requiring knowledge of the current maneuver only. The solution of the
LQ-Problem vyields the well known Proportional Navigation ~ (PN). Hence PE s a

superposition of TMCand PN. Simulations demonstrated  the superiority of PE over
PN and showed that in contrast to PN, the navigation gain of PE is practically

independent  of the intercept ~ scenario.

The application of SP-theory leads to near time qptimal solutions of the planar
intercept problem for scenarios with  |ong initial ranges. In these cases the ynderlying
scaling assumptions are satisfied. The missile  fight path s given by a boundary layer
from the initial conditions to the outer soluton and a subsequent straight  flight to the
predicted point of intercept. Simulations comparing the SPsolution  with PEshow that
time savings can be achieved through time optimal flight path planning. PEtumns out
to be syperior in the case of high maneuvers during most of the trajectory, ie. if the
scaling assumptions ©of the SP-approach are violated. The simulations also revealed

that the time savings are mainly due to the ogptimal flight path planning rather than

drag minimization in the FBL-control law. The problems of implementing the SP
control  law which are due to substantial information requirements about the missile
aerodynamic  coefficients and the tgrget maneuver have been discussed.  |nvestigation

of the intercept problem in a vertical plane showed that for short range Missiles  the
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missiles  the solution  for the horizontal plane is valid here as well since there is no time

for altitude transitions on energy-climb and -descent paths.

The results  gyggest that the SP-approach does not lead to hnplementable  guidance
laws ~for  short  gnge  Missiles: In  scenarios with  high maneuvers the gcaling
assumptions  are invalid  which sharply reduces SP-guidance-law  performance.  For
long ranges the need to predict the point of intercept s likely to offset the advantages
over PEIn flight time. Onthe other hand PEhas been found a robust (with respect to
changing intercept ~ scenarios) and simple guidance law with minimum information

requirements. s implementability depends on the availability of toformation on the

current  target maneuver. AN estimator  for this toformation will  be derived to the next

chapter.



2. The Tracking Problem

The tracking  problem consists  of estimating the state (position,  velocity,  acceleration)
of a target by processing toformation  gathered by a fixed or moving oberserver.  The

discussion  to section 15 has shown that the solution of the tracking problem must be

part ©of the development ©of implementable @ modern guidance laws. In the totercept
problem discussed  here, the missile plays the role of the observer. The tracking

problem poses considerable difficulties if the toformation about the missile-target

relative geometry is  obtained by passive sensors  Which provide bearing- or

bearing-rate measurements only. This is the case for the totercept problem discussed

here. The planar Bearing (-rate) -Only Measurement Problem (BOMP) is stated to the

next section.

2.1 Statement of the Tracking Problem

Consider the scenario depicted to figure 211 The target T is tracked by the observer

M. It is assumed that the observer maneuver is completely known. The bearing angle

g or the bearing rate g respectively, is the only information available about the

missile-target relative motion. The task is to estimate the current target  state  (for

example given by Ax, Ay, Ax, Ay) based on the known observer maneuver and noisy o-

or o. measurements.

figure 211 geometry of the planar tracking problem
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A straightforward approach to the BOMPs the use of an Extended Kalman Filter
(EKF). Prior to the discussion of applications of the EKFto the BOMRSs equations
are summarized for later use [7576];
Consider a nonlinear dynamic system governed by the foIIowing discrete stochastic
equations:
y(tl) = Tk, ulkt)]  + wik+) (2.1.1)
subject to the initial condition:
yO) = yo (21.2)
with
y(k) RN state vector at time th
u(k) — " deterministic input at time t
w(k) RN Gaussian white noise sequence With:
E[w(K)]=0 (2.13)
Ewiwt)] - GiQ(0 (2.14)
E[] : expectation (see [79])
Kronecker delta
8«
The purpose O©Of the extended Kalman fiter is to obtain estimates of y(k) based on
noisy measurements of the form:
mKk — Kk +sk  RP (215
where h P is anonlinear function of y
s DP is a Gaussian white measurement noise with:
E[s(K)]=0 (2.1.6)
Els(jsta)3 - s 2.1.7)
Em(jst0)] - o (2.1.8)

notations:

y(k+1/k)

y(k+1/k+1):

. estimated based on the

value of y(k+ 1)
i=l,... K

measurements m(i),

estimated based on the

value of y(k+1)

measurements m(i), i=l,...

e+l
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The fiter  equations can now be summarized as follows;
state propagation:

y(ktlk) = FlykK),  u(k+)] (2.19)
initial condition: y(0/0) =0 (2_110)

covariance  propagation:

Pk+1k)  — W(ktLK)P(kk)Wt(k+k) + Q(k+1) (2.1.12)
with
wikti=  WVQE<IH) (2112)
3y(kik)
iniiall ~~ condition: P(0/0) — PQ (2.1.13)
p_Pl-o Ran; Q- Ql —~o RnXn (2.1.14
state update:
y(k+1/k+1) = y(k+1/k) + G(k+)[m(k+1) - m(k+1)] (2.1.15)
with
m(k) — hiy(K)] (21.16)
Kalman gains:
Gkk+1) = P(k+IK)Ct(k+))[C(k+)P(k+I/k)Ct(k+]) + S(kt1)-1
(2.1.17)
c RnXm
Cl) — —[y(k+1/K)] RmXn (2.1.18)
covariance  update:
P(k+I/k+1)=]l G(k+)C(k+)]P(k+IK)[I - G(k+)C(k+)]t +
+G(k+)S(k+)Gt(k+l) (2.1.19)
Definitions:
r(k) ;:m(k).ka)"" measurement residual (2.1.20)

e(k/k) : :y(k/k) - y(k) estimation error (2121)

a,h)
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Remarks:

) For linear  systems (2,1,]_) and linear measurements (2.1_5) the estimation errors  are

zero-mean and Gaussian. In this case, Pis the error covariance matrix given by:
Pikk) = E[e(kkl(kK)] (2.1.22)

In the nonlinear case P is at best, an approximation to (2122 AN important

reason for filter divergence is the underestimation of estimation errors  which
occurs If the estimated error variances (diagona| elements of P) are smaller than
the actual error variances. Note that as P tends to zero the filter gains become zero
and the filter works as a mere predictor without taking toto  account new

measurements. FOr more details see [75,76] and section 2.6.4.2.

||) The filter equations of aspeciﬁc system are determined if the functions f h and the

matrices \W\and C are known. For filter implementation the toitial conditions y0

Pq and the noise statistics S and Qmust be specified.
1

22 Applications of the EKFto the BOMP A Review

In this section the main results and problems arising in the application of the EKFto
the BOMRill  be discussed.  Onthis basis a new tracking fiter — wil be developed to

later  sections.

A prime source oOf divergence  of tracking fittrs  based on bearing (rate)  only

measurements is the lack of complete observabily  (see for example [65]). Moreover,
due to the nonlinearity of the ﬂ|tering problem, the behaviour of the filter is

dependent on the coordinates used to formulate the filter equations [61]. In  a cartesian
coordinate frame the system dynamics (obser\/er-target relative motion) are linear and

the measurement equation s nonlinear. Formulating the filter equations  to polar

coordinates  yjelds nonlinear system dynamics and alinear measurement equation.

First, ~ the formulation in cartesian coordinates is considered. Defining  the cartesian

state vector:

1 — (ax, Ay, Ax, Ay) (22.1)
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the equations ©of motion become (see figure 2.1.1).

Z = 2 (2.2.23)
N _ ” (2.2.2b)
3~ Aax (2.2.2¢)
24— Agh (2.2.2d)

with
Aa = ang relative  acceleration (2.2.3)
al _ (a“x, ] ) target ~acceleration (2.2.4)
al _ (ax a) missile  acceleration (2.2.5)

The BOMPhas been ntensively studied for non-maneuvering targets.  The quantities

AaY and Aa, then are determined py the observer maneuver and therefore known.
X
y

Hence, (222) may easly be integrated yielding the discrete  version of the equations

of motion. Unfortunately, the measurement equation associated with (22.2) is
nonlinear. For bearing-only measurements one obtains:
*2
m—= g + s = ac {g— * s (226)
h
for bearing-rate-omy measurements the measurement equations is:

i @ * 2 nhnh-nh
o e o - o,

Zl Zl
where s is a zero-mean white measurement noise according to (216/7)

The EKF ysing the cartesian state z will be called cartesian EKF (CEKF)_ This filter,
based on the measurement (226) has been found to exhibit serious stability problems.
In [60] and [g5] t was shown that the fiter —behaviour is yery sensitve to the selection

of the Iinitial error  covariance matrix PQ (see section 2.1). Linearization of (2_2,6)

according to (2.1.17) results, via the fiter gain computations (2.1.16), in a feedback of

estimation errors  into  the covariance calculations (2,1,18) and may therefore cause

divergence. Filter  stability may be considerably improved by decoupling the
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covariance equations from the state estimates. This can be done by replactog the
nonlinear measurement equation by pseudoltoear measurements [59160163,71]. The

pseudolinear measurement equation associated  with (2.2.6) is:

m=C(m) z +s-0 (2.2.8)
with

C(m) = [sin(m),  cos(m), 0,0] (2.2.9)

s = Rsin(s) (2.2.10)
The new measurement noise s is, however, non-Gaussian,  which results to biased

estimates  of the pseudolinear tracking fiter  [6371].

AN important  reason for fiter instability is the lack of complete observability of z
prior to the fist observer maneuver [59,6264.  This explains the sensitivity problems
associated with  covariance initialization mentioned above. It is shown in [64] that
observable and unobservable states can be decoupled if the fiter states are choosen to

be modified  polar coordinates (MPC):

While y b ym2, ym3 are always observable for g =~ O ym4 is unobservable for a

non-maneuvering observer. The covariance equations associated  with  (22.11) are,

however, decoupled to the observable and unobservable part of y Therefore the

EKF based on (2_2,11) remains  stable in the observable states even if the

ym4_estimate divergesl Due to the Coupﬁng this is not true for the CEKF. Note that

the measurement equation associated  with  (2.2.11) is linear for both cases (2,2,6) and

(22.7). The estimates of the MPC-filter are therefore  asymptotically unbiased.

The observability of the filter states is linked to the observer maneuver. In addition to
the case of a non-maneuvering observer there are other maneuvers for which the filter
states are not Comp|ete|y observable. They are discussed in [62]. The most important
result  for practical applications is that an oObserver maneuver resulting in  constant
bearing angle throughout the scenario results in unobservable filter states. Note that
this type Of maneuver is a typical nomtoal conditon  for many guidance laws (chapter
1)
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In principle ~ there are two approaches to the design ©f tracking fiters to the presence

of target ~maneuvers. One method is to interpret the target mManeuver as an external

disturbance. The target acceleration components are therefore not included to the
fiter ~ state and hence wil not be estimated. The second method includes the target
acceleration in the filter state. Essentia”y, the first approach is based on two
hypotheses:

HQ: non-maneuvering  target

HA: maneuvering target

The target maneuver must be specified  to HA Typica”y the following model is used:

rTaT — aT-ar + %W (2.2.12)
it . correlation time
XJ  maneuver level

w  zero-mean White noise process

The task consists now Of a detection problem (ChOOSE HQor HA and state estimation

by an EKF. It is obvious that this approach is not suitable for tracking continuously
time-varying target maneuvers but is restricted  to piecewise constant maneuvers. In
order to track arhitrary maneuvers several  hypotheses, each associated with a different
maneuver level are tested [68,69], The selection of a specific hypothesis can be done
by a likelihood test conditioned on a finite number of past measurement residuals
[66,69172] or by ad hoc methods ftesting the size and correlation of the residuals [67],
Al of these procedures require the use of filter banks and result in  excessive

computing and storage requirements. Moreover stapility ~ problems occur if none of the

choosen tgrget models matches the actual target behaviour [69],

If the target maneuver is included in the fiter  state, maneuver detection becomes
obsolete. However, a model of the acceleration dynamics is needed in order to solve
the  extrapolation equations  of the EKF. Since the target maneuver is unknown, the
target ~dynamics are usually formulated  as a random process. The following ~ models
have been jnvestigated in [70] in conjunction with  an EKF based on cartesian

coordinates and bearing-only measurements:
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a) a] A
b)TTaj — arp-aj + W

with  ww from (2,2,12)

It was found that the EKF performance s generally poor for al three models. Model
¢) vyielded slightly worse fesults  (in  terms of estimation accuracy) than models a) and
b) which behaved similarly. The low estimation accuracy ©Of the EKF may partly be

attributed to the use Of cartesian coordinates as discussed before.

Up to now the basic problems of target tracking have been discussed. For the solution

of the intercept problem the estimated target information is used py the guidance law.
The interaction between the guidance law and the tracking filter is therefore an
important  aspect affecting  the design of both guidance law and tracking fite. ~ Due to
the low information about the missile-target relative geometry provided by bearing
(rate) -only measurements stabilty ~ of the tracking fiter  cannot always be guaranteed.

It is therefore possible  that the guidance law receives wrong toformation about the

t is desirable to have

target maneuver. This mgy result in Jarge miss distances.  Hence,

guidance laws that are "robust" with respect to tracking  errors.

The stahility of the tracking filter depends on the missile maneuver as Mmentioned
before. Unfortunately observability is lost if the bearing-ang|e is constant which is a
nominal  condition of many guidance laws, for example PE (see section 1_3.5). A
remedy could be trajectory modulation  [7374.  However, the resuling guidance laws
cannot be obtained in closed form but involve on-line  solution of a TPBVP. This topic
has already been discussed in chapter 1. Moreover the missile maneuvers required to
enhance observability result  in increased drag losses and thus diminish  the missile's
maneuver capability (section 1,4.7) which is undesirable for the type of missile
investigated here. A different approach was taken in [72] where the uncertainty of the

target state was coupled to an LQ-design based guidance law by adding the associated

covariance matrix to the control weighting matrix in the quadratic cost  criterion. In
this  \ay the bandwidth of the guidance law is adapted to the accuracy of the estimated
target ~maneuver. This scheme is; however, only meaningful if the covariance estimates
computed by the tracking fiter  are accurate, i€ are a measure of the true estimation

errors. Due to the weak observability this  condition is often not satisfied for the
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BOMP. In additon,  the guidance law to [72] requires backward integration of the

Riccati  equation, implying ~ that the characteristics of the estimation errors must be

known in advance which is not yery realistic.

N summary t can be stated that the BOMR well understood for non-maneuvertog
targets. The important  sources of tracking  fiter instability have been identified and
effective counter measures (such as pseudolinear measurements, use Of non-cartesian
coordinates)  were proposed. FOr maneuvering targets, approaches based on maneuver
detection (multiple model filters) are not adequate to track targets that perform
continuous maneuvers. The inclusion of the target ~ acceleration as an additional filter
state is in principle  the right way to track general target maneuvers but the question of
modeling the target dynamics is st open. The most common model is a first-order
Gauss-Markov process. The observability analysis carried out to [64] has not yet been
extended to maneuvering targets. Only very simple target maneuvers, such as constant
acceleration and jumps to the acceleration have been toyestigated. Filter  performance

was not tested for continuously  time-varying  (for example sinusoidal) = maneuvers.

The purpose ©f the subsequent investigation is to close this gap. AN observability

analysis for the BOMPwith maneuvering targets s carried out It is shown that the
EKF designed to track piecewise  constant-acceleration maneuvers does not track
general  time-varying maneuvers. AN adaptive multiple  time scale fiter is developed
for this case. Questions of coupling between guidance law and fiter  will be discussed.
It will be shown that the guidance law PEexhibits  acertain robustness with respect to
tracking errors and is therefore ideally suited for use in conjunction with  the tracking
filter derived here. The filter design wil  be done under the restrictions already
considered  for the guidance !aw design: no toertial angular measurements available,

passive seeker. Therefore the fiter wil be based on measurements of the bearing rate

rather than the bearing angle.

23 The Target Model and Filter  States

One of the main goals of the subsequent tracking fiter  design is to obtain estimates of
the target maneuver, ie. the target acceleration. These estimates are needed for the
implementation of modern guidance laws such as PE Target maneuver estimation by

an extended Kalman filter requires a model of the acceleration dynamics to order to
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solve the propagation equations  (2.1.9/11). Stoce the (arget ~mManeuvers are not
arbitrary it is clear that the more knowledge about the anticipated target behaviour s
exploited to derive the model equations, the better are the chances of filter
convergence since  unrealistic target motions can be excluded a-priori, This is
especially important ~ for the BOMPbecause the toformation contents  of the pearing
(rate) measurement may be very low. Moreover, the restriction of the possible target
maneuvers also results in a reduction of the number of filter states, thus simplifying

the fiter  algorithm.

According to figure 231 the planar target mMotion can be described py the states

VA,
reference
figure 231 planar target motion
The target model used here will be based on the following facts:
a) the target s an aerodynamically controlled vehicle and has certain acceleration
characteristics. Especia”y, in intercept scenarios with  evasive maneuvers, the

lateral ~ acceleration is much higher than the axial accleration.

b) target maneuvers are usually highly correlated

Therefore the following assumptions wil  be made:
d) The target velocity is constant yielding: yT — (23.1)

b') The target mManeuver is deterministic (although unknown)_
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From g) follows that Vj and A are no fiter  states any more. Vj may be considered an

y
unknown filter parameter (WhiCh might motivate  the design of a filter bank based on

several  velocity levels VT) In the sequel, vT will  be assumed known (for example from

radar measurements processed by a ftracking  fiter  of the |aunching aircraft)
Inaccurate vT-estimates will  be considered to the simulations (section 29). Hence the

target model simplifies  to:

5 S (232)
vT
yT = 233
The function aN[) is, of course, unknown.  Therefore, for the solution of the
propagtion equations, it wil be assumed:
T - o (234)
(234) s exact for constant-acceleration maneuvers but corrections are necessary N

the case of time-varying maneuvers (section 2.8), The fiter  state consists of the target
model (2.3.2/3) and quantities describing  the observer-target relatve  motion.  The
latter may be formulated in cartesian and (modified) polar coordinates. Since all

versions will be needed in the sequel they are summarized below (see figure  2.1.1):

flter ~ state in cartesian  coordinates (CO:

1 — (Ax, Ay, Ax, Ay, yT. ) (2:35)

measurement equations:

*2
m = arc tfg— + s bearing-only measurements (236)
Z

2
(Z ™ 'h) 2124 7273

3
u
+

bearing rate-only =~ measurements  (237)
45 Xt

zl zl

The EKFbased on CCuwil be denoted as CEKEF.
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filter  states in ordinary polar coordinates (OPQ:

V1 =@ R o R yT. YT) (2.3.8)

measurement equations:

=3 + s bearing-only measurements (2.3.9)

M=y s bearing rate-only ~measurements  (2.3.10)

The EKFbased on OPGwill be denoted as OPEKF.

fiter  states in modified polar coordinates (MPCV.

ym - (*» ||R| > I|R . *T V (2311)
measurement equations:

™= ym3 + s bearing-only measurements (2.3.12)

™= yml * o bearing rate-only =~ measurements (2.3.13)

The EKFbased on MPQuil be denoted as MPEKF.

2.4 Observability Analysis

When a filter has been designed, the behaviour of the estimation errors is of prime
interest The estimates  delivered by the filter are only meaningful if the estimation

errors are at least bounded. In the most favourable (but  unrealistic) case they Vvanish
asymptotically and the estimates become exact after some time. If the filter is

divergent the estimation errors without  bounds. For linear Gaussian
g grow systems

complete  observability and complete controllability are sufficient conditions  for filter

stability [75-77).  Verifiable conditions  guaranteeing  fiter  stability do not, in general,

exist for nonlinear systems. Often it is possible, however, to isolate situations (for
example certain initial conditions) that  will  certainly lead to (divergence of the
nonlinear filter. For the BOMP, these cases wil be discussed in the sybsequent

observability analysis.
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241 Stochastic  Observabflity =~ and Ffiter  Divergence

Before entering the analysis some explanations and definitions concerning  stochastic

observability are necessary. A\ condition for divergence  of the EKFis derived which

wil  be the basis for the investigation of the BOMP.

The diagonal elements of the covariance matrix P may be regarded as the filter's
estimates  of the magnitude of the estimation errors. If for a system with  zero toput
noise P tends to zero asymptotically, stability of the linear filter may be concluded.

For nonlinear  systems this is not true because P does usually  not represent the actual

estimation error  statistics of the nonlinear filter. However, if P tends to infinity, the
filter is  certainly unstable. Therefore, the  investigation of the covariance matrix is
suitable ~ for the determination of (sufficient) conditons  that result to fiter  divergence.

These conditions are Of great practical importance for filter implementation because

they provide auseful guideline on howto avoid certain stabiity  problems.
The analysis of Pis carried out for anoise free gystem, e
Q=0 (24.1)

With (24.1) P(k/k) from (2,1_19) may be expressed in non-recursive form as follows
(see [79]):

P 1(kk) — WI(0,k) Pgl wok) + ko) (24.2)
where
k
ko~ £ WHKCSLCOWK 243)
i=0
is the information matrix.

Assuming infinite uncertainty about the initial system state results in

POl — o (2.4.4)

and (2.4.2) renders

P_LkK)  ~ 1o 245
Hence, the behaviour of Pis determined py the information matrix.

Definition 1. The EKF(2,1,9 -19) is said to be divergent if the information matrix s

singular.
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Definition 2 (see [79)):

The fiter  state y(k) is completely observable  with respect to the

measurements [ml mk] if and only if
I(k,)>0 (2.4.6)
From (243) and (24.5) t is easy to see that for |Kk]) — 0 processing of the
measurements [n” mk] does not result in gny decrease of uncertainty in the state

estimates  expressed by P, ie. these measurements do not contain any information

about y(k), In this case y(k) is called unobservable  with respect to {m"... mk>.
In view of (245) the observability analysis is concerned with the gingularity of the
information matrix. For simplification of the ana|ysi5 it is convenient to investigtate
the observability of the state vector at initial time with respect to the measurements
{m,... mk} ie. to discuss the estimates ';(0/k) rather than ?(k/k). ';RO/k) is  easily
found from ;(k/k) by backward  solution of the propagation equations (2.1.9).
Consequenﬂy, the error covariance  matrix P(O/k) associated  with y(O/k) is given by :

pok) = W(OKP(kkWt(0,k) (24.7)
and hence

P 10K — Wik 0)P"L(KKW(KO) 248
Substitution of 243) into (24.8) vyields:

PIOK) — Pgl + WIKOJIKOWKO) 249)
Since the initial time may be any time t+ < A (2.4.9) may be generalized to

P10k —P10f) + ik (2.4.10)
with

VK g pw ) =

k

— £ WCS LCHMG a1

i=0
Obviously, y() @and hence y(k) are completely observable with respect to {m,.. ’mk>

if and only if

Ik j) >0 (2.4.12)



125

Now, consider the scalar measurement equation

m gt (2.4.13)
with s according to (2.1.6/7)
y = gth component of y

The measurement matrix associated  with (2.4.13) is:
C = 00,0 0,1,0 0] (2.4.14)

where all except the g-th component of Care zero

Let LW. denote the element of \W\Ao the q-th row and r-th column. With (2.4.14)
etw

follows:

CONV) ~ fig., Wil 0O e
According to (2112) w (] is given by:

aUyG/i-D,u(i)]

V(iJ) (2A16>

a;rO/M)

e ww (i ]) is the sensitivity of the measured state y with respect to changes in yr If

w vanishes for al | the measurements contain no information about In this case

yr

yr is unobservable. TO see this, assume that y has been partitioned to an oObservable

part Y° and unobservable part YU:

yt = &ot yUi (2 417)
D(i ) may be partitioned  accordingly, yielding:

D)~ [P°( ) Du(i (2418)

With (2.4.]_8) and noting that S is a scalar quantity for the measurement (2.4.13) I

from (2.4.11) becomes:

Kk
) - \VADV| oo -

i=]



126

\0t,. L0t \U/.
Dvi(ij)Du(ij) Dut(iJ)Du(iJ)

DU’} oioua.

«00 ou
| |
(2.4.19)
NUO Muu
| |
«00 »uu u
where | and | are the information matrices associated with y and y .
respectively.
If the sensitivities with respect to yu vanish (2415) yie|ds:
Du — o (2.4.20)
which results  via (2,4.19) in:
>»>uu
I =0 (2.4.21)

Hence, YU is completely  unobservable and (24.20) is a sufficient condition for filter
divergence. It is this equation that will be used for the analysis of the BOMP. The

same conditions were used in [64] to analyze the BOMRPor npon-maneuvertog targets.

2.42  Filter Equations in Modified Polar Coordinates

In order to evaluate the (divergence condition established in the previous section the
equations of the BOMPure derived here ysing MPCaccording to equation (2.3.11).

The use of MPCis motivated by their decouphng property already mentioned in

section 2.2 and discussed to more detail in section 2.5 and [64],

Determination of the filter equations amounts to specifying the functions f h and the
matrices  VVand C in (2.1.9-19). his given by (2.3.12/13). With (2.118) Cis easily

found to be:

C =10 010 0(] for bearing-only measurements (2.4.22a)

C =10 000(] for bearing rate-only measurements (2.4.22h)
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For the determination  of f consider the differential equations  of relative  motion

MPC:
ym — W%-V-2ymiym2 (24.233)
ym2 - W*TR aR3 * yml * ym2 (2.4.23b)
ym3 — yml (2.4.23c)
ym4 = ymdym?2 (2.4.23d)
ym5 — ym6 (2.4.23¢)
ymé ~ ° (2.4.23f)

with (see figure 2.4.1):

6 VIYm6COS(ymb-ym3) (2.4.24a)
aTR ~ vTym6sin(ym5-ym3) (2.4.24b)
ms  ym3

figure 241 acceleration  components in (modified) polar coordinates

In order to obtain the discrete equations, (2,4,23) must be integrated over the interval

It \/ WV (2.4.25)

Equations  (24.23) can, however, not be integrated  analytically. A commonapproach
the approximation  of ym(k+|) by an Euler-step:

to

is
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ym(k+l)-Tym(k) (2.4.26)
with T = \+j j.  sampling period (2.4.27)

However, this extrapolation may yield large tocaccuracies  for |ong sampling periods T.
Since the computation time is an important aspect Of realistic filter design, T should
not be restricted by accuracy requirements which may Yield values for T too small for
evaluation of the filter equations during one Samp"ng interval. Fortunately, the
equations of motion can be solved analytically in cartesian coordinates. Therefore,

following the approach in [64], integration will  be carried out to cartesian coordinates =z
defined in (235) and afterwards the results are transformed to MPC. The equations

of motion in cartesian coordinates are:

zl-z3 (2.4.28a)
2 — 24 (2.4.28b)
73 = Aax (2.4.28c)
24 = Aay (2.4.28d)
5 26 (2.4.28¢)
6 — © (2.4.280

where from (2,2,3)1 (2_3,2) and figure 24.2 one obtains:

Aax — -vTz6sinz5-ax (2.4.29a)
A = T yp 26 °° 5 At (2.4.29h)
y*

-»-X

figure 24.2. target acceleration in cartesian  coordinates
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Note that due to the tgrget maneuver to (24.29) equations (2.4.28)

Integration is, however, possible analytically yielding:

22K+ Tz3(K+  117+1)+  um(k+)

22(k+)=z2(k)+  Tz4(k)+ 11M11+1)+ uM2(k+l)
z3(k+l)=z3(k) *urd(k+)+  uM3(k+)
Z4(k+)=z4(k) Uk uM4A(k+)
z5(k+)=z5(k) * uTS(k+)+  uM5(k+)
26(k+)=z6(k) + 11M1)+  uM6(k+)

The vectors

um— (UML' - *W/
Uy — (Upy - Uflg)

describe the missile and target maneuver in 1A and are given below.

Missile  maneuver terms:

i *Kk+

Umk+1) =] dfaoda,  um2te) - |

\ \

k4] Ik+l

uM3(k+) = | ax(mr UMA(kt) |
uM,(k+l) = uM.(k+#l) =0

Note that UWwis known via measurements of the missile acceleration.

in section 2.6.

Target maneuver terms:

Sk ¢ Tk s 25K

UTI(k+l) = Ty leos 75 -

(rjay(a)da
H>

are nonltoear.

2.4.30a)
2.4.30b)
2.4.300)
2.4.300)

(
(
(
(
(2.4.30€)
(

2.4.300)

(24.31)

(2.431)

(2.4.32a,h)

(2.432¢,)

(2.4.33a,h)

are given

(2.4.34a)
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cosfz,(k)  + T z¥(K)] cos 7¥(K)

UNK+H) = TyT Bn 25K + v e 5—1]

(2.4.34h)
uT3(k+1) — vT{cos[z5(k)  * Tz6(k] o= z5(K} (24.34c)
UTAk+1) —VTSiSK) T8 S z5(K) (24.340)
uTS(k+l) = T z6(k) (2.4.34e)
Upk+1) —© (2.4.340

Definition
Let TM_?:, be the nonlinear transformation mapping modified polar coordtoates
LetTMzyL

cartesian coordinates i

z = Tsz(ym) (2.4.35)
The inverse transformation is denoted by TM,__ and is given by :
y/\
ym =~ TMyz(z) — TMAZ) (2:4:36)
The transformations are easily derived ysing the following relations between cartesian

and polar coordinates  (see figure 2.1):

R~ "My) -+ Ay2 NNy79 (24.37)

72l 2 T2 22 72l 23 T2 4
R (2.4.38)

1%+% tZ|+72

AV
2 = arctg—- = arctg ——— (2.4.39)
AX Zl
i h ™22 7 Z\ZA T 72273
9 (2.4.40)
2 2 2 2

zl+ 22 i T 22
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AX — RCOSQ cos ym3 (2441)

ym4
C=>><< = FFF = "Ny Mmy,mim (2-4-42)
Ay = Rsuig Y3 (2.4.43)
ym4
Ay = Rsin9 + Rg coso = *7(ym2 sin ym3 + ym| cos ym3) (2.4.44)
ym4
Inserting  (2.4.37-40)  into  (2.3.11) vyields:
zlz4 T 72 73
2 2
zi+ h
hiz ™ 22 z4
, 2 2
yml zi+ h
ym2 22
arctg
ym3 2 - (24.45)
yma TMyz(z) &
ym5 (zI+4)m
ym6
5

z6



132
With (2.4.41-44) and (2,3.5) TM_,, becomes:

COSym3
ym4
sinym3

zl ym4

\(ym2cosym3-ymisinym3)

TMzy"m)
"WAMS mINW
ym5
ymo6
(2.4.46)
Expressing z(k) in (2430) in terms of y () via (2.4.46) yields:
2+ = f{TMzylym(k)] uM (kD) (24.47)
Substitution of (24.47) into (2.4.45) renders:
ynr:1(k+|) — TMU7[z(k+D)] — f[ym(k),uM(k+I)] (2.4.48)

yz1l

The tansion  matrix  W(k+l,k) according to (2.1.12) follows through apphcation
the chain rule to (2.4.48):

Witz k), uMit)

3ym(k/k)

3TMyz[z(k+IK)] afz{TMzy[ym(k/k)],uM(k+)}
az(k+l/k) aym(k/k)

—  GZ[z(k+IK)] HY[ym(k/k)] (2.4.49)
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with
GZ*yz-),  HYrrhyy]; =6 (24.50)
and
aTMvzi
) yz>1
gz = (2.4.51)
g alj
3fzi
hyy = -f- (2.4.52)
ymj

The elements gz-- and hy.- are given in the appendix 2.1.

24 3 Observability ~ Via Bearing - Only Measurements

According to secton 242 and equation (2.4.22a)  observability of the fiter states
depends on the sensitivity of the measured state ym3 with respect to changes to vy

Since ym3 is measured and ymI is its  derivative, only the observability of the

components ym2, ym4, ym5 and ym6 is of interest

6
Observability °f ym2(= —):

The gbservability of y i determined py the sensitivity

af3ym0'i>  uM()]

w32 ) - — (2.4.53)

aym20'/i-l)
If W32(| j) vanishes for al i > ! ym2 is unobservable according to (2_4_20/21)_ From

(2.4.49) follows:

w0 - M gKH] hykmON)] 045

Substituting  gz3k @nd hyk2 from appendix 21 into (24.54) yields:

wa2(i) ~ Ty b 2 %5 ym3 * 2 SN ym3] (2.4.55)
ym4
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with
« =xifi) (2.4562)
« =x(jiH) (2.4.56)
Ty=tj-» (2.457)

Since Y 4 and T/\ are always nonzero, y32 can only vanish if

©ym3 = —B ym3 for al i >] (2.4.58)
zl

ie. if the hearing angle remains constant on the interval [tv I,],

Conclusion:

ym?2 fe unot)Servable on tne interval t, t] if the pearing rate vanishes identically on

this  interval.
Observability ~ of ym4(:|-)
The sensitivity of the measurement Wwith regpect to ym4 is:

JVFtA -~

W34( 9 =  {z2 eos ;ms T DX] - zx [sin §/m3 Ty Dy} (2.45%)
ym4
~2
~N\_
- ¢\ ACO * WV 2 An® + UM2AY (2.4.59b)
ym4
with
7= ym2ees ym3  yml 5" ym3 (2.4.60a)
Dy = ym2S" ym3 * yml °°s ym3 (2.4.60h)
There are three cases resulting in vanishing w34 in [t” tj
a) UpO) = uM(i) =° for al i >j (2.4.61)

i.e. ym4 is unobservable if neither the observer nor the target maneuvers.
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b) it may be assumed without loss of generalty that the cartesian reference system to

figure 211 is chosen in such a way that

and hence ZZ(J/ID =0 (2.4.63)
ie. the x-axis is directed along the initial LOS. This reference system Wil be

denoted as Z in the sequel If the bearing angle remains constant it follows:

yml = © (2.4.64)

79 = O for al i > ] (2.4.65)

Substitution of (2.4_62/64/65) into (2,4,59a) and (2,4_60b) results  to

W34 ) - O ol i (2.4.66)
Hence, y 4is unobservable  for vanishing bearing rate.

From (2.4.59b) follows immediately that w34 vanishes for

2 urO) * uM()
\ T * "MI®

(2.4.67)

This is a generalization of the result found in [62] where a geometric interpretation
of (24.67) is given. Since these maneuvers are not Of practical interest they will not

be discussed here.

Observability of ym5 (= yT):

The sensitivity associated  with ym5 is:

} 2 S cos(Tm5 -+ Tilymé)-cos(ym5)
was(iy) —  ym4z2 iy vT [sin ym5 ~ =N |
Mjym6
~2 sin(Fm5 + T ym6) ~ sin(yms)
- ymaz Tj vTleos yms ZT= ]
tj ymé

(2.4.68)
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Assume that

Tijym6«l (24.69)
(24.69) is valid for weak target maneuvers or for small values of T«, ie. during the
period  shortly after filter initialization. It s gasy to see that to this situation one
obtains from (2_4.68);

w3s(i ) —© (2.4.70)
Conclusion:

= () the target headtog s unobservable.

targets (ym6 =

is only weak.

For non-maneuvering

Otherwise  gbservability

Observabilty — of ymG(= yT):

w36 s given by:

_ - TyvT AymsS + TyWw-2ynrf,
w3e<r> ~y3i  tcos<ym5+ Ty yme) rn ]
ym6 Tj ymé
- TijvTrw- ~ymsS * TyW-"ymS.
ymé Tj ymé
(2.4.71)
im r2
with y31 — "ym4z2 (24.72)
w ~2
y32= ym4zl (2-4-73)
the first-order approximation of w36 becomes:

Using (2.4.69)

Tt ym4 &2 s yms *+ Zicos \/\L (2A74)

W36<i))
W36(|]) vanishes in [t, T]] for

72 sin ym5 = = 74 cos ym5 for all i > (2475)
For zero bearing rate in ff, m equation (2.4.65) holds in the reference system Z
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Since ,a s nonzero equation (2475) renders:

cosym4: — O for al i > (2.4.76)
or

|ym5| -2 forali>J" (2.4.77)
It (2.4.77) holds for any | vy 6 is unobservable at any time t The gbhserver-target

motion associated with this situation is depicted to the followtog figure:

v AVT
yt-*/2
LOS
oO-
figure 243
Clearly, (2465/77) are only satified if the target does not maneuver and the

component v ©Of the observer velocity always equals the target velocity V. Note that

this is the nominal condition associated with  (extended) proportional navigation

(chapter 1.35) for the geometry given by (2.4.77).

In practice  divergence  problems Wwill also occur, if the sensitivities are nonzero but low.
o
Since \y36 s proportional to Tr, low observability has to be expected in the initial

period of the observation interval.  Obviously, the inifial  behaviour of ,,ac depends on

the initial filter  state, ie. the initial geometry of the intercept scenario. Assuming again

that (2.4.65) holds in Z -W3g during the initial observation period becomes:

w36™)=ITUvTym4zicosym5 (24.78)

Hence, observab|||ty of ym6 is maximal for ym5 = 0 and minimal for ym5 =

These situations are (depicted in figure 2.4.4a/b:
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aT = VT ym6
o- -D- -+ x = LOS
M
figure 244 a: maximumobservability of yA
o- > x = LOS
M
figure 244 b: minimum ghservability ofy"

Figure 244 suggests that the observability of ym6 or aj is maximal if ay is directed
perpendicular to the LOS and minimal if a-. is directed along the LOS. This is also
clear from intuition since  maneuvers a|ong the LOS do not influence the bearing
angle.

I summary the following statements ~ about the observability of the states ym2, ym4,

ym5- ym6 with  resPect tO bearing-only measurements

y o unobservable  for zero bearing rate
ym4 unoDservat>le  if both observer and target
certain  nonzero relative maneuvers
ym5 unODservable  fr non-maneuvering target, otherwise
ym6 unODserva‘le only for the scenario depicted in figure

minimum observability for ar i LOS

maximum observability for LOS

aj !

are non-maneuvering,

can be made:

and for

weakly observable

243
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244  Observability ~ via Bearing Rate-Only Measurements

The analysis of secton 243 is repeated here for hearing rate-only = measurements. The

sensitivities of the measured state ymI with  respect to ym2, yfﬂ4, yN and ym6 are

given below:

wi2(i ) = ~—Ty @ Za2cyml) 77 o= ym3

ym4
miz3  * 2z2yml)  * z1]sinym3} (2.4.79)
~2
wigi )~ N b @ 2\ ym) s ym3 + Ty DY)
ym4

+ (@3 +2\ yml) 6 ym3 *+ Ty BY)

+ 72 DXz Dy] = (2.4.80a)
r2
ym4 . .
4 2\ yml [ur)  + umL()]
ym4
23+ 2z2yml][uT2()) + uM2()]
S22 [uyjCO * uM3(i)]  *oazx [UyN) uM4()]}
(2.4.80h)
with Dx = ym2 cos ym3 - yml sin ym3 (24813)
Dy = ym2 sin ym3 + yml cos ym3 (2481b)

_A — o cosyms * Tj W"cos yms
wis(u) — yn Ty VT Bn ym5 = ~ ]
Tj ymé

Sin(ym5 + Vm6)-Sinym5
y12 Ty vT [0S ym5 -+ |

i
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y13 vT [sinym5  * Ty ym6) =" y~]
+ MoyT [cosyms + Ty yme) o= yms]

T v

wibU) — yn -4 [eos (ym5 + Ty yme)

ymeo6
ShO™S - Tyyme)-stoyma"
Tiiym6

yi4i-[snyms - Tjyme) *
yme
“0sHmS - Tyyme)-cosyms"
Tijlym6

- YISTyVySint  + Tyyh)
T y14 Ty vT cos(yms Ty ym6)

- 152
yn=ym4(z4-2z1yml)

i~ 1¥2

yl2= ym4(z3 *+ 2z2yml>

with

w im2
y13="ym4z2
v Im2
yl4= ym4zl

~d Q. 0>3S defined in (2456).
Consider first the case of vanishing bearing rate in [[” I.].
system Z one has:

ym| = ym| =0 for all P>
ym3= ym3 — ° for auUi > |

(2.4.82)

(2.4.83)

(2.4.84a)
(2.4.84b)
(2.4.84¢)

(2.4.84d)

Then, in the reference

(2.4.85)
(2.4.86)



141

Substituting (2.4.85/86)  into (2.4.43/44) yields:

N =g =0 (2.4.87)
Inserting ~ (2.4.85-87)  into (2479), (2.4.80a) and (24.81b) results to
wi2i ) —wi4(i ) —©  for @l i (2.4.88)

Hence, vy 2andy 4 @€ unobservable  for zero bearing rate. Moreover from (2.4.80b)
follows that w.4 vanishes dentically if neither observer  nor target perform any

maneuver.

For the discussion  of 15 s first  order approximation with  respect to (24.69) i

considered. From (2,4,82) one oObtains:

wi5(j) <= Ty vT ym6(y13 o=y~ *+ y14 S0 yh) (2.4.89)
Substitution of y13’ yl4 from (2.4.84C,d) into (2,4,89) renders:

) 7
W15(] )= yma Ty vT 1\ ym6 [ cos yms * sin yma] (2.4.90)
Z

Obviously \yag vanishes for all i >j if

ymé — © forali>j (2.4.91)

ie. for zero target mManeuver (note that because of the assumption ymg = 0 equation

(24.91) implies yme — 0.

Another condition  for vanishing w.. s

HI

*yms = " =~ ymz o A > (2-4-92)
zl

According to the definitions of QQand () in (24.56) equation  (2.4.92) can only be
satisfied ~ for constant pearing angle. In this case (24.92) implies that the target heading

angle is unobservable if the target velocity vector is directed glong the LOS(see figure
2.4.44).
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In order to obtain some qualitative statements  about the observability of y 5 during

the intitial observation period, consider again the cartesian reference system Z

Recall that in this system Z/\ is the initial range and that the x-axis is identical to the

o
LOS(figure 245). Since 7\ is zero in Z° it follows that for small Te

Z22«ZX (2.4.93)
Hence, W,5(ij) i approximately:
rd .
w15« ymaTy vT 2 ymes" y~ (2.4.94)

Thus the observability of ym5 is maximal if the target headtog s perpendicular  to the

LOS(ym5 = —)and minimal if it is paralle] to the LOS(y/\ = 0). This s intuitively

clear because the target motion along the LOSdoes not influence the bearing rate.

In summary 1t can be stated that  the target heading is  unobservable for
non-maneuvering  target. ~ Observability s minimal/maximal if the target headtog s
directed  parallel/perpendicular to the LOS.
Z - (xY>
~ x - initial LOS

figure 245 tracking geometry in 27

The nvestigation of w16 is carried  out ysing the first order approximation of (2.4.83)

with  respect to (2.4.69):
Wi6( D> Ty vT Bl S yms * Ty vT 02 <= yms (2499

i N=yllTij  * y13+Tijlyldym6 (24.96)
02=yi2Ty * y14 * Tyy13ym6 (2.4.97)
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The coefficients By By will  now be approximated for small T«. From figure 245

follows (also observe equation 2.3.5):

Z1~-RO (2.4.98)
z2«z1 (2.4.99)
TyZ3«R0 (2.4.100)
Tijyml«1 (2.4.101)
Ty ym6 <= (2.4.102)
24 Tij~ 2 yml Tj —\ (2.4.103)
(24.98) with (2.4.84d) vyields:
|y14|«R0ym4 (2.4.104)
(24.100/102)  in (2484b) and (2499) in (2.4.84c) vyield
™ Im2
Ti yl2 =< RO ym4 (2.4.105)
™ Im2
y1l3 <<ROym4 (2.4.106)
With (2.4.104-106) follows:
|/»2Hy14|2=R0ym4 (2.4.107)
(24.103) in (2.4.84b,c)  yields:
yil T~ CCTy) 713 (2.4.108)
With  (2.4.108/109) 0, may be written  as:
M eCTY0dis T Tyyinyn (24.110)
vyl T cay)le ™ Tyyme6} (24.111)
with  (see figure 2.4.5):
(VA B (Y 411

yl4 Zl
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Observing (24.99) equation (2.4.112) renders:
El=£(if1-1)« (24.113)

and with (2,4,1]_1) follows:

b+ ¢(Ty)]e«l (24.114)

with (2.4.114) and (24.102) the comparison of (2.4.111) and (2.4.107) yields:

B2 >> Bx (2.4.115)
Therefore it may be concluded from (2,4.95) that WjJ is maximal for ym5 = 0 and
minimal  for ym5 — — In other words: Observability of ym6 is maximal if = is
directed perpendicular to the LOS and minimal if a is directed along the LOS
(ﬁgures 2.4.4a/b)_ The same result was found for bearing-only measurements  in
section  243. A comparison with the results obtained for y . reveals that the target
heading Wwith maximum gbservability of ymé6 results  in minimum gbservability of y 5
and vice versa. Moreover it is evident from (2.4.107) that the gbservability of y 6 is
practically independent  of the value of ymgfor ymps = 0. In contrast,  If ymp = ——

the observability depends strongly on the target mManeuver. From (2.4_111) follows:

Observability of ym6i5 minimal  for zero target maneuver, i ymeé = 0.

Observability of ymg is maximal i
ym o»\F:Il (2-4-116)

ie.  observability of ym6 is maximal if the target heading rate is much larger than the

average bearing rate.

The results  on gbservability via bearing rate-only measurements may be summarized

as follows:

y 2 unobservable  for zero hearing rate

ym4: unODservable for zero hearing rate and zero relative observer-target maneuver
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yms' unODServaDle for non-maneuvering target

minimum  observability if target heading is parallel to LOS
maximum observability if target heading s perpendicular to LOS
ym6' "mmimumogbservability if target acceleration is directed along LOS; to this

scenario observability depends on the heading rate and is maximal for strong
target maneuvers (equation  2.4.116)

maximum gbservability if target acceleration is directed perpendicular to the
LOS: in this case observability s practically independent  of the value of the

heading rate.

The main results  of the gbservability analysis ~of this section is that the tracking filter is

"blind" towards tgrget maneuvers  along the LOS and that the target  heading is

unobservable for zero ftarget acceleration. Target maneuvers can only be tracked if
they influence  the bhearing rate directly, ie. if they have a component perpendicular to
the LOS. Clearly the "blindness" with  regpect to motions glong the LOScould be

avoided by range- ©or range rate measurements. Accordtog to the preconditions of this

study these measurements gare, however, not available.

25 Selection of Coordinates for Filter Implementation

The final goal of developing the tracking filter is the use of this fiter to conjunction
with  any of the guidance laws derived in chapter 1 The information of interest are
estimates of range, range rate, target heading, and tgrget lateral acceleration (or
heading rate). In" principle this  information can be obtained from gpy of the state
vectors (2,3,5/8/11)_ The behaviour of the filter depends, however, on the coordinates
used for the filter design. The basic differences between cartesian and polar
coordinates were discussed in section 22. Based on the results of the observability
analysis of the previous section some additional conclusions wil  be delivered in the

following.

In [64] it was shown that the tracking filter based on MPqMPEKF) performs better

than the CEKFin scenarios with zero initial maneuver because the unobservable
range 8 decoupled from the other states in the MPC-formulation. To reveal this

decoupling property for the more general problem discussed here, observe first that
with (2_4,20/21) the information matrix  (2.4.19) becomes:



«|00
I 0]
(W) - (2.5.1)
0] 0]
Now assume that at initial time t the covariance matrix is of the form
. ein U/JJ
PG = (25.2)
PUU0YI)J
Substitution of (2,5,1/2) into (2_4,10) renders:
. 1
| fipto)'t  +100}'1
P(jk) (2.5.3)
Hence, the covariance equations of the observable and unobservable states  are
decoupled. Note that so far no assumptions about the filter states have been made.
the unobservable states.  (2.5.3) does not jmply a decoupling of the yo_ and YU-
estimates because from (2_4,16) follows:
«,00 ivOOa «O0aOo au
L= oRY, i)l - b O,y @), ul)] (254)
-00
el depends on both observable and unobserable states. Therefore, filter
divergence in the unobservable  states mgy in general cause divergence o y° as well.
If. however, the information matrix depends on the observable states alone, i
«00 «,00 A0
I =1 [y O, ufj (25.5)
the estimates of the observable states remain unaffected by wrong estimates of yu For
the MPEKRhis is the case for zero-maneuver scenarios. Recall that the states ym4
and y are unobservable in this situation. From (2,4_23a -c/f) follows that the states
mi - 1236 are decoupled from the unobservable components for vanishing
accelerations a"j and ah Of course the same is valid for the discrete version of
(2_4,23)_ With (2,4,16) this results in (2,5,5), Thus, wrong estimates  of ym4 and ym5 do
not affect the estimates of the other states. This is not true for -cartesian coordinates.
From figure 21.1 follows for the non-maneuvering case:

146
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Ax =Rcos9 (2.5.6a)
Ay =Rsin o (2.5.6b)
AX =\yCOSyp Y COSy (256.C)
Ay :V-pSIH yT v sin y (256d)

ObViOUSly all cartesian components are influenced by estimation errors to either the

range or the target heading.

Consider now the equations of relative motion in ordtoary  polar coordtoates (2.3_8);

With (2423) one oObtains:

MW y2
v, ~ -2yi-i (2.5.72)
y4 y4
y2 ~ "R aR " yhyl (2.5.7h)
y3 ~ ¥X (2.5.7¢)
y4d — y2 (2.5.7d)
y5 ~ y6 (2.5.7¢)
y6 — © (2.5.70
where at — vTy6 Cosy5  Y3) (258a)
ATR = VTy6 siny5 — y3> (2.5.80)

C|ear|y, the OPC-estimates are not deCOUpled from range errors for zero maneuvers

as was the case for MPCboecause (257ah) always depend explicitly on 4, However,

the decoupling property With respect to target heading errors is maintained.

In view of the central result of the observability analysis (e, minimum gbservability

of target motions along the LOSand maximum gbservability of target Motions normal
to the LOS) t may be concluded that polar coordinates are preferable to cartesian
coordinates for designing a tracking filter for the BOMPbecause they vyield a
representation of the observer-target relative motion in the direction of maximum and

minimum observability. Thus observable and unobservable states are at least partially

decoupled according to (253).



148

There is another gaspect that must be considered for fiter  state selection:

Since the BOMR an totercept  problem here, the observer-target range Wil approach
zero at final  time. Hence, according to (23.11) the MPC-components yn and y
wil become indefinite and may cause a breakdown of the filter algorithm prior to

intercept. Implementation of the fiter  will therefore  be done to ordinary  polar

coordinates.

2.6 The Basic Tracking Algorithm (BTA)

In view of the conclusions in the previous section the EKFfor the BOMRIl be based
on ordinary  polar coordinates. Due to the absence of an toertial reference  system only
the pearing rate can be measured in additon to the observer acceleration. Therefore
the tracking  algorithm s basically  the application of (2.1.9-19) to the state vector
(23.8) with the measurement equation (2,3_10), The lack of an toertial reference  has
some consequences concerning the evaluation of the filter equations and the
processing of the measurement data. These problems wil be discussed to the

following.

26.1  Equations of the OPEKF

The equations ©of the EKFbased on OPQOPEKF) are derived to the same way as was
done for the MPEKF (section 2.4.2). The central point is the solution of the
propagation  equations  (2.1.9/11). Equation (219) «can be solved gnalytically o a
cartesian reference  frame vyielding (2,4_30), The propagated cartesian solution is then

transformed to OPCvia the transformation

y = TOyz(z) (261)
In apalogy to (2.4.49) the transition matrix  associated ~ with y is given by:
W(k+Lk) = GZ[z(k+IK)]  HY[y(k/K)] (26.2)
aTOvzi
with e *=E- (2.6.3)
1 .
a|
afzi
= 2T (26,4
)

GZ, HY, TO TO are given in the appendix 2.2.
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In"principle the choice of the cartesian reference system for the computation of
(2.4,30) is arbitrary. However, the computational effort for the calculation of the

elements 0. and hy/\_ can be substantially reduced if the reference system is choosen

in such away that in the sampling interval

LK = [tk tk+1] (26.5)
one has yf0/|5) =0 (2.6.6)

ie. the x-axis of the reference  gystem is directed along the estimated LOSat time th

(see figure 26.1). This results in the gimplification of many expressions involving
sinfy3(k/k)] and cos[y3(k/k)] (see appendix 22). It i, however, necessary 1t carry out
some simple transformations at the beginning of each sampling interval to order to

adapt the filtering algorithm to each new reference frame. This entails a scheduling
problem and has an ijmpact on the sequence ©f computations of the tracking

algorithm. Therefore, before  summarizing  the algorithm, the question  of data

transformation is adressed in the next section.

26.2 The Measurement Module
In additon  to the pearing rate the observer acceleration has to be measured in order
to determine the observer maneuver uM according to (2,4,32) which is used in

(2.4.30). The acceleration components  are measured py accelerometers in the

observer's body fixed reference  system. They must be transformed to the (foertial)

reference  system defined by (26.6). Before discussing  the necessary computations

some hotations are introduced:

ZOO [x(K), y(K): cartesian reference frame with axes x(k), y(k) at time
ZS [Xg yg] : cartesian  reference  frame defined by (2.6.6)

ZM [XM, yM] : observer fixed reference frame; xM " center line

ZS . Y -seeker frame; x. | seeker axis (see section 146.2)

y|z ©y expressed in the reference frame Z

The geometry associated with the sampling interval lk s depicted in figure 2.6.1.
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CL»X,

*s00

> xs(k)

xS(k-1)
M = missile, CL = missile center line
aj . lateral acceleration
a. . axial acceleration
e (1) . missile  pitch angle Wwith respect to current LOS
S
0(t) : missile pitch angle Wwith respect to Z (k)

fGStA): bearing angle increment in [t/\l r]

£(k) . estimation  error In pearing angle

NK) . seeker axis orientation

figure 2.6.1: reference frames
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. 9 .
For the observer acceleration components ax gt to Z~ one oObtains:
1

a)| o —al) s 00) g sn oS0 (2672)
25(K)
a (1) ‘ = aa(‘l’) sin B(t) + a/\r) cos (1) (267b)
K
with U e R (268)

e (t) can be easily measured and f (t, tA) may be obtained  py integrating the measured

bearing rate:

fr, ) = | m(a) da (2.6.9)

c

However, the reference frame Z (k) and hence E(k) are unknown at time tA because

y3(k/k) must first  be computed from the ypdate equations associated  with " These

calculations can only be started at time th because the bearing rate measurement m(k)

is needed in (2.1,15). Hence y3(k/k) is available only at some time r* with

tk<T*<tk+1 (2.6.10)

This problem is circumvented by first computing the components u  Wwith respect to

S
the reference system zs(k) and transforming them to Z (k) at time tk+1 For this

purpose the acceleration components in Zs(k) are needed. They are given by:

| B ) .
(T aalr) ceos e\r) aifr) s f'f(r) (26113)
(M 0 (1 i

a (T) | — a () sin fij) + a() cos € (2.6.11b)

With e <t t) + (g (2.6.12)
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Inserting
ax=ax (2.6.133)
(k)
"= Us (2.6.13b)
Z°(k)

into (24.36) yields the components of uy in ZS(k). At time ayq  they are trans-

formed to Z (k) via:

JUMj+I\

— -TR{(K)] J =01 (2.6.14)
with Ry - T (26.15)
y COSy
and from figure 2.6.1:
{k) =k y3(kik) (2.6.16)
ZS(k)
where - Akl + £k (2.6.17)

Note that all quantities to (2,6.17) are known from the previous sampltog interval. The

determination of YA may be regarded as measurement data preprocessing in
Zs(K)

order to obtain the correct filter input data. The associated computations do not

involve any quantities estimated by the fitter and are therefore summarized to a

separate module called measurement module. The gjgnal flow of the measurement

module is shown to figure 2.6.2.
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seeker

cos $ -sin §

sin 0 cos O0*

accelerometers

s5

<P

yigwre 26.2:
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*O

S, Sl\ :

integrators

measurement module
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2.63  Summary of BTA

A
The computations for the determination of y(k+I/k+l) from the previous estimate

y(k/k) and the new measurement m(k+|) are now Ssummarized. Consider

sampling interval A — [tA, tA+A]. At time “" the following  data are available:

from measurement module: |y _f(k+|,k), m(k+1)
™M s
z°(k)
from previous cycle I(GN] (k)
'Zb(K)
The following calculations have to be carried out in ™
stepl: a) store output data of measurement module
b) reset integrators SV..., gA (figure 2.6.2) for measurement data
evaluation in |k+]
step 2 compute M from A]J according to (2.6.14)
ZS(k) 'zs(K)
step 3: compute seeker axis orientation in Zc(k):
«Kk+l) = *k + £(k+lk) (2.6.18)
step 4 compute
Z(klk)| — TO_vly(k/K)| ] (2.6.19)
17(K) v 7b(K
step 5: compute estimated target mManeuver UJ from (2434) with
7S(K)
zk) = z(kk) (2.6.20)
Zb(K)
step 6 compute z(k+1/k) from (24.30) with (26.19) and
7b(K
Up~Up . - UM UM _

Zb(k) 1Zb(k)

the



step 7

step &

step &

step

step

step

step

10:

11:

12:

13:
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compute

y(k+l/K)]| =ToO [z(k+l/K)| ] (2.6.21)
(Z0K) y 70K

compute W(k+1 k) from (262)
compute P(k+1/k) from (2.111)
compute G(k+1) from (2.1.17)
compute P(k+1/k+1) from (2.1.19)

compute Y(k+1/k+1)1 from (2.1.15)
Zb(k)

c

define new cartesian  reference frame Z (k+1) for next sampltog toterval

*k+

a) compute seeker axis at tn IOto z (k+1);

(k) = *(k+) y3(k+/k+) (2.6.22)
ZS(K)
with  *(k+|)  from (26.18)
b) compute y(k+1/k+1) in ZS(k+1)
Note that only y3 and y5 depend on 2 Hence only these components

are corrected; the others remain unchanged_

estimated target heading i Z° (k+1):
y5(k+I/k+) = y5(k+I/k+) y3(k+I/k+)
ZS(k+) 7S(K) ZS(K)
(2.6.23)
estimated  pearing angle in ZC(k+1) according to (2.6.6):
y3(k+/k+l) =0 (2.6.24)

ZS(k+)

With y5 and y3 from (2623/24) and the other components from step 12 the desired
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264  Simulations
In this section  simulation results ~ obtatoed with the tracktog algorithm described to
section 263 are presented. The simulations illustrate the mato conclusions on
observability derived in section 244. Questions of guidance law-filter interaction will
also be adressed.
2.6.4.1 Filter Initialization
In order to execute the tracking algorithm a number of fiter parameters ~ must be
initialized. The values used for the subsequent simulations are summarized below:
a) sampling period: = 005 s (2.6.25)
b) variance of measurement noise: S — 10 rad s (2.6.26)
C) initial covariance  matrix: P(O/O) = dlag[pQ(OIO)J (2.6.27)
with
Al n
_ _ 104 — 10'6 rad?2
001 04 radV2, 002 mV2, 003 (2.6.28a,b,C)
_ 5104 m2 _ 016 lad2 _ 005 radv2
pQ4 5 - pQs (26.28de)
The elements in are a measure Of the rgnge ©of the expected squared initial estimation

errors e-(O/O) with e defined in (2_1,21)_ The value of pQ6 is based on the assumption
that the maximal initial estimation  error Of the target acceleration is
Assuming = target velocity — of
n
VT — 270 _— (2.6.30)
this renders with (2.3.2/8);
n .
AeB(0l0) — < 022 rad sl _ JpA (2631)
d) covariance  matrix of input noise:
According to (2430-34) the system input is the missile maneuver u«, Which is
obtained from the measurement module (figure 2,6,2), These measurements are
modeled noise free here, yielding
Q=0 (noise free system) (2.6.32)
For a further discussion of this assumption see section 2.10. The estimation of Qin
order to account for uncertainties in the target maneuver is discussed to section 2.7
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e) initial estimation errors:
The assumed values for the initial estimation errors Wil  be given to the discussion
of the simulation results. Al errors  not explicitly mentioned are assumed zerg, e
the associated fiter  states are initialized with their exact values.
f) target velocity:
As mentioned in section 23 the target Vvelocity is a parameter Of the fiter. Unless
explicitly mentioned, the error
ey — VT VT (2.6.33)
is assumed zero.
2.6.4.2 Assessment of Filter Behaviour and Presentation of Filtering Results
The results  produced by the tracking filter will  be judged by the behaviour of the
estimation  errors and their variances.  Visualization of the estimation  errors is done by
i the time histories of the estimated and exact filter states. The (i
plotting iagonal
elements p,\ of the covariance matrix P are the filter's estimates of the error Vvariance
associated with  the state y,\ Therefore  the expected squared estimation error should
always be lower than the estimated variance, i.e.
Ele2()<p..t) (2.6.34)
It (2.6.34) is violated the filter may diverge because it underestimates its  estimation
accuracy and does not take into account new information by incoming measurements.
Note that as P -» O the fiter  degenerates to a predictor  (equations  2.1.15/17/19). In

order to check (2,6,34)

follows

From (24.2)

error in A Or A can
y y

solving  the propagation

by new measurements

the behaviour

states are oObservable.

that the subsystem (y5, y6) is unstable.

o
the squared estimation  error ef is plotted to addition to p

Hence gny estimation

only be reduced via the ypdate equations but not by merely
equations. Because only the observable states are influenced
according to (253) observability of y+ and Y is indicated  py
and D66. These variances can only decrease if the respective
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The fiter ~ states and variances are plotted in a normalized scale. The associated  scaling
factor (SCALE) is written on the plots. The filter states,  variances, and associated

dimensions are summarized in the followtog table.

state no. meaning name dimension variance dimension
1 bearing rate *1 rad/s PIl radVs'
2 range 'ate %9 tn/s P22 tn2/s2
3 bearing angle *3 rad P33 rad2
4 «,2
range *4 m P44
5 target heading angle 95 rad P55 racT
6 target heading rate ye rad/s P66 raa2ls:

table 2.6.1 filter states

y3 and y5 are computed in the current reference  system accordtog to (2.6.23/24). on

each plot the associated scenario is written in the lower right —corner.

2.6.4.3 Observability of Target Maneuver

In section 244 it was shown that the observability of the target mManeuver is highly
dependent on the totercept scenario.  This s illustrated by comparing the estimated

covariance histories P55(t) Pfch generated by the tracktog filter for  different

missile-target flight paths. In order to avoid coupling effects between filter and

guidance law the tracking  algorithm  wil be applied to precomputed and stored

missile-target trajectories. The measurement data processed by the filter are noise
free.  Hence the resulting filter trajectories are deterministic. Moreover, if the initial
estimation errors  are zero they remain zero for constant target maneuvers because the

state  propagation equations are exact In this case p««(t) and PgG(t) reflect the

observability of y5 and y6 with respect to the exact missile-target relative motion.
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Consider fist the following scenario (see figure 2,6,3):

scenario  Al:

770 = 025
*0 Y
aT —©
RO - 5km
\/
v,

it} R®  VAYTO

initial LOS

VQ = Vp. = 270 ms

figure 2.63: initial intercept geometry

The flight paths and LOS-rate profile associated  with scenario Al are shown in figures
26.4ab.  The fitering results  are depicted in figures 2.6.5ab.

It was shown that the target heading is unobservable

for non-maneuvering target This
is reflected by the p<« history in figure 2.6.5a p<«< remains constant throughout the

observation interval. In contrast  the target

heading rate is observable as indicated
the fast decay oOf p66 in figure 2.6.5b.

by
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ERRORVARIANCE OE STATE NO

T TRAJ Al JoB Y3213V1
F TRAJ DATE 22/08/86
G LAV 3 TIME 20 34 55
FILTER 2 FIGURE

A VARIANCE (ESTIMATEOL

SCALE 1 60310E-01
! 1 ! T oM r T— i
4 6 a to 12 14
TIME 19]
Al
ERRORVARIANCE OF STATE NO.

T TRAJ Al JOB Y3213V1
F TRAJ DATE 22/08/66
G LAV 3 TIME 20 34 SS
FILTER: 2 TIGURE

A VARIANCE |IESTIMATEOI

SCALE S 3QO00E 02
6 8
TIME IS]
Al

figure 2.6.5ab
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Initial observability of y5 and y6 depends on the initial target headtog yTQ This is
seen by comparing the histories of A and p— for the followtog  scenarios (see figure
26.3)

scenario A2 (figures 2.6.6ab and 26.8a)b):

yro =% yo = °

aj = 60, Rq:5km

scenario A3 (figures 2.6.7ab and 2.6.9-la,b):

- 5 . —
TTO Y0
a.J = 69, Rq = 55 km
According to section 2.4.4 the inial  observability of yA is minimal to scenario A2 and

maximal in scenario A3. This is reflected by the initial behaviour  of p55 in figures
2.6.8a (increasing p55 indicates low observability) and 2.6.9a (decreasing p55 indicates
high  observability). On the other hand the initial observability of y/\ is maximal to
scenario A2 and minimal in scenario A3 which is confirmed by figures 26.8b and

2.6.9b.

The gbservability analysis has also shown that for scenario A3 the initial observability

i A
of y6 depends on the initial estimate yg(O) For low absolute values of y(O)

observability of y6 is lost  Figures 2.6.10a-d show the results of the fiter obtained with
A\
an initial estimation error in y,\ The value of y5(0) is about half the exact value of

y6(0) (figure  2.6.10d). = Comparison of figures 2.6.10ab and 26.9ab reveals the loss of
observability in both y,\ and y". The filter converges, however, to the second half of

the observation interval rendering bias free estimates of and

y* y".

A~

If y/\(o) is decreased to about 25%of the exact initial value (figures  2.6.11 a-d), y,\ and
y6 are practically unobservable. The heading rate error is not corrected any more

(figure  2.6.11d) and entails a growing heading error (figure  2.6.11c).  The fiter  finally

diverges because the variances evaluated for the estimated tgrget maneuver do not
approximate the true estimation errors, ie.  (2.6.34) is violated as seen 1IN figures
2.6.11a,b. The influence of the initial estimation errors on the future fiter  behaviour is
very evident from these simulations. Their  jmpact on filter stability is  especially

critical in scenarios  with low ghservability of both 5 and y6, ie. for type A3 scenarios

y

with  low target maneuver.
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MISSILE AND TARGET POSITION
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figure 2.6.6ab
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ERRORVARIANCE OF STATE NO.
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figure 2.6.8ab
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ERRORVARIANCE OF STATE NO.
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26.1 Oc,d
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ERRORVARIANCE OF STATE NO.
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figure 261 lab
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FILTER STATE NO.
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2.6.4.4 Observability and Guidance Law Performance

In section 147 the guidance laws PE(section 135, OCE, and PCE(section 14.6.4)

were compared assuming exact knowledge of al information  required by the guidance

algorithms. The sensitivity of OCEand PCEwith respect to inaccurate

prediction  of

the point of intercept ~were mentioned. The pyrpose of the following simulations is to

illustrate the drastic  degradation of guidance law performance caused

by estimation

errors in conjunction  Wwith target flight path predicton  used py OCEand PCEThis is

done py comparing the guidance laws PE and PCE with the required target

information delivered by the tracking filter according to figure 2.6.12.

target motion

state

PCE On|y)

L s
. " Um
g target
! onboard sensors }
estimator
. . aa ,a,
missile  motion
£
al <r,05v  (for
autopilot —¢C guidance law
¥
*C y
aj . missile lateral acceleration

ac .-commanded acceleration

m : LOS-rate  measurement (figure  2.4.7)

um missile  maneuver (figure  2.4.7)

y filter  state  (equ.  2.3.8a)
8  flipper  deflection

figure 2.6.12:  guidance loop with tracking filter



Consider the followmg scenario (see figure 2.6.3):
scenario  A4: = 025 . =0
Y4Q Y
aT — 0, Rq = 3 km
The initial estimation errors Of the tracking filter  are:
e4(0/0) = 175 = (range error)
e5(0/0) — O rad (target heading error)

Both guidance laws were simulated  twice, once using exact information (simu|ations 1
and 3) and once ysing estimated information generated by the tracking filter
(simulations 2 and 4), The results are summarized in the following table:

simul. miss distance problem

uid.law i figures remarks

o, g [m] duration  [g] 9

1 PCE 0.04 8.87 2.6.13 exact information

2 PCE 52.8 8.85 2.6.14/15 estimated  inf.

3 PE 0.52 8.74 2.6.16 exact information

4 PE 0.01 8.73 2.6.17 estimated  inf.

table 2.6.2: influence  of estimation errors on Miss distance

As seen from table 2.6.2 the use of estimated mformation results in alarge increase  of
the miss distance obtained with P CEwhereas the results of PEin simulations 3 and 4
do not differ  significantly. Figures 2.6.15a-d show the estimates computed by the
tracking filter in simulation 2. The filtering results  of simulation 4 are similar. Note
that the time interval depicted in these figures is less than the problem duration given
in table 262  Since the pearing rate becomes practically indefinite at final time (as
seen in figures 2.6.13b/14b/16b/17b) the filter algorithm often  breaks down
immediately before intercept resulting in indefinite values for the state estimates.
These are suppressed in the piots in order to guarantee a reasonable  gcaling. For
additional explanations concerning  the Sca"ng and the dimensions of the filter states
see table 2.6.1 in section 2.6.4.2.
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It can be seen that the estimation errors in y2, v, and y6 are very low whereas there is

a high permanent target heading error because y5 is unobservable  (n0 target
maneuver). Due to the heading eror the prediction algorithm  described  in section
146.2 generates wrong Vvalues for the collision course y2P* via equations  (1.4.170c, d,
e) resulting in \wrong Values for the course error e (equation 14.176). Since the
commanded acceleration computed by PCE is proportional to e according to

(1.4.193) the influence of the target heading error on the missile fight  path is obvious.
The flight paths and LOS-rate profiles associated with  simulations 1 and 2 are

depicted in figures 2.6.13 and 2.6.14, respectively.

In order to analyse the behaviour of PEthe guidance law is rewritten here in terms of

the fiter ~state y From (13,68) and figure 24.1 follows:

ac — °(a’ XQR9) (2.6.35)

where c¢ is a constant and aj is the target acceleration normal to the current LOS.

Substitution of (2.3,8) and (2,5,8a) into (2.6.35) renders:
ac — VT y6 cos(y5 y3) \Q y1?] (2.6.36)

Replacing the exact values of y in (2_6_36) by their estimates computed in section 2.6.3

and ghserving (2.6.24) yields at time .

aclo =< tvT y6<krocos YVKK) ~ x0 yickk) hwvi (2-6:37)

where y5(k/k) is the estimated target heading Wwith respect to the LOSat time th.

If v6 's observable yg vanishes for non-maneuvering target According to (26.37) ¢

independent of y5 in this case and hence target heading errors have no effect on the

missile flight path. This is reflected by the results of simulations 3 and 4 (figures

A
2,6,16/17), Estimation errors  iNn y6 may oceur for unobservable y6 which is the case for
y$x However, cos yr 0 as v$ and therefore estimation errors in yA again
have no effect on ac In other words, if either of the states y,\ or y6 is unobservable, a

becomes independent of the unobservable quantity and is not
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influenced by the associated  estimation errors.  This is also evident from equation
(26.35: a depends on the observable component ©of the target acceleration  a— only.
In this sense the guidance law PEis robust with respect to ftracking errors. Since PCE
uses unobservable information for the solution of the prediction equations the
sensitivity with respect to estimation errors S plausible. O C E exhibits the same

sensitivity problems because the computation of the course error is carried out exactly
in the same way as by PCE

Finally it is noted that the rgnge and range-rate estimates  are not influenced by the

heading error as seen from figures 2.6.15a/b. This demonstrates  the decoupling  of y2

and y4 from y5 for zero target maneuvers as mentioned in section 2.5.
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MISSILE AND TARGET POSITION
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2.6.45 Summary

The simulation results obtained in this section confirm the conclusions of the

observability analysis.  They also reveal the sensitivity of the tracking algorithm  with

respect to initial estimation errors in certain intercept scenarios. Because the sensitivity

problems are linked  to observability of the target maneuver With respect to the

bearing rate, they can only be avoided if additional information is available by

measurements complementary to the bearing rate (for example range or range rate)
enhancing observability of the target mMotion glong the LOS. Nonetheless the guidance

law PEhas been found applicable inconjunction with the tracking filter ~ because only
the observable part Of the target maneuver is used. With the information required  for
target mManeuver compensation made available by the tracking ~ fiter ~ the main obstacle

to the realization of PEis in principle overcome (see section 1.3.6).

The main drawback of the present form of the filtering algorithm is its restriction to

constant tgrget mManeuvers. In the next section an adaption scheme will  be derived that

allows tracking  of time-varying  target maneuvers.

2.7 An Adaption Scheme for Tracking Time-Varying Target Maneuvers

The BTA is based on the assumption that the target heading rate is constant The

extrapolation equations (2430 ~ 34) are exact only if

/6~ O 14)
according to (2.4.280-
Assume that the true target mManeuver is given by

26 — 8(t) (272)

Let z (k+1) denote the propagated states computed by the fiter based on (27.1) and
z(k+) the exact values associated with (272) Thus there will be a propagation error
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pz(k+1) - Z°(kHl)  zk+1) 273)

The error pz in the cartesian  states z translates to an error py in the polar states y via
(26.1). Filter  divergence s likely to occur if py is not taken into account for covariance

propagation in (2,1,11) because the accumulation of propagation errors  may result in a
violation of (2.6.34). This is demonstrated by applying the tracking algorithm to

intercept scenario 2 of secton 1352, The farget heading rate in this scenario s given

by (see equation 1.3.70):

YI) = © O0=t=t (27.44)
YI() = [1 exp(—1) | > (2.7.4b)
VT \%
with
aTQ — 60, VT — 270 m/s, g —25s  pn —O0ls
The simulation  results are shown in figures 27.12.  While the iniial  estimation  error

in y, (: yt) is corrected in [0, t] (figure 2.7.2), the filter fails to track the acceleration
jump at t — te because the propagation errors due to the sudden change of y6 exceed

the error level given by P66 (figure  2.7.2b).

In the following an adaption  algorithm is derived that allows correction of the error

variances  in such a \ay that (2_6.34) is satisfied.

271 Covariance Matching

The propagation errors  produce inconsistency between the error statistics computed

by the filter and the true error statistics. Since the actual estimation errors  are Of
course unknown the only means of obtaining information about their  statistics is by
analyzing the measurement residuals. Comparison of the residual statistics predicted

by the filter and their “true"  statistics obtained from a data window of N measured
residuals allows to reestablish consistency between the Computed and measured error

statistics by appropriate covariance  correction. This procedure is known as covariance

matching [75,78,79].
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FILTER STATE NO.

T.TRAJ. A2 JoB Y3213CJ
F.TRAJ. DATE 21/09/86
G.uv 3 TIME 12.59.25.
FILTER, 2 FIGURE:
A ESTIMATED STATE
+ EXACT STATE
SCALE . 1.34990E»00
n
o.
i i i i
«< > —1J —_— = -— e T - « >
TIME [SI
ERRORVARIANCE OF STATE NO.
T.TRAJ. A2 JOoB Y3213CJ
F.TRAJ. DATE . 21/09/86
G.uv 3 TIME 12.59.25.
FILTER: 2 FIGURE:
A VARIANCE | ESTIMATED!

o SQUAREDESTIM. ERROR

SCALE < 1.52202E.00

4 5

TIME [S3

figure 27.1 ab
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FILTER STATE NO.

TTRAJ. A2 JoB Y3213CJ
F.TRAJ. DATE 21/09/86
G.LAV 3 TIME 12.59.25.
FILTER: 2 FIGURE:
+ ESTIMATED STATE
< EXACT STATE
SCALE 2.18300E -01
11111 »oygg) 111 ningp 0 oron 7)) 11111111 [ 1111 N N > 1111 i 0111111111111 D 111111 [ 111 n
<> —Jh = = e m
TIME [S3
ERRORVARIANCE OF STATE NO.
T.TRAJ. A2 Jos Y¥3213CJ
F.TRAJ. DATE 21/09/86
G.LAV 3 TIME 12.59.25.
FILTER, 2 FIGURE:
A VARIANCE | ESTIMATED!

<D SQUAREDESTIM.ERROR

SCALE 5.30000E-02

TIME [S3

figure 2.7.2a,b
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Covariance matching can be used for adaptive estimation of the jnput noise Qas well
as the measurement noise S. Q acts on P via the propagation equations (21.11)
whereas S gppears N the update equations  (2.1.19). AN gpplication of adaptive
measurement noise estimation for homing missiles is reported in [80] The purpose
here is to stabilize the tracking  algorithm  in the presence ©Of propagation errors
suggesting ~ covariance  matching by adaptive  Q-estimation. The relaton  between Q
and the propagation errors is established from the consistency requirement mentioned

above.

Consider the linear measurement equation

mk) = CK) yk + sk Rp (2.75)
C = p X< n measurement matrix where n = dim(y)

sk} — N(0, S(k)) measurement noise
According to (21.20) the measurement residual associated  with (275) s given by

k)= m(k+H)-m(k+) -
— C(k+1) [y(k+)  y(k+H/K)] — + s(k+) (2.7.6)

Let e denote the estimation error  (2.1.21) in the absence of propagation errors.

Hence, the exact value of y at time T is:

ykt1) = ykeany  E°KHLK)  pyrn) @17)
Substitution of (2,7,7) into (2,7,6) yields:
iktl) —  ck+1) [E°kHUK)  + pykan))  + s(ken) (278)

For further  apalysis a stochastic model of the propagation  errors s needed. Therefore

the following  assumptions are made:

) E{py(k+1)} =0 (2.7.9)
iy EleV+l/ py™k+l)} =o (27.10)
i) Efpyk S} =0 vk | (27.10)

Assumption |) is motivated by the desire to design an adaption scheme that results in

compensation ~ of the propagation  erors in the ypdate equations. Hence one is

interested in keeping the measurement residuals bias free.
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From (2,7_8-11) follows:

M(k+1): SEWk+/rfatl)} -

— C(kH)P°(k+I/k)Ct(k+) v
+C(k+1) Efpyk+1) PyVk+l)} Clktl) + sk+1) (712
where Pe(k+1k) - ={e°(k+l/k)  eOt(k+1/k)} (2.7.13)

s the soluton of (2.111) with Q= 0.
The residual  covariance predicted by the fiter s
Me(k+1l) - ck+1) P°(ktlk)  Crk+l) + s+1) (2.7.14)
Matching ™ and Miequires ~correction  of P with
Qk+1) — E{py(k+pyt(k+)} (27.15)
and the corrected value of P becomes:
Ppk+1k) — PktLK)  + Q+1) (2.7.16)

(27.15) is the desired relation between Qand py. An equation for Q(k+1) is obtained

by substituting (2.7.14/15)  into (2.7.12)  rendering:
ck+1) Qk+1) Clk+l) - m+rr)  M(k+1) (2747)

Since M(k+1) is unknown it is replaced by the sample covariance of the N most

recent measurement residuals

k+1
M<k+l) = “*° £ W1® (27-18>
Ni-k+I-N
Thus one obtains:
ck+1) Qk+1) Clk+l) - mk+1)  M°(k+1) (2.7.19)

2.7.19 is a set of equations for the -2- n+1 unknown elements of note that is
(27.19) p €q Q( Q

Jl

symmetric and positive  definite). For the tracking problem discussed here (2.7.19) s
scalar  equation  (p=l) and the filter dimension is n = 6. Therefore, additional

conditions are necessary to determine Q. In view of (2715) this amounts to adding

further  gpecifications to the stochastic model of the propagation  errors.
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2.7.2  Stochastic = Model of Propagation Errors

In order to reduce the number of unknown parameters in the stochastic ~ model (2.7.15)

an approximate relation between the variances associated with the components of py

is established. For this purpose an upper bound for the propagation errors  produced
in the sampling interval |y = [/\ Ht+|A 7 derived- From (2,7_1-3) follows that the

propagation error associated  with 76 in |k is given by:

() [q(tk+{r)da 2720

Hence

] =117 ) e = > e12)

where S m ax/\o/\f/\ K H <2-722)

From (2,721) follows:

bkl 8maxT: - Me(+1) 2129

T = th1-tk 21.24)
Eor any given value 0 < p, < o° the target maneuver that maximizes ‘pZG(r)| is
&(\+ <0 = «<n) M6(k+]_) (2.7.25)

Therefore an upper bound for the remaining components of pz is obtained by soIving
(2.4.28) with i from (27.2) and g from (2.725), The solution is easily found py

replacing 26(k) with zﬁ(k) + ,~ in (24.30-34) and is of the following  form:

2ty — g LW ZH 7K wegern), uM(kH) 2729)

Substitution of (2.726) into (26.1) yields:

v = TOEW,.,  T0 TH - e, uMke)) @720
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Expansion of (27.27) in terms of , using y6 — z6 according  to (2.3.5/8)  renders:

3o JZ°(k),uM(k+)]

- 0 & VN _
ylt) = TO @, uM(kH)] m (k+i)
= yo(k)
(2.7.28)
Observing that
TOZZK).  umgery = Y(kH) (2729)
the propagation errors  py are found to be
k
py(k+l) s - v E+1) M6(k+1) (2.7.30)
3y°(k)

Note that (2730) is valid for the target maneuver (2725) 0n|y_ Since this maneuver

maximizes the extrapolation error  (2.7.30) yields the first approximation of the upper

bound of pyJ

‘|py;(k+|)| s bk iQath - s @7an
ay?(k+)

with b.(k+) = (2.7.32)
ay°(k)

According to (27.9) it is assumed that
py6(k) — NIO. gb(k)] (2.7.33)

Using (2.7.31) the stochastic  properties  of py, @ = 1., 5 can now be gpproximated in

terms of (2733).  Noting that

I
[uy

b6 (2.7.34)

q° s approximated  by:

6~ %0 (2.1.3)
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With (2,7,35) the estimated variance associated with pyj is of the form:

A = N

G - Ely2- b (2.7.36)
Since (2.7.31) does not allow for conclusions about the cross-correlation between the

components ©f py, the pyr 2re modelled as uncorrected processes Yielding:

Sk pikp —° VItE b= L. 6 (27.37)
(27.36/37)  with (27.10) and (27.15) result in:

Q(k+1) =diag[q.(k+1)] — (2.7.38a)

=dlaglo2(ke ] (k¢! o730

For the computation of b. the values of y (k) must be known. Because the exact values

A

are not available they are replaced by their  estimates y(k/k), Hence one obtains from
(27.32)  with (2.1.9/12);

3y:(k+1/K)
b~ - Wbk, K (2739)
ay6(k/k)

Substitution of (2,7,38) into (2.7.37) renders finally:

Qk+1) = diag [ W[kt kI gB(k+) (27.40)

Discussion:

(2.7.40) represents the stochastic model of the propagation errors. The —(n+1)

unknowns in  (2,7,15) have been replaced by the single unknown  quantity q

Covariance matching has therefore been reduced to the determination of a from the

q
scalar  equation  (2.7.19).

In contrast to (2.7,37) the py. are highly correlated. The cross-correlations depend on
the target maneuver and have been used to compute the variances g, associated  with

the maneuver (2725) Due to the 5pecia| choice of this maneuver the true variances

are bounded by g,
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Neglection of the cross-correlations in Qs necessary because the actual target

maneuver is unknown. With (2.7.37 the single  "noise"-source is replaced by n
g py6 p y

uncorrelated noise channels. Consequently, filter performance is affected only in so
far as the variance estimates computed by (2.1.11/19) will  be conservative. This is

desirable because it enhances robustness  with respect to other modeling error sources

such as changing target Velocity —T<

2.73 The Adaption Algorithm  (AA)

In the following  the computation ©of Q(k+1) according to (27.19) and (2.740) s

summarized. Some precautions have to be taken in order to ensure that (Q remains

positive semi-definite according to (2_7,15) and to keep the variances Q. bounded.

For bhearing-rate only measurements according to (2,3,10) the measurement matrix is:
C - [10 000 (] (2.7.41)

Inserting ~ (2.7.41) into (2.7.19) renders:

gx(k+l) = M(k+1)  pn(k+l/k) S(k+1) (2.7.42)
From (2,7_36/39) follows:
q,(k+l)
go(k+l) = - (2.7.43)
wjb(k+,k)
and Q may be computed from (2.7.40). In order to ensure that Q remains positive
semi-definite adaption is carried out only if q,\,\ is positive. Therefore a. is computed
as follows:
gx*(k+l) -+ — M(k+1)  pn(k+1/k) S(k+1) (2.7.44)
gx(k+1) = max[0, qx'(k+1)] (2.7.45)
If w16 in (2_7,43) tends to zero (Q becomes indefinite. This situation occurs if the

heading rate v6 is unobservable (see secton  24). Due to (2.7.40/43) the error

variances  then grow Without  bounds, indicating complete  uncertainty in the state

estimates. ~ This is physically reasonable because no information about the propagation
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errors is available in the measurements. Typica”y, conditions with (near|y) zero
sensitivity w16 ©occur during short periods only, because of maneuvers and the
changing relative geometry. Hence, it is desirable to avoid ynrealistically high values

of p. during these intervals in order to ensure convergence Of the fiter  on subsequent
arcs With  improved observability. A straightforward approach is the limitation of q° by

q6max in (2-7.43) and the suppression of adaption if p66 crosses an ypper bound

p66Max. With this modifications one obtains:
. maxfO.qjXk+1)]
g6(k+))  — min{g6max, } . ifpB6 < pe6max (2.7.46a)
Wi (k+K)
g6k+1> — . " P66 * P66Max <2/M6b)
%max® @ measure of the maximum possble  propagation  emor i i tAy]]

associated  with the target heading rate. It is determined by the target's maximum

heading angle acceleration y6 which is related to the dynamics of the lateral
acceleration via (2.3.3). VAmax approximates the maximal quadratic ~ estimation error

in v6 and s atuning parameter Of the adaption algorithm.

I summary the adaption proceeds as follows:

step 1 (prediction):
compute propagated state from (219) and the measurement residual r(k+)

according  to (2.7.6)

compute predicted covariance matrix P (k+1/k) from (2.1.11)

step 2 (matching):
compute M(k+1) according to (27.18) with r(k+l) known from gggp 1
compute 1 '(k+1) from (27.44)

compute (f(k+1) from (27.46) and Q(k+1) from (27.40)
compute P(k+1/k) from (27.16)

table 2.7.1: adaption scheme
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Remarks:
The output of the adaption algorithm is the matched covariance  matrix P(k+I/K)
which is jnput to the update equations (2.1.15/19). Hence the propagation errors are

accounted for during update.

From the equations (2.7.44/45) it follows that the variance S of the measurement
noise  determines the  sensitivity of the adaption algorithm with respect to the

propagation  erors:  According to (2.746) adaption s carried out for positive g, only.

For |arge values of S q/\ is positive only for large values of M. Hence substantial

propagation errors are tolerated without adaption which gy result in filter
divergence. ~ In other words, increasing S decreases the sensitivity of the adaption

scheme. If Sis low adaption is activated at low error levels (high sengitivity) resulting

in high values for 4 and p.j which mgayresult in aloss of estimation accuracy.

In view of it influence on the adaption  algorithm S may be regarded =a tuning
parameter (especially if the true measurement noise in ynknown). The selecton of Sis
a trade-off between sufficient sensitivity necessary 1o adapt to changing target

maneuvers and estimation accuracy.

The influence of each new measurement residual on Mis inversely proportional to
N-1 (equation 27.18). Hence, the adaption scheme reacts slowly to changing target
maneuvers if the data window used to compute Mlis long. Therefore, for fast adaption
N should be choosen low. However, statistical significance of M may be lost if only
few residuals are taken into account in the averaging process (2.7.18). The "optimal"

value for Nhas to be found by experiments.

The statistical significance of Mis also determined by the length of the sampling
period T. Because the innovations process is instationary the current  statistics of the

measurement residuals at k4] can only be approximated by Mifor small T. T i

however, constrained by the computing time required to solve the filter and adaption
equations. ~ Motivated by the experiences in secton 1.4 singular  perturbation theory
will  be applied to the tracking problem in the next section in order to reduce the
dimension of the filter. In this \way a substantial reduction of computing time can be

achieved.



193

2.8 A Singularly Perturbed Adaptive Tracking Filter

In this section an adaptive tracking algorithm  for maneuvering targets s developed.

The algorithm is based on the BTAOf section 263 and the adaption scheme derived

in the previous section. Advantage is taken of the time scale separation revealed in
section 144. It was shown that the dynamics ©of the missie heading angle are
decoupled from the missile-target relative motion in mgny scenarios.  The same may
be expected for the target heading angle. This is confirmed py the scaling of the

tracking  problem in the following section. Due to the time scale separation, two filters

are Obtained: a high dimensional filter associated with a slow time scale and a low
dimensional  fast filter. The low dimension of the fast fiter allows high sampling rates
as required for adaption because the number of computations in the fast time scale is

considerably ~ lower than for the BTA.

281  Scaling of the Tracking Problem

A scaled  representation of the tracking problem is found by introducing  dhnensionless
variables () and appropriate reference  values ()maX in an analog manner as was done

for the intercept problem in section 1.4.4:

v T yx Vmax (2-8-la) y4 ~ yARmax (2.8.1d)
y2 ~ y2Rmax (2:8.1b) y5 = y5 TTmax (2.8.1¢)
y3 = y3 "max (2-81c> y6 = y6 TTmax (2.8.10
%=% amax % aSP=  a<pamax (28.20)
aTR= aTRamax (282 aR= "R”™ax (2.8.2d)
t=rtr (2.8.3)
o o 0 tA: >=-f (2.8.4)
dr ) —_———=—

Substitution of (2_8,1-4) into (2_5.7) yields:
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CJEST 1,

(2.8.60)
YTmax
Tmax
6 — -J—=<« (assumption) (2.8.6h)
V 6max

The numerical values for  are obtained with the following reference  values, which are

"typical" for the scenarios investigated here:
amax — 10S — 100m/s2
0 n
vmax — 8'1 a0ls 1

Rmax = 50° m/s

max

Rmax

9max

*Tmax~(@3  "Tmax'f

Discussion

Comparison of the scaling  factors t reveals that the states y* and y6 are candidates

for selection  as fast variables compared to V2,0 yA. The bearing rate yis composed

of afast and a slow part according  to:

yio =yl *y12 (2-8-7)

with

a- a

guyn : fast - part (2.8.8)



196

| y2
g2 Y2 —72 o slow part (2.8.9)

y4

Note that is a slow variable mainly because the guidance law ftries to keep the

y3
LOS-rate low resulting in only slow changes of the bearing angle. Hence the following

scaling s suggested:

fast states: y'Q, y5’ y6 (2810)
slow states: y12, 3" V3» 24 (2.8.11)

If it is feasible to assume that the slow states remain constant in the fast time scale
(which is not obvious as discussed in section 2.8_2) the dimension of the fast filter is
only np = 3 according to equation (2_8.10) instead of h = 6 in the BTA. The
substantial reduction of computing time becomes obvious by observing that the

transition matrix M\required for propagation of the covariance matrix according to

(2,1,11) has 36 elements for the BTAbut only 9 elements for the fast fiter based on

(2.8.10).

Finally it is noted that the (design of a fast filter s possible  only if the measurement

equation  contains  information about the fast states in the fast time scale, ie. the fast
subsystem must be boundary layer observable. Fortunately this  observability
condition is satisfied (With the restrictions discussed in section 2.4) because the fast

states  gppear N the fast part of the bearing rate as seen from (288) and (258) Note
that for bearing only measurements the fast subsystem is not observable in the fast

time scale because the bearing angle is not part of the fast state.

Before designing a2 multiple time scale fiter based on the scaling given by (2_8_10/11)
some general remarks on the application of singular  perturbations infiltering theory

are necessary.

Remark:
The scaling of the fast states is due to the missile-target relative acceleration according

to (2.8.8). Since the relative acceleration occurs in (2.85h) as well one might split y2 in

a fast and a slow part, too. It turns out, however, that the dynamics of the fast states
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i no* i -Si PN
(y|r Y5 y6/\are decouPled from y2 e fast time scale-Since oo knot measured
same applies to the associated reduced filter. Therefore asp”t of the dynamics of y2 is
of no advantage and y2 is treated as a slow variable in order to keep the dimension in

the fast time scale minimal. Hence the scaling (2,8_6(;) is more a matter of convenience

rather than a physical fact In cases where y2 is measured a gpft of the associated

dynamics is justified because it provides additional information in the fast time scale

thus enhancing observability of the fast states.

2.82  Singularly ~ Perturbed Stochastic ~ Systems

One of the main results of SP-theory for deterministic systems is the following
procedure to construct the zero-th  order approximation to the solution  of a singularly
perturbed system (see section 143):

a) Solve the reduced problem in the time scale of the slow variables. The fast variables
may be considered guasistationary in this time scale provided that the fast

subsystem is stable.

b) Solve the boundary layer equations  in a stretched time scale. In this time scale the

slow variables remain constant

Inthe following, some comments on the gpplicability of the above procedure to

stochastic systems are made.

28.2.1 Linear Systems

Consider the linear gystem

n,
1

x= Anx* Al2z * Bxv R (28.12)
ez = AN x + A99z + BIu R~ (2813)
u~N@©,Q) RP input noise (2.8.14)

Al matrices may be time variant and A22(t) is assumed to be stable for al t. As usual

« denotes a small perturbation parameter. Inner and outer solution  wil be denoted by

(f and ()°, respectively as introduced in section 14.2. The autocorrelation function  of

z is defined as
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1 JUo): EWtfeV)] (2.8.15)

It can be shown [81] that:

- °,. ~ a-1 . ~ ~ NAt At  *In r. A"t

ML RRS 2 ~ AgATEA) AN a£ ¢ AMBjQ BEaJd alY)
o - OOYY (ta) g (u) a iO BEa
(2.8.16)
Setting e — Oin (2813) yields the quasistationary solution

2 - AMNAN < AMB2 (28.7)
Using (2.7.17) 1t is easily shown that

e ou) - W) (2818)

Moreover it is proved in [82] that:

t+At
lim | tado =0 (28.19)
£-»0 z z
t-At
(o]
where o7 = 2 z (2.8.20)
Hence, for Oz converges versus the quasistationary solution Z° in the sense of

(2.8.19/20) justifying the computation  of X° by replacing z with Z° in (2812) (a
rigorous proof can be found in [82]). The relation beween the zero-order outer

solution and the exact solution s given by

) 2821)
2= 2 + (ffe) 2822)

Note that for deterministic systems the corresponding  approximations  are 0(e).

Application of the time scale transformation
¢ = - (2.8.23)
S 64 2-8.24
0: dr = dt (2:8.24)

to (2.8.12/13)  yields the boundary layer equations
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X'= gAjj X+ fA12 7 + gBj U (28.25)
2= AN X+ A2z + BRu (2.8.26)
For deterministic u (2,8,25) yields constant x in the boundary layer as t tends to zero.

However, this is not true if u is a white noise according to (2_8,14) because u has

infinite variance. Further conclusions may be obtained by analyzing the Ito-
differential equation associated  with (2,8,12);

dx = Anxd + A1z dt + Bxdw (2:8.27)
with

E[dw] = O (2.8.283)

Eldw (W] — Qut (2.8.28h)

With (2,8,27) the covariance matrix of dx becomes:

Eox 01 = aup, A 2 + Anpxz AR @2 +

A12Pxz Al 925 a1op77 A12 02+ IO Bidt
(2.8.29)

with ny -z (L (2.8.29)

According to (28.23) E[dx dXx | maybe expressed in the fast time scale by substituting
dt — £dT (2.8.30)
into (2.8.28)  yielding:

e 0] - «2AnPxx Aln 42 + e2AnPxz AN 42 +

<a12 pxz Al 9™ e2A12P7z a12 @ + sppe. Bl o
(2.8.31)

Letting ¢ tend to zero one obtains:

lim  E [dx Xm] =0 in the boundary layer (2.8.32)
£-+0
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Conclusion:
In the sense oOf (2_8.32) the slow variables may be considered constant in the fast time

scale. From (2,8,32) follows:

E[dX dX].] = O(E) as £-»0 (2833)

Hence for the inner solutions obtained from setting dx = O in (2,8_25/26) one has:

« =X o) (2834
. = L+ o) (28.35)

The results  of the above discussion maybe summarized as follows:

The procedure for Constructing the zero-th  order approximation to the solution of a

singularly ~ perturbed  deterministic system may be applied to linear stochastc  systems
(2_8.12.14)_ However, the notions "quasistationary" and "constant" have to be
interpreted in the sense of (2.8.18/19) and (2.8.33), respectively. Therefore the

resuling ~ approximations ~ are of order ()({g) rather than ((e).

For application of the above result to the filtering problem consider (2_8.12-14) with

the measurement equation

y = Cxx * C2z * = (2.8.36)

= N0S), E[p g -o© (2837)
Determination of the (zero-th order) outer soluton is done py setting « = Oin (2.8.13)
yielding z° according to (2.8.17). Substitution of Z° into (28.12) and (2.8.36) renders:

X"= [An  A12 A2A21] X+ Bl A12 A22B2] v (2839

Y - c1 C2AA2] X coANB2 u + = (2.839)
Note that the noise jnput of the fast subsystem, B2y appears as an additional
measurement noise in the outer solution. Deﬁning

AD — An A12 A22A21 (28.402)

B* — Bx A12 A2"B2 (2.8.400)

C® - cx c2A22A21 (2.8.40¢)

D* - c2A22B2 (28.40d)
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the equations  of the Kalman-filter associated  with (2.8.38/39) become:

? _A°? . K°y*-C0?] 28.41)

KAPAC01M0]"1 (2842)

ol — PIAOt + A°py + B°QBOt Plcot "lc®  py (2:8-43)
with Pix=E [(xx"*xx0)1] (2.8.44)
and §° — s + D°QDot (2.8.45)

S° is the variance of the measurement noise in the outer solution which includes the

contribution of u according to (2.8.39).

It can be shown [81]82] that the exact Kalman filter associated  with (2,8_12-14/36)

converges versus (2.8.41-45) as « tends to zero.

In the fast time scale (2.8.25/26) with (28.32) and (2836) yield for « — O

L = Anyo + A28 + B (2.8.46)
I~ cxxo + C2% + s (2.8.47)
x0 = x(0) (2.8.48)

The fiter  associated  with (2_8,46-48) is:
h = NI~ a22? + KJIZ-CjXg-CiZ1] (28.49)
k2= P1r CS'1 (2.850)

P22 = *22 A22 + A2272 + B2°-B2 "2 C2S C2%22 (2851

The filter (2.8.49-51) is denoted as fast filter in the sequel. Again t can be proved

[8]_,82] that in the boundary layer the exact fiter  converges versus the fast filter as t

tends to zero.
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Conclusion:
The zero-th order approximation of the Kalman filter associated  with (2_8.12-14/36)
may be constructed by fist  taking the limit of (2.8_12-14/36) as £*0, Vviz. deriving the

differential equations  of the slow system (2.8.38/39) and of the fast system (2.8.46/47)
and then designing the filters associated ~ with each subsystem. The original filter of

dimension n = M *n2is split into two lower order fiters  with dimensions nA and n2,

respectively.

Based on this procedure and the scaling  given in (2810/1]_) a multiple  time scale filter

for the tracking problem s designed in the subsequent sections.

2.8.2.2 Onthe Applicability of the SP-Concept to Extended Kalman Filters

The results found in the previous section are valid for linear systems  Wwith

deterministic system,  control, and measurement matrices. For linearized stochastic
differential equations these matrices and hence covariance matrices and filter gains
are themselves  stochastic guantities. Therefore, the conclusions obtained  for linear

systems do not agpply to the design of extended Kalman filters. Especially, it cannot be
expected that the EKF associated with a scaled nonlinear  system converges versus the
reduced filters obtained from the decoupling of slow and fast states prior  to filter

design. In  other  words: The operations "lim" and  “filter design" are not
£-0

commutatitve for nonlinear  gystems. Nevertheless it mgy be feasible to take advantage

of the time scale separation and to carry out fiter design for the decoupled systems.

Although  the resulting slow and fast EKFs are not the O(fT)_apprOXimation to the
exact EKF, stability of the design is not excluded. Also, it is not clear whether there is
a loss of "gptimality" because the exact EKF is not optimal in the sense Of a
miminal-variance filter  either.  The validity of the SP-approach has to be verified after

fiter — design by checking fiter  performance by means of simulations.

A conceptual  difficulty of decoupled fiter  design for the tracking problem is due to
the fact that the fast gybsystem s unstable. This is evident from equations  (2.8.5e,0-

Hence, no quasistationary solution y/\’ y2, y/\ exists, implying that order reduction

in the slow time scale is impossible. However, in the fast time scale the slow variables

are constant (in the sense oOf 2,8_32). Therefore  a reduced order fast filter FF with state
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yF = (yly5)6) (2852)

may be designed. The information produced by FF can be used to decouple the
estimation of the slow variables from the dynamics of the fast subsystem. The basic

approach consists  of using a ful order slow filter (FS) with state vector

yS ~ (b y2cy3 yhr 5 NV (2.8.53)
(which is essentially the BTA) in the slow time scale and performing covariance
matching With respect to the residual statistics in the fast time scale. In this way FS
may be stabilized  in the presence Of variable target maneuvers without s sampling

rate  being dictated by the dynamics of the fast subsystem. Essentiany the fast filter s
used for prediction of the anticipated propagation errors in the slow time scale. Details

of the procedure are discussed in the subsequent sections.

2.83  Synthesis of the Multiple =~ Time Scale TracldiigFffler (MTSTF)

The MTSTFis a combination of the following modules: A slow fiter  with the state

vector  (2.8.53), the measurement module (section 26.2), the adaption  algorithm
(section 2.7,3)Y and a fast filter with the state vector (2,8.52), The only one of these

modules that has not yet been discussed is the fast fiter, In  the following the

equations ~ of the fast fiter  are derived.  Subsequently  questions  of linking ~ and
synchronization of the different modules are adressed. For clarity ~ the main parameters

associated with each module are listed below:
FS (slow filter):

state : vQ = (yV, y6)

covariance  matrices : pg Qg Sg
] ]
S S

missile, target maneuver: uj/\l Uy

sampling  period ‘TS

FF (fast filter):

state : yF = (yr y
covariance  matrices P p Q p Sp
F F

missile, target mManeuver

sampling  period ‘TF
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M Mmeasurement module):
measured bearing rate S m

measured missile  maneuver: UM'

AA (adaption  algorithm):
(applied to FF only)
input data yF, ys
output data: Qp

2.83.1 Equations of Fast Filter (FF)

Based on the time scale gseparation assumed in (2810/11) the scaled equations of the

tracking problem are formally:

| y2
yl9 — -2 vy (2.8.54a)
y4
2 =~ ar ar ™yl (2.8.54D)
v3 — Yx (2.8.54¢)
yo = y2 (2.8.54d)
vTy6cos(ys-y3)-ad N
£yll — (2.8.552)
yT4
£ Y5 ~ y6 (2.8.55h)
cye — folY) (2.8.55¢)

Using the time scale transformation (28.4) the boundary layer equations become:

dyl2 —dy2 —dy3 —dy4 — © (2.8.56)

V{ —yur — 7 T oyecosls V) & (2857a)
yT4

Yo T y6 (2.8.57h)

ot = %() (2.8.57¢)

With (2.8.7) the measurement equation becomes:
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mi) =) T~ Cpyp * Y2~ sp (2858)
with Cp-— [1,0,0] (2.8.59)
sk~ N(0,SF) (2.8.60)

Recall that ()° denotes the outer solution  which is constant in the boundary layer.

Let Tp denote the sampling period of FF. Since the tgrget maneuver is unknown it is

assumed as in the BTA:
o) —© (2.8.61)

The propagation equations  of y5 and y6 in the sampling interval L = [t’ t+’] then

become:
y5G+1) = ysof) -+ TF96()J) (2862)
y6(i+il)) = y60/) (2.8.63)
with
TF — tj'l'].'t] (2.8.64)

Since Tp is assumed to be very small (which is one of the design goals) propagation ~ of

the bearing rate is approximated by an Euler step rather  than using the exact
equations as was done for the BTA. In this \ay the computational burden for solving
the  propagation equations in the fast time scale is further reduced.  With (287)

(2.856), (2.8.57a) one obtains:

yIGHIJ) = yiol)  + (VT ye(fcosly5() W a (2.8.65)
W
(28.65) may be simplified if it is evaluated in a reference gsystem Zp= (Xp yp) given

by

A -0 (2.8.66)
ZF

q
in a similiar manner lke Z was defined in section 2.6.1/2. (2,8,65) then becomes:
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yio+3) = yiol) + NTFvTy6ald)cosys(j/)) -UMA4(j+D} (28.67)
W

with | j\ygaccording to (2.4.32d).

The transition matrix associated  with (2,8,62/63/67) is:
WpO+U) _
dypQ')
- . VTTF a
“Z£'y& |>*nVT&I) — cosysQli)
y? 3

(2.8.68)

With (2.8.68) the propagation equations of the error covariance  matrix Pp of the fast

system are:

"PF11 pF15 pFi6
PpO+1/J)=  pF15 pF55 pF56 0+/J) =
pF16 pF56 PF66

= WpO-l. J)PpOij) V\r/t{{)oﬂ, )+ QpQ+l) (2.8.69)
where QpO+1) — diag[gFlatl), qgF50+1), qF60+D] (28.70)

denotes the output ©Of the adaption algorithm  according to (2.7.40) in the fast time

scale (see also section 2.8.3.5 )

Substitution of (2.8.58/59) into (2.1.16-18) yields  the following update equations in

the fast time scale:
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filter  gains:

'gnO+DX [Ppii(J+1/J)\

FF11U

A60+)/ " \Pf160+1/»/

state update:

W\(HI/]+) — yiO+1/J+D  + gi0'+D ' (2.8.72a)
y5(J+1J+) = y5a+l/J+D + 850+1)1 (2.8.72b)
y60+i/j+i) = y60'+i/J+D  + g60+i)l (2.8.72)
L= m(+1)  yj(+1)) innovations  process (28.73)

covariance  update:

Ppud+l/J+1) = PpnO+l/J) (1-8x0+1)) (2.8.74a)
Pp55(j+/j+) — PF55a+ll))  g50+)PF15a+l/J) (2.8.74b)
PF660+i/j+) — pF66a+i/))-g6a+i)PF160+i/)) (2.8.74c)

PF150+1/J+1) = PFI150+1/)) 850+1) PpxjO+l)  (2874d)
PF160+1/J+1) = PF160+1/)) g60+) PpnO+/J)  (2874)
PF560+1/J+41) = PF560+1/J)  g50+)) PpieO+l]) (28740

Comparison of the equations of FF given above and the BTATvreveals the substantial

reduction  of the number of computations in the fast time scale.

The equations of FF are based on the assumption (2861) Therefore the fiter must be

adapted in the presence Of variable  target maneuvers. As discussed in section 2.7.1
adaption is carried out by appropriate selection of Qp in (2869) Only the error

variances  associated with yp are matched. Because the slow states are constant in the

fast time scale they are not affected by extrapolation errors in the fast states.
Summary:
In the fast time scale the states yp are estimated by the fast filter FF in conjunction

with the adaption  algorithm AA(see section 2,7.3). Due to its low order this filter may

operate With a high sampling rate which s required for adaption and allows tracking

of rapid changes in the target maneuver.
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Changes of y which are parameters of FF are easily taken into account by updating

the equations of FF with the latest estimates obtained from FSin asimliar manner as

discussed for SP-guidance laws in section 1.46.1.

2.8.3.2 Adaption and Propagation in the Slow Time Scale

Consider the sampling interval k= [IA t"+J in the slow time scale, with
!

TS ~ tk+l"tk (2-8-75)

Assume that FF performs MNcycles in 1A according to figure 281, hence

Tg = NTF (28.76)

= slow time scale

t> fast time scale

K IKHL I(k+1)-I(K)+N

figure 28.1: time scales of MTSTF

At |k+tlie estimated  propagation  errors in I measured by (Qpaccording to (2.8.70)

are available  for all | Bk + 1, Jk+l)] from FF/AA. Since the propagation errors

are modeled as a white noise sequence according to sections  2.7.1/2 the variance of
py6 (propagation ~ error in y6) in 1A is given by:
J(k+1)

qg6(k+l)= £ qp60) (2.8.77)
=)+

It is noted that ng is the zero-th order approximation to the variance of py6 because
qp6 is computed for constant slow states. Adaption in the slow time scale can now be
caried  out py simply solving the propagation  equations  of Pg with Qg computed

according to (24.70) and qg6 from (2.8.77).
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The estimates yF may be used to compute the target ~mManeuver U]O'I'l) hi L

according to (2.4.34) with

zmG) — ymG7J) '+ = 56 (2.8.78)
The tagrget maneuver in 1 is then given by

J(k+1)
u|(k+l)= Vo) 2879)
[=3(k)+
The accuracy ©f the propagated states in the slow time scale may be considerably

improved by using (2.8.76) for state propagation  rather than assuming a constant

target maneuver in k.

2.8.3.3 Initialization of FF

The use of the target maneuver estimated py FF for state propagation in FS syggests
an order reduction in the slow time scale py regarding the fast states as parameters

known from FF. However, since there is no need to minimize the sampling period Tg

it is preferable to use the full order fiter in the slow time scale allowing for periodical

reinitialization of yp and pp with  the corresponding estimates of FS. In this \ygy the

fast fiter — may be prevented from diverging if the scaling assumptions are violated (g,

the slow states are not constant in the fast time scale) which may happen for large N.
Thus, the fast filter is used as a predictor for both propagation errors  and target

maneuver in |k, whereas FS may be interpreted as a corrector improving the accuracy

of the preliminary estimates obtained from FF.

Initialization of FF occurs in the interval |»/\y The procedure includes updating the

parameter  J/A used in (2867/68)  and reinitalizing YpR(KAK), Pp(kAK)]  with
the estimates found py FS. The best estimates associated with th are the uypdated
values ;s(k/k) and Pg(k/k). These quantities  are, however, not available  within li*n

because the computing time required to solve the propagation and ypdate equations

of FS is Dasically Tg Since the solution of the state propagation equations  requires

only few computations compared to covariance propagation it is assumed that the
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propagated states y(k/k-) are available in |J'/\n whereas the covariance matrix s only

known from the previous update. Hence FFis initialized as follows:
Y =y(kik-D) (2.8.80)
PORK] = (k] 2881)

PRIDKOKT — pui(klk) i - 156 2882)

2.8.3.4 Measurement Data Transformation

C

The equations of FS and FF are evaluated in the reference systems Z defined by
(266) and Z" defined by (2866, respectively. ~ The missie maneuver \' computed
by the measurement module is given with respect to the seeker system Z?. In order to
exchange data among the three modules, transformations to the appropriate reference

systems are necessary. They Wil be discussed in the followmg.

Consider the situation at time t — A + ¢ O<t<Tf (figures  2.8.1/2). The

, q
extrap0|ated states yg(k/k_l) are known with respect to the reference system Z (k-l)

e . P
For initialization of FF the slow states have to be known with respect o Z (k).

According to (2866/80) Z (k) i determined by

I
o

y3(klk-) (2.8.89)

ZF(K)

Since y,\, y2, y4, and y6 are independent of the reference system and y3 is given in

(2_8_83) only y5 has to be transformed. From figure 2.8.2 follows:

V00K Bl 3Kk
7F(K sk N sk

(2.8.84)

The measurement module renders the missile maneuver in |- with respect t© Z (k).

<&i+D - VCi+D (2.8.85)
)
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P P

In order to solve the propagation equation (2.8.63) UjAj must be transformed to Z ().
<@ . S . . .

The orientation of Z (k) with respect to Z (k-1) is given by the angle *(kk) according to

(26.17) and figure 282 Hence, the orientation of ZAk) with  respect to Z (k) s

k)~ *K)-y3[kkd (28.86)
CIRCEEL

For the missile maneuver in Z (k) follows:

Unnina OFD - [uMi+['0+D\ 085
= TRIPKD  \p gy 8
e O g \'uMi+2'0+i)y
=01 ] = JK),..,d(kH)-I
with TR according to (2.6.15)
CL-x,
*s(k)
Xg(K)
= XF(k)
xs(k-)

figure 282 reference systems in the sampling interval ffl J
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Equations  (2.62/67-74) may now be solved at tilEv+1. The maneuver terms
U‘\)NO+1), Ul):/O+1) are Stored. For the computations in L+1 the measurement
module s reinitialized by resetting  the integrators G\ -S4 (see figure 262). The
contents  of S5 remains unchanged for determination of Z (k) After termination of
the uypdate equations of FF at AVAVZa the equations of FS are solved in " The total

missile and target ~mManeuvers in |k required for state propaga’[ion are Obtained by

summing up the maneuvers in L

J(k+1)-1
k= Y woH) =

M, T (2.8.89)

F F
Because u is given in Z (k) the maneuvers (2_8,88) must be transformed to the

reference  system ZS(k) of FS. The orientation of ZS(k) with  respect to ZS(k) s given

by the known angle |(k) according to (2.6.]_6). From figure 2.8.2 follows:

ACOO- k)  <K) (2.8.89)

where £p(k) is known from (28, 86). AE(k) is the orientation of Z (k) with respect to

Z (k. Hencein Z (k) one obtains:

M- )
— -TRIA{K)] AL+
15 \ e, 7Rk
i =01 K=MT (2.8.90)

where the maneuver terms on the right hand side of (2_8.90) are known from (2.8.88).

with u and Qg known from (2890) and (2.8.77), respectively, the equations of FSin

lk can be evaluated. A summary of al computations in Ik is given in the next section.

2.8.35 Summary of MTSTF-Algorithm

Inthe following the sequence ©f computations carried  out py the MTSTFin the

sampling interval 1" = [tA, t/\+l] is summarized. The cycle starts  at time W-j+ t

with ¢ > 0. The following data are available:
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from measurement module: UMl[\](k)‘H]

m[I(K)+]

from slow filter: yS(k/k'|), Pg(k_|/k_|)

step

step

step

step

step

step

step

Fk), *K
Initialize FF:

a) Initialize parameter y4 and states yF according to (2.80/81/84).

b) Initialize covariance  matrix pp according to (2,8,82),

. . : P ,
Compute missile  maneuver in L with respect to Z (k) according to (2.8.87).

Solve propagation  equations:
a) Propagate states according to (2.8.62/63/65).
Output are the propagated states ypO+|/J) and the residual rp0+l)

b) Propagate covariance matrix gccording to (2869) with Qp: 0.

Output s Pp0+|/j).

Compute estimated  target maneuver uEO+I) according to (2.4.34)
ZF(k)

and (28.78).

Adaption and ypdate:

a) compute qp from (2,7.46) and prfom (2.7.40)
b) compute PpO+1/j) from (2.7.16)

) solve uypdate equations (2.8.72/74)

Initialize measurement module for next sampling interval |{ A
, N
Sl =s2 =s3 ~S4-0

IFj<J(k+l): j=j+,GOTO 2
IF | = J(k+1): start slow filter

Reset MIMbr next sampling interval [+

a)storef(tk+1,tk)
b) reset  GA



step

step

step

step

step

step

step

step

10:

11:

12:

13:

14:

15:
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Determine missile and target maneuver in L,

a) compute u/\(k+l) and u|(k+|) from (2.8.88)
ZF K 7F K

b) compute  UM(k+) and - (Jj(k+1) from  (2.8.90)
ZS(k ZS(k)

Adaption in slow time scale:

compute Qg(k+1) from (2.7.40) with (2.8.75)

Solve propagation equations  of slow fiter.

Output & ys(k+ 1K), Pg(k+1/k)

Determine bearing angle at tj/\, with respect to Z (k)

Determine reference  system Zp(k+1):

Fkt) = A+ y3(keIK)

ZS(K)
Start FF at 1 with k = k+1
Solve update equations of FS.
Output s yg(k+l/k+]) and  pa(k+{/k+),
ZS(K)
Determine reference system for FSin |k+,: Zc(k+1)
{(kt) = ~k+)- y3(k+I/k+)
ZS(K)
AT (F(ke){(kH)
y5(k+/k+l) = y5(k+/k+l) y3(k+I/k+l)
ZS(k+) ZS(K)
k = k + |
GOT0O10

The signal  flow of the MTSTHFs depicted in the following  figure.



(81°2°2)

— (9v/0v°'L2)
ioreumss s
souenen sal laydepe-O
(m+0Td @reham
<T+{>4, (T+0>7
e 57 podetd
erepdn (enschi uonebedold
Mayd 7T |d
(T+0)w A
(T+0/T+0)4d
(T+T+Dah .
(T
(TH)»v
(Tt (6T/ST'T2)
arepdn

a

Gimd

(1+hIn

(c+cin>

(18'82)

~/=

O+1)sh

OyT+1)6d
(TH/T+H)Sd

(YT +)SK

<T+[>AN

+} 4+

(TH)4»
OUT-e)Ek

AN>

145

gl
zoz 9Inby

a|npow
uswainseaw

su

(TN

(TT/6°T°2)
uonebedoid



2.9 Simulations

In the following  the performance

tuning  parameters on the behaviour of

guidance law performance  Wwith

29.1 is investigated. For this  purpose the

estimated information

target

the discussion in section 26.4.4

considered. ~ The guidance loop s depicted in

target motion

module

aa 3,

missile motion

al

-1

o —C?

&c guidance

autopilot
P (29.1)

figure 29.1: guidance

Note that the guidance !aw operates

in section 145 In this time scale

the fast filter while the estimates

the slow filter

into (2.6.36)

delivered from

according

appropriate  estimates yields:

acf) — c[vTy60'j)cosy50/))-

The investigated intercept ~ scenarios

2.9.2. The f0||OW|ng parameters are fixed for

of the MTSTFis tested.
the

the MTSTFin the guidance

is compared for several

only the guidance

in the fast

the estimates

of y2 (which s the only required

to

are grouped in five series

216

First,  the influence of the

filter is demonstrated. Subsequently

loop according to figure

miss distance obtained with  exact and

In view of

135)

mtercept scenarios.

law PE(see section will  be

the following  figure.

slow filter

measurement

fast filter

LAY

T ygvii*

VAVAN

yQ\}J)

VA YA
y\ VD)

law

y2(k+1/K)

|00p with MTSTF

time scale

according to the SP-analysis
and

y

for A are Obtained from

Y'A, n

are

slow variable)

equation 2.8.80. Substitution of the

poyjord) YN 29.)

A-E according to figure

all  simulations:
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Vg = 270 /s (itd
vT — 270 m/s (target

R = 35 km

R,LOS
oN-

missile Ve|ocity)

velocity)

M
figure 29.2: intercept ~ scenarios
Two types of target mManeuvers are considered:
Type P: periodical  target maneuver
ar = .QSin(2vi+T))
with aTo — 6g, v = 025 Hz
Type J. sudden change of target acceleration ("jump")
aT — % °<tNe
t-tc
ap — aTQ[l -exp(-—  piQ
with aJQ = 6g, n =01s
In al simulations the filter is intiaUzed with the foIIowing

ed4(0l0) = 17> r(iniiadl - range error)

e5(010)

0.1 rad (il target heading error)

e6(0/0) — 01 rad/s (il  target heading rate error)

ey ~ 01 T = 27m/s (velocity  error according

o equ. 2.6.33)

The variance of the LOS-rate measurement noise is:

s — o3 103 radV2

estimation

t=A

errors:

(2.9.2)
(2.9.2b)
(2.9.2c)

(29.3)

(2.9.49)

(2.9.4b)

(2.9.53)
(2.9.5b)
(2.9.5¢)
(2.9.5d)

(2.9.6)
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29.1 Influence of the Tuning Parameters
According to section 273 the quantities N (or Tg via  equation 2.8.76) and the
measurement Noise variances Sp and Sg in the fast and slow time scale, respectively,
may be viewed as tuning parameters of the filter. Their influence  on the behaviour of
the MTSTHs discussed in the foIIowing.
The sampling  period Tp of FF is chosen 0.05s for all subsequent simulations. The
following ~ "nominal”  values of the tuning parameters Yyielded satisfactory estimation
accuracy in most of the simulated engagement scenarios:
Tij - 01(eN =2 (2.9.7a)
s)] = s (2.9.7h)
S| - 10 gp (2.9.7¢)
The simulation results summarized in table 29.1 illustrate the fiter  behaviour for the
nominal parameters (2.9.7) and deviations  from the nominal values.
trajectory TS sF Ss figure remarks
scenario: A (fg. 2.9.2)
XS Sp bsS 293 nominal trajectory
target maneuver: P
(equ. 29.3) 10
2.9.4 increased
name: AP Tg Sp bs TS
r.n .
scenario: A XS Sp bS 295 nominal trajectory
target maneuver J .on 01
(equation  29.4) XS . Sp bs 2.9.6 decreased Sp
name: AJ n .
':(S io Sp Ss 29.7 increased Sp
scenario: C
0)3 €0 Ss 2.9.8 nominal trajectory
target maneuver P
name: CP 0)3 o 0.1 Sg 2.9.9 decreased Sg
table 29.1: influence of the tuning parameters
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Remark:
As in previous sections the time histories of the fiter states and variances are depicted

in a normalized scale. The associated dimensions  are given in table 26.1 (section

264.2).

Discussion  of results:

Comparison of the nominal trajectories depicted in figures 2.9.3a-c  with figures

2.9.4a-c reveals the effect of an increased sampling period Tg Estimation accuracy in

the slow time scale remains practically unaffected as evident from figures 2.9.3c and

2.9.4c. This is due to performing the propagation of Vg using the target ~mManeuver

estimated by FF according to (2.8.88) which results in high propagation accuracy even

for long sampling periods Tg There s, however, a loss of estimation accuracy in the

fast states ndicating ~ a violation  of the scaling assumptions.

Figures 2.9.5-7 demonstrate the influence of the tuning parameter Sp According to

section 273 this parameter determines the sensitivity of the adaption algorithm. In

figures  2.9.6a-c  the simulation results ~ obtained  with Sp selected lower than the true

measurement noise  variance S are shown. The sudden change of the target
acceleration at t = 25 s is "detected" and tracked. However, due to the low value of
Sp adaption is activated at low error levels resulting in high error variances (Compare

figures 2.9.5c and 296c) and aloss of estimation accuracy (compare figures 2.9.5a/b

and 2.9.6a/b). Note that the adaption to changing target maneuvers is always delayed
because it stats onply after the propagation errors exceed the level determined py Sp

If Sp is chosen much higher than S the adaption  algorithm becomes insensitive. High
propagation errors  are tolerated without  adaption  which takes place with a long delay

at t ss 55 (see figure 2.9.7c).

Finally, figures 2.9.8/9 show that filter divergence in the slow time scale may occur if

the noise variance Sg is choosen too low. The fiter underestimates the accuracy ©f the

estimates  of the slow variables (figure 2.9.9b). The necessity of selecting Sg higher

than the true measurement noise is plausible because the fast variables introduce

additional measurement noise in the slow time scale as indicated by equation 2.8.45.
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FILTER STATE NQ.

T.TRAJ. AP6000 JOB Y32138X
F.TRAJ. 0 DATE 25/06/86
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FILTER- 2 riGUKE-
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FILTER STATE NO.
TTRAJ. AP6000 JOB Y32138X
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FILTER. 2 FIGURE,
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TIME CS]
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figures 2.9.3ab
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FILTER STATE NO.

T.TRAJ. AP600O JOB Y32138X
F.TRAJ. © DATE 25/06/86
G.LAV 3 TIME 12.17.38.
riLTER, 2 FIGURE

> ESTIMATED STATE

* EXACT STATE

SCALE: 4.77250E+02

TIME CS] 0
AP

figure 2.9.3c



222

FILTER STATE NO.

T.TRAJ. AP6000 JOB Y321381
F.TRAJ. DATE 25/06/66
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figures 2.9.4ab
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FILTER STATE NO.

T.TRAJ. AP6000 JOB Y32138l
F.TRAJ. DATE 25/06/86
G.LAV 3 TIME H. 07.23.
FILTER, 2 FIGURE,

x ESTIMATED STATE
<« EXACT STATE

SCALE: 4.77250E+02

TIME CS]

AP

figure 2.9.4c
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2.9.5a,b

T.TRAJ.
F.TRAJ.
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ERRORVARIANCE OF STATE NO.

T.TRAJ. AJ6000 JoB Y32132J

T.TRAJ. DATE 2V06/66
G.LAV 3 TIME 13.50.49.
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figure 2.9.5¢
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FILTER STATE NO.
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figures 2.9.6a,b
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ERRORVARIANCE OF STATE NO.

T.TRAJ. AJ6000 JoB Y3213GO
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figure 2.9.6¢
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FILTER STATE NO,
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figures 2.9.7a,b
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ERRORVARIANCE OF STATE NO.

T.TRAJ. AJ6000 JOB Y3213G7
F.TRAJ. sSr2 DATE 25/06/66
G.LAV 3 TIME 15.58.09.
TILTER, 2 FIGURE,

©  SQUAREDESTIM.ERROR

A VARIANCE (ESTIMATED)
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figure 2.9.7c
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2.9.9a,b
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292 Performance of the Guidance Loop

The purpose of the following simulations is to show how the miss distance produced
by PEis affected by the estimation errors fed into the guidance loop by the MTSTF.
Since  gbservability of the target maneuver depends on the intercept  geometry the
performance ©of the guidance loop shown in figure 29.1 varies for different  intercept

scenarios. Therefore, five scenarios according to figure 29.2 wil be investigated for

the target maneuvers P and J given in (2.9.3/4). The MTSTHs initialized according to
(2.9.5/7).

29.2.1 Periodical Target Maneuvers

For each scenario A-E the guidance loop is simulated with the target maneuver (29.3)

for the following values of the maneuver parameter q

> 3 > 1 1 > 3

The miss distances obtained with exact and estimated tgrget information are (epicted

in ﬁgures 2.9.10-14  as a function of* Typical trajectories of the importam filter  states
are shown in figures 2.9.15-19. They are summarized in table 2.9.2.

scenario YO[O] To |0 t) [rad] figure
A 0 0] - /8 2.9.15a-d
B 8 45 0 2.9.16a-d
C 13 90 v/4 2.9.17a-d
D 14 135 - /8 2.9.18a-d
E 0 180 n/4 2.9.19a-d

table 2.9.2: typical ~filtering results for sinusoidal target maneuvers
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Discussion  of Results:

Figures 2.9.10-14 show that the miss distance Rf is practica”y independent of the

maneuver parameter | for exact target maneuver compensation. A\ substantial increase

of Rf due to estimation errors  produced by the MTSTFs observed in scenarios B and
C. In scenario Cthe miss distances lie outside the hit range LA defined in (1.371)

for certain  values of Here the tgr maneuver S not tracked gny more (figure
g target y g

29.17d) because the heading rate y6 is unobservable (section 244 and 273) The

strong dependency of Rf on i for the MTSTFs due to the different initial estimates

y6(0/0) associated with each « If y6(0/0) is close to zero observability of the target
maneuver s low resulting in slow correction of the nitial estimation error.  Note that
the target heading error remains practically uncorrected in al scenarios because the

target heading s unobservable (zero average target Maneuver).

In the table 29.3 the miss distances obtained with the guidance law PN (see section

1.3.5.2) are summarized for the scenarios A and B, respectively. A comparison of these
results  with  figures 2.9.10/11 shows that in al cases where exact target ~mManeuver
compensation is required for low miss distances (indicated by a high miss distance of
PNcompared to PEusing exact target information) the guidance scheme PE/MTSTF
performs considerably better than PN. Hence, the merits of target maneuver
compensation are not offset py the use of estimated data about the tgrget motion. In
the scenarios C, D, and E the miss distances of PN are comparable to those obtained

with  PEindicating that target maneuver compensation has no significant effect  here.

Due to the low pearing rate there is no correction of the range error (figures
2.9.15b-19h). Only in the scenarios B and Cthe rgnge error is corrected at final time
because the bearing rate increases  due to the high miss distances in these scenarios.
Here the conflict between the guidance law which tries to establish zero bearing rate
and the tracking fiter  requiring high bearing rate for observability of the fiter states
becomes evident However, the range error has no direct influence on the guidance
law because only the range rate is required (see equation 29.1). As can be seen from

figures 2.9.15a-2.9.19a the range rate estimates are yery accurate in al scenarios

except C.
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Rf [m]
1.0
- exact information
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0.8 1
o: filter
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figure 2.9.10
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o: filter
scenario B
2.0
o
o
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figure 2.9.11
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E
= exact information
o: filter
- 4 2 f « * >0 [rad]
v 0.25 05 >
figure 29.14
A B
Rm]  RfM
1.4 0.2
2.3 0.1
2.2 0.1
0.2 0.6
0.3 1.6
0.05 2.6
0.02 3.3
> 1.18 3.0

table 2.9.3: miss distances ofPN
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2922 Sudden Change of Target Acceleration

The following simulation results  were obtained for the target maneuver (2.9.4). For

each scenario A-E the miss distance as a function of

At = tte (298)

s depicted in figures 2.9.20-24. At is the time-to-go  at the peginning ©of the target
maneuver (See section 1352) In order to ensure target ~maneuver Compensation by
PE the filter must converge during this time interval. Typica| trajectories of the main

filter  states are depicted in figures 2.9.25-29 (see table 2.9.4).

scenario 70[0] \0[0] Atfs] figure
A 0] 0] 0.679 2.9.25a-d
B 9 45 3.212 2.9.26a-d
C 13 90 2.472 2.9.27a-d
D 13 135 1.023 2.9.28a-d
E 0 180 0177 2.9.29a-d

table 2.9.4: typical filtering results for sudden change of target maneuver

Discussion of results:

For all scenarios the miss distances le well within the hit range Rmax. The changing
target maneuver s tracked in al cases except C where yA is unobservable (figure
2.9.22). In the interval [0, te] the target heading y5 is  unobservable due to the
Vanishing heading rate y,\ The associated estimation error has no effect on Rf as

discussed in section 2.6.4.4.
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For the scenarios A and B the miss distances obtained with PNare shown in the tables
2.9.5a,b. As was the case for periodical target maneuvers the comparison with figures
2.9.20/21 reveals the substantial improvement of guidance law performance due to

target maneuver compensation even in the presence Of estimation  erors  produced by
the MTSTF. In the scenarios C, D, and E the miss distances of PE and PN do not

differ  significantly indicating ~ that target maneuver compensation s not required here.

As for periodical maneuvers the range error is not corrected due to the low bearing
rate.  Despite the range error the yange rate estimates remain accurate. The only

exception s scenario C where estimation errors in the slow variables y- and y  are

caused by the wrong target maneuver estimates produced by the fast filter.

Rf[m]

1.4
1.2

scenario A

1.0
= exact information

o: filter
0.8

0.6
0.4
0.2

o - 1— T A

figure 2.9.20
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Rf[m]
0.3 ‘ = exact information
scenario B o: filter
0.2
0.1 1
e Q
0 ' Af[s]
2 3 6
figure 2.9.21
Rf [m]
scenario C
0.3 .. exact information
° o: filter
0.2
0.1
° o AL
2 3 4
figure 2922
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2.9.23

scenario

o:

2.9.24

scenario D

o:

exact information

=

exact

filter

filter

*

Af[s]

E

information

Ats]



scenario

At[s]

7.50
6.35
5.54
4.16
3.71
2.70
1.67
0.64

0.14

A

RfN

317
38.6
38.8
33.21
23.94
13.93
5.78
0.68

0.23

tables

2.9.5a,b:
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miss distances

ofPN

scenario

At[s]

5.36
4.71
3.99
3.2

2.34
1.42

0.55

B

Rfm]

0.1
2.3
7.8
10.2
8.7
4.53

0.44
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2.10 Conclusions and Extensions

In the second part of this thesis a new tracking filter ~ for maneuvering targets based on
bearing-rate-only measurements was derived. The filter was tested in different
intercept scenarios  for periodical target maneuvers and sudden changes of the target

acceleration. It was shown that the fiter is suitable for jmplementation in - conjunction

with extended proportional navigaton (PE) derived in chapter 1.

There are two major problems associated with  the tracking problem under

investigation here:

a) the lack of information about the target maneuver in the bearing rate measurement

b) the lack of an accurate model of the target acceleration dynamics.

The observability analysis carried out in section 2.4 revealed that  only target
maneuvers nhormal to the current line of sight (LOS) are observable. As a consequence
the behaviour of the tracking fiter  strongly —depends on the intercept  geometry. This
fact is reflected by the simulation results in section 29.2. Adloss of tracking accuracy s
likely ~ if both target heading and target heading rate are only weakly observable

(scenario  C with low target acceleration). Since the guidance law PE uses only the
observable  part of the target maneuver the miss distances obtained with the tracking

flter  in conjunction  with PE are satisfactory inallinvestigated scenarios  except the

critical case C.

The target model used for the design of the fiter s based on the following a priori

knowledge about the target mManeuver:

) the target maneuver s essentially deterministic

i) the target velocity s nearly constant during the engagement

Assumption i) allows to describe the planar target maneuver with two states (heading
angle and heading rate) only. In this gy unrealistic target ~motions are excluded

supporting  convergence ©f the tracking fite.  Since the dynamics of the target heading

rate are unknown it is assumed constant in the target model. Therefore the fiter has to
be adapted in the presence Of variable target maneuvers.  Adaption is carried out via
covariance  matching. The matching procedure s based on an approximation of the
propagation  errors caused by the \rong target model. An efficient  jmplementation  of
the adaption algorithm s possible by taking advantage of the time scale separation  of

the missile-target relative  motion. A singular  perturbation-analysis of the tracking
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problem results in a low dimensional ~ fast fiter ~ with the target state and the pearing
rate  appearing as fast variables and a slow fiter — based on al states of the tracking
problem. The source of the propagation errors IS the heading rate propagation in the
fast time  scale. Hence covariance matching i performed with respect to the
measurement residuals  produced by the fast filter. This procedure reflects  the physical
properties of the system: Fast changes of the bearing rate are attributed to the fast

changes ©of the target maneuver and are used to ypdate the target states. Slow changes

in the bearing rate are used for update of the slow variables and reinitialization of the
fast filter. The fast fiter works as a predictor for the propagation errors and the target
maneuver in the sampling interval of the slow filter. In this \ygy the sampling interval

in the slow time scale may be decoupled from the dynamics of the fast subsystem
without loss of estimation accuracy. This is an jmportant aspect for the realization of

the filtering algorithm because the computations in the slow time scale may be time

consuming due to the high dimension of the slow filter.

The simulations in section 2.9 show that the adaptive multiple time scale tracking filter

(MTSTF) developed here allows to track maneuvering targets N most intercept

geometries. ~ Moreover the advantages Of target maneuver compensation used py PE
are maintained if the exact target mManeuver is replaced by the estimates produced by
the MTSTF. Only in scenarios which result in unobservable  target heading rate a loss
of estimation accuracy in al fiter states is likely because there is no information about

the target maneuver in the measurement residuals.

Many approaches to tracking ©f maneuvering targets With bearing-only information

have been based on measurements of the bearing angle rather than the bearing rate
[67,69,70,71,73,80,83]. However, the scaling of the tracking problem in secton 281
suggests that to zero-th  order (with respect to the scaling parameter €) the bearing
angle does not contain  any information about the target ~mManeuver because it remains
constant in the boundary layer. The appearance of the bearing ang|e as a slow variable

is due to the low average bearing rate established by the guidance law. Hence, the
guidance law and tracking  fitr = should be designed jointly inthe presence Of
bearing-only measurements in order to guarantee Sufficient observability [73,74,83).

This  conclusion does, however, not apply if bearing rate  measurements are used

because:

a) The bearing rate appears in the fast time scale.
b) The target ~maneuver normal to the LOSIs observable even for zero bearing rate

(see section  244),
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Note however, that the qbservability of the slow states is not enhanced by bearing rate
measurements because the dynamics in the slow time scale are determined by the
average behaviour of the fast subsystem. It is therefore plausible that range errors are

not corrected by the MTSTFas revealed py the simulations in section 2.9.

In order to stabilize the MTSTFin type C scenarios it IS necessary to measure
additional information which is complementary to the bearing rate. If no direct
measurements Of range and/or range rate are available  one could conceive extracting
the desired information by including the seeker characteristics in the filter design. A
related  approach is reported in [84], however no information about the motion 3long

the LOSIs provided here.

The target  velocity vT s a parameter Of the MTSTF. There is acertain robustness  with

respect to estimation errors  in vT because they affect the residual  statistics via the

propagation of the pearing rate. Therefore they are taken into account py the adaption
algorithm. An estimate  for vT may be obtained from a fiter in the Jaunching aircraft

prior  to launch. Here range and rgnge rate measurements are ysually  available

justifying the introduction of yA as an additional (slow) filter  state.

In addition to the input noise caused py the extrapolation errors there is another noise
source Which is due to the measurement module. According to figure 2.6.2 the missile

maneuver u"j s computed from the measurements of the missile acceleration and the
rotation of the seeker axis measured by the gngle 9\ Since these measurements are all
noisy they produce an input noise via uI\/Iin 2.4.30. This input noise is non-Gaussian
because the acceleration and angle measurements are related in a nonlinear  \ygy via
(2.6.11). Therefore it is desirable  to gyppress this noise source prior to the evaluation

of M by passing the measured signals through appropriate  low pass fiters.  These

filters could themselves be Kalman filters based on the rotational dynamics of the

seeker and the missile.
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3. Summary and Conclusions

Optimal control  theory and singular  perturbation (SP) theory have been gpplied to
analyse the planar intercept  problem and the associated tracking problem. The main

topic is the derivation  of a new adaptive tracking fiter  for maneuvering targets.

In the first part of this thesis the structure of guidance laws based on gptimal control
theory is  discussed. Two basic gpproaches to the derivation of guidance laws

LQ-theory and order reduction via SP-theory are investigated.

A short review of Pontryagin's minimum principle and npecessary  conditions of

optimality is given in section 1.1 for use in subsequent  sections. Basic problems of the
application of optimal  control theory to the derivation of implementable missile

guidance laws are discussed in section 12. A-review of missile guidance laws based on
LQ-theory is given in section 13. These guidance laws may be viewed as extensions  of
proportional navigation  (PN). Their main drawback is the need to make gssumptions
about the target maneuver in order to solve the associated optimal  control problem.
This difficulty can be avoided Dy observing that a sufficient condition for intercept is
vanishing bearing rate throughout the scenario. Based on this nominal condition a
simple guidance law termed extended proportional navigaton  (PE) is derived. PE
differs  from PNin a compensation term for the target maneuver normal to the current
line of sight (LOS). Simulations indicate  that PEperforms considerably better than PN

against maneuvering targets.

An SP-analysis of the intercept problem is carried out in section 14. The optimal

structure of the guidance scheme associated with a minimum time optimal  control

problem is obtained. There are essentially three modules operating in three different

time scales:
a) The first module in the slow time scale predicts the collision point by extra-
polation ~ of the missile-target relative motion.

h) The nonlinear  control law in the first boundary layer performs the correction of the
course  error, e, it tries to establish the collision course associated with  the
predicted collision point computed by the first module. The required lateral
acceleration is the result of astatic mmimization process Of a weighted sum of lift

and drag. In this \ay drag losses are minimized during course error correction in

order to reduce the time-to-go.

¢) The third module which is associated with the fastest time scale is the autopilot
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A simulation study reveals that the savings iIn  time-to-go obtained with  the

SP-guidance law are mainly due to the predicton  of the point of intercept =~ whereas the

effect of induced drag minimization on flight time is negligible. The control law in the

frst  boundary layer may therefore  be replaced by a much simpler  proportional

controller for the course error.

I many scenarios  the scaling assumptions of the SP-approach are not satisfied due to
saturation of the missile acceleration. Therefore the  flight times of PE and
SP-guidance  do not differ  significantly in most cases. The main obstacles to the
implementation ~ of SP-guidance laws is the prediction  of the target maneuver. There is

a conflict between satisfaction of the scaling assumptions (long initial range) and
accurate  prediction of the collision point which is  realistic for short time-to-go only.

This  problem is not shared by the guidance law PE which uses information about the
current  target maneuver only. Implementation of PEis possible if atracking fiter can
be designed which produces estimates of the target ~ state. This problem is adressed in

chapter 2

The tracking problem s stated in secton 21. The basic approach is the design of an

extended Kalman filter. Since the observer (miss"e) is equipped with  an infrared

seeker and no inertial angular measurements are available the hearing rate is the only
measured information about the missile-target relative motion. As a consequence
serious  stability problems of the fiter arise because some filter states are unobservable

in certain  scenarios. In section 2.2 an overview of results in the literature on target
tracking based on passive measurements s given. The results  on observability of
non-maneuvering targets via  bearing-only measurements are  extended to
maneuvering targets and pearing rate-only measurements in section 24. It turns out
that  observability depends on the missile-target relative maneuver and that only
target maneuvers hormal to the current LOS are observable. Fortunately this is
exactly the information required by the guidance law PE The selection of a target
model is discussed in  section 23. In view of the low information about the
missile-target relative motion the tgrget mModel is based on certain a-priori knowledge
about the target dynamics. The main assumption s that the target velocity is nearly
constant during the engagement. Hence the target is assumed to maneuver Wwith lateral

acceleration only. For planar motions  the target maneuver may then be described py
two states, the target heading and target heading rate. The target heading rate s
assumed constant because the true dynamics are unknown. Therefore, the filter has to

be adapted in the presence ©Of variable target maneuvers.
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For the implementation of the fiter  algorithm a reference  gystem has to be defined.
Since inertial angular measurements are assumed to be unavailable polar coordinates
are used to formulate the filter equations and a new reference  gystem is selected for
every sampling interval. Additional aspects ©Of coordinate selection are discussed in
section 25. The basic tracking algorithm is summarized in section 2.6. The simulation
results in section 2.7 confirm the results of the observability analysis. They also
demonstrate the robustness of PE with respect to certain estimation errors. The
simulations of a SP-guidance law in conjunction with the tracking  fiter illustrate the

high sensitivity with  respect to estimation errors  of guidance schemes based on

prediction of the target maneuver.

As mentioned before an adaption scheme IS necessary In order to track variable target
maneuvers. If the target heading rate s observable  the propagation errors due to the
wrong target ~model affect the residual  statistics. Therefore, adaption s possible via

covariance  matching. The adaption algorithm is described in section 2.7.

Motivated  py the time scale separation of the intercept problem discussed in chapter 1
an SP-analysis  of the tracking problem is caried out in section 28 The gcaling of the
tracking problem allows the identification of two time scales with slow and fast
variables. After some general remarks on singularly perturbed stochastic systems a
multiple time scale tracking filter (MTSTF) is synthesized. The filter consists of a low
dimensional fast filter (FF) and a high dimensional slow filter (SF). Due to its low
dimension FF gperates With a high sampling rate which allows to track fast changes of
the target maneuver. Since FF works as a predictor for the target maneuver and the
propagation errors in the slow time scale stability of the basic tracking a|gorithm is
enhanced and the sgmpling rate of SFis decoupled from the dynamics of the fast
subsystem. Hence there are practically no restrictions on computing time in the slow

time scale which is of great importance for fiter  implementation.

The simulations in  section 29 confirm the  capability of the MTSTF to track
maneuvering targets and syggest that the fiter  is suitable  for jmplementation in
conjunction with  the guidance law P RPossible extensions of the MTSTFare discussed

in section 2.10.
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Appendix 1

All Equations of Planar Missile Motion

The missile  simulations carried  out in this thesis are based on the agerodynamic data of
a realistic short rgnge Missile. The gquantities describing the motion of this missile in a

horizontal  plane are depicted in the following  figure.

seeker axis

/
"m
(center
yref
xref
(xref yref)- inertial reference  system
(XW’ yw) . wind axis system
(XM, yM) . missile body fixed system
v: velocity Lo it
o: angle of attack D: drag
a: flipper  deflection M: aerodynamic torque
B: pitch angle T: thrust
y: heading angle A: total  gerodynamic force

L, D: components of Ain (yy yy)  Ax, A - components ©f Ain (xM, yM)

figure AlLl:  planar missie motion

line)



259

The components of A are of the fo”owing form:

Ax — ~1P VZ's (ALLY)

\=7'vScy (Al12)

with p — p(h): ar density (ALL3)

S: reference cross section

cx — CX(*»h'Ma) (A1)
oy — cy(@‘ath) (Al.L5)
Ma-=- Ma(h) Mach number (AL1.6)
h: altitude

The functions p, Ma, c, c. are given in the form of tabulated data and are evaluated
! a
y

by linear interpolation.

Figure ALl yields:

1
L = Axsiha + A cosa — - p v:L SCL(a]h’Ma,IS) (ALL7)
D= _AX cosa + A sina = Lp vl S CD(&I,h,M&,C’) (A|18)
with
cL(ahMach)=  cx(ahMa) sna + e (aMa«) cosa (ALL9)
cD(a,h,Ma,t5)=-cx(a,h,Ma) cosa + ¢ (aMaS) sina (Al.1.10)

The aerodynamic torque ™is given by:

M- o Vs d cpaviy.g) (A.L12)
with d: reference distance
q — O pitch rate (AL1.12)

The missile thrust contains all forces which are due to the mass loss of the missile.

Hence the differential equation of the missile yelocity =~ becomes:



v = (A1.13)
mm
where mis the current missile mass. During the boost phase T and mare given
functions of time. Afterwards T is zero and rmremains constant (A|_1_13) then reduces
to:
?_.
v= % - an (Al.1.14)
- ~

Evaluation of the aerodynamic  coefficients oL, ¢\, c requires knowledge of a
According to figure All one has:

a=6 (Al.1.15)
where y = = = (Al.1.16a)

mwv A\

with ar = (AL.1.16h)

L mm
and

$-q - (Al.1.17)
| is the mass moment of inertia. As mit is given as a function of time during the boost
phase and remains constant afterwards.
The position of the center of gravity with respect to the inertial reference  frame (Xr8f>
yref) is given by (see figure ALl):

X = V cosy (Al.18a)

y = Vv siny (A1.18b)
For horizontal motions h is a constant parameter. Equations (A|113-18) with
(A|_1_7-12) constitute the missile model. For a more detailed discussion of the missile

aerodynamics and kinematics

260

-U2.

see [85-87)]

as
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Al.2 Remarks on the Domain of Attraction of a Stable Root

Consider  the  singularly perturbed  system (1.4.22/23). It was shown that the
asymptotic expansions  (1.4.24/25) are nonuniform  at initial time 4 Here the
behaviour of the fast variables is determined by the transient from the initial

conditions yQ to the outer solution y°, according to (1435 and figure 14.1. According

to (1.4.553), (1.4.56c), and (1457) the transient s to zero-th order, governed by:

Yg¢ = 80 = 8> AT (Allla)
y()(()) = Y0 (A1.2.1b)
Obviously, certain stability conditions must be satisfied in order to ensure that the

solution to (A|21) converges versus yj as t -» 00. They are g|ven in theorem 14 in

section 142 which is due to Tikhonov [41]. In the following the basic definitions and

some explanations taken from [42] are summarized:
Let

y = *x Y (Al2.2)

denote a root of

gxyt) =0 (AL2.3)

N ~M cm M

in aclosed bounded domain D(x, t) where x and t are regarded as parameters.

Definition:
The root y = 4()(l t) is called stable in D if VvV t D the states y are asymptotica”y

stable (|r| the sense oOf LyapunOV) with respect to the system

y = gy (Al.2.4)

Hence, if y is a stable root there exists a neighbourhood N(y) such that the solution of

(A|,2,4) tends to y as ¢ -~ oo if the initial condition y(r =0 = YQ is in N. Nis called

the domain of attraction or domain of influence  of y

For a geometric  interpretation consider the case g — gxf). Let «, ) x3 denote
1

three roots oOf g(x,t):o such that:



262

g<o0 if*1>y>*2 (A1.2.53)
g>0 if*2>y>*3 (Al1.2.5a)
The roots and the field of directions associated  with g as well as two boundary layers

associated  with the initial conditions YQ and y/\, respectively, are depicted in figure

Al.2.  Obviously *9 is a stable root and its domain of attraction is bounded py *. and
*3.

As a final remark it is noted that in the presence Of several stable roots discontinuous

periodic ~ solutions in the slow time scale may occur [42].

figure Al.2: domain of attraction
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Al J  Limiting  Behaviour of X\

In order to investigate the |imiting behaviour  of A\ as 1«])Dt and Vapproach the

outer solution H® and L1 are expanded around their values in the outer solution:
diH°
o + (Al3.1)
opt alyi av
opt
L1
WV <«<L) - . (AL3.2)
opt av
opt
with , 7 700t (A1.3.3a)
e« ~ |a0pt" a’ (A1.3.30)

All partial derivatives are evaluated a|0ng the outer solution as indicated by ()|

Substitution  of (1.4.136/139)  into (L4.151) yields:

e |
= [X1Qv0 SINY  x20v0 COSV | =0 (AL3.4)

1 i

! Topt

Using (Al34),  (L4.119/123),  and (ALL8) one obtains:

A30
Ho — Oa (AL3.5)
\/ — (Al.3.6)
abl
with — ALL3.7
CD« av ( )
opt
alnr
. Al3.8
La av ( )

opt
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Substitution of (1,3,5.8) into (1.4_152) renders

(]

Da

e "OM ~ v30c (AL3.9)

ey» ©

For the symmetric missile considered here (see appendix All) one has:
cDa( wgpt O 7 ° (AI.3.10)

C|_/«0pt = °>*0 (A13.12)

Substitution  of (AL3.10/11)  into (AL3.9) yields vanishing 2 in the slow time scale.
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B

*go

Al.4 Derivation of

From (1_4,163) one obtains:

Igo
vT | S yTs() dr

Y° = arctg - = arctyi, (AL4.1)
s t
go

RO+ vT | COSyTs(dT
0

Application ~ of the chain rule to (Al4.1) yields:

NN\
or|V | L A2
3ig0 L+ 3o
Definitions:
V>
XTSV ~ RO+VT | COSyTs(r)dT (A4.3)
0
Igo
yTsV = vT | SinyTs(r)dr (Al4.4)
0

Substitution  oif (Al.4.3/4)  into (Al42) yields:

ars’(tg0)
atgo
"go) TS0 Ay TR yTs(gQ) yTsgo)
4sV - 4s<y 4sV
vT

XTstgl)sm Y TSVATSVMTsSM (AL4.5)
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AU SignofX-Q

Equation (1.4.138) yields:

AsO- f?,o - o ' (AL5.1)
D" vTcos(yT:  7Spt>-\?

Obviously one has:

m=>0 (AI5.2)
D°>0 (A15.3)

Moreover from (1,4_109(;) follows:

ve> ve>0 (AL5.4)

According to figure AS.1

Y = VTCOS(yTt-yopt) (A5.5)

is the projection of the target  velocity onto the collision path MI at final  time.

evident that intercept s possible only fif
V0. > VT* (AL5.6)
Substitution of (AL5.2-6) into (AL5.1)  vyields:

x30<0 (AL5.7)

figure AL5:  colision  path

It is
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Appendix 2

A2.1 Transition Matrix Associated with Modified Polar Coordinates

Consider the initial time t+ and the sgmpling time t The fiter has processed i1

measurements prior to solving the ypdate equations  at t. The state estimate at time t

based on i1 measurements is ym(J/|_|) It is easily obtained by 50|Ving backward the

propagation  equations (219) i [, t.J with final condition  ym(j|fi]), Propagating

ym(j/i_|) from t to t yields the estimated value of y(i).based on i1 measurements
J

i.e. ym(|/||) The associated transition matrix is

afljma/i-i),uM(i)]
wi) = 2k - (ALU)
ayma/i-D
where Uw(i) denotes the system input associated  with the interval [[,] u] Equation

(A2.1.1) s a generalization of (2449).  The propagation  equations are linearized

~

around ym(J/||) rather  than ymO*/j) which turns  out to be convenient to carry out

the ohservability analysis. ~ Obviously (2.4.49) is obtained by setting = j+1 in (A2.11).

According to (2.4.49) the matrices GZand HY become:

3TM (i)
GZz(ifi)] - £ (A2.1.2)
az(ifi)
A 3HTM  ymO)uMi)} A
HY[ymeiv)] - Z P (A2.1.3)
aymG/i-D
Definitions:
x o = x(ifi-) (A2.14)
< = XOM) (n2.15)
DX : — DX(ym) L= ym2 cos ym3 yml sin ym3 (A216a)
Dy: — Dy(ym) = ym2 sin ym3 + yml cos ym3 (A216b)

T - (A2.1.7)
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After  replacing  z(k+l) by z(ifi-l) and z(k) by zQfi-l) in (2430) the elements of GZ
are calculated according to (A2,1,2), The results  are:

im2imimim im2n e
gzl — yma$4 27 gzi2 — ym4&3 * 27 (A2.1.8a,b)
3 m2
gz13 = ym4 z2 gz14 — ym4 zZl (A2.1.8¢,d)
gz15 — © gz16 — © (A2.1.8¢)
2 ~ i im2
gz21 — ym4 (3 "2 ziy2> gh2 = yma4(z4"2 ZZA) (A2.1.9a,b)
im2 >m2
g*3 — ym4 7l g4 — yma \ (A2.1.9¢,d)
gz25 — ° gz26 — ° (A2.1.9€/)
g31 — yma N 9232 ~ ym4 Z (A2.1.10a,b)
gz33 — © gz34 — © (A2.1.10c,d)
gz35 — © gz36 — © (A2.1.10e/f)
g4l —  ym4 1l gz42 —  yma \ (A2.1.11a,)
gz43 — © gza4 — © (A2.1.11c,d)
gza5 — © gz46 — © (A2.1.11e/f)
gz51 — © gz52 — © (A2.1.12a,h)
gz53 — ° gz54 — © (A2.1.12¢,d)
gz55 ~ * gz56 — © (A2.1.12¢.)
gz61 — © gz62 — © (A2.1.13a,b)
gz63 ~ ° gz64 — © (A2.1.13¢,d)

gz65 — © gz66 — * (A2.1.13¢)
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Equation (A2.1.3) yields the elements of HY:

sinym3 cosym3

hyu = T hyt2 = T e (A2.1.14a,b)
ym4 ym4

sinym3 *+ TDy

hyl3 — (A2.1.14c)
ym4
- cos ym3 + T Dx
hyl4 - (A2.1.14d)
vm4
cos(y ,,5 * Ty _6)  cos(ymb
hyl5 — TyT BB yms + 22° > v 5|)_] (A2.1.14e)
Tym6
TVvT
hyle = ~-[cos(ym5 ™ Tymo6)
ym.6
sin(fm5  + Tym6)-sin(ym5
( ym6)-sinymd) (A2.1.14f)
Tym6
Cosyrgz sinym3
hyr = T ' hy22 = T ' (A2.1.15a,b)
ym4 ym4
cos ym<, + T DX
hy23 = =t (A2.1.15C)
ym4
siny + TDy
hy24 = 518 (A2.1.15d)
vm4
ShOmS + Tym)  sin(y5
hy25 = Tyt [c0s ym5 y/\) (yz)!i ] (A2.1.15¢)

Tym6



TVn

* Tyme6)
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cos<yms Tym6)-cos"m5)3

hy26 = ir-tsin(ym5
yme6
SMym3
hy3l =
ym4
hy33 = -~ >
ym4
hy35 = VT[sin(Fm5
736 —  TvTsin(ym5
cos m3
hydl — ’
ym4
Dx
hy43=n
ym4

B~ T [cor TN

Tym6
€os vm3
hy32 =
ym4
Dx
hyad =
ym4

* Tym6)-sin(yms)]

hy46="TvTcos(ym5 * Tyme)

hy51
hy53
hy55

hy6i
hy63
hy65

* Tymo6)
SMyms
2 -
ym4
hv44 2
ym4
cos(ymb)]
hy52 = °
nys4 — °
hys6 — T
hy62 = °
hy64 = ©

hy66

(A2.1.150

(A2.1.16a,b)

(A2.1.16¢,d)

(A2.1.16€)
(A2.1.16f)

(A2.1.17a,b)

(A2.1.17c,d)

(A2.1.17¢)
(A2.1.17f)

(A2.1.18a,h)
(A2.1.18¢,0)
(A2.1.18¢/f

(A2.1.19a,b)
(A2.1.19¢,d)
(A2.1.19€/f
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A2.2 Transformations and Transition Matrix  Associated  with Ordinary Polar

Coordinates

The transformation TOV7(z) mapping the cartesian  state vector =z gccording to (2.3.5)

to ordinary polar coordinates y according to (2_3,8) and the inverse transformation

TO7V(y) are easly found from (2.4.37-44):
zy

2 4 h z3
2 2
zl+ 4

72l 23 7 %2 74

f? - 2

arctg

= TOyz(Z) (A2.2.1)

t o

%0

y4cosy3
y4 Sny3
y2 °°° y3  yxy4 " ym3
y2siny3 ™ yiy4cosym3 - TVy)
ys

ye
(A2.2.2)



W(i ))

Using the definitions
coordinates is given by:
with
GZ(z)
HY(y)
Elements of GZ:
24 2 7xyx
8ZH= 5
va
8213 ~ _TJ
va
gz15 — ©
z3y4 Zxy2
822i= .
y4
Zl
y4
gz25 — ©

(A2.1.4/5)

the transition
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matrix  associated

~ GZ[Z] HYI]

3T0yz[z]

az

yTozyif],uM(i)}

ay

8212 —

8214 ~

gz16 —

8222 —

™ M m

23+ 2 22yi
Jl
y4

M M M M

z4y4 z2y2
Ji
y4

z2

9z24=TJ

gz26 — °

va

with  ordinary  polar

(A2.2.3)

(A2.2.4)

(A2.2.5)

(A2.2.63,)

(A2.2.6¢,d)

(A2.2.6e,0

(A2.2.7a,b)

(A2.2.7¢,d)

(A2.2.7¢/0)
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*¥2 Zl

8231 ~ g 0232 ~ 3 (A2.2.8a,b)
y4 y4

gz33 — © gz34 — © (A2.2.8¢,d)

gz35 — © gz36 — ° (A2.2.8¢/)
Zl

8241 ~ wg 8Z« ~ _3 (A2.2.9a,b)
y4 y4

gz43 — © gz"oO (A2.2.9¢,d)

gz45 — © gz46 — ° (A2.2.9¢ )

gz51 — © gz52 — © (A2.2.10a,b)

gz53 — © gz54 — © (A2.2.10c,d)

gz55 — ! gz56 — © (A2.2.10e,f)

gz61 — ° gz62 — © (A2.2.11a,h)

gz63 — ° gz64 — ° (A2.2.11c,d)

gz65 — © 8z66 — 1 (A2.2.11e/f)

Elements of HY:

hyl = Ty sin A3 AN12 = Toos A3 (A2.2.12a,h)
hyl3 = SN y3 (y4 + Ty2) Tyxya cos y3 (A2.2.12¢)
hyld = cos y3 T yx sin y3 (A2.2.12d)

hy15 and hyl6 according to (A2.1.14eff)

hy2l = T cos A3 nQD = Tsin A3 (A2.2.13a,b)
hy23 = cesy3 (y4 * Ty2) Tyxya sn y3 (A2.2.13c)
hy24 = sin y3 + T yy cos y3 (A2.2.13d)

hy25 and hy26 according to (A2.1.15ff)
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hy3l — y4 Sn y3 hy32 = cos y3 (A2.2.14a,b)
hy33 — y2 Si" y3  yxy4 °°s y3 (A2.2.14c)
hy34 — yn SN y3 (A2.2.14d)

hy35 and hy36 according t (A2.1.16¢/f)

hy4l = y4cosy3 hy42 = siny3 (A2.2.15a,b)
hyd3 — y2 cos y3 yxy4 SN y3 (A2.2.15¢)
hy44=yicosy3 (A2.2.15d)

hydjr @nd hyd<. according  to (A2.1.17eff)

hy51 = © hys2 — © (A2.2.16a,b)
hy53 = © hy54 = © (A2.2.16¢,d)
hy55 = * hyse = T (A2.2.16¢,)
hy6l = © hy62 — © (A2.2.17a,b)
hy63 = © hyr = © (A2.2.17c,d)
hy65 — ° hyée — ! (A2.2.17e)
Remark: It is gasily seen that the evaluation of the elements of HY may be

substantially simplified if the reference system is chosen in such a \ay that

For the basic tracking algorithm in  section 2.6 equation (A21]_8) results in the
reference  system defined by (2.6.6).
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