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Introduction and Problem Statement

The purpose of designing a controller for a dynamical system is to achieve a certain

desired behaviour of the output variables. In many practical applications this design

goal may be expressed in terms of a performance index. If the performance index and

additional restrictions (such as the differential equations of the dynamical system,

constraints on states and controls) are "reasonably" formulated the optimal control

input to the system may be determined by minimizing the performance index subject

to the given constraints with respect to all feasible control inputs.. Necessary and

sufficient conditions for optimality of a control are treated within the framework of

optimal control theory [1,2]. These conditions give a guideline for the design of

nonlinear optimal controllers. Unfortunately the resulting equations cannot be solved

analytically in most cases but iterative numerical methods must be applied to find a

solution. Approximate suboptimal control laws may be obtained by appropriate
linearization of the original problem. A very powerful approach to the derivation of

nearly optimal control laws is the application of singular perturbation theory [32-35,

40-42]. It is applicable if the behaviour of the dynamic system is characterized by the

simultaneous occurance of very slow and very fast processes. This allows the

identification and decoupling of different time scales and the decomposition of the

original problem (which often is of high order) into a sequence of low order problems

which are usually much easier to solve.

As a consequence of the principle of optimality [3] the optimal control at current time

depends on the current system state and the future behaviour of the system. The latter

property often requires the prediction of certain system parameters. Moreover, in

many cases a number of system states cannot be measured. Therefore an estimator

(filter) is required to estimate the current values of the unknown quantities. Thus, for

the derivation of implementable (sub-)optimal control laws three subproblems have to

be solved:

- the optimal control problem
- the filtering problem
- the prediction problem

In general these problems have to be solved simultaneously. In order to obtain simple

approximate solutions they are usually treated separately. In the following they are

investigated for the planar intercept problem. Singular perturbation theory is applied
to analyze both the optimal control problem and the filtering problem.
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Statement of the Problem:

Consider the planar intercept scenario depicted in figure 1. In the following

investigation the pursuer M is a short-range air-to-air missile. The evader T is

typically a fighter aircraft

In an air combat scenario the missile is launched after target acquisition by the

attacking aircraft During the initial boost phase the missile then accelerates to

maximum velocity and after fuel burn out is decelerated by the aerodynamic drag.

(For cost reasons throttable engines are usually not used for short range missiles.)

In order to close in on the target the missile uses onboard sensors producing

information about the missile motion and the missile-target relative geometry. These

signals are preprocessed and then fed into the guidance law. The guidance algorithm

computes an acceleration command ac which is input to the autopilot acting on the

flipper servos in order to produce the desired acceleration.

There are two important restrictions in this scenario:

a) Since thrust control is not possible as mentioned above the commanded

acceleration is always directed perpendicular to the missile axis (see figure 2).

b) After launch the missile does not receive any information from a third observer

such as the launching aircraft or a ground radar station. Information is available

from the missile's own sensors only (two-point-guidance). The signal flow for

this situation is depicted in figure 3.

Guidance law design is of course crucial to ensure intercept The most widely used

guidance law in the described scenario is proportional navigation (PN) [1,9,15,20,21].
The outstanding advantages of PN are its simplicity and the use of only little

information about the missile-target relative geometry namely R and <p (figure 1).
These measurements are readily available with a radar seeker. If the missile is

equipped with a passive seeker (infrared) only the ^-measurement is available. In

many cases PN works even with this single information because R may often be

assumed constant and can be estimated. Thus PN is very easy to implement and has

proven to be very effective against non- or weakly-maneuvering targets. Modern

air-combat scenarios are, however, dominated by high target accelerations that result

in a substantial degradation of PN performance. Therefore great efforts have been
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made since the 1960s to derive new guidance laws that are effective in the case of

strongly evasive target maneuvers. Most of the investigations have been carried out

within the framework of optimal control theory [1,2]. An overview on research topics

of the USAF associated with guidance and control of tactical missiles is given in

[21,23].

It is well known that the application of optimal control theory yields control laws

requiring full state information at each point of time. In view of the restricted

information about the target state that is available by radar or passive seekers it

becomes clear that the implementation of guidance laws based on optimal control

theory is not at all straightforward. The solution of the tracking problem, i.e. the

estimation of unknown states associated with the target motion is a prerequisite to the

implementability of modern guidance algorithms. Essentially the tracking problem is a

nonlinear filtering problem. Several approaches to this problem ranging from

extended Kalman filters (EKF) to multiple model estimators have been suggested. A

survey is given in [69]. For maneuvering targets most of these estimation algorithms

exhibit serious stability problems. These difficulties become even harder if the

estimator is based on bearing or bearing-rate-only measurements which is

unavoidable if a passive seeker is used. The stability problems are due to the lack of

observability under certain geometric conditions and modeling errors that arise mainly

because of the unknown target dynamics. While the observability and stability

problems associated with bearings-only tracking analysis have been discussed for

non-maneuvering targets [62-65,69] the analysis has not yet been extended to

maneuvering targets. Moreover the interaction of estimator and guidance law has not

been sufficiently addressed: The guidance law may be affected by the possible

divergence of the estimator. On the other hand the performance of the estimator

depends heavily on the guidance law.

This thesis tries to point out the possibilities and limits of optimal control theory for

the derivation of implementable guidance laws and to enhance the closely related

problems of target tracking mentioned above. It turns out that in fact the solution of

the tracking problem is much more important than optimality of the guidance law.

The main topic will therefore be the derivation of a new adaptive tracking filter for

maneuvering targets based on bearing-rate-only measurements.
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R,LOS T(t)

M(t)

initial LOS

M(tQ) T(tn)

M: missile R : range

T : target LOS: line of sight

I : point of intercept <p : bearing angle

figure 1: geometry of the planar intercept problem
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a : missile acceleration

ac: commanded acceleration
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CL: missile center line a : angle of attack

m : missile mass v : missile velocity

figure 2: aerodynamic forces
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1. Derivation of Guidance Laws via Optimal Control Theory

In this chapter an overview is given on how optimal control theory has been applied

for the derivation of missile guidance laws. The advantages and drawbacks of the

resulting guidance algorithms with respect to their practical realization are discussed.

There are essentially three approaches for guidance law derivation within the

framework of optimal control theory:

a) Pontryagin's minimum principle [1,2]

b) dynamic programming [1,3]

c) differential game theory [1,3]

Only the first approach will be discussed here in detail Many of the conclusions,

however, apply to the others as well.

1.1 Review of Pontrvaein's Minimum Principle

Consider the nonlinear dynamic system given by the followmg set of first order

differential equations:

x = f(x,u,t) Rn (1.1.1)

subject to the initial conditions

x(tQ) = xQ Rn (1.1.2)

and the final conditions

r[x(tf)] = 0 Rk, k^n (1.1.3)

with

x Rn state vector

u Rmcontrol vector

t I = [tQ,tf] C R time (independent variable)

tQ, tf initial, final time

d
() = — differentiation with respect to time

dt
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The control vector is restricted as follows:

uGcRmforalltinl (1.1.4)

The optimal control problem consists of determining the control u(t) in I such that the

performance index

J[xQ. u(.)]: = | L(x(t),u(t),t) dt + «(x(tf)) (1.1.5)

is minimized subject to the constraints (1.1.1) to (1.1.4). L and * denote scalar real

valued penalty functions wich are continuously differentiable with respect to all their

arguments.

*

If u(t) is the optimal control satisfying (1.1.1) to (1.1.5) the following necessary

conditions hold for t I:

*

u = arg min H(x,X,u,t) Pontryagin's Minimum Principle (1.1.6)
uG

with

H = L(x,u,t) + X1 f(x,u,t) R Hamiltonian (1.1.7)

^ = -
H

= - it(x,u,t) - xl it(x,u.t) Rn (1.1.8)
dx ax dx

3<& dr
\\tP) = --—(x(tf)) + pl —(x(U) transversality condition (1.1.9)

1 3x r 3x r

where () denotes the transposed.

X is called the adjoint vector, and is an n-tuple of Lagrange multipliers. For a more

general formulation of the problem and sufficient conditions for optimality see [1,2].

Aspects of implementation of (1.1.6) are discussed in the next section.
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1.2 Application of Optimal Control to Missile Guidance: Basic Problems

Theoretically optimal guidance laws can be derived by stating the intercept problem as

an optimal control problem. The guidance law is then given by (1.1.6). This equation

can in general, however, only be evaluated by simultaneously solving (1.1.1), (1.1.6)
and (1.1.8) subject to the boundary conditions (1.1.2), (1.1.3) and (1.1.9). Usually this

two-point-boundary-value problem (TPBVP) has to be solved iteratively by numerical

methods [1,4-8].

In principle equation (1.1.6) can be implemented as a feedback law by interpreting t as

initial time, x(t) as associated initial condition and continuously solving the TPBVPon

*

[t,tj3 in order to determine the optimal control u(x(t)). There are three severe

drawbacks of this approach:

i) Real time solution of TPBVPs is not realistic due to the severe numerical

difficulties that arise with this type of problems in most cases.

ii) The control law (1.1.6) requires the knowledge of all components of the state

vector x. In many cases, however, only a part of the states can be measured. This

is especially true for the intercept problem where little information about the

target state is available.

*

iii) According to (1.1.6) u(t) depends on X(t) which in turn depends via (1.1.9) on the

final state x(tf). This means that the optimal control strategy depends on the

future behaviour of the system. As a consequence the determination of an optimal
control law for an interceptor requires the knowledge of the future target

maneuver. The latter is of course unknown. Therefore guidance law derivation via

the minimum principle is always based on assumptions about the target

behaviour and guidance law performance may be heavily degraded by deviations

from the assumed nominal conditions.

In summary it can be stated that optimal guidance laws are not implementable
because

- the associated TPBVPcannot be solved in real time

- the required full state information is not available

- the future target maneuver is unknown.
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Remarks:

The difficulties ii) and iii) arise in the dynamic programming approach as well whereas

i) is replaced by the need of solving the Hamilton-Jacobi-Bellman partial differential

equation [1,2,3]. The application of differential game theory avoids iii) by determining

an interceptor guidance law based on an optimal evader strategy [1,3,10,18,26,28]. This

problem is even more difficult to solve than the TPBVPassociated with the minimum

principle.

The following possibilities exist to overcome the above mentioned difficulties:

- In order to avoid the on-line solution of a TPBVP, linearization methods are used

' that allow the derivation of guidance laws that can be represented in closed form or

at least can be evaluated numerically in real time. Clearly these guidance laws are

suboptimal.

- The problem of only partially measurable system states can be overcome by the

application of estimators. As mentioned earlier the development of practicable

estimators is crucial to the implementability of modemguidance laws and will be

discussed in later sections.

- The determination of the future target maneuver is a prediction problem. It can be

"solved" by assuming a target maneuver or by extrapolation of information

gathered about the past maneuver. A good extrapolation is possible across several

target time constants and therefore useful during the endgame. Predictions across

long periods of time can only be based on assumptions.

In the following sections approximate methods to derive suboptimal implementable

guidance laws are discussed.
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1-3 Guidance Laws Based on the LQ-Method

In this section a class of guidance laws based on a linear approximation of the

intercept dynamics and a quadratic cost criterion J is presented.

13.1 Review of the LQ-Method

(see [1,2])

Consider the linear plant equation

x = A(t) x(t) + B(t) u(t) (1.3.1a)

x(tQ) = x0 (1.3.1b)

xRn,uRm (1.3.1c)

and the quadratic performance index

J = Ixt(tf)Fx(tf) + I
2

[x^tXK^x (t) + u*(t)R(t)u (t)] dt (1.3.2)

with

A(t) Rn x n
: system matrix

B(t) Rn X m
: control matrix

F,Q(t) RnXn : symmetric positive semidefinite weighting

matrices penalizing the states x

R(t) Rmx m
: symmetric positive definite weighting matrice

penalizing the controls u

For the ease of notation the time dependency will be dropped in the sequel.

Solving (1.1.6) to (1.1.9) for (1.3.1) and (1.3.2) yields a linear optimal control law of

the form:

u = - R'Vk x (1.3.3)
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where the (nxn)-matrix K is positive definite and solves the Riccati-equation

K = - AlK - KA + KBR^B^C- Q (1.3.4)

subject to the final condition

K(tf) = F (1.3.5)

Discussion:

An important feature of this solution is that the Riccati equation (1.3.4) is decoupled
from the state x. Hence K(t), t [fy tj], can be calculated and stored off-line by

backward integration of (1.3.4/5). With K(t) known u(t) can easily be evaluated. The

implementation of (1.3.3) requires the knowledge of all states x.

1.3.2 Application to the Planar Intercept Problem

In order to apply the LQ-method to the planar intercept problem the dynamic

equations have to be cast in linear form and a quadratic performance index has to be

chosen. For this purpose consider the situation depicted in figure 1.3.1.

In the cartesian coordinate system (x,y) the kinematical equations of the intercept

problem are linear:

Ax = vTx-vx = Avx (1.3.6a)

Ay = vTy-vy=Avy (1.3.6b)

Ax = aTx-ax = AVx (1.3.6c)

Ay = aTy-ay= Avy (1.3.6d)

necessary and sufficient condition for intercept at final time is:

Ax(tf) = 0 (1.3.7a)

Ay(tf) = 0 (1.3.7b)

Problems arise in the formulation of the missile autopilot dynamics i.e. the transfer

function relating the commanded acceleration a_ to the actual missile acceleration a.

It has already been mentioned that due to the absence of thrust control the
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commanded acceleration is perpendicular to the missile center line (figure 2). For

small angles of attack it may be assumed that

a^J. v (1.3.8)

In other words only the acceleration component aL (see figure 1.3.1) can be

controlled.

I

* x

a*

vaD

/v R,LOS^,

Ay

VT(t)

r\(
*

1*

M(t) AX

initial LOS

M(tQ) T(tn)

figure 1.3.1: planar intercept geometry
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From figure 1.3.1 follows:

ax = -aL siny - •

aD cosy

ay =

it =

•

v =

aLcosy-

V

"aD

aD siny

(1.3.9)

(1.3.10)

(1.3.11)

(1.3.12)

In case of a "perfect" autopilot aL may be replaced by its commanded value ac.

However, aD is a highly nonlinear function of the missile velocity and the angle of

attack (see appendix 1.1).

In order to obtain a simple linear model of the missile dynamics it is assumed that a^
can be controlled rather than a* .

This assumption is true for small heading angles y.

For the moment it is further assumed that the time-to-go

tg0=tf-t (1.3.13)

is known. Equation (1.3.7b) is then a sufficient condition for intercept and the

kinematic equations in x-direction (1.3.6a/c) become obsolete. Note that to principle

(1.3.6a/c) and (1.3.7a) could be used to determine t
.

The equations of the planar

intercept problem can now be stated as follows:

Ay =vTy"vy (1.3.14a)

Ay =aTy-ay (1.3.14b)

ay = fA(u) (1.3.14c)

ajy = fT(t) (1.3.14d)

where fA designates a linear function approximating the dynamics of the missile

autopilot and £p describes the target maneuver. Ay is sometimes called missile-target

separation.
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By specifying fA, a quadratic performance todex J and making assumptions about the

unknown target maneuver fT various guidance laws of the form

ac = u(Ay, Ay, ay, a^ tgQ) (1.3.15)

can be derived.

Typical models for fA are:

a^ = u (perfect autopilot) (1.3.16a)

fA =" ip(ay-u). TA = const (1.3.16b)

For the target motion one usually chooses:

apy = 0 (1.3.17a)

or

fT = 0, ap = const * 0 (1.3.17b)

The basic goal of the control (1.3.15) is to null or at least minimize the miss distance

Ay(tf). At the same time one is interested in keeping low the control effort measured

by

tfo

Ju2(t)dt (1.3.18)
t

to order to minimize the aerodynamic drag losses. Thus a typical optimal control

formulation of the intercept problem is:

Find the control u minimizing J subject to the constraints (1.3.14) with

J = c1Ay2(tf) + c2 Ju2(t)dt (1.3.19)
t

cl' c2 = consL (1.3.20)

Guidance laws based on (1.3.19) have been derived to [1,12,17,21,24].
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The Riccati equation associated with (1.3.14/19) can be solved analytically and the

resulting control laws are of the form:

u = kjAy + kjAy + k3ay + k4aj. (1.3.21)

with

kj = kj(tg0, TA) , 1=1,2,3,4 (1.3.22)

Optimization with respect to (1.3.19) does not null the miss distance because the

penalty term on u causes a trade-off between miss distance and control effort The

performance todex

*f
J = Ij u2(t)dt (1.3.23)

t

with the additional constraint

Ay(tf) = 0 (1.3.24)

ensures zero miss with rntoimum control effort However, the gains k. tend to infinity

as t approaches zero [12,27].

Therefore the additional constraint

|u|<umax (1.3.25)

is added to [25,28]. Note that due to (1.3.25) the minimization is not an LQ-Problem

any more. Other approaches differing from the LQ-method are given to [15,16] with

J = |Ay(tf)| (1.3.26)

and (1.3.25).

A more detailed literature overview is given to [23,29]. Comparisons of classical and

modern guidance laws can also be found to [27,29,31].
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133 Considerations on Guidance Law Implementation

The general form of the guidance laws discussed to the last subsection is

u = u(Ay, Ay, jy a^, tgQ) (1.3.27)

The implementation of (1.3.27) requires the knowledge of all state variables and t .

With the exception of a^ which can be measured by accelerometers there is no means

of directly measuring the other variables. In the most favourable case measurements

for R, R, <p (radar seeker), and 9 (toertial or strapdown navigation) are available. In

the worst case only 9 can be measured. With R, R, 9, and 9 known Ay and Ay can

easily be determtoed. In the case of unknown 9 (no toertial angular measurements) a

Kalman filter was designed to [15] for the estimation of Ay, Ay, and ajy based on

measurements of 9 and accurate knowledge (noise free measurement) of R and R.

Other approaches will be discussed later. Most frequently the unknown variables are

approximated by making the following assumptions:

i) |Ay| « R (1.3.28a)

ii) R =s constant (1.3.28b)

From (1.3.28) follows:

(1.3.29a)

(1.3.29b)

With (1.3.29) u from (1.3.27) may be expressed to terms of polar coordinates

measured by the target tracker:

u = u(R, R, 9,9, apy) (1.3.30)

A

Here arj. has been replaced by aTy to indicate that an estimated or assumed value of

the target acceleration is used. In some cases (small LOS-rate, present LOS =s

reference LOS) further simplifications are possible allowing to drop the dependency
on R and 9 leaving:

? »
_Ay
R

'go as -R/R
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u = u(R,9.aTy) (1.3.31)

After replacing R by an estimate R (1.3.31) becomes a guidance law suitable for

implementation with a passive seeker.

13.4 SomeGeneral Conclusions on Guidance LawPerformance

The majority of guidance laws based on (1.3.14-26) have proven to be quite efficient

although implementable versions are based on severe assumptions as discussed to the

last subsection. Deviations from these assumptions affect optimality but not

necessarily stability of the guidance loop. Heuristically this fact becomes clear by

observing that a sufficient condition for intercept is:

93 0 (1.3.32a)

R< 0 (1.3.32b)

(1.3.32a) guarantees that the missile-target relative velocity is always directed along

the LOSwhich ensures intercept

For non-maneuvertog targets (1.3.32) determtoes the time-optimal interceptor

trajectory. In case of a target maneuver (1.3.32) still guarantees intercept but the

associated toterceptor trajectory is neither time-optimal nor does it minimize the

control effort Since most guidance laws try to at least approximately establish

(1.3.32a) (simply by 9-feedback) and differ to compensation terms for autopilot

dynamics, target dynamics etc. their relative robustness is plausible. There are,

however, some important experiences that should not be left unmentioned:

a) Guidance law performance can be significantly improved by taking into account

the autopilot dynamics according to (1.3.16b) rather than using the simple model

(1.3.16a). On the other hand these guidance laws are very sensitive to estimation

errors to TA, R and t [25,27]. Note that TA is not a constant as assumed for

guidance law derivation. Inspection of (1.3.10-12), (1.3.14c) and (1.3.16b) shows

that TA depends on the missile heading angle y, the missile velocity v and angle

of attack a since it is the component a-r that is controlled by the autopilot rather

than a^. In a more sophisticated model one could replace the time constant TA by

a function



21

TA = TA(y, V, a,....) (1.3.33)

This function should be known to advance for all t [fy y to order to solve the

Riccati equation (1.3.4). In addition the t -estimate given by (1.3.29b) is far

from accurate especially during the boost phase with large axial accelerations that

lead to strong violations of assumption (1.3.28b). The effect of improved

t -estimation is discussed to [24].

In view of these uncertainties the use of a model like (1.3.16b) seems

questionable except for short t
,

Le. during the endgame.

b) Guidance laws derived by taking into account limited controls according to

(1.3.25) result to much higher feedback gains k. than guidance laws based on a

quadratic control penalty term without saturation. This again leads to high

sensitivity to errors to the design assumptions especially TA and t [15,16].

Moreover high gains degrade guidance law performance to the presence of noise

[25].

c) A substantial improvement of guidance law performance can be achieved by

taking into account the target acceleration &r [20,25] rather than assuming a zero

acceleration nominal target trajectory.

Based on these experiences a guidance law that will be referred to as Extended

Proportional Navigation (PE) will be derived to the next section.

13.5 Extended Proportional Navigation (PE)

In this section a guidance law designated as extended proportional navigation (PE) is

derived by applying the previously discussed LQ-approach. The guidance law is

compared with proportional navigation (PN) and to later sections with other nonltoear

suboptimal guidance laws. It turns out that PElends itself to some "optimal" way (to
be specified later) for implementation to connection with an extended Kalman filter

that solves the tracking problem.
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1.3.5.1 Derivation of Guidance Law

Consider the scenario depicted to figure 1.3.2. At time u the missile and the target are

to their respective initial positions M(tg) and T(tg). The direction of the initial LOS

M(t())T(tQ) determines the orientation of a nonrotattog missile-fixed cartesian

coordinate system (x,y). Intercept occurs to the collision potot I at final time tf. The

target maneuvers along the path T(tQ)I .

-Ay(t)

M(t0) T(tn)

figure 1.3.2: intercept geometry associated with PE
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The optimal missile path with respect to (1.3.19) or (1.3.23/24) is a straight

zero-maneuver trajectory (broken line to figure 1.3.2). The determination of the

associated collision course y requires a priori knowledge of the target maneuver
cs

which is usually unknown. Therefore (1.3.32) will be exploited to guarantee intercept

From figure 1.3.1 follows:

VT Stoy- -VStoy
9 = — 1 L (1.3.34)

with

YTs
=

YT~ 9 (1.3.35)

Ys
= Y

"

9 (1.3.36)

(1.3.32) and (1.3.34) yield:

vT
Stoyg = —stoyTs V t [tQ,tf] (1.3.37)

For a non-maneuvering target y is identical to the collision course y .
In case of a

s cs

maneuvering target (1.3.37) results to the missile trajectory M(tQ)M(t)I depicted to

figure 1.3.2.

From (1.3.32) follows:

9 = 0 (1.3.38)

Differentiation of (1.3.34) with respect to time renders:

=
jVfy_ _2

R ^ 3 3
r

R R
r v '

where a-p ,su denote the target and missile acceleration components perpendicular to

the instantaneous LOS(figure 1.3.2).

(1.3.32/38/39) result in the nominal control

^ = aTY (1-3.40)

Obviously the steering law (1.3.40) is a target maneuver compensation associated with

the nominal missile path defined by (1.3.32). In order to keep the missile on its

nominal path to the presence of disturbances a guidance law of the form
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3y = a^ + Au (1.3.41)

is sought Au is determtoed to such a way that (1.3.32) is stabilized. Note that by

(1.3.41) a perfect autopilot response according to (1.3.26a) is assumed.

Consider a deviation from the nomtoal path indicated by the missile position M*(t) to

figure 1.3.2. This deviation produces a missile-target separation Ay(t). Note that

deviations directed along the LOS don't affect the nomtoal condition (1.3.32) and

therefore don't have to be considered. It is sufficient to control Ay. For this purpose

the state vector

z1 = -(Ay, Ay) (1.3.42)

is formed. With (1.3.41) and (1.3.14b) z satisfies the simple equation

zx = ifi) (1.3.43a)

Zj = Au(t) (1.3.43b)

t [tQ,tf] (1.3.43c)

In order to ensure collision with minimum additional control effort the followtog

optimization problem is solved:

Minimize

v
J=i [[Au(t)]2dt (1-3-44)

\>

subject to

zx(tf) = 0 (1.3.45)

and (1.3.43).

The problem is solved by application of the minimum principle (see section 1.1). The

Hamiltonian is:

H = ^ Au2 + Xx Zj + X2 Au (1.3.46)
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with the adjoint variables satisfying

3H
X, = =0 => X, = const (1.3.47)

i

azx
i

3H
X0 = -—=-X, (1.3.48)2

9Z2
1

With (1.3.44/45) the transversality condition (1.1.9) reduces to:

X2(tf) = 0 (1.3.49)

The optimal control is H-minimizing and from (1.3.46) follows:

Au = -X2 (1.3.50)

The solution of (1.3.47 -49) is:

*2(l) = (tf" t) Xx ,
t [Iq, tf] (1.3.51)

and with (1.3.50) the optimal control becomes:

Au(t) = -(tf-t)X1 (1.3.52)

where the constant X, is still unknown but can be determtoed by exploittog (1.3.45).

Integration of (1.3.43) with Au from (1.3.52) yields:

^(t) = ZjOq) - i
Xx (tf - tj,)2 + i

Xx (tf -1)2 (1.3.53)

zx(t) = z^Iq) + 1
\x (tf - y3 + z2(t0) (t - Iq) +

" \ h <lf' W2^" tf_ \ h <V" l>3 (L3-54)

With (1.3.45) one obtains:

zx(tf) = 0 = Z^Iq) + z2(t0) (tf - tQ) - i
Xx (tf -1^3 (1.3.55)
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After replactog ^ by the current time t and solving for X, one finally arrives at:

Zl(t) + Z2(t)t

X = 3 -±
-

§2. (1.3.56)
t3
go

with

t =tf-t time-to-go (1.3.57)

(1.3.56) in (1.3.52) yields the optimal control

z^O + z^Ot

Au(zls Zj, t q) = - 3 -^ /
8° (1.3.58)

go- 2

go

Ustog the assumptions (1.3.28) the followtog approximations hold (figure 1.3.2):

fl

R

zl
9«-~ (1.3.59)

Mb
^* -h.+ Rzx

R R2

Rss- Rtort
go

Substituting (1.3.61) to i (1.3.60) yields i»

• zx(t) + ^W'go
9 _. -

Rt
2

go

(1.3.60)

(1.3.61)

(1.3.62)

and with (1.3.58) one ends up with

Au = - 3R9 (1.3.63)

Remark: (1.3.63) is the well known proportional navigation (PN) the general form of

which is

PN: Au = -

XQR9 (1.3.64)

XQ: navigation constant



27

The optimal value of XQaccordtog to (1.3.63) was first derived to [1]. After substituting

(1.3.64) to (1.3.41) the complete guidance law becomes:

PE: u = ap
-

XQR9 (1.3.65)

Discussion:

a) PE is a combination of target maneuver compensation and PN. For

non-maneuvering targets it is identical to PN. This is desirable since PN has

proven to be very effective to this case. The only but severe difficulty to

implementing (1.3.65) is the need to estimate aj. .

b) An important feature of PE is that this guidance law is not based on any

assumptions about the future target maneuver but uses instantaneous information

only. Therefore the sensitivity problems associated with the extrapolation of

wrong system parameters into the future to order to solve the TPBVP

(1.1.1-1.1.9) are avoided (see discussion in section 1.3.4).

c) By substituting (1.3.65) into (1.3.29) one obtains:

9 = ( X0- 2)SL (1.3.66)

It follows immediately that (1.3.32) is stable only for XQ>2 (note that R< 0). This

is a well known result from PN[9].

d) A derivation of (1.3.65) can also be found in [20]. Other versions based on an

assumed constant target acceleration are given to [12,25,27] but here the

sensitivity problems mentioned in b) occur.

In the next subsection some simulation results comparing PNand PEare presented.
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1.3.5.2 Comparison: PEversus PN

In this section simulation results comparing the performance of PE and PN are

discussed. First some remarks on the implementation of (1.3.65) are necessary.

Implemented version of PE/PN

Accordtog to (1.3.41) u is the commanded acceleration perpendicular to the LOS. As

mentioned earlier the only acceleration component that can actually be controlled is

aL (small angles of attack assumed, see figures 2 and 1.3.1). Therefore a commanded

value for aL denoted by ac will be calculated from u. Neglecting the aerodynamic drag

aD (figure 1.3.1) ac can be determtoed from figure 1.3.3. It follows:

a. = _L_ = _L_(- -xnR9)
COSy COSy

1V V
(1.3.67)

In the absence of an toertial measurement unit y is unknown however. A good

approximation for y is the lead angle yL (figure 1.3.2) which is usually calculated prior

to launch. A preferable approach is replacing y by a design parameter yr that

accounts for the intercept geometry given by the collision course y (figure 1.3.2) and

drag losses due to aD< The final version of PE as implemented in the simulation

program then becomes:

PE: ac =

COSy^
(apy-XQF.9) (1.3.68)

a

M

initial LOS

figure 1.3.3: commandedacceleration
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By omitting ay., to (1.3.68) one obtains the implemented version of PN. Experience

from many simulation runs shows that the value

A

cosyL = 0.8 (1.3.69)

produces good results for all investigated intercept scenarios. This value is therefore

used for all subsequent simulations.

Simulations

The purpose of the followtog simulations is to illustrate the effect of target maneuver

compensation on guidance law performance. The target maneuvers considered here

are constant speed maneuvers i.e. the target acceleration aj. is directed perpendicular

to the velocity vector vT (figure 1.3.4). During the toitial phase t [tQ.tJ the target

moves unaccelerated. For t > te the target acceleration changes from zero to a constant

value a accordtog to equation (1.3.70) and figure 1.3.5:

ap = 0 tQ < t < te (1.3.70a)

t_te

aT = apQ [ 1 - exp( -) ] t > te (1.3.70b)

tf is the time of closest approach of missile and target The associated distance is

called miss distance and will be denoted by Rf .
Due to the missile's warhead

effectiveness the target is considered to be hit if

Rf < Rmax = 5m (L3-71>

For Rf > Rmax the missile missed the target Rf is a measure of guidance law

performance and will be investigated as a function of

At = tf-te (1.3.72)

At is the time that is left for the missile to react to the target's evasive maneuver. The

function Rf(At) is therefore suitable to reveal the effect of target maneuver

compensation for maneuvers of type (1.3.70).
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initial LOS, R0

M(t0) T(tQ)

figure 1.3.4: initial intercept geometry

TO

At

H

-* t

figure 1.3.5: target acceleration profile

Two engagement scenarios will be tovestigated. For both scenarios the followtog
parameters are fixed:

target maneuver: aT0=6g

^ =0.1s
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intercept geometry: RQ=3.5km, h =10 km

Vq = 0.9 Ma, vT = 0.9 Ma

The intercept scenarios are defined by the remaining parameters yQ and yTQ:

scenario 1: yt0
= 90°»T0 = 20°

scenario 2: yTQ
= 0°

, yQ
= 0°

The functions R/At) obtatoed for the guidance laws PN and PE are depicted to

figures 1.3.6 and 1.3.7 for scenario 1 and 2, respectively.

Discussion of results:

Figures 1.3.6 and 1.3.7 show that Rf is nearly todependent of At for the guidance law

PE and At > 0.8 s. A sharp rise of Rf occurs for target evasive maneuvers shortly

before intercept (At < 0.8 s). Here the missile has no time to correct its path due to its

dynamic lags.

In contrast to PEthe results of PNshow a strong dependence on At. For small At PN

produces the same miss distance as PE because the missile does not maneuver any

more in both cases. For scenario 1 all results lie well within the hit range Rmax •

However, in scenario 2 PNproduces large miss distances (see table 1.3.1) when used

with the "optimal" navigation constant XQ = 3 (see equation 1.3.63) that was used for

all simulations of scenario 1. Only after choosing XQ = 6 PN yields acceptable miss

distances with a sharp rise in R^ for small At.

The guidance law behaviour for both scenarios indicates that PN is very sensitive to

both intercept scenario and target maneuver whereas PEbehaves rather indifferently.

The sensitivity of PNis easily understood by substituting

PN: a^ = Au = -

XQR 9 (1.3.73)

into (1.3.39) resulting in:
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9 =
*Ty

,.
R (X0-2)R9 (1.3.74)

From (1.3.74) it becomes clear that any target maneuver a-p perpendicular to the

LOS destabilizes the nomtoal condition (1.3.32a) resulting to large miss distances. This

can be prevented by choosing a high navigation constant XQ to order to keep 9 small

as was done in scenario 2. In scenario 1 PNwith XQ = 3 produces low miss distances

despite the target maneuver. Here the target acceleration is mainly directed along the

LOS. Hence, ajv is small and the performance of PN is not seriously affected (figure

1.3.8). On the other hand the target performs a strong maneuver perpendicular to the

LOS in scenario 2 (figure 1.3.9) arid therefore degrades PNperformance. This is why

in practice Xfl is selected within the range of - 2.5 to ~8 according to the intercept

scenario. Target maneuver compensation eliminates these sensitivity problems and

allows for the use of a navigation constant that is todependent of the engagement

Moreover the feedforward of a^ results to fast reaction to target evasive maneuvers

reducing the miss distance especially for small At.

At [8] RfM

7.50 31.7

6.35 38.6

5.54 38.8

4.16 33.21

3.71 23.94

2.70 13.93

1.67 5.78

0.64 0.68

0.14 0.23

table 1.3.1: miss distances ofPN with \Q = 3in scenario 2
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miss distance [m]
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figure 1.3.6: miss distances in scenario 1
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figure 1.3.7: miss distances in scenario 2
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figure 1.3.8: typical missile and target flight path in scenario 1
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figure 1.3.9: typical missile and target flight path in scenario 2
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13.6 Summary

In this section an overview about the derivation of guidance laws based on LQ-design

and related approaches was given. The approximation of the intercept dynamics by

linear time invariant equations is common to all these approaches enabling one to

solve the resulting optimal control problem analytically to most cases. Thus guidance

laws are obtained to closed form. Most of them may be viewed at as extensions of PN.

One version of extended proportional navigation taking toto account the target

maneuver by a simple compensation term was derived. A simulation study revealed

that target maneuver compensation leads to substantial improvements of guidance law

performance and makes adaption of the navigation constant XQ to the engagement

scenario obsolete. The main obstacle to the implementation of PE is the problem of

target maneuver estimation. This topic will be adressed to chapter 2.

In the following sections guidance laws derived by application of singular perturbation

theory will be tovestigated. These guidance laws are a useful reference to judge the

performance of PN and PE. Moreover singular perturbation theory gives a deep

insight into the structure of modern guidance laws and reveals the advantages and

limits of optimal control theory in this field.
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1.4 Guidance Laws based on Singular Perturbation Theory

Perturbation methods are an important tool for the analysis of ordinary and partial

differential equations. These methods are applicable if the problem under

consideration exhibits "small" perturbation terms which, after adequate scaling,

manifest themselves by the occurance of one or several perturbation parameters t «

1. In many cases it is possible to construct expansions to terms of t that approximate

the exact solution with reasonable accuracy. The importance of perturbation methods

lies to the fact that the calculation of these approximations is often much easier than

the determination (if possible at all) of an exact solution and leads to a substantial

reduction of the computational effort if the problem is solved numerically.

The question of existence and properties of expansions associated with perturbed

problems are treated to perturbation theory. An introduction to perturbation methods

is given in [32-34]. Applications to control theory are summarized to [35] and [43].

A special class of perturbed problems are singularly perturbed problems. They are of

special interest here. A well known approach to solve this type of problems is the

method of matched asymptotic expansions (MAE) [32,33,34,36]. The MAE-method

will be applied here to obtain approximate solutions to the optimal control

formulation of the planar totercept problem. First the basic definitions and ideas of

this method will be introduced.

1.4.1 Basic Definitions of Perturbation Theory

The following discussion will be restricted to the investigation of ordtoary differential

equations of the type

z = h(z,te) (1.4.1)
with

zRn dependent variables

t R independent variable (time)

e R "small" perturbation parameter
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With the assumption that (1.4.1) has a unique solution for a given initial condition

Z(Iq) = Zq (1.4.2)

the exact solution of (1.4.1/2) on the interval t I = [Iq, tf] will be denoted as

z(tzQ,e) (1.4.3)

Assume for the followtog that z is scalar. Extension to the vector case is straight¬

forward. z(t, Zq, e) is usually not available to closed form. In many cases, however, it is

possible to solve (1.4.1) analytically for t = 0. This motivates an expansion of (1.4.3)

to terms of known functions 4>. of the followtog form:

N-l

Z(t Zq, e) « Z(t Zq, e) = £ *.(t e) (1.4.4)

i=0

Since to general (1.4.3) cannot be represented exactly by a finite expansion there will

be a truncation error

%!& «) = z(t, Zq, c) - z(t Zq, «) (1.4.5)

due to the neglection of terms of order >N. The behaviour of Rj^t, e) as e approaches

0 determtoes whether (1.4.4) is a meaningful expansion or not i.e. whether it can be

used to approximate z(t Zq, e). In the followtog definitions the Landau symbols [32,34]

are introduced. They will be used to describe the properties of (1.4.4). Consider the

two scalar functions f(t, c), g(t, e).

Definition 1: If there exist A > 0 and tQ > 0 such that

|f(t,*)|< A|g(t,e)| V|ej<c0 (1.4.6)

then one writes

f(t,£) = O[g(t,0] as «-»0 (1.4.7)

Definition 2: If A and en are todependent of t I then (1.4.7) is umfbrmly valid on I.
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Remark: (1.4.6) may be replaced by

lim
e-*0 g(t,e)

<oo (1.4.8)

Consequently (1.4.7) holds uniformly on I if (1.4.8) is valid for all t I.

Definition 3: If there exists eQ > 0 such that

\KU e)| < « |g(t, e)| V «> 0 and V |e| < «q (1.4.9)

then one writes

f(t, e) = 0{g(t, e)] as t -» 0 (1.4.10)

Definition 4: If eQ is todependent of t I then (1.4.10) holds uniformly on I.

remark: (1.4.9) may be replaced by

ft%e)
lim

e-*0 g(t,*)
= 0 (1.4.11)

Consequently (1.4.10) holds uniformly on I if (1.4.11) is valid for all t I.

The notation introduced above is now used to state the properties of meaningful

expansions (1.4.4).

Definition 5: A sequence of functions S^Xc) is called asymptotic sequence if

6^e) = ofej^k)] as t - 0 (1.4.12)

Definition 6: z(t, e) is called an asymptotic expansion if and only if

N-l

z(t, t) = £ *.(t, t) + 0[i^t)] as e - 0 (1.4.13)

i=0
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Definition 7: (1.4.13) is called a Potocare expansion if

*.(t, e) = aj(t) «.(£) (1.4.14)

Remarks:

i) Asymptotic expansions may be divergent, i.e.

N-»oo

Rj^t,*) > oo for any value of t (1.4.15)

Nevertheless these expansions can be used to approximate z(t, e) if

lim RUt, t) = 0 for any finite N (1.4.16)

i.e. if the truncation error can be made arbitrarily small by choosing e sufficiently

small (for examples see [32]). Note that (1.4.16) is a property of Potocare"

expansions.

ii) The representation (1.4.13) is not unique. However, the coefficients a,(t) of the

Potocare" expansion (1.4.14) are uniquely determined once the functions «.(«)

have been specified.

Definition 8: The expansion

N-l

Z(t, e) = £ *.(t, e) + Rj^t, e) (1.4.17)

i=0

is said to be uniformly valid on I if

RN(t,e) = 0[«N(t,e)] uniformly for all t I (1.4.18)

Otherwise (1.4.17) is nonuniformly valid on I and is called a singular perturbation

expansion

Remarks:

i) In most cases asymptotic expansions are nonuniform. The reasons of non-

uniformity and techniques to circumvent them are discussed to detail to [32,33].
Here only one type of nonuniformity is of interest that occurs if the highest
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derivatives to (1.4.1) are multiplied by «. This problem and the method of MAE

that restores uniformity will be discussed to the next section.

ii) The following abbreviated notation of (1.4.17) will be used to the sequel:

z(t,)~£V.(t,£) (1.4.19)

i

1.42 The Method of Matched Asymptotic Expansions (MAE)

Consider (1.4.1/2) with

zt = (xt,yt) Rn (1.4.20)

and

hl(z, t, t) = [f(z, t), i g(z, t)] Rn (1.4.21)

(1.4.1) can then be rewritten to the followtog form:

x = f(x, y, t) R
x

(1.4.22a)

*y = g(x,y,t) R
2

(1.4.22b)

nl + °2 = n (1.4.22c)

with

x(Iq) = xQ (1.4.23a)

yOq) = y0 (1.4.23b)

The goal is now to develop asymptotic expansions

x - x° = V+j(t, e) (1.4.24a)

i

y ~ y° = ^{.(t, e) (1.4.24b)

i

that approximately solve (1.4.22/23).
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A commonchoice for 4>. and {. are the powers of t, i.e.

^x^e1 (1.4.25a)

^yjW (1.4.25b)

An important advantage of asymptotic expansions to terms of powers of e is that

besides addition and subtraction also multiplication of power series is well defined, i.e.

yields again an asymptotic expansion. In general this is not true. Operations like

exponentiation and differentiation with respect to t or e are usually not well defined,

not even for power series. They result to nonuniformities. For details see [32]. Note

also that (1.4.24/25) is a Poincar6-type asymptotic expansion.

By (1.4.25) the problem of determining 4>. and {. is reduced to calculating the «-

independent coefficients x?(t) and y?(t). This can be done by inserting (1.4.24/25)

into (1.4.22) yielding:

•o
,

*o,2*o,
_

Xrt + £ X-l + £ Xry + ...
—

f( xg + £ xj + £2 x£ +
..., yg + £ yj + £2 y£ +

..., t) (1.4.26a)

£ Yq + £2 yj + £3 y£ + ...
=

g( Xq5 + £ xj + £2 x£ +
..., yg + £ yj + £2 y£ +..., t) (1.4.26b)

Expansion of the right hand sides in terms of powers of £ up to first order yields:

xX + £ xj + ...= fg + £ fj +
... (1.4.27a)

l0

with

£ yg + £2 y° + ...= gg + £ gj + ... (1.4.27b)

fg == fC xg, yg, t) (1.4.28a)

^f(xO'yS-t)xi + f(xo°'yo0"^f <L4'28b>

.0 o
and gQ, gj^ defined analogously.
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Since (1.4.27) must be valid for arbitrary values of £ equality holds only if coefficients

of equal powers of £ are identical. Thus one obtains the followtog set of equations for

x? and y?:

x, = fg (1.4.29a)

= f? (1.4.29b)

0 = gg (1.4.30a)

yg = gj (L4.30b)

Substitution of (1.4.24/25) into (1.4.23) renders:

xg(tQ) + £ xJ(tQ) + ...
= Xq for all £ (1.4.31a)

yg(t0) + t y°(t0) +
...

= yQ for all t (1.4.31b)

which results to the following initial conditions for (1.4.29/30):

xg(tQ) = x0 (1.4.32a)

.0,

x"(t0)
= 0 i=l,2,... (1.4.32b)

.0

VQ(t0)
= y0 (1.4.33a)

.o

y^tQ)
= 0 1=1,2,... (1.4.33b)

In order to solve (1.4.29/30) for xg and yg equation (1.4.30a) is written more

explicitly using (1.4.28a):

gg = g( xg, yg, t) = 0 (1.4.34)

Assume for the moment that xg is known. (1.4.34) then is a set of n2 nonlinear

algebraic equations with n2 unknowns yg(t). It is further assumed that (1.4.34) has a

unique root
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yg(t) = *[xg(t),t] (1.4.35)

(1.4.35) can now be substituted toto (1.4.29a) yielding:

xg = f{xg,*[xg(t),t],t} (1.4.36)

After integration of (1.4.36) with (1.4.32a) the zero-order approximation xg(t) of x is

obtained and yg(t) is determtoed via (1.4.35). Evaluation of (1.4.35) for t = tQ and

comparison with (1.4.33a) reveals, however, a contradiction to the initial conditions

since in general

*[xg(tQ),tQ]* Yq (1.4.37)

Moreover from (1.4.32b/33b) follows that the initial conditions cannot be matched by

higher order terms. Therefore the expansion (1.4.24/25) is nonuniform on [tQ, tf] with

the nonuniformity occuring to the neighbourhood of Iq. The reason for this behaviour

becomes clear by observing that (1.4.29a/30a) is a system of n1 differential equations

and n2 algebraic equations. Thus the system order has been reduced from originally n

in (1.4.22) to n^. Consequently only n^ of the n initial conditions (1.4.23) can be

satisfied. (1.4.32/33) will therefore be replaced by the followtog still unknown initial

conditions:

x°(tQ)= x?0 ; i = 0,1,2,... (1.4.38)

yg(tQ)=*[xg0,tQ] (1.4.39)

yf(t0)= y?0 : i = 1,2,.. (1.4.40)

The first order approximations of x and y can be calculated by substituting (1.4.35)
into (1.4.30b). With (1.4.28b) one obtains:

*[ xg(t), t] = gx x°(t) + gy yj(t) (1.4.41)

with

()r = -^ [ *g(t), yg(t), t] ; r = x, y (1.4.42)
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Provided that g is nonsingular (1.4.41) can be solved for yj(t). With yj(t) known

x?(t) is obtained by forward integration of (1.4.29b) subject to the initial condition

(1.4.38). In this manner all higher order coefficients of x?, y?, i > 0 can be found

successively by first solving an n2- dimensional algebraic equation for y? and then

integrating a n1- dimensional system of differential equations rendering x?. Note that

both (1.4.29) and (1.4.30) are linear for i > 0 [36]. Note also that the y?Q are

determined by x|q similiarly as yg(tQ) and therefore x|q are the only unknowns of

this problem.

The equations (1.4.35/36) that define the zero-order approximations xg(t), yg(t) can

also be obtained by setting £ = 0 in (1.4.22). Therefore one has

Urn x(t)= xg(t) (1.4.43a)
£-» 0

t fixed

lim y(t) = yg(t) (1.4.43b)
£-» 0

t fixed

With (1.4.25) it follows from (1.4.43) that condition (1.4.16) is satisfied., i.e. (1.4.24) is

a meaningful approximation for z(t). On the other hand the system order to (1.4.22)
reduces from n to n-^ and therefore only n^ initial conditions can be satisfied as

mentioned earlier. In general it is therefore valid:

lim zg(t) = lim [ lim z(t)] * lim [ lim z(t)] (1.4.44)
t-»tQ t ~» tQ c -» 0 £~»0t-»tQ

(1.4.44) expresses the nonuniformity of the asymptotic expansion in tQ ,
i.e. the

expansion is valid for all t I except a neighbourhood of tg.

yg(t) from (1.4.35) is the quasistationary solution of (1.4.22b), i.e. the solution

obtained by neglecting the dynamics of this subsystem. For small £ and

f(z,t) = 0[g(z,t)] (1.4.45)

the states y change much faster than the states x. In the sequel x will therefore be

referred to as slow and y as fast variables, respectively. Under certain stability
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conditions mentioned later y reaches its quasistationary solution almost immediately

as £ -* 0. This justifies neglection of the y-dynamics for t > tQ .
In the neighbourhood

of tQ the behaviour of y is, however, determined by the transition y1 from the totitial

conditions to the quasistationary solution y (figure 1.4.1). The associated time

interval is called boundary layer. The expansion (1.4.24/25) approximates x, y outside

the boundary layer and is called outer solution A new expansion called inner solution

and denoted by x\ y1 is required to represent x, y inside the boundary layer where the

y
- dynamics must not be neglected.

boundary layer

overlapping zone

H

figure 1.4.1: behaviour of the fast variables in the boundary layer

For the construction of the inner solution the time scale transformation

t-tr
T = (1.4.46)

is introduced (for a motivation of this transformation and more general
transformations see [33, chaptl2]). By this transformation the neighbourhood of tg is

mapped to the interval [0,oo[ as t •* 0. t is called the time scale of the fast variables.

From (1.4.46) follows

_d__ ^_d_
dt t dx

(1.4.47)
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Substitution of (1.4.47) toto (1.4.22) yields:

x* = £ f(x, y, t£ + tQ) (1.4.48a)

y* = g(x,y,T£ + tQ) (1.4.48b)

with 0' =
-^- (1.4.48c)
dr

subject to the initial conditions:

x(t = 0) = Xq (1.4.49a)

y(T = 0) = yQ (1.4.49b)

x1 and jr will be represented in the same manner as x and y .
In analogy to

(1.4.24/25) one obtains:

~ x* = Vxj,(t) £k (1.4.50a)

k

- J = YJjfi) ek (1.4.50b)y

Substitution of (1.4.50) into (1.4.48) and expanding of f and g to powers of £ results in:

A A. - v* J. «2 v*
_^_

J , .i

Xq
+e x^ + £2 x2

+...=£ fQ+ £2 f^+ ... (1.4.51a)
• ; »

y0 +£y\ + ...
=

gQ+egi +
... (1.4.51b)

with

3) = *< x0' y0'T> (1.4.52a)

4 = f< i y0» *> xi+ ~(xo» 4 *> *i <L4-52b>

and likewise for gjj and gi.

Since the inner solution represents the transient behaviour in the boundary layer one

demands that
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lim [lim [
X(r)

)] = (
°

1 (1.4.53)

.-Or-O^y \Y0J

Equating equal powers of t yields:

x0* = 0 (1.4.54a)

x1^ = fjj (1.4.54b)

y0* = g0 (IA.55Z)
• »

y1! = gi (1.4.55b)

The initial conditions for (1.4.54/55) are obtained by inserting (1.4.50) into (1.4.53):

x0(0) = x0 (1.4.56a)

x!k(0) = 0 Vk>0 (1.4.56b)

yp(0) = y0 (1.4.56c)

yj.(0) = 0 Vk>0 (1.4.56d)

From (1.4.54a/56a) follows:

Xq(t) = constant = xQ (1.4.57)

yQ(r) can be calculated by inserting (1.4.57) into (1.4.55a) and integrating forward

with (1.4.56c). Once Vq(t) is known (1.4.54b) can be integrated subject to (1.4.56b)

rendering x^(r). This in turn can be used to solve (1.4.55b) with (1.4.56d). In this

manner all coefficients xL and y^ can be determined successively. As was the case for

the outer solution all equations associated with k > 0 are linear. Equations (1.4.54a)

and (1.4.55a) can be obtained by setting t = 0 in (1.4.48) expressing the fact that

lim z(r)= z«(t) (1.4.58)
£-0

u

t fixed
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From (1.4.58) follows with (1.4.56)

lim [lim z(r)] = zjj(0) = Zq = lim [lim z(t)] (1.4.59)
T-»0£-»0 £-»0t->0

Hence the expansion z1 represents z uniformly on t [0, oo[.

Up to this point two asymptotic expansions for z namely the outer solution z° and the

inner solution z1 have been constructed. z° represents z outside the boundary layer

while z1 is uniformly valid within the boundary layer that has been blown up by the

stretching transformation (1.4.46). In the followtog the two solutions will be combined

to form a composite solution that is uniformly valid on t [tQ, tf]. This procedure is

called boundary layer matching. Since the inner solution discribes the transient

behaviour from the initial conditions to the quasistationary solution it is evident that z1

should satify the toitial conditions at t=0. This matching condition has already been

established to (1.4.53) and was used to construct z1. In addition z should

asymptotically approach the outer solution as t -> oo as the transient dies out and the

system becomes quasistationary. This condition can be stated in the following way

[36]:

lim [x°(t, 0 - x^t, £)] = 0 (1.4.60a)
£-»0

t-tQ
T-+00

lim [y°(t, £) - y^r, e)] = 0 (1.4.60b)
£-»0

T-»00

The matchtog procedure essentially serves the determination of the unknown initial

conditions (1.4.38). It depends on the number of terms considered to the expansions

(1.4.24), (1.4.50). Simple expansions are usually only obtatoed if z° and z1 are

truncated after the zero-order term. In view of later applications to the totercept

problem the matching will be demonstrated only for this case here. For matching of

expansions including the first order terms the reader is referred to [32, 34, 36, 37].
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The zero-order expansions of x and y are:

x°(t)= xg(t) outer solution (1.4.61a)

X!(t) = Xq(£t) = Xq inner solution (1.4.61b)

y°(t)= yg(t) outer solution (1.4.61c)

y*(t) = i0M inner solution (1.4.61d)

With (1.4.61) one obtains from (1.4.60):

xg(tQ) = x0 (1.4.62)

Note that (1.4.62) is valid regardless of the number of terms considered to the

expansions x° and x1 [36].

Theorem 1.4:

The matching condition (1.4.60b) is always satisfied if yg(t) is a stable root of (1.4.34)

and the initial condition (xQ, yQ) is to the domain of attraction of this root [39-42].

Under the conditions of this theorem the expansions z° and zl exist and with

(1.4.56/57) and (1.4.62) their zero-order approximations are determtoed. For a short

discussion of the theorem see appendix 1.2. In a last step the two solutions will be

combined to render a composite solution zc which is uniformly valid on [tQ,U. The

simplest form of zc is the additive composition

zc(t) = z°(t) + z\ -) - zcp (1.4.63)
£

where t was replaced by (1.4.46) in z1.

Other forms of zc are discussed in [32,34,40]. z^ denotes the "common part" of z°

and z1 in the overlapping zone of inner and outer solution marked with t* to figure
1.4.1. It is defined by the matching conditions (1.4.60). With (1.4.61) it follows

immediately that

x°P = xg(tQ) = x0 (1.4.64a)

yCP = yg(t0) (1.4.64b)
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Hence the composite expansions for x and y become:

x(t) ~ xg(t) + Xq(-A) -

Xq + 0(e) = xg(t) + 0(e) (1.4.65a)

y(t) - yg(t) + ^-T")" ^o*+ °(«) aA65b)

Discussion:

The zero-order composite solution for x is identical to the zero-order outer solution

xg(t). This is easily understood by observing that xg(t) satifies the initial conditions

according to (1.4.62). Therefore no boundary layer correction of the slow variables is

necessary for the zero-order approximation. Inspection of (1.4.65b) shows that the

terms yg cancel out as t -»tQ. Thus y(t) is represented correctly by the inner solution

yQ in the boundary layer which by (1.4.56) satisfies the initial conditions. Outside the

boundary layer, i.e. for t > t* the terms y|j and yg(tQ) cancel out under the conditions

of theorem 1.4. y(t) is then represented by the quasistationary solution yg(t).

Note that by construction of the composite solution (1.4.65) determtoation of t* is

avoided. For later applications the calculation of the zero-order approximations is

summarized:

1. outer solution:

Set £ = 0 in (1.4.22). One obtains a system of n^ differential equations for the slow

variables x and nj algebraic equations (1.4.34) for the fast variables y. Since the

system order has been reduced from n to n, only n, initial conditions (1.4.23a) can be

satisfied. The outer solution is obtained by solving the algebraic equations for y

resulting in the outer solution

yg(t) = *[xg(t),t] (1.4.66)

Note: In general this solution is not unique. By theorem 1.4 it must be stable and the

initial conditions Zq must lie in its domain of attraction. Otherwise a boundary layer

correction for y does not exist
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xg(t) is calculated by forward integration of the reduced system

xg = f{xg(t),«[xg(t),t],t} (1.4.67)

subject to the initial conditions

xg(tQ) = x(Iq) (1.4.68)

While xg(t) is the uniformly valid zero-order approximation of x on t [tQ, tf], yg(t)
converges nonuniformly in tQ and must be corrected to the boundary layer.

2. inner solution:

The expansions of x, y to the boundary layer are called toner solution x, y1. They exist

only under the stability conditions of theorem 1.4. Their calculation is done by

performing the time-scale transformation (1.4.46) yielding the system equations

(1.4.48) in the stretched t
- time-scale. For xQ one obtains:

x0(r) = x(tQ) (1.4.69)

v«(t) is calculated by integrating

y0'(r) = g(x(tQ), y0(r), r) (1.4.70)

with

y0(o) = y(t0) d-4.71)

3. composite solution:

The zero-order composite solution is given by

x(t) ~ xg(t) + 0(c) (1.4.72)

y(0 ~ yg(t) + Vq(^~) - yg(t0) + ow (1.4.73)

Concluding remarks:

While the calculation of a zero-order uniformly valid expansion for the singularly

perturbed system (1.4.22/23) is relatively simple the determination of higher order

terms is considerably more complicated. The difficulties arise mainly to the boundary

layer matching. It turns out that to contrast to xg the higher order terms x£ with
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k > 0 have a boundary layer correction xk with initial conditions that involve limits of

integrals that in general cannot be solved analytically [36]. In view of (1.4.15) it is not

even guaranteed that accuracy will actually improve by taking toto account higher

order terms. This is why in most cases only the zero-order approximations are used.

The MAE-method has been illustrated here for initial value problems. The application

to TPBVPs is discussed in [34,35,36,37,39,43]. In the next subsection a review of the

MAE-method as applied to multiple-time-scale problems is given.

1.43 Multiple Time Scale Problems

In this section the application of the MAE-method to multiple-time-scale problems

will be discussed shortly. The procedure is a straightforward generalization of the

method described in the preceding section. The theoretical foundations can be found

in [41,42]. Only zero-order approximations will be discussed here.

Consider the following system of n+mdifferential equations:

x = f(x, y, t) Rn (1.4.74)
m-,

ex yx = g1(x, y, t) R
l

(1.4.75a)

t2 y2 = g2(x, y, t) R
l

(1.4.75b)

mk

with

ekyk = gk(x,v,t) R
*

(1.4.75c)

t [tQ, tf]

y^tYi.72 y£l Rin <L4-76)

k

m= Vmj (1.4.77)
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lim -±-^- = 0

«j+i"° £i
£. -*0

initial conditions:

X(tQ) = Xq

Vj(t0) = yj0 ; j = 1,2 k

Remark:

(1.4.78)

(1.4.79a)

(1.4.79b)

Since only the zero-order approximation is considered here the subscript ()Q denoting

the zero order term has been omitted.

Equation (1.4.78) ensures that y,+1 is fast with respect to y,. In this problem one

therefore has a slow time scale of the x-variables and k fast time scales decoupled by

(1.4.78). For the outer solution one obtains, as in section (1.4.2), an expansion that

holds nonuniformly on [tQ, tf]. Uniformity of the expansion is restored by constructing

an inner solution in the boundary layer of each time scale.

The outer solution x°, y° is calculated exactly as described in section 1.4.2. Setting

c = o ; j = l,2,...,k (1.4.80)

in (1.4.75) results in (1.4.34/36) with

gl = [ g£. 4-- 4) (1A81>

The solution is given by (1.4.66-68). The boundary layers are determined by

sequentially applying the time-scale transformation

t-tQ
t. = - ; j = l,2,...,k (1.4.82)

J £•

In this way one obtains k decoupled boundary layer equations of order m,, m2,..., mk.
The original problem of order n+m is therefore broken up into a
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sequence of k+1 subproblems of orders n, m^, m2,..., mk. This feature is especially

important for the approximate solution of optimal control problems since a suitable

time-scale separation (which should be physically meaningful of course) allows for the

construction of subproblems that can be solved easily. The boundary layer calculation

proceeds as follows:

Applying the j-th time-scale stretching (1.4.82) and setting £. = 0 for all j results with

(1.4.78) in

¥'=0

M' = 0

slow variables

of j-th boundary-layer (1.4.83)

VA=°

Jyj =gj(x,y,«T.) transient of yj (1.4.84)

° = Sj+l

quasistationary solution of fast (1.4.85)

variables of j-th boundary-layer

o = gk

where ( )' is defined in (1.4.48c).

Since the inner solutions must satisfy the initial conditions it follows from (1.4.83):

jx1(t.) = x0 (1.4.86a)

jyj(Tj) = y10: l = 1A...J (i.4.86b)

After solving (1.4.85) for h\+i> ••• » Jyk (1-4.84) can be integrated forward with

(1.4.86). Under analogous conditions as mentioned in section (1.4.2) the inner solution

Jyj will approach the quasistationary solution associated with
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gj = 0 (1.4.87)

that is

lim Jyj^.) = *.[x ,yv..., y^, yj+1,..., yk, tft] (1.4.88)

J

where *. is a stable root of (1.4.87)
J

Composite solutions can be constructed accordtog to (1.4.72/73).

Remarks:

A very commonchoice for £,, £2,..., £k is:

e = J ; j = l,2,...,k (1.4.89)

Obviously (1.4.89) satisfies (1.4.78). Note that the zero-order expansions are

independent of e,. The scaling of differential equations is therefore done to a

heuristic manner rather than actually figuring out numbers for «..

A special case leading to substantial simplifications is:

n = m^ = m2 =
...

= mk = 1 (1.4.90)

Here a sequence of scalar problems has to be solved. However it is emphazised

that the scaling of differential equations is not arbitrary but should reproduce the

physical properties of the system (x, y). Otherwise the resulting expansions will

not approximate the actual system behaviour. This fact must be kept in mind

especially if the scaling is done by heuristic methods as mentioned above. An

approach to estimate *. is discussed in the next section where guidance laws will

be derived by applying the MAE-method.



56

1.4.4 Scaling of the Intercept Problem

The purpose of this section is to find a scaled representation of the nonltoear

equations of the planar intercept problem. The analysis will first be restricted to a

horizontal plane. Extensions to a vertical plane are delivered to section 1.4.8.

The scaling procedure will reveal several time scales in the system dynamics and lead

to estimates of the associated perturbation parameters e. introduced in (1.4.75). First

consider the unsealed equations of the planar intercept problem to a cartesian

coordinate system (x,y) according to figure 1.4.2 and appendix 1.1:

(1.4.91a)

(1.4.91b)

(1.4.92a)

(1.4.92b)

(1.4.92c)

(1.4.92d)

(1.4.93a)

(1.4.93b)

missile-target relative motion:

AX = V-j. COSy-,
- V COSy

Ay = vT siny- - v siny

missile dynamics:
• T-D
V

m

. L
y

mv

•

_

M
q

I

8 = q

target trajectory:

vT = vT(t)

yT
= YT(t)

with

Ax, Ay: missile-target relative position

v, vT : missile velocity, target velocity

y, yT : missile heading, target heading in (x,y)

T : missile thrust vector

D :drag, D=D(h,v,o,fi)
L : lift, L=L(h,v,a,«)
M : aerodynamic torque, M=M(h, v,«, 8, q)
CL: missile center line

(1.4.94a)

(1.4.94b)

(1.4.94c)
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a : angle of attack

6 : flipper deflection

q : pitch rate

0 : pitch angle

m: missile mass

1 : missile moment of inertia

figure 1.4.2: planar intercept geometry

Simplification:

For the type of missile under investigation here the guidance loop is activated after

fuel burn out. Therefore the missile thrust need not be considered for guidance law

derivation and one has:

T = 0 (1.4.95)

It follows that the missile mass mand the moment of inertia I remain constant



58

In the following, dimensionless states denoted by superscript * are defined:

Ax = ax* RR, Ay = Ay* RR, v = v* vR (1.4.96a,b,c)

Y = Y*YR »
9 =$*$R , q = q*qR (1.4.97a,b,c)

L = 1**1^, D =D*DR ,
M= M*MR (1.4.98a,b,c)

* RR
t =t

, vT = vTvR , yt=Y*:yr (1.4.99a,b)

The reference values denoted by subscript R are chosen in such a way that the

maximum values of the scaled quantities ()* are 0(1). They are summarized in the

following table:

reference: typical values:

RR: initial range 2 km 10 km

vR: average missile velocity 1.5 Ma 2.5 Ma

yR: total missile heading angle increment 0 deg 90 deg

0R: total missile pitch angle increment 0 deg 110 deg

qR: maximum pitch rate ~ 0.5 rad/s

Lj^: maximum lift ~ 2000 kp

DR: maximum drag ~ 900 kp

MR:maximumaerodynamic torque ~ 200 kpm

table 1.4.1: reference values

After substitution of (1.4.95-99) into (1.4.91/92) and applying the time scale

transformation

_d_
dt

'R d 'R

RR dt* RR
(1.4.100)
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one obtains:

with

X**= 4cOS(yRy*)-V*COS(yRy*) (1.4.101a)

y*'= V*sto(yRy*)-V*sto(yRy*) (1.4.101b)

£1v*,=-D* (1.4.102a)

*»

£2y
= IT (1.4.102b)

£3q*'= M* (1.4.102c)

£4**'= q* (1.4.102d)

'l
RR R°R

£2
_

VR
v

m

-%YrVr^

£3
Vrq l

RR
qR

MR

£4 ""

RR <*R

Definitions:

t „: =
^R characteristic tim

max* v

VR

(1.4.103a)

(1.4.103b)

(1.4.103c)

(1.4.103d)

(1.4.104a)

vR
aa : = average axial acceleration (1.4.104b)

lmax

VRyR
aj : = average lateral acceleration (1.4.104c)

lmax
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qR
- average pitch acceleration (1.4.104d)

max

q := average pitch rate (1.4.104e)
lmax

DR
a : s= maximum axial acceleration (1.4.105a)

a^^ : = —maximumlateral acceleration (1.4.105b)

MR
qmax : = maximumpitch accleration (1.4.105c)

qmax : = qR maximum pitch rate (1.4.105d)

(1.4.104/105) to (1.4.103) yields:

aa
£1~

aamax

l\
c2~

almax

q
c3~

qmax

q
c4~

^max

(1.4.106a)

(1.4.106b)

(1.4.106c)

(1.4.106d)
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Discussion:

The scaling parameters t are of the form:

£
=—2— (1.4.107)

smax

s is the average value of s and smax is its maximum value. Due to the scaling, the

right hand sides of (1.4.101/102) are all 0(1). Fast dynamic behaviour with respect to

(1.4.101) the scaling factor of which is 1 is therefore characterized by:

£ «1 (1.4.108)

This means with (1.4.107) that the fast states produce trajectories with changes that are

low to the average but can be large locally. Typical values for £. calculated from the

reference values to table 1.4.1 are given below:

RR= 2 km RR= 10 km

£1 1.5 0.3

£2

0.1 (yR=10°)
0-9 ( yR =90°)

0.02 (yR =10°)

0.2 ( yR =90°)

£3 0.008 0.002

C4
0.05 (eR =10 )

0.4 ( 6R =90°)
0.01 (tfR =10°)
0.09 (0R =90°)

table 1.4.2: scaling parameters
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The estimates obtained in table 1.4.2 show that (1.4.108) is best satisfied by £, and £.

suggesting that the missile pitch motion is well decoupled from the missile-target

relative motion. Comparison of t. with the other scaling parameters reveals the

decoupling of the pitch rate dynamics from all other states which justifies the usual

autopilot-design procedure based on a linearization of (1.4.92c) with constant v and y

[44]. The v- and y-dynamics depend strongly on the intercept scenario. Clearly, v has

to be considered a slow variable here sharing the time scale of Ax and Ay. If thrust

control is possible v may be chosen as a fast variable decoupled from (1.4.101) as was

done in [38]. In many cases y may be considered decoupled from Ax, Ay and v. Only

in the case of very short-range high-maneuver scenarios it shares the time scale of

(1.4.101) and (1.4.102a). Therefore the followtog scaling is suggested:

slow variables : Ax, Ay, v

fast variable : y

very fast variables: q, $

table 1.4.3: time scales

The subsequent application of the method of MAE will be restricted to the

construction of zero-order approximations. Since these approximations are

independent of the values of . it is feasible to introduce an artificial scaling of the

equations (1.4.91/92). The scaling will reflect the time scale selection given to table

1.4.3 but uses the original variables rather than their scaled counterparts. The scaling

must satisfy (1.4.78) which is guaranteed by the use of (1.4.89). Thus one obtains the

following perturbed equations:

Ax =vTcosyT~ vcosy (1.4.109a)

Ay =vT stoyT - v siny (1.4.109b)

v =— (1.4.109c)
m

£ y =— (1.4.110)
mv

£2q =y- (1.4.111a)

e2e =q (1.4.111b)
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initial conditions:

Ax(tQ) =Ax0 , v(tQ) =vQ, q(tQ)=qo (1.4.112a,b,c)

AvOq) =Ay0 , y(t0) =yQ, tf^)^ (1.4.112d,e,0

Remark: The artificial scaling of the original problem is sometimes called forced

singular perturbation [38]. It can easily be proved that the original scaling and the

artificial scaling render equivalent zero-order solutions [55].

1.45 Derivation of Guidance Law

minimum-time

(1.4.113)

subject to the final constraints:

Ax(tf) = 0

Ay(tf) = 0

and the dynamic constraints (1.4.109-111).

The choice of (1.4.113) is motivated by the desire to minimize the time for target

evasive maneuvers while (1.4.114) guarantees totercept The exact problem can only

be solved numerically as discussed in sections 1.1 and 1.2. In the followtog the

procedure described to sections 1.4.2/3 will be applied to derive a zero-order solution

of the perturbed problem formulated above.

1.4.5.1 Outer Solution

Setting £ = 0 in (1.4.109-111) yields the reduced system:

A X° = VT COSyT
- V° COSy0

A y°=vT sinyT - v° siny0

m

In this section a guidance law is sought that solves the following

problem:

J= Jdt
*0

(1.4.114a)

(1.4.114b)

(1.4.115a)

(1.4.115b)

(1.4.115c)
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L°
0 = -=— (1.4.116a)

o
mv

wO

0 = -£2_ (1.4.116b)

0 = q° (1.4.116c)

The matching condition (1.4.62) yields:

Ax0^) = AxQ (1.4.117a)

Ay°(to) = AyQ (1.4.117b)

v°(t0) = vQ (1.4.117c)

An analogous matching at final time tf renders with (1.4.114):

Ax°(tf) =0 (1.4.118a)

Ay°(tf) =0 (1.4.118b)

From (1.4.116) follows:

L° = M° = q° = 0 (1.4.119)

(1.4.119) describes a straight-line missile trajectory. Clearly, on this path one has:

a0 = 0 (1.4.120a)
6° = 0 (1.4.120b)

Substitution of (1.4.120) into (1.4.94) yields:

D° = D(h, v°, a0,«°) (1.4.121)

The Hamiltonian associated with the reduced equations (1.4.115) with (1.4.113) is:

H° = 1 + X° (VT COSyT
- V° COSy0) + X° (vT sinyT - V° stoy0) - X° —

(1.4.122)

with

H° = 0 (1.4.123)

since the final time is free.
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Note that the fast variables y°, q° and 0° may be regarded as control variables of the

reduced problem [36,38,51,54]. q° is already determtoed by (1.4.119) and from

(1.4.120a) follows (see figure 1.4.2):

6° = y° (1.4.124)

This leaves y° as the only control variable. Accordtog to section 1.1 the necessary

conditions of optimality are:

3H
X° = -

——= 0 - X° constant (1.4.125a)
3Ax°

X° = -
-25- - o - x° constant (1.4.125b)
3Ay°

X° = -

9H
= \°

,
- =

X? COSy0 + X° Siny0 + X° 1-
— (1.4.126)

*

*
o L l Jm^o

3v 3v

subject to the transversality condition:

X°(tf) = 0 since v(tf) is free. (1.4.127)

The optimal heading y° minimizes H°, hence:

Y°pt
=

arg
min H° (1.4.128).o ^ aro min Ho

Y

and is determined by

3H°
— \Oe,:„ ^0 _ \OrmJ)

'opt

resulting in

a0 =0=Xlsin^pt-A2COSV (1A129)

X°

l8 T°t = —= constant (1.4.130)

Al
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Since X?, x£ are unknown, y° will be determined by exploittog (1.4.118).

Observing that y° is constant it is easily seen that the optimal missile path is a

straight line connecting the toitial position and the potot of totercept y° is the

collision course (figure 1.4.3).

figure 1.4.3: optimal flight path

The calculation of y° has to be done iteratively by choostog a value y?, integrating

(1.4.115), checking the end conditions (1.4.118), and determining a corrected value

y?' based on the error in (1.4.118). This procedure can only be carried out if the

target maneuver is known. It amounts to a prediction of the collision point In order to

develop a prediction algorithm the following target maneuver is assumed:

aj, j. vT (1.4.131a)

vT = constant (1.4131b)

Substitution of (1.4.131) into (1.4.115) yields with (1.4.117):

lf V

Ax°(tf) = 0 = vT [cos yT(t) dt - cos y° J v° dt + AxQ (1.4.132a)

to lo
Lp Lp

Ay°(tf) = 0 = vT | sin yT(t) dt - sin y°pt I v° dt + Ay0 (1.4.132b)
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(1.4.132) is a set of two equations for the two unknowns y° and tf or the

time-to-go:

tgo = tf-t0 (1.4.133)

They can be solved for y° . yielding:

tf

AyQ + vT j" sin yT(t) dt

* ^= rf
(1A134)

AX« + V-j. I COSyT(t) dt

With (1.4.134) only one of the equations (1.4.132) needs to be iterated for t
.
The

prediction algorithm can now be stated as follows:

1. choose starting value for t

2. integrate (1.4.115c) and v°, then evaluate (1.4.132a) with y° from (1.4.134)

3. check Ax°(tf): if Ax°(tf) > tolerance correct t and go to 2),f

otherwise store obtained values for y° ,
t and vw(tf)

table 1.4.4: prediction algorithm

A realization of this scheme is given in section 1.4.6.2. Note that the only integrations

involved concern the determination of the missile's straight flight path. This can be

calculated off-line and stored for several altitudes h so that on-line integrations may

be replaced by table look-up and interpolation.

For later usage the adjoint variables X?, x£ and X? are now determined.

(1.4.122/123) can be solved for X° Using (1.4.130) one obtains:

X3 = ^ {1 + Xl [(VT C0S*T" v° cos V+ (VT si»rT"'° a* r°pt) tg r°pt]}
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At final time (1.4.127) can be exploited to solve (1.4.135) for the constant Lagrange

multiplier X°:

tf L
- v° /wb ~o 4. to „o rv ,,,•„.. _ vo «..„ „o

..o

VTC0SyTf- VfCOSy°pt
+

tgy°pt[VTstoYTf- Vfstoy°pt]

COSy"

°^ (1.4.136)
jo \- „o

VTC0S(yTf-yopt)-Vf

with

v° = v°(tf) (1.4.137)

Substitution into (1.4.135) yields:

o o
v - v;

X° = —[ ] (1.4.138)
D° VTC0S(yTf- y° )- V°

From (1.4.130) one obtains:

siny?

X? = X° tg y° = 22 (1.4.139)

VTC0S(yTf-y0pt)-V°

The outer solution is now completely determined. In the next step the first boundary

layer, i.e. the y
- transient will be derived.

1.4.5.2 First Boundary Layer

This boundary layer describes the y-transient from the initial condition yQ to the

outer solution y° .
Since no end conditions on y have been imposed there is no

terminal boundary layer for this state. Following again section (1.4.3) the time scale

transformation

r=-^.,()' =
^l

= £^l (1.4.140)
« dr dt
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is applied to (1.4.109-111). For t = 0 the transformed equations become:

y=x0 (1.4.141a)

V = y0 (1.4.141b)

y=v0 (1.4.141c)

(V)' =

L

mvQ
. V(0) ==

*0 (1.4.142)

0 =

I
(1.4.143a)

o =V (1.4.143b)

where the notation of section (1.4.3) has been adopted. Note that (1.4.141) is a

matching condition (see section 1.4.2). The Hamiltonian associated with (1.4.113) and

(1.4.141/142) is:

1H1 = 1 + X1Q(vTCOSyT - VqCOsV) + X2()(vTSinyT - VQSin1y1)

1Di • 1Li
- X~n + h\ (1.4.144)

JU m 4
mvQ

with

1Hi B 0 (1.4.145)

XkQ = Xk(t0): k = 1,2,3 (1.4.146)

The fast variables of this time scale are q1 and V which play the role of control
1 i i

*

variables. Since q is determined by (1.4.143b) Lel remains as the only control. Its

optimal value is determined by :

l0{ = arg min 1H1 (1.4.147)

From figure 1.4.2 follows:

y = y _ y (1.4.W8)
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0
.ii_i.i4

yields:h\for(1.4.145)solvingand(1.4.144)into(1.4.151)of

Substitutionlayer.boundaryfirsttheinHamiltonianoutertheofvaluetheisH°i.e.

(1.4.151)-X30—

VqSuiV)X20(vTsinYT-+

VQC0S1Yi)-(vTC0SyTX1Q+=1V):1H°(1ai,
Definition:

(1.4.94c).with(1.4.143a)bydeterminedis1aithatNote

(1.4.152)mvn
°pt

1

-=lA

(1.4.150b)1«i)v0,1oi,D(h,=1Di

(1.4.150a)1«i)v0,1oi,L(h,=1Li

0

with

mV)

4
m

30

lailai
°Vl

mv_

4

m

30

J1,t
°

isopt
(1.4.149)-t-]h{A+—X,ftmin[-arg=min1^arB=1«L*

as:rewrittenbethereforecan(1.4.147)
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eT = V - r°pt (1.4.153)

The choice of ^V
4

is a trade-off between time-optimal correction of ev, i.e. lift
opt

y

maximization (for X-Q = 0) and minimization of induced drag losses (xxl = 0) that

increase time-to-go.

*a*
t

may be transformed to an acceleration command. Substituting aor)t toto

(1.4.150) yields:

1LJ)pt=Uh,v0,l«j)pt,V) (1.4.154a)

1Dj)pt= D(h, vQ, V^, V) (1.4.154b)

According to figure 2 the commanded acceleration becomes:

ac=^^pt^'ipi+Hpt^Hpt) (1A155)

Note that the sign of L is determined by the sign of e . (1.4.155) is the zero-order

guidance law associated with the perturbed problem (1.4.113/114) with (1.4.109-111).

1.4.5.3 Second Boundary Layer

According to section (1.4.3) one could proceed now by applying the time scale

transformation

to (1.4.109-111), set £ = 0, and solve the resulting optimal control problem in the time

scale of the fast variables q, 6. This procedure amounts to the design of an autopilot as

indicated in section 1.4.4. The task of the autopilot is to establish the commanded

acceleration (1.4.155). Since the autopilot is not of interest here the analysis of this

boundary layer will not be carried out
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1.4.5.4 Summary

The singular perturbation analysis of the planar totercept problem shows that the

optimal guidance scheme consists of three elements:

a) a predictor that calculates the collision course based on a predicted collision

point

b) the guidance law (1.4.149/155) that corrects the course error while keeping

induced drag losses low

c) the autopilot

It is evident that the mato drawback of this guidance scheme is the use of a predictor

requiring knowledge of the usually unpredictable target maneuver. The sensitivity

problems associated with inaccurate extrapolation of system parameters (here a~. and

yT) have already been adressed in the context of LQ-design based guidance laws in

section 1.3. They are especially dramatic if the guidance scheme is used in conjunction

with estimators for a-p and yT (see chapter 2).

1.4.6 Aspects of Implementation

In this section the basic difficulties in the implementation of the guidance scheme

developed in section 1.4.5 are discussed. Attention is focussed on the problem of

deviation from the scaling assumptions, on algorithms to solve the prediction problem

as well as the minimization (1.4.149), and on information requirements.

1.4.6.1 Deviation from the Scaling Assumptions

The guidance law (1.4.149) is based on the assumption that the time scale of the

missile-heading-angle dynamics is decoupled from Ax, Ay and v. These states are

assumed "frozen" in the y-time scale. It is, however, easy to take into account changes

in the slow variables by updating the outer solution. tQ can be interpreted as current

time. Consequently the initial conditions (1.4.117) become the current values of the

slow variables. After replacing all initial values by the respective current values to

(1.4.134/141/142/144) equation (1.4.149) becomes a feedback law of the form:

lfloPt = lflUv VT' »r»h' v> * *> (1A157>
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The continuous update of the outer solution improves accuracy of the zero-order

approximation given by (1.4.149) and extends its validity to the case of only mildy

decoupled time scales [38,48]. This is an important condition for the applicability of

SP-theory to the short-range totercept problem where the scaling assumptions may be

violated for certain scenarios (see table 1.4.2). In practical applications the update will

be carried out with a finite update interval Tg.

1.4.6.2 The Prediction Algorithm

The structure of the prediction algorithm has already been given to table 1.4.3. The

Newton method will be applied to carry out the correction oft to step 3. If tg is the

current time (1.4.132a) can be written as

Ax(tf) = F(tgQ) (1.4.158)

In the i+1-st iteration step the corrected value oft is:

i+1 i F(tgo>
Cl= L' f2- d-4.159)
go "go

F(t'0)

with

F(t&°)=-^~ (1A160)

go

In order to evaluate F and F a coordinate frame must be choosen. Since no toertial

angular measurements are available a straightforward choice is the cartesian frame

defined by the LOS at time tg = t This frame will be called seeker frame and is

denoted by

Zs = (xs, ys) (1.4.161)

Zs will be kept fixed for all calculations of the prediction algorithm. From figure 1.4.4

follows that in Zs one has:

AxQ = R(t) (1.4.162a)

AyQ = 0 (1.4.162b)
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V(tg0)

figure 1.4.4: intercept geometry in the seeker frame

with (1.4.134) one obtains:

lgo

vT J stoyTs(T)dT

**? = °~

go

R(t) + VT J COSyTs(T) dr

0

rS «/:*

(1.4.163)

where the subscript s denotes values with respect to Z . With (1.4.162) and figure

(1.4.4) F becomes:

t.

go

I
0

t

F(tg0) = VT J cos *Ts(t) dT"cos
ys J V°(r) dT + R(t) (L4-164)r

o
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Substitution into (1.4.160) yields:

a 0

aF 3F ° y<i

go «tf otgo

with (see appendix 1.4)

3r° ^s(t80) ^rTs(tg0) - yTs(tg0) cosTTs(t80)
«~V=Vt

RV

t.

XTs(tgQ) = R(t) + VT J COSyTs(r) dr

go

I
0

go

(1.4.165)

(1.4.166)

(1.4.167a)

yTs(tgo) = VT { sin yTs(t) dr (1.4.167b)

0

RV =tXTs(tgo)+yTs(tgo) (1A168)

Mechanization of the prediction algorithm is done by choosing the state vector

«l = (V, Jv(r) dr, yTs, Jsin yTs(r) dr, Jcos yTg(r) dr)1 (1.4.169)

with

> _ .

D°(r)
*1~ m

' ^(0) = v(t) (1.4.170a)

VT

Z2(P) = o

3(0) = yTs(t)

(1.4.170b)

(1.4.170c)

i4 = sin{3(r) , «4(0) = sinyTg(t) (1.4.170d)

£5 = COS*3(r) , i5(0) = COSyTg(t) (1.4.170e)

r[0,tgo] , 6 = fo
dr

(1.4.171)
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The prediction algorithm now proceeds as follows:

step 1: i=0, choose toitial value tl

step 2: solve (1.4.170) for r [0, t*]- il

step 3: compute predicted target position:

x^s= R(t) + vT ^, y^ = vT i\

step 4: compute range-to-go:

.2 .2
R^ll^Tc) + (yL)

^TsJ ^\'T&>

step 5: compute collision course (see figure 1.4.4):

Si„y0i=i3i} COSy°i=^Ii
S

R1
.

S
R1

y01 = arctg s-r
COSy01

'S

> 01
O y

step 6: compute ——: = yoi
i "

atgo

Y01
=VT7s T

xjssin{3- y^scos *3

R1

step 7: compute F(t*):

F'(tgo) = vTcos3- «11cosTJ1+ yf

step 8: calculate F(tLj:

F(io)=4s-4cos^oi
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i+1
step 9: compute improved estimate t

*i=
F(tg0)

•K1- io+Ho

step 10: if At
go

< tolerance tg0 = tg0

otherwise: i=i+l, go to 2

table 1.4.5: prediction algorithm

Remarks:

i) In order to execute the algorithm the following information must be available:

current missile velocity : v(t)

straight-flight drag coefficient

for D -calculation

missile mass

"D

: m

current range

current target heading

target velocity

target acceleration profile

R(t)

YTs(t)

vT

apM. r [0, tgQ]

table 1.4.6: information requirements for prediction algorithm

Knowledge of v(t), R(t), m, and cj^ is necessary to predict the missile flight path. v(t)

and R(t) can be measured or estimated (Kalman filter), mis a known constant and c°^
is usually available in the form of tabulated data as a function of altitude and

Ma-number. In order to save on-line computing time it is possible to precompute and

store the straight line missile-trajectories. Note that for the constant-altitude case only

one trajectory for each altitude has to be stored. On-line integration of (1.4.170a/b)

may therefore be replaced by interpolation in appropriate tables.
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A sufficient condition for the convergence of the above iteration scheme on the

interval I = [V^ - Ao, V^ + Aa ] is [58]:

da(ct.)

k

-1< 2-<l v-Cl (1.4.185)
do,, K

In the following it is shown that under the assumptions

a) %0is at least once continuously differentiable and

b)Vopt exists

there is always Ao > 0 such that (1.4.185) is satisfied, guaranteetog local convergence

of the iteration scheme.

Proof: With (1.4.151) 1H1 from (1.4.144) may be written as:

mvQ

ltrV lh- IijO, IK, l.i L(«)
n A 10/;xH(o, y ) = H (a, y ) + XAA (1.4.186)

For arbitrary a and fixed V(1-4.152) renders:

1 l,
1h%)

l\\(a)
= " —^

mVQ (1.4.187)

The optimal value is given by:

X4 = ^opt* (1A188>

Since ia1
«.

minimizes H one has:
opt

^v V) + *: -^
> W..' V) +»;

L( V
= o

4
mvQ °Pl 4

mvQ

(1.4.189)

With (1.4.187) it follows immediately :

X* > lx^(o) (1.4.190)

Conclusion: x! maximizes the function *\(a) .
With assumption a) this implies

locally:

aV
- (lflLt) = ° (1.4.191a)

da
v

opt
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or with (1.4.180):

-»r^V = 0 (1A191b)

From (1.4.183) follows with (1.4.191b):

_»M 3X

§(Hpt) = ^^(Hpt) = 0 (1.4.192)

Existence of the convergence interval I given by (1.4.185) is guaranteed by (1.4.192)

with assumption a).

Discussion

In order to perform the iteration given in table (1.4.7) the following toformation must

be available:

a) the missile aerodynamic coefficients (missile model) for lift and drag evaluation

b) y° and v0. for calculation of ey and Av

1 "

c) the values of V(current value of y) and v« (current value of v as discussed in

section 1.4.6.1) for the calculation of e
, Av, and DQ

The main obstacles to the implementation of the boundary control law are due to the

lack of information about the missile aerodynamic coefficients (which are usually

subject to large inaccuracies) and about the missile heading angle y. y should be

known in the reference system Zs(k) used for the determination of y° .
Since a direct

measurement is impossible y could be obtained via (1.4.148) with o- and $-

measurements. Measuring a is, however, costly and not common to short range

missiles. Moreover the accuracy of these measurements must be enhanced for example

by use of a Kalman filter. Since this approach is based on the missile model, the

accuracy of the a
- estimates is linked to the accuracy of the missile-data. Therefore

the boundary layer control law is very sensitive to errors in the missile model which

affect the minimization process directly via (1.4.182) and indirectly via the a
-

estimation.
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1.4.6.4 Summary of the Guidance Scheme and Introduction of a Simplified First

Boundary Layer (FBD-Control Law

The guidance scheme derived in sections 1.4.5/6 consists of a predictor and the FBL

control law. The predictor output is the desired heading angle y° based on the

predicted point of intercept Prediction is performed by assuming the unknown future

target maneuver and using the missile's straight-flight characteristics for the

flight-path calculations. In addition to the optimal heading angle a weighting factor

XL is determined which influences the performance index of the static minimization to

the first boundary layer.

The FBL control law serves the correction of the course error ey to such a way that a

weighted sum of lift and drag is minimized. Its output is the commanded lateral

acceleration a.Q. The choice of xL leads to a compromise between minimizing the time

to correct ey (i.e. maximizing lift) and minimizing induced drag losses.

The information requirements include the current and future target state as well as the

knowledge of the missile state and aerodynamic data. The structure of the guidance

loop is depicted in figure 1.4.5.

The guidance scheme described above will be referred to as OCE(Optimal Course

Error Control) since it evaluates an optimal acceleration command based on the

course error. The target state estimator shown to figure 1.4.5 will be discussed to

chapter 2 of this thesis.

An obvious approach leading to substantial simplifications of the FBL-calculations is

the use of proportional course error control (PCE), i.e. the optimization process

(1.4.182) is replaced by the proportional controller:

ac = K ey (1.4.193)

where K is a navigation gain which depends on the intercept geometry. A guidance

law with the same structure is also investigated in [22]. Clearly (1.4.193) does not

optimize induced drag losses any more and hence will result in a longer time-to-go
than OCE. On the other hand the missile aerodynamic coefficients need not be known

for implementation of PCE Comparison of OCE and PCE in the subsequent
simulations will show how much time can be gained by taking into account induced

drag losses in the FBL-control.
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FBL control law

(1.4.182) with

(1.4.155)

target state

estimator

«.«

collision point
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(table 1.4.3)

L

Yopt' *l> Av

board computer

YT>V

aT,R

figure 1.4.5: structure of guidance loop based on singular perturbation analysis
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1.4.7 Simulations

In this section the (near) optimal guidance law OCEwill be compared with the simpler
but not time optimal guidance laws PCEand PE (section 1.3.5). PCEuses the same

predictor as OCEand therefore still tries to establish the time optimal outer solution

given by a straight line through the predicted point of intercept Induced drag losses

are, however, not considered any more during course error corrections. Therefore the

comparison of OCEand PCE will reveal the savings of time due to shaping the

acceleration profile in such a way that drag losses are minimized.

The guidance law PE does not perform any prediction but tries to keep the LOS-rate

zero which is a sufficient condition for totercept The resulting flight path is to general

not time optimal and the comparison with OCEwill show the time losses which result

if no predictor is used.

Two intercept scenarios will be discussed. In scenario A the initial range is large and

the problem duration long. The scaling assumptions inherent in the guidance laws

OCEand PCE are satisfied (see section 1.4.4). In scenario B the initial range and

problem duration are short and the missile maneuvers with its maximum acceleration

capability most of the time. Here the scaling assumptions are violated.

First consider scenario A depicted in figure 1.4.6 with

Vq = 0.9 Ma initial missile velocity

vT = 0.9 Ma target velocity (constant)

arp = -6g target lateral acceleration (constant)

Rq = 7.5km intial range

h = 10km altitude

A"aT

V0 R, LOS VT
O — — — —* D

M

figure 1.4.6: scenario A



85

The initial missile-target configuration is "head-on". The target performs an evasive

maneuver with constant speed and constant lateral acceleration. This maneuver is

assumed to be known for collision potot prediction by OCEand PCE For PE the

current target state (yT, vT, a^) is assumed to be known. The mato simulation results

are summarized in the following table:

guidance law miss distance [m] problem duration [s] figures

OCE 1.21 14.29 1.4.7

PCE 1.16 14.80 1.4.8

PE 1.05 16.05 1.4.9

table 1.4.8: simulation results of scenario A

Discussion of results:

Before the simulation results are analyzed, some remarks on guidance law activation

and missile lateral acceleration limits are necessary. For the type of missile under

consideration here the guidance law is activated after fuel-burn-out which occurs

about 2.2s after launch. Consequently there is no missile maneuver during the initial

boost phase. The missile velocity profile is characterized by a steep increase in velocity

until fuel-burn-out and a subsequent decrease due to drag losses (figure 1.4.11Q.

Since the aerodynamic forces are proportional to the squared velocity, the missile's

maximum lateral acceleration is determined by the velocity profile and hence

decreases after fuel-burn-out If the commanded acceleration exceeds the current

maximum possible acceleration flipper saturation occurs (figure 1.4.8c). The flipper

deflection limits are +26 deg, -26 deg. During the period of flipper saturation the

missile performs a damped pitch oscillation which is seen in the acceleration profile

(figure 1.4.8d).

A look at the missile flight path obtained with OCE(figure 1.4.7a) shows that the

missile heading angle y reaches the outer solution after an toitial transient The missile

maneuvers on a nearly straight line with low but nonzero lateral acceleration (figure

1.4.7c,d). Exact straight-flight conditions (i.e. zero course error and zero lateral
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acceleration) are, however, never reached. This is due to the induced drag

minimization to the first boundary layer which prohibits the use of excessive

accelerations that would be necessary to correct the course error completely. Only at

final time, when the missile velocity and therefore drag losses are minimal, complete

course error correction occurs (figure 1.4.7e) to order to achieve zero miss distance.

In contrast to OCE, PCE nulls the course error to a strong initial maneuver with

maximum acceleration (figure 1.4.8c,d,e). After course error correction the missile

moves on a straight line with zero lateral acceleration. Clearly, induced drag losses are

not minimized because the maneuver takes place during the period of maximum

velocity. The comparison of the problem durations of OCEand PCEto table 1.4.8

shows, however, that the time loss due to increased drag losses to PCEis neglegible.

On the other hand a significant increase to flight time results with application of PR

Since PE tries to null the LOS-rate the resulting LOS-rate profile (figure 1.4.9b) and

flight path (figure 1.4.9a) are far from the time optimal trajectories (figures 1.4.7a,b).

The above simulations suggest that savings in flight time are mainly due to the flight

path planning based on the prediction of the point of intercept, while shaping the

acceleration profile for induced drag minimization has practically no effect on the

problem duration.
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MISSILE AND TARGET POSITION
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The guidance laws will now be investigated for scenario B (figure 1.4.10) with

YT0
= 45° mitial tar8et neadin8

Rq = 5km initial range

all other parameters as in scenario A

v0

O *

M

R0 ,LOS

figure 1.4.10: scenario B

Table 1.4.9 shows the main simulation results:

guidance law miss distance [m] problem duration [s] figures

OCE 27.64 9.34 1.4.11

PCE 0.38 9.33 1.4.12

PE 0.03 9.27 1.4.13

table 1.4.9: simulation results of scenario B
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Discussion of results:

In this scenario OCEyields a large miss distance. The reason becomes clear from

figures (1.4.11c,d,e). The missile maneuver starts with maximum acceleration. In order

to reduce drag losses the acceleration is reduced after about 5.5 seconds (after launch)

resulting to a considerable final course error (figure 1.4.11e). The effort to null this

error close to final time fails, because the required acceleration exceeds the maneuver

capability of the missile (flipper saturation).

The guidance law PCEapplies maximum acceleration until the course error vanishes

(figure 1.4.12c,d,e) and thus achieves low miss distance. Note that the periodic

disturbance to the flipper deflection and acceleration profiles of OCEand PCE are

due to the update of the outer solution (course error update).

The guidance law PEdoes not only yield the lowest miss distance but also the shortest

flight time to this scenario, implying that trying to reach the straight-line totercept

course is not time optimal to this case. From figure 1.4.12e it becomes clear that the

main part of the trajectory consists of the y
- boundary layer and only the last second

is on the outer solution (e = 0). Hence the scaling assumptions, especially the

decoupling of the y
- dynamics from the position dynamics according to (1.4.109/110)

are no longer valid. Therefore the SP guidance scheme is not time optimal any more.

In summary the followtog conclusions can be drawn from the simulation results:

i) For long ranges time-optimality of a guidance law is mainly achieved by predicting

(correctly) the point of intercept and choosing the time optimal path through this

point Taking into account induced drag losses does not yield significant savings to

flight time. However, it results in a final course error entailing large miss distances

if the correction requires a lateral acceleration that exceeds the missile's maneuver

capability. In fact the path planning in the outer solution should be done by taking

into account the missile's lateral acceleration limit. But since this limit depends on

the missile velocity and the velocity loss depends on the missile maneuver, the

flight path planning is coupled to the rotational dynamics. Therefore acceleration

limits cannot be treated with the SP-approach described in section 1.4.5.

ii) The guidance law PE yields time losses for "long-range" totercept scenarios since

the associated flight path is not time optimal. In short range scenarios with high

maneuvers PE is superior to OCEand PCEsince the scaling assumptions ensuring

optimality of OCEand PCEare not valid due to the missile's acceleration limits.
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iii) The savings in flight time obtained by OCEand PCEto certain scenarios are due to

the accurate prediction of the target maneuver as mentioned before. Since

accurate prediction is usually impossible the theoretical savings to time will be

strongly reduced if not offset by errors to the predicted target motion (chapter 2).

1.4.8 Remarks on Interception in a Vertical Plane

The preceding analysis of the planar intercept problem was restricted to a horizontal

plane. In this section the main aspects of interception in a vertical plane will be

discussed.

The equations of the planar intercept problem in a vertical plane differ from

(1.4.91-93) in the appearance of gravitational terms and the altitude h as an additional

state variable. They are given below without the missile pitch dynamics which are not

needed for guidance law derivation as discussed before.

missile-target relative motion:

Ax = vT cosyT
- v cosy (1.4.194a)

Ay = vT sinyT - v siny (1.4.194b)

missile dynamics:

v =
-^°- -

g siny (1.4.195a)
m

mv v
y = —

- £
cosy (1.4.195b)

altitude:

h = vsiny (1.4.196)

target trajectory

vT = vT(t) (1.4.197a)

YT
= YT(t) (1.4.197b)
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figure 1.4.14: interception in a vertical plane

The main differences between vertical and horizontal interception stem from the

dependence of the missile aerodynamic coefficients on the altitude h. The type of

solution obtained by an SP-analysis depends on the scaling of the equations

(1.4.194-197). There are two important scaling assumptions that concern

a) the coupling of the h- and Ax-dynamics

b) the coupling of the h- and v-dynamics

If the distance travelled in x- direction (figure 1.4.14) is much larger than the altitude

range of the missile, h may be treated in a faster time scale than x. This decoupling is

justified for long-range missiles. The coupling of h and v is governed by the exchange

of kinetic and potential energy. The investigation of the minimum time-to-climb

problem [50,51,52,57] has shown that the use of the specific energy

.2

(1.4.198a,b)E = h + IH, e = X^2_v
2 g mg

as a state variable rather than v is very appropriate to describe this effect and allows a

decoupling of the h- and E-dynamics since changes in E are much slower than changes

in h. The missile model with (1.4.198) instead of (1.4.195a) is called energy-state

model.
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isEIfweightcompensatingliftwithconditionsflightstraightreachedhasmissile

thepathcruisetheOnh*.altitudecruiseoptimalthetolayerh-boundaryinitialanof

consistspathflightmissileoptimaltheQualitativelyproblem.planartheofextension

forwardstraightaiswhichcasedimensionalthreethetreat[45,48,49,56]E.and

Axforscaletimesametheusing[49]inandAxfromdecoupledEwith[45,46,48,53,56]

insolvedbeenhasmodelenergy-statetheusingprobleminterceptThe
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The optimal missile heading is given by:

= 0 (1.4.204)
3H°

yielding:

dy°

iOe?«..0 _

\0,w...O
j.

>0-rtC^0

*1sln V
-

x2
cos

'opt+ x4
"^

'opt
= ° <1A205)

tg y° =
-2 i- (1.4.206)

°Pl %o

Al

In contrast to (1.4.130) y° is not constant any more since X? is time-varying. The

outer solution could be determined by estimating v(tf) and h(tf), integrating backward

(1.4.199/200) with Ax(tf) = Ay(tf) = X°(tf) = 0, and y° from (1.4.206) and

iteratively correcting v(tf) and h(tf) until the given initial conditions Ax(tQ), Ay(tQ),

v(tQ), h(tQ) are satisfied. Estimates for h(tf) and v(tf) to start the iteration can easily be

obtained from the outer solution of section (1.4.5.1). Note that the angle of attack is

not zero in the outer solution (in contrast to the horizontal problem) because of the

nonzero lift needed for weight compensation in (1.4.201).

With (1.4.203b) follows that the flight path given in (1.4.206) approaches the straight

line defined by (1.4.130) near final time. Note that (1.4.130) is the flight path

determined by the shortest distance between the current missile position and the potot

of intercept. It is therefore obvious that significant deviations from this path will only

take place for long problem durations that allow excursions to optimal altitude levels

for periods long enough to offset the time losses due to the increased range-to-go.

As the simulations of the last section suggest, the outer solution is never reached for

many scenarios, i.e. all the motion takes place in the y -boundary layer. It also turned

out that the effect of drag minimization is minor compared to the savings in time

obtained by choosing the shortest path to the collision point For the type of missile

investigated here the intercept problem in the vertical plane may therefore be treated

like the constant-altitude case.
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1.5 Summary and Conclusions

In the first part of this thesis two approaches to guidance law derivation via optimal

control theory have been discussed. First guidance laws based on linearization of the

intercept problem were reviewed, then the time scale separation by SP-theory was

investigated. It was pointed out the the mato drawback of the resulting guidance

schemes is the need to predict the future target maneuver. This is a direct consequence

of formulating the intercept problem as an optimal control problem which inevitably

leads to a two-point-boundary-value problem requiring knowledge of the future

target maneuver. Since the target maneuver is unknown, assumptions must be made

that degrade guidance law performance if the actual target behaviour is different A

guidance law (PE) was derived that avoids these difficulties. It is based on a

linearization around the sufficient condition for intercept

9 = 0 (1.5.1)

and subsequent solution of an LQ-problem. The nominal control needed to establish

the nominal trajectory associated with (1.5.1) is a target maneuver compensation

(TMC) requiring knowledge of the current maneuver only. The solution of the

LQ-Problem yields the well known Proportional Navigation (PN). Hence PE is a

superposition of TMCand PN. Simulations demonstrated the superiority of PE over

PN and showed that in contrast to PN, the navigation gain of PE is practically

independent of the intercept scenario.

The application of SP-theory leads to near time optimal solutions of the planar

intercept problem for scenarios with long initial ranges. In these cases the underlying

scaling assumptions are satisfied. The missile flight path is given by a boundary layer

from the initial conditions to the outer solution and a subsequent straight flight to the

predicted point of intercept. Simulations comparing the SP solution with PEshow that

time savings can be achieved through time optimal flight path planning. PE turns out

to be superior in the case of high maneuvers during most of the trajectory, i.e. if the

scaling assumptions of the SP-approach are violated. The simulations also revealed

that the time savings are mainly due to the optimal flight path planning rather than

drag minimization in the FBL-control law. The problems of implementing the SP

control law which are due to substantial information requirements about the missile

aerodynamic coefficients and the target maneuver have been discussed. Investigation

of the intercept problem in a vertical plane showed that for short range missiles the
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missiles the solution for the horizontal plane is valid here as well since there is no time

for altitude transitions on energy-climb and -descent paths.

The results suggest that the SP-approach does not lead to hnplementable guidance

laws for short range missiles: In scenarios with high maneuvers the scaling

assumptions are invalid which sharply reduces SP-guidance-law performance. For

long ranges the need to predict the point of intercept is likely to offset the advantages

over PE in flight time. On the other hand PEhas been found a robust (with respect to

changing intercept scenarios) and simple guidance law with minimum information

requirements. Its implementability depends on the availability of toformation on the

current target maneuver. An estimator for this toformation will be derived to the next

chapter.
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2. The Tracking Problem

The tracking problem consists of estimating the state (position, velocity, acceleration)

of a target by processing toformation gathered by a fixed or moving oberserver. The

discussion to section 1.5 has shown that the solution of the tracking problem must be

part of the development of implementable modern guidance laws. In the totercept

problem discussed here, the missile plays the role of the observer. The tracking

problem poses considerable difficulties if the toformation about the missile-target

relative geometry is obtained by passive sensors which provide bearing- or

bearing-rate measurements only. This is the case for the totercept problem discussed

here. The planar Bearing (-rate) -Only Measurement Problem (BOMP) is stated to the

next section.

2.1 Statement of the Tracking Problem

Consider the scenario depicted to figure 2.1.1. The target T is tracked by the observer

M. It is assumed that the observer maneuver is completely known. The bearing angle

<p or the bearing rate 9, respectively, is the only information available about the

missile-target relative motion. The task is to estimate the current target state (for

example given by Ax, Ay, Ax, Ay) based on the known observer maneuver and noisy 9-

or 9- measurements.

+ x

figure 2.1.1: geometry of the planar tracking problem
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A straightforward approach to the BOMPis the use of an Extended Kalman Filter

(EKF). Prior to the discussion of applications of the EKF to the BOMPits equations

are summarized for later use [75,76]:

Consider a nonlinear dynamic system governed by the following discrete stochastic

equations:

y(k+l) = f [y(k), u(k+l)] + w(k+l) (2.1.1)

subject to the initial condition:

y(0) = y0
with

y(k) Rn state vector at time t^
>m

u(k) R deterministic input at time t

w(k) Rn Gaussian white noise sequence with:

E[w(k)]=0

E[w(i)wt0)] = «ijQ(0
E [ ] : expectation (see [75])

8« Kronecker delta

(2.1.2)

(2.1.3)

(2.1.4)

The purpose of the extended Kalman filter is to obtain estimates of y(k) based on

noisy measurements of the form:

m(k) = h[y(k)] + s(k) RP (2.1.5)

where

notations:

h rP is a nonlinear function of y

s bP is a Gaussian white measurement noise with:

E[s(k)]=0 (2.1.6)

E[s(i)sta)3 = «ijS(i) (2.1.7)

E[w(i)st0)] = 0 (2.1.8)

y(k+1/k) : estimated value of y(k+1) based on the

measurements m(i), i=l,... ,k

y(k+1/k+1): estimated value of y(k+1) based on the

measurements m(i), i=l,... ,k+l
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The filter equations can now be summarized as follows:

state propagation:

y(k+l/k) = f [y(k/k), u(k+l)] (2.1.9)

initial condition: y(0/0) = y0 (2.1.10)

covariance propagation:

P(k+1/k) = W(k+l,k)P(k/k)Wt(k+l,k) + Q(k+1) (2.1.11)

with

w(k+i,k)=
*WVQ>*<l+i))

(2112)
3y(k/k)

initial condition: P(0/0) = PQ (2.1.13)

P = Pl > 0 RnXn ; Q = Ql > 0 RnXn (2.1.14 a,b)

state update:

y(k+1/k+1) = y(k+1/k) + G(k+l)[m(k+1) - m(k+1)] (2.1.15)

with

m(k) = h[y(k)] (2.1.16)

Kalman gains:

G(k+1) = P(k+l/k)Ct(k+l)[C(k+l)P(k+l/k)Ct(k+l) + S(k+1)]-1
(2.1.17)

G RnXm

C(k) = —[y(k+1/k)] RmXn (2.1.18)

covariance update:

P(k+l/k+l)=[I - G(k+l)C(k+l)]P(k+l/k)[I - G(k+l)C(k+l)]t +

+G(k+l)S(k+l)Gt(k+l) (2.1.19)

Definitions:

i(k)-~
A

r(k) :=m(k)-m(k) measurement residual (2.1.20)

e(k/k) : =y(k/k) - y(k) estimation error (2.1.21)



114

Remarks:

i) For linear systems (2.1.1) and linear measurements (2.1.5) the estimation errors are

zero-mean and Gaussian. In this case, P is the error covariance matrix given by:

P(k/k) = E [e(k/k>l(k/k)] (2.1.22)

In the nonlinear case P is, at best, an approximation to (2.1.22). An important
reason for filter divergence is the underestimation of estimation errors which

occurs if the estimated error variances (diagonal elements of P) are smaller than

the actual error variances. Note that as P tends to zero the filter gains become zero

and the filter works as a mere predictor without taking toto account new

measurements. For more details see [75,76] and section 2.6.4.2.

ii) The filter equations of a specific system are determined if the functions f, h and the

matrices Wand C are known. For filter implementation the toitial conditions y0,

Pq, and the noise statistics S and Qmust be specified.

22 Applications of the EKFto the BOMP- A Review

In this section the main results and problems arising in the application of the EKFto

the BOMPwill be discussed. On this basis a new tracking filter will be developed to

later sections.

A prime source of divergence of tracking filters based on bearing (-rate) - only

measurements is the lack of complete observabiliy (see for example [65]). Moreover,

due to the nonlinearity of the filtering problem, the behaviour of the filter is

dependent on the coordinates used to formulate the filter equations [61]. In a cartesian

coordinate frame the system dynamics (observer-target relative motion) are linear and

the measurement equation is nonlinear. Formulating the filter equations to polar
coordinates yields nonlinear system dynamics and a linear measurement equation.

First, the formulation in cartesian coordinates is considered. Defining the cartesian

state vector:

zl = (Ax, Ay, Ax, Ay) (2.2.1)
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the equations of motion become (see figure 2.1.1):

Zj = z3 (2.2.2a)

^ = z4 (2.2.2b)

z3 = Aax (2.2.2c)

z4 = Aa^ (2.2.2d)

with

Aa = a^-a relative acceleration (2.2.3)

al = (a^x, a-j. ) target acceleration (2.2.4)

a1 = (ax, a_) missile acceleration (2.2.5)

The BOMPhas been intensively studied for non-maneuvering targets. The quantities

AaY and Aa„ then are determined by the observer maneuver and therefore known.
x y

Hence, (2.2.2) may easily be integrated yielding the discrete version of the equations

of motion. Unfortunately, the measurement equation associated with (2.2.2) is

nonlinear. For bearing-only measurements one obtains:

*2
m= 9 + s = arc tg— + s (2.2.6)

h

for bearing-rate-only measurements the measurement equations is:

-_•
.-

(zi + z2)2 hh-hh
, . nt)T.m= 9 + S = + S

(2.2.7)

zl zl

where s is a zero-mean white measurement noise according to (2.1.6/7).

The EKF using the cartesian state z will be called cartesian EKF(CEKF). This filter,

based on the measurement (2.2.6) has been found to exhibit serious stability problems.

In [60] and [65] it was shown that the filter behaviour is very sensitive to the selection

of the initial error covariance matrix PQ (see section 2.1). Linearization of (2.2.6)

according to (2.1.17) results, via the filter gain computations (2.1.16), in a feedback of

estimation errors into the covariance calculations (2.1.18) and may therefore cause

divergence. Filter stability may be considerably improved by decoupling the
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covariance equations from the state estimates. This can be done by replactog the

nonlinear measurement equation by pseudoltoear measurements [59,60,63,71]. The

pseudolinear measurement equation associated with (2.2.6) is:

m= C(m) z + s = 0 (2.2.8)

with

C(m) = [-sin(m), cos(m), 0,0] (2.2.9)

s = Rsin(s) (2.2.10)

The new measurement noise s is, however, non-Gaussian, which results to biased

estimates of the pseudolinear tracking filter [63,71].

An important reason for filter instability is the lack of complete observability of z

prior to the first observer maneuver [59,62,64]. This explains the sensitivity problems

associated with covariance initialization mentioned above. It is shown in [64] that

observable and unobservable states can be decoupled if the filter states are choosen to

be modified polar coordinates (MPC):

While y p ym2, ym3 are always observable for 9 * 0
, ym4 is unobservable for a

non-maneuvering observer. The covariance equations associated with (2.2.11) are,

however, decoupled to the observable and unobservable part of y .
Therefore the

EKF based on (2.2.11) remains stable in the observable states even if the

ym4-estimate diverges. Due to the coupling this is not true for the CEKF. Note that

the measurement equation associated with (2.2.11) is linear for both cases (2.2.6) and

(2.2.7). The estimates of the MPC-filter are therefore asymptotically unbiased.

The observability of the filter states is linked to the observer maneuver. In addition to

the case of a non-maneuvering observer there are other maneuvers for which the filter

states are not completely observable. They are discussed in [62]. The most important

result for practical applications is that an observer maneuver resulting in constant

bearing angle throughout the scenario results in unobservable filter states. Note that

this type of maneuver is a typical nomtoal condition for many guidance laws (chapter

1).
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In principle there are two approaches to the design of tracking filters to the presence

of target maneuvers. One method is to interpret the target maneuver as an external

disturbance. The target acceleration components are therefore not included to the

filter state and hence will not be estimated. The second method includes the target

acceleration in the filter state. Essentially, the first approach is based on two

hypotheses:

HQ: non-maneuvering target

H^: maneuvering target

The target maneuver must be specified to H^ Typically the following model is used:

rTaT = aT-ar + w (2.2.12)

tt : correlation time

Xj. : maneuver level

w : zero-mean white noise process

The task consists now of a detection problem (choose HQor H^ and state estimation

by an EKF. It is obvious that this approach is not suitable for tracking continuously

time-varying target maneuvers but is restricted to piecewise constant maneuvers. In

order to track arbitrary maneuvers several hypotheses, each associated with a different

maneuver level are tested [68,69]. The selection of a specific hypothesis can be done

by a likelihood test conditioned on a finite number of past measurement residuals

[66,69,72] or by ad hoc methods testing the size and correlation of the residuals [67].
All of these procedures require the use of filter banks and result in excessive

computing and storage requirements. Moreover stability problems occur if none of the

choosen target models matches the actual target behaviour [69].

If the target maneuver is included in the filter state, maneuver detection becomes

obsolete. However, a model of the acceleration dynamics is needed in order to solve

the extrapolation equations of the EKF. Since the target maneuver is unknown, the

target dynamics are usually formulated as a random process. The following models

have been investigated in [70] in conjunction with an EKF based on cartesian

coordinates and bearing-only measurements:
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a) a-j. = w

b)TTaj = arp-aj + w

c) aj. = w

with w from (2.2.12)

It was found that the EKF performance is generally poor for all three models. Model

c) yielded slightly worse results (in terms of estimation accuracy) than models a) and

b) which behaved similarly. The low estimation accuracy of the EKFmay partly be

attributed to the use of cartesian coordinates as discussed before.

Up to now the basic problems of target tracking have been discussed. For the solution

of the intercept problem the estimated target information is used by the guidance law.

The interaction between the guidance law and the tracking filter is therefore an

important aspect affecting the design of both guidance law and tracking filter. Due to

the low information about the missile-target relative geometry provided by bearing

(rate) -only measurements stability of the tracking filter cannot always be guaranteed.

It is therefore possible that the guidance law receives wrong toformation about the

target maneuver. This may result in large miss distances. Hence, it is desirable to have

guidance laws that are "robust" with respect to tracking errors.

The stability of the tracking filter depends on the missile maneuver as mentioned

before. Unfortunately observability is lost if the bearing-angle is constant which is a

nominal condition of many guidance laws, for example PE (see section 1.3.5). A

remedy could be trajectory modulation [73,74]. However, the resulting guidance laws

cannot be obtained in closed form but involve on-line solution of a TPBVP. This topic

has already been discussed in chapter 1. Moreover the missile maneuvers required to

enhance observability result in increased drag losses and thus diminish the missile's

maneuver capability (section 1.4.7) which is undesirable for the type of missile

investigated here. A different approach was taken in [72] where the uncertainty of the

target state was coupled to an LQ-design based guidance law by adding the associated

covariance matrix to the control weighting matrix in the quadratic cost criterion. In

this way the bandwidth of the guidance law is adapted to the accuracy of the estimated

target maneuver. This scheme is, however, only meaningful if the covariance estimates

computed by the tracking filter are accurate, i.e. are a measure of the true estimation

errors. Due to the weak observability this condition is often not satisfied for the
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BOMP. In addition, the guidance law to [72] requires backward integration of the

Riccati equation, implying that the characteristics of the estimation errors must be

known in advance which is not very realistic.

In summary it can be stated that the BOMPis well understood for non-maneuvertog

targets. The important sources of tracking filter instability have been identified and

effective counter measures (such as pseudolinear measurements, use of non-cartesian

coordinates) were proposed. For maneuvering targets, approaches based on maneuver

detection (multiple model filters) are not adequate to track targets that perform

continuous maneuvers. The inclusion of the target acceleration as an additional filter

state is in principle the right way to track general target maneuvers but the question of

modeling the target dynamics is still open. The most common model is a first-order

Gauss-Markov process. The observability analysis carried out to [64] has not yet been

extended to maneuvering targets. Only very simple target maneuvers, such as constant

acceleration and jumps to the acceleration have been tovestigated. Filter performance

was not tested for continuously time-varying (for example sinusoidal) maneuvers.

The purpose of the subsequent investigation is to close this gap. An observability

analysis for the BOMPwith maneuvering targets is carried out It is shown that the

EKF designed to track piecewise constant-acceleration maneuvers does not track

general time-varying maneuvers. An adaptive multiple time scale filter is developed

for this case. Questions of coupling between guidance law and filter will be discussed.

It will be shown that the guidance law PEexhibits a certain robustness with respect to

tracking errors and is therefore ideally suited for use in conjunction with the tracking
filter derived here. The filter design will be done under the restrictions already

considered for the guidance law design: no toertial angular measurements available,

passive seeker. Therefore the filter will be based on measurements of the bearing rate

rather than the bearing angle.

2.3 The Target Model and Filter States

One of the main goals of the subsequent tracking filter design is to obtain estimates of

the target maneuver, i.e. the target acceleration. These estimates are needed for the

implementation of modern guidance laws such as PE Target maneuver estimation by

an extended Kalman filter requires a model of the acceleration dynamics to order to
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solve the propagation equations (2.1.9/11). Stoce the target maneuvers are not

arbitrary it is clear that the more knowledge about the anticipated target behaviour is

exploited to derive the model equations, the better are the chances of filter

convergence since unrealistic target motions can be excluded a-priori. This is

especially important for the BOMPbecause the toformation contents of the bearing

(rate) measurement may be very low. Moreover, the restriction of the possible target

maneuvers also results in a reduction of the number of filter states, thus simplifying
the filter algorithm.

According to figure 2.3.1 the planar target motion can be described by the states v^,

reference

figure 2.3.1: planar target motion

The target model used here will be based on the following facts:

a) the target is an aerodynamically controlled vehicle and has certain acceleration

characteristics. Especially, in intercept scenarios with evasive maneuvers, the

lateral acceleration is much higher than the axial accleration.

b) target maneuvers are usually highly correlated

Therefore the following assumptions will be made:

a') The target velocity is constant yielding: yT
= — (2.3.1)

b') The target maneuver is deterministic (although unknown).



121

From a') follows that Vj and y^ are no filter states any more. Vj may be considered an

unknown filter parameter (which might motivate the design of a filter bank based on

several velocity levels vT). In the sequel, vT will be assumed known (for example from

radar measurements processed by a tracking filter of the launching aircraft).

Inaccurate vT-estimates will be considered to the simulations (section 2.9). Hence the

target model simplifies to:

YT
= ~ (2.3.2)T

vT

yT
= — (2.3.3)

The function a^t) is, of course, unknown. Therefore, for the solution of the

propagtion equations, it will be assumed:

'yT = 0 (2.3.4)

(2.3.4) is exact for constant-acceleration maneuvers but corrections are necessary in

the case of time-varying maneuvers (section 2.8). The filter state consists of the target

model (2.3.2/3) and quantities describing the observer-target relative motion. The

latter may be formulated in cartesian and (modified) polar coordinates. Since all

versions will be needed in the sequel they are summarized below (see figure 2.1.1):

filter state in cartesian coordinates (CO:

z1 = (Ax, Ay, Ax, Ay, yT, yT) (2.3.5)

measurement equations:

*2
m= arc tg— + s bearing-only measurements (2.3.6)

zl
2

(zl "*" 'h) z1z4
"

Z2Z3
m= + s bearing rate-only measurements (2.3.7)

•*4» r^Xt

zl zl

The EKFbased on CCwill be denoted as CEKF.
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filter states in ordinary polar coordinates (OPQ:

y1 = (9, R, 9, R, yT, yT) (2.3.8)

measurement equations:

m= y3 + s bearing-only measurements (2.3.9)

m= y^ + s bearing rate-only measurements (2.3.10)

The EKFbased on OPCwill be denoted as OPEKF.

filter states in modified polar coordinates (MPCV.

ym = (*» "R' * "R • *T V (2.3.11)

measurement equations:

m= ym3 + s bearing-only measurements (2.3.12)

m= yml + s bearing rate-only measurements (2.3.13)

The EKFbased on MPCwill be denoted as MPEKF.

2.4 Observability Analysis

When a filter has been designed, the behaviour of the estimation errors is of prime

interest The estimates delivered by the filter are only meaningful if the estimation

errors are at least bounded. In the most favourable (but unrealistic) case they vanish

asymptotically and the estimates become exact after some time. If the filter is

divergent the estimation errors grow without bounds. For linear Gaussian systems

complete observability and complete controllability are sufficient conditions for filter

stability [75-77]. Verifiable conditions guaranteeing filter stability do not, in general,

exist for nonlinear systems. Often it is possible, however, to isolate situations (for

example certain initial conditions) that will certainly lead to divergence of the

nonlinear filter. For the BOMP, these cases will be discussed in the subsequent

observability analysis.
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2.4.1 Stochastic Observabflity and Fflter Divergence

Before entering the analysis some explanations and definitions concerning stochastic

observability are necessary. A condition for divergence of the EKF is derived which

will be the basis for the investigation of the BOMP.

The diagonal elements of the covariance matrix P may be regarded as the filter's

estimates of the magnitude of the estimation errors. If - for a system with zero toput

noise - P tends to zero asymptotically, stability of the linear filter may be concluded.

For nonlinear systems this is not true because P does usually not represent the actual

estimation error statistics of the nonlinear filter. However, if P tends to infinity, the

filter is certainly unstable. Therefore, the investigation of the covariance matrix is

suitable for the determination of (sufficient) conditions that result to filter divergence.

These conditions are of great practical importance for filter implementation because

they provide a useful guideline on how to avoid certain stability problems.

The analysis of P is carried out for a noise free system, i.e.

Q = 0 (2.4.1)

With (2.4.1) P(k/k) from (2.1.19) may be expressed in non-recursive form as follows

(see [75]):

P_1(k/k) = Wl(0,k) Pq1 W(0,k) + l(k,0) (2.4.2)

where

k

l(k,0) = £ Wt(i,k)Ct(i)S"1(i)C(i)W(i,k) (2.4.3)
i=0

is the information matrix.

Assuming infinite uncertainty about the initial system state results in

P01 = 0

and (2.4.2) renders

P_1(k/k) = l(k,0)

Hence, the behaviour of P is determined by the information matrix.

Definition 1: The EKF(2.1.9 -19) is said to be divergent if the information matrix is

singular.

(2.4.4)

(2.4.5)
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easilyisy(0/k)y(k/k).thanrathery(0/k)estimatesthediscusstoi.e.,mk},{m«,...
AAA

measurementsthetorespectwithtimeinitialatvectorstatetheofobservabilitythe

investigtatetoconvenientisitanalysistheofsimplificationFormatrix.information

theofsingularitythewithconcernedisanalysisobservabilitythe(2.4.5)ofviewIn

,mk>.{m^...torespectwithunobservablecalledisy(k)casethisIny(k).about

informationanycontainnotdomeasurementsthesei.e.P,byexpressedestimates

statetheinuncertaintyofdecreaseanyinresultnotdoesmk][nijmeasurements

theofprocessing0=I(k,l)forthatseetoeasyisit(2.4.5)and(2.4.3)From

(2.4.6)l(k,l)>0

ifonlyandif,mk][nij,...measurements

thetorespectwithobservablecompletelyisy(k)statefilterThe

[75]):(see2Definition
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Now, consider the scalar measurement equation

m= yq + s (2.4.13)

with s according to (2.1.6/7)

y = q-th component of y

The measurement matrix associated with (2.4.13) is:

C = [0,0 0,1,0 0] (2.4.14)

where all except the q-th component of C are zero

Letwqi

follows:

Let w denote the element of Wto the q-th row and r-th column. With (2.4.14)

C(0W(U) = [wql(ij),..., wqQ(ij)] = : D(ij) (2.4.15)

According to (2.1.12) w (i j) is given by:

aUyG/i-D,u(i)]

V(iJ) = —

a
(2A16>

ayrO/M)

i.e. w (i j) is the sensitivity of the measured state y with respect to changes in yr If

w vanishes for all i, the measurements contain no information about yr In this case

yr is unobservable. To see this, assume that y has been partitioned to an observable

part y° and unobservable part yu:

yt = &ot yUtj (2 417)

D(i j) may be partitioned accordingly, yielding:

D(ij) = [D°(i j), Du(i j)] (2.4.18)

With (2.4.18) and noting that S is a scalar quantity for the measurement (2.4.13) I

from (2.4.11) becomes:

k

I(k j) = V^-DVi j)D(ij) =

i=j
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\0t,. ,0t, \U/.
Dvt(ij)Du(ij) Dut(iJ)Du(iJ)

,ut»Dut(ij)D°(ij) Dut(ij)Du(ij).

«oo „ou

I I

NU0 Muu

I I

(2.4.19)

«oo „uu
u

where I and I are the information matrices associated with y and y ,

respectively.

If the sensitivities with respect to yu vanish (2.4.15) yields:

which results via (2.4.19) in:

Du = 0

»uu
I =0

(2.4.20)

(2.4.21)

Hence, yu is completely unobservable and (2.4.20) is a sufficient condition for filter

divergence. It is this equation that will be used for the analysis of the BOMP. The

same conditions were used in [64] to analyze the BOMPfor non-maneuvertog targets.

2.42 Filter Equations in Modified Polar Coordinates

In order to evaluate the divergence condition established in the previous section the

equations of the BOMPare derived here using MPCaccording to equation (2.3.11).

The use of MPCis motivated by their decouphng property already mentioned in

section 2.2 and discussed to more detail in section 2.5 and [64].

Determination of the filter equations amounts to specifying the functions f, h and the

matrices Wand C in (2.1.9-19). h is given by (2.3.12/13). With (2.1.18) C is easily

found to be:

C = [0 010 0 0] for bearing-only measurements (2.4.22a)

C = [10 0 0 0 0] for bearing rate-only measurements (2.4.22b)
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For the determination of f consider the differential equations of relative motion to

MPC:

yml = W%-V-2ymiym2

ym2 = W*TR aR3 + yml + ym2

ym3 = yml

ym4 = "

ym4ym2

ym5 = ym6

ym6 = °

(2.4.23a)

(2.4.23b)

(2.4.23c)

(2.4.23d)

(2.4.23e)

(2.4.23f)

with (see figure 2.4.1):

%= vTym6C0S(ym5-ym3)

aTR = vTym6sin(ym5-ym3)

(2.4.24a)

(2.4.24b)

->x

m5
~

ym3

figure 2.4.1: acceleration components in (modified) polar coordinates

In order to obtain the discrete equations, (2.4.23) must be integrated over the interval

I^tVW (2.4.25)

Equations (2.4.23) can, however, not be integrated analytically. A commonapproach is

the approximation of ym(k+l) by an Euler-step:
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with

ym(k+l)-Tym(k)
T = \+i

-

tj. sampling period

(2.4.26)

(2.4.27)

However, this extrapolation may yield large tocaccuracies for long sampling periods T.

Since the computation time is an important aspect of realistic filter design, T should

not be restricted by accuracy requirements which may yield values for T too small for

evaluation of the filter equations during one sampling interval. Fortunately, the

equations of motion can be solved analytically in cartesian coordinates. Therefore,

following the approach in [64], integration will be carried out to cartesian coordinates z

defined in (2.3.5) and afterwards the results are transformed to MPC. The equations

of motion in cartesian coordinates are:

zl-z3

z2 = z4

z3 = Aax

z4 = Aay

z5 = z6

z6 = 0

where from (2.2.3), (2.3.2) and figure 2.4.2 one obtains:

Aax = -vTz6sinz5-ax

Aa^ = + v-p z6 cos z5
-

a^

(2.4.28a)

(2.4.28b)

(2.4.28c)

(2.4.28d)

(2.4.28e)

(2.4.280

(2.4.29a)

(2.4.29b)

y*

-»-x

figure 2.4.2: target acceleration in cartesian coordinates
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Note that due to the target maneuver to (2.4.29) equations (2.4.28) are nonltoear.

Integration is, however, possible analytically yielding:

Zl(k+l)=Zl(k)+ Tz3(k)+ 11^+1)+ um(k+l) (2.4.30a)

z2(k+l)=z2(k)+ Tz4(k)+ 11^(11+1)+ uM2(k+l) (2.4.30b)

z3(k+l)=z3(k) + ur3(k+l)+ uM3(k+l) (2.4.30c)

z4(k+l)=z4(k) + uj.4(k+l)+ uM4(k+l) (2.4.30d)

z5(k+l)=z5(k) + uT5(k+l)+ uM5(k+l) (2.4.30e)

z6(k+l)=z6(k) + 11^+1)+ uM6(k+l) (2.4.30f)

The vectors

UM= (UM1' -' *W (2.4.31)

Uy = (Urp^J —» Uf/g) (2.4.31)

describe the missile and target maneuver in 1^ and are given below.

Missile maneuver terms:

ti
uk+l *k+l

Um(k+1) = - J dr|ax(«x)da, UM2(k+l) = - | drjay(a)da
\ \ H>

(2.4.32a,b)

lk+l lk+l

uM3(k+l) = - | ax(T)dr, uM4(k+l) = - j ay(T)dr

(2.4.32c,d)

uM,(k+l) = uM.(k+l) = 0 (2.4.33a,b)

Note that Uwis known via measurements of the missile acceleration. Details are given

in section 2.6.

Target maneuver terms:

uT1(k+l) = T vT [-cos z5(k) +
sin[z5(k) + T z6(k)] - sin z5(k)

T z6(k)
]

(2.4.34a)
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cos[z,(k) + T z*(k)] - cos z*(k)
u^k+l) = - T vT [sin z5(k) + 5-

^ 5—]

(2.4.34b)

uT3(k+1) = vT{cos[z5(k) + T z6(k)] - cos z5(k)} (2.4.34c)

uT4(k+1) = vT{sin[z5(k) + T z6(k)] - sin z5(k)} (2.4.34d)

uT5(k+1) = T z6(k) (2.4.34e)

Up^k+1) = 0 (2.4.340

Definition

LetTMzy

cartesian coordinates i.e.

Let TM_„ be the nonlinear transformation mapping modified polar coordtoates to
L3

z = TMzy(ym) (2.4.35)

The inverse transformation is denoted by TM„_ and is given by :
y^

ym = TMyz(z) = TM^(z) (2.4.36)

The transformations are easily derived using the following relations between cartesian

and polar coordinates (see figure 2.1):

(2.4.37)

(2.4.38)

R: = "^Ax2 + Ay2 ^Z^+z2

R
zl zl + z2 z2 zl z3 + z2 z4

i%+% tZl+Z2

?
AV

= arctg—-
AX

= arctg —

zl

9
zi h + z2 zi

2 . 2
zl+ z2

Z\ZA + Z2 z3

2
,

2
zj + z2

(2.4.39)

(2.4.40)
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Ax = RCOS9
ym4

cos ym3 (2.4.41)

«-»«,-***» =—^ymy,ml^ (2-4-42)

Ay = RSUI9
ym4

siny.

m3 (2.4.43)

Ay = Rsin9 + R 9 C0S9 = -—(ym2 sin ym3 + yml cos ym3) (2.4.44)
ym4

Inserting (2.4.37-40) into (2.3.11) yields:

yml'

ym2

ym3

ym4

ym5

ym6

zlz4 + z2 z3

2
,

2
zi+ h

h1Z + z2 z4

2
,

2
zi+ h

z2
arctg —

zl

(zl+4)m

z5

z6

= TMyz(z) (2.4.45)
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With (2.4.41-44) and (2.3.5) TM_„ becomes:

zl

COSym3

ym4

sinym3

ym4

^(ym2cosym3-ymlsinym3)

^W^mS^ml^W
ym5

ym6

TMzy^m)

(2.4.46)

Expressing z(k) in (2.4.30) in terms of y (k) via (2.4.46) yields:
mv

z(k+l) = fz{TMzy[ym(k)],uM(k+l)}
Substitution of (2.4.47) into (2.4.45) renders:

ym(k+l) = TMU7[z(k+l)] = f[ym(k),uM(k+l)]m yz1

(2.4.47)

(2.4.48)

The transition matrix W(k+l,k) according to (2.1.12) follows through apphcation of

the chain rule to (2.4.48):

W(k+l,k)=
af[ym(k/k),uM(k+l)]

3ym(k/k)

3TMyz[z(k+l/k)] afz{TMzy[ym(k/k)],uM(k+l)}

az(k+l/k) aym(k/k)

= GZ[z(k+l/k)] HY[ym(k/k)] (2.4.49)



133

with

GZ^gz-j], HYrrfhyy]; i,j = l,...,6 (2.4.50)

and

aTMvzi

gZi1 =
yz>1

(2.4.51)
y azj

3fzi
hyy = -f- (2.4.52)

ymj

The elements gz-- and hy.- are given in the appendix 2.1.

2.4 J Observability Via Bearing • Only Measurements

According to section 2.4.2 and equation (2.4.22a) observability of the filter states y

depends on the sensitivity of the measured state ym3 with respect to changes to y .

Since ym3 is measured and yml is its derivative, only the observability of the

components ym2, ym4, ym5 and ym6 is of interest

6

Observability of ym2(= —):

The observability of y 2
is determined by the sensitivity

af3[ym0"/i-i)> uM(i)]
w32(i j) = -^ (2.4.53)

aym20'/i-l)

If w32(i j) vanishes for all i > j, ym2 is unobservable according to (2.4.20/21). From

(2.4.49) follows:

6

w32(i j) = ^T gz3k[2(i/i-l)] hyk2[9mO/i-l)] (2.4.54)

k=l

Substituting gz3k and hyk2 from appendix 2.1 into (2.4.54) yields:

JvnA im _ rn _

w32(ij) = — Ty [- z2 cos ym3 + zx sin ym3] (2.4.55)
ym4
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with

x =x(i/i-l) (2.4.56a)
A

x =x(j/i-l) (2.4.56b)

Ty=tj-^ (2.4.57)

Since y 4
and T^ are always nonzero, w32 can only vanish if

te ym3 =

IT"
= l8 ym3 for all i > j (2.4.58)

zl

i.e. if the bearing angle remains constant on the interval [t, t.].

Conclusion:

ym2 fe unot)Servable on tne interval [t, t.] if the bearing rate vanishes identically on

this interval.

Observability of ym4(=|-):

The sensitivity of the measurement with respect to ym4 is:

JVftA * — — M _ _

w34(i J) = —~- {z2 [cos ym3 + Tjj Dx] -

zx [sin ym3 + Ty Dy]} (2.4.59a)

ym4

~2

= ~^- {- \ ^lCO + W^+ zl ^n® + UM2^} (2.4.59b)
ym4

with

^ = ym2 cos ym3
"

yml sin ym3 (2.4.60a)

Dy = ym2 sin ym3 + yml cos ym3 (2.4.60b)

There are three cases resulting in vanishing w34 in [t,, tj:

a) UpO) = uM(i) = 0 for all i > j (2.4.61)

i.e. ym4 is unobservable if neither the observer nor the target maneuvers.
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b) It may be assumed without loss of generaUty that the cartesian reference system to

figure 2.1.1 is chosen in such a way that

ym3 = 0 (2.4.62)

and hence z2(j/i-l) = 0 (2.4.63)

i.e. the x-axis is directed along the initial LOS. This reference system will be

denoted as Z in the sequel. If the bearing angle remains constant it follows:

yml = 0 (2.4.64)

Z2 = 0 for all i > j (2.4.65)

Substitution of (2.4.62/64/65) into (2.4.59a) and (2.4.60b) results to

w34(i j) = 0 for all i > j (2.4.66)

Hence, y 4
is unobservable for vanishing bearing rate.

c) From (2.4.59b) follows immediately that w34 vanishes for

z2 u^O) + uM2(i)

\ "Tl® + "Ml®
(2.4.67)

This is a generalization of the result found in [62] where a geometric interpretation

of (2.4.67) is given. Since these maneuvers are not of practical interest they will not

be discussed here.

Observability of ym5 (= yT):

The sensitivity associated with ym5 is:

,.
-

~2 ~

T
..

-

M

cos(7m5 + Tijym6)-cos(ym5)

w35(iJ)
= -

ym4 z2 Ty vT [sin ym5 + -^ ]

Mjym6

~2 ~ sin(Fm5 + T.. ym6) - sin(ym5)
"

ym4 zl Tij VT Icos ym5
"

ZT= ]
1

ij ym6

(2.4.68)
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Assume that

Tijym6«l (2.4.69)

(2.4.69) is valid for weak target maneuvers or for small values of T«, i.e. during the

period shortly after filter initialization. It is easy to see that to this situation one

obtains from (2.4.68):

w35(i j) ~ 0 (2.4.70)

Conclusion:

For non-maneuvering targets (ym6 = 0) the target headtog is unobservable.

Otherwise observability is only weak.

Observability of ym6(= yT):

w36 is given by:

/i-n
. TyVT ^ymS + TyW-^ynrf,

w36<^>
= y3i

-*— tcos<ym5+ Ty ym6) r^ ]

ym6 Tij ym6

~ TijvTrw- „
-

x
^ymS + TyW-^ymS.

ym6 Tij ym6

(2.4.71)

im rj2
with y31 = "ym4z2 (2.4.72)

iv. ~2

y32= ym4zl (2-4-73)

Using (2.4.69) the first-order approximation of w36 becomes:

o

w36<ij') ~ Tl VT ym4 &2 sin ym5 + zlcos W (2A74)

w36(ij) vanishes in [t, tj] for

z2 sin ym5 = -

z± cos ym5 for all i > j (2.4.75)

For zero bearing rate in ft, tj] equation (2.4.65) holds in the reference system Z .
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Since z^ is nonzero equation (2.4.75) renders:

cosym4: = 0 for all i > j (2.4.76)

or

|ym5| =

7
foraUi>J" (2.4.77)

If (2.4.77) holds for any j, y 6
is unobservable at any time t-. The observer-target

motion associated with this situation is depicted to the followtog figure:

v^.

LOS

figure 2.4.3

AVT

yt-*/2

O-

Clearly, (2.4.65/77) are only satified if the target does not maneuver and the

component v of the observer velocity always equals the target velocity Vj. Note that

this is the nominal condition associated with (extended) proportional navigation

(chapter 1.3.5) for the geometry given by (2.4.77).

In practice divergence problems will also occur, if the sensitivities are nonzero but low.
o

Since w36 is proportional to Tr., low observability has to be expected in the initial

period of the observation interval. Obviously, the initial behaviour of w36 depends on

the initial filter state, i.e. the initial geometry of the intercept scenario. Assuming again

that (2.4.65) holds in Z
, w3g during the initial observation period becomes:

o

w36^')=iTUvTym4zlcosym5 (2.4.78)

Hence, observability of ym6 is maximal for ym5 = 0 and minimal for ym5 =

These situations are depicted in figure 2.4.4a/b:
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aT = VT ym6

o-

M

-D- -+ x = LOS

figure 2.4.4 a: maximumobservability of y^

o-

M

-> x = LOS

figure 2.4.4 b: minimum observability ofy^

Figure 2.4.4 suggests that the observability of ym6 or aj is maximal if ay is directed

perpendicular to the LOS and minimal if a~. is directed along the LOS. This is also

clear from intuition since maneuvers along the LOS do not influence the bearing

angle.

In summary the following statements about the observability of the states ym2, ym4,

ym5' ym6 with resPect t0 bearing-only measurements can be made:

y 2
: unobservable for zero bearing rate

ym4
' unoDservat>le if both observer and target are non-maneuvering, and for

certain nonzero relative maneuvers

ym5
' un0Dservable f°r non-maneuvering target, otherwise weakly observable

ym6
' un0Dserva°le only f°r the scenario depicted in figure 2.4.3'

minimum observability for a^ ii LOS

maximum observability for aj jl LOS
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2.4.4 Observability via Bearing Rate-Only Measurements

The analysis of section 2.4.3 is repeated here for bearing rate-only measurements. The

sensitivities of the measured state yml with respect to ym2, yffl4, y^ and ym6 are

given below:

w12(i j) = ^—{jTy (z4 - 2 zx yml) - Z2] cos ym3
ym4

-rrij(z3 + 2z2yml) + z1]sinym3} (2.4.79)

~2

w14(i J) = -^- [- (z4 - 2 \ yml) (cos ym3 + Ty Dx)

ym4
_

+ (z3 + 2 \ yml) (sin ym3 + Ty Dy)

+ z2 Dx -

zx Dy] = (2.4.80a)

r2

ym4
{[z4 - 2 \ yml] [u^i) + uM1(i)]

ym4

-[z3 + 2z2yml][uT2(i) + uM2(i)]

-

z2 [uyjCO + uM3(i)] + zx [Uy^i) + uM4(i)]}
(2.4.80b)

with Dx = ym2 cos ym3
-

yml sin ym3 (2.4.81a)

Dy = ym2 sin ym3 + yml cos ym3 (2.4.81b)

,..,
~

^ r.
-

_,_
cos(ym5 + Tij W"cos ym5

.

w15(u)
= yn Ty vT [sin ym5 + -^ ]

Tij ym6

Sin(ym5 + Vm6)-Sinym5

,ij:
y12 Ty vT [cos ym5 -± ]

ljjym6
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-

y13 vT [sin(ym5 + Ty ym6) - sin y^]

+ ^4 vT [cos(ym5 + Ty ym6) - cos ym5] (2.4.82)

T. v

w16(U) = yn -4^- [cos (ym5 + Ty ym6) -

ym6

sin(ym5 + Tyym6)-stoym5^

CM
T,, v.

Tiiym6

yi2-4j:-[sin(ym5 + T.jym6) +

ym6

cos(ym5 + Tyym6)-cosym5^
Tijym6

- yisTyVySin^ + Tyy^)

+ y14 Ty vT cos(ym5 + Ty ym6) (2.4.83)

fM IS|2
with yn= ym4(z4-2z1yml) (2.4.84a)

IM 1*2

y12= ym4(z3 + 2z2yml> (2.4.84b)
rw im2

y13="ym4z2 (2.4.84c)
IM Im2

y14= ym4zl (2.4.84d)

^d O. 0>3S defined in (2.4.56).

Consider first the case of vanishing bearing rate in [t,, t.]. Then, in the reference

system Z one has:

yml = yml = 0 for all i > j (2.4.85)

ym3 = ym3 = ° for aU i > j (2.4.86)
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Substituting (2.4.85/86) into (2.4.43/44) yields:

z^ = z4 = 0 (2.4.87)

Inserting (2.4.85-87) into (2.4.79), (2.4.80a) and (2.4.81b) results to:

w12(i j) = w14(i j) = 0 for all i > j (2.4.88)

Hence, y 2
and y 4

are unobservable for zero bearing rate. Moreover from (2.4.80b)

follows that w,4 vanishes identically if neither observer nor target perform any

maneuver.

For the discussion of w15 its first order approximation with respect to (2.4.69) is

considered. From (2.4.82) one obtains:

w15(ij) «- Ty vT ym6 ( y13 cos y^ + y14 sin y^) (2.4.89)

Substitution of y13, y14 from (2.4.84c,d) into (2.4.89) renders:

ni

") 7

w15(i j) * -

ym4 Ty vT z\ ym6 [- - cos ym5 + sin ym5] (2.4.90)

zl

Obviously w^5 vanishes for all i > j if

ym6 = 0 foraUi>j (2.4.91)

i.e. for zero target maneuver (note that because of the assumption ymg = 0 equation

(2.4.91) implies ym6 = 0).

Another condition for vanishing w,, *s:

HI

* ym5 = ^T = ^ ym3 for ^! > i (2-4-92)

zl

According to the definitions of Qand () in (2.4.56) equation (2.4.92) can only be

satisfied for constant bearing angle. In this case (2.4.92) implies that the target heading

angle is unobservable if the target velocity vector is directed along the LOS(see figure

2.4.4a).
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In order to obtain some qualitative statements about the observability of y 5 during

the intitial observation period, consider again the cartesian reference system Z
.

Recall that in this system z^ is the initial range and that the x-axis is identical to the

LOS(figure 2.4.5). Since z^ is zero in Z° it follows that for small T«:

z2«zx (2.4.93)

Hence, w,5(ij) is approximately:

rJ

w15(ij)«- ym4 Ty vT Zl ym6 sin y^ (2.4.94)

Thus the observability of ym5 is maximal if the target headtog is perpendicular to the

LOS(ym5 = —) and minimal if it is parallel to the LOS(y^ = 0). This is intuitively

clear because the target motion along the LOSdoes not influence the bearing rate.

In summary it can be stated that the target heading is unobservable for

non-maneuvering target. Observability is minimal/maximal if the target headtog is

directed parallel/perpendicular to the LOS.

Z - (x.Y>

* x » initial LOS

figure 2.4.5: tracking geometry in 2?

The investigation of w16 is carried out using the first order approximation of (2.4.83)

with respect to (2.4.69):

w16(i j)» - Ty vT /51 sin ym5 + Ty vT 02 cos ym5 (2.4.95)

with ^l=yllTij + y13+Tijy14ym6

02=yi2Ty + y14 + Tyy13ym6

(2.4.96)

(2.4.97)
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The coefficients By By will now be approximated for small T«. From figure 2.4.5

follows (also observe equation 2.3.5):

Z1~R0
HI HI

z2«z1

TyZ3«R0
Tijyml«1
Ty ym6 << 1^
z4 Tij~ zl yml Tij ~ \

(2.4.98) with (2.4.84d) yields:

|y14|«R0ym4
(2.4.100/102) in (2.4.84b) and (2.4.99) in (2.4.84c) yield

T-
ij

IM Im2

y12 « R0 ym4

IM Im2

y13 <<R0ym4

With (2.4.104-106) follows:

|/»2Hy14|2=R0ym4
(2.4.103) in (2.4.84b,c) yields:

yil Tij = cCTy) 713

cay) = O(l)where

With (2.4.108/109) 0, may be written as:

^^[l + cCTyOJyis + Tyyi^y^
= yi4{[l + cay)]e + Tyym6}

with (see figure 2.4.5):

IM HI

?=Zli =
!2

= sin ?(i/i-l)
y14 zl

(2.4.98)

(2.4.99)

(2.4.100)

(2.4.101)

(2.4.102)

(2.4.103)

(2.4.104)

(2.4.105)

(2.4.106)

(2.4.107)

(2.4.108)

(2.4.109)

(2.4.110)

(2.4.111)

(2.4.112)
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Observing (2.4.99) equation (2.4.112) renders:

£j=£(i/i-l)«l (2.4.113)

and with (2.4.111) follows:

[l + c(Ty)]c«l (2.4.114)

With (2.4.114) and (2.4.102) the comparison of (2.4.111) and (2.4.107) yields:

B2 » Bx (2.4.115)

Therefore it may be concluded from (2.4.95) that WjJ is maximal for ym5 = 0 and

minimal for ym5 = —
.

In other words: Observability of ym6 is maximal if a is

directed perpendicular to the LOS and minimal if a^. is directed along the LOS

(figures 2.4.4a/b). The same result was found for bearing-only measurements in

section 2.4.3. A comparison with the results obtained for y * reveals that the target

heading with maximum observability of ym6 results in minimum observability of y 5

and vice versa. Moreover it is evident from (2.4.107) that the observability of y 6
is

practically independent of the value of ym6 for ym5 = 0. In contrast, if ym5 = —

l 'A

the observability depends strongly on the target maneuver. From (2.4.111) follows:

Observability of ym6 is minimal for zero target maneuver, i.e. ym6 = 0.

Observability of ymg is maximal if:

ym6»^F:iI (2-4-116)

i.e. observability of ym6 is maximal if the target heading rate is much larger than the

average bearing rate.

The results on observability via bearing rate-only measurements may be summarized

as follows:

y 2: unobservable for zero bearing rate

ym4: un0Dservable for zero hearing rate and zero relative observer-target maneuver
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ym5' un0DServaDle for non-maneuvering target

- minimum observability if target heading is parallel to LOS

- maximum observability if target heading is perpendicular to LOS

ym6: "mmimumobservability if target acceleration is directed along LOS; to this

scenario observability depends on the heading rate and is maximal for strong

target maneuvers (equation 2.4.116)
- maximum observability if target acceleration is directed perpendicular to the

LOS: in this case observability is practically independent of the value of the

heading rate.

The main results of the observability analysis of this section is that the tracking filter is

"blind" towards target maneuvers along the LOS and that the target heading is

unobservable for zero target acceleration. Target maneuvers can only be tracked if

they influence the bearing rate directly, i.e. if they have a component perpendicular to

the LOS. Clearly the "blindness" with respect to motions along the LOS could be

avoided by range- or range rate measurements. Accordtog to the preconditions of this

study these measurements are, however, not available.

2.5 Selection of Coordinates for Filter Implementation

The final goal of developing the tracking filter is the use of this filter to conjunction

with any of the guidance laws derived in chapter 1. The information of interest are

estimates of range, range rate, target heading, and target lateral acceleration (or

heading rate). In principle this information can be obtained from any of the state

vectors (2.3.5/8/11). The behaviour of the filter depends, however, on the coordinates

used for the filter design. The basic differences between cartesian and polar

coordinates were discussed in section 2.2. Based on the results of the observability

analysis of the previous section some additional conclusions will be delivered in the

following.

In [64] it was shown that the tracking filter based on MPC(MPEKF) performs better

than the CEKF in scenarios with zero initial maneuver because the unobservable

range is decoupled from the other states in the MPC-formulation. To reveal this

decoupling property for the more general problem discussed here, observe first that

with (2.4.20/21) the information matrix (2.4.19) becomes:
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I(W) =

«|00
I 0

0 0

(2.5.1)

Nowassume that at initial time t. the covariance matrix is of the form

P°°fl/n
P(j/j) =

r U/JJ

Substitution of (2.5.1/2) into (2.4.10) renders:

P(j/k) =

PUU0'/J)J
(2.5.2)

flp^oj)]"1 +100}"1

PUU(j/J)J
(2.5.3)

Hence, the covariance equations of the observable and unobservable states are

decoupled. Note that so far no assumptions about the filter states have been made.

U
The decoupling is just a consequence of the vanishing sensitivities D associated with

the unobservable states. (2.5.3) does not imply a decoupling of the y°- and yu-
estimates because from (2.4.16) follows:

«,00 ivOOa «OOaO aU
I = I [yO/i-1), u(i)] = I [y 0/i-l), y (j/i-1), u(i)] (2.5.4)

.-00

i.e. I depends on both observable and unobserable states. Therefore, filter

divergence in the unobservable states may in general cause divergence to y° as well.

If, however, the information matrix depends on the observable states alone, i.e.

(2.5.5)
«oo «,oo Ao
I =1 [y O/i-1), u(i)]

u
the estimates of the observable states remain unaffected by wrong estimates of y .

For

the MPEKFthis is the case for zero-maneuver scenarios. Recall that the states ym4
and y j

are unobservable in this situation. From (2.4.23a -c/f) follows that the states

= 1,2,3,6 are decoupled from the unobservable components for vanishing'mi'

accelerations a^j and a^. Of course the same is valid for the discrete version of

(2.4.23). With (2.4.16) this results in (2.5.5). Thus, wrong estimates of ym4 and ym5 do

not affect the estimates of the other states. This is not true for cartesian coordinates.

From figure 2.1.1 follows for the non-maneuvering case:
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Ax =Rcos9 (2.5.6a)

Ay =Rsin 9 (2.5.6b)

AX = VyCOSy.p
- V COSy (2.5.6.C)

Ay = v-pSin yT
- v sin y (2.5.6.d)

Obviously all cartesian components are influenced by estimation errors to either the

range or the target heading.

Consider now the equations of relative motion in ordtoary polar coordtoates (2.3.8):

With (2.4.23) one obtains:

^iW y2
y =

'» *
-2yi-i (2.5.7a)

1
y4 y4

y2 = ^R
"

aR + y4 yl (2.5.7b)

y3 = yx (2.5.7c)

y4 = y2 (2.5.7d)

y5 = y6 (2.5.7e)

y6 = 0 (2.5.70

where a^ = vT y6 cos(y5 - y3) (2.5.8a)

^TR = VT y6 sin(y5 " y3> (2.5.8b)

Clearly, the OPC-estimates are not decoupled from range errors for zero maneuvers

as was the case for MPCbecause (2.5.7a/b) always depend explicitly on y4. However,

the decoupling property with respect to target heading errors is maintained.

In view of the central result of the observability analysis (i.e. minimum observability

of target motions along the LOSand maximum observability of target motions normal

to the LOS) it may be concluded that polar coordinates are preferable to cartesian

coordinates for designing a tracking filter for the BOMPbecause they yield a

representation of the observer-target relative motion in the direction of maximum and

minimum observability. Thus observable and unobservable states are at least partially

decoupled according to (2.5.3).
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There is another aspect that must be considered for filter state selection:

Since the BOMPis an totercept problem here, the observer-target range will approach

zero at final time. Hence, according to (2.3.11) the MPC-components y^ and y A

will become indefinite and may cause a breakdown of the filter algorithm prior to

intercept. Implementation of the filter will therefore be done to ordinary polar

coordinates.

2.6 The Basic Tracking Algorithm (BTA)

In view of the conclusions in the previous section the EKFfor the BOMPwill be based

on ordinary polar coordinates. Due to the absence of an toertial reference system only

the bearing rate can be measured in addition to the observer acceleration. Therefore

the tracking algorithm is basically the application of (2.1.9-19) to the state vector

(2.3.8) with the measurement equation (2.3.10). The lack of an toertial reference has

some consequences concerning the evaluation of the filter equations and the

processing of the measurement data. These problems will be discussed to the

following.

2.6.1 Equations of the OPEKF

The equations of the EKFbased on OPC(OPEKF) are derived to the same way as was

done for the MPEKF(section 2.4.2). The central point is the solution of the

propagation equations (2.1.9/11). Equation (2.1.9) can be solved analytically to a

cartesian reference frame yielding (2.4.30). The propagated cartesian solution is then

transformed to OPCvia the transformation

y = TOyz(z) (2.6.1)

In analogy to (2.4.49) the transition matrix associated with y is given by:

W(k+l,k) = GZ[z(k+l/k)] HY[y(k/k)] (2.6.2)

aTOvzi

with gz., = *=£- (2.6.3)
1J

azj
afzi

by,, = -21 (2.6.4)
ayj

ru

GZ, HY, TO
,
TO are given in the appendix 2.2.
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In principle the choice of the cartesian reference system for the computation of

(2.4.30) is arbitrary. However, the computational effort for the calculation of the

elements gz... and hy^- can be substantially reduced if the reference system is choosen

in such a way that in the sampling interval

LK = [tk,tk+1] (2.6.5)

one has yfo/ls.) = 0 (2.6.6)

i.e. the x-axis of the reference system is directed along the estimated LOS at time t^

(see figure 2.6.1). This results in the simplification of many expressions involving
A A

sin[y3(k/k)] and cos[y3(k/k)] (see appendix 2.2). It is, however, necessary to carry out

some simple transformations at the beginning of each sampling interval to order to

adapt the filtering algorithm to each new reference frame. This entails a scheduling

problem and has an impact on the sequence of computations of the tracking

algorithm. Therefore, before summarizing the algorithm, the question of data

transformation is adressed in the next section.

2.6.2 The Measurement Module

In addition to the bearing rate the observer acceleration has to be measured in order

to determine the observer maneuver uM according to (2.4.32) which is used in

(2.4.30). The acceleration components are measured by accelerometers in the

observer's body fixed reference system. They must be transformed to the (toertial)

reference system defined by (2.6.6). Before discussing the necessary computations

some notations are introduced:

[x(k), y(k)]: cartesian reference frame with axes x(k), y(k) at time t^

[Xg, yg] : cartesian reference frame defined by (2.6.6)

[xM, yM] : observer fixed reference frame; xM n center line

[x_, yj : seeker frame; x. II seeker axis (see section 1.4.6.2)

: y expressed in the reference frame Z

The geometry associated with the sampling interval Ik is depicted in figure 2.6.1.

ZOO

zs

ZM

ZS

ylz
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CL»x,

*s00

i> xs(k)

xs(k-l)

M= missile, CL = missile center line

aj : lateral acceleration

a. : axial acceleration
a

e (t) : missile pitch angle with respect to current LOS
S

e

0(t) : missile pitch angle with respect to Z (k)

f Gst^): bearing angle increment in [t^, r]

£(k) : estimation error in bearing angle

^(k) : seeker axis orientation

figure 2.6.1: reference frames
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g
For the observer acceleration components ax, a^ to Z one obtains:

a (t) I = a (r) cos 0(t) - a{(r) sin $(r) (2.6.7a)
'zS(k)

a (T) I = aa(T) sin 6(t) + a^r) cos 0(t) (2.6.7b)
'zS(k)

With 6{r) = *(k) + f (r, t^ + ^(t) (2.6.8)

e (t) can be easily measured and f (t, t^) may be obtained by integrating the measured

bearing rate:

t(r, t^) = | m(a) da (2.6.9)

c

However, the reference frame Z (k) and hence £(k) are unknown at time t^ because

A

y3(k/k) must first be computed from the update equations associated with 1^ ,. These

calculations can only be started at time t^ because the bearing rate measurement m(k)

is needed in (2.1.15). Hence y3(k/k) is available only at some time r* with

tk<T*<tk+1 (2.6.10)

This problem is circumvented by first computing the components u with respect to

s S
the reference system Z (k) and transforming them to Z (k) at time tk+1. For this

purpose the acceleration components in Zs(k) are needed. They are given by:

ax(T) I = aa(r) cos e\r) - aj(r) sin ff(r) (2.6.11a)
'Zs(k)

a (T) I = a (r) sin ff(j) + a,(r) cos e'(r) (2.6.11b)
'Zs(k)

With e\r) = t(r, t.) + 0s(r) (2.6.12)
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Inserting

ax=ax
Z*(k)

"y= Us

(2.6.13a)

(2.6.13b)
Z°(k)

into (2.4.36) yields the components of u^j in Zs(k). At time t^+1 they are trans¬

formed to Z (k) via:

= -TR[{(k)]

ZS(k)

/UMj+l\
\UMJ+2/

J = 0,1 (2.6.14)

ZS(k)

with TR(y) =

and from figure 2.6.1:

COSy
- Smy

sin y COSy

{(k) = *(k) - y3(k/k)
ZS(k-l)

(2.6.15)

(2.6.16)

where m= ^(k-1) + £(k,k-l) (2.6.17)

Note that all quantities to (2.6.17) are known from the previous sampltog interval. The

may be regarded as measurement data preprocessing indetermination of u
M

Zs(k)
order to obtain the correct filter input data. The associated computations do not

involve any quantities estimated by the filter and are therefore summarized to a

separate module called measurement module. The signal flow of the measurement

module is shown to figure 2.6.2.
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s5

<P

IR-

seeker

P

cos $' -sin $'

sin 0' cos 0*

la

iL ,i

la

accelerometers

f(r, tk)

*0

1

I

• m

» » u

•— u

3M

1M

• U'
2M

-*r V- u
4M

S,,.... S^ : integrators

yigwre 26.2: measurement module
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2.63 Summary of BTA

A

The computations for the determination of y(k+l/k+l) from the previous estimate

y(k/k) and the new measurement m(k+l) are now summarized. Consider the

sampling interval 1^ = [t^, t^+^]. At time tj, the following data are available:

from measurement module: uM , f (k+l,k), m(k+1)M
i-S

Z°(k)

from previous cycle : y(k/k)|
, £(k)

'zb(k)

The following calculations have to be carried out in 1^:

stepl: a) store output data of measurement module

b) reset integrators Sv..., S^ (figure 2.6.2) for measurement data

evaluation in Ik+j

step 2: compute uM from u^J according to (2.6.14)
'zS(k) 'zs(k)

c

step 3: compute seeker axis orientation in Z (k):

«Kk+l) = *(k) + £(k+l,k) (2.6.18)

step 4: compute

A

z(k/k)| = TO_v[y(k/k)| ] (2.6.19)
!Zb(k) y *Zb(k)

step 5: compute estimated target maneuver Uj from (2.4.34) with

ZS(k)

z(k) = z(k/k) (2.6.20)
Zb(k)

A
,

step 6: compute z(k+1/k) from (2.4.30) with (2.6.19) and

*Zb(k)

Up = Up s
* UM~ UM s

Zb(k) !Zb(k)
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step 7: compute

y(k+l/k)| =TO [z(k+l/k)| ] (2.6.21)
(Zb(k) y

'Zb(k)

step 8: compute W(k+1 ,k) from (2.6.2)

step 9: compute P(k+1/k) from (2.1.11)

step 10: compute G(k+1) from (2.1.17)

step 11: compute P(k+1/k+1) from (2.1.19)

step 12: compute y(k+1/k+1)1 from (2.1.15)
'Zb(k)

c

step 13: define new cartesian reference frame Z (k+1) for next sampltog toterval

*k+l

a) compute seeker axis at t^ p
to Z (k+1):

(2.6.22)
ZS(k)

*(k+l) = *(k+l) - y3(k+l/k+l)

with *(k+l) from (2.6.18)

b) compute y(k+1/k+1) in ZS(k+1):
Note that only y3 and y5 depend on Z

.
Hence only these components

are corrected; the others remain unchanged.

g
estimated target heading in Z (k+1):

y5(k+l/k+l) = y5(k+l/k+l)
ZS(k+l)

- y3(k+l/k+l)
ZS(k) ZS(k)

(2.6.23)

c

estimated bearing angle in Z (k+1) according to (2.6.6):

= 0 (2.6.24)

ZS(k+l)
y3(k+l/k+l)

A A

With y5 and y3 from (2.6.23/24) and the other components from step 12 the desired



156

2.6.4 Simulations

In this section simulation results obtatoed with the tracktog algorithm described to

section 2.6.3 are presented. The simulations illustrate the mato conclusions on

observability derived in section 2.4.4. Questions of guidance law-filter interaction will

also be adressed.

2.6.4.1 Filter Initialization

In order to execute the tracking algorithm a number of filter parameters must be

initialized. The values used for the subsequent simulations are summarized below:

a) sampling period: T = 0.05 s (2.6.25)

b) variance of measurement noise: S = 10 rad s (2.6.26)

c) initial covariance matrix: P(0/0) = diag[pQ.(0/0)J (2.6.27)

with

p01 = io"4 radV2, p02 = 104 mV2, pQ3 = 10"6 rad2 (2.6.28a,b,c)

pQ4 = 5 104 m2
, pQ5 = 0.16 rad2

, pQ6 = 0.05 radV2 (2.6.28d,e,f)

The elements pQi are a measure of the range of the expected squared initial estimation

errors e-(0/0) with e defined in (2.1.21). The value of pQ6 is based on the assumption

that the maximal initial estimation error of the target acceleration is

Aap. = 6g (2.6.29)

Assuming a target velocity of

vT = 270 ms"1 (2.6.30)

this renders with (2.3.2/8):

Ae6(0/0) = —-« 0.22 rad s"1 = jp^ (2.6.31)

d) covariance matrix of input noise:

According to (2.4.30-34) the system input is the missile maneuver u«, which is

obtained from the measurement module (figure 2.6.2). These measurements are

modeled noise free here, yielding

Q = 0 (noise free system) (2.6.32)

For a further discussion of this assumption see section 2.10. The estimation of Q in

order to account for uncertainties in the target maneuver is discussed to section 2.7.
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e) initial estimation errors:

The assumed values for the initial estimation errors will be given to the discussion

of the simulation results. All errors not explicitly mentioned are assumed zero, i.e.

the associated filter states are initialized with their exact values.

f) target velocity:

As mentioned in section 2.3 the target velocity is a parameter of the filter. Unless

explicitly mentioned, the error

ey = vT
-

vT (2.6.33)

is assumed zero.

2.6.4.2 Assessment of Filter Behaviour and Presentation of Filtering Results

The results produced by the tracking filter will be judged by the behaviour of the

estimation errors and their variances. Visualization of the estimation errors is done by

plotting the time histories of the estimated and exact filter states. The diagonal

elements p^ of the covariance matrix P are the filter's estimates of the error variance

associated with the state y^ Therefore the expected squared estimation error should

always be lower than the estimated variance, i.e.

E[e2(t)]<p..(t) (2.6.34)

If (2.6.34) is violated the filter may diverge because it underestimates its estimation

accuracy and does not take into account new information by incoming measurements.

Note that as P -» 0 the filter degenerates to a predictor (equations 2.1.15/17/19). In
o

order to check (2.6.34) the squared estimation error ef is plotted to addition to p^.

From (2.4.2) follows that the subsystem (y5, y6) is unstable. Hence any estimation

error in y^ or y^ can only be reduced via the update equations but not by merely

solving the propagation equations. Because only the observable states are influenced

by new measurements according to (2.5.3) observability of y* and y^ is indicated by

the behaviour of p55 and p66. These variances can only decrease if the respective

states are observable.
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The filter states and variances are plotted in a normalized scale. The associated scaling

factor (SCALE) is written on the plots. The filter states, variances, and associated

dimensions are summarized in the followtog table.

state no. meaning name dimension variance dimension

1 bearing rate

2 range rate

3 bearing angle

4 range

5 target heading angle

6 target heading rate

table 2.6.1 .-filter states

y3 and y5 are computed in the current reference system accordtog to (2.6.23/24). On

each plot the associated scenario is written in the lower right corner.

2.6.4.3 Observability of Target Maneuver

In section 2.4.4 it was shown that the observability of the target maneuver is highly

dependent on the totercept scenario. This is illustrated by comparing the estimated

covariance histories P55(t), PfcgW generated by the tracktog filter for different

missile-target flight paths. In order to avoid coupling effects between filter and

guidance law the tracking algorithm will be applied to precomputed and stored

missile-target trajectories. The measurement data processed by the filter are noise

free. Hence the resulting filter trajectories are deterministic. Moreover, if the initial

estimation errors are zero they remain zero for constant target maneuvers because the

state propagation equations are exact In this case p««(t) and Pg6(t) reflect the

observability of y5 and y6 with respect to the exact missile-target relative motion.

*1 rad/s Pll radVs'

*2 tn/s P22 tn2/s2

*3 rad P33 rad2

*4 m P44
«,2

?5 rad P55 racT

ye rad/s P66 raa2/s:
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Consider first the following scenario (see figure 2.6.3):

scenario Al: 7T0;

*0
=

= 0.25 v

0

aT =

R0 =

:0

= 5km

V,
V

Yr7 R° V^YTO
initial LOS

M

vQ = Vp. = 270 ms

figure 2.6.3: initial intercept geometry

The flight paths and LOS-rate profile associated with scenario Al are shown in figures

2.6.4a,b. The filtering results are depicted in figures 2.6.5a,b.

It was shown that the target heading is unobservable for non-maneuvering target This

is reflected by the p«
- history in figure 2.6.5a : p« remains constant throughout the

observation interval. In contrast the target heading rate is observable as indicated by

the fast decay of p66 in figure 2.6.5b.
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MISSILE AND TARGET POSITION

T.TRAJ. Al JOB Y32132Y

DATE : 19/08/86

G.LAV , 3 TIME
. 17.29.37.

FILTER: 0 FIGURE:

O MISSILE

A TARGET

4000 6000

X [Ml

10000

Al

LOS-RATE

T.TRAJ. Al JOB T32132Y

DATE : 19/08/86

CUV : 3 TIME i 17.29.37.

FILTER: 0 FIGURE:

TIME [S]

Al

figure 2.6.4a,b
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T TRAJ Al JOB Y3213V1
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A VARIANCE IESTIMATEOI

SCALE S 3QO0OE 02

Al

figure 2.6.5a,b
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Initial observability of y5 and y6 depends on the initial target headtog yTQ . This is

seen by comparing the histories of p*^ and p~ for the followtog scenarios (see figure

2.6.3):

scenario A2 (figures 2.6.6a,b and 2.6.8a,b):

YT0
= 0, y0

= 0

aj = 6g, Rq = 5 km

scenario A3 (figures 2.6.7a,b and 2.6.9-lla,b):

TT0
= °"5 *' Y0

= °

aj = 6g, Rq = 5.5 km

According to section 2.4.4 the initial observability of y^ is minimal to scenario A2 and

maximal in scenario A3. This is reflected by the initial behaviour of p55 in figures

2.6.8a (increasing p55 indicates low observability) and 2.6.9a (decreasing p55 indicates

high observability). On the other hand the initial observability of y^ is maximal to

scenario A2 and minimal in scenario A3 which is confirmed by figures 2.6.8b and

2.6.9b.

The observability analysis has also shown that for scenario A3 the initial observability
A A

of y6 depends on the initial estimate yg(0). For low absolute values of y^(0)

observability of y6 is lost Figures 2.6.10a-d show the results of the filter obtained with

A

an initial estimation error in y^. The value of y5(0) is about half the exact value of

y6(0) (figure 2.6.10d). Comparison of figures 2.6.10a,b and 2.6.9a,b reveals the loss of

observability in both y^ and y^. The filter converges, however, to the second half of

the observation interval rendering bias free estimates of y^ and y^.

A

If y^(0) is decreased to about 25%of the exact initial value (figures 2.6.11 a-d), y^ and

y6 are practically unobservable. The heading rate error is not corrected any more

(figure 2.6.11d) and entails a growing heading error (figure 2.6.11c). The filter finally

diverges because the variances evaluated for the estimated target maneuver do not

approximate the true estimation errors, i.e. (2.6.34) is violated as seen in figures

2.6.11a,b. The influence of the initial estimation errors on the future filter behaviour is

very evident from these simulations. Their impact on filter stability is especially

critical in scenarios with low observability of both y5 and y6, i.e. for type A3 scenarios

with low target maneuver.
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MISSILE AND TARGET POSITION
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MISSILE AND TARGET POSITION
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figure 2.6.7a,b
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ERRORVARIANCE OF STATE NO.
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ERRORVARIANCE OF STATE NO.
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ERRORVARIANCE OF STATE NO.
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FILTER STATE NO.
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ERRORVARIANCE OF STATE NO.
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FILTER STATE NO.
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2.6.4.4 Observability and Guidance Law Performance

In section 1.4.7 the guidance laws PE (section 1.3.5), OCE, and PCE(section 1.4.6.4)

were compared assuming exact knowledge of all information required by the guidance

algorithms. The sensitivity of OCEand PCEwith respect to inaccurate prediction of

the point of intercept were mentioned. The purpose of the following simulations is to

illustrate the drastic degradation of guidance law performance caused by estimation

errors in conjunction with target flight path prediction used by OCEand PCEThis is

done by comparing the guidance laws PE and PCE with the required target

information delivered by the tracking filter according to figure 2.6.12.

target motion

+

•

*fis

onboard sensors

"".Um
target state

estimator

V
t"

missile motion
aa ,a,

<r,05,v (for PCE only)

£

al
—i

•—cautopilot guidance law
•¥ *c y

aj : missile lateral acceleration

ac .-commanded acceleration

m : LOS-rate measurement (figure 2.4.7)

u'm : missile maneuver (figure 2.4.7)

y : filter state (equ. 2.3.8a)

8 : flipper deflection

figure 2.6.12: guidance loop with tracking filter
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Consider the followmg scenario (see figure 2.6.3):

scenario A4: Y-r,Q
= 0.25 *, yQ

= 0

aT = 0, Rq = 3 km

The initial estimation errors of the tracking filter are:

e4(0/0) = 175 m (range error)

e5(0/0) = - 0.1 rad (target heading error)

Both guidance laws were simulated twice, once using exact information (simulations 1

and 3) and once using estimated information generated by the tracking filter

(simulations 2 and 4). The results are summarized in the following table:

simul.

no.
guid.law

miss distance

[m]
problem
duration [s] figures remarks

1 PCE 0.04 8.87 2.6.13 exact information

2 PCE 52.8 8.85 2.6.14/15 estimated inf.

3 PE 0.52 8.74 2.6.16 exact information

4 PE 0.01 8.73 2.6.17 estimated inf.

table 2.6.2: influence of estimation errors on miss distance

As seen from table 2.6.2 the use of estimated mformation results in a large increase of

the miss distance obtained with PCEwhereas the results of PE in simulations 3 and 4

do not differ significantly. Figures 2.6.15a-d show the estimates computed by the

tracking filter in simulation 2. The filtering results of simulation 4 are similar. Note

that the time interval depicted in these figures is less than the problem duration given

in table 2.6.2. Since the bearing rate becomes practically indefinite at final time (as

seen in figures 2.6.13b/14b/16b/17b) the filter algorithm often breaks down

immediately before intercept resulting in indefinite values for the state estimates.

These are suppressed in the plots in order to guarantee a reasonable scaling. For

additional explanations concerning the scaling and the dimensions of the filter states

see table 2.6.1 in section 2.6.4.2.
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It can be seen that the estimation errors in y2, y4, and y6 are very low whereas there is

a high permanent target heading error because y5 is unobservable (no target

maneuver). Due to the heading error the prediction algorithm described in section

1.4.6.2 generates wrong values for the collision course y2P* via equations (1.4.170c, d,

e) resulting in wrong values for the course error e (equation 1.4.176). Since the

commanded acceleration computed by PCE is proportional to e according to

(1.4.193) the influence of the target heading error on the missile flight path is obvious.

The flight paths and LOS-rate profiles associated with simulations 1 and 2 are

depicted in figures 2.6.13 and 2.6.14, respectively.

In order to analyse the behaviour of PEthe guidance law is rewritten here in terms of

the filter state y. From (1.3.68) and figure 2.4.1 follows:

ac = c (a^ -

XQR9) (2.6.35)

where c is a constant and aj is the target acceleration normal to the current LOS.

Substitution of (2.3.8) and (2.5.8a) into (2.6.35) renders:

ac = c [vT y6 cos(y5 - y3) -

\Q y1 y2] (2.6.36)

Replacing the exact values of y in (2.6.36) by their estimates computed in section 2.6.3

and observing (2.6.24) yields at time U :

ac(tk> =c tvT y6<k/*ocos yVk/k) -

x0 yi<k/k) hwi (2-6-37)

A

where y5(k/k) is the estimated target heading with respect to the LOSat time tk.
A

If y6 is observable y6 vanishes for non-maneuvering target According to (2.6.37) ac is

A

independent of y5 in this case and hence target heading errors have no effect on the

missile flight path. This is reflected by the results of simulations 3 and 4 (figures
A

2.6.16/17). Estimation errors in y6 may occur for unobservable y6 which is the case for

y$x —
. However, cos y^ -* 0 as y$ -» —and therefore estimation errors in y^ again

have no effect on ac. In other words, if either of the states y^ or y6 is unobservable, a

becomes independent of the unobservable quantity and is not



174

influenced by the associated estimation errors. This is also evident from equation

(2.6.35): a depends on the observable component of the target acceleration a~ only.

In this sense the guidance law PE is robust with respect to tracking errors. Since PCE

uses unobservable information for the solution of the prediction equations the

sensitivity with respect to estimation errors is plausible. OCEexhibits the same

sensitivity problems because the computation of the course error is carried out exactly
in the same way as by PCE

Finally it is noted that the range and range-rate estimates are not influenced by the

heading error as seen from figures 2.6.15a/b. This demonstrates the decoupling of y2
and y4 from y5 for zero target maneuvers as mentioned in section 2.5.
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MISSILE AND TARGET POSITION
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MISSILE AND TARGET POSITION
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MISSILE AND TARGET POSITION

T.TRAJ. A4 JOB Y3213YK

DATE : 23/08/86

G.LAV . 3 TIME . 18.14.59.

FILTER- 0 FIGURE:

O MISSILE

A TARGET

6000

LOS-RATE

T.TRAJ. A4 JOB : Y3213YK

DATE : 23/08/86

G.LAV : 3 TIME . 16.14.59.

TILTER: 0 FIGURE.

4 5

TIME IS]
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MISSILE AND TARGET POSITION
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2.6.4.5 Summary

The simulation results obtained in this section confirm the conclusions of the

observability analysis. They also reveal the sensitivity of the tracking algorithm with

respect to initial estimation errors in certain intercept scenarios. Because the sensitivity

problems are linked to observability of the target maneuver with respect to the

bearing rate, they can only be avoided if additional information is available by

measurements complementary to the bearing rate (for example range or range rate)

enhancing observability of the target motion along the LOS. Nonetheless the guidance

law PE has been found applicable in conjunction with the tracking filter because only

the observable part of the target maneuver is used. With the information required for

target maneuver compensation made available by the tracking filter the main obstacle

to the realization of PEis in principle overcome (see section 1.3.6).

The main drawback of the present form of the filtering algorithm is its restriction to

constant target maneuvers. In the next section an adaption scheme will be derived that

allows tracking of time-varying target maneuvers.

2.7 An Adaption Scheme for Tracking Time-Varying Target Maneuvers

The BTA is based on the assumption that the target heading rate is constant The

extrapolation equations (2.4.30 - 34) are exact only if

z6 = 0 (2.7.1)

according to (2.4.280-

Assume that the true target maneuver is given by

z6 = 8(t) (2.7.2)

Let z (k+1) denote the propagated states computed by the filter based on (2.7.1) and

z(k+l) the exact values associated with (2.7.2). Thus there will be a propagation error
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pz(k+1) = z°(k+1) - z(k+1) (2.7.3)

The error pz in the cartesian states z translates to an error py in the polar states y via

(2.6.1). Filter divergence is likely to occur if py is not taken into account for covariance

propagation in (2.1.11) because the accumulation of propagation errors may result in a

violation of (2.6.34). This is demonstrated by applying the tracking algorithm to

intercept scenario 2 of section 1.3.5.2. The target heading rate in this scenario is given

by (see equation 1.3.70):

YT(t) = 0 0 < t < te (2.7.4a)

YT(t) = —[1 - exp(—1) ] t > te (2.7.4b)
VT V

with

aTQ = 6g, vT = 270 m/s, te = 2.5 s
, t^ = 0.1 s

The simulation results are shown in figures 2.7.1/2. While the initial estimation error

in y, (= yt) is corrected in [0, tj (figure 2.7.2), the filter fails to track the acceleration

jump at t = te because the propagation errors due to the sudden change of y6 exceed

the error level given by p66 (figure 2.7.2b).

In the following an adaption algorithm is derived that allows correction of the error

variances in such a way that (2.6.34) is satisfied.

2.7.1 Covariance Matching

The propagation errors produce inconsistency between the error statistics computed

by the filter and the true error statistics. Since the actual estimation errors are of

course unknown the only means of obtaining information about their statistics is by

analyzing the measurement residuals. Comparison of the residual statistics predicted

by the filter and their "true" statistics obtained from a data window of N measured

residuals allows to reestablish consistency between the computed and measured error

statistics by appropriate covariance correction. This procedure is known as covariance

matching [75,78,79].
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Covariance matching can be used for adaptive estimation of the input noise Qas well

as the measurement noise S. Q acts on P via the propagation equations (2.1.11)

whereas S appears in the update equations (2.1.19). An application of adaptive

measurement noise estimation for homing missiles is reported in [80]. The purpose

here is to stabilize the tracking algorithm in the presence of propagation errors

suggesting covariance matching by adaptive Q-estimation. The relation between Q

and the propagation errors is established from the consistency requirement mentioned

above.

Consider the linear measurement equation

m(k) = C(k) y(k) + s(k) Rp (2.7.5)
C = p x n - measurement matrix where n = dim(y)

s(k) ~ N(0, S(k)) measurement noise

According to (2.1.20) the measurement residual associated with (2.7.5) is given by

r(k+l)= m(k+l)-m(k+l) =

= C(k+1) [y(k+l) - y(k+l/k)] + s(k+l) (2.7.6)

Let e denote the estimation error (2.1.21) in the absence of propagation errors.

Hence, the exact value of y at time t^ , , is:

y(k+1) = y(k+1/k) - e°(k+1/k) - py(k+1) (2.7.7)

Substitution of (2.7.7) into (2.7.6) yields:

r(k+1) = - C(k+1) [e°(k+1/k) + py(k+1)] + s(k+1) (2.7.8)

For further analysis a stochastic model of the propagation errors is needed. Therefore

the following assumptions are made:

i) E{py(k+1)} =0 (2.7.9)

ii) EleV+l/^py^k+l)} =o (2.7.10)

iii) E {py(k) s^)} =0 V k, j (2.7.11)

Assumption i) is motivated by the desire to design an adaption scheme that results in

compensation of the propagation errors in the update equations. Hence one is

interested in keeping the measurement residuals bias free.
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From (2.7.8-11) follows:

M(k+1): sEWk+^rfa+l)} =

= C(k+l)P°(k+l/k)Ct(k+l) +

+ C(k+1) E{py(k+1) pyVk+1)} Cl(k+1) + S(k+1) (2.7.12)

where P°(k+1/k) = E{e°(k+1/k) e0t(k+1/k)} (2.7.13)

is the solution of (2.1.11) with Q = 0.

The residual covariance predicted by the filter is:

M°(k+1) = C(k+1) P°(k+l/k) C*(k+1) + S(k+1) (2.7.14)

Matching M and Mrequires correction of P with

Q(k+1) = E{py(k+l)pyt(k+l)} (2.7.15)

and the corrected value of P becomes:

P(k+1/k) = P°(k+1/k) + Q(k+1) (2.7.16)

(2.7.15) is the desired relation between Qand py. An equation for Q(k+1) is obtained

by substituting (2.7.14/15) into (2.7.12) rendering:

C(k+1) Q(k+1) Cl(k+1) = M(k+1) - M°(k+1) (2.7.17)

Since M(k+1) is unknown it is replaced by the sample covariance of the N most

recent measurement residuals

_

k+1

M<k+l) = -±- £ W*1® (2'7-18>
^i-k+l-N

Thus one obtains:

C(k+1) Q(k+1) Cl(k+1) =: M(k+1) - M°(k+1) (2.7.19)

(2.7.19) is a set of p equations for the -2-(n+1) unknown elements of Q(note that Qis

symmetric and positive definite). For the tracking problem discussed here (2.7.19) is a

scalar equation (p=l) and the filter dimension is n = 6. Therefore, additional

conditions are necessary to determine Q. In view of (2.7.15) this amounts to adding

further specifications to the stochastic model of the propagation errors.
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2.7.2 Stochastic Model of Propagation Errors

In order to reduce the number of unknown parameters in the stochastic model (2.7.15)

an approximate relation between the variances associated with the components of py

is established. For this purpose an upper bound for the propagation errors produced

in the sampling interval ly. = [^ Ht+l^ ^ derived- From (2.7.1-3) follows that the

propagation error associated with z6 in Ik is given by:

pz6(r) = |g(tk+(r)da (2.7.20)

Hence

where

From (2.7.21) follows:

T

|pz6(r)| < 11^+ ,)| da < y r
.

(2.7.21)

0

Smax^o^f^KH <2-7'22)

|pz6(k+l)|< 8maxT: = M6(k+1) (2.7.23)

T = tk+1-tk (2.7.24)

For any given value 0 < p, < oo the target maneuver that maximizes I pz6(r)| is

&(\+ <0 = «(<r) M6(k+1) (2.7.25)

Therefore an upper bound for the remaining components of pz is obtained by solving

(2.4.28) with zfi from (2.7.2) and g from (2.7.25). The solution is easily found by

replacing z6(k) with z6(k) + ^ in (2.4.30-34) and is of the following form:

z(k+l) = fz[ z°(k),.... z°(k), z°(k) + M6(k+1), uM(k+l)] (2.7.26)

Substitution of (2.7.26) into (2.6.1) yields:

y(k+l) = TOyz[z°(k),..., z°(k), z°(k) + M6(k+1), uM(k+l)] (2.7.27)
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Expansion of (2.7.27) in terms of p, using y6 = z6 according to (2.3.5/8) renders:

0
3TO Jz°(k),uM(k+l)]

y(k+l) * TO [z°(k), uM(k+l)] + & --^
M (k+i)

a yg(k)

Observing that

(2.7.28)

TOyz[z°(k). uM(k+l)] = y°(k+l) (2.7.29)

the propagation errors py are found to be

py(k+l) ss -

dy (k+1)
M6(k+1) (2.7.30)

3y°(k)

Note that (2.7.30) is valid for the target maneuver (2.7.25) only. Since this maneuver

maximizes the extrapolation error (2.7.30) yields the first approximation of the upper

bound of pyJ:

|py;(k+l)| s b.(k+l) ii,Qa+l)\
,

i = 1,..., 6 (2.7.31)
I * imax l ° l

ay?(k+i)
with b.(k+l) = (2.7.32)

ay°(k)

According to (2.7.9) it is assumed that

py6(k) ~ N[0, q6(k)] (2.7.33)

Using (2.7.31) the stochastic properties of py., i = 1,..., 5 can now be approximated in

terms of (2.7.33). Noting that

b6 = 1 (2.7.34)

q^ is approximated by:

q6 = % (2.7.35)
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With (2.7.35) the estimated variance associated with pyj is of the form:

qi = E[py2]= b^ (2.7.36)

Since (2.7.31) does not allow for conclusions about the cross-correlation between the

components of py, the py^ are modelled as uncorrected processes yielding:

E {pyj(k) pyj(k)} = 0 V i * j; i, j = 1,.... 6 (2.7.37)

(2.7.36/37) with (2.7.10) and (2.7.15) result in:

Q(k+1) = diag[q.(k+1)] = (2.7.38a)

=diag[b2(k+l)]q6(k+l) (2.7.38b)

For the computation of b. the values of y (k) must be known. Because the exact values

A

are not available they are replaced by their estimates y(k/k). Hence one obtains from

(2.7.32) with (2.1.9/12):

3y:(k+l/k)

bj » —l- = w-6(k+1, k) (2.7.39)

ay6(k/k)

Substitution of (2.7.38) into (2.7.37) renders finally:

Q(k+1) = diag [ w?6(k+l, k)] q6(k+l) (2.7.40)

Discussion:

(2.7.40) represents the stochastic model of the propagation errors. The —(n+1)

unknowns in (2.7.15) have been replaced by the single unknown quantity q^.
Covariance matching has therefore been reduced to the determination of q^ from the

scalar equation (2.7.19).

In contrast to (2.7.37) the py. are highly correlated. The cross-correlations depend on

the target maneuver and have been used to compute the variances q, associated with

the maneuver (2.7.25). Due to the special choice of this maneuver the true variances

are bounded by q,.
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Neglection of the cross-correlations in Q is necessary because the actual target

maneuver is unknown. With (2.7.37) the single "noise"-source py6 is replaced by n

uncorrelated noise channels. Consequently, filter performance is affected only in so

far as the variance estimates computed by (2.1.11/19) will be conservative. This is

desirable because it enhances robustness with respect to other modeling error sources

such as changing target velocity vT<

2.73 The Adaption Algorithm (AA)

In the following the computation of Q(k+1) according to (2.7.19) and (2.7.40) is

summarized. Some precautions have to be taken in order to ensure that Q remains

positive semi-definite according to (2.7.15) and to keep the variances q. bounded.

For bearing-rate only measurements according to (2.3.10) the measurement matrix is:

C = [10 0 0 0 0] (2.7.41)

Inserting (2.7.41) into (2.7.19) renders:

qx(k+l) = M(k+1) - pn(k+l/k) - S(k+1) (2.7.42)

From (2.7.36/39) follows:

q,(k+l)

q6(k+l) = —- (2.7.43)

wj6(k+l,k)

and Q may be computed from (2.7.40). In order to ensure that Q remains positive

semi-definite adaption is carried out only if q^^ is positive. Therefore q, is computed

as follows:

qx*(k+1) : = M(k+1) - pn(k+1/k) - S(k+1) (2.7.44)

qx(k+1) = max[0, qx'(k+1)] (2.7.45)

If w16 in (2.7.43) tends to zero Q becomes indefinite. This situation occurs if the

heading rate y6 is unobservable (see section 2.4). Due to (2.7.40/43) the error

variances then grow without bounds, indicating complete uncertainty in the state

estimates. This is physically reasonable because no information about the propagation
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errors is available in the measurements. Typically, conditions with (nearly) zero

sensitivity w16 occur during short periods only, because of maneuvers and the

changing relative geometry. Hence, it is desirable to avoid unrealistically high values

of p.. during these intervals in order to ensure convergence of the filter on subsequent

arcs with improved observability. A straightforward approach is the limitation of q^ by

q6max in (2-7.43) and the suppression of adaption if p66 crosses an upper bound

p66max. With this modifications one obtains:

maxfO.qjXk+l)]
q6(k+l) = min{q6max, } , ifp66 < p66max (2.7.46a)

wf6(k+l,k)

q6(k+1> = °
•

if P66 * P66max <2/M6b)

%max is a measure of the maximum possible propagation error in [tj,, t^+1]
associated with the target heading rate. It is determined by the target's maximum

heading angle acceleration y6 which is related to the dynamics of the lateral

acceleration via (2.3.3). V^max approximates the maximal quadratic estimation error

in y6 and is a tuning parameter of the adaption algorithm.

In summary the adaption proceeds as follows:

step 1 (prediction):

- compute propagated state from (2.1.9) and the measurement residual r(k+l)
according to (2.7.6)

- compute predicted covariance matrix P (k+1/k) from (2.1.11)

step 2 (matching):
- compute M(k+1) according to (2.7.18) with r(k+1) known from step 1

- compute q1 '(k+1) from (2.7.44)

- compute q6(k+1) from (2.7.46) and Q(k+1) from (2.7.40)
- compute P(k+1/k) from (2.7.16)

table 2.7.1: adaption scheme
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Remarks:

The output of the adaption algorithm is the matched covariance matrix P(k+l/k)

which is input to the update equations (2.1.15/19). Hence the propagation errors are

accounted for during update.

From the equations (2.7.44/45) it follows that the variance S of the measurement

noise determines the sensitivity of the adaption algorithm with respect to the

propagation errors: According to (2.7.46) adaption is carried out for positive q,' only.

For large values of S q^ is positive only for large values of M. Hence substantial

propagation errors are tolerated without adaption which may result in filter

divergence. In other words, increasing S decreases the sensitivity of the adaption

scheme. If S is low adaption is activated at low error levels (high sensitivity) resulting

in high values for q. and p.j which may result in a loss of estimation accuracy.

In view of its influence on the adaption algorithm S may be regarded a tuning

parameter (especially if the true measurement noise in unknown). The selection of S is

a trade-off between sufficient sensitivity necessary to adapt to changing target

maneuvers and estimation accuracy.

The influence of each new measurement residual on Mis inversely proportional to

N-1 (equation 2.7.18). Hence, the adaption scheme reacts slowly to changing target

maneuvers if the data window used to compute Mis long. Therefore, for fast adaption
N should be choosen low. However, statistical significance of Mmay be lost if only

few residuals are taken into account in the averaging process (2.7.18). The "optimal"

value for Nhas to be found by experiments.

The statistical significance of M is also determined by the length of the sampling

period T. Because the innovations process is instationary the current statistics of the

measurement residuals at tk+1 can only be approximated by Mfor small T. T is,

however, constrained by the computing time required to solve the filter and adaption

equations. Motivated by the experiences in section 1.4 singular perturbation theory

will be applied to the tracking problem in the next section in order to reduce the

dimension of the filter. In this way a substantial reduction of computing time can be

achieved.



193

2.8 A Singularly Perturbed Adaptive Tracking Filter

In this section an adaptive tracking algorithm for maneuvering targets is developed.

The algorithm is based on the BTA of section 2.6.3 and the adaption scheme derived

in the previous section. Advantage is taken of the time scale separation revealed in

section 1.4.4. It was shown that the dynamics of the missile heading angle are

decoupled from the missile-target relative motion in many scenarios. The same may

be expected for the target heading angle. This is confirmed by the scaling of the

tracking problem in the following section. Due to the time scale separation, two filters

are obtained: a high dimensional filter associated with a slow time scale and a low

dimensional fast filter. The low dimension of the fast filter allows high sampling rates

as required for adaption because the number of computations in the fast time scale is

considerably lower than for the BTA.

2.8.1 Scaling of the Tracking Problem

A scaled representation of the tracking problem is found by introducing dhnensionless

variables () and appropriate reference values ()max in an analog manner as was done

for the intercept problem in section 1.4.4:

vl = yx Vmax (2-8-la)
*

.

y2 = y2Rmax (2.8.1b)

y3 = y3 ''max (2-8'lc>

%=%amax <2-8-2a>

aTR= aTRamax (2.8.2b)

t=rtr

°': =
^

= t^; <>=-£

_d_
dr

y4 = y4Rmax (2.8.1d)
*

y5 = y5 TTmax (2.8.1e)

y6 = y6 TTmax (2.8.10

*

aSP= a<pamax (2.8.2c)
*

aR= "R^ax (2.8.2d)

(2.8.3)

>=-£ (2.8.4)

Substitution of (2.8.1-4) into (2.5.7) yields:
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* *

*
1

aT*~ S9
1

yl y2

y = _L_ _L2—I_ - Jl- 2 -i-i- (2.8.5a)
'11 * e12

y4 y4

y\ = ^(aTR-aR)+-4-y4yl (2-8'5b>

^3 = 7"?! (2.8.5c)

f4 =

7" y2 (2-8-5d)

1
*

y'5 = 7-y6 (2.8.5e)

h
=

T~ W (2-8.506
"

e6
'tf

with a-p and aj.R according to (2.5.8a,b) and figure 2.4.1 (see p. 127), and

max 9max

9

R.

£11
=

amaxlf

£12
=

max ,

~ l

RmaxV

e21
=

Rmax
,

~ l

a.*,„„ tr

R

max

22
"

lf ^'max

vmax
£3=

t tf

1
~1

Vmax

max
c. =

4 t

tf

1
-i

Rmax

(2.8.6a)

(2.8.6b)

(2.8.6c)

(2.8.6d)

(2.8.6e)

(2.8.60



195

=
JlES* 1 0.3 1 (2.8.6g)

YTmax

e6
=

Tmax -J—« l (assumption) (2.8.6h)
V 6max

The numerical values for t are obtained with the following reference values, which are

"typical" for the scenarios investigated here:

amax = 10S = 100m/s2

Vmax = °-ls"1 a01s_1

Rmax = 5000m

Rmax = 50° m/s

tf = 3 s 9 s

max
~

f

Rmax

9max
.

lf

?max

*Tmax~(a3 ^Tmax'f
Discussion

Comparison of the scaling factors t reveals that the states y* and y6 are candidates

for selection as fast variables compared to y2,..., yA. The bearing rate y,is composed

of a fast and a slow part according to:

yl = yll + y12 (2-8-7)

with

*

» a- - a

7, _
ly

£llyll
=

~1Z
~ fast part (2.8.8)
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* *

yl y2
£12 y'l2 ~~2 slow part (2.8.9)

y4

Note that y3 is a slow variable mainly because the guidance law tries to keep the

LOS-rate low resulting in only slow changes of the bearing angle. Hence the following

scaling is suggested:

fast states: y-Q, y5, y6 (2.8.10)

slow states: y12, 3^' v3» ?4 (2.8.11)

If it is feasible to assume that the slow states remain constant in the fast time scale

(which is not obvious as discussed in section 2.8.2) the dimension of the fast filter is

only np = 3 according to equation (2.8.10) instead of n = 6 in the BTA. The

substantial reduction of computing time becomes obvious by observing that the

transition matrix Wrequired for propagation of the covariance matrix according to

(2.1.11) has 36 elements for the BTA but only 9 elements for the fast filter based on

(2.8.10).

Finally it is noted that the design of a fast filter is possible only if the measurement

equation contains information about the fast states in the fast time scale, i.e. the fast

subsystem must be boundary layer observable. Fortunately this observability

condition is satisfied (with the restrictions discussed in section 2.4) because the fast

states appear in the fast part of the bearing rate as seen from (2.8.8) and (2.5.8). Note

that for bearing only measurements the fast subsystem is not observable in the fast

time scale because the bearing angle is not part of the fast state.

Before designing a multiple time scale filter based on the scaling given by (2.8.10/11)

some general remarks on the application of singular perturbations in filtering theory

are necessary.

Remark:

The scaling of the fast states is due to the missile-target relative acceleration according

to (2.8.8). Since the relative acceleration occurs in (2.8.5b) as well one might split y2 in

a fast and a slow part, too. It turns out, however, that the dynamics of the fast states
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(yir y5' y6^are decouPled from y2 ^ *e fast time scale-Since ?2 knot measured ^

same applies to the associated reduced filter. Therefore a split of the dynamics of y2 is

of no advantage and y2 is treated as a slow variable in order to keep the dimension in

the fast time scale minimal. Hence the scaling (2.8.6c) is more a matter of convenience

rather than a physical fact In cases where y2 is measured a split of the associated

dynamics is justified because it provides additional information in the fast time scale

thus enhancing observability of the fast states.

2.82 Singularly Perturbed Stochastic Systems

One of the main results of SP-theory for deterministic systems is the following

procedure to construct the zero-th order approximation to the solution of a singularly

perturbed system (see section 1.4.3):

a) Solve the reduced problem in the time scale of the slow variables. The fast variables

may be considered quasistationary in this time scale provided that the fast

subsystem is stable.

b) Solve the boundary layer equations in a stretched time scale. In this time scale the

slow variables remain constant

In the following, some comments on the applicability of the above procedure to

stochastic systems are made.

2.8.2.1 Linear Systems

Consider the linear system

n,

x = An x + A12 z + Bx u R
l

(2.8.12)
ru

ez = A^ x + A22 z + B2 u R
z

(2.8.13)

u~N(0,Q) RP input noise (2.8.14)

All matrices may be time variant and A22(t) is assumed to be stable for all t. As usual

t denotes a small perturbation parameter. Inner and outer solution will be denoted by

(f and ()°, respectively as introduced in section 1.4.2. The autocorrelation function of

z is defined as



equationslayerboundarytheyields(2.8.12/13)to

dt*dr
(2-8.24)7^:=-T=(),:

(2.8.23)-=t

transformationscaletimetheofApplication

0(e).areapproximationscorrespondingthesystemsdeterministicforthatNote

(2.8.22)0(fe")+z°=Z

(2.8.21)O(fT)+x°=x

bygivenissolutionexacttheandsolution

outerzero-orderthebeweenrelationThe[82]).infoundbecanproofrigorous

(a(2.8.12)inz°withzreplacingbyx°ofcomputationthejustifying(2.8.19/20)

ofsensetheinz°solutionquasistationarytheversusconvergeshOzforHence,

(2.8.20)z°-z=ezwhere

t-At

zz

(2.8.19)=0(t,a)doI
£-»0
lim

t+At

that:[82]inprovedisitMoreover

zz

(2.8.18)°(U)E=0(U)E

thatshowneasilyisit(2.7.17)Using

(2.8.17)uA^B2-xA^A^-=z°

solutionquasistationarytheyields(2.8.13)in0=eSetting

(2.8.16)

a(t-*)aJB£A^BjQ+a£A^^(u)A^EAg
=

^(t,a)
I

:
=

^(U)

£

lim

£-0
2.•

=

-AWL
A"t^r.t*-ln,A-tNAt/*^*a-1^°,.

that:[81]shownbecanIt

(2.8.15)EWtfeV)]=JUo):I

198
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x*= £Ajj X + £A12 z + eBj U (2.8.25)

z'= A^ X + A22 z + B2 u (2.8.26)

For deterministic u (2.8.25) yields constant x in the boundary layer as t tends to zero.

However, this is not true if u is a white noise according to (2.8.14) because u has

infinite variance. Further conclusions may be obtained by analyzing the Ito-

differential equation associated with (2.8.12):

dx = An x dt + A12 z dt + Bxdw (2.8.27)

with

E[dw] = 0 (2.8.28a)

E[dw dwl] = Qdt (2.8.28b)

With (2.8.27) the covariance matrix of dx becomes:

E[dx dx1] = AUP„ Aln dt2 + AnPxz A\2 dt2 +

A12 Pxz All dt2+ A12Pzz A12 dt2 + BlQ Bldt
(2.8.29)

with Pxy = Z (U) (2.8.29)

According to (2.8.23) E[dx dx ] may be expressed in the fast time scale by substituting

dt = £dT (2.8.30)

into (2.8.28) yielding:

E [dx dx1] = «2AnPxx Aln dr2 + e2AnPxz A^2 dr2 +

<2a12 Pxz Ail d^+ e2A12Pzz A12 d^ + *B1°- Bl d*

(2.8.31)

Letting t tend to zero one obtains:

lim E [dx dx1] = 0 in the boundary layer (2.8.32)
£-*0
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Conclusion:

In the sense of (2.8.32) the slow variables may be considered constant in the fast time

scale. From (2.8.32) follows:

E [dx dx1] = 0(£) as £-»0 (2.8.33)

Hence for the inner solutions obtained from setting dx = 0 in (2.8.25/26) one has:

x = x* + O(fl) (2.8.34)

z = z1 + O(fT) (2.8.35)

The results of the above discussion may be summarized as follows:

The procedure for constructing the zero-th order approximation to the solution of a

singularly perturbed deterministic system may be applied to linear stochastic systems

(2.8.12-14). However, the notions "quasistationary" and "constant" have to be

interpreted in the sense of (2.8.18/19) and (2.8.33), respectively. Therefore the

resulting approximations are of order 0({e) rather than 0(e).

For application of the above result to the filtering problem consider (2.8.12-14) with

the measurement equation

y = Cxx + C2z + s (2.8.36)

s ~ N(0,S), E [u(t) s(t)] = 0 (2.8.37)

Determination of the (zero-th order) outer solution is done by setting t = 0 in (2.8.13)

yielding z° according to (2.8.17). Substitution of z° into (2.8.12) and (2.8.36) renders:

x°= [An - A12 A22A21] x° + [B1 - A12 A22B2] u (2.8.38)

y° = [C1 - C2 A2^A21] x° - C2 A^2B2 u + s (2.8.39)

Note that the noise input of the fast subsystem, B2u, appears as an additional

measurement noise in the outer solution. Defining

A0 = A^ - A12 A22A21 (2.8.40a)

B° = Bx - A12 A2^B2 (2.8.40b)

C° = Cx - C2 A22A21 (2.8.40c)

D° = C2 A22B2 (2.8.40d)
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the equations of the Kalman-filter associated with (2.8.38/39) become:

? = A°? + K°[y°-C0?] (2.8.41)

K^P^C01^0]"1 (2.8.42)

Pll = PllAOt + A° Pll + B°QBOt ' Pllc0t ^"lc° Pll (2'8-43)

with Pjx=E [(x-x^x-x0)1] (2.8.44)

and S° = S + D°QDot (2.8.45)

S° is the variance of the measurement noise in the outer solution which includes the

contribution of u according to (2.8.39).

It can be shown [81,82] that the exact Kalman filter associated with (2.8.12-14/36)

converges versus (2.8.41-45) as t tends to zero.

In the fast time scale (2.8.25/26) with (2.8.32) and (2.8.36) yield for t = 0:

z1' = A^ x0 + A22 z1 + B2 u (2.8.46)

y1 = Cx x0 + C2 z1 + s (2.8.47)

x0 = x(0) (2.8.48)

The filter associated with (2.8.46-48) is:

zh = A21xJ| + A22 z* + KjlZ-CjXg-CjZ1] (2.8.49)

K2= P1^ C^S'1 (2.8.50)

P22' = *22 A22 + A22^2 + B2°-B2 " ^2 C2S C2*22 (2-8.51)

The filter (2.8.49-51) is denoted as fast filter in the sequel. Again it can be proved

[81,82] that in the boundary layer the exact filter converges versus the fast filter as t

tends to zero.
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Conclusion:

The zero-th order approximation of the Kalman filter associated with (2.8.12-14/36)

may be constructed by first taking the limit of (2.8.12-14/36) as £-*0, viz. deriving the

differential equations of the slow system (2.8.38/39) and of the fast system (2.8.46/47)

and then designing the filters associated with each subsystem. The original filter of

dimension n = n^ + n2 is split into two lower order filters with dimensions n^ and n2,

respectively.

Based on this procedure and the scaling given in (2.8.10/11) a multiple time scale filter

for the tracking problem is designed in the subsequent sections.

2.8.2.2 On the Applicability of the SP-Concept to Extended Kalman Filters

The results found in the previous section are valid for linear systems with

deterministic system, control, and measurement matrices. For linearized stochastic

differential equations these matrices and hence covariance matrices and filter gains

are themselves stochastic quantities. Therefore, the conclusions obtained for linear

systems do not apply to the design of extended Kalman filters. Especially, it cannot be

expected that the EKF associated with a scaled nonlinear system converges versus the

reduced filters obtained from the decoupling of slow and fast states prior to filter

design. In other words: The operations "lim" and "filter design" are not

£-0

commutatitve for nonlinear systems. Nevertheless it may be feasible to take advantage

of the time scale separation and to carry out filter design for the decoupled systems.

Although the resulting slow and fast EKFs are not the 0(fT)-approximation to the

exact EKF, stability of the design is not excluded. Also, it is not clear whether there is

a loss of "optimality" because the exact EKF is not optimal in the sense of a

miminal-variance filter either. The validity of the SP-approach has to be verified after

filter design by checking filter performance by means of simulations.

A conceptual difficulty of decoupled filter design for the tracking problem is due to

the fact that the fast subsystem is unstable. This is evident from equations (2.8.5e,0-

Hence, no quasistationary solution y^, y2, y^ exists, implying that order reduction

in the slow time scale is impossible. However, in the fast time scale the slow variables

are constant (in the sense of 2.8.32). Therefore a reduced order fast filter FF with state
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yF = (y1.y5,y6) (2.8.52)

may be designed. The information produced by FF can be used to decouple the

estimation of the slow variables from the dynamics of the fast subsystem. The basic

approach consists of using a full order slow filter (FS) with state vector

yS = (yl» y2« y3' y4» y5' W (2.8.53)

(which is essentially the BTA) in the slow time scale and performing covariance

matching with respect to the residual statistics in the fast time scale. In this way FS

may be stabilized in the presence of variable target maneuvers without its sampling
rate being dictated by the dynamics of the fast subsystem. Essentially the fast filter is

used for prediction of the anticipated propagation errors in the slow time scale. Details

of the procedure are discussed in the subsequent sections.

2.83 Synthesis of the Multiple Time Scale TracldiigFffler (MTSTF)

The MTSTFis a combination of the following modules: A slow filter with the state

vector (2.8.53), the measurement module (section 2.6.2), the adaption algorithm

(section 2.7.3), and a fast filter with the state vector (2.8.52). The only one of these

modules that has not yet been discussed is the fast filter. In the following the

equations of the fast filter are derived. Subsequently questions of linking and

synchronization of the different modules are adressed. For clarity the main parameters

associated with each module are listed below:

FS (slow filter):

state : yg = (yv..., y6)
covariance matrices : Pg, Qg, Sg

s s
missile, target maneuver: uj^, Uy

sampling period :TS

FF (fast filter):

state

covariance matrices

: yF = (yr y

Pp QpSp

missile, target maneuver

sampling period

F F

:TF
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MM(measurement module):

measured bearing rate : m

measured missile maneuver: uM'

AA(adaption algorithm):

(applied to FF only)

input data : yF, ys

output data: Qp

2.8.3.1 Equations of Fast Filter (FF)

Based on the time scale separation assumed in (2.8.10/11) the scaled equations of the

tracking problem are formally:

yl y2
y19 = -2 (2.8.54a)

y4

y2 = a^
-

aR + y4 y\ (2.8.54b)

y3 = Yx (2.8.54c)

y4 = y2 (2.8.54d)

£

£

•

_

vTy6cos(y5-y3)-a9
n--..

y11 =
(2.8.55a)

yT4

y5 = y6 (2.8.55b)

t y6 = f6(t) (2.8.55c)

Using the time scale transformation (2.8.4) the boundary layer equations become:

dy12 = dy2 = dy3 = dy4 = 0 (2.8.56)

V{ = yu* =

-7- [vT y6 cos(y5 - y^) - a^] (2.8.57a)

yT4

y5' = y6 (2.8.57b)

y6* = %(r) (2.8.57c)

With (2.8.7) the measurement equation becomes:
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m(r) = yx(r) + w = Cp yp + yj2 + Sp (2.8.58)

with Cp = [1,0,0] (2.8.59)

sF
~ N(0,SF) (2.8.60)

Recall that ()° denotes the outer solution which is constant in the boundary layer.

Let Tp denote the sampling period of FF. Since the target maneuver is unknown it is

assumed as in the BTA:

f6(r) = 0 (2.8.61)

The propagation equations of y5 and y6 in the sampling interval L = [t, t+,] then

become:

y5G+l/J) = y50/j) + TF96(j/J) (2.8.62)

y6(i+i/j) = y60/j) (2.8.63)

with

TF = tj+1-tj (2.8.64)

Since Tp is assumed to be very small (which is one of the design goals) propagation of

the bearing rate is approximated by an Euler step rather than using the exact

equations as was done for the BTA. In this way the computational burden for solving
the propagation equations in the fast time scale is further reduced. With (2.8.7),

(2.8.56), (2.8.57a) one obtains:

y]G+l/J) = yiO'/J) + ~- (vT y6(j/j)cos[y5(j/j) - y£] - a^} (2.8.65)

y4°
p

(2.8.65) may be simplified if it is evaluated in a reference system Z = (Xp yp) given

by

= 0 (2.8.66)A
ZF

q
in a similiar manner like Z was defined in section 2.6.1/2. (2.8.65) then becomes:
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yiO+l/J) = yiO/J) + ^{TFvTy6a/J)cosy5(j/j) -uM4(j+D} (2.8.67)

y4°

with Uw4according to (2.4.32d).

The transition matrix associated with (2.8.62/63/67) is:

WpO+U)
r

dypO'/j)

--z£-y&'i>*nVT&i)
VTTF a

~~ cosysQ/i)

y? y4°

(2.8.68)

With (2.8.68) the propagation equations of the error covariance matrix Pp of the fast

system are:

"PF11 pF15 pF16

0+l/J) =Pp0+1/J)= pF15 pF55 pF56

pF16 pF56 PF66

rt/,

where

= WpO+l. J)PpO/j) WpO+l, j) + QpQ+l)

QpO+1) = diag[qF1a+1), qF50+1), qF60+D]

(2.8.69)

(2.8.70)

denotes the output of the adaption algorithm according to (2.7.40) in the fast time

scale (see also section 2.8.3.5 ).

Substitution of (2.8.58/59) into (2.1.16-18) yields the following update equations in

the fast time scale:
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filter gains:

'gnO+DX /Ppii(J+1/J)\

^60+l)/
FF11U F

\Pf160+1/»/
state update:

y\(j+l/j+l) = yiO+1/J+D + giO'+D I (2.8.72a)

y5(J+l/J+l) = y5a+l/J+D + 850+1)1 (2.8.72b)

y60+i/j+i) = y60'+i/J+D + g60+i)l (2.8.72c)

I = m(j+1) - yj(j+1/j) innovations process (2.8.73)

covariance update:

Ppud+l/J+1) = PpnO+l/J) (1-8x0+1)) (2.8.74a)

Pp55(j+l/j+l) = PF55a+l/J) - g50+l)PF15a+l/J) (2.8.74b)

pF66o+i/j+i) = pF66a+i/j)-g6a+i)PF16o+i/j) (2.8.74c)

PF150+1/J+1) = PF150+1/J) - 850+1) PpxjO+1/J) (2.8.74d)

PF160+1/J+1) = PF160+1/J) - g60+l) PpnO+l/J) (2.8.74e)

PF560+1/J+1) = PF560+1/J) - g50+l) PpieO+l/J) (2.8.740

Comparison of the equations of FF given above and the BTA reveals the substantial

reduction of the number of computations in the fast time scale.

The equations of FF are based on the assumption (2.8.61). Therefore the filter must be

adapted in the presence of variable target maneuvers. As discussed in section 2.7.1

adaption is carried out by appropriate selection of Qp in (2.8.69). Only the error

variances associated with yp are matched. Because the slow states are constant in the

fast time scale they are not affected by extrapolation errors in the fast states.

Summary:

In the fast time scale the states yp are estimated by the fast filter FF in conjunction

with the adaption algorithm AA (see section 2.7.3). Due to its low order this filter may

operate with a high sampling rate which is required for adaption and allows tracking

of rapid changes in the target maneuver.
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Changes of y which are parameters of FF are easily taken into account by updating

the equations of FF with the latest estimates obtained from FS in a simliar manner as

discussed for SP-guidance laws in section 1.4.6.1.

2.8.3.2 Adaption and Propagation in the Slow Time Scale

Consider the sampling interval Ifc = [t^, t^+J in the slow time scale, with

TS = tk+l"tk (2-8-75)

Assume that FF performs Ncycles in 1^ according to figure 2.8.1, hence

Tg = NTF (2.8.76)

> slow time scale

t> fast time scale

J(k) J(k)+1 J(k+1)-J(k)+N

figure 2.8.1: time scales of MTSTF

At lk+ltlie estimated propagation errors in I- measured by Qp according to (2.8.70)

are available for all j [J(k) + 1, J(k+1)] from FF/AA. Since the propagation errors

are modeled as a white noise sequence according to sections 2.7.1/2 the variance of

py6 (propagation error in y6) in 1^ is given by:

J(k+1)

qg6(k+l)= £ qp60) (2.8.77)

j=J(k)+l

It is noted that qg6 is the zero-th order approximation to the variance of py6 because

qp6 is computed for constant slow states. Adaption in the slow time scale can now be

carried out by simply solving the propagation equations of Pg with Qg computed

according to (2.4.70) and qg6 from (2.8.77).
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The estimates yF may be used to compute the target maneuver Uj0+1) hi L

according to (2.4.34) with

zmG) = ymG7J) I m= 5,6 (2.8.78)

The target maneuver in 1^ is then given by

J(k+1)

u|(k+l)= V u^O) (2.8.79)

j=J(k)+l

The accuracy of the propagated states in the slow time scale may be considerably

improved by using (2.8.76) for state propagation rather than assuming a constant

target maneuver in Ik.

2.8.3.3 Initialization of FF

The use of the target maneuver estimated by FF for state propagation in FS suggests

an order reduction in the slow time scale by regarding the fast states as parameters

known from FF. However, since there is no need to minimize the sampling period Tg
it is preferable to use the full order filter in the slow time scale allowing for periodical
reinitialization of yp and Pp with the corresponding estimates of FS. In this way the

fast filter may be prevented from diverging if the scaling assumptions are violated (i.e.
the slow states are not constant in the fast time scale) which may happen for large N.

Thus, the fast filter is used as a predictor for both propagation errors and target

maneuver in Ik, whereas FS may be interpreted as a corrector improving the accuracy

of the preliminary estimates obtained from FF.

Initialization of FF occurs in the interval I»^y The procedure includes updating the

parameter y°A used in (2.8.67/68) and reinitializing yp[J(k)/J(k)], Pp[J(k)/J(k)] with

the estimates found by FS. The best estimates associated with t^ are the updated
A

values ys(k/k) and Pg(k/k). These quantities are, however, not available within Ij^n
because the computing time required to solve the propagation and update equations
of FS is basically Tg. Since the solution of the state propagation equations requires

only few computations compared to covariance propagation it is assumed that the
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propagated states y(k/k-l) are available in Ij^n whereas the covariance matrix is only

known from the previous update. Hence FF is initialized as follows:

y° =y(k/k-l)

9[J(k)/J(k)] = ?(k/k-l)

PFij[J(k)/J(k)] = pgij(k-l/k-l) i,j = 1,5,6

(2.8.80)

(2.8.81)

(2.8.82)

2.8.3.4 Measurement Data Transformation

c

The equations of FS and FF are evaluated in the reference systems Z defined by
p

(2.6.6) and Z defined by (2.8.66), respectively. The missile maneuver uM' computed

by the measurement module is given with respect to the seeker system Z?. In order to

exchange data among the three modules, transformations to the appropriate reference

systems are necessary. They will be discussed in the followmg.

Consider the situation at time t = ^ + t, 0<t<Tf (figures 2.8.1/2). The

q
extrapolated states yg(k/k-l) are known with respect to the reference system Z (k-1).

p
For initialization of FF the slow states have to be known with respect to Z (k).

p

According to (2.8.66/80) Z (k) is determined by

y3(k/k-l)
ZF(k)

= 0 (2.8.83)

Since y^, y2, y4, and y6 are independent of the reference system and y3 is given in

(2.8.83) only y5 has to be transformed. From figure 2.8.2 follows:

y5[J(k)/J(k)]
ZF(k)

= y5[k/k-i]
ZS(k-l)

- y3[k/k-l]
ZS(k-l)

(2.8.84)

The measurement module renders the missile maneuver in I- with respect to Z (k):

<&i+D
Z^k)

= VCi+D (2.8.85)
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p p
In order to solve the propagation equation (2.8.63) uj^j must be transformed to Z (k).

<? s
The orientation of Z (k) with respect to Z (k-1) is given by the angle *(k) according to

(2.6.17) and figure 2.8.2. Hence, the orientation of Z^k) with respect to Z (k) is:

*p(k) = *(k)-y3[k/k-l]

For the missile maneuver in Z (k) follows:

ZS(k-l)

u
Mi+1

0+D

u
Mi+2'

0+D

= - TR[ip(k)]
ZF(k)

/uMi+l'0+D\

\^uMi+2'o+i)y
i = 0,1: j = J(k),...,J(k+l)-l

with TRaccording to (2.6.15)

(2.8.86)

(2.8.87)

CL-x,

*s(k)

Xg(k)

> xF(k)

xs(k-l)

figure 2.8.2: reference systems in the sampling interval ft\. t, J
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Equations (2.62/67-74) may now be solved at tj/£v+1. The maneuver terms

p F
UwO+1), UyO+1) are stored. For the computations in L+1 the measurement

module is reinitialized by resetting the integrators S^,..., S4 (see figure 2.6.2). The

contents of S5 remains unchanged for determination of Z (k). After termination of

the update equations of FF at W^̂ the equations of FS are solved in 1^. The total

missile and target maneuvers in Ik required for state propagation are obtained by

summing up the maneuvers in L :

J(k+1)-1

u|(k+l)= Y uJ^O+l) : K = M,T (2.8.88)

F F
Because u is given in Z (k) the maneuvers (2.8.88) must be transformed to the

reference system ZS(k) of FS. The orientation of Zs(k) with respect to ZS(k) is given

by the known angle |(k) according to (2.6.16). From figure 2.8.2 follows:

ACOO= «p(k) - «k) (2.8.89)

where £p(k) is known from (2.8. 86). A£(k) is the orientation of Z (k) with respect to

Z (k). Hence in Z (k) one obtains:

/u|. ^(k+1)
= -TR[A{(k)] ^1+i

ZF(k)zS(k) \ 4 !+*«>,

i = 0,1; K = M,T (2.8.90)

where the maneuver terms on the right hand side of (2.8.90) are known from (2.8.88).

With u and Qg known from (2.8.90) and (2.8.77), respectively, the equations of FS in

Ik can be evaluated. A summary of all computations in Ik is given in the next section.

2.8.3.5 Summary of MTSTF-Algorithm

In the following the sequence of computations carried out by the MTSTFin the

sampling interval 1^ = [t^, t^+1] is summarized. The cycle starts at time W-j+ t,

with t > 0. The following data are available:
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from measurement module: uM'[J(k)+l]
m[J(k)+l]

from slow filter: ys(k/k-l), Pg(k-l/k-l)

F(k), *(k)

step 1: Initialize FF:

a) Initialize parameter y4 and states yF according to (2.80/81/84).

b) Initialize covariance matrix Pp according to (2.8.82).

p
step 2: Compute missile maneuver in L with respect to Z (k) according to (2.8.87).

step 3: Solve propagation equations:

a) Propagate states according to (2.8.62/63/65).
A

Output are the propagated states ypO+l/J) and the residual rpO+1).
b) Propagate covariance matrix according to (2.8.69) with Qp = 0.

Output is Pp0+l/j).

p
step 4: Compute estimated target maneuver u£0+l) according to (2.4.34)

ZF(k)
and (2.8.78).

step 5: Adaption and update:

a) compute q^p from (2.7.46) and Qpfrom (2.7.40)

b) compute PpO+1/j) from (2.7.16)

c) solve update equations (2.8.72/74)

step 6: Initialize measurement module for next sampling interval I{, ^:

Sl = s2 = s3 = S4 = 0

IFj<J(k+l): j=j+l,GOT0 2

IF j = J(k+1): start slow filter

step 7: Reset MMfor next sampling interval Ik+^:

a)storef(tk+1,tk)
b) reset S^
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step 8: Determine missile and target maneuver in L,:

a) compute u^(k+1)
ZF(k)

and u|(k+l)
ZF(k)

from (2.8.88)

ZS(k)
b) compute u^(k+l) and Uj(k+1)

ZS(k)

step 9: Adaption in slow time scale:

compute Qg(k+1) from (2.7.40) with (2.8.75)

step 10: Solve propagation equations of slow filter.

Output is: ys(k+ 1/k), Pg(k+1/k)

step 11: Determine bearing angle at tj^, with respect to Z (k):

p
step 12: Determine reference system Z (k+1):

from (2.8.90)

{F(k+l) = ^(k+l)- y3(k+l/k)

step 13: Start FF at 1 with k = k+1

step 14: Solve update equations of FS.

ZS(k)

Output is yg(k+l/k+l) and Pg(k+l/k+l).
ZS(k)

c

step 15: Determine reference system for FS in Ik+,: Z (k+1)

{(k+l) = ^(k+l)- y3(k+l/k+l)

Ai(k+l) = {F(k+l)-{(k+l)
ZS(k)

y5(k+l/k+l)
ZS(k+l)

= y5(k+l/k+l)
ZS(k)

y3(k+l/k+l)

k = k + l

GOTO10

The signal flow of the MTSTFis depicted in the following figure.
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2.9 Simulations

In the following the performance of the MTSTFis tested. First, the influence of the

tuning parameters on the behaviour of the filter is demonstrated. Subsequently

guidance law performance with the MTSTFin the guidance loop according to figure

2.9.1 is investigated. For this purpose the miss distance obtained with exact and

estimated target information is compared for several mtercept scenarios. In view of

the discussion in section 2.6.4.4 only the guidance law PE (see section 1.3.5) will be

considered. The guidance loop is depicted in the following figure.

target motion

+

i

<pA
m,um

slow filter

measurement

module

cj r

i~

fast filter

missile motion
aa ,a,

a

al

- 1

•—c

w /V\
*

f'/'\
"

/V\

autopilot
&c guidance law

(2.9.1)

y<\ \i'i) * ygv'jj* yQ\}'J)

?• '

+

y2(k+1/k)

figure 2.9.1: guidance loop with MTSTF

Note that the guidance law operates in the fast time scale according to the SP-analysis

in section 1.4.5. In this time scale the estimates for y-^, y^, and y^ are obtained from

the fast filter while the estimates of y2 (which is the only required slow variable) are

delivered from the slow filter according to equation 2.8.80. Substitution of the

appropriate estimates into (2.6.36) yields:

ac(tj) = c[vTy60'/j)cosy50/j)- Aoy]0/J) y^ 1 (2.9.1)

The investigated intercept scenarios are grouped in five series A-E according to figure

2.9.2. The following parameters are fixed for all simulations:
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Vq = 270 m/s (initial missile velocity)

vT = 270 m/s (target velocity)

R = 3.5 km

(2.9.2a)

(2.9.2b)

(2.9.2c)

o^- R,LOS

M

figure 2.9.2: intercept scenarios

t>A

Two types of target maneuvers are considered:

Type P: periodical target maneuver

arr. = arj.QSin(2vi'+T))
with aT0 = 6g, v = 0.25 Hz

Type J: sudden change of target acceleration ("jump")

aT = 0; °<t^e
t-tc

(2.9.3)

(2.9.4a)

(2.9.4b)ap = aTQ[1 -exp(~—)] ; t>tQ

with ajQ s= 6g, ^ = 0.1 s

In all simulations the filter is intiaUzed with the following estimation errors:

e4(0/0) = 175 m(initial range error) (2.9.5a)

e5(0/0) = 0.1 rad (initial target heading error) (2.9.5b)

e6(0/0) = 0.1 rad/s (initial target heading rate error) (2.9.5c)

ey = 0.1 vT = 27m/s (velocity error according to equ. 2.6.33) (2.9.5d)

The variance of the LOS-rate measurement noise is:

S = 0.3 10"3 radV2 (2.9.6)
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2.9.1 Influence of the Tuning Parameters

According to section 2.7.3 the quantities N (or Tg via equation 2.8.76) and the

measurement noise variances Sp and Sg in the fast and slow time scale, respectively,

may be viewed as tuning parameters of the filter. Their influence on the behaviour of

the MTSTFis discussed in the following.

The sampling period Tp of FF is chosen 0.05s for all subsequent simulations. The

following "nominal" values of the tuning parameters yielded satisfactory estimation

accuracy in most of the simulated engagement scenarios:

Tij = 0.1(i.e.N = 2) (2.9.7a)

SJ = S (2.9.7b)

S| = 10 Sp (2.9.7c)

The simulation results summarized in table 2.9.1 illustrate the filter behaviour for the

nominal parameters (2.9.7) and deviations from the nominal values.

trajectory TS sF ss figure remarks

scenario: A (fig. 2.9.2)

target maneuver: P

(equ. 2.9.3)

name: AP

xs

10 Tg

Sp

Sp

bS

bS

2.9.3

2.9.4

nominal trajectory

increased Ts

scenario: A

target maneuver J

(equation 2.9.4)

name: AJ

rr.n

xs

rr, n

xs

rp
n

xs

Sp

0.1 sp

io sp

bS

bS

Ss

2.9.5

2.9.6

2.9.7

nominal trajectory

decreased Sp

increased Sp

scenario: C

target maneuver P

name: CP 0)3

0)3 CO

CO

Ss

0.1 Sg

2.9.8

2.9.9

nominal trajectory

decreased Ss

table 2.9.1: influence of the tuning parameters
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Remark:

As in previous sections the time histories of the filter states and variances are depicted

in a normalized scale. The associated dimensions are given in table 2.6.1 (section

2.6.4.2).

Discussion of results:

Comparison of the nominal trajectories depicted in figures 2.9.3a-c with figures

2.9.4a-c reveals the effect of an increased sampling period Tg. Estimation accuracy in

the slow time scale remains practically unaffected as evident from figures 2.9.3c and

2.9.4c. This is due to performing the propagation of yg using the target maneuver

estimated by FF according to (2.8.88) which results in high propagation accuracy even

for long sampling periods Tg. There is, however, a loss of estimation accuracy in the

fast states indicating a violation of the scaling assumptions.

Figures 2.9.5-7 demonstrate the influence of the tuning parameter Sp According to

section 2.7.3 this parameter determines the sensitivity of the adaption algorithm. In

figures 2.9.6a-c the simulation results obtained with Sp selected lower than the true

measurement noise variance S are shown. The sudden change of the target

acceleration at t = 2.5 s is "detected" and tracked. However, due to the low value of

Sp adaption is activated at low error levels resulting in high error variances (compare

figures 2.9.5c and 2.9.6c) and a loss of estimation accuracy (compare figures 2.9.5a/b

and 2.9.6a/b). Note that the adaption to changing target maneuvers is always delayed

because it starts only after the propagation errors exceed the level determined by Sp

If Sp is chosen much higher than S the adaption algorithm becomes insensitive. High

propagation errors are tolerated without adaption which takes place with a long delay

at t ss 5s (see figure 2.9.7c).

Finally, figures 2.9.8/9 show that filter divergence in the slow time scale may occur if

the noise variance Sg is choosen too low. The filter underestimates the accuracy of the

estimates of the slow variables (figure 2.9.9b). The necessity of selecting Sg higher

than the true measurement noise is plausible because the fast variables introduce

additional measurement noise in the slow time scale as indicated by equation 2.8.45.
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figures 2.9.3a,b
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figure 2.9.3c
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figures 2.9.4a,b
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figure 2.9.4c
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figures 2.9.5a,b
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figure 2.9.5c
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figures 2.9.6a,b
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figure 2.9.6c
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figures 2.9.7a,b
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figure 2.9.7c
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figures 2.9.8a,b
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figures 2.9.9a,b
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2.9.2 Performance of the Guidance Loop

The purpose of the following simulations is to show how the miss distance produced

by PE is affected by the estimation errors fed into the guidance loop by the MTSTF.

Since observability of the target maneuver depends on the intercept geometry the

performance of the guidance loop shown in figure 2.9.1 varies for different intercept

scenarios. Therefore, five scenarios according to figure 2.9.2 will be investigated for

the target maneuvers P and J given in (2.9.3/4). The MTSTFis initialized according to

(2.9.5/7).

2.9.2.1 Periodical Target Maneuvers

For each scenario A-E the guidance loop is simulated with the target maneuver (2.9.3)
for the following values of the maneuver parameter q:

» 3 » 1
n

1 » 3

The miss distances obtained with exact and estimated target information are depicted

in figures 2.9.10-14 as a function of* Typical trajectories of the important filter states

are shown in figures 2.9.15-19. They are summarized in table 2.9.2.

scenario Y0[°] TO
l J t) [rad] figure

A 0 0 - tr/8 2.9.15a-d

B 8 45 0 2.9.16a-d

C 13 90 - v/4 2.9.17a-d

D 14 135 - ir/8 2.9.18a-d

E 0 180 n/4 2.9.19a-d

table 2.9.2: typical filtering results for sinusoidal target maneuvers
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Discussion of Results:

Figures 2.9.10-14 show that the miss distance Rf is practically independent of the

maneuver parameter ij for exact target maneuver compensation. A substantial increase

of Rf due to estimation errors produced by the MTSTFis observed in scenarios B and

C. In scenario C the miss distances lie outside the hit range IL^^ defined in (1.3.71)

for certain values of tj .
Here the target maneuver is not tracked any more (figure

2.9.17d) because the heading rate y6 is unobservable (section 2.4.4 and 2.7.3). The

strong dependency of Rf on tj for the MTSTFis due to the different initial estimates

y6(0/0) associated with each * If y6(0/0) is close to zero observability of the target

maneuver is low resulting in slow correction of the initial estimation error. Note that

the target heading error remains practically uncorrected in all scenarios because the

target heading is unobservable (zero average target maneuver).

In the table 2.9.3 the miss distances obtained with the guidance law PN (see section

1.3.5.2) are summarized for the scenarios A and B, respectively. A comparison of these

results with figures 2.9.10/11 shows that in all cases where exact target maneuver

compensation is required for low miss distances (indicated by a high miss distance of

PNcompared to PEusing exact target information) the guidance scheme PE/MTSTF

performs considerably better than PN. Hence, the merits of target maneuver

compensation are not offset by the use of estimated data about the target motion. In

the scenarios C, D, and E the miss distances of PN are comparable to those obtained

with PEindicating that target maneuver compensation has no significant effect here.

Due to the low bearing rate there is no correction of the range error (figures

2.9.15b-19b). Only in the scenarios B and C the range error is corrected at final time

because the bearing rate increases due to the high miss distances in these scenarios.

Here the conflict between the guidance law which tries to establish zero bearing rate

and the tracking filter requiring high bearing rate for observability of the filter states

becomes evident However, the range error has no direct influence on the guidance

law because only the range rate is required (see equation 2.9.1). As can be seen from

figures 2.9.15a-2.9.19a the range rate estimates are very accurate in all scenarios

except C.
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figure 2.9.11
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figure 2.9.14

scenario A B

i) [rad] Rf[m] RfM

- ir/2 1.4 0.2

-3/8» 2.3 0.1

-ir/4 2.2 0.1

-»/8 0.2 0.6

0 0.3 1.6

*/8 0.05 2.6

»/4 0.02 3.3

3/8 » 1.18 3.0

table 2.9.3: miss distances ofPN
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2.9.2.2 Sudden Change of Target Acceleration

The following simulation results were obtained for the target maneuver (2.9.4). For

each scenario A-E the miss distance as a function of

At = tf-te (2.9.8)

is depicted in figures 2.9.20-24. At is the time-to-go at the beginning of the target

maneuver (see section 1.3.5.2). In order to ensure target maneuver compensation by

PE the filter must converge during this time interval. Typical trajectories of the main

filter states are depicted in figures 2.9.25-29 (see table 2.9.4).

scenario 70[°] \o[°] Atfs] figure

A 0 0 0.679 2.9.25a-d

B 9 45 3.212 2.9.26a-d

C 13 90 2.472 2.9.27a-d

D 13 135 1.023 2.9.28a-d

E 0 180 0.177 2.9.29a-d

table 2.9.4: typical filtering results for sudden change of target maneuver

Discussion of results:

For all scenarios the miss distances lie well within the hit range Rmax. The changing

target maneuver is tracked in all cases except C where y^ is unobservable (figure

2.9.22). In the interval [0, te] the target heading y5 is unobservable due to the

vanishing heading rate y^. The associated estimation error has no effect on Rf as

discussed in section 2.6.4.4.



243

For the scenarios A and B the miss distances obtained with PNare shown in the tables

2.9.5a,b. As was the case for periodical target maneuvers the comparison with figures

2.9.20/21 reveals the substantial improvement of guidance law performance due to

target maneuver compensation even in the presence of estimation errors produced by

the MTSTF. In the scenarios C, D, and E the miss distances of PE and PN do not

differ significantly indicating that target maneuver compensation is not required here.

As for periodical maneuvers the range error is not corrected due to the low bearing

rate. Despite the range error the range rate estimates remain accurate. The only

exception is scenario C where estimation errors in the slow variables y~ and y. are

caused by the wrong target maneuver estimates produced by the fast filter.

Rf[m]

1.4

1.2

1.0

0.8

0.6
"

0.4
"

0.2

0
J

scenario A

*: exact information

o: filter

0 °

1— * At[s]
6

figure 2.9.20
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Rf[m]

0.3 -|

0.2

0.1 1

0

scenario B

*: exact information

o: filter

i
~

2 3

-i—' i * Q
i At[s]

6

figure 2.9.21

Rf [m]

0.3

0.2

0.1

0

scenario C

o

•: exact information

o: filter

-t—• r-= 1

2 3 4

At [8]

figure 2.9.22
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>f

1.0

0.8 "

0.6 "

0.4

0.2

0

Rf [m]

scenario D

•: exact information

o: filter

> At[s]

figure 2.9.23

0.6

0.4

0.2 1

0

Rf [m]
scenario E

•: exact information

o: filter

-* At[s]

figure 2.9.24
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scenario A scenario B

At[s] Rf[m]

5.36 0.1

4.71 2.3

3.99 7.8

3.2 10.2

2.34 8.7

1.42 4.53

0.55 0.44

At[s] RfN

7.50 31.7

6.35 38.6

5.54 38.8

4.16 33.21

3.71 23.94

2.70 13.93

1.67 5.78

0.64 0.68

0.14 0.23

tables 2.9.5a,b: miss distances ofPN
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2.10 Conclusions and Extensions

In the second part of this thesis a new tracking filter for maneuvering targets based on

bearing-rate-only measurements was derived. The filter was tested in different

intercept scenarios for periodical target maneuvers and sudden changes of the target

acceleration. It was shown that the filter is suitable for implementation in conjunction

with extended proportional navigation (PE) derived in chapter 1.

There are two major problems associated with the tracking problem under

investigation here:

a) the lack of information about the target maneuver in the bearing rate measurement

b) the lack of an accurate model of the target acceleration dynamics.

The observability analysis carried out in section 2.4 revealed that only target

maneuvers normal to the current line of sight (LOS) are observable. As a consequence

the behaviour of the tracking filter strongly depends on the intercept geometry. This

fact is reflected by the simulation results in section 2.9.2. A loss of tracking accuracy is

likely if both target heading and target heading rate are only weakly observable

(scenario C with low target acceleration). Since the guidance law PE uses only the

observable part of the target maneuver the miss distances obtained with the tracking

filter in conjunction with PE are satisfactory in all investigated scenarios except the

critical case C.

The target model used for the design of the filter is based on the following a priori

knowledge about the target maneuver:

i) the target maneuver is essentially deterministic

ii) the target velocity is nearly constant during the engagement

Assumption ii) allows to describe the planar target maneuver with two states (heading

angle and heading rate) only. In this way unrealistic target motions are excluded

supporting convergence of the tracking filter. Since the dynamics of the target heading

rate are unknown it is assumed constant in the target model. Therefore the filter has to

be adapted in the presence of variable target maneuvers. Adaption is carried out via

covariance matching. The matching procedure is based on an approximation of the

propagation errors caused by the wrong target model. An efficient implementation of

the adaption algorithm is possible by taking advantage of the time scale separation of

the missile-target relative motion. A singular perturbation-analysis of the tracking
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problem results in a low dimensional fast filter with the target state and the bearing

rate appearing as fast variables and a slow filter based on all states of the tracking

problem. The source of the propagation errors is the heading rate propagation in the

fast time scale. Hence covariance matching is performed with respect to the

measurement residuals produced by the fast filter. This procedure reflects the physical

properties of the system: Fast changes of the bearing rate are attributed to the fast

changes of the target maneuver and are used to update the target states. Slow changes

in the bearing rate are used for update of the slow variables and reinitialization of the

fast filter. The fast filter works as a predictor for the propagation errors and the target

maneuver in the sampling interval of the slow filter. In this way the sampling interval

in the slow time scale may be decoupled from the dynamics of the fast subsystem

without loss of estimation accuracy. This is an important aspect for the realization of

the filtering algorithm because the computations in the slow time scale may be time

consuming due to the high dimension of the slow filter.

The simulations in section 2.9 show that the adaptive multiple time scale tracking filter

(MTSTF) developed here allows to track maneuvering targets in most intercept

geometries. Moreover the advantages of target maneuver compensation used by PE

are maintained if the exact target maneuver is replaced by the estimates produced by

the MTSTF. Only in scenarios which result in unobservable target heading rate a loss

of estimation accuracy in all filter states is likely because there is no information about

the target maneuver in the measurement residuals.

Many approaches to tracking of maneuvering targets with bearing-only information

have been based on measurements of the bearing angle rather than the bearing rate

[67,69,70,71,73,80,83]. However, the scaling of the tracking problem in section 2.8.1

suggests that to zero-th order (with respect to the scaling parameter e) the bearing

angle does not contain any information about the target maneuver because it remains

constant in the boundary layer. The appearance of the bearing angle as a slow variable

is due to the low average bearing rate established by the guidance law. Hence, the

guidance law and tracking filter should be designed jointly in the presence of

bearing-only measurements in order to guarantee sufficient observability [73,74,83).
This conclusion does, however, not apply if bearing rate measurements are used

because:

a) The bearing rate appears in the fast time scale.

b) The target maneuver normal to the LOS is observable even for zero bearing rate

(see section 2.4.4).
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Note however, that the observability of the slow states is not enhanced by bearing rate

measurements because the dynamics in the slow time scale are determined by the

average behaviour of the fast subsystem. It is therefore plausible that range errors are

not corrected by the MTSTFas revealed by the simulations in section 2.9.

In order to stabilize the MTSTF in type C scenarios it is necessary to measure

additional information which is complementary to the bearing rate. If no direct

measurements of range and/or range rate are available one could conceive extracting

the desired information by including the seeker characteristics in the filter design. A

related approach is reported in [84], however no information about the motion along

the LOSis provided here.

The target velocity vT is a parameter of the MTSTF. There is a certain robustness with

respect to estimation errors in vT because they affect the residual statistics via the

propagation of the bearing rate. Therefore they are taken into account by the adaption

algorithm. An estimate for vT may be obtained from a filter in the launching aircraft

prior to launch. Here range and range rate measurements are usually available

justifying the introduction of v^ as an additional (slow) filter state.

In addition to the input noise caused by the extrapolation errors there is another noise

source which is due to the measurement module. According to figure 2.6.2 the missile

maneuver u^j is computed from the measurements of the missile acceleration and the

rotation of the seeker axis measured by the angle 9\ Since these measurements are all

noisy they produce an input noise via uM in 2.4.30. This input noise is non-Gaussian

because the acceleration and angle measurements are related in a nonlinear way via

(2.6.11). Therefore it is desirable to suppress this noise source prior to the evaluation

of uM by passing the measured signals through appropriate low pass filters. These

filters could themselves be Kalman filters based on the rotational dynamics of the

seeker and the missile.
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3. Summary and Conclusions

Optimal control theory and singular perturbation (SP) theory have been applied to

analyse the planar intercept problem and the associated tracking problem. The main

topic is the derivation of a new adaptive tracking filter for maneuvering targets.

In the first part of this thesis the structure of guidance laws based on optimal control

theory is discussed. Two basic approaches to the derivation of guidance laws

LQ-theory and order reduction via SP-theory are investigated.

A short review of Pontryagin's minimum principle and necessary conditions of

optimality is given in section 1.1 for use in subsequent sections. Basic problems of the

application of optimal control theory to the derivation of implementable missile

guidance laws are discussed in section 1.2. A review of missile guidance laws based on

LQ-theory is given in section 1.3. These guidance laws may be viewed as extensions of

proportional navigation (PN). Their main drawback is the need to make assumptions

about the target maneuver in order to solve the associated optimal control problem.

This difficulty can be avoided by observing that a sufficient condition for intercept is

vanishing bearing rate throughout the scenario. Based on this nominal condition a

simple guidance law termed extended proportional navigation (PE) is derived. PE

differs from PNin a compensation term for the target maneuver normal to the current

line of sight (LOS). Simulations indicate that PEperforms considerably better than PN

against maneuvering targets.

An SP-analysis of the intercept problem is carried out in section 1.4. The optimal

structure of the guidance scheme associated with a minimum time optimal control

problem is obtained. There are essentially three modules operating in three different

time scales:

a) The first module in the slow time scale predicts the collision point by extra¬

polation of the missile-target relative motion.

b) The nonlinear control law in the first boundary layer performs the correction of the

course error, i.e., it tries to establish the collision course associated with the

predicted collision point computed by the first module. The required lateral

acceleration is the result of a static mmimization process of a weighted sum of lift

and drag. In this way drag losses are minimized during course error correction in

order to reduce the time-to-go.

c) The third module which is associated with the fastest time scale is the autopilot
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A simulation study reveals that the savings in time-to-go obtained with the

SP-guidance law are mainly due to the prediction of the point of intercept whereas the

effect of induced drag minimization on flight time is negligible. The control law in the

first boundary layer may therefore be replaced by a much simpler proportional

controller for the course error.

In many scenarios the scaling assumptions of the SP-approach are not satisfied due to

saturation of the missile acceleration. Therefore the flight times of PE and

SP-guidance do not differ significantly in most cases. The main obstacles to the

implementation of SP-guidance laws is the prediction of the target maneuver. There is

a conflict between satisfaction of the scaling assumptions (long initial range) and

accurate prediction of the collision point which is realistic for short time-to-go only.

This problem is not shared by the guidance law PE which uses information about the

current target maneuver only. Implementation of PE is possible if a tracking filter can

be designed which produces estimates of the target state. This problem is adressed in

chapter 2.

The tracking problem is stated in section 2.1. The basic approach is the design of an

extended Kalman filter. Since the observer (missile) is equipped with an infrared

seeker and no inertial angular measurements are available the bearing rate is the only

measured information about the missile-target relative motion. As a consequence

serious stability problems of the filter arise because some filter states are unobservable

in certain scenarios. In section 2.2 an overview of results in the literature on target

tracking based on passive measurements is given. The results on observability of

non-maneuvering targets via bearing-only measurements are extended to

maneuvering targets and bearing rate-only measurements in section 2.4. It turns out

that observability depends on the missile-target relative maneuver and that only

target maneuvers normal to the current LOS are observable. Fortunately this is

exactly the information required by the guidance law PE The selection of a target

model is discussed in section 2.3. In view of the low information about the

missile-target relative motion the target model is based on certain a-priori knowledge

about the target dynamics. The main assumption is that the target velocity is nearly

constant during the engagement. Hence the target is assumed to maneuver with lateral

acceleration only. For planar motions the target maneuver may then be described by

two states, the target heading and target heading rate. The target heading rate is

assumed constant because the true dynamics are unknown. Therefore, the filter has to

be adapted in the presence of variable target maneuvers.
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For the implementation of the filter algorithm a reference system has to be defined.

Since inertial angular measurements are assumed to be unavailable polar coordinates

are used to formulate the filter equations and a new reference system is selected for

every sampling interval. Additional aspects of coordinate selection are discussed in

section 2.5. The basic tracking algorithm is summarized in section 2.6. The simulation

results in section 2.7 confirm the results of the observability analysis. They also

demonstrate the robustness of PE with respect to certain estimation errors. The

simulations of a SP-guidance law in conjunction with the tracking filter illustrate the

high sensitivity with respect to estimation errors of guidance schemes based on

prediction of the target maneuver.

As mentioned before an adaption scheme is necessary in order to track variable target

maneuvers. If the target heading rate is observable the propagation errors due to the

wrong target model affect the residual statistics. Therefore, adaption is possible via

covariance matching. The adaption algorithm is described in section 2.7.

Motivated by the time scale separation of the intercept problem discussed in chapter 1

an SP-analysis of the tracking problem is carried out in section 2.8. The scaling of the

tracking problem allows the identification of two time scales with slow and fast

variables. After some general remarks on singularly perturbed stochastic systems a

multiple time scale tracking filter (MTSTF) is synthesized. The filter consists of a low

dimensional fast filter (FF) and a high dimensional slow filter (SF). Due to its low

dimension FF operates with a high sampling rate which allows to track fast changes of

the target maneuver. Since FF works as a predictor for the target maneuver and the

propagation errors in the slow time scale stability of the basic tracking algorithm is

enhanced and the sampling rate of SF is decoupled from the dynamics of the fast

subsystem. Hence there are practically no restrictions on computing time in the slow

time scale which is of great importance for filter implementation.

The simulations in section 2.9 confirm the capability of the MTSTF to track

maneuvering targets and suggest that the filter is suitable for implementation in

conjunction with the guidance law PRPossible extensions of the MTSTFare discussed

in section 2.10.
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Appendix 1

Al.l Equations of Planar Missile Motion

The missile simulations carried out in this thesis are based on the aerodynamic data of

a realistic short range missile. The quantities describing the motion of this missile in a

horizontal plane are depicted in the following figure.

seeker axis

/
"m

(center line)

yref

xref

(xref yref): inertial reference system

(xw, yw) : wind axis system

(xM, yM) : missile body fixed system

v: velocity

o: angle of attack

a: flipper deflection

B: pitch angle

y: heading angle

L: lift

D: drag

M: aerodynamic torque

T: thrust

A: total aerodynamic force

L, D: components of A in (xw, yw); Ax, A : components of A in (xM, yM)

figure Al.l: planar missile motion
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The components of A are of the following form:

Ax = -1P v2 S cx (Al.1.1)

with

\=7'vScy (Al.1.2)

p = p(h): air density (Al.1.3)
S: reference cross section

cx = cx(°»h'Ma) (Al.1.4)

cy = cy(a^a,t5) (Al.1.5)

Ma =s Ma(h) Mach number (Al.1.6)
h: altitude

The functions p, Ma, c_, c„ are given in the form of tabulated data and are evaluated
a y

by linear interpolation.

Figure Al.l yields:

1 1
L = Ax sina + A cosa = •- p v S cL(a,h,Ma,.3) (Al.1.7)

1 1
D= -Ax cosa + A sina = —p v S cD(a,h,Ma,c?) (Al.1.8)

with

cL(a,h,Ma,c5)= cx(a,h,Ma) sina + c (a,Ma,«) cosa (Al.1.9)

cD(a,h,Ma,t5)=-cx(a,h,Ma) cosa + c (a,Ma,S) sina (Al.1.10)

The aerodynamic torque Mis given by:

M=
i

p
v2 S d Cj^aJVlM.v.q) (Al.1.11)

with d: reference distance

q = 0 pitch rate (Al.1.12)

The missile thrust contains all forces which are due to the mass loss of the missile.

Hence the differential equation of the missile velocity becomes:
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V =
-U2. (Al.1.13)

m

where mis the current missile mass. During the boost phase T and mare given as

functions of time. Afterwards T is zero and mremains constant (Al.1.13) then reduces

to:

v = - ?-: = - an (Al.1.14)
m ^

Evaluation of the aerodynamic coefficients cL, c^, c^ requires knowledge of a.

According to figure Al.l one has:

a = 6 -

y (Al.1.15)

where y -
-=- = -=- (A1.1.16a)
mv v

with aT = — (A1.1.16b)
L m

and

$ = q =

y- (Al.1.17)

I is the mass moment of inertia. As mit is given as a function of time during the boost

phase and remains constant afterwards.

The position of the center of gravity with respect to the inertial reference frame (xref>

yref) is given by (see figure Al.l):

x = v cosy (A1.18a)

y = v siny (A1.18b)

For horizontal motions h is a constant parameter. Equations (Al.1.13-18) with

(Al.1.7-12) constitute the missile model. For a more detailed discussion of the missile

aerodynamics and kinematics see [85-87].
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A1.2 Remarks on the Domain of Attraction of a Stable Root

Consider the singularly perturbed system (1.4.22/23). It was shown that the

asymptotic expansions (1.4.24/25) are nonuniform at initial time t^. Here the

behaviour of the fast variables is determined by the transient from the initial

conditions yQ to the outer solution y°, according to (1.4.35) and figure 1.4.1. According

to (1.4.55a), (1.4.56c), and (1.4.57) the transient is, to zero-th order, governed by:

Yq' = 80 = 8(xo> AT) (Al.lla)

y0(0) = Y0 (A1.2.1b)

Obviously, certain stability conditions must be satisfied in order to ensure that the

solution to (Al.2.1) converges versus yj as t -» oo. They are given in theorem 1.4 in

section 1.4.2 which is due to Tikhonov [41]. In the following the basic definitions and

some explanations taken from [42] are summarized:

Let

y = *(x, t) (Al.2.2)

denote a root of

g(x,y,t) = 0 (Al.2.3)
f\l M CM M

in a closed bounded domain D(x, t) where x and t are regarded as parameters.

Definition:

The root y = 4(x, t) is called stable in D if V x, t D the states y are asymptotically

stable (in the sense of Lyapunov) with respect to the system

y' = g(x,y,t) (Al.2.4)

Hence, if y is a stable root there exists a neighbourhood N(y) such that the solution of

(Al.2.4) tends to y as t -* oo if the initial condition y(r = 0) = yQ is in N. N is called

the domain of attraction or domain of influence of y.

For a geometric interpretation consider the case g = g(x,t). Let «,, *2, *3 denote

three roots of g(x,t)=0 such that:
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g<0 if*1>y>*2 (A1.2.5a)

g>0 if*2>y>*3 (A1.2.5a)

The roots and the field of directions associated with g as well as two boundary layers

associated with the initial conditions yQ and y^, respectively, are depicted in figure

A1.2. Obviously *2 is a stable root and its domain of attraction is bounded by *. and

*3-

As a final remark it is noted that in the presence of several stable roots discontinuous

periodic solutions in the slow time scale may occur [42].

figure A1.2: domain of attraction
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Iii

Al J Limiting Behaviour of x\\

In order to investigate the limiting behaviour of ^\\ as 1«j)Dt and V approach the

outer solution H° and L1 are expanded around their values in the outer solution:

opt alyi

dlH°
e„ +

Y aV
opt

W«L) * l° +
^L1

opt aV
opt

with
7 7 70pt

(Al.3.1)

(Al.3.2)

(A1.3.3a)

e« = laopt" a° (A1.3.3b)

All partial derivatives are evaluated along the outer solution as indicated by ()| .

Substitution of (1.4.136/139) into (1.4.151) yields:

= [X1Qv0 siny -

X20v0 cosV ]
_

=0 (Al.3.4)
<*lH°

aV 1 i
=

o
7 7opt

Using (Al.3.4), (1.4.119/123), and (Al.1.8) one obtains:

lHo ~ _

A30

m
'Da

V »c
La

(Al.3.5)

(Al.3.6)

with CD« =

ab1

aV
opt

(Al.3.7)

a1^
'La

aV
opt

(Al.3.8)
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Substitution of (1.3.5-8) into (1.4.152) renders

c

e^0M = V30c
ey-» 0

Da

(Al.3.9)

La

For the symmetric missile considered here (see appendix Al.l) one has:

0) = 0 (Al.3.10)

(Al.3.11)

Ui

cDa( "opt

cL/«opt = °>*0

Substitution of (Al.3.10/11) into (Al.3.9) yields vanishing xXl in the slow time scale.
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A1.4 Derivation of
B

*go

From (1.4.163) one obtains:

lgo

VT J" Sin yTs(r) dr

y° = arctg - =: arctgi, (Al.4.1)
s t

go

R(t) + VT | COSyTs(r)dT
0

Application of the chain rule to (Al.4.1) yields:

Or|V__^^L
(A1A2)

3tgo l + i?2 3tgo

Definitions:

V>

xTsV = R(t)+VT j COSyTs(r)dT
0

'go

yTsV = VT j SinyTs(r)dr
0

Substitution oif (Al.4.3/4) into (Al.4.2) yields:

ars°(tg0)
atgo

^go) -T
sin yTs(tgo) ^(y -

vT cos yTs(tgQ) yTs(tgo)

4sV + 4s<y 4sV

vT
[xTs(tg0)sm YTsV^TsV^^TsM

(Al.4.3)

(Al.4.4)

(Al.4.5)
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AU SignofX-Q

Equation (1.4.138) yields:

X - x° =

A30" A30

v°-
m r v0

D° VTCOS(yTf- 7Spt>-v?
Obviously one has:

m>0

D°>0

Moreover from (1.4.109c) follows:

v°> v°>0

According to figure A5.1

Y = VTCOS(yTf-yopt)

(Al.5.1)

(Al.5.2)

(Al.5.3)

(Al.5.4)

(Al.5.5)

is the projection of the target velocity onto the collision path MI at final time. It is

evident that intercept is possible only if

v0. > vT*

Substitution of (Al.5.2-6) into (Al.5.1) yields:

x30<o

(Al.5.6)

(Al.5.7)

figure Al.5: collision path
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Appendix 2

A2.1 Transition Matrix Associated with Modified Polar Coordinates

Consider the initial time t- and the sampling time t.. The filter has processed i-1

measurements prior to solving the update equations at t.. The state estimate at time t-

based on i-1 measurements is ym(j/i-l). It is easily obtained by solving backward the
A

propagation equations (2.1.9) in [t-, t-.J with final condition ym(i-l/i-l). Propagating

ym(j/i-l) from t, to t. yields the estimated value of y(i).based on i-1 measurements

A
J

i.e. ym(i/i-l). The associated transition matrix is

afljma/i-i),uM(i)]

W(ij) = 2L — (A1U)

ayma/i-D

where Uw(i) denotes the system input associated with the interval [t., tj]. Equation

(A2.1.1) is a generalization of (2.4.49). The propagation equations are linearized
A A

around ym(j/i-l) rather than ym0*/j) which turns out to be convenient to carry out

the observability analysis. Obviously (2.4.49) is obtained by setting i= j+1 in (A2.1.1).

According to (2.4.49) the matrices GZand HYbecome:

3TM Jz(i/i-l)]
GZ[z(i/i-l)] = f- (A2.1.2)

az(i/i-l)

3f{TM [ym0/i-l)],uM(i)}
HY[ym(j/M)] = — Z^P

^ (A2.1.3)

aymG/i-D

_A

^mv

Definitions:

x : = x(i/i-l) (A2.1.4)

x : = xO'/M) (A2.1.5)

Dx : = Dx(ym) : = ym2 cos ym3
-

yml sin ym3 (A2.1.6a)

Dy: = Dy(ym): = ym2 sin ym3 + yml cos ym3 (A2.1.6b)

T : = t. -1, (A2.1.7)
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After replacing z(k+l) by z(i/i-l) and z(k) by zQ/i-l) in (2.4.30) the elements of GZ

are calculated according to (A2.1.2). The results are:

im2imimim im2n mim

gzll = ym4 $4 " 2 ^l) gzi2 = "

ym4 &3 + 2 ^l) (A2.1.8a,b)
3 m2

gz13 = "

ym4 z2 gz14 = ym4 zl (A2.1.8c,d)

gz15 = 0 gz16 = 0 (A2.1.8e,f)

rv2 rv n im im2

gz21 = ym4 (z3 "2 ziy2> g^2 = ym4 (z4"2 z2^) (A2.1.9a,b)
im2 >m2

g^3 = ym4 zl g^4 = ym4 \ (A2.1.9c,d)

gZ25 = 0 gZ26 = 0 (A2.1.9e,f)

gz31 = "

ym4 h gz32 = ym4 zl (A2.1.10a,b)

gz33 = 0 gz34 = 0 (A2.1.10c,d)

gz35 = 0 gz36 = 0 (A2.1.10e,f)

gz41 = "

ym4 zl gz42 = "

ym4 \ (A2.1.11a,b)

gz43 = 0 gz44 = 0 (A2.1.11c,d)

gz45 = 0 gz46 = 0 (A2.1.11e,f)

gz51 = 0 gz52 = 0 (A2.1.12a,b)

gz53 = 0 gz54 = 0 (A2.1.12c,d)

gz55 = 1 gz56 = 0 (A2.1.12e,f)

gz61 = 0 gz62 = 0 (A2.1.13a,b)

gz63 = 0 gz64 = 0 (A2.1.13c,d)

gz65 = 0 gz66 = 1 (A2.1.13e,f)
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Equation (A2.1.3) yields the elements of HY:

cosym3

hyu = T
sinym3

ym4

hy13 =

sinym3 + TDy

ym4

hy14 =

cos ym3 + T Dx

-2

vm4

hy12 = T
w

(A2.1.14a,b)
ym4

(A2.1.14c)

(A2.1.14d)

cos(y 5
+ T y 6) - cos(ym5)

hy15 = T vT [sin ym5 + 22 J
Sl_] (A2.1.14e)

Tym6

TvT
hy16 = ^-[cos(ym5 + Tym6)

ym.6

sin(7m5 + Tym6)-sin(ym5)
] (A2.1.14f)

Tym6

cosym3 sinym3

hy21 = T
m:>

hy22 = T
_

m:>

(A2.1.15a,b)
ym4 ym4

cos ym<, + T Dx

hy23 = Bl (A2.1.15C)
ym4

siny 3
+ TDy

hy24 = 511
(A2.1.15d)

vm4

_

sin(ym5 + T ym6) - sin(y5)
hy25 = - T vT [cos ym5

^
^ 2!i_] (A2.1.15e)

Tym6
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TVn

hy26 = ir-tsin(ym5 + Tym6)
ym6

.

cos<ym5 + Tym6)-cos^m5)3
Tym6

(A2.1.150

hy31 =

sm vm3

hy33 = -^

hy35 =

^36 =

ym4

Dy

ym4

hy32 =

cos vm3

hy34 = -

ym4

Dx

-2

ym4

vT[sin(Fm5 + Tym6)-sin(ym5)]

TvTsin(ym5 + Tym6)

(A2.1.16a,b)

(A2.1.16c,d)

(A2.1.16e)

(A2.1.16f)

hy41 =

cos ym3

hy43=^

ym4

Dx

^42 =

smyms

ym4
hv44 =

ym4

-

Dy
-2

ym4

hy45 = vT [co^ + T y^)
- cos(ym5)]

hy46= TvTcos(ym5 + Tym6)

hy51 = 0

hy53 = 0

hy55 = 1

hy6i = °

hy63 = 0

hy65 = o

hy52 = o

ny54 = o

hy56 = T

hy62 = o

hy64 = o

hy66 = i

(A2.1.17a,b)

(A2.1.17c,d)

(A2.1.17e)

(A2.1.17f)

(A2.1.18a,b)

(A2.1.18c,d)

(A2.1.18e,f)

(A2.1.19a,b)

(A2.1.19c,d)

(A2.1.19e,f)
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A2.2 Transformations and Transition Matrix Associated with Ordinary Polar

Coordinates

The transformation T0V7(z) mapping the cartesian state vector z according to (2.3.5)

to ordinary polar coordinates y according to (2.3.8) and the inverse transformation

T07V(y) are easily found from (2.4.37-44):
zy

zl z4
"

h z3

2
,

2
zl+ 4

zl z3 + *2 z4

f? + z2

arctg

it + zi

%

= TOyz(z) (A2.2.1)

y4cosy3

y4 sin y3

y2 cos y3
-

yxy4 sin ym3

y2siny3 + yiy4cosym3

ys

ye

= TVy)

(A2.2.2)
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Using the definitions (A2.1.4/5) the transition matrix associated with ordinary polar
coordinates is given by:

W(i j) = GZ[Z] HYlj] (A2.2.3)

with

(A2.2.4)GZ(z) =
3TOyz[z]

IM

az

HY(y) =
9yTozyij],uM(i)}

ay

Elements of GZ:

IM IM IM

z4
- 2 zxyx

8ZH=
„2

IM IM IM

z3 + 2 z2yi
8Z12 = "

Jl

y4 y4

IM

8Z13 =

-TJ

IM

Zl
8Z14 ^

~Z
y4 n

gz15 = 0 gz16 = 0

IM IM IM IM

z3y4
-

zxy2
8Z2i=

*

IM IM IM IM

z4y4
-

z2y2
8222 =

Ji

y4 y4

IM

Zl
IM

z2

gz24=TJ
y4 y4

gz25 = 0 gz26 = °

(A2.2.5)

(A2.2.6a,b)

(A2.2.6c,d)

(A2.2.6e,0

(A2.2.7a,b)

(A2.2.7c,d)

(A2.2.7e,f)
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*2
8Z31 = •

"3
y4

zl
gz32 =

3
y4

gz33 = 0 gz34 = 0

gz35 = 0 gz36 = °

IM

Zl
8Z41 =

"f
y4

fM

8Z« *

-J
y4

gz43 = 0 gz^O

gz45 = 0 gz46 = °

gz51 = 0 gz52 = 0

gz53 = 0 gz54 = 0

gz55 = 1 gz56 = 0

gz61 = ° gz62 = 0

gz63 = ° gz64 = °

gz65 = 0 8Z66 = 1

Elements of HY:

(A2.2.8a,b)

(A2.2.8c,d)

(A2.2.8e,f)

(A2.2.9a,b)

(A2.2.9c,d)

(A2.2.9e,f)

(A2.2.10a,b)

(A2.2.10c,d)

(A2.2.10e,f)

(A2.2.11a,b)

(A2.2.11c,d)

(A2.2.11e,f)

hyll = ~ T fy sin ^3 ^12 = T cos ^3 (A2.2.12a,b)

hy13 = - sin y3 (y4 + T y2) - T yxy4 cos y3 (A2.2.12c)

hy14 = cos y3
- T yx sin y3 (A2.2.12d)

hy15 and hy16 according to (A2.1.14e/f)

hy21 = T ^4 cos ^3 ^22 = T sin ^3 (A2.2.13a,b)

hy23 = cos y3 (y4 + T y2) - T yxy4 sin y3 (A2.2.13c)

hy24 = sin y3 + T yx cos y3 (A2.2.13d)

hy25 and hy26 according to (A2.1.15e/f)
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hy31 = -

y4 sin y3 hy32 = cos y3 (A2.2.14a,b)

hy33 = -

y2 sin y3
-

yxy4 cos y3 (A2.2.14c)

hy34 = -

y^ sin y3 (A2.2.14d)

hy35 and hy36 according to (A2.1.16e/f)

hy41 = y4cosy3 hy42 = siny3 (A2.2.15a,b)

hy43 = y2 cos y3
-

yxy4 sin y3 (A2.2.15c)

hy44= yicosy3 (A2.2.15d)

hy4jr and hy4<- according to (A2.1.17e/f)

hy51 = 0 hy52 = 0 (A2.2.16a,b)

hy53 = 0 hy54 = 0 (A2.2.16c,d)

hy55 = 1 hy56 = T (A2.2.16e,f)

hy61 = 0 hy62 = 0 (A2.2.17a,b)

hy63 = 0 hy^ = 0 (A2.2.17c,d)

hy65 = 0 hy66 = 1 (A2.2.17e,f)

Remark: It is easily seen that the evaluation of the elements of HY may be

substantially simplified if the reference system is chosen in such a way that

ym3 = 0 (A2.2.18)

For the basic tracking algorithm in section 2.6 equation (A2.1.18) results in the

reference system defined by (2.6.6).
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