DISS. ETH Nr. 9366

Hydrologie und Dynamik der Hochmoorentwicklung

ABHANDLUNG Zur Erlangung des Titels

DOKTOR DER TECHNISCHEN WISSENSCHAFTEN der EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE

vorgelegt von MARTIN SCHNEEBELI dipl. Kultur-Ing. ETH

geboren am 10. März 1958 von Zürich und Ottenbach ZH

angenommen auf Antrag von

Prof. Dr. Hannes Flühler, Referent PD Dr. Otto Wildi, Korreferent

Zürich, 1991

Am Projekt «Turbenriet» halfen zahlreiche Personen mit. Ohne Ihre Unterstützung und Mithilfe wäre es nicht möglich gewesen, das Projekt durchzuführen.

Prof. Dr. H. Flühler (ETH Zürich) unterstützte von Beginn an das Projekt und liess mir grosse Freiheit bei der Bearbeitung. Seine Tür war immer offen, wenn sich neue Probleme auftaten. PD Dr. O. Wildi (WSL Birmensdorf) übernahm das Koreferat als einer der wenigen, die sich mit Mooren als System auseinandersetzen. Die Diskussionen mit ihm und seine kritischen Hinweise trugen wesentlich zur klareren Abfassung der Arbeit bei.

Das Projekt wurde durch das Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Abt. Naturschutz, dem Schweizerischen Bund für Naturschutz (SBN), dem St. Gallisch-Appenzellischen Naturschutzbund (SANB), der Naturwissenschaftlichen Gesellschaft St. Gallen (NWG) und der ETH Zürich finanziert. E. Kessler (BUWAL), U. Berchtold (SBN), Dr. M. Boesch (SANB), P. Walz (SANB) und G. Nägeli (NWG) interessierten sich stets für das Projekt.

Die Auswahl des Untersuchungsobjektes stammt von A. Grünig (WSL). Es erwies sich als ein sehr fündiges Gebiet.

Die Pollenanalysen wurden von J. Fäh⁺ (Systematisch-Geobotanisch Institut der Universität Bern) durchgeführt und bilden eine wesentliche Basis für die Bestimmung des Moorwachstums. Prof. Dr. G. Lang und Dr. A. Lotter sorgten für die Erhaltung der Daten nach dem Tode von J. Fäh. PD Dr. M. Küttel (BUWAL) führte mich in die Nomenklatur der Palynologie ein.

Die unerlässlichen ¹⁴C-Datierungen wurden durch das Institut für Mittelenergiephysik der ETH (Prof. Dr. W. Wölfli und Dr. G. Bonani) durchgeführt.

Die Feldarbeiten wurden wesentlich von J. Leuenberger und H. Wydler (Bodenphysik ETH) mitgetragen.

Die statistischen Analysen und die Simulationen wären ohne die intensiven Diskussionen mit Dr. K. Roth (University of California, Riverside) kaum so zustande gekommen. Seine Kenntnisse taten mir eine neue Welt auf.

Meinem Vater, Dr. H.R. Schneebeli, danke ich für die sprachliche Durchsicht der ersten Fassung.

Meiner Frau Gabi Schneebeli-Stadler danke ich herzlich für die Zeit, die sie mir liess, um meine Einsicht in die Prozesse des Moors zu vertiefen.

INHALTSVERZEICHNIS

Da	nk	I
Inh	altsverzeichnis	П
Ab	bildungsverzeichnis	VII
Tał	pellenverzeichnis	XI
No	tation	XII
Zus	sammenfassung	xv
Ab	stract	XVII
1.	EINLEITUNG	1
2.	UNTERSUCHUNGSOBJEKT	3
	2.1. Lage und Messnetz	3
	2.2. Klima	3
	2.2.1. Temperatur und Vegetationszeit	5
	2.2.2. Niederschage	<u>د</u>
	2.3.2 Stratigraphie des Torfkörners	10
	2.3.3. Hydraulische Eigenschaften der Gesteine	15
	2.4. Aktuelle Vegetation	18
	2.4.1. Aktuelle Vegetation	18
	2.4.2. Nutzung, Torfabbau und erste Regenerations- massnahmen	18
3.	THEORIE	20
	3.1. Faktoren und Prozesse im Moorboden	20
	3.1.1. Klassifikation torfbildender Ökosysteme	20
	Definition	20
	Bodenkundliche Definition	21
	3.1.2. Bodenbildende Faktoren Zeit	23 23

	Muttergestein Topographie	24 24
	Klima Organismen	24 24
	212 Rodenbildende Prozesse	25
	Prozesse in einem Crescaquist über mineralischem Muttergestein	25
	Prozesse in einem Crescaquist über organischem	27
	Muttergestein Deseguist	28
	Verlandung, Versumpfung und Sukzessionen	30
	3.2. Wasserfluss in Mooren	32
	3.2.1. Gefüge des Bodens	32
	3.2.2. Energie und Potential des Bodenwassers	32
	3.2.3. Transportgesetz des Wassers in Boden	34
	Einfluss der Schichtung auf die mittlere Leitfähigkeit	34
	3.2.4. Flussmodell	35
	Allgemeiner Fall	35
	Einfluss von Kompressibilität und teilgesättigter Zone	36
	3.2.5. Analytische und numerische Lösungen des	-
	Flussmodells	37
	Definition des Gebietes und der Randbedingungen Analytische Lösungen für den eindimensionalen,	37
	stationären Fluss mit Quellenterm	3.1
	Fluss mit Quelle in einem rechteckigen Gebiet Finite Differenzen Lösung für den eindimensionalen.	39
	instationitren Fluss in einem heterogenen Gebiet Finite-Differenzen Lösung für den zweidimensionalen.	39
	stationären Fluss in einem heterogenen Gebiet	41
	3.3. Moorwachstum	42
	3.3.1. Sedimentationsmodell	43
	Das lineare zweidimensionale Einschichtmodell Das exponentielle eindimensionale Zweischichtmodell	46
	2.2.2 Des Moss els Grundwasserkörner	40
	2.2.2. Las Moor als Orundwasserkorper 2.2.3. Konnelung des Sedimentationsmodells mit dem	-+0
	Grundwassermodell	49
4.	ENTWICKLUNG DES MOORES	51
	4.1. Methoden zur Datierung der Torfstratigraphie	51
	4.1.1. Absolute Datierung: 14C-Messung	51
	4.1.2. Relative Datierung: Pollenfrequenzen	52
	4.2. Die absoluten 14C-Datierungen	52
	4.2.1. Messungen im Standardprofil	52
	Entnahme und Aufbereitung	52
		33

		4.2.2.	Messungen der Basisproben Entnahme und Aufbereitung Resultate und Diskussion	54 54 54
	4.3.	Stratig	raphische Korrelation von Pollensequenzen:	
		Metho	de	56
		4.3.1	Statistische Eigenschaften einer Pollennrobe	57
		432	Ontimale Konfiguration des Standardprofils	50
		7.3.2.	Wahl der Pollensumme und der Transformationen der	50
			Entfernen von Ausreissern	50
			Glätten des Standardprofils	59
		4.3.3.	Ähnlichkeitsmasse und Transformation	60
		4.3.4	Bestimmen des Maximum Likelihood-Minimums	
			und der Vertrauensintervalle	62
		125	Pogolhogianto Dostinguno des entingolas I Verse	02
		4.3.3.	Regeloasiene besummung der optimalen Losung	65
		126	Toston des Esserie dlichterit des Zugelauses	05
		4.5.0.	Testen der Emplindlichkeit der Zuoranung	65
		4.3.7.	Absolute Datierung der Pollenproben am Standard-	
			profil	66
	4.4.	Result	ate der stratigraphischen Korrelation im Turbenriet	
				66
		4.4.1.	Optimale Konfiguration des Standardprofils	66
			Auswahl der verwendeten Pollenarten Entfernen von Ausreissern und Filterung des Stan-	66
			Caraptonic Interpretation des Standardarofile	67
			Identifikation der originalen an den geglätteten Daten: Maximum Likelihood und Vertrauensintervall	70
		442	Identifikation der Basis- und Transsektoroben	70
			Monte-Carlo Realisierungen und der Einfluss der Ähnlichkeitsmasse	72
			Konvergenz der Monte-Carlo-Simulation	73
			Resultate der Identifikation	74
			Diskussion	76
	45	Entwic	sklung des Moores	77
		451	Horizontale Ausbreitung	77
		157	Vortikales Washstym in den Transsakten	00
		4.5.2.	Velumentische Cedimentation	80
		4.5.5.	volumetrische Sedimentation	85
		4.5.4.	Vergieich mit anderen Mooren	86
5.	SIM	ULATIO	ON UND VERIFIKATION DER MODELLE	91
	51	Hydro	logische Modelle	01
	5.1.	irjuit	Leitfähigkeit als Systemparameter	93
		5.1.2	Amplitude des Wassersniegels bei variabler	
		J.1.4.	Laitfähigkait und variablam Chaicharkoaffizianten	
			LANIANGKEN UNU VANAUIENI SPEICHEIKOENIZIENIEN	96
			Modell, Anfangs- und Randbedingungen	96
			Stufenantwortfunktion des homogenen Systems	102

	Resultate 5.1.3. Auswirkung einer Entwässerung auf Leitfähigkeit	106
٠	und Wasserspiegel	110
	Modell, Anfangs- und Randbedingungen	110
	Numerische Interpretation der Simulation	113
	5.2 Washstumsmodell	115
	J.Z. Wachstunismouth	123
6.	ANWENDUNG AUF DIE REGENERATION	125
	6.1. Zusammenfassung der grundlegenden Erkenntnisse	125
	6.1.1. Zeitdauer der Prozesse	125
	6.1.2. Stabilität eines torfbildenden Ökosystems	125
	6.1.3. Wechselwirkung zwischen Vegetation und	
	Wasserhaushalt	126
	6.2. Planung einer Regeneration	126
	6.2.1. Grundlagen	126
	6.2.2. Zielsetzung	127
	6.2.3. Planung	127
	6.2.4. Ausführung	127
	6.3. Beispiel	128
7.	LITERATUR	129
AN	HANG A KOORDINATEN DER MESSPUNKTE	A-1
	A.1 Koordinaten der Messpunkte im Turbenriet	Δ_1
		A-1
AN	HANG B NIEDERSCHLÄGE	B-1
	Niederschlagsmessungen im Turbenriet	B-1
AN	HANG C STRATIGRAPHIE	C.1
	C 1 Stratigraphische Tabellen	0.1
	C.1.1 Abkürzungen	C-1
	C.1.2 Stratigraphische Tabellen	C-1
	C. 2. Stratigraphische Abhildungen	C-2
	C.2.1 Ollettranssekte: Strationanhia und Ulumifikation	C-17
	C.2.2 Längstranssekte: Stratioranhie und Humifikation	C-18
	Bramboan. Suangraphic und Hullillikalion	C-23

ANHANG D POLLENDATEN

.

D-1

ANHANG E ALTER DER POLLENANALYTISCH DATIERTEN	
PROBEN	E-1
E.1 Alter in Tiefen des Standardprofils	E-1
E.2 Alter in Absoluten Altern	E-5
E.3 Abbildungen der Datierungen	E-9
ANHANG F FLÄCHEN- UND VOLUMENWACHSTUM	F-1
Flächenberechnungen	F-1
Zuwachsraten und Zuwachsverhältnisse	F-2
ANHANG G HAMMARMOSSE: ALTER UND ZUWACHS	G-1
Koordinaten, Alter und Langsamkeit	G-1
Flächenberechung	G-2
ANHANG H FORTRAN-PROGRAMME	H1
H.1 Programm zur Berechnung des Phasendiagramms: FD1dis	
	H-1
H.2 Programm zur Berechnung der instationären Veränderung der Leitfähigkeit: bogflo.for	H-11

ABBILDUNGSVERZEICHNIS

2.1	Übersichtskarte des Untersuchungsgebietes und des Messnetzes	4
2.2	Mittelwerte der Sommerniederschläge (1. Juni-30. September) von 1901-	
	1985 auf dem Säntis	7
2.3	Monatliche Niederschlagssummen im Turbenriet	8
2.4	Dauer und Häufigkeit von Regen- und Trockenperioden	9
2.5	Verteilung der Niederschläge während Niederschlagsperioden.	9
2.6	Geologie und Geomorphologie des Turbenriets	11
2.7	Geschätzte Torfmächtigkeit vor dem Torfabbau (ca. 1860) und gemessene	
	Torfmächtigkeit (1984)	12
2.8	Mächtigkeit der Torfschicht im Querschnitt 4-73	13
2.9	Mächtigkeit der Torfschicht im Längsschnitt 23-33	13
2.10	Stratigraphie und Zersetzungsgrad des Längsschnittes 23-33	14
2.11	Stratigraphie und Zersetzungsgrad des Querschnittes 4-73	15
2.12	Räumliche Verteilung der Pflanzengesellschaften 1984	19
3.1	Mögliche Sequenzen bei der Entwicklung der Aquists	25
3.2	Beziehungen zwischen verschiedenen Prozessen bei einer geringen hydro-	*
	logischen Änderung in einem Crescaquist	26
3.3	Schema der Prozesse bei der Entwicklung eines Desaquists	28
3.4	Abnahme der Leitfähigkeit K(t=0) in Abhängigkeit der Zeit t für eine	
	konstante Entwässerungstiefe $\zeta = 1$ m und in Abhängigkeit der	
	Entwässerungstiefe ζ für den Zeitpunkt t = 10	30
3.5	Stratigraphische Sequenzen aus Torfprofilen in Nordamerika	31
3.6	Energie zweier Wasserkörper in einem unterschiedlich porösen Medium	
_ :_		33
3.7	Situation für den eindimensionalen Fluss mit konzentrischen und par-	
	allelen Potentiallinen im Gebiet $\Omega(x)$	38
3.8	Form eines Grundwasserkörpers mit von oben gesehen parallelen Poten-	
	tiallinen	38
3.9	Zersetzungsfaktor α in einem torfbildenden System	44
3.10	Zusammenhang zwischen Produktion und maximaler Torfmächtigkeit bei	
_	unterschiedlichen Zersetzungsfaktoren.	45
3.11	Geometrische Interpretation des linearen Einschichtmodells.	47
3.12	Schema des Grundwasserspiegels bei verschiedenen Entwicklungszustän-	
	den des Moores	48
4.1	Zuwachs und Sedimentation im Standardprofil 25	53
4.2	Abweichung zwischen den 14C-datierten und den pollenanalytisch nach	
	der Methode «OPTIMAL» datierten Basisproben	56

VIII

4.3	Prinzip der Beprobung und Zuordnung für die relative Datierung	57
4.4	Notation für die Basis- und Transsektproben	57
4.5	Darstellung des Prinzipes der besten Korrelation einer Pollenprobe un-	
	bekannter Einordnung in das Standardprofil	. 60
4.6	Vertrauensintervall der Häufigkeitsverteilungm	. 64
4.7	Pollendiagramm des Standardprofils 25A	68
4.8	Abweichungen zwischen der effektiven Tiefe z und der scheinbaren Tiefe	
	z' als Ergebnis der Identifikation der Kreuzdatierung	71
4.9	Distanzen d der zwei Ähnlichkeitsmasse für die untransformierten	
	Artvektoren und für die wurzeltransformierten Artvektoren der Probe	
	595 (Punkt 32, Tiefe 210 cm)	73
4.10	Konvergenz der Monte-Carlo-Simulationen für das zentrierte, fortschrei-	
	tende Mittel der Minima und der Standardabweichungen	75
4.11	Schema der datierten Flächen im Moor	77
4.12	Mineralischer Untergrund des Turbenriets	78
4.13	Die Ausbreitung des Moores in der Ebene	79
4.14	Flächen-Zuwachsrate und Fläche des Turbenriets in der Ebene	80
4.15	Die Entwicklung des Turbenriets im Querschnitt von Transsekt 4-73	81
4.16	Die Entwicklung des Turbenriets im Querschnitt von Transsekt 23-33	82
4.17	Zuwachsraten im Quertranssekt 4-73 und im Längstranssekt 23-33	83
4.18	Querschnittsfläche (kumulativer Zuwachs) im Quertranssekt 4-73 und im	
	Längstranssekt 23–33	83
4.19	Torfwachstum in den Bohrungen der Transsekte	. 84
4.20	Langsamkeit des Zuwachses zwischen den Proben der Transsekte	84
4.21	Volumetrische Zuwachsrate und Volumen	85
4.22	Lineare Regression der Kubikwurzel des Torfvolumens gegen die Zeit	. 86
4.23	Zusammenhang zwischen Torfmächtigkeit und deren Alter an der Basis	
		88
4.24	Über die Torfmächtigkeit gemittelte vertikale Langsamkeit im Ham-	
	marmosse	88
4.25	Zusammenhang zwischen Alter an der Basis und der horizontalen Distanz	
	von zwei initialen Moorzentren im Hammarmosse	89
4.26	Horizontale Langsamkeit im Hammarmosse	89
4.26	Ausbreitungsrate und Fläche im Hammarmosse in der Ebene	90
5.1	Zusammenhang zwischen Nachlieferung, Mächtigkeit und Länge des	
	Moores	93
5.2	Zusammenhang zwischen gegebener Länge und dem Logarithmus der	
	berechneten hydraulischer Leitfähigkeit bei unterschiedlichem	
	Niederschlag	95
5.3	Zusammenhang zwischen gegebener mittlerer und maximaler Mächtigkeit	
	und berechneter hydraulischer Leitfähigkeit K	95
5.4	Stationäre Wasserspiegel für verschiedene Quotienten der hydraulischen	
	Leitfähigkeit	97

5.5	Nachlieferung über den Zeitraum von 120 Monaten	98
5.6	Räumliche Anordnung der Leitfähigkeiten der 9 Quotienten	99
5.7	Mittlere Leitfähigkeiten der 9 Quotienten	99
5.8	Isotropes poröses Medium, parallel-ansiotropes und senkrecht anisotropes	
	poröses Medium	102
5.9	Räumliche Anordnung des Speicherkoeffizienten für die sieben	
	simulierten Quotienten	100
5.10	Stufenantwort der piezometrischen Höhe h an der Stelle $x = 0$ nach einer	
	konstanten Verdoppelung der Nachlieferung	. 103
5.11	Stufenantwortfunktion des untersuchten Systems an der Stelle $x = 0$	104
5.12	Darstellung der piezometrischen Höhe h des simulierten Modells an der	
	Stelle x = 0 und der Nachlieferung	105
5.13	Darstellung der piezometrischen Höhe wie sie von Schmeidl et al. (1970)	
	in einem Hochmoor mit ähnlichen Eigenschaften wie das simulierte	
	Modell gemessen wurde und der Nachlieferung.	106
5.14	Zeitlicher Verlauf der piezometrischen Höhe für verschiedene Quotienten	
	der Leitfähigkeit und des Speicherkoeffizienten	107
5.15	Autokorrelation der Nachlieferung und der piezometrischen Höhe für das	
	homogene Modell	107
5.16	Standardabweichung der piezometrischen Höhen für die extremen Leit-	
	fähigkeitsquotienten.	108
5.17	Standardabweichung der piezometrischen Höhen für die extremen	
	Quotienten der Speicherkoeffizienten über den gesamten Bereich der	
	Quotienten der Leitfähigkeit	109
5.18	Amplitudendiagramm der Standardabweichung für die Ouotienten der	
	Leitfähigkeit und des Speicherkoeffizienten	
5.19	Grundriss des simulierten Gebietes.	113
5.20	Vergleich einer Lösung des Finiten-Differenzen Modells mit der	
	analytischen Lösung	113
5.21	Massenbilanz des stationären Wasserflusses der Gebiete 1 bis 4 für jeden Zeitschritt	
5 22	Zeitliche Änderung der hydrouligaben Leiefähigkeit im Ochiet	. 114
5.23	Zeitliche und räumliche Änderung der Leitfähigkeit im Geolet	115
0.20	bis 4	117
5.24	Zeitliche und räumliche Änderung der piezometrischen Höhe in den	
	Transsekten 1 bis 4	. 118
5.25	Zeitliche und räumliche Änderung des Wasserspiegels gemessen vom	
	Ausgangswasserspiegel in den Transsekten 1 bis 4	110
5.26	Räumliche und zeitliche Darstellung der Leitfähigkeit in der Ebene vor	
	und nach der Entwässerung	120
5.27	Räumliche und zeitliche Darstellung der niezometrischen Höhe in der	120
	Ebene vor und nach der Entwässerung	121

5.28	Räumliche und zeitliche Darstellung der Veränderung des Wasserspiegels	
	gemessen von der Mooroberfläche in der Ebene vor und nach der Ent-	
	wässerung	122
5.29	Vergleich der mit dem Klötzchen-Modell simulierten Fläche und der	
	gemessenen Fläche im Turbenriet	123
5.30	Vergleich des mit dem Klötzchen-Modell simulierten Volumens und dem	
	gemessen Volumen im Turbenriet	124

.

TABELLENVERZEICHNIS

2.1	Verlauf der Jahrestemperatur im Turbenriet	5
2.2	Parameter und Korrelationskoeffizienten zwischen Niederschlagsmessun-	
	gen im Turbenriet und den SMA-Stationen	5
2.3	Regressionsparameter und Korrelationskoeffizienten zwischen Nieder-	
	schlagsmessungen der SMA-Stationen	6
2.4	Niederschlag, Niederschlagstage pro Monat und potentielle Evapotranspi-	
	ration im Turbenriet	8
2.5	Mittlere hydraulische Leitfähigkeit K, Porosität n, Speicherkoeffizient S	
	für die im Untersuchungsgebiet vorkommenden Gesteine	16
2.6	Mittlere hydraulische Leitfähigkeit K, Porosität n, Speicherkoeffizient S	
	für Hangley (Lokalformen Chnoden und Gottschalkenberg), sowie für	
	den Acrotelm eines Eriophorum-Sphagnum-Torfes	17
3.1	Werte des Torfverdichtungsfaktors in Beziehung zur Zeit	29
4.1	¹⁴ C-Datierungen im Standardprofil 25	54
4.2	14C-Datierungen der Basisproben	55
4.3	Mittelwerte der Abweichungen, Standardabweichungen der Mittelwerte	
	und maximale Abweichungen der verschiedenen Distanzmasse für die	
	kreuzdatierten Proben des Standardprofils	70
4.4	Mittelwerte und Standardabweichung der Mittelwerte für die	
	Wahrscheinlichkeit des ML-Schätzers und Mediane und 90 %	
	Perzentile für die Vertrauensintervalle der Basisproben	74
4.5	Mittelwerte und Standardabweichung der Mittelwerte für die	
	Wahrscheinlichkeit des ML-Schätzers und Mediane und 90 %	
	Perzentile für die Vertrauenintervalle der Transsektproben	76
5.1	Vergleich des berechneten Wasserspiegels mit den Mittelwerten der	
	Oberflächen für nordwestdeutsche Moore	92
5.2	Vergleich des berechneten Wasserspiegels mit den Mittelwerten der	
	Oberflächen für bayrische Moore	92
5.3	Statistische Masse der Nachlieferung	97
5.4	Leitfähigkeitsquotienten zur Berechnung des Amplitudendiagramms	98
5.5	Quotienten des Speicherkoeffizienten und ihre Grösse an den Stellen	
	x = 0 und $x = 200$, mit welchen das Amplitudendiagramm berechnet	
	wird	100
5.6	In einem isotropen Torfkörper physikalisch mögliche Kombinationen des	
	Quotienten aus der Leitfähigkeit und dem Speicherkoeffizienten	101
5.7	Stufenantworten und Halbwertszeiten für das homogene hydrologische	
	System	103

NOTATION

kleine deutsche Symbole

a	Koeffizient (Steigung bei Regression)	
b	Koeffizient (Interzept bei Regression)	
с	Konstante	
đ	Distanzvektor	
g	Gravitationskraft	[LT ⁻²]
h	Wasserspiegelhöhe, piezometrische Höhe	[L]
h	Anzahl der Realisierungen	
m	Masse	[M]
m	Vektor der Minima aus den Distanzvektoren	
n	Porosität	[L ³ /L ³]
n, o, r, s	Anzahlen	
nran	Anzahl der künstlichen Realisierungen	
р	Produktionsrate	[M/T]
	Druck	[ML-2T-2]
р	Wahrscheinlichkeit	
r	Korrelationskoeffizient	
t	Zeit	[T]
ν	quadrierte piezometrische Höhe ($v = h^2$)	
x	unabhängige Variable	
у	abhängige Variable	_
z	vertikale Koordinate	[L]

grosse deutsche Symbole

Α	Ereignis	
Α	Flächenzuwachsrate	[L ² /T]
$A_{(n r)}, A_{nr}$	Matrize mit n Kolonnen und r Reihen	
D	Diffusion	
Ε	Evapotranspiration	[L/T]
H	Zersetzungsgrad (Humifikation) nach von Post	
H	Häufigkeit	
K	hydraulische Leitfähigkeit	[L/T]
L	Abstand	[L]
М	Gesamtmasse	[M]
MED	gleitender Median in einer Reihe	

	~
v	
^	
	_

N	Niederschlag	[L/T]
S	Speicherkoeffizient	[L ³ /L ³]
S	Volumetrische Sedimentationsrate	[L ³ /T]
U	Nachlieferung	[L/T]
V	Volumen	[L ³]
Vp	Volumen des Porenraums	[L ³]
Vt	Gesamtvolumen des Körpers	[L ³]
Х	Matrix des Standardprofils	
Y	Matrizen der Basis- und Transsektprobenpunkte	
Z	Mächtigkeit des Torfkörpers im Zentrum (maximale Mächtigkeit)	[L]
kleine	e griechische Symbole	
α	Zersetzungsfaktor	[T-1]
	vertikale Kompressibilität des Bodens	
β	Kompressibilität des Wassers	
δ	Vektor der Basisprobentiefen	
δłu	Distanz des Vertrauensintervall aus den Tiefen des Standardprofils	
3	Fehlervektor (Kap. 4)	
	Zusammendrückung (Längenänderung pro Länge) (Kap. 3) din	nensionslos
φ	Potential	[L ² T ⁻²]
η	Abstand zwischen Sohle des Grundwasserträges und Referenzhöhe	[L]
ι	Differenz der Indizes bei der Berechnung des Vertrauensintervalls	
κ	Maximum Likelihood des Minima-Vektors m	
μ	Minimum eines Distanzvektors	
ν	Anzahl Lösungen	
π	Zahl p, 3.141	
π	vorgegebene Wahrscheinlichkeit	•
ρ	Dichte	[ML-3]
σ	Standardabweichung	•
σz	Auflast	[M/L ²]
τ	in eine Zeit transformierte Distanz des Vertrauensintervall	
ω	Vektor der Reihenfolge der Proben	
ω'	Vektor der Reihenfolge der Proben nach der Bestimmung von k	
ξ	Differenzvektor der Vektoren x	
ζ	Differenz der Komponenten von w-w'	

grosse griechische Symbole

r	Matrix der Monte-Carlo Realisierungen einer Probe	
Φ	Energie	
	Gesamtvolumen eines Körpers	[ML ² T ⁻¹], [L ³]

XIV

Ω	Gebiet (zum Beispiel ein Hochmoor)
Ξ	Matrix der Differenzvektoren x
Ψ	Vertrauensintervall, Konfidenzintervall

mathematische Notationen

а	eine Zahl
а	ein Vektor
A	ein Tensor, eine Matrix
llall	Vektomorm
[a,b]	Intervall von a bis b, die Grenzen eingeschlossen
]a,b]	Intervall von a bis b, die Grenze bei a ausgeschlossen (analog [a,b[und]a,b[)
\hat{p}	Erwartungswert
р	Ordnungszahl (Norm der Ordnung p)
PL, PU	unterer bzw. oberer Wert des Konfidenzintervalls
{ }, A	geordnete Menge
oc	proportional zu
v	oder
^	und
A	für alle
Ŧ	identisch
<>	Mittelwert des Ausdrucks
8	Mengenprodukt, zum Beispiel $K \otimes S$, Menge aller geordneten Paare aus K, S
\rightarrow	daraus folgt
d/dt	Ableitung nach der Zeit
9/9x	partielle Ableitung nach der Ortskoordinate x
δf	endliche (finite) Differenz der Funktion f
I	Menge der ganzzahligen Zahlen
∇	Gradienten Operator
∇f	Gradient der Funktion f
∇f	Divergenz des Vektorfeldes f
e .	Element von
\sum_{i}^{j}	Summe über alle i und j

Notation für Altersbezeichnungen

BP v	vor heute	mit Jahr	0 =	1950	AD
------	-----------	----------	-----	------	----

- AD nach Christi Geburt (anno domini)
- BC vor Christus
- ka tausend Jahre

Hochmoore sind in der Schweiz hochgradig gefährdete Ökosysteme. Um sie zu erhalten, ist es notwendig, die hydrologischen und bodenkundlichen Prozesse zu kennen, welche bei der Entstehung und Ausbreitung wirksam sind. Die notwendigen Grundlagen und Modellvorstellungen werden dazu entwickelt. Auf dieser Basis werden dann die konkreten Prozesse mit Hilfe der Rekonstruktion der Geschichte des Moores und der Simulation hydrologischer Eigenschaften untersucht. Als Hauptuntersuchungsobjekt dient das Turbenriet im Kanton St. Gallen, Schweiz. Für spezielle Fragen werden publizierte Daten aus Mooren von Schweden (Granlund, 1932; Foster, 1988) und Deutschland (Schmeidl et. al, 1970; Eggelsmann und Schuch, 1980) verwendet.

In den theoretischen Grundlagen werden zuerst die Eigenschaften von Torfböden definiert. dazu wird die Klassifikation der Soil Taxonomy erweitert. Danach werden die Modellvorstellungen entwickelt, welche die Prozesse der Torfablagerung beschreiben. Die Rekonstruktion erfolgt mit ¹⁴Cund pollenanalytischen Datierungen. Die ¹⁴C Datierung erfolgt an einem sogenannten Standardprofil und an einzelnen Basisproben. Die pollenanalytischen Datierungen basieren auf einem 50 m Raster der Basisproben und einem Längs- und Quertranssekt, in welchen vertikal 4 Proben entnommen wurden. Die Einordnung der Proben in das Standardprofil erfolgt aufgrund der Ähnlichkeit und mittels eines Optimierungsalgorithmus. Die Vertrauensintervalle der Datierung werden mit einer Monte-Carlo-Simulation bestimmt. Die hydrologischen Simulationen untersuchen die Reaktion verschiedener Leitfähigkeits- und Speicherkapazitätsverhältnisse bei instationärer Nachlieferung und die Auswirkung der Verdichtung des Torfes nach einer Entwässerung. Für die Simulationen wurde ein eindimensionales, instationäres und ein zweidimensionales, stationäres Finite-Differenzen Modell entwickelt.

Die dreidimensionale Rekonstruktion der Moorbildung ermöglicht den Flächen- und Volumenzuwachs zu berechnen. Aus den nahezu linearen Zuwachsraten kann ein neues Sedimentationsmodell hergeleitet werden, welches aufgrund der mittleren vertikalen Sedimentationsrate und der horizontalen Ausbreitungsrate die gemessenen Daten gut wiedergibt. Die instationäre hydrologische Simulation des Wasserspiegels zeigt, dass mit den im Zentrum eines intakten Moores auftretenden Bult-Schlenken-Strukturen und den Rüllenstrukturen am Rand des Moores die minimale Amplitude des Wasserspiegels auftritt. Die Simulation der Veränderung des Wasserspiegels infolge Torfverdichtung zeigt, dass die hydraulische Leitfähigkeit vor allem am Rand des Moores (beim Entwässerungsgraben) abnimmt und der Wasserspiegel im Laufe der Zeit wieder ansteigt. Der zentrale Teil des Moores wird dabei am stärksten wieder vernässt.

Das sich entwickelnde Hochmoor lässt sich somit als lineares System interpretieren. Die Verdichtung des Torfs nach einer Entwässerung führt zu einer effizienten Rückkoppelung und sichert die beobachtete lange Lebensdauer des Ökosystems. Für die Regeneration von Hochmooren bedeutet dies, dass die Entwicklung des Moores stark berücksichtigt werden muss und die Rückkoppelungsprozesse in die Planung einbezogen werden müssen.

Anders ausgedrückt kann man sagen, dass das System die anthropogenen und natürlichen Störungen selber reguliert, wenn man ihm Zeit lässt. Ist die Störung jedoch so gross, dass der Mineralboden, auf welchem das Moor wächst, zuerst entwässert und dann belüftet wird, so ist die Torfbildung nicht mehr möglich. Due to the intensive landuse and cultivation practised during the last century in Switzerland the peat bogs (synonymous mires) became an endangered landscape element. In order to restore and preserve such relict ecosystems it is necessary to understand the hydrological and peat bog formation processes. Of primary importance are those processes which control the growth and sedimentation of peat. Such longtermed processes were investigated by reconstructing the surface shapes of a peat bog during the past 12000 years. By means of an instationary drainage model the spatial distribution of hydraulic conductivities were analyzed which determine to a large extent the observed bog shape.

Most of the data are from Turbenriet (canton St. Gallen, Switzerland). For special questions additional, published data were used from Sweden (Granlund, 1932; Foster, 1988) and Germany (Schmeidl et. al, 1970; Eggelsmann and Schuch, 1980).

The former surfaces of the expanding and growing bog were reconstructed by means of pollen analyses which in turn were calibrated with radiocarbon dates. The peat samples were taken as depth profiles along transsects and, in addition, at the base of the peat body on a 50×50 m grid. The standard profile and a selection of base samples were crossdated with radiocarbon. The age of the exclusively pollen-dated samples was determined based on pollen composition using several similarity measures and an optimization algorithm to compare the sample data with the pollen data of the radiocarbon-dated reference samples. The confidence intervals were estimated by means of a Monte-Carlo simulation. The three-dimensional reconstruction of the peat bog enabled to calculate the time dependent growth in area and volume. The nearly linear vertical and horizontal growth made it possible to adjust a sedimentation model, which exhibits a relatively small deviation between fitted and measured areas and volumes.

The transient, one-dimensional finite difference model was used to simulate the amplitudes of the oscillating water table for a peat bog with a space dependent ratio between hydraulic conductivity and between storage capacity. The minimum of the overall amplitude was found for conductivity and storage capacity coefficients, which must be interpreted as hollow-hummock structure in the centre of the bog and as "Rüllen"-structure (natural drainage ditches) at the fringe.

The two-dimensional finite difference model for the transient simulation of the change in hydraulic conductivity predicts a marked reduction in the im-

XVIII

mediate vicinity of the ditch. This reduction raises the water table during the subsequent years. The maximum water table raise is predicted for the central part of the drained bog.

Based on the presented data and model prediction we conclude that a peat bog behaves as a nearly linear system. The drainage induced compaction exerts a corrective feedback by favouring ponding conditions and hence warrants the longevity of such ecosystems. A successful restauration process of anthropogeneously disturbed peat bogs should make use of these mechanisms. Hochmoore gehören zu den torfbildenden Ökosystemen. Von anderen Ökosystemen unterscheiden sie sich durch ihren über mehrere tausend Jahre offenen Nährstoffkreislauf und damit über lange Zeit positive Stoffbilanz, da die organische Substanz nur sehr langsam zersetzt wird. Die organische Substanz wird immer dann langsam zersetzt, wenn die Lebensbedingungen für Mikroorganismen ungünstig sind. Dies trifft zu in wassergesättigten Böden mit einem geringen Sauerstoffangebot oder in extrem trockenen Böden, wo es an Feuchtigkeit mangelt.

Hochmoore zeichnen sich durch ein dynamisches Ökosystem aus, das sich allerdings für menschliche Massstäbe äusserst langsam vollzieht. Zufolge dieser Dynamik verändert sich das ursprüngliche Ökosystem grossflächig; die Umgebung wird durch das wachsende Hochmoor versumpft, sodass die ursprüngliche Waldvegetation einer Sumpf- und Moorvegetation weichen muss.

Die Untersuchungen des Hochmoor-Regenerationsprojektes «Turbenriet» führten zur grundlegenden Frage wie sich ein Hochmoor im Laufe seiner postglazialen Entstehungsgeschichte oder nach einem Eingriff durch den Menschen entwickelt.

Das Ziel der Arbeit ist, das komplexe Ökosystem «Hochmoor» mit möglichst wenig Prozessen, und damit Parametern, so genau zu beschreiben, wie es für die Planung von Regenerationsmassnahmen notwendig ist. Aufbauend auf Ivanov (1981) und Clymo (1984) wurden hydrologische und bodenkundliche Prozesse als die bedeutendsten betrachtet. Anhand von Modellen wird versucht, die ökologischen Vorgänge im Hochmoor möglichst sinnvoll zu erfassen. Das Schwergewicht dieser Arbeit liegt deshalb auf der Quantifizierung und Simulation der Prozesse.

In Kapitel 2 wird «Turbenriet» vorgestellt. Hier wurden die umfassenden Untersuchungen vorgenommen. Die hydrologischen und vegetationskundlichen Bestandesaufnahmen hat Schneebeli (1988) in einer früheren Publikation bereits dargestellt und interpretiert.

Kapitel 3 befasst sich mit der Theorie über die Torfbildung und der damit verknüpften Abläufe. Dabei werden einerseits die Ursachen der Torfbildung aus bodenkundlicher Sicht, anderseits die für die Bildung von Mooren notwendigen hydraulischen und hydrologischen Gesetzmässigkeiten und darauf aubauend ein Moorwachstums-Modell hergeleitet.

In Kapitel 4 finden sich die statistischen Grundlagen für die pollenanalytische Altersbestimmung. Hier wird auch die Moorentwicklung quantitativ rekonstruiert. In einem ersten, theoretischen Teil wird die Methode entwickelt, die notwendig ist, um mit pollenanalytischen Datierungen eine mit ¹⁴C-Datierungen vergleichbare Genauigkeit zu erreichen. Im zweiten Teil wird die Methode auf Daten aus dem Turbenriet angewandt und die Mooroberflächen während der letzten 12000 Jahre rekonstruiert. Abschliessend werden die gefundenen Wachstumsbeziehungen mit einem Moor aus Schweden verglichen.

In Kapitel 5 werden die in Kapitel 3 entwickelten Modelle mit aus der Wirklichkeit gewonnenen Daten geprüft und gleichzeitig die für die Torfbildung wesentlichen Prozesse simuliert. In einem ersten hydrologischen Modell wird dem Einfluss der schwankenden Nachlieferung auf den Wasserspiegel nachgegangen und die Resultate ökologisch interpretiert. Im zweiten hydrologischen Modell wird die bei Entwässerung auftretende Torfverdichtung simuliert. Das Moorwachstums-Modell wird mit dem in Kapitel 4 berechneten Wachstum verglichen und gezeigt, dass das Moorwachstum ein weitgehend linearer Prozess ist.

Kapitel 6 widmet sich der Umsetzung der Ergebnisse auf die Regeneration und den daraus zu folgernden Konsequenzen. Als Beispiel werden die für das Turbenriet notwendigen Regenerationsmassnahmen kurz dargestellt. In diesem Kapitel werden die Eigenschaften des untersuchten Moores und seiner näheren Umgebung dargestellt. Diese Daten wurden, wie schon erwähnt, zum Teil veröffentlicht. Es wird deshalb dann auf die Originalarbeit verwiesen, wenn für das weitere Verständnis dieser Arbeit keine ausführliche Erläuterung notwendig ist.

2.1. LAGE UND MESSNETZ

Als Untersuchungsobjekt wurde das Hangmoor Turbenriet in der Gemeinde Grabs, Kanton St. Gallen, gewählt. Das Zentrum des Moores weist die Koordinaten 747300 / 226500 / 1325 auf (47° 10' 32" nördl. Breite, 9° 23' 4" östl. Länge). Die topographische Situation des Moores ist in Abbildung 2.1 dargestellt.

Die Untersuchungen wurden auf einem quadratischen Raster mit 50 m Seitenlänge durchgeführt, dessen eine Achse in magnetisch Süd-Nord-Richtung verläuft. Die Koordinaten der Messpunkte sind in Anhang A aufgeführt.

2.2. Klima

Ein wesentlicher Faktor für die Moorbildung ist das Klima. Besonders wesentlich sind Niederschlag und Verdunstung. Für die Entwicklung des Moores sind auch länger andauernde extreme Perioden bedeutend. Die Verteilung des Niederschlages zwischen 1901 und 1985 wurde deshalb statistisch untersucht.

Die Daten wurden aus verschiedenen Quellen zusammengetragen: die Temperaturen wurden aus Urfer et al. (1979) interpoliert, die Niederschlagsdaten stammen aus eigenen Messungen im Untersuchungsgebiet (August / September 1984) (Anhang B) und der Niederschlagsdatenbank der SMA (Bantle, 1988) für die Stationen Wildhaus (1984–1985), Starkenbach (1984–1985) und Säntis (1901–1985).

Abbildung 2.1 Übersichtskarte des Untersuchungsgebietes und des Messnetzes. Auf allen bezeichneten Messpunkten wurden die Torfmächtigkeit und das hydraulische Potential bestimmt, an den schwarz markierten Messpunkten wurden auch pollenanalytische Proben entnommen. Die dünnen geraden Linien bezeichnen Drainagegräben.

2.2.1. Temperatur und Vegetationszeit

Der Verlauf der monatlichen Mitteltemperaturen ist in Tab. 2.1 dargestellt. Die Vegetationszeit dauert etwa von Ende Mai (Ende der Schneeschmelze) bis Ende September (Einsetzen starker Fröste). Das Gebiet hat nach Ellenberg (1978) montan-randalpines Klima.

Monat	1	. 11		IV	V	VI	VII	VIII	IX	X	XI	XII
Temperatur *C	-1.5	-0.6	2.0	4.4	9.0	12.9	13.4	13.0	10.6	6.5	2.0	-0.5

Tabelle 2.1 Verlauf der Jahrestemperatur im Turbenriet (1300 m) interpoliert aus dem regionalen Klimagradienten für Hangstationen (Mittel 1901–1960).

2.2.2. Niederschläge

Um für das Untersuchungsgebiet repräsentive Niederschlagsmengen und -verteilungen zu erhalten, wurden (i) die Niederschlagsmessungen im Turbenriet mit den Stationen Wildhaus, Starkenbach und Säntis verglichen und eine Regression durchgeführt, (ii) die Jahre 1984 und 1985 der Niederschlagsstationen Wildhaus und Starkenbach mit denjenigen der Station Säntis verglichen und (iii) der Verlauf der Niederschläge der Station Säntis von 1901–1985 detailliert untersucht.

(i) Der Zusammenhang zwischen der 59-tägigen Niederschlagsmessung im Untersuchungsgebiet und dem Niederschlag der Stationen Wildhaus (SMA-Station 2020) Starkenbach (2040) und Säntis (2220), N_S wurde mit einer linearen Regression der kumulierten Niederschlagsmengen berechnet. Als abhängige Variable wurde der Niederschlag im Turbenriet $N_{Turbenriet}$ in mm/Tag (Anhang B) gewählt. Die Regression nach dem Modell:

$$N_{\text{Turbenriet}} = aN_S + b$$
,

(2.1)

ergab die in Tab. 2.2 dargestellten Parameter a, b und Korreleationskoeffizienten r. Die gemessenen Werte weichen nur wenig von einer Geraden ab.

Station S	2020	2040	2220
a	1.04	1.01	0.75
b	23.4	7.9	55.9
r	0.995	0.993	0.972

Tabelle 2.2 Parameter und Korrelationskoeffizienten zwischen Niederschlagsmessungen im Turbenriet und den SMA-Stationen Wildhaus (2020), Starkenbach (2040) und Säntis (2220). Die Regressionen zeigen, dass Wildhaus und Starkenbach zumindest in den Sommermonaten die nahezu gleichen Niederschlagsmengen erhalten wie das Untersuchungsgebiet.

(ii) Der Zusammenhang zwischen den Stationen Wildhaus und Starkenbach, von denen nur kürzere Messreihen existieren, sowie der langjährigen Messreihe des Säntis wurde aufgrund des Vergleichs der Jahre 1984 (ein Normaljahr) und 1985 (ein eher trockenes Jahr) hergestellt. Als abhängige Variablen wurden die Stationen Wildhaus (2020) und Starkenbach (2040) gewählt. Es wurden, wie vorher, die kumulierten Tagesniederschläge verglichen (Tab. 2.3).

1984	2020	2040
а	0.877	0.995
b	-129.0	-19.1
r	0.997	0.999

1985	2020	2040
а	0.908	0.987
b	-73.6	-50.1
r	0.996	0.998

Tabelle 2.3 Regressionsparameter und Korrelationskoeffizienten zwischen Niederschlagsmessungen der SMA-Stationen Säntis, Wildhaus (2020) und Starkenbach (2040) 1984 und 1985 (Parameter b in [mm]).

Aufgrund dieser Regressionen wurde abgeleitet, dass das Turbenriet 90 % der auf dem Säntis gemessenen Niederschläge erhält.

(iii) Um die Vermutung zu überprüfen, ob die einzelnen Monatssummen miteinander korreliert sind, wurde die Autokorrelation für die 85-jährige Niederschlagsreihe Säntis über eine Fouriertransformation (Press et al., 1986) berechnet. Die Auswertung zeigte, dass sie mit einer schwachen Jahresperiodizität (r = 0.12) voneinander unabhängig sind. Werden für die Berechnung der Autokorrelation die Differenzen zwischen Monatssumme und Mittelwert der Monatssumme genommen, lässt sich die Jahresperiodizität entfernen. Der langfristige Verlauf der Niederschläge ist in Abbildung 2.2 dargestellt. Im Laufe der untersuchten Periode nehmen die Niederschläge etwas ab. Dieser Trend wird jedoch von kurzfristigen stärkeren Schwankungen überlagert. Trockene Sommerperioden (unteres Quartil mehrfach unterschritten) sind die Jahre 1946–1951 sowie 1975–1985 (1981 und 1984 im Mittelbereich). Nasse Sommerperioden, in denen das obere Quartil überschritten wird, sind 1912– 1917, 1940–1941, 1954–1957, 1965–1968.

Abbildung 2.2 Mittelwerte der Sommerniederschläge (1. Juni–30. September) von 1901– 1985 auf dem Säntis (110% der Niederschläge im Turbenriet).

Während des ganzen Jahres fallen grosse Regenmengen (Tab. 2.4, Abb. 2.3). Sogar in den trockensten Monaten Februar und Oktober liegt der Median mit 4.3 bzw. 4.5 mm/Tag wesentlich über der potentiellen Evapotranspiration. Die Extremwerte und Quartile zeigen die grosse Variabilität der Niederschläge. Jeder Monat kann sowohl sehr hohe als auch kleine Werte annehmen. Monate mit aufeinander folgenden gleichsinnigen Extremwerten sind jedoch sehr selten, da auch in Trockenperioden Gewitter auftreten. Die potentielle Evapotranspiration wurde nach Thornthwaite (Withers et al, 1978) aufgrund der monatlichen Mitteltemperaturen berechnet. Sie stellt für längere Zeiträume in Gebieten mit etwa gleichbleibender Luftfeuchtigkeit eine realistische Schätzung dar. Nach Schmeidl et al. (1970, p. 75) ist die potentielle Evapotranspiration in einem Hochmoor mit Torfmoos (Sphagnum) etwa gleich gross wie die aktuelle.

Die Dauer der längsten Trocken- und Niederschlagsperioden ist in Abbildung 2.4 dargestellt. Regen- und Trockenperioden, welche bis zu 7 Tagen dauern, treten im Mittel alle 2 Jahre auf. In längerdauernden Regenperioden können grosse Niederschlagsmengen fallen, ihre Häufigkeit ist in Abbildung 2.5 dargestellt. Zusammenfassend lässt sich das Klima im Turbenriet als ausgesprochen niederschlagsreich mit hohen Sommer- und Winterüberschüssen kennzeichnen.

7

Monat	Min	uQ	M	οQ	Max	NT	pETP
1	0.9	3.8	5.6	7.7	21.9	14.8	0.0
"	0.2	3.0	4.3	7.5	15.8	13.7	0.0
111	0.8	2.8	4.6	6.6	19.9	14.4	0.5
IV	0.7	4.0	5.7	8.3	22.8	15.9	1.2
V	1.9	3.7	4.8	7.8	20.2	15.3	2.4
VI	2.5	5.5	7.2	9.4	15.9	17.2	3.2
VII	1.2	5.9	7.9	11.1	17.5	16.3	3.4
VIII	3.6	5.8	7.8	10.7	18.0	16.0	3.0
IX	0.8	4.0	5.5	7.6	14.4	12.8	2.2
X	0.0	2.1	4.5	7.6	14.8	11.2	1.3
XI	0.3	2.8	5.0	7.6	21.3	12.5	0.4
XII	.2	3.2	5.1	9.2	20.3	14.2	0.0

Tabelle 2.4 Niederschlag, Niederschlagstage pro Monat und potentielle Evapotranspiration im Turbenriet. Für jeden Monat ist das Minimum (Min), das untere Quartil (uQ), der Median (M), das obere Quartil (oQ), das Maximum (Max) der Niederschläge [mm/d], das Mittel der Niederschlagstage (NT) [d] und die mittlere potentielle Evapotranspiration (pETP) [mm/d] aufgeführt.

Abbildung 2.3 Monatliche Niederschlagssummen im Turbenriet (max: maximaler Wert, oQ: oberes Quartil, Z: Median, uQ: unteres Quartil, min: minimaler Wert).

Abbildung 2.4 Dauer und Häufigkeit von Regen- und Trockenperioden. Auf der Hauptabbildung ist die Häufigkeit der Perioden im Zeitraum 15. Mai-30. September in linearem Massstab, in der kleinen in logarithmischem Massstab dargestellt. (Niederschlagsreihe Säntis 1901–1985).

Abbildung 2.5 Verteilung der Niederschläge während Niederschlagsperioden. Die Verteilung der kumulierten Niederschlagsmenge während einer Regenzeit ist als Kästchen-Diagram dargestellt. Punkte liegen ausserhalb des 10% bzw. 90% Perzentils, das Kästchen umfasst das untere Quartil, den Median und das obere Quartil.

2.3. GEOLOGIE

2.3.1. Geologie und Geomorphologie

Der Untergrund des Turbenrietes besteht aus schiefrigen Kalkmergeln und lehmiger Grundmoräne (Abbildung 2.6). Das ganze Gebiet war während des Maximums der Würmeiszeit vom Eis des Rheingletschers überdeckt. Stärker kalkhaltige Bänder des Amdenermergels führten zu Karsterscheinungen am Ostrand des Moores. Die Hangschulter, auf welcher das Moor liegt, ist durch querlaufende Moränen in muldenartige Bereiche unterteilt. Die südlichste Moräne, welche das Untersuchungsgebiet begrenzt, wird dem Etzwilen-Zürich-Bazenheid-Stadium zugeordnet (Hantke, 1967). Seit ungefähr 15000 Jahren ist das Untersuchungsgebiet eisfrei. Es ist zu vermuten, dass danach die tonreiche Moräne zum Teil erodierte und dabei das Relief ausrundete. denn die älteste pollenanalytisch datierte Schicht liegt im Präboreal (ca. 10000 BC). Die ersten Torfe wurden vor ca. 11000 Jahren abgelagert. Die Torfe waren im 19. Jahrhundert bis zu mehr als 6 m mächtig (Abb. 2.7). Das heute zusammenhängende Moor besteht aus drei, durch jüngere Torfschichten verbundene Körper von 3-6 m maximaler Tiefe. Sie sind durch flache Moränenwälle getrennt. An der südwestlichen Seite des Moores vertieft der Rotbach auch heute noch aktiv sein Bett. Im nordwestlichen Teil findet sich am Rand des Moores ein ehemaliger Bachlauf, der das Moor erodierte (Abb. 2.6, Anhang C, Abb. C.10). Wann die an der südwestlichen Ecke des Gebietes gelegenen Terassen entstanden sind, konnte nicht herausgefunden werden. Es ist möglich, dass sie schon vor der ersten Torfbildung bestanden.

2.3.2. Stratigraphie des Torfkörpers

Die Stratigraphie des Torfkörpers wurde im Labor an den Bohrkernen untersucht (zur Probeentnahme siehe Schneebeli, 1988). Die detaillierten Beschreibungen (Anhang C.1) werden in den folgenden Abbildungen (Abb. 2.8 – 2.11 und Anhänge C.2, C.3) zusammengefasst. Die Zusammensetzung der Torfe und der Humifizierungsgrad werden in getrennten Abbildungen dargestellt. Die typischen Merkmale werden an den auch für die pollenanalytischen Untersuchungen verwendeten Profilen 23–32 (Längsschnitt) und 4–73 (Querschnitt) diskutiert. Um die realen topographischen Verhältnisse zu verdeutlichen, sind Ober- und Untergrenze der Torfschicht in Abbildung 2.8 und 2.9 nicht überhöht dargestellt.

Abbildung 2.6 Geologie und Geomorphologie des Turbenriets.

Abbildung 2.7 Geschätzte Torfmächtigkeit vor dem Torfabbau (ca. 1860) und gemessene Torfmächtigkeit (1984). Die Mächtigkeit in den entwässerten und abgebauten Gebieten wurde aufgrund der Veränderung der scheinbaren Dichte und des wahrscheinlichsten Verlaufs der ursprünglichen Höhenlinien (Karte der Ortsgemeinde Grabs, 1879) berechnet (Details der Berechnungen in Schneebeli, 1988).

Im Längsschnitt (Abb. 2.9 und 2.10) zeigen sich die drei muldenartigen Senken sehr deutlich. Eriophorum-Torfe dominieren. Diese Torfe führen an der Basis als Nebenbestandteile Phragmites und Alnus, in der Mitte häufig Braunmoose und gegen oben zunehmend Sphagnum. In der südlichsten Mulde treten an der Basis etwas Phragmites- und Alnus-Torfe auf, in der Mitte Braunmoos-Torfe. Zuoberst findet sich eine dünne Schicht Sphagnum-Torf. Die mittlere Mulde ist reicher an Sphagnum als die anderen, die oberste besteht überwiegend aus Eriophorum-Torfen. Die Humifizierung der Torfe variiert ohne eindeutig erkennbares Muster, ein Teil der Profile ist durchgehend recht stark zersetzt, andere eher schwach. Auffällig sind jedoch die durchgehend nur schwach zersetzten Profile 25 und 29. Es scheint, dass in den «Zentren» des Moores gelegene Profile eher weniger stark zersetzt sind

12

als diejenigen am Rande. Die Bohrungen sind jedoch zu wenig dicht und die Profile zum Teil unvollständig (wegen des Torfabbaus), sodass keine definitive Aussage gemacht werden kann. Die Betrachtung des nicht überhöhten Längsschnitts zeigt, wie «sanft» die Oberfläche der Grundmoräne verläuft. Die maximalen Neigungen betragen etwa 10 %.

Der Querschnitt 4–73 durchschneidet die Moräne, welche die südlichste Mulde von der oberen trennt und durchquert danach die tiefste Mulde. Auffallend sind die Sphagnum-Torfe in den Profilen 11 und 54, an diesen Stellen müssen schon sehr früh ausgesprochen nährstoffarme Verhältnisse geherrscht haben. Sie zeigen auch, dass die sonst vorherrschenden Eriophorum-Torfe nicht auf selektive Humifizierung der einzelnen Komponenten zurückgeführt werden können (Clymo, 1984). Die Humifizierung lässt auch hier kein eindeutiges Muster erkennen.

Das Fehlen profilübergreifender Strukturen lässt sich auch klimatisch interpretieren. Stark zersetzte Torfschichten, welche sich über die ganzen Querschnitte verfolgen lassen, fehlen. Dies deutet darauf hin, dass die Niederschlagsüberschüsse seit Beginn des Moorwachstums etwa gleich blieben und dass die Humifizierung durch kleinräumige, (kleiner als 50 m) Wechsel des Wasserspiegels, beziehungsweise der anaeroben Verhältnisse, verursacht wurde.

Im Querschnitt 16-59 (Abb. C.10) nimmt die Torfmächtigkeit von Punkt 31 zum Punkt 16 stark ab. Die genaue Betrachtung der Höhenkurven (Abb. 2.6) zeigt, dass Punkt 16 nahe eines nun verlassenen Bachlaufs liegt. Es ist somit sehr wahrscheinlich, dass der Torfkörper in westlicher Richtung an dieser Stelle einst mächtiger und ausgedehnter war. Beim obersten Torfkörper handelt es sich somit um ein Moor, welches nicht anthropogen entwässert wurde und das sich heute in Regeneration befindet.

Abbildung 2.8 Mächtigkeit der Torfschicht im Querschnitt 4-73 (nicht überhöht).

Abbildung 2.9 Mächtigkeit der Torfschicht im Längsschnitt 23-33 (nicht überhöht).

Abbildung 2.10 Stratigraphie und Zersetzungsgrad des Längsschnittes 23–33. Die Dreiecke und Nummern bezeichnen die Bohrpunkte.

Abbildung 2.11 Stratigraphie und Zersetzungsgrad des Querschnittes 4–73. (Legende in Abb. 2.10)

2.3.3. Hydraulische Eigenschaften der Gesteine

Die hydraulischen Eigenschaften (Definitionen siehe Kap. 3.2) des Untergrundes wurden nicht gemessen. Aufgrund von Literaturangaben werden für Mergel, Grundmoräne und Torfe die in Tabelle 2.5 dargestellten Werte erwartet. Die Leitfähigkeit von Mergel und Grundmoräne werden durch den Tongehalt und die Verdichtung beeinflusst, diejenige des Torfes durch den Grad der Humifizierung und der Torfart. Die horizontale Leitfähigkeit ist gegenüber der vertikalen Leitfähigkeit 10–100 mal grösser, wenn sie an Volumen von einigen m³ bestimmt wird¹. In der Grundmoräne als auch im Torf hat sich ein Boden² entwickelt. Hier wie dort nimmt die Leitfähigkeit und der Speicherkoeffizient mit zunehmender Tiefe ab. Sie nehmen jedoch nicht aus demselben Grund ab. In der Grundmoräne über Mergel entwickelte sich ein Hanggley. Die Oberfläche wird durch Pflanzen und Tiere gelockert, weshalb Leitfähigkeit und Speicherkoeffizient zunehmen. Die Verteilung der Korngrössen bleibt sich nahezu gleich (Richard et al., 1978, Lokalform Chnoden, Abb. 7, 8; Lokalform Gottschalkenberg, Abb. 7, 8). Die Auflockerung findet

¹Der Unterschied beruht darauf, dass eine Sedimentschicht immer mehr oder weniger horizontal verläuft. In vertikaler Richtung dominiert dann die undurchlässigste Schicht die Gesamtdurchlässigkeit, in horizontaler Richtung die durchlässigste Schicht.

²Ein Boden ist im Gegensatz zu einem Gestein biologisch stark aktiv, und bildet die Grenzschicht zwischen Geo- und Biosphäre.

Gestein	Н	K [m/s]	n [%]	S [m ³ /m ³]
Mergel	-	10 ⁻⁷ –10 ^{-13**}	0–10**	0.01†
Grundmoräne	-	10-6_10-12**	35-60**	0.02–0.6†
Sphagnum-Torf	<3	1•10 ⁻¹ –5•10 ^{-5*}	80-98††	0.18-0.7***
(Katotelm)+	3–5	5•10 ⁻⁵ -1•10 ⁻⁶		
	56	1•10 ⁻⁶ 2•10 ⁻⁷		
	>8	2•10 ⁻⁷ –1•10 ⁻⁹		
Sphagnum-Torf	10%	3•10-4-1•10-4*		0.17–0.24
(Katotelm)++	10–20%	7•10 ⁻⁵ –2•10 ⁻⁵		0.05-0.12
	35–45%	1•10 ⁻⁵ –3•10 ⁻⁶		0.025-0.08
	55-65%	8•10 ⁻⁷ -2•10 ⁻⁸		≈ 0.01

also von oben nach unten statt und verschwindet bei einem Rückgang der biologischen Aktivität³.

Tabelle 2.5 Mittlere hydraulische Leitfähigkeit K, Porosität n, Speicherkoeffizient S für die im Untersuchungsgebiet vorkommenden Gesteine. Bei den Torfen ist zusätzlich der Zersetzungsgrad H (Humifikation) angegeben (nach vonPost, 1924 (Ingram, 1983) bzw. Varlygin, 1924 (Fuchsman, 1980)). Die Daten entstammen folgenden Quellen: *Chason and Siegel,1986; **Freeze and Cherry, 1979; ***Ingram (1983), nicht nach Zersetzungsgrad differenziert; †Richard et al. (1978), Lokalform Chnoden; ††Schuch (1980), nicht nach Zersetzungsgrad differenziert; †Baden und Eggelsmann (1963); ++Ivanov (1981).

Die Abnahme der Leitfähigkeit und des Speicherkoeffizienten in einem Torf sind auf die zunehmende Humifizierung der organischen Substanz und der damit einhergehenden Verkleinerung der «Korngrösse» zurückzuführen. Die Humifizierung findet wesentlich in der obersten, zeitweise aeroben Schicht statt, welche häufig als Acrotelm bezeichnet wird (Ingram, 1978). Der Acrotelm ist der eigentliche Boden eines Moores. Je nach Aufenthaltsdauer im Acrotelm ist der resultierende Torf mehr oder weniger stark zersetzt und verändert sich kaum mehr, nachdem die anaerobe Zone wegen der Torfsedimentation und des gestiegenen Wasserspiegels höher zu liegen kommt. Diese Zone wird häufig Katotelm genannt und entspricht einem Gestein. Gerät der Katotelm in eine aerobe Zone (erhöhte biologische Aktivität, das heisst er wird zu einem Boden) verringern sich Leitfähigkeit und Speicherkoeffizient weiter. Dieses Verhalten steht daher im Gegensatz zu mineralischen Nassböden.

Für die im Untersuchungsgebiet vorkommenden Böden werden die in Tab. 2.6 dargestellten Werte angenommen.

 $^{^{3}}$ So zeigt der fossile A_{h,b}-Horizont der Lokalform Chnoden die physikalischen Merkmale der umgebenden G-Horizonte und ist einzig durch seine Farbe und organischen Reste erkennbar.

Bodenart	Tiefe	K [m/s]	n [%]	S [m ³ /m ³]
Hangley *	0-20	≈ 10 ⁻⁶	≈ 75	≈ 0.1
	20-60	≈ 10 ⁻⁷	≈ 55	≈ 0.05
	60120	≈ 10 ⁻⁸	≈ 45	≈ 0.03
Sphagnum-Torf	0–10	≈ 10 ^{3 **}	≈ 99 ***	≈ 0.35 [†]
(Acrotelm)	10–20	~ 10 ²	~ 98	~ 0.25
	20–30	≈10 ⁰	~ 97	≈ 0.15

Tabelle 2.6 Mittlere hydraulische Leitfähigkeit K, Porosität n, Speicherkoeffizient S für Hangley (Lokalformen Chnoden und Gottschalkenberg), sowie für den Acrotelm eines Eriophorum-Sphagnum-Torfes. Der Speicherkoeffizient S des Hanggleys entspricht jenem Porenvolumen, welches in der Saugspannungsklasse 1–80 hPa entwässert wird. Quellen: *Richard et al. (1978), Lokalformen Chnoden und Gottschalkenberg, **Ingram (1983), Formel 3.37, B=5000, m=3, ***Hayward, P. M. and R. S. Clymo (1982), [†]Vorob'ev (1963).

Für alle diese Parameter sind ausser den vermutlich als Mittelwert gewonnen Werten keine weiteren statistischen Angaben vorhanden. Bekannt ist, dass die Variabilität der gesättigten hydraulischen Leitfähigkeit lognormal verteilt ist (Freeze and Cherry, 1979). Die hydraulische Leitfähigkeit variiert für die jeweiligen Gesteine beziehungsweise Böden um etwa einen Faktor 10.
2.4. AKTUELLE VEGETATION⁴

2.4.1. Aktuelle Vegetation

Die aktuelle Vegetation unterscheidet sich stark von der ursprünglichen, da einige Teilen des Turbenrietes zwischen 1860 bis 1945 abgetorft oder aufgeforstet wurden. Die Vegetation der genutzten Gebiete verändert sich während einigen Jahrzehnten viel stärker als in den ursprünglichen. Die Vegetation der ursprünglichen Gebiete ändert sich während einigen Jahrhunderten kaum und befindet sich in einem quasi-stationären Zustand. Aufgrund der in einem Raster angelegten Vegetationsaufnahmen lässt sich die Ausdehnung der einzelnen Pflanzenformationen berechnen. Die Pflanzenformationen nehmen folgende Flächen ein: Flachmoor 3.5 ha, Hochmoor 2.7 ha, verheidetes Hochmoor 4.4 ha und Fichtenwald 3.8 ha (Abb. 2.12). Das verheidete Hochmoor und etwa ein Drittel des Fichtenwaldes sind als Folge der Entwässerung und Abtorfung entstanden. Das Flachmoor im Turbenriet wird durch Arten wie Rasenbinse (Trichophorum caespitosum), Teufelsabbiss (Succisa pratensis), Igelfrüchtige Segge (Carex echinata) und Sumpfherzblatt (Parnassia palustris) charakterisiert. Für das Hochmoor typisch sind Rotes Torfmoos (Sphagnum magellanicum), Scheidiges Wollgras (Eriophorum vaginatum), Spitzblättriges Torfmoos (Sphagnum angustifolium), Schnabelsegge (Carex rostrata), Rosmarinheide (Andromeda polifolia), Moosbeere (Oxycoccus quadripetalus). Im verheideten Hochmoor dominieren Zwergsträucher wie Moorbeere (Vaccinium uliginosum) und Heidelbeere (Vaccinium myrtillus). Der Fichtenwald ist geprägt durch Vaccinien und unterschiedlich hohen Anteil an Fichte (Picea excelsa).

2.4.2. Nutzung, Torfabbau und erste Regenerationsmassnahmen

Die Nutzung des Turbenriets lässt sich in vier Phasen gliedern. In der ersten Phase, welche bis etwa 1860 dauerte, wurde das Moor nur unwesentlich genutzt, vielleicht wurde etwas Streue gemäht und es wurden einzelne Bäume genutzt. In der zweiten Phase, welche von 1860 bis 1945 dauerte, wurde wiederholt Torf abgebaut (1860–1870, 1918, 1943–1945), entwässert (1918, 1943–1945) und aufgeforstet (ungefähr 1915?). In der dritten Phase von 1945 bis 1980 wurde das Moor sich selbst überlassen. In der vierten Phase seit 1980 wird versucht, die ursprüngliche Vegetation des Moores durch Eingriffe zu fördern. Dazu werden Fichten abgeholzt und Drainagegräben wieder aufgefüllt.

⁴Eine ausführliche Darstellung der Vegetation und der Nutzung findet sich in Schneebeli, 1988.

Abbildung 2.12 Räumliche Verteilung der Pflanzengesellschaften 1984. Die Graustufen der Hochmoorgesellschaften entsprechen etwa dem Feuchtigkeitsgradienten, wobei nass hellen Flächen, trocken dunklen Flächen entspricht. In weissen Quadraten wurde keine Vegetationsaufnahme gemacht (aus Schneebeli, 1988).

In Kapitel 3.1 werden die Ursachen der Torfbildung aus bodenkundlicher Sicht behandelt, in Kapitel 3.2 die für die Bildung von Mooren notwendigen hydraulischen und hydrologischen Gesetzmässigkeiten und die Lösungsmethoden für die resultierenden Differentialgleichungen dargestellt. In Kapitel 3.3 werden die Ideen aus den vorangehenden Kapiteln zu einem Moorwachstums-Modell kombiniert.

Um die Weiterentwicklung eines Ökosystems voraussagen zu können, müssen die externen und internen Faktoren und Prozesse bekannt sein. Der Boden ist mit seinen Phasen Matrix, Flüssigkeit und Gas derjenige Faktor in einem Moorökosystem, der am ehesten direkt beeinflusst werden kann. Er steht deshalb hier im Mittelpunkt. Das Wasser, als hauptsächlichste Flüssigkeit im Boden, ist im Moor sehr eng mit der Entstehung des organischen Bodens verbunden. Im Gegensatz dazu ist der Wasserhaushalt in einem Mineralboden über lange Zeit, häufig während mehreren tausend Jahren, durch das Muttergestein vorgegeben.

3.1. FAKTOREN UND PROZESSE IM MOORBODEN

3.1.1. Klassifikation torfbildender Ökosysteme

Geomorphologische und vegetationskundliche Definition

Um Unklarheiten zu vermeiden, werden die Begriffe «Hochmoor» und «Niedermoor» definiert¹. Geomorphologisch lassen sich **Hoch- und Niedermoor** klar fassen: Beide umfassen eine mindestens mehrere Dezimeter mächtige, vorwiegend organische Schicht, die aus der unvollständigen Zersetzung der Pflanzen herrührt. Sie unterscheiden sich hydrologisch dadurch, dass das Niedermoor vorwiegend durch Grundwasser aus den angrenzenden mineralischen Sedimenten gespiesen wird, das Hochmoor nur durch Grundwasser, welches durch organische Sedimente floss. Diese Kriterien sind in ebenen Lagen ohne gespanntes Grundwasser klar. Undeutlich wird dieses Kriterium

3.

¹Die Abgrenzung zwischen Hoch- und Niedermoor kann, wie von Du Rietz (1954) definiert, durch die Mineralbodenwasserzeiger (MBWZ) gezogen werden. Eine neuere, etwas revidierte Darstellung liefert Oberdorfer (1977).

in Hanglagen, besonders in Sattellagen, wo die zunehmende Verdünnung des mineralischen Grundwassers durch organisches Grundwasser zu vielfältigen und grossflächigen Übergängen führt².

Die Vegetation eines Niedermoors umfasst, je nach chemischer Beschaffenheit des Grundwassers und Vernässung des Bodens, zahlreiche verschiedene Pflanzengesellschaften (Übersicht z.B. in Oberdorfer, 1977). Sie können eine Baumschicht aufweisen (Erlen-, Birkenbruchwälder), aber auch wiesenartig sein (Grosseggengesellschaften). Die Hochmoorvegetation wird aus Pflanzen aufgebaut, die unter nährstoffarmen Bedingungen ausgesprochen effizient assimilieren. Dies sind vor allem Bleichmoose (Sphagna), einige Sauergräser (Cyperaceaen), ein Bärlapp (Lycopodium inundatum), wenige krautige Pflanzen (Droseraceen, Melampyrum sp.), Zwergsträucher (Ericaceen). Je nach den Belüftungsverhältnissen wachsen auch Bäume (Pinus mugo, Pinus silvestris, Picea abies, Betula sp.) (Kusel - Fetzmann, 1982). Alle «Hochmoorarten» kommen auch in nährstoffarmen, sauren Niedermooren vor. Einzig die mengenmässige Zusammensetzung zeichnet die Hochmoorvegetation aus (Du Rietz, 1954). Die Zusammensetzung der einzelnen Vegetationseinheit ist dabei in recht typischer Weise von den Bodeneigenschaften abhängig (Wildi, 1977; Malmer, 1986; Schneebeli, 1988).

Bodenkundliche Definition

Die bodenkundliche Klassifikation der Moorböden ist im Vergleich zu den Mineralböden wenig differenziert. In keiner Klassifikation werden entwässerte, sich zersetzende, organische Böden von wachsenden unterschieden, obwohl sie ganz andere Eigenschaften aufweisen. Dies mag daher rühren, dass sie sich optisch nur wenig unterscheiden und sich die Klassifikationen organischer Böden kaum um funktionelle Zusammenhänge bemühen. Im folgenden wird versucht, die Soil Taxonomy (Soil Survey Staff, 1975) so zu erweitern, dass die Funktion und die ablaufenden Prozesse in der Klassifikation berücksichtigt werden können. Die Anlehnung an die Soil Taxonomy geschieht, da diese ausdrücklich die Klassifikation der organischen Böden als provisorisch betrachtet. Namen, welche der Soil Taxonomy entsprechen sind nicht hervorgehoben, neu geschaffene Begriffe sind kursiv. Fett gedruckt ist der für die Namen der tieferen Ordnung benutzte Wortteil. Zuerst wird die heute gültige Klassifikation der organischen Böden nach der Soil Taxonomy vorgestellt (nach Everett, 1983). Danach werden die Erweiterungen dargelegt.

Die organischen Böden werden in der Ordnung Histosols zusammengefasst. Die Unterordnungen umfassen die Fibrists für schwach zersetzte Torfe, Hemists für mittel zersetzte Torfe, Saprists für stark zersetzte Torfe, Folists

²Du Rietz (1954) bezeichnet solche Erscheinungen recht treffend als «Pseudohochmoor».

für Rohhumusböden, Limnists für Seesedimente. In den Übergruppen («great groups») werden die Präfixe Cryo, Boro, Medi, Tropo für das Temperaturregime benutzt, unter welcher der Histosol entstanden ist. Zusätzlich kann auch das Präfix Sphagno (für torfmoosreiche Torfe) oder Sulpho (für schwefelwasserstoffreiche Torfe) verwendet werden. In den Untergruppen werden als Übergang zu anderen Ordnungen («intergrades») die Bezeichnungen Fibric, Hemic, Sapric, Sphagnic und Fluvaquentic (für mineralische Zwischenschichten) verwendet. Für untypische Formen der Übergruppen werden die Bezeichnungen Hydric (im Wasser entstanden), Limnic (Seeuntergrund), Lithic (Felsuntergrund), Pergelic (Permafrost im Untergrund), Terric (nicht unmittelbar im Wasser entstanden) verwendet. In der Familie werden als weitere Charakteristika Korngrösse, Mineralogie, Bodenreaktion (euic für alkalische Böden, dysic für saure Böden), Zusammensetzung der limnischen Schicht und Mächtigkeit der organischen Schicht bei felsigem Untergrund berücksichtigt. Soweit die heute gütige Soil Taxonomy.

Die Begriffe Hydric und Terric sind für die genaue Bescheibung von Torfböden von Bedeutung, was in der Soil Taxonomy kaum zum Ausdruck kommt. So sind Hochmoortorfe der Bulten³ Terric Sphagnofibrists, Terric Sphagnohemists oder Terric Sphagnosaprists, Hochmoortorfe der Schlenken die entsprechende Hydric-Form. Niedermoortorfe sind immer unter Wasser entstanden, es sind deshalb immer Hydric-Torfe.

Um nun die aktuelle Funktion und den Zustand des Histosols besser auszudrücken, werden die Unterordnungen der Fibrists. Hemists und Saprists in die Gruppe der Aquists (von lateinisch aqua, Wasser) zusammengefasst. Die Zersetzungsgrade werden nicht mehr als Bezeichnung der Unterordnung. sondern als Präfix gebraucht, fibro, hemo, sapro. Die Zersetzungsgrad-Präfixe folgen unmittelbar nach dem Gruppenbezeichner. Damit wird die grosse Bedeutung des Zersetzungsgrades für die Funktion des Torfbodens ausgedrückt. Um die ganz verschiedenen Prozesse in einem wachsenden und in einem zersetzenden Torfboden auszudrücken, werden auf der Stufe der Übergruppen neue Begriffe geschaffen. Ist ein Aquists zu mindestens 90 % von torfbildenden Pflanzen bedeckt und liegt dessen Wasserspiegel höchstens 20 cm unter der mittleren Oberfläche, so wird die Bezeichnung cresc (von lateinisch crescere, wachsen) vorangestellt. Ist weniger als 90% der Oberfläche von torfbildender Vegetation bedeckt, und liegt der Wasserspiegel tiefer, wird die Bezeichnung des (von lateinisch destruere, zerstören, zersetzen) vorangestellt.

Ein entwässerter, stark zersetzter Hochmoortorf unter Fichtenwald würde dann als Sphagnosaprodesaquist, dysic bezeichet, ein wachsender Flach-

³Bulten sind die wenige Zentimeter bis Dezimeter über dem mittleren Wasserspiegel liegenden Kuppen mit einer horizontalen Ausdehnung von Dezimetern, die Schlenken die unter dem mittleren Wasserspiegel liegenden Hohlformen.

moortorf mittleren Zersetzungsgrades in borealem Klima als Borohemocrescaquist, euic.

Mit diesen Erweiterungen kann der aktuelle Zustand des Torfbodens eindeutig ausgedrückt werden. Die Bedeutung der Bezeichung des Torfbodens lässt sich indirekt aus dem sehr verschiedenen hydrologischen Verhalten von Crescaquists und Desaquists herauslesen. So zeigen Schmeidl et al. (1970), dass die Abflusspitze aus einem Crescaquist etwa halb so gross ist wie bei einem Desaquist.

3.1.2. Bodenbildende Faktoren

Nach der Definition von Jenny (1941) sind bodenbildende Faktoren unabhängig von der Entwicklung des Bodens und damit in Zeit und Raum invariant. Als Faktoren betrachtet er Zeit, Klima, Topographie, Muttergestein, Organismen. Dabei ist es wesentlich, dass er die Faktoren Klima, Topographie, Muttergestein und Organismen in zwei virtuelle Gruppen aufteilt, nämlich in eine Umweltkomponente, die in einem regionalen System wirksam ist und in eine Bodenkomponente, die im Pedon, dem untersuchten Bodenausschnitt, wirksam ist.

Zeit

Ob es sich um einen jungen oder alten Moorboden handelt, hängt davon ab, welche Schichtdicke des organischen Sedimentes als Boden betrachtet wird. Definieren wir Boden als jenen Teil der Geosphäre, in der 90 % des jährlichen Energieumsatzes stattfindet, so ist der Hochmoorboden kaum mehr als einige Jahrzehnte bis wenige Jahrhunderte alt und weniger als einen halben Meter mächtig⁴. Von einem historischen Gesichtpunkt aus kann der Boden einige Meter tiefer beginnen und mehrere tausend Jahre alt sein.

Die Beschreibung der Prozesse ist einfacher, wenn wir die erste Definition verwenden. Der Gleichgewichtszustand in einem Moorboden wird dann nach einigen Jahrzehnten bis Jahrhunderten erreicht und ist vergleichbar mit einem mineralischen Boden (Beispiele in Jenny, 1941).

Der Zeitpunkt der Moorbildung ist nicht auf einen bestimmten Zeitraum beschränkt: Neubildungen von Moorböden sind in den letzten Jahrtausenden immer wieder vorgekommen (Zusammenstellung in Frenzel, 1983, p. 48).

⁴Diese oberste Schicht bezeichnet Ivanov (1981) als «aktivni gorizont», was Ingram (1978) mit «Acrotelm» übersetzt. Die tieferliegenden Schichten werden als «inertni gorizont» bezeichnet, was Ingram mit «Katotelm» übersetzt. Der Katotelm ist im hier verwendeten Sinn kein Boden mehr, sondern ein Gestein.

Muttergestein

Das Muttergestein eines Moorbodens kann ein mineralisches Sediment, ein entwickelter Boden, oder der Torf⁵ selber sein. Das mineralische Sediment kann von sehr variabler Zusammensetzung sein, meist ist es wenig wasserdurchlässig. Unter speziellen hydrologischen Bedingungen können aber auch kiesige Sedimente Muttergestein ausgedehnter Moorbildungen sein (Schuch, 1977). Die chemische Zusammensetzung spielt kaum eine Rolle für die Geschwindigkeit des Moorwachstums, einzig die Vegetation ändert sich. Ein imposantes Beispiel untersuchte Neîshtadt in Westsibirien (in Frenzel, 1983, Fig. 2.12), wo sich südlich der Wasserscheide auf kalk- und gipshaltigem Gestein ein Seggen-Braunmoos-Moor von etwa 3 m Mächtigkeit über eine Distanz von mehr als 10 km entwickelte, nördlich der Wasserscheide, auf saurem Gestein, ein gleich mächtiges und ausgedehntes ombrogenes *Sphagnum*-Moor.

Topographie

Organische Böden finden sich am häufigsten in ebenen Lagen. Unter günstigen klimatischen Bedingungen entstehen organische Böden auch an Hängen, welche bis zu 50% geneigt sind. Die Ausdehnung in der Fläche ist durch erodierende Landschaftselemente, wie Bäche oder Dolinen, begrenzt.

Klima

Moore entstehen in allen Klimazonen, wo genügend Wasser vorhanden ist, besonders dort, wo der Niederschlag höher als die Evapotranspiration ist. Sie treten zwischen 60° südlicher Breite bis etwa 75° nördlicher Breite auf. Generell wachsen Moore, wenn der Gleichgewichts-Wasserspiegel über dem Mineralboden liegt. Am meisten Torf sedimentiert zwischen 50° bis 60° nördlicher Breite. Die Torfsedimentation ist in höheren Breiten geringer wegen der niedrigen Pflanzenproduktion, in niedrigeren Breiten wegen der schnelleren Zersetzung. Eine Übersicht über die Moorvorkommen der Erde findet sich in Schneider (1980).

Organismen

Histosols sind bezüglich der Organismen sehr spezielle Böden, da wegen der meist vorhandenen Anaerobie ausser Pflanzen nur Bakterien und Pilze im Boden leben. Die einen Histosol besiedelnden Organismen schaffen ihr Muttergestein selber und es mag deshalb der Eindruck entstehen, dass der bodenbildende Faktor «Organismen» in einem Crescaquist nicht existiert. Die

⁵Der Begriff «Muttergestein» mag für Torf ungewohnt scheinen, vor allem deshalb, weil Torfboden und Torfsediment einen kontinuierlichen Übergang bilden.

Abbildung 3.1 Mögliche Sequenzen bei der Entwicklung der Aquists. Häufig aufeinander folgende Entwicklungen sind mit grossen Pfeilen markiert.

Stratigraphie von Torfböden zeigt nun häufig eine ausgesprochene, zufällige Wechsellagerung unterschiedlicher Zersetzungsgrade und Zusammensetzung in horizontaler als auch vertikaler Richtung (Beispiele in Barber, 1981; Tolonen, 1985). Dies heisst nichts anderes, als dass zum gleichen Zeitpunkt, bei gleichem Muttergestein, gleicher Topographie und gleichem Klima sich je nach Besiedlung des Muttergesteins ein unterschiedlicher Boden entwickelt. Es existiert damit der Faktor «Vegetation».

3.1.3. Bodenbildende Prozesse

Zur besseren Übersicht werden die bodenbildenden Prozesse in drei Böden betrachtet: in einem Crescaquist, dessen Muttergestein mineralisch ist, in einem Crescaquist, dessen Muttergestein organisch ist und in einem Desaquist. Die Entwicklungsrichtungen der Aquists sind in Abbildung 3.1 dargestellt. Abschliessend werden die Begriffe Verlandung, Versumpfung und Sukzession in Feuchtgebieten diskutiert, die als wesentliche Bestandteile der bodenbildenden Prozesse zu betrachten sind.

Prozesse in einem Crescaquist über mineralischem Muttergestein

Eine mächtige organische Schicht bildet sich über einem Mineralboden, wenn die aerobe Bodenzone dünn ist oder wenn die biologische Aktivität gering ist. Eine geringe biologische Aktivität kann durch Anaerobie, extreme Klimabedingungen oder eine niedrige Qualität des organischen Materials verursacht sein. Die Zusammenhänge zwischen Primärproduktion, Zersetzung und Akkumulation organischen Materials sind im Detail noch wenig bekannt (Swift, 1979, p. 279). Im folgenden werden die wesentlichen Prozesse, soweit bekannt, vorgestellt (Abb. 3.2).

Die aerobe Bodenzone nimmt bei hoher Wassersättigung sehr rasch ab. Da die Sauerstoff-Diffusionsrate in Wasser sehr klein $(2.4 \cdot 10^{-5} \text{ cm}^2 \text{ s}^{-1})$ im Vergleich zu derjenigen in der Luft ist $(1.8 \cdot 10^{-1} \text{ cm}^2 \text{ s}^{-1})$, (Flühler, 1973) entstehen in nassen Böden auch bei geringer biologischer Aktivität rasch anaerobe Verhältnisse. Boggie (1977) stellte fest, dass erst bei einem mittleren Wasserspiegel von tiefer als 25 cm in den obersten 5 cm des Torfbodens das

Abbildung 3.2 Beziehungen zwischen verschiedenen Prozessen bei einer geringen hydrologischen Änderung in einem Crescaquist (nach Moore, 1986). Die ausgefüllten Kreise bedeuten in Bezug auf das veränderte Wasserregimes nässer + beziehungsweise trockener –. Die nicht eingekreisten Vorzeichen beziehen sich auf die am Pfeilende genannte Wirkung (+ entspricht Verstärkung, Vergrösserung, – entspricht Abschwächung, Verminderung, = entspricht wirkungslos).

ganze Jahr ein Sauerstoffgehalt von mindestens 2% herrschte. Die Ursache für die hohe Wassersättigung kann natürlichen Ursprungs sein. In einigen Fällen, besonders in Westeuropa, spielte der Mensch für den Beginn der Moorbildung eine bedeutende Rolle (Moore et al., 1984). Wesentlich scheint vor allem, dass durch Abholzung Böden stärker vernässten, Nährstoffe verstärkt ausgewaschen wurden, und die Streuequalität der nach der Rodung gewachsenen Pflanzen für Destruenten ungünstiger war (Moore, 1986).

Unter anaeroben Verhältnissen wird die organische Substanz nur langsam abgebaut, da die Mikroorganismen die organische Substanz nicht veratmen sondern vergären (Scheffer und Schachtschabel, 1982).

aerobe Atmung: $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + 2800 \text{ kJ/Mol}$

Gärung: $C_6H_{12}O_6 \rightarrow 3CO_2 + 3CH_4 + 188 \text{ kJ/Mol}$

Der Energiegewinn bei einer Gärung ist damit rund fünfzehnmal kleiner als bei der Atmung, der Energieaufwand für den Abbau organischer Substanz entsprechend grösser.

Anaerobe Bodenverhältnisse können entweder durch direkte Messung des Sauerstoffgehaltes oder indirekt durch Messung des Redoxpotentials bestimmt werden. Eine Zusammenfassung von Clymo (1983, p. 190) über Redoxmessungen zeigt, dass meist wenig unter der Wasseroberfläche die Reduktion von SO_4^{2-} zu S²⁻ erfolgt. Quantitative Beziehungen zwischen Redoxpotential, Mikroflora und Abbauprozessen konnten bis heute nicht bestimmt werden.

Die verstärkte Zufuhr von organischen Säuren führt bei der Versumpfung (siehe Kap. 3.3.4) zu einer weiteren Ausbreitung der organischen Böden, da die Aktivität der Mikroorganismen, speziell der Bakterien, in sauren Böden viel geringer ist als in basischen oder neutralen (Swift et al., 1979, p. 244).

Die Zersetzung (Abbau) organischen Materials kann in erster Näherung mit einer Reaktion 1. Ordnung beschrieben werden, wobei p Zersetzungssrate, morganische Masse, α Zersetzungsfaktor.

$$p = dm/dt = -\alpha m \tag{3.1}$$

Integriert ergibt Gleichung (3.1)

 $M = m_0 e^{-\alpha t} \tag{3.2},$

wobei M residuale Masse nach der Zeit t, mo Anfangsmasse, t Zeit.

Die Bestimmung des Zersetzungsfaktors α unter natürlichen Bedingungen ist schwierig, da das ursprüngliche System bei der Messung meist stark gestört wird. Beispiele von Messungen des Zersetzungsfaktors α finden sich in Clymo (1984).

Zur Stabilisierung des einmal vorhandenen Akkumulationssystems trägt die hydraulische Leitfähigkeit am meisten bei. Je feiner die organische Substanz zersetzt wird, umso kleiner ist ihr scheinbarer Korndurchmesser und umso geringer die hydraulische Leitfähigkeit. Eine Reduktion der Leitfähigkeit führt zu einer Vernässung und diese reduziert die Abbaurate mit dem Ergebnis, dass der neu gebildete Torf wieder durchlässiger wird. Diese Rückkoppelung stabilisiert das torfbildende System entscheidend. Die hydraulische Leitfähigkeit hängt nicht vom Muttergestein ab, sondern sie ist eine Folge der Bodenprozesse. Deshalb können Terric Crescaquists überhaupt entstehen.

Prozesse in einem Crescaquist über organischem Muttergestein

Die Prozesse in einem Crescaquist über organischem Muttergestein unterscheiden sich physikalisch kaum von den Prozessen über mineralischem Muttergestein. Die Erhaltung einer kleinen aeroben Zone ist jedoch aus bodenmechanischen Gründen mit zunehmender Mächtigkeit des Torfes besser gewährleistet. Sinkt der Wasserspiegel witterungsbedingt ab, so wird die Auflast erhöht und der Torfboden elastisch zusammengedrückt. Steigt der Wasserspiegel, quillt der Torfboden wieder auf. In nicht vorbelasteten Torfböden ist die Kompressibilität⁶ sehr gross, und die Bewegungen der Torf-

⁶Das Kompressibilität α [m²/N] ist definiert durch den Quotienten zwischen der Zusammendrückung ε [m/m] und der Spannungsdifferenz $\Delta \sigma$ [N/m²], $\alpha = \varepsilon / \Delta \sigma$.

oberfläche deshalb gut messbar (Schneebeli, 1988, p. 111). Die Oberfläche bewegt sich somit in derselben Richtung wie der Wasserspiegel. Dieser Vorgang bewirkt eine stets geringmächtige aerobe Zone.

Prozesse in einem Desaquist

Die Entstehung eines Desaquists setzt immer eine Entwässerung voraus. Diese kann unter natürlichen Bedingungen eine Folge von Torf-Verkarstung (Ringler, 1978, dort auch weitere Literaturhinweise; Schneebeli, 1988), von der Verlegung oder Vertiefung von Bachläufen (Kapitel 2.3.2; Kulczynski, 1949; Heinselman, 1970), von Klimaschwankungen (Barber, 1981) oder auch von anthropogenen Einflüssen sein. Die Vegetation eines Desaquist bildet keinen Torf mehr.

Bei der Entstehung eines Desaquists wird zuerst das Porenvolumen durch Setzung verringert. Durch diese Setzung nimmt die hydraulische Leitfähigkeit ab (Definition Kap. 3.2) und die Scherfestigkeit des Bodens zu. Sie führt damit zu einer ersten Verkleinerung der durch die Entwässerung geschaffenen aeroben Zone und zu einem bodenmechanisch günstigeren Standort für Bäume. Sekundär zersetzt sich wegen der grösseren mikrobiellen Aktivität infolge der gegenüber dem ursprünglichen Zustand vergrösserten aeroben Zone das organische Material und die gröberen Fasern des Torfes werden weiter zerkleinert. Setzung und Zersetzung werden zusammengefasst als Sackung bezeichnet. Die Sackung verkleinert die Korngrösse, was zur Abnahme der hydraulischen Leitfähigkeit und damit zur neuerlichen Versumpfung führt (Schneebeli, 1989). Bei einer Entwässerung vergrössert sich der Acrotelm, die belüftete Schicht, in den Katotelm hinein. Die Masse des ursprünglichen Katotelms nimmt ab, und zusätzlich ist der Zersetzungsfaktor a vermutlich grösser als in einem Crescaquist. Je grösser die Zersetzungsrate a ist, umso schneller steigt der Wasserspiegel wieder an. In diesem Fall wird die Korngrösse «schnell» verkleinert, und die Mächtigkeit der Schicht nimmt wegen der Veratmung des Torfes ab. Eine Vegetation, welche eine grosse aerobe Zone schafft bei gleichbleibender Tiefe der Sohle des Entwässerungsgrabens, beschleunigt deshalb die Wiederversumpfung (Abb. 3.3).

Abbildung 3.3 Schema der Prozesse bei der Entwicklung eines Desaquists. h1, h2, h3, h4 sind Wasserspiegel, α_1 , α_2 , α_3 die Zersetzungsfaktoren, σ_z ist die Auflast infolge Entwässerung. Die Graustufen zeigen qualitativ die scheinbaren Korngrössernverteilungen. Dunkel ist feinkörniger, heller grobkörniger.

Über Geschwindigkeit und Ausmass dieses Prozesses liegen aus nicht landwirtschaftlich genutzten Flächen keine langjährigen direkten Messungen vor. Indirekt lässt sich die Veränderung anhand von Messungen des hydraulischen Potentials feststellen (Schneebeli, 1988). Die Form der Tiefenverteilung des hydraulischen Potentials in einem Desaquist ist ähnlich wie diejenige in pseudovergleyten Böden. Wegen der grossen Kompressibilität bleiben die Potentiale im Torf im gesättigten oder im nur sehr wenig ungesättigten Bereich, denn bei höheren Matrixpotentialen wird der Torf zusammengedrückt.

Die Veränderung der Leitfähigkeit wurde in landwirtschaftlich genutzten Böden von Lundin (1964 zitiert in (Ivanov, 1981)) untersucht. Die Abnahme der Leitfähigkeit vor der Entwässerung, K_0 , hängt ab von der Zeit *t*, welche nach der Entwässerung verstrichen ist, der Tiefe der Entwässerung ζ (ursprünglicher Wasserspiegel-aktueller Wasserspiegel) und einem mit zunehmender Zeit abnehmenden Faktor γ . Die Abnahme ist durch eine nichtlineare Exponentialfunktion beschrieben. Für eine gegebene Entwässerungstiefe ζ und Zeit *t* ist die Leitfähigkeit $K(\zeta, t)$ dann

$$K(\zeta,t) = K_0 \, e^{-\gamma t} \, \zeta \tag{3.3}.$$

Lundin (1964, in Ivanov(1981)) gibt für den Faktor γ die in Tabelle 3.1 aufgeführten Werte an⁷. Die Abnahme der Funktion $\gamma t'$ für t > 15, und die daraus folgendene Zunahme der hydraulischen Leitfähigkeit, wird von Ivanov (1981) als Wirkung der landwirtschaftlichen Nutzung interpretiert.

Jahre nach Entwässerung t	bis 1	2	5	10	15	20	25	30
Wert von γ' für ζ in [m]	1.0	1.4	0.80	0.45	0.29	0.20	0.14	0.11
Wert von <i>t</i> ' für ζ in [m]	1.0	2.8	4.0	4.5	4.4	4.0	3.6	3.4

Tabelle 3.1 Werte des Parameters γ und der Funktion $t' = \gamma t$ in Beziehung zur Zeit t (Zeitpunkt der Entwässerung t=0).

Die Abnahme der Leitfähigkeit ist in Abbildung 3.4 in Funktion der Zeit beziehungsweise der Entwässerungstiefe dargestellt. Aus Abbildung 3.4 geht hervor, dass die minimale Leitfähigkeit bei t = 10 a etwa hundertmal kleiner ist als die Anfangsleitfähigkeit K₀. Die Abnahme der Leitfähigkeit in Funktion der Zeit lässt sich als Überlagerung zweier Exponentialfunktionen auffassen. Der Ast zwischen 0 < t < 3 drückt vorwiegend die durch die bodenmechanische Setzung des Torfes verursachte Verdichtung aus. Der Ast zwischen $4 \le t \le 10$ drückt die biologische Zersetzung des Torfes aus. Die beiden Äste sind durch den Übergang zwischen $3 \le t < 4$ verbunden. Die Leitfähig-

⁷Ivanov gibt die Formel und Tabellenwerte nicht für den Faktor γ , sondern für $t' = \gamma t$ an.

Abbildung 3.4 Abnahme der relativen Leitfähigkeit K(t=0) in Abhängigkeit der Zeit t für eine konstante Entwässerungstiefe $\zeta = 1$ m und in Abhängigkeit der relativen Entwässerungstiefe ζ für den Zeitpunkt t = 10. Die Bilder wurden nach Formel (3.1) und den Daten von Lundin (1964) berechnet.

keit in Funktion der Entwässerungstiefe ζ nimmt exponentiell ab⁸. Für eine längere Zeitdauer ist die Abnahme nicht dargestellt, da die Analyse zeigt, dass schon eine sehr kleine Änderung von γ eine grosse Auswirkung auf die endgültige Leitfähigkeit hat. Da die Messung der hydraulischen Leitfähigkeit kaum genauer als auf 20% möglich ist, sind die Faktoren γ für *t* grösser 10 unsicher.

Die Abnahme der Leitfähigkeit K ist in einem entwässerten Gebiet nicht überall gleich, sondern vom Abstand zum Entwässerungsgraben abhängig. Sie ist unmittelbar neben dem Entwässerungsgraben am grössten, das heisst die Leitfähigkeit wird dort am kleinsten, und nimmt ab, je weiter sie vom Graben entfernt ist. Da die Abnahme der Leitfähigkeit auch eine Funktion der Zeit seit der Entwässerung ist, ist der Prozess rückgekoppelt. Er wird in Kapitel 5.1.3. simuliert.

Verlandung, Versumpfung und Sukzessionen

Die Entwicklung organischer Böden über lange Zeiträume ist meist mit einer Veränderung der bodenbildenden Vegetation verbunden. Es lassen sich im wesentlichen zwei Entwicklungsreihen unterscheiden, einerseits die Verlandung und anderseits die Versumpfung. Bei der Verlandung wird ein offenes Gewässer durch die Ablagerung organischer Substanz verkleinert. Aus bodenkundlicher Sicht wird ein Limnist beziehungsweise ein subhydrischer

⁸Ökologisch interpretiert heisst dies, dass ein doppelt so tiefer Entwässerungsgraben den Torfboden in Grabennähe nicht doppelt, sondern um ein Vielfaches verändert.

Abbildung 3.5 Stratigraphische Sequenzen aus Torfprofilen in Nordamerika. Die Pfeile verbinden übereinander liegende Schichten, die Nummern geben die Anzahl der beobachteten Sequenzen an. Das Diagramm ist sehr ähnlich für die britischen Inseln (nach Tallis, 1983). Gyttia wird auch als Seekreide bezeichnet, Dy ist ein sehr feinkörniges, organisches Sediment.

Boden (Arbeitskreis für Bodensystematik, 1985) von einer organischen Schicht überdeckt. Bei der Versumpfung wird ein mineralischer Nassboden von Torf überdeckt.

Bei einer Verlandung entsteht ein hydric Crescaquist, dessen Dichte durch den sehr geringen Überlagerungsdruck gering bleibt und dessen Zersetzungsgrad nicht in einer direkten Beziehung zu hydraulischen Parametern steht. Im Falle einer Versumpfung ist beim Anwachsen des terric Crescaquist die Leitfähigkeit immer so gering, beziehungsweise die Zersetzung so hoch, dass die wassergesättigte Zone sehr nahe der Oberfläche liegt. Andernfalls entwickelt er sich zu einem Desaquist.

Die Änderungen des Bodens zeigen sich in der Vegetation in typischen Sukzessionen. Tallis (1983, p. 323) konnte für die britischen Inseln und Nordamerika zeigen, dass die Sukzessionen einem klaren Muster folgen (Abb. 3.5).

Die häufigste Sequenz entspricht der klassischen Verlandung. Über dem mineralischen Sediment lagern sich zuerst limnische Sedimente ab, danach von Holztorfen überlagerte Seggen-Torfe, die häufig mit *Sphagnum*-Torfen überdeckt werden. Etwa ein Drittel der Vermoorungen sind Versumpfungen, das heisst über dem mineralischen Sediment bildet sich direkt eine Torfschicht. Die Sukzession tritt in dieser Form überall in den gemässigten Breiten der nördlichen Halbkugel auf.

3.2. WASSERFLUSS IN MOOREN

Der Wasserfluss ist nach den bisherigen Ausführungen der Schlüssel für das Verständnis der Moorentwicklung. Im Folgenden wird die physikalische Theorie auf das Verständnis des Wasserflusses in Mooren beschränkt. Eine ausführliche Übersicht über moorhydrologische Untersuchungen findet sich in Ingram (1983). Die Herleitungen und Definitionen folgen Freeze and Cherry (1979) und Scheffer und Schachtschabel (1982, p. 154 ff).

3.2.1. Gefüge des Bodens

Ein Boden, oder allgemeiner ein poröses Medium, besteht aus dem Korngerüst, der Matrix und dem Porenraum. Der Porenraum kann mit zwei Phasen gefüllt sein, Wasser und Luft, oder nur mit jeweils einer. Die Matrix besteht häufig aus verschiedenen Stoffen. Der Anteil des Porenraums am Gesamtvolumen eines Boden wird durch die Porosität n ausgedrückt. Die Porosität n ist das Verhältnis zwischen dem Volumen des Porenraum V_p und dem Gesamtvolumen V_t ,

$$n = V p / V_t \tag{3.4}$$

Die Struktur eines Bodens variiert. Bei gleichbleibender Porosität weist ein Boden, je nach Verteilung der Korngrössen, zahlreiche kleine Poren oder wenige grosse Poren auf. Die Verteilung der Poren entscheidet darüber, wieviel Wasser aus einem Bodenvolumen ausfliesst, wenn der Wasserspiegel um ein gewisses Mass abgesenkt wird. In der Hydrologie wird das Verhältnis zwischen dem Volumen des ausgeflossenen Wassers V_w bei einer Absenkung des Wasserspiegels und dem Gesamtvolumen des Bodens V_t als Speicherkoeffizient S bezeichnet. Die Bestimmung von S erfolgt nachdem nur noch sehr kleine Wassermengen aus der entwässerten Schicht in die gesättigte Zone fliessen. Der Speicherkoeffizient S entspricht bodenphysikalisch etwa jener Menge Wasser, welche sich in der Saugspannungsklasse 0–8 kPa befindet. Die Messung der Porosität und des Speicherkoeffizienten werden in einem repräsentativen Elementarvolumen vorgenommen, um die kleinräumigen Fluktuationen auszufiltern.

3.2.2. Energie und Potential des Bodenwassers

Im Folgenden wird angenommen, dass die Matrix, in deren Zwischenräume sich Wasser befindet, starr oder zumindest wenig kompressibel ist. Zusätzlich ist zu berücksichtigen, dass die Phasen in einem chemischen und

Abbildung 3.6 Energie zweier Wasserkörper in einem unterschiedlich porösen Medium. Das hellere Raster steht für grössere Porosität, das dunklere für geringere. Die Lageenergie des Wassers nimmt für die höhergelegenen Volumina zu, die Verformungsenergie nimmt in der negativen Richtung von z zu (siehe Gleichung 3.5). Im poröseren Boden muss mehr Energie aufgewendet werden, um Wasser auf ein höheres Niveau zu bringen als im dichteren Boden.

thermischen Gleichgewicht sind. Das Wasser weist deshalb eine konstante Dichte auf.

Die Energie des Wassers Φ in einem infinitesimalen Volumenelement dV bei konstanter Dichte des Wassers ρ_w und kleiner Fliessgeschwindigkeit ist gegeben durch seine Höhe z gegenüber einem willkürlich festgelegten Bezugsniveau z₀, der Masse des Wassers m im Volumenelement dV, der Gravitationskraft g und dem Druckgradienten dp

$$\Phi = mgz + m \int_{p_0}^{p} \frac{\mathrm{d}p}{\rho_{\rm W}}$$
(3.5)

Der erste Term der rechten Seite bezeichnet die Lageenergie, der zweite die Verformungsenergie. Der Kapillardruck oder das Matrixpotential dp ist im ungesättigten Boden negativ. In (3.5) wird die Energie durch die Porosität, die Lage und den darüberliegenden Druck beeinflusst⁹. Da sich Wasser in den hier betrachteten porösen Medien langsam bewegt, kann der zweite Term, die kinetische Energie, vernachlässigt werden. Es ist deshalb in einem homogenen Medium unwesentlich, welchen Weg ein Wasserteilchen zurücklegt (Abb. 3.6). Das hydraulische Potential ϕ wird als Folge von (3.5) definiert

$$\phi = gz + \int_{p_0}^{p} \frac{\mathrm{d}p}{\rho_{\mathrm{W}}}$$
(3.6).

Formel (3.6) kann vereinfacht werden zu

$$\phi = gz + \frac{p - p_0}{\rho_{\rm W}} \tag{3.7a}$$

⁹Beispiel: Es wird ein Würfel aus einem porösen Medium von einem Kubikmeter betrachtet. Sei n = 0.45, z = 2.0 m, g = 9.81 ms⁻², v = 0 ms⁻¹, p = 15 kPa, dann ist die Gesamtenergie des Wassers im Würfel $\Phi = 0.45 \times 1000.0 \times 9.81 \times 2.0 + 0.45 \times 1000.0 \times 15.0 = 155.8$ kJ.

Wird der Druck p durch $\rho g(h-z)$ ausgedrückt, so wird (3.7a) zu

$$\phi = g z + \frac{[\rho g(h-z) + p_0] - p_0}{\rho}$$
(3.7b).

Die gekürzte Gleichung (3.7b) ergibt, dass sich die piezometrische Höhe h proportional zum hydraulischen Potential ϕ verhält

$$\phi = gh \tag{3.8}.$$

Wegen ihrer Anschaulichkeit wird im weiteren die piezometrische Höhe (hydraulische Höhe) benutzt.

3.2.3. Transportgesetz des Wassers in Boden

Der Fliesswiderstand ist in einem porösen Medium direkt proportional zur Differenz der piezometrischen Höhe h und umgekehrt proportional zur Länge des Fliessweges l zwischen den Messpunkten. Die Flussdichte q wird durch den Proportionalitätsfaktor K, hydraulische Leitfähigkeit genannt, und den hydraulischen Gradienten i ausgedrückt (Gesetz von Darcy)

$$q = -Ki = -K\frac{\mathrm{d}h}{\mathrm{d}l} \tag{3.9}$$

Im dreidimensionalen Raum lautet das Gesetz von Darcy in Vektornotation

$$q = -K \left(\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}, \frac{\partial h}{\partial z} \right) = -K \nabla h$$
(3.10).

Die hydraulische Leitfähigkeit K bedeutet im dreidimensionalen, allgemeinen Fall kein Skalar, sondern ein symmetrischer Tensor 2. Ordnung.

Einfluss der Schichtung auf die mittlere Leitfähigkeit

Die meisten Böden und Sedimente weisen eine Schichtung auf. Die einzelnen Schichten sind unterschiedlich strukturiert und deshalb unterschiedlich durchlässig. Innerhalb der Schichten wird die hydraulische Leitfähigkeit als isotrop angenommen. *B* ist die Mächtigkeit des betrachteten Schichtpaketes, B_i bezeichne die *i*-te Schicht. Die mittlere Leitfähigkeit parallel zu den Schichten \overline{K}_p lässt sich dann ausdrücken mit

$$\bar{K}_{\rm p} = \frac{1}{B} \sum_{i=1}^{n} K_i B_i \tag{3.11}.$$

Diese Mittelung entspricht einen gewogenen arithmetischen Mittel. Die Schicht mit der grössten Leitfähigkeit bestimmt die mittlere Leitfähigkeit parallel zu den Schichten \overline{K}_p . Die mittlere Leitfähigkeit senkrecht zu den Schichten \overline{K}_v ist

$$\frac{B}{\bar{K}_{\rm v}} = \sum_{i=1}^{n} \frac{B_i}{\bar{K}_i} \tag{3.12}.$$

Dies entspricht einem gewogenen harmonischen Mittel. Die Schicht mit der kleinsten Leitfähigkeit bestimmt die mittlere Leitfähigkeit senkrecht zu den Schichten \overline{K}_p . Die praktische Bedeutung von (3.11) und (3.12) besteht darin, dass die Leitfähigkeit realer Böden immer eine den Schichtungsverhältnissen entsprechende Mittelung darstellt. Analog gilt dies auch für die Simulation des Wasserflusses.¹⁰

Weist die Schichtung sowohl horizontale als auch vertikale Strukturen auf, so entspricht die mittlere Leitfähigkeit einem gewichteten geometrischen Mittel, welches zwischen dem arithmetischen und harmonischen Mittel liegt.

3.2.4. Flussmodell

Allgemeiner Fall

Um den Fluss in einem freien Grundwasserträger zu beschreiben, muss die Kontinuitätsgleichung mit dem Transportgesetz verknüpft werden. Der Druck in einem freien Grundwasserträger ist an seinem oberen Rand gleich dem Atmosphärendruck. U ist der Quellenterm, in welchem die externen Zuund Wegflüsse aufsummiert sind. Als positive Zuflüsse gelten der Niederschlag und die Quellen im Gebiet, als Wegflüsse Verdunstung und Versickerung aus dem betrachteten Volumen. Die Kontinuitätsgleichung lautet dann

$$\nabla \cdot \boldsymbol{q} = \boldsymbol{U} - \boldsymbol{S} \; \frac{\partial \boldsymbol{h}}{\partial t} \tag{3.13}.$$

Die Divergenz der Flussdichten ∇q ist gleich der Summe des Quellenterms und der Änderung des Wassergehaltes im Volumenelement. Wird (3.10) in (3.13) eingesetzt, erhält man das allgemeine Modell für den Fluss

$$\nabla \cdot (\mathbf{K} \ \nabla h) = U - S \ \frac{\partial h}{\partial t}$$
(3.14).

 $^{^{10}\!\}mathrm{Eine}$ parallele Schichtung entspricht in der Elektronik parallel geschalteten Widerständen, eine senkrechte Schichtung in Serie geschalteten Widerständen.

Dupuit-Forchheimer Approximation

Spielen im Gebiet, in welchem der Fluss modelliert wird, vertikale Strömungen nur einen geringen Einfluss, so lässt sich (3.14) vereinfachen. Dupuit-Forchheimer nehmen an, dass die Potentiallinen nicht gekrümmt, sondern vertikal sind, und der Fluss somit horizontal ist. Die piezometrischen Höhen h werden über die Mächtigkeit des Grundwasserträgers gemittelt und mit \overline{h} bezeichnet. Der Abstand zwischen der Referenzhöhe zo und der Sohle des Grundwasserträgers wird mit η bezeichnet. Die Dupuit-Forchheimer Approximation führt zu (3.15), welche auf Boussinesq zurückgeht.

$$\nabla \left(\mathbf{K}(\bar{h} - \eta) \cdot \nabla \bar{h} \right) = -U + S \frac{\partial \bar{h}}{\partial t}$$
(3.15),

wobei der Differentialoperator ∇ nur noch die Ableitung in den horizontalen Koordinaten bezeichnet. Gleichung (3.15) ist für nicht allzu stark geneigte Grundwasserträger eine gute Näherung. Murray and Monkmeyer (1973, p. 1578) zeigen, dass bei einer Genauigkeit der piezometrischen Höhe von 1% die Neigung des Grundwasserspiegels nicht grösser als 10% sein darf.

Einfluss von Kompressibilität und teilgesättigter Zone

Der reale Wasserfluss verhält sich in Wirklichkeit komplexer, als dies aus den Gleichungen (3.14) und (3.15) hervorgeht. Die bedeutendsten Vereinfachungen sind die nicht berücksichtigte Kompressibilität der Matrix sowie der Wasserfluss aus der teilgesättigten in die gesättigte Zone. Sie führen zu einem grösseren Speicherkoeffizienten S bei stark instationären Vorgängen.

Wird der Wasserspiegel abgesenkt, muss der Boden eine Zusatzspannung $\Delta \sigma$ aufnehmen, da der Auftrieb des Wassers wegfällt. Den allgemeinen Fall der dreidimensionalen Konsolidation hat Biot (1955) entwickelt. Die Koeffizienten des Elastizitätstensor sind in Böden schwierig zu messen, Gambolati und Freeze (1973) leiten deshalb ein pseudo-dreidimensionales Modell ab mit der Dichte von Wasser ρ_w , der vertikalen Kompressibilität des Bodens α , der Porosität des Bodens *n* und der Kompressibilität des Wassers β ,

$$\nabla \cdot (\mathbf{K} \nabla \phi) = \rho_{\mathbf{w}}(\alpha + n\beta) \frac{\partial \phi}{\partial t}$$
(3.16).

Die Kompressibilität des Torfbodens α ist bedeutend, während die Kompressibilität des Wassers β in freien Grundwasserträgen kaum eine Rolle spielt. Nach Brutsaert und El-Kadi (1984) bleibt die Wirkung der Kompressibilität auf den Ausfluss bei kleiner Kompressibilität α und kleinen hydraulischem Gradienten $\partial \phi$ gering.

Ähnliches gilt für die ungesättigte Zone. Bei grossen Absenkungen und einem grossem Kapillarsaum wird der ungesättigte Fluss bedeutend (Brutsaert und El-Kadi, 1984). Dies könnte für Moore nur unmittelbar nach einer Entwässerung zutreffen. Ivanov (1981) zeigte, dass der Wasserfluss in Mooren genügend genau durch (3.14) beschrieben wird, sofern die hydraulische Leitfähigkeit K und der Speicherkoeffizient S als Funktion der Tiefe und der Pflanzengesellschaft berücksichtigt wird. Hemond et al. (1984) wiesen für einen organischen Marschboden unter Gezeiteneinwirkung nach, dass die Kompressibilität α einen Einfluss auf die tägliche In- und Exfiltration hat. Hemond und Goldman, (1985) simulierten unter Berücksichtigung der Kompressibilität die scheinbar nicht dem Gesetz von Darcy entsprechenden Leitfähigkeitsmessungen in Hochmoor von Rycroft et al. (1975 a und b) und fanden eine gute Übereinstimmung zwischen Simulation und Messung. Man kann den Einfluss der Kompressibilität auf den Wasserfluss in Mooren also bei der instationären Simulation nicht unbesehen vernachlässigen.

3.2.5. Analytische und numerische Lösungen des Flussmodells

Das Flussmodell (3.15) lässt sich nur in wenigen Fällen analytisch lösen. Ist die Leitfähigkeit K im simulierten Gebiet variabel, findet man keine analytische Lösung mehr. In diesen Fällen ist es möglich, die Lösung durch numerische Methoden zu approximieren. Die Ableitung $\partial h/\partial x$ wird bei der Methode der Finiten Differenzen in einem kleinen Intervall δx durch den Differenzenquotienten $\delta h/\delta x$ ersetzt.

Definition des Gebietes und der Randbedingungen

Die Lösung des Flussmodells (3.15) beschränkt sich auf das Gebiet Ω mit bekannten Rand- und Anfangsbedingungen sowie bekannter Leitfähigkeit K_{Ω} und bekanntem Speicherkoeffizienten S_{Ω} . Das Gebiet Ω ist eindimensional $\Omega(x)$ oder zweidimensional $\Omega(x, y)$.Im stationären Fall, bei der Wassergehaltsänderung $S \frac{\partial F}{\partial t}$ Null, genügen Randbedingungen für eine Lösung. Als Randbedingung gilt entweder ein konstantes Potential (Dirichlet-Randbedingung) oder ein vorgeschriebener Fluss (Neumann-Randbedingung) auf dem Rand von Ω . Ist der vorgeschriebene Fluss Null, so handelt es sich um eine undurchlässige Wand oder eine Wasserscheide.

Die Anfangsbedingungen beschreiben einen physikalisch sinnvollen Zustand der piezometrischen Höhen im Gebiet Ω zum Zeitpunkt t = 0. Häufig wird ein stationärer Zustand, zum Beispiel der Wasserspiegel bei der mittleren Nachlieferung, als Anfangsbedingung gewählt.

Analytische Lösungen für den eindimensionalen, stationären Fluss mit Quellenterm

Analytische Lösungen für den stationären eindimensionalen Fall finden sich in Childs (1969) für Grundwasserträger mit parallelen und konzentri-

Abbildung 3.7 Situation für den eindimensionalen Fluss mit konzentrischen und parallelen Potentiallinen im Gebiet $\Omega(x)$. In grauer Farbe das Gebiet Ω . Die Richtung der Pfeile zeigt die x-Achse an, der Ursprung des Koordinatensystems befindet sich in der Mitte des Pfeils.

schen Potentiallinien und im Gebiet Ω konstanter hydraulischer Leitfähigkeit K (Abb. 3.7). Diese Lösungen lassen sich durch Symmetrieüberlegungen auf zweidimensionale Räume anwenden. Es sei U die Anreicherungsrate, L der Abstand vom Zentrum zum Rand des Aquifers, \overline{h}_0 das Potential am Rand. Für parallele Potentiallinien lautet die Lösung

$$\frac{U}{K} = \frac{\overline{h^2} - \overline{h_0}^2}{L^2 - x^2} \quad , \Omega = \{0 < x \le L, \ \overline{h_0} \le \overline{h} \le \overline{h_{max}}\}$$
(3.17)

für konzentrische Potentiallinien mit dem Radius R = L

$$\frac{U}{K} = \frac{2(\overline{h}^2 - \overline{h}_0^2)}{L^2 - x^2} , \ \Omega = 0 < x \le L, \ 0 \le \overline{h} \le \overline{h}_{\max}$$

$$(3.18)$$

Die Formeln (3.17) und (3.18) beschreiben eine Ellipse (Abb. 3.8). Crank (1984) gibt als Richtlinie an, dass die Halbachsen L und \overline{h}_{max} das Verhältnis 0.5 nicht übersteigen sollten. Wird das Verhältnis grösser, so werden die Fehler bedeutend, welche durch die Dupuit-Forchheimer-Näherung eingeführt wurden.

Analytische Lösung für zweidimensionalen, stationären Fluss mit Quelle in einem rechteckigen Gebiet

Eine analytische Lösung für den stationären zweidimensionalen Fall findet sich in Carslaw and Jaeger (1959, chap. 5.5 (6)) und in Childs (1969) für einen rechteckigen Grundwasserträger mit im Gebiet $\Omega(x, y)$ konstanter hydraulischer Leitfähigkeit K. Die Randbedingung ist durch das konstante Potential h_0 vorgegeben. Es sei wiederum U die Anreicherungsrate, $2L_1$ eine Seite des Gebietes, $2L_2$ die andere Seite, der Ursprung des Koordinatensystems in der Mitte, so ist die piezometrische Höhe \overline{h} gegeben durch

Abbildung 3.8 Form eines Grundwasserkörpers mit von oben gesehen parallelen Potentiallinen. Die Form der Oberfläche wurde mit Gleichung (3.17) berechnet. Die Randbedingung ist durch das konstante Potential $h_0 = 0.5$ m an den Stellen x = 200 m und x = -200 m gegeben. Der Querschnitt ist zehnmal überhöht.

$$\overline{h^2} - \overline{h_0}^2 = (U/K)(L_1^2 - x^2) - 32(U/K)(L_1^2/\pi^3)$$

$$\sum_{n=0}^{\infty} \left[(-1)^n \cos\{(2n+1)\pi x/2L_1\} \cosh\{(2n+1)\pi y/2L_2\} / [(2n+1)^3 \cosh\{(2n+1)\pi L_2/2L_1\}] \right]$$
(3.19)

Die Reihe konvergiert rasch, und es genügt der erste Summand (n = 0) für eine hinreichend genaue Beschreibung, wenn L_1 die kleinere der zwei Längen ist.

Finite-Differenzen Lösung für den eindimensionalen, instationären Fluss in einem heterogenen Gebiet

Für den eindimensionalen instationären Fall lautet Gleichung (3.15)

$$\frac{\partial}{\partial x}(K_x(h-\eta)\frac{\partial h}{\partial x}) = -U + S\frac{\partial h}{\partial t}$$
(3.20),

wobei $\overline{h} = h$. Wird (3.18) nach der zeitlichen Ableitung der piezometrischen Höhe aufgelöst, erhält man

$$\frac{\partial h}{\partial t} = \frac{1}{S} \frac{\partial}{\partial x} (K_x (h - \eta) \frac{\partial h}{\partial x}) - \frac{U}{S}$$
(3.21).

Gleichung (3.21) wird mit einem expliziten finiten Differenzenschema (forward time - centered space, FTCS) diskretisiert¹¹ (Press et al., 1986,

¹¹Anstatt direkt zum Differenzenschema überzugehen, liesse sich (3.20) weiter ausmulti-

plizieren und ausdrücken als $K(h-\eta)\frac{\partial^2 h}{\partial x^2} - K\frac{\partial h}{\partial x} + K\left(\frac{\partial h}{\partial x}\right)^2 = -U + S\frac{\partial h}{\partial t}$

Gleichung 17.2.19), wobei der untere Index für die räumliche Diskretisierung, der obere für die zeitliche steht. Gleichung (3.21) ist schwach nicht linear, weil die Transmissivität, das Produkt Kh, zeitlich nicht konstant ist . Das explizite Schema erlaubt, die Transmissivität direkt zu berechnen. Der Term $K_{j+1/2}$, welcher die Leitfähigkeit zwischen zwei Punkten interpoliert, wird entweder mit dem arithmetischen, geometrischen oder harmonischen Mittel berechnet. Die Mittelungsfunktion ist abhängig von der Schichtung (Gleichungen 3.11 und 3.12). Das resultierende FTCS-Schema nimmt damit die Form

$$\frac{h_{j}^{n+1} - h_{j}^{n}}{\delta t} = \frac{1}{S_{j}} \frac{K_{j+1/2}(h_{j+1/2}^{n} - \eta_{j+1/2}) \frac{h_{j+1}^{n} - h_{j}^{n}}{\delta x} - K_{j-1/2}(h_{j-1/2}^{n} - \eta_{j-1/2}) \frac{h_{j}^{n} - h_{j-1}^{n}}{\delta x}}{\delta x} - \frac{U_{j}^{n}}{S_{j}}$$
(3.22)

an. Der erste Summand der rechten Seite von (3.22) wird im folgenden kurz $1/S_j h_{xx}$ benannt. Für die piezometrische Höhe eines neuen Zeitschrittes n+1 erhält man

$$h_j^{n+1} = h_j^n + \frac{\delta t}{S_j} h_{xx} - \frac{\delta t \ U_j^n}{S_j}$$
(3.23).

Bei einem expliziten Schema muss die Stabilität bekannt sein. Wird der Zeitschritt δt grösser gewählt als durch das Stabilitätskriterium gegeben, so beginnt die Lösung zu oszillieren. Setzt man

$$D_j \equiv \frac{(h_j^n - \eta_j) K_j}{S_j}$$

ergibt sich das folgende Stabilitätskriterium

$$\max_{j,n} \frac{2 D_j^n \delta t}{(\delta x)^2} \le 1$$

und explizit für δt

$$\delta t \le \min \frac{(\delta x)^2}{2 D_j^n} \tag{3.24}$$

Die Randbedingung für ein konstantes Potential ergeben sich «automatisch» aus (3.22), indem h_{0-1} beziehungsweise h_{l+1} den definierten Wert annehmen. Dabei ist *l* die Anzahl der Unbekannten, n=l+2 die Anzahl der Knoten im Gebiet $\Omega(x)$. Die spezielle Flussrandbedingung q = 0 ergibt sich durch Elimination eines fiktiven Knotenpunktes (Smith, 1985). Für die Herleitung der Randbedingung betrachten wir einen Zeitpunkt *n*. Der einfacheren Notation wegen wird für h^n h geschrieben. Der Randpunkt sei h_0 , der erste Punkt h_{+1} , der fiktive Punkt h_{-1} . Setzt man nun $h_{+1} = h_{-1}$, $K_{+1/2} = K_{-1/2}$, $\eta_{+1/2} = \eta_{-1/2}$ so lässt sich h_{xx} vereinfachen zu

$$h_{xx}(0) = \frac{K_{+1/2} \left(h_{+1/2} - \eta_{+1/2}\right) \left(2h_1 - 2h_0\right)}{(\delta x)^2}$$
(3.25).

Mit diesen Formeln lässt sich nun das Gleichungssystem aufstellen und lösen.

Finite-Differenzen Lösung für den zweidimensionalen, stationären Fluss in einem heterogenen Gebiet

Ausgehend von Gleichung (3.15) vereinfachen wir diese Gleichung mit den Annahmen, dass die undurchlässige Schicht eben und damit η gleich Null ist, die Ableitung der piezometrischen Höhe nach der Zeit ebenfalls Null sei und vertikale Strömungen vernachlässigt werden können. Wird wiederum der einfachen Notation halber \overline{h} gleich h gesetzt, ergibt sich die Gleichung,

$$\frac{\partial}{\partial x}\left(K_{x}h\frac{\partial h}{\partial x}\right) + \frac{\partial}{\partial y}\left(K_{y}h\frac{\partial h}{\partial y}\right) = -U$$
(3.26).

Diese wiederum schwach nicht lineare Gleichung lässt sich durch eine Variablentransformation zu einer linearen Gleichung umformen (Wang and Anderson, 1982, p. 53). Da die Herleitung hier nicht weiter interessiert, wird direkt das Resultat angeschrieben. Gleichung (3.26) wird umgeformt, sodass die Gleichung

$$\frac{K_x}{2}\frac{\partial^2 h^2}{\partial x^2} + \frac{K_y}{2}\frac{\partial^2 h^2}{\partial y^2} = -U$$
(3.27)

entsteht. Wird nun $v = h^2$ gesetzt, so entsteht die Poisson-Gleichung.

$$\frac{K_x}{2}\frac{\partial^2 v}{\partial x^2} + \frac{K_y}{2}\frac{\partial^2 v}{\partial y^2} = -U$$
(3.28)

Diese lineare partielle Differentialgleichung wird nun durch Differenzenquotienten angenähert, wobei nur der erste Term der linken Seite hingeschrieben wird, da beim zweiten einzig x durch y ersetzt wird,

$$\frac{K_x}{2} \frac{\partial^2 v}{\partial x^2} \Big|_{i}^{\lim_{\delta x \to 0}} = \frac{1}{(\delta x)^2} \Big[K_{i+\frac{1}{2}v_{i+1}} - (K_{i+\frac{1}{2}} + K_{i-\frac{1}{2}})v_i + K_{i-\frac{1}{2}v_{i-1}} \Big]$$
(3.29).

Die Werte der Leitfähigkeiten $K_{i\pm \frac{1}{2}}$ werden je nach Schichtung arithmetisch, geometrisch oder harmonisch gemittelt. Für den Grenzwert $\delta x \rightarrow 0$ ergibt sich für alle Mittlungen dasselbe Result, was auch anschaulich einsehbar ist.

Ist die Differenz δx identisch δy , so wird die räumliche Differenz als δxy bezeichnet, und die Finiten-Differenzen-Gleichung lässt sich folgendermassen schreiben, wobei *i* der Index der x-Richtung, *j* der Index der y-Richtung ist

$$\frac{1}{(\delta x)^2} (Av_{i+1,j} + Bv_{i-1,j} + Cv_{i,j+1} + Dv_{i,j-1} - Ev_{i,j}) = -U$$
(3.30)
mit
$$A := K_{i+1/2,j} \qquad B := K_{i-1/2,j}$$
$$C := K_{i,j+1/2} \qquad D := K_{i,j-1/2} \qquad E := A + B + C + D$$

Die Berücksichtigung der Randbedingung erfolgt analog zur instationären eindimensionalen Finiten-Differenzen-Gleichung (3.25). Definiert man für die Koeffizienten

$$\alpha$$
, β , γ , $\delta = \begin{cases} 0: \text{ fiktiver Punkt} \\ 2: \text{ entgegengesetzt dem fiktiven Punkt} \\ 1: \text{ sonst} \end{cases}$

und

 $\varepsilon = \begin{cases} \frac{2(\delta x)q}{K_{ij}} : \text{Flussrandbedingung} \\ 0: \text{ sonst} \end{cases}$

so werden die Koeffizienten der Lösungsmatrix aij, bij, cij, dij, eij, fij ausgedrückt durch

 $\begin{array}{ll} a_{ij} = A\alpha & b_{ij} = B\beta & c_{ij} = C\gamma & d_{ij} = D\delta \\ e_{ij} = -A - B - C - D & f_{ij} = -U(\delta x)^2 \end{array} \tag{3.31}$

womit die Diskretisierung definiert ist.

3.3. MOORWACHSTUM

Die Entwicklung eines Moores kann von verschiedenen Gesichtspunkten aus beschrieben werden: (i) vom pollenanalytisch-historischen (Barber, 1981; Henrion, 1982; Middeldorp, 1984; Solem, 1986), (ii) vom vegetationskundlichen-systemanalytischen (Wildi, 1978), (iii) von einem geomorphologisch-hydrologischen (Granlund, 1932; Wickman, 1951; Ivanov, 1981; Ingram, 1982), (iv) von einem systemanalytisch-geomorphologischen (Friedman et al., 1979; Clymo, 1984; Kratz and de Wit, 1986). Der Grad der Abstraktion der resultierenden Hypothesen ist unterschiedlich: die pollenanalytisch-historischen versuchen, die wesentlichen Faktoren der Moorentwicklung qualitativ zu erfassen. Wildi simuliert in einem sehr komplexen Modell eine Sukzession. Granlund und Wickman versuchen, den Niederschlag in Beziehung zu Durchmesser und Höhe des Moores zu bringen. Ivanov entdeckt die korrekten hydraulischen Beziehungen bei der Moorbildung und entwickelt ein Modell zur Vorhersage der Stabilität torfbildender Systeme. Ingram zeigt, dass die gemessene und die aus der Moorform berechnete hydraulische Leitfähigkeit nahe beieinander liegen. Friedman et al. modellieren die Verlandung eines Sees und oligotropher Toteislöcher (Kratz and de Wit, 1986). Clymo erweitert das Modell von Ingram mit Produktionsgleichungen. Die Modelle vom Typ (i) sind wegen der fehlenden Struktur nicht parametrisierbar. Die anderen Modelltypen weisen grundsätzlich sehr viele, nur aufwendig zu bestimmende Parameter auf. Bei Mooren als dreidimensionale, räumlich strukturierte Objekte sind die Parameter nicht skalare Grössen, sondern Funktionen, die kaum mit der notwendigen zeitlichen und räumlichen Auflösung bestimmt werden können.

Alle diese Modelle vermögen mehr oder weniger genau ein gemessenes Verhalten eines Moores nachzuvollziehen. Es ist aber nicht oder nur sehr beschränkt möglich, mit ihnen das Verhalten eines Moores vorauszusehen.

Wenn sich die Zukunft auch nicht mit Sicherheit bestimmen lässt, simulieren die folgenden Modelle aufgrund weniger Prozesse doch eine wahrscheinliche Entwicklung. Zuerst wird ein Sedimentationsmodell für organische Gesteine vorgestellt, danach ein Modell für die Bildung grundwasserabhängiger organischer Sedimente und schliesslich werden diese gekoppelt.

3.3.1. Sedimentationsmodell

In Gleichung (3.1) wurde ein Modell für die Zersetzung organischer Substanz dargestellt. Die experimentelle Bestimmung des Zersetzungsfaktors ist schwierig. Der Zersetzungsfaktor α ist unter anderem abhängig von der Bodentemperatur, dem Sauerstoffangebot, der Zusammensetzung des organischen Materials und den Mikroorganismen (Clymo, 1983). Trotz der experimentellen Schwierigkeiten ist es das meistgebrauchte Modell um den Abbau organischer Substanz zu beschreiben. Aufgrund der Messungen von Boggie (1977), welcher die zeitliche Veränderung der Sauerstoffkonzentration in einem Moor bestimmte, ist α in der zeitweise belüfteten Zone tiefenabhängig. In der anaeroben Zone nimmt der Zersetzungsfaktors α gleichfalls ab, da die übrigbleibenden organischen Reste schlechter zersetzbar sind und die Anae-

Abbildung 3.9 Zersetzungsfaktor α in einem torfbildenden System. Die gerasterte Fläche ist dauernd wassergesättigt (Katotelm), die darüberliegende weisse Schicht zeitweise ungesättigt (Acrotelm). Das «reale» Modell würde das abnehmende Sauerstoffangebot in der Tiefe berücksichtigen. Das zweischichtige Modell nimmt einen konstanten Zersetzungsfaktor für den zeitweise aeroben Acrotelm, α_a , und einen konstanten Zersetzungsfaktor für den dauernd anaeroben Katotelm an, α_k .

(3.32),

robie mit der Tiefe zunimmt. Gleichung (3.1) muss also mit einen tiefenabhängigen Zersetzungsfaktor erweitert werden (Abb. 3.9),

$$p = dm/dt = -\alpha(z) m$$

wobei p die Produktionsrate, m die produzierte Masse und $\alpha(z)$ den Zersetzungsfaktor bezeichnen. Da Gleichung (3.32) wegen des nichtlinearen Zersetzungsfaktors numerisch integriert werden muss, wird von hier an auf finite Differenzen übergegangen.

Die Produktion abgestorbener Pflanzenteile¹² eines Jahres sei m_0 . Der Zersetzungsfaktor α bezeichnet den Anteil der Masse m_0 , welcher innerhalb eines Jahres veratmet oder als Kohlenstoffverbindung im Grundwasser¹³ weggeführt wird, die Masse m_0 ist nach einem Jahr noch αm_0 . Der Zersetzungsfaktor α ist damit

$$\alpha = (m_j - m_{j-1})/m_{j-1} \tag{3.33}.$$

Da es physikalisch naheliegt, die Variation von α auf die Tiefe z zu beziehen, muss die Tiefe aus der auf eine Einheitsfläche bezogenen Masse m und dem spezifischen Gewicht ρ berechnet werden

$$z_k = \sum_{j=n}^{k(-1)} m_j / \rho_j$$
(3.34).

Die Gesamtmasse M ist nach n Jahren

 $^{^{12}\}text{Darunter sind}$ sowohl abgestorbene oberirdische Pflanzenteile als auch Wurzeln zu verstehen.

¹³Entweder als im Wasser gelöstes CO₂ oder als organische Säure.

 $\alpha = 0.00001$ 1000 $p = 50 \text{ kg m}^{-3}$ nax. Torfmächtigkeit [m] <u>a = 0.0001</u> 100 a.= 0.001 10 a=0.01 1 $\alpha = 0.1$ 0.1 0.01 0.001 0.01 0.1 Produktion [kg m⁻² a⁻¹]

n

Abbildung 3.10 Zusammenhang zwischen Produktion und maximaler Torfmächtigkeit bei unterschiedlichen Zersetzungsfaktoren. Ganz hell gerastert ist der mögliche Bereich, hellgrau der von Clymo (1984) angebene Bereich für den Acrotelm, dunkelgrau für den Katotelm. Für die Umrechnung von Gesamtmasse in Tiefe wurde das spezifische Gewicht des Torfes mit 50 kg m⁻³ angenommen.

$$M = \sum_{k=0}^{\infty} \alpha(k, z_k) m_k$$
(3.35).

Mit diesem Modell lässt sich nun die Sedimentation mit einer zeitlich variablen Produktion m und einem räumlich und zeitlich variablen Zersetzungsfaktor $\alpha(z, t)$ simulieren. Die analytische Lösung für m_0 und α konstant ist Gleichung (3.39).

Clymo (1984) stellte die Produktion verschiedener Moore im Acro- und Katotelm, sowie deren Zersetzungsfaktoren zusammen. Die Produktion im Acrotelm, m_a , beträgt etwa 0.5 kg m⁻² a⁻¹, die Produktion im Katotelm, m_k , etwa 0.05 kg m⁻² a⁻¹ (im Turbenriet 0.055 kg m⁻² a⁻¹). Der Zersetzungsfaktor im Acrotelm, α_a , liegt zwischen 0.5 und 0.01 a⁻¹, im Katotelm, α_k , zwischen 1×10^{-4} bis 5×10^{-5} a⁻¹ (im Turbenriet kleiner 1×10^{-5} a⁻¹). Der Einfluss der Produktion und des Zersetzungsfaktors auf die stationäre, maximale Torfmächtigkeit wird in Abbildung 3.10 illustriert. Die Zusammenstellung von Clymo (1984) zeigt zwei klar abgegrenzte Gebiete. Real sind zahlreiche Übergange vorhanden. Der kleine Bereich für den Katotelm zeigt, dass die Parameter unabhängig vom Standort nur wenig variieren. Die Variabilität nimmt mit zunehmendem Alter des Torfes zu.

Die Halbwertszeit $t_{1/2}$ und der Zersetzungsfaktor α sind direkt miteinander verknüpft. Der Zersetzungsfaktor ist dabei umgekehrt proportional zur Halbwertszeit, das heisst $\alpha = t_{1/2}$. Mit der für die Sedimentation in Mooren möglichen Messgenauigkeit verlaufen Exponentialkurven erst nach mehr als einer Halbwertszeit deutlich nichtlinear. Ein Moor mit einem exponentiellen Verlauf der Zersetzung kann bei einem Zersetzungsfaktor von kleiner als 0.0001 a⁻¹ nach 10000 Jahren gerade noch von einem System mit linearem Verlauf unterschieden werden. Ist der Zersetzungsfaktor kleiner, kann der

45

exponentielle Verlauf nicht mehr vom linearen unterschieden werden. In diesem Fall ist das Rauschen der Daten, der Beziehung zwischen Alter t und Torfmasse M, grösser als die Unterschiede zwischen linearem und exponentiellem Modell ist.

Das lineare zweidimensionale Einschichtmodell

Gleichung (3.35) versucht, den realen Prozess zu beschreiben. Das Konzept der Tiefenabhängigkeit leuchtet zwar ein, konnte aber noch nie bestimmt werden. Wird das Modell radikal vereinfacht, lässt sich eine Lösung finden, indem man die Sedimentation im Katotelm sowohl in der Vertikalen als auch in der Horizontalen als konstant annimmt. Dazu wird die vertikale Sedimentationsrate $p_v = M/\rho t$ und die horizontale Ausbreitungsrate p_h eingeführt. Der Zersetzungsfaktor α ist im Katotelm Null. Dies bedeutet, dass die Torfschicht immer mit der gleichen Geschwindigkeit zunimmt. Geometrisch lässt sich dieses Modell als aus Klötzchen aufgebaute Pyramide mit der Seitenlänge p_h und der Höhe p_v interpretieren, die von einem Zentrum aus wächst (Abb. 3.11). Die Fläche A zu einem Zeitpunkt t des Modells ist, wobei t = 0den Beginn des Wachstums bezeichnet,

$$A_t = p_h^2 + \sum_{i=1}^{1} 4i p_h^2$$
(3.36),

das Volumen Φ einer Schicht zum Zeitpunkt t

$$\Phi_t = p_v \sum_{i=1}^t A_i \tag{3.37},$$

das Gesamtvolumen des Körpers V zum Zeitpunkt t

$$V_t = \sum_{i=1}^t \Phi_t \tag{3.38}.$$

Die Parameter dieses Modells, p_v und p_h , lassen sich bestimmen, wenn zu zwei Zeitpunkten die Mächtigkeit des Moores und dessen Ausdehnung bekannt ist.

Abbildung 3.11 Geometrische Interpretation des linearen Einschichtmodells. Links der Griundriss, rechts der Querschnitt durch das Zentrum. Jede Grauabstufung stellt einen Zeitschritt dar.

Das exponentielle eindimensionale Zweischichtmodell

Clymo (1984) simulierte die Sedimentation von Torf mit einem zweischichtigen exponentiellen Modell (Abb. 3.9). Da der Zersetzungsfaktor α für die obere, aerobe Schicht (Acrotelm) bis zu einem Faktor 10⁴ grösser ist als für die anaerobe Schicht (Katotelm), erreicht der Acrotelm «schnell» den stationären Zustand. Die «Produktion» oder besser Sedimentationsrate kann deshalb für den Katotelm als konstant betrachtet werden. Das Modell entspricht damit Gleichung (3.1). Die Grössenordnung des Zersetzungsfaktors α_k ist in Abb. 3.10 dargestellt. Clymo (1984) zeigte mit diesem Modell für einige Moore, dass auch im Katotelm eine Zersetzung stattfindet Die berechneten Vertrauensintervalle machen andere Hypothesen unwahrscheinlich. Ist der Zersetzungsfaktor α_k im Katotelm kleiner als 5×10^{-5} a⁻¹, so wird Gleichung (3.1) über den Zeitraum von 10000 Jahren «praktisch linear», und der Faktor α_k ist nicht mehr bestimmbar. Die Entwicklung der Masse *M*, beziehungsweise der Moormächtigkeit *Z*, ist in in diesem Fall fern dem Gleichgewichtszustand und scheint linear zu verlaufen.

Die Ursache für die von Moor zu Moor verschiedenen Zersetzungsfaktoren α_k ist unbekannt. Die Unterschiede verursachen vermutlich die Temperatur des Torfkörpers und die Art der Torfsubstanz.

Die maximale Torfmächtigkeit kann je nach Situation entweder durch den «genügend grossen» Zersetzungsfaktor α_k bestimmt sein, oder aber durch die minimal mögliche hydraulische Leitfähigkeit K. Bei kleinen Mooren scheint eher die minimal mögliche Leitfähigkeit, bei grossen Mooren (mehrere Quadratkilometer) eher der Zersetzungsfaktor begrenzend zu wirken.

Abbildung 3.12 Schema des Grundwasserspiegels bei verschiedenen Entwicklungszuständen des Moores. Das mineralische poröse Medim ist horizontal, das virtuelle Medium, welches im Laufe der Zeit durch Torf ersetzt wird, vertikal schraffiert. Der Grundwasserkörper ohne virtuelles Medium ist schwarz, weiss mit dem virtuellen Medium. Die Pfeile symbolisieren die Bäche am Rand des Moores.

3.3.2. Das Moor als Grundwasserkörper

Granlund (1932) vermutete als erster, dass die Oberfläche des Moores einem Grundwasserkörper entspricht. Wickman (1951) versuchte die Beobachtungen von Granlund zu quantifizieren. Der Zusammenhang zwischen Grundwasser und Torfoberfläche wurde etwa zu derselben Zeit unabhängig von russischen Forschern beobachtet und quantifiziert (Ivanov, 1953). Während diese Beobachtungen in Westeuropa bis zur Publikation von Ingram (1982) kaum beachtet wurden, entwickelte sich in der Sowjetunion eine hydrologisch fundierte Moorwissenschaft.

Aufgrund der Bodenentwicklung eines Moores muss dessen Oberfläche dem Wasserspiegel entsprechen. Die Form des Moores ist identisch mit einer Lösung der Gleichung (3.15). Nach Ingram (1982) und Schneebeli (1989) kann Gleichung (3.17) mit guter Genauigkeit in ebenen Mooren benutzt werden. Aus diesen Beobachtungen lässt sich schliessen, dass sich die Oberfläche des Moores einem Grundwasserspiegel annähert, welcher durch ein virtuelles Medum gebildet würde. Ein solches virtuelles Medium ersetzt den Luftraum (mit praktisch unendlicher hydraulischer Durchlässigkeit und keiner Speicherkapazität) durch ein poröses Medium. Wird die Luft über dem Mineralboden zunehmend durch ein poröses Medium, zum Beispiel Torf, ersetzt, erhöht sich der reale Grundwasserspiegel und nähert sich dem virtuellen Grundwasserspiegel an. Die hydraulische Leitfähigkeit von Mineralboden und Torf kann verschieden sein (Abb. 3.12).

Die Beobachtung, dass das Moor von der Mitte zwischen zwei Bächen, und nicht am Rand der Bäche zu wachsen beginnt, lässt sich hydraulisch begründen. Bevor sich Torf gebildet hat, ist der Mineralboden nur im zentralen Teil gesättigt. Nur an dieser Stelle ist die Anaerobie so ausgeprägt, dass sich Torf bilden kann. Das Wasser, welches nach einem Niederschlag nicht in den Mineralboden versickert, fliesst in der sehr durchlässigen Schicht zwischen Boden und Luft ab. Der neu gebildete Torf in der Mitte hat eine grössere Speicherkapazität S und eine geringere Leitfähigkeit K als die zuvor dort vorhandene Luft. Dies führt dazu, dass das Wasser langsamer abfliessen muss als zuvor, und die gespeichert Wassermenge zunimmt. Die gesättigte Zone, und damit die anaeroben Böden, in der Umgebung der ersten Torfbildung vergrössern sich deshalb. Der langsam ansteigende Grundwasserspiegel nähert sich deshalb dem Wasserspiegel an, welcher durch ein virtuelles Medium von gleicher hydraulischer Leitfähigkeit gebildet würde.

An einem Hang ist die Moorentwicklung ähnlich. Der Ursprung des Moores ist jedoch bei konkaven und ebenen Hängen näher, bei konvexen Hängen weiter vom Vorfluter entfernt als in der Ebene, da sich der Austrittpunkt des Grundwasserspiegels an die Oberfläche verschiebt.

3.3.3. Koppelung des Sedimentationsmodells mit dem Grundwassermodell

Das zweidimensionale lineare Einschichtmodell und das eindimensionale exponentielle Modell haben keinen direkten Zusammenhang mit dem Grundwassermodell.

Aus Abbildung 3.12 ist erkennbar, dass die Oberfläche für kleine Klötzchen, das heisst nach vielen Zeitschritten n, sich einer schiefen Ebene nähert und nicht wie der Grundwasserspiegel elliptisch gekrümmt ist. Die elliptische Grundwasserform kann mit dem Sedimentationsmodell nur erreicht werden, wenn die vertikale Sedimentationsrate vom Zentrum ausgehend zunimmt oder der Zersetzungsfaktor α_k kleiner wird. Die Vorstellung eines kleineren Zersetzungsfaktors stimmt qualitativ mit dem in Abbildung 3.9 gezeigten realen Modell überein, welches auch im Katotelm einen abnehmenden Zersetzungsfaktor aufweist.

Für das eindimensionale exponentielle Modell wurde diese Variation der Sedimentationsrate von Clymo (1984) berechnet. Dazu koppelte er die Modelle (3.1) und (3.18).

Das Wachstum der Torfmasse m_k im Zentrum in vertikaler Richtung z im Katotelm k wird durch die Sedimentationsrate (von Clymo «Produktion des Katotelms» genannt) m_0^k und den Zersetzungsfaktor α_k bestimmt.

$$\frac{\mathrm{d}m_k(t)}{\mathrm{d}t} = m_0^k - \alpha_k m_k(t) \tag{3.39}.$$

Gleichung (3.39) integriert ergibt, wobei der Index k im folgenden weggelassen wird,

$$m(t) = \frac{m_0}{\alpha} (1 - e^{-\alpha t}) = m_{max}$$
 (3.40).

Die Torfmächtigkeit Z ergibt sich aus $Z = m/\rho$, wobei ρ Dichte des Torfs. Die Nachlieferung U, die mittlere Leitfähigkeit K, die Sedimentationsrate m_0 und der Zersetzungsfaktor α ist bekannt. Gesucht wird die Ausdehnung L und der Wasserspiegel h(x), welcher identisch mit Oberfläche des Moores Z(x) ist. Aus (3.17) lässt sich L mit h_{max} ausdrücken, $L^2 = h_{max}^2 K/U$. Der Wasserspiegel h(x) ist damit bei bekannter maximaler Höhe

$$h^{2}(x) = h_{max}^{2} - \frac{U}{K}x^{2}$$
(3.41).

Wird nun für h_{max} die aus (3.40) gegebene Torfmächtigkeit $Z_{max} = m_{max}/\rho$ eingesetzt, erhält man mit (3.41)

$$Z(x) = \left(\left(\frac{m_0}{\alpha \rho} \left(1 - e^{-\alpha t} \right) \right)^2 - \frac{U}{K} x^2 \right)^{1/2}$$
(3.42).

Für das einfachere lineare Modell, wo $\alpha = 0$, ergibt sich mit $m = m_0 t$

$$Z(x) = \left(\left(\frac{m_0 t}{\rho}\right)^2 - \frac{U}{K} x^2\right)^{1/2}$$
(3.43).

Mit diesen Modellen kann somit die zeitliche Entwicklung der Oberfläche berechnet werden, sofern die Nachlieferung U, die Durchlässigkeit K, die Dichte ρ und die Sedimentationsrate m_0 bekannt sind.

Der Abstand vom Zentrum des Moores zu seinem Rand bei gegebener Höhe im Zentrum Z ist dann (3.18)

$$x_{max} = Z_{max} \sqrt{2\frac{K}{U}}$$
(3.44).

Die Fläche A, welche von Moor bedeckt ist, wird

$$A = 2\pi x^2 \tag{3.45},$$

und das Volumen des Torfkörpers V ist

$$V = \frac{2\pi}{3} Z x^2$$
 (3.46).

Das Wachstum eines Moores spielt sich in vom Menschen nicht nachvollziehbar langen Zeiträumen ab. Wohl die einzige Möglichkeit, über das langfristige Verhalten des Ökosystems genaueres zu erfahren, ist seine Geschichte möglichst genau zu rekonstruieren.

Aus der rekonstruierten Dynamik des Wachstums lassen sich die wesentlichen Prozesse bei der Torfbildung herausschälen. Die Kenntnis der Prozesse ermöglicht das zukünftige Wachstum präziser vorauszusagen.

In diesem Kapitel werden zuerst die theoretischen Grundlagen dargestellt, um die Geschichte von Mooren zu rekonstruieren (Kap. 4.1 und 4.3), und anschliessend werden diese Methoden auf das Turbenriet angewandt (Kap. 4.2, 4.4-4.5).

4.1. METHODEN ZUR DATIERUNG DER TORFSTRATIGRAPHIE

Die Geschichte eines Moores erklärt sich zum Teil anhand der Stratigraphie. Ereignisse, welche jedoch kaum Spuren hinterlassen, wie eine Erosionsphase, lassen sich nur indirekt über eine Abnahme des Wachstums belegen. Es ist deshalb entscheidend, das Alter einer Schicht zu kennen. In Mooren kommen vor allem zwei Methoden in Frage: einerseits die ¹⁴C-Datierung, basierend auf organischem Material und anderseits die Pollenanalyse, basierend auf dem während Jahrtausenden unterschiedlichen Pollenanflug und der Konservierung des Pollens im Torf.

4.1.1. Absolute Datierung: ¹⁴C-Messung

Das im Vergleich zum normalen Kohlenstoffisotop ¹²C mit einer relativen Konzentration von 10⁻¹² vorhandene radioaktive Isotop ¹⁴C wird von Pflanzen aus der Luft aufgenommen. Die Datierung organischer Substanzen mit Hilfe des Isotops ¹⁴C beruht entweder auf der Messung der Betastrahlung oder auf dem Isotopenverhältnis ¹⁴C/¹²C bei der Messung mit einem Linearbeschleuniger (Olsson, 1986; Bonani et al., 1986)¹.

¹Die Halbwertszeit des Kohlenstoffisotops ¹⁴C beträgt 5730 a (CRC Handbook of Chemistry and Physics, 64th ed., 1984, CRC Press).

Die organischen Substanzen werden nicht direkt gemessen, sondern müssen gereinigt und zu Benzol oder zu Graphit aufbereitet werden. Für die Messung der Betastrahlung werden einige Gramm, für die Bestimmung des Isotopenverhältnisses einige Milligramm Kohlenstoff benötigt.

Da sich die Produktion von ¹⁴C im Laufe der Jahrtausende infolge Variation der kosmischen Strahlung veränderte, ist das aus der Halbwertszeit erhaltene Datum mit systematischen Abweichungen behaftet. Das absolute Alter lässt sich nur dort feststellen, wo es sich zählen lässt, wie zum Beispiel bei Jahrringen. Die Kalibrierung des ¹⁴C-Alters erfolgt deshalb über eine aufgrund dendrochronologisch datierter Hölzer erstellten Korrekturkurve (für die folgenden Messungen nach Stuiver und Reimer, 1986).

4.1.2. Relative Datierung: Pollenfrequenzen

Die Art der jährlich ausgestreuten Pollen ist abhängig von der Vegetation. Da sich die Vegetation im Laufe der Jahrhunderte bis Jahrtausende ändert, ändern auch die Verhältnisse der Pollen im Sediment². Ist die mechanische oder biogene Mischung des Sedimentes gering, stellen die Abfolgen der Pollenzusammensetzung den veränderten Pollenflug in der Zeit dar. Ein Standardprofil aus möglichst kleinen Intervallen dokumentiert den im Laufe der Zeit veränderten Pollenflug. Die relative Datierung einer Probe erfolgt über ihre Zuordnung zur ähnlichsten Probe des Standardprofils (Kap. 4.3). Dabei ist bis anhin meist ein Vergleich der Probe mit charakteristischen Zeitabschnitten üblich. Genauer ist die Bestimmung, wenn direkt die maximalen Ähnlichkeiten (Korrelationen) zwischen den Proben berechnet werden (Birks, 1986 b). Erste Ergebnisse sind in Schneebeli et al. (1989) dokumentiert. Die dort angewandte Methode wurde in dieser Arbeit weiterentwickelt. Sie ist nun robuster und ermöglicht die Berechnung von Vertrauensintervallen.

4.2. DIE ABSOLUTEN ¹⁴C-DATIERUNGEN

4.2.1. Messungen im Standardprofil

Entnahme und Aufbereitung

Für die im Standardprofil (Messpunkt 25) vorgenommenen ¹⁴C-Messungen wurde eine Scheibe von 1 cm Dicke aus dem Bohrkern gewonnen und

²Die Häute der Pollen, die Exinen, sind ausserordentlich widerstandsfähig gegen Säuren. Sie weisen art-, gattungs- oder familienspezifische Merkmale auf, was ihre Zuordnung zu bestimmten Pflanzenarten erlaubt.

die Eriophorum vaginatum-Blattscheiden mit der Pinzette entnommen. Das Trockengewicht der Proben betrug etwa 1 g. Sie wurden im Geographischen Institut der Universität Zürich aufbereitet und am Institut für Mittelenergiephysik der ETH Zürich auf dem Linearbeschleuniger mit Massenspektrometer gemessen.

Die Transformation der ¹⁴C-Alter in kalibrierte Alter erfolgte nach Stuiver und Reimer (1986). Die Standardabweichung σ der kalibrierten Daten beruhen nicht auf einer normal verteilten Zufallsvariablen, da die Transformation ¹⁴C-Alter zu kalibriertem Alter nicht linear ist (Stuiver und Pearson, 1986).

Resultate und Diskussion

Die Resultate der Datierungen der Proben des Standardprofils sind in Tab. 4.1 enthalten. Der Torfzuwachs ist in Abb. 4.1 abgebildet. Auffällig ist die geringe Zuwachsrate im Boreal von 8000 BC bis 6000 BC. Die Niederschläge waren damals eher geringer als heute und die Temperatur etwas höher (Taylor, 1983, p. 9). Die Bedingungen für das Moorwachstum waren deshalb ungünstiger. Der Zeitraum von 6000 bis 4000 BC wird dem Atlantikum zugeordnet und ist durch bis zu 10% höhere Niederschläge und bis zu 2° C höhere Temperaturen als heute gekennzeichnet. Dies zeigt sich auch in den hohen Zuwachsraten. Im Subboreal von 2000 BC bis 0 AD nehmen die Niederschläge sowie die Temperatur unregelmässig ab. Während des nachfolgenden Subatlantikums wechseln wärmere und kältere Phasen unregelmässig ab. Mit den zehn 14C-Datierungen und der rezenten Oberfläche als jüngsten Punkt wurden nur die grössten Oszillationen erfasst.

Abbildung 4.1 Zuwachs und Sedimentation im Standardprofil 25. Im Alter-Tiefe Diagramm ist die Linie minimaler quadratischer Abweichung eingezeichnet.
Der Zuwachs lässt sich dennoch als lineare Funktion beschreiben, da die Schwankungen keinen erkennbar systematischen Trend zeigen. Eine lineare Regression der Tiefe des Standardprofil z [cm] gegen das kalibrierte ¹⁴C-Alter t [ka] ergibt:

t = 1.39 - 0.022 z, r = 0.99

Probe	Tiefe	¹⁴ C-Alter	913C	korr. Alter	kal. Alter	Dichte
Nr.	[cm]	[ka BP]	[‰]	[ka BP]	[ka]	[Mg /m ³]
ETH-0518	33	1.57±0.09	-29.9	1.49±0.10	AD 0.54±0.21	0 119
ETH-0519	89	1.98±0.08	-22.2	2.02±0.09	BC 0.05±0.22	0.110
ETH-0520	130	3.81±0.09	-28.1	3.76±0.10	BC 2.19±0.25	0 106
ETH-0521	182	4.59±0.09	-25.7	4.57±0.10	BC 3.33±0.14	0.100
ETH-0522	242	5.71±0.09	-25.6	5.70±0.10	BC 4.55±0.24	0.110
ETH-0523	303	6.37±0.10	-24.8	6.37±0.11	BC 5.30±0.26	0.119
ETH-0524	335	6.64±0.10	-27.4	6.60±0.11	BC 5.52±0.23	0.167
ETH-0525	358	7.02±0.10	-24.4	7.03±0.11	BC 5.84±0.25	0.107
ETH-0526	403	8.94±0.12	-24.5	8.95±0.13	BC 8.00±0.33	0.175
ETH-0527	462	9.81±0.12	-25.6	9.80±0.13	BC 9.00±0.33	0.137

Tabelle 4.1 ¹⁴C-Datierungen im Standardprofil 25. Die scheinbare Dichte wurde an Proben bestimmt, welche zwischen den Tiefen der datierten Proben lagen. Die Abweichung für das konventionelle ¹⁴C-Alter und das korrigierte Alter sind $\pm 1 \sigma$, beim kalibrierten Alter $\pm 0.5 \sigma$.

4.2.2. Messungen der Basisproben

Entnahme und Aufbereitung

Ein zweiter Bohrkern diente zur Datierung der Basisproben. Gebohrt wurde 10 bis 20 cm neben der Bohrstelle für die pollenanalytischen Untersuchungen. Aus dem torfig-lehmigen Material des Übergangs zwischen mineralischem und organischem Sediment wurden aus 5–7 cm langen Bohrkernabschnitten einzelne Holzstückchen und gröbere Fasern nach Nassiebung mit destilliertem Wasser ausgelesen. Die weitere Aufbereitung, Datierung und Kalibrierung erfolgte am Institut für Mittelenergiephysik der ETH Zürich.

Resultate und Diskussion

Die ¹⁴C-datierten Proben zeigen etwa dasselbe Alter wie die pollenanalytisch datierten (Tab. 4.2, Abb. 4.2). Eine genauere Aussage ist schwierig, da folgende Faktoren bei der Probenahme nicht berücksichtigt werden konnten:

(4.1).

(i) Fehler bei der Probenentnahme: Die Sedimentation weist an der Basis einen starken Sedimentationsgradienten auf. Dort befindet sich der Übergang zu einem torfbildenden System. Eine geringe Abweichung der Probentiefe führt daher zu einer bedeutenden Altersabweichung. (ii) Ablagerungsbedingte Fehler: Die Zersetzung organischen Materials ist von seiner chemischen Zusammensetzung abhängig. So erwähnt Olson (1986), S. 287, dass Holzreste bedeutend älter sein können als der Rest des Materials. Die Verlagerung des Pollens und der gröberen organischen Bestandteile im Boden dürfte nicht diesselbe sein. So wachsen Wurzeln desselben Alters wie die Pollen in tiefere Schichten, während die Pollen in der Matrix kaum verlagert werden. Eine Auswirkung dieses Mischungsprozesses dürfte die häufige Umkehr von Alter und Tiefe sein (Bohrkerne 4, 11, 23, 41, 67).

Lab. Nr.	Kern	Tiefe	14C-Alter	913C	kal. Alter	Nr. _B	tB
		[cm]	[ka BP]	[‰]	[ka[[cm]
ETH-3836	4	104–110	6.70±0.11	-19.3	BC 5.57±0.19	506	107
ETH-3837	4	110–115	6.64±0.12	-23.6	BC 5.56±0.19	507	112
ETH-3838	11	107–112	3.87±0.11	-22.2	BC 2.35±0.31	524	107
ETH-3839	11	112-117	3.79±0.11	-21.8	BC 2.25±0.32	525	112
ETH-3840	23	35-40	0.20±0.09	-25.3	AD 1.80±0.23	550	35
ETH-3841	23	4045	0.17±0.09	-34.8	AD 1.83±0.22	551	40
ETH-3842	24	138–143	4.36±0.12	-24.6	BC 3.09±0.32	557	123
ETH-3843	26	294–299	5.0 01 0.10	-23.8	BC 3.85±0.19	563	294
ETH-3844	27	139-144	5.80±0.11	-23.3	BC 4.66±0.37	569	139
ETH-3845	41	405-410	6.74±0.14	-23.3	BC 5.62±0.26	619	407
ETH-3846	41	410-415	6.49±0.14	-24.9	BC 5.39±0.28	620	412
ETH-3847	54	335-340	6.07±0.10	-24.7	BC 5.03±0.28	650	324
ETH-3848	67	272-277	5.83±0.10	-27.3	BC 4.71±0.22	671	276
ETH-3849	67	277–282	5.80±0.12	-24.0	BC 4.67±0.27	672	279

Tabelle 4.2 ¹⁴C-Datierungen der Basisproben. Wegen der spärlich vorhandenen organischen Reste wurde das Probematerial für die Datierung über eine Tiefe von 5 cm entnommen. Die Probennummer Nr._B und Bohrungstiefe t_B entspricht der pollenanalytisch datierten Basisprobe. Die kleineren, kursiven Zahlen beziehen sich auf vermutliche Ausreisser.

Für die statistische Analyse der pollenanalytisch datierten Basisproben y und der ¹⁴C-datierten Basisproben x werden die Differenzen $(y_i - x_i)$ betrachtet. Der Mittelwert der Differenzen $(y_i - x_i)$ aller Proben beträgt -0.26 ka, die Standardabweichung ±0.89 ka. Werden die Probenpaare ETH-3841/551 und ETH-3843/563 als Ausreisser betrachtet, ist der Mittelwert der Differenzen 0.015 ka, die Standardabweichung ±0.50 ka. Der deutlich erwartungstreuere

Abbildung 4.2 Abweichung zwischen den ¹⁴C-datierten und den pollenanalytisch nach der Methode «OPTIMAL» (Kap. 4.3.5) datierten Basisproben. Die Fehlerbalken entsprechen bei den ¹⁴C-Altern 2 σ (etwa 95% Konfidenzintervall), bei den pollenanalytischen Altern den 90% Konfidenzintervallen Ψ .

Mittelwert deutet darauf hin, dass es sich bei den erwähnten Proben um Ausreisser handelt. Dies ist umso wahrscheinlicher, als die Proben nicht dem gleichen Bohrkern entnommen wurden und über 5 cm der Probentiefe gemischt werden mussten.

Da die Proben nicht identisch waren, handelt es sich bei den Abweichungen um obere Grenzwerte. Wie in Kapitel 4.4.2. gezeigt wird, weichen die pollenanalytisch datierten Proben weniger vom wahren Alter ab, als mit dem Vergleich $(y_i - x_i)$ vermutet wird.

4.3. STRATIGRAPHISCHE KORRELATION VON POLLEN-SEQUENZEN: METHODE

Mit der im folgenden beschriebenen Methode wird eine pollenanalytisch untersuchte Basis- oder Transsektprobe mit einer altersmässig entsprechenden Probe des Standardprofils korreliert (Abb. 2.1 und 4.3).

Zur Darstellung der Daten wird folgende Notation benutzt: Das Standardprofil, welches aus *n* nach der Tiefe geordneten Proben und *r'* Arten besteht, wird als Matrix $X_{(n \times r')}$, kurz $X_{nr'}$ bezeichnt. Die Kolonnenvektoren $x_{l'}, ..., x_{r'}$ stehen für die Pollenarten, die Zeilenvektoren $x_{1}^{T}, ..., x_{n}^{T}$ stehen für die Reihen der Proben. Die je *o* Basis- und Transsektproben der *s* Bohrungen werden als Matrizen $Y_{or'}^{s}$ bezeichnet. Die Abstände zwischen den Proben im

Abbildung 4.3 Prinzip der Beprobung und Zuordnung für die relative Datierung. Die Oberfläche bezeichnet die Jetztzeit. Die Pfeile symbolisieren die Zuordnung zu den Proben des Standardprofils.

Standardprofil sind nicht immer gleich, es wird deshalb ein zusätzlicher Vektor δ_n eingeführt, welcher die Probentiefe enthält.

4.3.1. Statistische Eigenschaften einer Pollenprobe

Eine ausführliche Darstellung der statistischen Eigenschaften von Pollenproben findet sich in Mosimann (1965). Die statistischen Eigenschaften einer Pollenart in einer einzelnen Probe \mathbf{x}_i^{T} lassen sich wie folgt herleiten. Die gesamte Anzahl gezählter Pollen betrage *m* (Pollensumme). Bei der Zählung der Pollen bestehe immer die gleiche Wahrscheinlichkeit *p*, ein Pollenkorn einer bestimmten Pollenart *j* anzutreffen. Die Wahrscheinlichkeit $p_k^{(m)}$ in der Serie von *m* Beobachtungen *k* mal die Pollenart *j* anzutreffen, ist dann

$$p_k^{(m)} = \binom{m}{k} p^k q^{m-k}, q = 1 - p, (k = 0, 1, ..., m)$$
(4.2).

Der Erwartungswert \hat{p} ist defininiert als

$$\hat{p} = \sum_{k=0}^{m} k \binom{m}{k} p^{k} q^{m-k} = mp$$
(4.3).

Die Varianz σ^2 ist definiert als

$$\sigma^2 = \sum_{k=0}^{m} (k - mp)^2 \binom{m}{k} p^k q^{m-k} = mpq$$

Abbildung 4.4 Notation für die Basis- und Transsektproben. Die unterschiedliche Länge der vertikalen Pfeile symbolisiert die unterschiedliche Anzahl Proben o in einer Bohrung. Der Index j läuft über die Anzahl der Pollenarten, k über die Anzahl Proben pro Bohrung und l über die Bohrungen.

(4.4).

Mosimann (1965) gibt für die 95% Konfidenzintervalle p_L für den Erwartungswert \hat{p} die Formel

$$p_L = \frac{\hat{p} + [3.84/(2m)] \pm 1.96\sqrt{\hat{p}(1-\hat{p})/m} + 3.84/4m^2}{1+3.84/m},$$
(4.5)

an, wobei der grössere Wert für die obere, der kleinere für die untere Grenze steht. (4.5) basiert darauf, dass p asymptotisch normalverteilt ist.

Eine Schwierigkeit bei der Anwendung der obigen Formeln ist die Wahl der Anzahl Beobachtungen *m*. Es kann notwendig sein, dass nicht alle Teilchen, welche morphologisch Pollen sind, als solche berücksichtigt werden. Bei der Zählung oder der Auswertung betrachten wir somit eine bestimmte Anzahl von Beobachtungen als ungültig, *m* wird kleiner. Für die Auswertung werden also nur jene Beobachtungen berücksichtigt, welche die im folgenden Kapitel definierten Kriterien erfüllen.

4.3.2. Optimale Konfiguration des Standardprofils

Das Standardprofil X besteht aus einer Abfolge pollenanalytisch untersuchter Proben. Der Abstand zwischen den Proben ist meistens sowohl geometrisch als auch zeitlich verschieden. Die Entscheidung, welche Arten für die Pollensumme und für die artabhängigen Transformationen zur Berechnung der Pollenprozente benutzt werden sollen, ist weitgehend abhängig vom Ziel der Auswertung. Wird das Standardprofil für die Einordnung unbekannter Pollenproben benutzt, müssen die Pollenkurven des Standardprofils möglichst gut differenziert sein und möglichst nur Arten aufweisen, deren Pollen gleichmässig im Untersuchungsgebiet abgelagert wurden. Alle Pollen direkt im Gebiet gewachsenener Arten (lokale Arten) sollten ausgeschlossen werden und damit die räumliche Variabilität minimiert werden. Probleme bei der Auswertung der Proben des Standardprofils treten auf, wenn eine Probe sehr viele lokale Pollen enthält und diese bei der Auszählung nicht aus der Zählsumme ausgeschlossen wurden, und wenn eine nicht-lokale Pollenart in einer einzelnen Probe stark gehäuft auftritt. Um diese Probleme zu vermindern, werden im folgenden Abschnitt Auswerteregeln aufgestellt.

Wahl der Pollensumme und der Transformationen der Arten: Auswerteregeln

(i) Nur Arten werden berücksichtigt, welche sowohl im Standardprofil als auch in den zu datierenden Proben vorkommen. Diese Arten enthalten Information für die Zuordnung zwischen Standardprofil und zu datierender Probe.
(ii) Um lokale Einflüsse möglichst zu vermeiden, müssen alle in der näheren Umgebung der Probe gewachsenen Arten ausgeschlossen werden. Schwierig wird dieser Ausschluss, wenn Pflanzen zu gewissen Zeiten Bestandteil der regionalen Vegetation sind, zu andern jedoch nur im Moor vorkommen. In solchen Fällen können nach einer nichtlinearen Transformation der Zähldaten die betreffenden Arten gleichwohl verwendet werden. (iii) Probleme bereiten auch die Pollen von Sporenpflanzen, da sie viel mehr Pollen freisetzen als Blütenpflanzen. Auch hier kann durch eine nichtlineare Transformation ihr Einfluss auf ein tolerierbares Mass reduziert werden. Dabei wird der Artvektor x_j zum Beispiel durch die Transformation $x_j' = \log x_j$ in seinem gesamten Einfluss vermindert und besonders hohe Werte reduziert. (iv) Pollenarten, die nur während eines kurzen Zeitabschnittes vorkommen, zudem im Standardprofil eine hohe Korrelation und geringe Pollenzahlen aufweisen, können zu einer einzigen Artengruppe zusammengefasst werden.

Diese Regeln führen zur Reduktion der ursprünglichen Anzahl Arten r' zur verminderten Anzahl r.

Um die Auswirkungen dieser Regeln zu testen, wurde eine Hauptkomponentenanalyse durchgeführt und deren Resultate mit der Hauptkomponentenanalyse in Schneebeli et al. (1989) verglichen, welche auf den gleichen Ausgangsdaten beruht. Die ersten zwei Faktoren erklären nach Anwendung der hier dargestellten Regeln 54% der Varianz, hingegen in Schneebeli et al. (1989) nur 28% der Varianz. Mit diesen Regeln lässt sich also das Rauschen des Signals und die Nichtlinearität vermindern.

Entfernen von Ausreissern

Nach der Auswahl der Arten, welche für die Pollensumme verwendet werden, finden sich in den Artvektoren x_j dennoch öfters Werte, welche die benachbarten Werte um ein mehrfaches übertreffen oder isoliert im Profil auftauchen. Diese als Ausreisser bezeichneten Werte stören die Zuordnung von Proben ins Standardprofil. Um diese Ausreisser zu eliminieren, wurde der gleitende Median MED über 5 Punkte $\{x_{i-2}, x_{i-1}, x_i, x_{i+1}, x_{i+2}\}$ bestimmt, und falls $x_i > 10$ MED, wurde der extreme Wert x_i , durch den Median MED ersetzt. Diese Methode lehnt sich in einem gewissen Sinn an die Ideen von Henley (1981) an. Ab welcher Grösse ein Wert als Ausreisser betrachtet wird, ist abhängig von der Datendichte einerseits, von der Echtheit der Spitze anderseits. Die Wahl des Faktors, mit der der gleitende Median multipliziert wird (hier 10), ist deshalb willkürlich.

Glätten des Standardprofils

Das bereinigte Standardprofil kann nun noch geglättet werden. Damit werden die (witterungsbedingten?) Schwankungen beseitigt. Dazu wird ein linearer Filter angewandt, welcher die originale Matrix X' in die gefilterte Matrix X umwandelt (Chatfield, 1984). Die Filterung wird dabei auf die originalen Artvektoren x_i ' angewandt. Als Filter wird ein binomial gewichtetes

gleitendes Mittel genommen. Die Gewichte $\{a_q\}$ werden so gewählt, dass $\sum a_q = 1$, wobei q = -g, ..., +g. Die Gewichte $\{a_q\}$ sind definiert durch

$$a_q = \binom{2g}{q+g} / 2^{2g} \tag{4.6}$$

Der Vektor x_j wird in x_j mit der Operation

$$x_{j}(i) = \sum_{q=-g}^{+g} a_{q} x_{j}'(i+q)$$
(4.7)

umgewandelt. Für die Filterung der Pollendaten wurde ein gleitendes Mittel über 5 Punkte (g = 2) mit den Gewichten { $1/_{16}$, $4/_{16}$, $6/_{16}$, $4/_{16}$, $1/_{16}$ } verwendet. Die Glättung ist an den Enden des Standardprofils nicht symetrisch, da das Profil keine stationäre Serie darstellt. Für die Endpunkte wurden deshalb nur die jeweils linken beziehungsweise rechten Punkte einbezogen. Die Glättung ist erwartungstreu, das heisst der Mittelwert wird nicht verändert.

4.3.3. Ahnlichkeitsmasse und Transformation

Nach den vorangehenden Operationen sind nun die Matrix X des Standardprofils mit *n* Proben und *r* Arten und die $o \times s$ einzuordnenden Proben vorhanden, welche aus Vektoren y^{T} der Länge *r* bestehen. Gesucht ist ein Mass, mit welchem die Ähnlichkeit zwischen einer Probe des Standardprofils und der einzuordnenden Probe bestimmt werden kann (Abb. 4.5).

Die multivariate Statistik stellt zahlreiche solcher Masse zur Verfügung, da keine eindeutige Lösung im mehrdimensionalen Raum existieren muss (Wildi, 1986). Mögliche Ähnlichkeitsmasse sind unter anderem der lineare Korrelationskoeffizient, der Rangkorrelationskoeffizient und Kontingenzoder Distanzmasse.

% species 1

Abbildung 4.5 Darstellung des Prinzipes der besten Korrelation einer Pollenprobe (schwarzer Punkt) unbekannter Einordnung in das Standardprofil (Linie). Für die Darstellung des Prinzips werden nur 2 Arten genommen, es lässt sich aber zwanglos für mehrere Arten im dann mehrdimensionalen Raum anwenden. Die grauen Flächen stehen für die Bandbreite $\pm \sigma$. Die Kreuzung der gestrichelten Linien weist den kleinsten Abstand zwischen Standardprofil und Probe auf. Beim Korrelationskoeffizenten³ und bei den Kontingenzmassen ist es von Nachteil, dass auch Arten zu den Massen beitragen, welche in einer Probe fehlen, jedoch im Standardprofil vorkommen. Dies ist bei den Distanzmassen einfacher. Fehlt eine Art, so liefert sie einfach keinen Beitrag an die Distanz. Ein weiterer Vorteil der Distanzmasse ist ihre einfache Berechnung. Dies ist besonders günstig, wenn die kleinste Distanz (Minimum) zwischen der unbekannten Probe und den Proben des Standardsprofils sowie der Vertrauensbereich des Minimums mit einer Monte-Carlo-Simulation bestimmt werden.

Aus diesen Gründen werden hier die Euklidische Distanz (EUK) und die Manhattan Distanz (MAN) verwendet. Die Euklidische Distanz (l₂-Norm) minimiert die quadratischen Abweichungen, die Manhattan Distanz (l₁-Norm) die Abweichungen (Tarantola, 1987). Die Euklidische Distanz ist erwartungstreu, aber empfindlicher auf Ausreisser, da sie eine Gauss-Verteilung der Fehler an den Daten (den Pollenproben) annimmt, die Manhattan-Distanz ist robuster, da sie eine doppelt exponentielle Verteilung der Fehler an den Daten annimmt. Die doppelt exponentielle Verteilung ist viel breiter als die Gauss-Verteilung⁴.

Der Distanzvektor d einer unbekannten Probe zu den Proben des Standardprofils wird nun aus den i = 1, n Zeilenvektoren des Standardprofils x_i^T und dem Zeilenvektor y^T der Probe berechnet. Die resultierenden Formeln für das Distanzmass ||d|| des Distanzvektors d sind

$$\|d\|_{MAN} = \sum_{j=1}^{r} ix_{j}^{T} - y_{j}^{T}$$
(4.8)

$$\|d\|_{\rm EUK} = \sum_{j=1}^{r} (x_{j}^{\rm T} - y_{j}^{\rm T})^{2}$$
(4.9)

Ob eine Distanz vorteilhafter als eine andere ist, hängt von den effektiven Verteilungsfunktionen der Vektoren x^{T} und y^{T} ab. Da die Verteilungsfunktion für jede Probe verschieden scheint, lässt sich keine optimale Verteilungsfunktion a priori ermitteln. Erst a posteriori kann entschieden werden, welches Distanzmass optimal war. Als optimal wird jenes Distanzmass betrachtet, welches die grösste Wahrscheinlichkeit hat.

Eine weitere Möglichkeit, um die Verteilungsfunktion der Daten zu beeinflussen, ist die Transformation der Elemente der Vektoren x^{T} und y^{T} . Im folgenden werden neben den Distanzmassen der untransformierten Daten auch

³Es wurden zahlreiche Versuche mit verschiedenen Varianten des Korrelationskoeffizienten durchgeführt. Sie erweisen sich aber nach Berechnung des Vertrauensintervalls als deutlich weniger effizient als die Distanzmasse.

⁴Bei der Gauss-Verteilung tritt ein Fehler grösser $\pm 2\sigma$ mit einer Wahrscheinlichkeit von 0.05 auf, bei der doppelt exponentiellen Verteilung mit einer Wahrscheinlichkeit von 0.14, also dreimal häufiger. Ein Fehler von $\pm 3\sigma$ tritt bei der doppelt exponentiellen Verteilung 20 mal häufiger auf als bei der Gauss-Verteilung.

die Distanzmasse der mit der Quadratwurzel transformierten Pollenprozentwerte berechnet.

4.3.4. Bestimmen des Maximum Likelihood-Minimums und der Vertrauensintervalle

Die unbekannte Probe ist jener Probe des Standardprofils am nächsten, die im Distanzvektor d das kleinste Element aufweist. Wird der Distanzvektor dals Funktion f(d) betrachtet, kann die Funktion eine recht komplizierte Form annehmen. Beispiele für ihre Form sind in Abb. 4.9 dargestellt. Das Minimum ist öfters sehr flach, oder die Funktion weist mehrere lokale Minima etwa gleicher Grösse auf. Je nach Distanzmass können sich die Minima auch an unterschiedlichen Stellen der Funktion f(d) befinden, es resultieren unterschiedliche Lösungen. Eine eindeutige Lösung ist deshalb ohne weitere Informationen nicht immer möglich. Die Artvektoren x und y weisen verschiedene, unbekannte Verteilungen auf, eine analytische Berechnung eines Vertrauensintervalls ist deshalb nicht möglich. Um die Maximum-Likelihood (ML) des Distanzminimums und die Vertrauensintervalle der ML zu bestimmen, wurde eine Monte-Carlo-Simulation durchgeführt.

Die Monte-Carlo-Simulation beruht auf der Idee, dass dem Experimentator ein Datensatz $\mathcal{D}_{(0)}$ bekannt ist, der eine mögliche Realisierung des wahren Datensatzes \mathcal{D} und eines Fehlervektors ε ist, d.h. $\mathcal{D}_{(0)} = \mathcal{D} + \varepsilon$. Gleichfalls bekannt sind die gemessenen Parameter $\mathbf{a}_{(0)}$ (hier Minimum des Distanzvektors **d** und Quotient des Mittels der Distanzen zum Minimum), unbekannt jedoch \mathbf{a}_{wahr} . Bei bekannter Verteilungsfunktion für ε können nun mit Hilfe eines Zufallszahlengenerators⁵ neue, hypothetische Datensätze $\mathcal{D}_{(1)}$, $\mathcal{D}_{(2)}$, ... erzeugt werden, welche ebenfalls Realisierungen von \mathcal{D} sind. Aus den

⁵Als Generator für die gleichverteilten Zufallszahlen x[0,1] wird der lineare, kongruente Generator $y_i = (Ay_{i-1} + C) \mod M \Rightarrow x_i = y_i / M$ verwendet. Der Multiplikator A beträgt 714025, die Verschiebung C 150889 und der Modulus M 714025. Diese Werte zeigen bis zu 6 Dimensionen keine Korrelation, die maximale Periodenlänge ist M. Anfangswert y_0 ist 13. Die Bedeutung der Zahlen A, C, M ist in der untenstehenden Abbildung illustriert, bei schlechter Wahl der Zahlen wird ein regelmässiges Muster in zwei Dimensionen erzeugt! Für die normalverteilten Zufallszahlen wurde der Algorithmus von Box-Muller nach Press et al. (1986) verwendet. Unten sind die Paare (x_i, x_{i+1}) für zwei kongruente Generatoren (0,1) und deren Transformation in eine Gauss-Verteilung (A=65, C=1, M=2048 bzw. A=1366, C=150889, M=714025) dargestellt.

Datensätzen $\mathcal{D}_{(h)}$ lassen sich wiederum die statistischen Parameter $\mathbf{a}_{(1)}$, $\mathbf{a}_{(2),\ldots,\mathbf{a}_{(n)}}$ berechnen (Press et al., 1986, p.529). Die simulierten Parameter $\mathbf{a}_{(0)}, \ldots, \mathbf{a}_{(h)}$ ermöglichen nun, das Vertrauensintervall für die Parameter zu berechnen. Günstig für die Berechnung des Fehlervektors ε ist der zentrale Grenzwertsatz, aus welchem hervorgeht, dass für eine grosse Anzahl Realisierungen *h* die Annahme einer Gauss-Verteilung immer gerechtfertigt ist. Es ist deshalb nicht notwendig, die wahre Verteilung des Fehlervektors ε zu kennen.

Die Varianz der Elemente der Matrizen Y ist bekannt, da sie eine binomiale Verteilung aufweisen. Der Vektor der Erwartungswerte der Pollenzahlen sei $y_{(0)}$ mit r Arten, die Varianzen σ^2 . Der Vektor der zufälligen Fehler an $y_{(0)}$ sei ε . Unter der Annahme, dass der Fehler an einer Pollenart nicht mit dem Fehler einer anderen Pollenart korreliert ist, wird die neue Realisierung $y_{(h)}$

 $\mathbf{y}_{(h)} = \mathbf{y}_{(0)} + \boldsymbol{\varepsilon} \tag{4.10}.$

Die Varianz σ_b^2 der Binomialverteilung kann für $mp \ge 11$ (*m* Anzahl der gezählten Pollen, *p* Wahrscheinlichkeit) durch die Varianz einer Gauss-Verteilung ersetzt werden (Linder und Berchtold, 1979). Die Varianz σ_b^2 wurde auch für mp < 11 durch eine Gauss-Verteilung ersetzt, da die Abweichungen nicht gravierend sind. Wird ein Element der neuen Realisierung $y_{(h)}$ negativ, wird dessen Absolutwert genommen, $|y_{(h)}|$.

Aus den nran Realisierungen $y_{(h=1, nran)}$ wird die neue Matrix $\Upsilon_{nran, r}$ gebildet. Aus den Matrizen X_{nr} und $\Upsilon_{nran, r}$ werden nran Distanzvektoren d berechnet. In jedem Distanzvektor d(h) wird das Minimum μ bestimmt, welches an eine Stelle i zu liegen kommt. Der aus allen nran Minima u erzeugte Vektor *m* wird als Häufigkeitsverteilung über i = 1, n interpretiert. Der häufigste Wert k entspricht dem Maximum-Likelihood der Menge der Minima µ, ML(m). ML(m) entspricht der Tiefe einer Probe im Standardprofil. Die Wahrscheinlichkeit p_{μ} (im folgenden nur noch p genannt) für κ an der Stelle i ergibt sich aus dem Verhältnis der Monte-Carlo-Realisierungen und der Anzahl der Minima an der Stelle i, $p = nran/\kappa$. Die Werte des Vektoren m sind nicht notwendigerweise symmetrisch um ĸ. Es sind dann auch die Vertrauensintervalle ψ nicht symmetrisch, da für die gleiche Wahrscheinlichkeit unterhalb von κ , p_l , beziehungsweise oberhalb κ , p_{μ} , über mehr oder weniger Intervalle i summiert werden muss. Diese wahren, asymmetrischen Vertrauensintervalle ϕ werden deshalb durch das symmetrische Vertrauensintervall Ψ ersetzt, wobei π die angestrebte Wahrscheinlichkeit für das Vertrauensintervall bezeichnet (Abb. 4.6). Die Vertrauensintervalle werden berechnet, indem abwechslungsweise von der Stelle i_{κ} ausgehend die Wahrscheinlichkeit p = m(i)/nran addiert wird, bis die Wahrscheinlichkeit π erreicht ist. Das durch die Differenz der Indizes $\iota_{i\mu} - i_l$, bezeichnete Vertrauensintervall ψ wird nun in eine Distanz δ_{lu} , = δ_{u} , - δ_{l} , transformiert. Das Vertrauensintervall Ψ ist dann die Hälfte der Distanz δ_{lu} . Liegt eine absolute Datierung zwischen Tiefe und Zeit vor, lässt sich δ_{lu} , in eine Zeitspanne τ transformieren. Diese Zeitspanne τ umfasst ebenfalls die Wahrscheinlichkeit π . Das Vertrauensintervall Ψ_{τ} ist dann $\tau/2$. Als Algorithmus dargestellt ergeben sich folgende Formeln:

1:
$$\pi \leq \sum_{i} m(i)/nran \quad ; i = +1, -1, +2, -2, \dots \rightarrow \iota = i_{u} - i_{l},$$
1b:
$$\Psi_{u} = i_{u} \quad \Psi_{1} = i_{l}$$
2:
$$\delta(i_{u}) = \delta_{u}, \quad \delta(i_{l}) = \delta_{l}, \quad \rightarrow \quad \delta_{lu}, = \delta_{u}, -\delta_{l},$$
3:
$$\Psi = \delta_{lu}/2$$
4:
$$\tau \propto \delta_{lu}, \quad \rightarrow \quad \Psi_{\tau} = \tau/2 \quad (4.11)$$

Zusammengefasst: Im gemessenen und in den simulierten Distanzvektoren wird das Minimum bestimmt. Diese Minima bilden eine Häufigkeitsverteilung. Das Maximum der Häufigkeitsverteilung ist das Maximum-Likelihood für die entsprechende Tiefe im Standardprofil. Aus der Breite der Häufigkeitsverteilung lässt sich das Vertrauensintervall für das Maximum-Likelihood bestimmen.

4.3.5. Regelbasierte Bestimmung der optimalen Lösung

Werden für u Distanzmasse und v Transformationen die Distanzvektoren berechnet, entstehen $u \times v = v$ Lösungen. Für Pollenproben mit einer nicht durch extreme Werte beeinflussten Verteilung der Pollenprozente ergeben sich dieselben κ Werte für die verschiedenen Lösungen, die Wahrscheinlichkeit p und das Konfidenzintervall Ψ sind jedoch verschieden. Die optimale Lösung OPT weist die grösste Wahrscheinlichkeiten beziehungsweise das kleinste Konfidenzintervall der v Lösungen auf. Öfters sind die κ Werte der Lösungen verschieden. Die optimale Lösung ist auch in diesen Fällen jene mit der maximalen Wahrscheinlichkeit p. Die optimalen Lösungen der Proben in einer Bohrung werden geprüft, ob ihre Tiefen

Abbildung 4.6 Vertrauensintervall der Häufigkeitsverteilung **m**. Die Häufigkeiten sind mit vertikalen Strichen dargestellt, hellgrau das wahre Vertrauensintervall für π = 0.9, dunkelgrau das symmetrische. Das Maximum-Likelihood ist mit κ bezeichnet. (beziehungsweise Alter) mit derjenigen der stratigraphischen Reihenfolge übereinstimmen. Ist dies bei einer Probe nicht der Fall, wird in den Vektoren **m** der verschiedenen Lösungenv ein sekundäres Maximum κ' gesucht oder es muss eine mögliche geologische Erklärung⁶ der Schichtumkehr vorliegen. Das Kriterium der stratigraphischen Reihenfolge ist dadurch definiert, dass die Reihenfolge des Vektors y_{or} für k = 1, o bewahrt bleibt. Der ganzzahlige Vektor (1, 2, ..., o) ω entspricht der ursprünglichen Reihenfolge, ω' dem Vektor nach Bestimmung von κ . Ist nun die Differenz ζ der Komponenten ω' - $\omega \neq 0$, so befindet sich die Probe nicht mehr in der stratigraphischen Reihenfolge. Der Algorithmus für die optimale Lösung lautet

1: falls
$$\forall i_{\kappa}^{(u=1,v)} \equiv \iota \land \zeta = 0 \rightarrow \text{OPTIMAL}$$

2: falls $\forall i_{\kappa}^{(u=1,v)} \neq \iota$
2a: max $p_{\kappa} \land \zeta = 0 \rightarrow \text{OPTIMAL}$
 \lor
2b: Schichtinversion $\land i_{\kappa'} \rightarrow \text{OPTIMAL}$ (4.12)

Zusammengefasst: Ist eine Probe älter als die tieferliegende Probe, ist die entweder geologisch bedingt, oder es muss ein sekundäres Maximum in den Distanzvektoren gesucht werden, um ein vernünftiges Alter zu erhalten.

4.3.6. Testen der Empfindlichkeit der Zuordnung

Um die Aussagekraft der Zuordnung zu prüfen, wurden einerseits einige Basisproben ¹⁴C- datiert (Kapitel 4.2.2.) und anderseits das originale, nicht ausreisser-bereinigte und nicht gefilterte Standardprofil $X_{nr'}$ mit dem gefilterten Standardprofil X_{nr} datiert (Kapitel 4.4.1.). Die Proben des originalen Standardprofiles weisen etwa dieselben Eigenschaften auf wie die Basisproben, die Kreuzdatierung sollte damit wesentliche Hinweise auf die Datierbarkeit geben. Mit der Kreuzdatierung können auch besser oder schlechter datierbare Zeitabschnitte identifiziert werden.

4.3.7. Absolute Datierung der Pollenproben am Standardprofil

Die Identifikation⁷ der unbekannten Basis- und Transsektproben mit den beschriebenen Methoden bezieht sich immer auf eine Probe des Standardpro-

⁶Insbesonders bei den Basisproben scheint es in einigen Fällen auch stratigraphisch wahrscheinlich, dass die Schichtumkehrung durch einen Erdschlipf verursacht wurde.

⁷Der Begriff «Identifikation» wird in der Literatur (Wildi, 1986) benutzt, und bezeichnet die Einordnung einer multivariaten Probe in eine geordnete, multivariate Menge. Im hier

fils, von der die Tiefe bekannt ist, jedoch nicht das absolute Alter. Wären die Proben des Standardprofiles alle absolut datiert, dann könnte einer Tiefe direkt ein Alter zugeordnet werden. Sind die Standardabweichungen der absoluten ¹⁴C-Datierungen kleiner als die Residuen der Regression zwischen Alter und Tiefe (Formel (4.1)), wird am besten linear zwischen zwei absolut datierten Proben interpoliert. Die Berechnung eines Zeitmasstabes für die Abweichungen lässt sich mit genügender Genauigkeit durch die Steigung der Regression zwischen Alter und Tiefe annähern.

4.4. RESULTATE DER STRATIGRAPHISCHEN KORRELATION IM TURBENRIET

4.4.1. Optimale Konfiguration des Standardprofils

Die Auswahl der Pollenarten und die Transformation ihrer Werte ist ein entscheidender Schritt für eine erfolgreiche Identifikation.

Auswahl der verwendeten Pollenarten

Die Auswahl der Pollenarten erfolgt nach den in Kap. 4.3.2 dargestellten Regeln. Birks (1986 a, p. 6) gibt für Moore von etwa 300 m Durchmesser als Fremdpollenquelle eine Fläche von etwa 10 km² an. Im Turbenriet sind somit die Höhenstufen von 1000–1500 m in einem Umkreis von etwa 2 km als hauptsächlichste Pollenquellen zu betrachten.

Im Gegensatz zu Schneebeli et al. (1989) wird Alnus als moortypische Art betrachtet, was zu einer wesentlichen Modifizierung und besseren Strukturierung des Pollendiagramms für die Identifikation führt. Pollen von Selaginella selaginoides und von Poaceen werden als Sporenpflanze bzw. als Gras mit dem natürlichen Logarithmus transformiert. Die Pollen von Pinus werden gleichfalls mit dem natürlichen Logarithmus transformiert, da Pinus im jüngsten Zeitabschnitt als Moorpflanze wächst. Cerealia und Juglans werden als Artengruppe zusammengefasst, da beide erst in jüngster Zeit und mit geringer Stetigkeit auftreten, jedoch als Kulturzeiger sehr typisch sind.

Entfernen von Ausreissern und Filterung des Standardprofile

Die aus dem Standardprofil entfernten Ausreisser sind in Anhang D, Seite D-2 aufgelistet. Die entfernten Arten in den entsprechenden Proben weisen meist Pollenzahlen zwischen eins bis fünf auf. Nur in zwei Fällen (Apiaceae,

beschriebenen Fall der Datierung handelt es sich um die Zuordnung zu einem eindimensionalen, multivariaten Vektor, eine Einreihung. Probe 99, 30 Pollen; *Cichoriaceae*, Probe 319, 12 Pollen) liegen sie höher, nur bei Probe 99 wird der Ausreisser durch einen Wert grösser als Null ersetzt.

Die Filterung des Standardprofiles nach Gleichung (4.7) verändert die originalen Werte durchschnittlich um etwa 10–20% des ursprünglichen Signals. Die gefilterten Werte finden sich in Anhang D, Seite D-8 (MA5 of stratigraphic sequence).

Interpretation des Standardprofils

Die resultierenden ungefilterten und gefilterten Pollenprozente der ausgewählten Pollenarten sind in Abbildung 4.7 dargestellt. Die Pollenkurven von *Corylus, Ulmus, Fagus, Cichoriaceae* und *Betula* weisen nicht wie in Schneebeli et al. (1989) zwei Maxima, sondern nur ein stärker ausgeprägtes Maximum auf. Die Kurven sind deshalb für die Datierung besser geeignet.

Abbildung 4.7 Pollendiagramm des Standardprofils 25A. Die durchgezogenen Linien stellen die gefilterten Werte dar. Ist der originale Wert kleiner als der gefilterte, sind die Balken weiss-schwarz, ist der originale Wert grösser als der gefilterte, sind die Balken schwarz-weiss. Mit dem natürlichen Logarithmus transformierte Pollen sind mit einem

(Fortsetzung Abb. 4.7) • vor dem Namen versehen. Der weisse Balken der Pollensumme entspricht der gezählten Anzahl Pollen, der schwarze der für die Prozentberechnung (nach Transformation) verwendeten Anzahl Pollen.

69

Identifikation der originalen an den geglätteten Daten: Maximum Likelihood und Vertrauensintervall

Je eindeutiger⁸ sich die Pollenprozente im Standardprofil verändern und je geringer die Schwankungen der Kurve von Probe zu Probe (Rauschen) sind, umso besser lassen sich die Proben datieren. Die Veränderungen sind nicht über die ganze Profillänge gleich deutlich, sondern weisen charakteristische Abschnitte auf. Um die Genauigkeit der Identifikation zu überprüfen und kritische Abschnitte aufzufinden, wurden die originalen Daten des Standardprofils mit den gefilterten Daten korreliert (Kreuzdatierung). Die Abweichungen zwischen der effektiven Tiefe z der Probe *i* und den bei der ML-Schätzung mit den originalen Daten ermittelten Probentiefe z' sind in Abbildung 4.8 dargestellt. Der Mittelwert der Abweichungen zwischen z und z', ζ , die Standardabweichung des Mittelwertes der Abweichungen $\sigma \zeta$ und das Maximum der Abweichung *max* ist in Tabelle 4.3 aufgeführt. Für die Kreuzdatierung wurden 256 Realisierungen nach (4.10) erzeugt (Die Anzahl der Realisierungen ist, wenn nicht anders angegeben, im folgenden *nran* = 256).

Distanzmass	ζ [cm]	σ <u>τ</u> [cm]	max [cm]
MAN	8.82	19.1	105
EUK	8.14	14.33	60
MAN-SQ	3.98	9.13	55
EUK-SQ	3.14	5.72	30

Tabelle 4.3 Mittelwerte der Abweichungen ζ , Standardabweichungen der Mittelwerte σ_{ζ} und maximale Abweichungen *max* der verschiedenen Distanzmasse für die kreuzdatierten Proben des Standardprofils. Für die Distanzmasse werden folgende Abkürzungen verwendet: MAN: Manhattan, EUK: Euklid, für die Wurzeltransformation der Daten SQ

Die euklidische Distanz ist in den meisten Fällen etwas effizienter als die Manhattan-Distanz, die wurzeltransformierten effizienter als die nicht transformierten. Die Manhattan-Distanz findet jedoch in fast allen Fällen das stratigraphisch richtige sekundäre Minimum, im Gegensatz zur euklidischen Distanz. Die Mittelwerte der Abweichungen von 3.14 cm beim Distanzmass EUK-SQ entsprechen etwa 70 Jahren. Das Rauschen des Standardprofiles über die Zeit lässt sich in Abbildung 4.8 deutlich erkennen. Ein sehr unruhiger Bereich liegt zwischen 140–70 cm Tiefe (etwa 2500 BC–0 AD). Bei Anwendung der euklidischen Distanz liegen 82% der Standardabweichung zwischen 70 und145 cm Tiefe. Die hohe Standardabweichung beim Distanzmass MAN

⁸Die Eindeutigkeit ist an einem Vektor mit nur einer Art leicht zu erkennen: Ist die Art monoton zu- oder abnehmend, lässt sich jede andere Probe eindeutig in die Reihe einpassen. Die Eindeutigkeit ist im mehrdimensionalen Raum analog zu verstehen.

ist durch einen einzelnen Wert verursacht. Bei diesem Wert wurde ein sekundäres Minimum gefunden, dessen Wert in der richtigen Tiefe liegt.

Abbildung 4.8 Abweichungen zwischen der effektiven Tiefe z und der scheinbaren Tiefe z' als Ergebnis der Identifikation der Kreuzdatierung.

4.4.2. Identifikation der Basis- und Transsektproben

Monte-Carlo Realisierungen und der Einfluss der Ähnlichkeitsmasse

Für jede unbekannte Probe Y'_{kj} , wobei *l* die Bohrung, *k* die Probe in der Bohrung und *j* die Art bezeichnet, wurde eine Monte-Carlo Simulation durchgeführt. An der Standardprofilprobe der Tiefe 9 cm wurde überprüft, ob die nach (4.4) berechnete Standardabweichung σ_b mit der simulierten Standardabweichung σ_s der Realisierungen \mathcal{D} übereinstimmt. Die mittlere Abweichung zwischen σ_b und σ_s beträgt $\pm 6\%$. Die Korrelation zwischen den Arten spielt für die Berechnung der Fehlervektoren ε keine Rolle.

Bei schwierig einzureihenden Proben beeinflusst das gewählte Distanzmass das Resultat stark. Bei diesen Proben befindet sich das Häufigkeitsmaximum des Distanzminimums κ ie nach Ähnlichkeitsmass und Transformation in deutlich verschiedener Tiefe. Die Breite der Vertrauensintervalle der verschiedenen Lösungen deutet nicht in jedem Falle darauf hin, dass x schlecht bestimmt ist. Das Vertrauensintervall des Distanzmasses MANHATTAN zeigt eher als EUKLID eine schlechte Bestimmung von κ an. Im folgenden Bild (Abb. 4.9) sind die Distanzvektoren d der verschiedenen Lösungen für die schwierig zu datierende Probe 595 (Punkt 32, Tiefe 210 cm) dargestellt. Sie muss aufgrund der eindeutig datierbaren Basisproben am Punkt 32 jünger als die 210 cm-Probe des Standardprofils (pst) sein. Die nicht transformierte euklidische Distanz weist zwar bei 424 cm pst ein sehr klares Minimum auf. welches aber mindestens 210 cm tiefer als das vermutete Minimum in einem aus Altersgründen nicht plausiblen Bereich liegt. Die Wahrscheinlichkeit p = 0.96 und das Vertrauensintervall $\Psi = 4.9$ cm geben überhaupt keinen Hinweis auf diese Abweichungen. Sehr viel besser verhält sich die Manhattan-Distanz, welche zwar gleichfalls das falsche Minimum findet, aber eine niedrige Wahrscheinlichkeit p = 0.43 und das sehr breite Vertrauensintervall $\Psi = 155$ cm angibt. Der κ -Wert der Manhattan-Distanz der wurzeltransformierten Daten ist 164 cm *pst* mit einer Wahrscheinlichkeit von p = 0.88 und einem Vertrauensintervall $\Psi = 31$ cm. Der κ Werte der euklidischen Distanz der wurzeltransformierten Daten ist 99 cm pst mit einer Wahrscheinlichkeit von p = 0.57 und einem Vertrauensintervall $\Psi = 31$ cm. Die optimale Lösung entspricht dem K-Wert, welcher mit den wurzeltransformierten Daten und der Manhattan-Distanz gefunden wird. Dieses Beispiel zeigt, dass unter Umständen verschiedene Ähnlichkeitsmasse und Transformationen notwendig sind, um die optimale Lösung zu finden. Auch wird anschaulich klar, wo der Vorteil der mit der Manhattan-Distanz realisierten robusten 11-Norm liegt.

Abbildung 4.9 Distanzen d der zwei Ähnlichkeitsmass für die untransformierten Artvektoren und für die wurzeltransformierten Artvektoren der Probe 595 (Punkt 32, Tiefe 210 cm). Die Tiefe der x-Achse bezieht sich auf das Standardprofil.

Konvergenz der Monte-Carlo-Simulation

Um zu testen, wieviele Monte-Carlo-Simulationen notwendig sind, um eine stabile Verteilung der Werte des Distanzminimums μ zu erhalten, wurde das fortschreitende arithmetische Mittel und die fortschreitende Standardabweichung berechnet. Da es sich hier um eine numerische Analyse der Monte-Carlo Simulation handelt, wurde nicht das Vertrauensintervall Ψ berechnet, sondern die fortschreitende Standardabweichung σ_h . Die Formel für das fortschreitende Mittel μ_h , lautet

$$\mu_h = \mu_{nran} - 1/h \sum_{\iota=1}^h \kappa_{\iota}, \ h = 1, nran$$

(4.13),

73

für die fortschreitende Standardabweichung σ_h

$$\sigma_h = \left(\frac{1}{(h-1)} \sum_{\iota=1}^h (\kappa_\iota - \mu_h)^2 \right)^{1/2}, \ h = 1, nran.$$
(4.14).

Die endgültigen Standardabweichungen σ_{256} sind für die einzelnen Ähnlichkeitsmasse unterschiedlich.

Das fortschreitende arithmetische Mittel und die fortschreitende Standardabweichung des Distanzminimums μ konvergieren bei normalen Daten bei $2^6 = 64$ Realisierungen in einen stabilen Wert. Bei schwierigen Proben ist die Konvergenz sehr langsam. Die Standardabweichung vergrössert sich sprunghaft bei der l₂-Norm, wenn ein «seltenes» Ereignis eintritt. Als Beispiel einer schwierigen Probe wird wiederum Probe 595 genommen (Abb. 4.10). In diesem Beispiel ist die euklidische Distanz ein ungeeignetes Mass, was sich deutlich an der sprunghaften Veränderung des Mittelwertes und der drastischen Zunahme der Standardabweichung σ_h nach etwa 160 Realisierungen zeigt. Die sprunghaften Zunahmen lassen sich durchaus erklären: Bei einer Realisierung wurde ein Minimum bei ungefähr 120 cm gefunden. Der definitive Wert von σ_h deutet jedoch nicht auf eine unwahrschweinliche Lösung hin, dies im Gegensatz zur Manhattan-Distanz. Diese zeigt mit einem σ_h von etwa 160 cm, dass die Probe schwierig einzuordnen ist.

Resultate der Identifikation

Die Resultate der Identifikation sind tabellarisch in den Anhängen E.1 und E.2 als relatives Alter in bezug auf das Standardprofil und davon ausgehend als absolutes ¹⁴C-Alter festgehalten. Die absoluten Alter wurden wie in 4.3.7 beschrieben berechnet, die Abweichungen wurden mit der Steigung von Gleichung (4.1) berechnet. Die Abbildungen der Lösungen mit den vier Ähnlichkeitsmasse sind in Anhang E.3 dargestellt, die optimalen Lösungen in Kap. 4.5. Über die Genauigkeit der Datierung geben die Tabellen 4.4 und 4.5 Auskunft.

n = 43	MAN	EUK	MAN-SQ	EUK-SQ	OPTIMAL
Mittel p	0.62	0.65	0.57	0.59	0.72
σρ	0.20	0.20	0.17	0.17	0.17
Median ¥ [cm]	5	5	10	9	5≜0.11 ka
90 % Perzentily [cm]	42	34	38	30	29≜0.64 ka

Tabelle 4.4 Mittelwerte und Standardabweichung der Mittelwerte für die Wahrscheinlichkeit p des ML-Schätzers und Mediane und 90 % Perzentile für die Vertrauensintervalle Ψ der Basisproben.

Abbildung 4.10 Konvergenz der Monte-Carlo-Simulationen für das zentrierte, fortschreitende Mittel der Minima (dicke Line) und der Standardabweichungen (dünne Linien) der Probe 595 (Bohrung 32, Tiefe 210 cm).

n = 39	MAN	EUK	MAN-SQ	EUK-SQ	OPTIMAL
Mittel p	0.51	0.58	0.55	0.58	0.66
σ _p	0.19	0.20	0.22	0.21	0.20
Median ¥ [cm]	16	14	17	15	9≜0.20 ka
90 % Perzentily [cm]	68	50	49	39	49≜1.08 ka

Tabelle 4.5 Mittelwerte und Standardabweichung der Mittelwerte für die Wahrscheinlichkeit p des ML-Schätzers und Mediane und 90 % Perzentile für die Vertrauenintervalle Ψ der Transsektproben.

Die Resultate zeigen, dass die Basisproben besser zu datieren sind als die Transsektproben. Dieses Resultat scheint wesentlich daher zu rühren, dass die Varianz der Pollensequenz sich in jüngerer Zeit vergrössert. Die Transsektproben liegen über den Basisproben und sind deshalb mehrheitlich jünger. Die Varianz der Pollensequenzen der Transsektproben ist somit grösser.

Diskussion

Die Datierungen der Basisproben sehen bei allen Lösungen etwa gleich aus. Für die Datierung ist es wesentlich, dass immer zwei bis drei Basisproben entnommen werden, da es stratigraphisch nicht immer klar ist, wo die Torfsedimentation beginnt. Bei den Transsektproben treten grössere Unterschiede auf. Die vermutlich falsch datierten Proben sind iedoch meist leicht zu erkennen, da sie die Altersschichtung umkehren, und damit nicht zu einer optimalen Lösung nach Gleichung (4.14) führen. Eine Verdichtung der Transsektproben wäre sehr günstig, da man dann einige kritische Fälle eindeutiger einordnen könnte. Am effizientesten wäre die lineare Interpolation zwischen den schon entnommenen Proben (d.h. bei einer Bohrung würden nicht nicht nur 3, sondern 7 Transsektproben entnommen). Unter der Annahme, dass die Messfehler der ¹⁴C-Datierung normalverteilt sind, entspricht 20 etwa dem 90% Vertrauensintervall. Die pollenanalytische und die ¹⁴C-Datierung sind also gleich genau. Ob systematische Fehler zwischen pollenanalytischer und ¹⁴C-Datierung auftreten, müsste an identischen Proben überprüft werden. Die räumliche Variabilität ist aufgrund der Resultate in 4.2.2 beträchtlich, weshalb der hier vorgenommene direkte Vergleich zwischen ¹⁴C- und pollenanalytischer Datierung zu keiner eindeutigen Antwort führt.

Abbildung 4.11 Schema der datierten Flächen im Moor. Jede Graustufe entspricht einem Altersbereich. Aus der Ebene und den Querschnittsflächen wird das Volumen bestimmt.

4.5. ENTWICKLUNG DES MOORES

Aus den nun vorliegenden Datierungen erfolgt die Berechnung früherer Oberflächen des Moores und der Zuwachsraten. Die Flächen- und Volumenberechnungen⁹ sind in Anhang F dargestellt. Die zeitliche Änderung der Oberfläche des Moores und zweier Querschnittsflächen ermöglicht, das Volumen zu einem bestimmten Zeitpunkt zu berechnen. Die Situation ist schematisch in Abb. 4.11 dargestellt. Die Lage der Querschnittflächen ist im Turbenriet durch die zwei Transsekte bestimmt.

4.5.1. Horizontale Ausbreitung

Die ersten organischen Sedimente finden sich im untersten der durch Moränen getrennten Mulden (① in Abbildung 4.12) (bei den Mulden handelt es sich genauer um flachere Teilstücke eines Hanges). Sie begann etwa vor 12000 Jahren, das heisst um 10000 BC (Abb. 4.13). Nach einer raschen Ausdehnung im Muldenboden verlangsamte sich ab etwa 8000 BC die Versumpfung, weil sich das Moor in die stärker geneigten Hänge ausdehnte. Dies lässt sich aus der raschen Vermoorung der zweiten Mulde ② schliessen, welche etwa von 8000–6000 BC dauerte. Danach vermoorten die hangaufwärts gelegenen Hänge und die östliche Fortsetzung des durch eine kleine Geländestufe von der untersten Mulde ① getrennten Mulde ③. Dieses war vor der Vermoorung weitgehend mit Fichten bestockt¹⁰. In den hangaufwärts gelegenen Hängen zeichnen sich undeutlich ein bis zwei weitere

sungskunde, ETHZ Abt. VIII)
$$2F = \sum_{i=1}^{n} x_i (y_{i+1} - y_{i-1}).$$

¹⁰Reste von Fichten-Stämmen und -Zapfen wurden zwischen den Punkten 54 und 55, sowie 74 und 69, in der Übergangsschicht zwischen Mineralboden und Torf gefunden.

77

⁹Die Berechnung der Zuwachsflächen erfolgte über eine lineare Interpolation der Punktalter. Die Flächen wurden mit der Gauss' schen Flächenformel in der Ebene, aus Trapezen in den vertikalen Transsekten berechnet. Die Gauss'sche Flächenformel für die Fläche Flautet für ein sich nicht überschneidendes n-Eck (Chaperon, F. (1976), Vorlesung Vermes-

Abbildung 4.12 Mineralischer Untergrund des Turbenriets. Die Bohrpunkte, an welchen Torf gefunden wurde, sind mit schwarz gefüllten Kreisen bezeichnet, jene ohne Torf mit schwarz umrandeten Kreisen. Die einzelnen Mulden sind mit Nummern bezeichnet.

Moorzentren (4) ab. Zwischen 6000–4000 BC war die Hälfte der heutigen Moorfläche (Abb. 4.13) von organischen Sedimenten bedeckt. Das heute noch weitgehend intakte Moor (5) ist relativ jung.

Die Vermoorungsrate nahm nach etwa 4500 BC stetig ab, mit einem Minimum um 1500 BC. Danach stieg sie ein letztes Mal an, bevor sie um 0 AD an ihre geologischen Grenzen stiess. Diese Änderung drückt sich markant aus im Quotienten des mittleren Zuwachses der Querschnittsfläche zum Zuwachs der Oberfläche. Der Quotient bewegt sich von 8000 BC bis ungefähr 0 AD zwischen 0.005–0.02 m^2/m^2 und steigt danach steil auf 0.1–0.3 m^2/m^2 an (weitere Daten in Anhang F).

Abbildung 4.13 Die Ausbreitung des Moores in der Ebene. Der älteste datierte Punkt (9.6 ka BC) ist in der grossen Karte eingetragen. Dargestellt die optimale Lösung der pollenanalytischen Datierung. Die Datierung erfolgte in den schwarzen, beziehungsweise weissen Punkten. In den schwarz umrandeten Punkten konnten keine Pollenproben entnommen werden. Die kleinen Abbildungen stellen die Wahrscheinlichkeit p und das 90% Vertrauensintervall Ψ dar, welche die Unsicherheit der Datierung beschreiben.

Anhand der Vertrauensintervalle der datierten Punkte kann belegt werden, dass die Ausbreitungsgeschichte auf wenige hundert Jahre genau rekonstruiert werden kann, einzig in der nordöstlichsten Ecke ist die Datierung unsicher (Ψ grösser ±1.4 ka, Abb. 4.13).

Zusammenfassend erkennt man ein gewisses Muster der Moorausbreitung. Die Ausbreitung begann an den tiefsten Punkten des Gebietes und die Aus-

Abbildung 4.14 Flächen-Zuwachsrate (schwarze Balken) und Fläche (weiss) des Turbenriets in der Ebene.

breitungsrichtung war hangaufwärts. Das Zentrum als nässeste Stelle des Moores verschob sich dabei gleichfalls hangaufwärts.

4.5.2. Vertikales Wachstum in den Transsekten

Aus den Transsekten (Abb. 4.15 und 4.16) geht deutlich hervor, dass die Versumpfung in konkaven Geländeteilen begann. Werden die wegen der starken Sackung infolge Drainage und Torfabbau komprimierten Profile auf die ursprüngliche Höhe zurückgerechnet, kommt man zum Ergebnis, dass die moormächtigsten Stellen leicht gewölbt (konvex) sind(Details der Berechnung der ursprünglichen Oberfläche in Schneebeli, 1988). Damit bestätigt sich die aus der Torfstratigraphie gewonnene Erkenntnis, dass es sich um ein Hangmoor mit stark ombrogenem Einfluss handelt. Die spät vermoorten Stellen auf den Moränenrücken zeichneten sich vor der Entwässerung noch deutlicher als heute von den mächtigen, alten Stellen ab. Die drei Becken waren an ihrer stark ombrogenen Vegetation im Zentrum deutlich erkennbar.

Abbildung 4.15 Die Entwicklung des Turbenriets im Querschnitt von Transsekt 4–73 (West–Ost). Die vermutete Oberfläche vor der Abtorfung ist mit einer punktierten Linie eingezeichnet. Die Dreiecke mit Nummern bezeichnen die Bohrpunkte.

Auffällig sind die sehr dünnen Bänder des Zuwachses zwischen 2000–1000 BC. Ihre Dicke ist beinahe konstant und sie lassen sich über beide Transsekte verfolgen. Zu dieser Zeit müssen entweder sehr ungünstige Klimabedingungen für die Pflanzenproduktion, gute Bedingungen für die Mineralisierung des Torfes oder eine grossflächige Erosion stattgefunden haben. Werden die datierten Schichten zusammen mit den stratigraphischen Daten (Abb. C.4 und C.14) verglichen, fällt auf, dass das Ende der Braunmoosschichten etwa mit dieser Periode sehr geringen Wachstums zusammenfällt. Zu diesem Zeitpunkt beginnen in Punkt 25 oligotrophere Pflanzenarten Torf zu bilden.

Werden die korrigierten Zuwachsraten der zwei unteren Becken mit jenen der obersten Vermoorung verglichen, ist sie dort nach 0 AD viel kleiner (Abb. 4.16), vermutlich wegen des Bachlaufs, der die Westseite erodierte.

Die Zuwachsrate weist bis um 0 AD einen ähnlichen Verlauf wie jene der horizontalen Ausbreitung auf, erholt sich aber vollständig nach dem Einbruch von 1500 BC (Abb. 4.17). Der kumulative Zuwachs ist nahezu linear, der Einbruch von 1500 BC wiederspiegelt sich nur schwach (Abb. 4.18).

Abbildung 4.16 Die Entwicklung des Turbenriets im Querschnitt von Transsekt 23–33 (Süd–Nord). Die vermutete Oberfläche vor der Abtorfung ist mit einer punktierten Linie eingezeichnet. Die Dreiecke mit Nummern bezeichnen die Bohrpunkte.

Abbildung 4.18 Querschnittsfläche (kumulativer Zuwachs) im Quertranssekt 4–73 und im Längstranssekt 23–33.

Abbildung 4.19 stellt das Wachstum der Transsekte im Vergleich zum Standardprofil 25 dar. Die Linien verlaufen etwa parallel zu jenen des Standardprofils, das Höhenwachstum in den Punkten 41, 54, 26 und 67 war dabei etwas grösser als im Punkt 25, in den Punkten 30, 27 und 4 deutlich kleiner. Die Punkte 41, 54 und 67 befinden sich im Zentrum des um 5000 BC vermoorten untersten Beckens. Die Punkte 30, 27 und 4 liegen an den geologischen Wachstumsgrenzen des Moores. Es wird deutlich, dass die Torfbildung in den beiden zentralen, etwa gleichzeitig vermoorten Punkten 25 und 28 parallel läuft. Punkt 41 im Becken ③ wächst anfänglich sehr rasch. Mit der Zeit nähert es sich jenem von Punkt 25.

Abbildung 4.19 Torfwachstum in den Bohrungen der Transsekte. An den datierten Stellen ist das 90 % Vertrauensintervall Ψ angegeben. Es treten deutlich jene Profile hervor, welche schneller (41) bzw. langsamer (30) als das Standardprofil 25 wachsen.

Die Langsamkeit des Zuwachses (der reziproke Wert der Geschwindigkeit) zwischen den Transsektproben weist naturgemäss eine grosse Variabilität auf (Abb. 4.20). Die mit dem gewichteten gleitenden 5-Punkt-Mittel gefilterten Daten zeigen jedoch zwei markante Spitzen auf: Die erste zwischen 5000 bis 3000 BC, die zweite um 1500 BC. Eine konsistente Erklärung für diese Spitzen konnte nicht gefunden werden. Wird als Grundgesamtheit die beobachtete Zeitspanne betrachtet, ist die Verteilungsfunktion der Langsamkeit unge-

Abbildung 4.20 Langsamkeit des Zuwachses zwischen den Proben der Transsekte. Die Fehlerbalken wurden aus den 90 % Konfidenzbereichen der optimalen Datierung berechnet. Die grau punktierte Linie ist das gewichtete, gleitende Mittel über 5 Punkte. fähr lognormal. Es treten allerdings mehr extrem hohe Werte auf, als bei einer lognormalen Verteilung erwartet werden. Dies wurde mit dem Chi-Quadrat-Test (Brandt, 1976) geprüft. Die mittlere Langsamkeit beträgt 3.8 ka/m, der Median der Langsamkeit 2.7 ka/m, die Standardabweichung 3.4 ka/m. Die vertikale Langsamkeit, beziehungsweise die Zuwachsrate, weist keinen langfristigen Trend auf, sondern bleibt stationär. Die Zuwachsrate scheint an den Rändern etwas geringer, ein räumlicher Trend (Abb. 4.19) ist vorhanden.

4.5.3. Volumetrische Sedimentation

Die volumetrische Sedimentationsrate S_i wurde aus den gemittelten Zuwachsflächen der Transsekte Atl_i und $At2_i$ und den Zuwachsflächen der Ebene Ae_i errechnet, *i* ist der Index für die Interpolation über ein Jahrtausend

$$S_i = \frac{AtI_i + At2_i}{2} Ae_i \tag{4.15}.$$

Die Sedimentationsrate nimmt mit Ausnahme des Ereignisses um 1500 BC recht konstant zu (Abb. 4.21). Die maximale Sedimentationsrate beträgt 4.5×10^4 m³/ka, das gesamte Torfvolumen heute rund 20×10^4 m³. Das mit diesem Verfahren berechnete Torfvolumen überschätzt das aufgrund der Bohrungen bestimmte Volumen von 18.2×10^4 m³ um 10%.

Abbildung 4.21 Volumetrische Zuwachsrate und Volumen. In der kleinen Abbildung sind in einem grösseren Masstab die Zuwachsrate und das Volumen zwischen 10000 BC bis 5000 BC dargestellt. Das totale Torfvolumen aufgrund der Bohrungen ist mit einem Punkt eingezeichnet.

Die kubische Wurzel der volumetrischen Sedimentation korreliert erstaunlich gut mit dem Alter als unabhängiger Variable (Abb. 4.22). Das Torfvolumen V lässt sich damit als eine einfache kubische Funktion in Abhängigkeit des Alters t und einer Konstante b darstellen

 $V = (at + b)^3, \ -10 \le t \le 2 \tag{4.16}$

Die Steigung a ist 0.57 m/ka, die Konstante b 5.3 m, der Korrelationskoeffizient r 0.99. Die in den vorangehenden Abbildungen über den vertikalen Zuwachs gefundenen linearen Abhängigkeiten bestätigen sich.

4.5.4. Vergleich mit anderen Mooren

Ob dieses mit einfachen linearen und kubischen Funktionen beschreibbare Wachstum auch in anderen Mooren auftritt, ist bisher nicht untersucht worden. Dem Turbenriet direkt vergleichbare untersuchte Beispiele fehlen. Für das von Foster et al. (1988) beschriebene Hammarmosse in Schweden lassen sich die Beziehung zwischen Torfmächtigkeit und Alter der Basisproben (Abb. 4.23), zwischen «Durchmesser» des Moores und Zeit (Abb. 4.25) und die über die Torftiefe gemittelte vertikale Langsamkeit (Abb. 4.24), die horizontale Langsamkeit (Abb. 4.26) und Ausbreitungsraten in der Ebene (Abb. 4.27) berechnen. Die Daten für diese Berechnungen sind in Anhang G aufgeführt¹¹.

¹¹Die Daten werden aufgeführt, da alle ¹⁴C-Alter (Zeitangabe in Jahre BP) in kalibrierte ¹⁴C-Alter (Zeitangabe in Jahre BC/AD) umgerechnet werden mussten. Wird diese Transformation nicht durchgeführt, ist der Zeitmassstab bei älteren Daten als 0 AD systematisch verkürzt, das heisst die Proben erscheinen zu jung.

Hammarmosse ist ein konzentrisches, ovales Hochmoor auf einer mit 0.11– 0.2% geneigten, glazial geformten Ebene, etwa 2.5 km lang und etwa 1 km breit. Die Ränder des Moores sind deutlich steiler als die zentralen Teile und baumlos, an der Längsseite beträgt die Neigung etwa 3%. Die Torfmächtigkeit erreicht maximal etwa 4 m. Die horizontale Ausbreitung wurde bis heute nicht massiv durch geomorphologische Grenzen behindert.

Die Beziehung zwischen Torfmächtigkeit und Alter der Basisproben (Abb. 4.23) zeigt, dass die Torfmächtigkeit etwa proportional dem Alter der Basis¹² ist. Die Abbildung 4.23 stellt für Hammarmosse die analogen Daten dar wie Abb. 4.19 für das Turbenriet. Der mittlere vertikale Zuwachs ist im Turbenriet wie im Hammarmosse nahezu gleich. Im Turbenriet wachsen die ausserhalb des Zentrums gelegenen Punkte etwa gleich schnell oder langsamer als das Zentrum, während im Hammarmosse die ausserhalb des Zentrums gelegenen Punkte schneller wachsen. Dies lässt sich auch aus dem Vergleich der vertikalen Langsamkeit, Abb. 4.20 für das Turbenriet, Abb. 4.25 für das Hammarmosse, erkennen. Während die Langsamkeit im Turbenriet etwa gleichbleibt, nimmt sie im Hammarmosse systematisch ab.¹³ was auf zwei Arten interpretiert werden kann. Einerseits könnte die Torfbildung pk an den jüngeren Stellen grösser als an den älteren Stellen, anderseits könnte die Zersetzung α_{k} im Katotelm bedeutend sein, das heisst grösser als 10⁻⁵ a⁻¹, und die gesamte Torfmächtigkeit deshalb an den alten Stellen abnehmen. Qualitativ stimmt die zuletzt erwähnte Möglichkeit mit den Berechnungen von Clymo (1984, p. 644-646) überein. Welche der aufgeführten Möglichkeiten zutrifft. könnte entschieden werden, wenn das älteste Profil in verschiedenen Tiefen datiert wäre.

 $^{^{12}}$ Die stratigraphische Lage der Basisprobe ist in Foster et al. (1988) nicht näher beschrieben.

¹³Die geringere Variabilität im Hammarmosse ist dadurch bedingt, dass nur Basis- und keine Transsektproben für die Berechnung zur Verfügung standen. Da das Wachstum aber etwa linear ist, weisen die Werte nicht einen systematischen Fehler auf.

Abbildung 4.23 Zusammenhang zwischen Torfmächtigkeit (Tiefe) und deren Alter an der Basis, dem Übergang zwischen Mineralboden und Torf im Hammarmosse. Die Striche geben die geschätzte Standardabweichung σ von ± 0.25 ka der kalibrierten 1⁴C-Alter an.

Die horizontale Ausdehnung (Abb. 4.25) ist etwa linear. Die Ausbreitung nach Süden ist schneller als nach Norden. Am langsamsten breitete sich das Moor nach Osten und Westen aus. Die horizontale Langsamkeit (Abb. 4.26) nimmt mit der Zeit systematisch zu, das Moor dehnt sich je älter desto langsamer aus. Eine Regression zwischen Zeit und Langsamkeit (mit dem kleinen Korrelationskoeffizienten r = 0.5) zeigt, dass der konstante Term etwa viermal grösser ist als die Steigung. Die Verzögerung ist deshalb gering, und die Ausbreitung ist vom konstanten Term dominiert, das heisst die Geschwindigkeit der Moorausbreitung erscheint praktisch konstant. Der aus der Integration der Geschwindigkeit hervorgehende parabolische Trend zur Abnahme

88

Abbildung 4.25 Zusammenhang zwischen Alter an der Basis und der horizontalen Distanz von zwei initialen Moorzentren im Hammarmosse. Die Distanzen wurden vom südlichen Zentrum (S) in Richtung Süd $(\rightarrow S)$ in Richtung Ost $(\rightarrow E)$ und Richtung Nord $(\rightarrow N)$ gezeichnet.

der Ausbreitung ist deshalb in Abb. 4.25 nicht erkennbar. Wie schon beim vertikalen Wachstum stimmt auch dieses Verhalten mit den Berechnungen von Clymo (1984, Abb. 20) überein.

Die Zuwachsraten der Moorfläche (Versumpfungsraten) (Abb. 4.27) zeigen ein ähnliches, wenn auch viel gleichmässigeres Bild, als das Turbenriet (Abb. 4.14) vor dem Erreichen der Wachstumsgrenzen um 2000 BC. Die Zuwachsrate der Fläche nimmt bis 1000 AD ständig etwa linear zu und bleibt auf dem hohen Niveau stehen. Die gesamte Moorfläche nimmt linear zu. Die Zuwachsrate der versumpften Fläche ist etwa hundertmal grösser als im Turbenriet. Die Versumpfungsrate ist im Gegensatz zur vertikalen Wachstumrate stark von der Neigung des Geländes abhängig. Die Neigung des Turbenriets

89

Abbildung 4.26 Ausbreitungsrate und Fläche im Hammarmosse in der Ebene.

beträgt etwa 2–10%, die des Hammarmosse 0.1–0.2%. Das Neigungsverhältnis dieser beiden Moore ist also in der gleichen Grössenordnung wie das Versumpfungsverhältnis. Das in Kapitel 3 dargestellte hydrologische Modell erklärt diese Situation. Die Ablagerung organischen Materials im Zentrum führt zur Vernässung der Ränder der Ablagerung, und diese Vernässung ist umso ausgedehnter, je flacher das Gelände ist.

In Kapitel 3 wurden Modelle der Moorbildung vorgestellt. In Kapitel 4 wurde für zwei Moore die Entwicklungsgeschichte möglichst detailliert nachvollzogen. Lassen sich nun die Modelle mit den Beobachtungen in Einklang bringen? In Kapitel 5.1 wird die Hypothese, dass die Oberfläche des Moores dem Gleichgewichts-Wasserspiegel entspricht, getestet, die Auswirkungen unterschiedlicher Verteilungen von Leitfähigkeit und Speicherkoeffizient auf die Wasserspiegelschwankungen simuliert und die Veränderung der hydrologischen Verhältnisse des Moores nach einer Entwässerung modelliert. In Kapitel 5.2 werden die Wachstumsmodelle mit den experimentellen Daten im Turbenriet verglichen.

5.1. HYDROLOGISCHE MODELLE

5.1.1. Gleichgewichts - Modell

Verifikation an gemittelten Oberflächen

In Kapitel 3.3.2 wird die Hypothese aufgestellt, dass die Form der Mooroberfläche einer Grundwasseraufwölbung entspricht. Die Hypothese kann belegt werden, indem die Oberfläche eines einzelnen Moores (Ingram, 1982) oder gemittelter Oberflächen¹ zahlreicher Moore mit dem simulierten Wasserspiegel verglichen werden (Schneebeli, 1989). Die Auswertung von Schneebeli (1989) wird im folgenden ausführlicher interpretiert. Die hydraulische Leifähigkeit K wird aus den gegebenen Randbedingungen für ein kreisförmiges Moor mit der nach K aufgelösten Gleichung (3.18) bestimmt. Mit der nach h aufgelösten Gleichung (3.18) wird der Wasserspiegel h zwischen x = 0 und x = L und daraus die Abweichung zwischen Oberfläche und Wasserspiegel berechnet (Tab. 5.1 und 5.2). Das Resultat ist zufriedenstellend, denn die maximale Abweichung der piezometrischen Höhe vom Modell beträgt 10%. Auffällig ist die systematische Abweichung des Wasserspiegels von der Oberflächenform im Falle der nordwestdeutschen

5.

¹Die Mittelung der Oberflächen ist unter der Annahme erlaubt, dass sich Moore weitgehend wie ein lineares System verhalten.

Moore. Der berechnete Wasserspiegel liegt mit dem homogenen Modell zwischen den fixierten Potentialen systematisch zu tief, im Maximum 0.4 m. Dieses Verhalten kann erklärt werden, wenn angenommen wird, dass das Moor am Rand weniger durchlässig ist als im Zentrum. Die Abweichungen bei den bayrischen Mooren sind nicht eindeutig und im Bereich der Messfehler. Auffällig ist die fünfmal kleinere hydraulische Leitfähigkeit der bayrischen Moore. Dieser Tatsache wird im folgenden Kapitel nachgegangen.

Abstand x [m]	Oberfläche z [m]	Wasserspiegel h [m]	Differenz zh [m]
0	5.0	5.0	0.0
1000	4.8	4.7	+0.1
1500	4.6	4.3	+0.3
2000	4.1	3.7	+0.4
2500	3.1	2.8	+0.3
2750	2.2	2.0	+0.2
3000	0.0	0.0	0.0

Tabelle 5.1 Vergleich des berechneten Wasserspiegels mit den Mittelwerten der Oberflächen für nordwestdeutsche Moore. Daten aus Eggelsmann (1967). Gegeben ist der Radius L des mittleren Moores mit 3000 m; Anreichungsrate U mit 250 mm/a (entspricht 0.68 mm/d). Die berechnete Leitfähigkeit (nach Gleichung (3.17)) K beträgt 2.85 × 10⁻³ m/s, was 245 m/d entspricht.

Abstand x [m]	Oberfläche z [m]	Wasserspiegel h [m]	Differenz z–h [m]
0	3.3	3.3	0.0
125	3.2	3.2	0.0
250	2.8	2.9	-0.1
375	2.0	2.2	-0.2
500	0.0	0.0	0.0

Tabelle 5.2 Vergleich des berechneten Wasserspiegels mit den Mittelwerten der Oberflächen für bayrische Moore. Daten aus Eggelsmann und Schuch (1980). Gegeben ist der Radius L des mittleren Moores mit 500 m; Anreichungsrate U mit 800 mm/a (entspricht 2.19 mm/d). Die berechnete Leitfähigkeit K (nach Gleichung (3.17)) beträgt 5.82×10^{-4} m/s, was 50 m/d entspricht.

Abbildung 5.1 Zusammenhang zwischen Nachlieferung U, Mächtigkeit Z und Länge L des Moores. «Mittel» bezeichnet den Mittelwert der Daten von Granlund (1932), «Maximum» die Maximalwerte. Die Signaturen der linken Seite gelten analog für die rechte Seite. Diese Darstellung gibt die Ausgangsdaten für die Berechnungen wieder.

Leitfähigkeit als Systemparameter

Die hydraulische Leitfähigkeit ist ein wesentlicher Parameter der Moore. Ihre Veränderung drückt sich im Zersetzungsgrad des Torfes aus. In einem realen Moor ist sie nicht konstant, sondern variiert. Die unterschiedliche Zersetzung kann durch den Niederschlag, die Ausdehnung des Moores oder die Torfmächtigkeit verursacht sein². Die Leitfähigkeit wird aus der Moormächtigkeit Z, der Länge (oder dem Radius) L und der Nachlieferung U berechnet (Abb. 3.8). Werden diese Faktoren in genügend vielen Mooren gemessen, lassen sich die hauptsächlichen Ursachen für die unterschiedliche Zersetzung des Torfes herauskristallisieren. Ein solcher Datensatz stellt das von Granlund (1932) aufgenommene grossflächige Inventar in Südschweden dar. Er mass die Distanz von Moorzentrum zu Moorrand L und die Moormächtigkeit Z in Gebieten mit unterschiedlichem Niederschlag N. Die Länge und die Moormächtigkeit wurden auf einem Transsekt gemessen, welches etwa durch das Moorzentrum führt. Im folgenden wird die Moormächtigkeit Z als identisch mit dem maximalen Wasserspiegel hmax betrachtet. Die Nachlieferung U wurde von Granlund nicht bestimmt. Die Evapotranspiration E wird mit

²Für das Turbenriet zeigte Schneebeli (1988, p. 202 f), dass die Leitfähigkeit sich mit grosser Wahrscheinlichkeit während der Entwicklung veränderte.

der Formel $E = \frac{2}{3}N - 0.25$ (alle Masse in Meter)³ (Dracos, 1980, p. 56) geschätzt. Die Nachlieferung U ist dann, unter Vernachlässigung des Oberflächenabflusses, N - E. Da in Granlund (1932) nicht angegeben ist, ob das Transsekt in einem Gebiet mit konzentrischen oder parallelen Potentiallinien liegt, muss die Leitfähigkeit für beide Modelle, Gleichungen (3.17) und (3.18), berechnet werden. Aus den Gleichungen (3.17) und (3.18) lässt mit der gegebenen Länge L, der gegebenen Nachlieferung U und der Höhe $Z = h_{max}$ die durchschnittliche Leitfähigkeit K berechnen.

In Abbildung 5.1 sind die Ausgangsdaten dargestellt. Es fällt auf, dass die Mächtigkeit mit zunehmender Nachlieferung und zunehmender Länge grösser wird. Granlund und Wickman schlossen daraus, dass die Mächtigkeit der Moore durch den Niederschlag begrenzt wird.

Bei zunehmender Länge L nimmt die Variabilität der berechneten Leitfähigkeit K ab (Abb. 5.2). Die Leitfähigkeit ist grösser bei niedrigen Niederschlägen⁴ und kleiner bei hohen Niederschlägen, wie dies auch im Vergleich mit den bayrischen und nordwestdeutschen Mooren festzustellen ist (Abb. 5.2). Das Phänomen könnte dadurch erklärt werden, dass die Schwankungen des Wasserspiegels bei höherer Nachlieferung grösser sind, der Torf deshalb stärker belüftet wird und sich mehr zersetzt. Es fehlen jedoch die Daten, um dies zu testen.

Die Annahme von Granlund und Wickman, dass die Mächtigkeit des Moores abhängig vom Niederschlag ist, ist aufgrund der Leitfähigkeiten wenig wahrscheinlich, da ja die in Gebieten mit geringer Nachlieferung liegenden Moore die minimale Durchlässigkeit nicht erreicht haben.

Der Zusammenhang zwischen Höhe Z und hydraulischer Leitfähigkeit K zeigt (Abb. 5.3), dass die geringste hydraulische Leitfähigkeit bei etwa einem Meter Mächtigkeit liegt, darunter und darüber steigt sie wieder an. Die höheren hydraulischen Leitfähigkeiten bei geringerer Torftiefe deuten darauf hin, dass dort soligenes Grundwasser und kapillarer Aufstieg wirksam sind. Das Auftreten natürlicher Entwässerungsgräben würde die grössere Leitfähigkeit mit zunehmender Mächtigkeit und Länge erklären. Der Torfkörper kann in diesem Fall physikalisch nicht mehr als homogenes poröses Medium behandelt werden, sondern als poröses Medium mit zwei deutlich verschiedenen Leitfähigkeiten.

³Ingram (1983, p. 148) nimmt an, dass die Verdunstung konstant 480 mm/a beträgt. Es ist für die weiteren Betrachtungen unwesentlich, welcher Wert genommen wird

⁴Da es üblich ist, nach dem Niederschlag N zu stratifizieren, wird es hier so gemacht. Die Nachlieferung U ist das physikalisch wirksame Mass. N und U sind zueinander linear.

Abbildung 5.2 Zusammenhang zwischen gegebener Länge L und dem Logarithmus der berechneten hydraulischer Leitfähigkeit K bei unterschiedlichem Niederschlag N. (Daten aus Granlund, 1932). Links der Zusammenhang für das kreisrunde Modell (Gleichung 3.18), rechts für das parallele Modell (Gleichung 3.17).

5.1.2. Amplitude des Wasserspiegels bei variabler Leitfähigkeit und variablem Speicherkoeffizienten

Idee

Die Leitfähigkeit K ist im Modell der Gleichungen (3.17) und (3.18) räumlich konstant. Der Speicherkoeffizient S wird nicht benutzt, da Gleichgewichtszustände berechnet werden. Der reale Torfkörper ist jedoch heterogen und wechselnde Nachlieferung verursacht instationären Wasserfluss. Um die Auswirkungen dieser Faktoren auf den Wasserspiegel zu simulieren, wird in einem eindimensionalen Modell mit der Boussinesq-Gleichung (3.21) der instationäre Wasserspiegel bei räumlich variabler Leitfähigkeit K_x und variablem Speicherkoeffizient S_x modelliert. Aus den Simulationen lässt sich ein Amplitudendiagramm berechnen, welches die Variabilität des Wasserspiegels in Abhängigkeit von der Leitfähigkeit und des Speicherkoeffizienten darstellt (Abb. 5.17). Die Leitfähigkeit und der Speicherkoeffizient des Torfes sind in intakten Mooren eng mit der darauf wachsenden Pflanzenformation korreliert. Leitfähigkeiten und Speicherkoeffizienten in verschiedenen Pflanzenformationen finden sich in Ivanov (1981, Appendix 1 bzw. p. 71). Der Quotient der Leitfähigkeit bzw. der Quotient des Speicherkoeffizienten aus zwei Pflanzenformationen charakterisiert hydrologisch die Abfolge zweier Formationen. Wird die Amplitude für verschiedene Quotienten berechnet, wird der Zusammenhang zwischen der Anordnung der Pflanzenformationen und den Wasserspiegelschwankungen deutlich.

Modell, Anfangs- und Randbedingungen

Das Programm zur Berechnung basiert auf einer Finiten-Differenzen Lösung. Die Lösungsmethode ist in Kapitel 3.2.5, Gleichungen (3.20 ff) beschrieben. Das Programm «FD1dis» ist in Anhang H.1, zusammen mit den Inputfiles, beschrieben. Die Basis für die Simulation bildet ein poröses Medium mit der Länge L von 200 m in positiver x-Richtung und unendlicher Ausdehnung in y-Richtung. Die linke Randbedingung (x = 0) ist eine undurchlässige Grenze oder Wasserscheide, die rechte Randbedingung (x = 200) ein konstantes Potential. Die linke Randbedingung an der Stelle x = 0 entspricht in einem echten Moor dem Zentrum. Die Leitfähigkeit K beträgt im homogenen Fall 10 m/d, der Speicherkoeffizient S ist 0.4 (Abb. 5.4).

Für die instationäre Nachlieferung U(t)wurde der Datensatz aus Schmeidl et al. (1970) benutzt. Schmeidl et al. massen in einem ungestörten Hochmoor während 10 Jahren Niederschlag N, Verdunstung E und Abfluss G. Der Einfluss des Schnees und der Schneeschmelze auf die Nachlieferung wurden nicht gemessen. Die Nachlieferung U ist deshalb N - E. Die statistische Aus-

Abbildung 5.4 Stationäre Wasserspiegel für verschiedene Quotienten der hydraulischen Leitfähigkeit. Nachlieferung U = 1.92 mm/d. Mittlere dicke Linie: stationärer Wasserspiegel in einem homogenen porösen Medium mit der Leitfähigkeit K = 10 m/d. Oberste Linie: Quotient $K_{(x=0)}/K_{(x=200)} = 100$. Unterste Linie: $K_0/K_{200} = 0.01$. Dazwischen: $K_0/K_{200} = 50$, beziehungsweise 0.02 (siehe Abb. 5.6). Die Wasserscheide befindet sich bei x = 0.

wertung der Nachlieferung U ist in Tabelle 5.3 dargestellt, der Verlauf in Abb. 5.5.

n	μ _υ	σ _υ	Minimum _U	Maximum _U
	mm/d	mm/d	mm/d	mm/d
120	1.92	1.90	-2.51	9.70

Tabelle 5.3 Statistische Masse der monatlichen Nachlieferung U = N - E. Die Anzahl Werte beträgt *n*, der Mittelwert μ_U , die Standardabweichung σ_U .

Die Nachlieferung U ist ein stochastischer Prozess, welcher durch den Niederschlag N und die Verdunstung E gegeben ist. Da der Niederschlag Nund die Verdunstung E nur sehr wenig miteinander korreliert sind, müssen Nund E (beziehungsweise die Klimadaten, um E zu berechnen), als gemessene Zeitreihe vorliegen.

Die Leitfähigkeit wird so variiert, dass verschiedene gleichmässig ändernde Quotienten entstehen und der maximale stationäre Wasserspiegel immer dem maximalen Wasserspiegel bei homogener Verteilung der Leitfähigkeit entspricht. Die stationären Wasserspiegel bei verschiedenen Leitfähigkeits-Quotienten sind in Abb. 5.4 dargestellt. Ist die Leitfähigkeit am undurchlässigen Rand (x = 0) hoch und beim konstanten Potential (x = 200) klein, so ist das Verhältnis $K_{(x=0)}/K_{(x=200)}$ (im folgenden mit der abgekürzten Notation K_0/K_{200}) gross. Diese Situation entspricht den höher gelegenen Kurven in Abb. 5.4. Umgekehrt entsprechen die tiefer gelegenen Kurven einem kleinen Verhältnis K_0/K_{200} . Es wurden in der Simulation die in Tabelle 5.4 dargestellten neun Leitfähigkeitsquotienten verwendet.

Abbildung 5.5 Nachlieferung über den Zeitraum von 120 Monaten (Daten aus Schmeidl et al., (1970).

	Kj	K2	Кз	К4	K5	К6	<i>K</i> 7	K8	Ko
log10 (K0/K200)	-2.	-1.5	-1.	-0.5	0.	0.5	1.	1.5	2.
K0/K200	0.01	0.032	0.1	0.32	1.0	3.16	10.0	31.6	100.
K0 [m/d]	0.195	0.587	1.66	4.36	10.1	20.1	34.7	51.7	66.5
K200 [m/d]	19.5	18.6	16.7	13.8	10.1	6.35	3.47	1.64	0.665

Tabelle 5.4 Leitfähigkeitsquotienten Kzur Berechnung des Amplitudendiagramms.

Die Leitfähigkeiten für die verschiedenen Quotienten sind in Abb. 5.6 dargestellt. Die mittlere Leitfähigkeit, welche wegen der nichtlinearen Mittelung und dem fixierten maximalen stationären Wasserspiegel variieren muss, ist in Abb. 5.7 dargestellt. Die resultierenden Leitfähigkeiten sind in Torfen unterschiedlichen Zersetzungsgrades anzutreffen.

Abbildung 5.6 Räumliche Anordnung der Leitfähigkeiten der 9 Quotienten.

Die in Tabelle 5.4 und in Abbildungen 5.6 und 5.7 dargestellten Leitfähigkeitsquotienten werden für die mittlere Leitfähigkeit K = 10 m/d mit Gleichung (3.12) berechnet. Dabei wird angenommen, dass die Leitfähigkeit vertikal homogen ist. Gleichung (3.12) führt zu einer räumlich nicht linearen Funktion der Leitfähigkeit. Der Wasserspiegels h_0 eines bestimmten Leitfähigkeitsverhältnisses an der Stelle x = 0, der Wasserscheide, wird danach an den Wasserspiegel h_0 bei homogener Leitfähigkeit angepasst, indem die mittlere Leitfähigkeit solange verändert wird, bis die Wasserspiegel an der Stelle x = 0 identisch sind. Als Minimierungsalgorithmus wird Newton-Raphson mit numerischer Differentiation benutzt (Press et al, 1986, Kap.

Abbildung 5.7 Mittlere Leitfähigkeiten der 9 Quotienten. Die mittlere Leitfähigkeit variiert, weil für die Simulation angenommen wurde, dass die piezometrische Höhe an der Wasserscheide immer gleich hoch ist.

Abbildung 5.8 Räumliche Anordnung des Speicherkoeffizienten für die sieben simulierten Quotienten.

9.4). Der vollständige Algorithmus ist in den Subroutinen «mini1d» und «kprop» im Anhang H.1. enthalten. In der Hydrologie wird diese Optimierung als inverses Problem bezeichnet (Yeh, 1986).

Der mittlere Speicherkoeffizient S beträgt 0.4. Zwischen dem Speicherkoeffizienten an der Stelle x = 0 und der Stelle x = 200 wurde linear interpoliert. Es wurden sieben Quotienten des Speicherkoeffizienten S_0/S_{200} zwischen 0.14 und 7.0 simuliert (Tab. 5.5, Abb. 5.8).

	S1	S2	53	S4	<i>\$</i> 5	<i>S</i> 6	<i>S</i> 7
S0/S200	0.143	0.333	0.60	1.0	1.67	3.0	7.0
S ₀	0.1	0.2	0.3	0.4	0.5	0.6	0.7
S ₂₀₀	0.7	0.6	0.5	0.4	0.3	0.2	0.1

Tabelle 5.5 Quotienten des Speicherkoeffizienten S und ihre Grösse an den Stellen x=0 und x=200, mit welchen das Amplitudendiagramm berechnet wird.

Der Speicherkoeffizient von 0.7 entspricht demjenigen in einem wenig zersetzten Torfes, einer von 0.1 demjenigen in einem sehr stark zersetzten Torf.

Nicht alle Kombinationen der 7×9 Quotienten sind physikalisch in einem isotropen porösen Medium möglich. Eine sehr hohe Leitfähigkeit kann nicht mit einem kleinen Speicherkoeffizienten verbunden sein, wie auch eine sehr niedrige Leitfähigkeit nicht mit einem hohen Speicherkoeffizienten. In Tabelle 5.6 sind die physikalisch möglichen Verhältnisse dargestellt.

			QUOT	ent des :	speicne	rkoemizie	nten	
(eit	100.	0	0	0	٠	•	٠	٠
1 gi	31.6	0	o		٠	٠	٠	•
tfål	10.0	0	٠	٠	•	•	٠	•
E	3.16	•	٠	٠	٠	٠	٠	•
<u>ler</u>	1.00	•	٠	٠	٠	٠	•	•
t	0.32	٠	٠	٠	٠	٠	٠	•
tie	0.10	٠	٠	٠	٠	٠	•	0
ñ	0.032	٠	٠	٠	٠	٠	o	0
0	0.010	•	•	•	٠	0	0	0
		0.14	0.33	0.60	1.0	1.67	3.0	7.0

Tabelle 5.6 In einem isotropen Torfkörper physikalisch mögliche Kombinationen des Quotienten aus der Leitfähigkeit und dem Speicherkoeffizienten sind mit einem gefüllten Punkt bezeichnet, nicht mögliche mit einem Kreis.

In einem anisotropen porösen Medium sind auch die extremen Kombinationen möglich. Das anisotrope Medium ist aus hydraulisch sehr leitfähigem Torf mit grossem Speicherkoeffizienten, M_h , und wenig leitfähigem Torf mit kleinem Speicherkoeffizienten, M_l , zusammengesetzt (Abb. 5.9). Liegen dünne Streifen des Torfes M_h parallel zur Fliessrichtung in einem Torf M_l entsteht ein sehr leitfähiger Torfkörper mit kleinem Speicherkoeffizienten. Dieser Körper wird parallel-anisotropes poröses Medium genannt, M_p . Befinden sich im Torf M_l quer zur Fliessrichtung Streifen von M_h , weist der anisotrope Torfkörper eine geringe Leitfähigkeit mit einem hohen Speicherkoeffizienten auf, genannt senkrecht-anisotropes poröses Medium, M_s . Zwei Beispiele illustrieren diese Verhältnisse.

Beispiel 1:

Leitfähigkeit und Speicherkoeffizient in einem parallel-anisotropen Medium M_p

gegeben: Leitfähigkeit des Medium M_h , $K_h = 1000$ m/d, Speicherkoeffizient $S_h = 1.0$, Schichtdicke $B_h = 0.05$ m

Leitfähigkeit des Medium M_l , $K_l = 0.01$ m/d, Speicherkoeffizient $S_l = 0.05$, Schichtdicke $B_l = 0.95$ m

Resultat : Leitfähigkeit $K_p = 50$ m/d (berechnet mit Formel 3.12), Speicherkoeffizient $S_p = 0.10$.

Beispiel 2:

Leitfähigkeit und Speicherkoeffizient in einem senkrecht-anisotropen Medium Ms

gegeben: Leitfähigkeit des Medium M_h , $K_h = 1000$ m/d, Speicherkoeffizient $S_h = 1.0$, Schichtdicke $B_h = 0.65$ m

Abbildung 5.9 Isotropes poröses Medium, parallelanisotropes und senkrechtanisotropes poröses Medium, x bezeichnet die Fliessrichtung.

Leitfähigkeit des Medium M_l , $K_l = 0.05$ m/d, Speicherkoeffizient $S_l = 0.1$, Schichtdicke $B_l = 0.35$ m

102

Resultat : Leitfähigkeit $K_s = 0.14$ m/d (berechnet mit Formel 3.11), Speicherkoeffizient $S_s = 0.70$.

Das Resultat von Beispiel 1 entspricht einem Torfkörper, der bei einem Leitfähigkeitsquotienten von $K_0/K_{200} = 100$ und einem Quotienten des Speicherkoeffizienten von $S_0/S_{200} = 0.14$ an der Stelle x = 0 simuliert wird, das Beispiel 2 demjenigen bei einem Leitfähigkeitsquotienten von $K_0/K_{200} = 0.01$ und einem Quotienten des Speicherkoeffizienten von $S_0/S_{200} = 7.0$ an der Stelle x = 0. Das parallel-anisotrope Medium lässt sich in einem Moor als Rüllenstruktur (Rüllen: natürliche Abflussrinnen in einem Moor) interpretieren, das senkrecht-anisotrope Medium als Bult-Schlenken-Struktur.

Stufenantwortfunktion des homogenen Systems

Bevor das Amplitudendiagramm simuliert wird, wird das instationäre homogene System näher betrachtet. Eine charakteristische Grösse für das System ist die Halbwertszeit $t_{1/2}$. Die Halbwertszeit $t_{1/2}$ ist jene Zeitdauer, welche das System benötigt, um die Hälfte der Auslenkung zurückzulegen, welche von einem stationären Anfangszustand nach einer Störung, z.B. einem Niederschlag, auftritt.

Die Stufenantwort (Chatfield, 1984) des Systems ist der zeitliche Verlauf des Wasserspiegels vom Beginn einer Störung (t = 0) bis zum neuen Gleichgewichtszustand $(t = \infty)$, $h_{(x,t=0,\infty)}$. Sie wird erzeugt, indem die stationäre Nachlieferung U um einen Betrag δU erhöht wird (Abb. 5.10). Die graphisch bestimmten Halbwertszeiten $t_{1/2}$ an verschiedenen Stellen x des Systems aus der Stufenantwort sind in Tabelle 5.7 dargestellt.

Die Halbwertszeit wird kleiner, je näher die Stelle am Rand mit dem konstanten Potential liegt. Das System ist also am Rand weniger gepuffert als im Zentrum.

Stufenantwort h [m]	x = 0 [m]	x = 100 [m]	x = 150 [m]
h _(t=0)	2.82	2.45	1.90
h(t=t1/2)	3.38	2.94	2.27
h ₍₁₌₀₀)	3.95	3.43	2.63
Halbwertszeit [Monat]			
t1/2	4.69	4.63	4.20

Tabelle 5.7 Stufenantworten und Halbwertszeiten für das homogene hydrologische System an den Stellen x = 0, x = 100 und x = 150 m. Das System ist durch die Leitfähigkeit K = 10 m/d, S = 0.4, die Randbedingungen Fluss $q_{(x=0)} = 0$ und konstantes Potential $h_{(x=200)} = 0.5$ m, die Nachlieferung $U_{]t=-\infty,0[} = 1.92$ mm/d, $U_{[t=0,\infty[} = 3.84$ mm/d charakterisiert.

Aus der Halbwertszeit kann nun die Stufenantwortfunktion, abgekürzt SAF, berechnet werden. Die SAF beschreibt, wie der Ausgang, die piezometrische Höhe *h*, eines Systems mit dem Eingang, der Nachlieferung *U*, zusammenhängt. Im Falle des hier betrachteten Modells kann die IAF als autoregressiver Prozess der Ordnung *p* mit exponentiellem Abfall der Gewichte $\{a_p\}$ betrachtet werden (Abb. 5.11). Die sogenannte Zerfallskonstante λ ist mit der Halbwertszeit $t_{1/2}$ durch $\lambda = \ln 2/t_{1/2}$ verknüpft. Die Gewichte der SAF, $\{a_p\}$ sind dann

$$a'_{k} = \begin{cases} e^{-\lambda(k-1)} & 0 < k \le p \\ 0 & k \le 0 \end{cases}$$

Abbildung 5.10 Stufenantwort der piezometrischen Höhe h an der Stelle x = 0 nach einer konstanten Verdoppelung der Nachlieferung U. Die Halbwertszeit $t_{1/2}$ dieses Systems ist 4.7 Monate.

(5.1).

Abbildung 5.11 Stufenantwortfunktion (IAF) des untersuchten Systems an der Stelle (x = 0), welche den Gewichten { a_p } der autoregressiven Reihe h(t) mit der Halbwertszeit $t_{1/2} = 4.5$ Monate entspricht. Gewichte höherer Ordnung als k = 20 werden nicht dargestellt, da kleiner als 1×10^{-3} .

Die Gewichte werden noch normiert

$$A = \sum_{k=1}^{\infty} a'_{k}$$
$$a_{k} = a'_{k}/A$$
(5.2).

Die piezometrische Höhe h(t) kann mit den Gewichten der IAF direkt aus der Nachlieferung U(t) berechnet werden. Die Konstanten α und c werden aus einer linearen Regression der gewichteten unabhängigen Variablen U'(t)mit der abhängigen Variablen h(t) berechnet. Der Wasserspiegel h(t) ist dann durch folgende Formel bestimmt

$$U'(t) = \sum_{k=1}^{p} a_k U(t-k-1)$$
(5.3),

$$h(t) = \alpha U'(t)) + b \tag{5.4}$$

Im hier betrachteten System ist die Konstante α 0.64 mm/d und b 1.58 m. Die Korrelation U' gegen h ist hoch korreliert (r = 0.997).

Es ist somit auf einfache Art möglich, für den hier simulierten Grundwassserträger, der im wesentlichen einem Hochmoor entspricht, den Verlauf des Wasserspiegels zu berechnen, wenn die Nachlieferung und die Gewichte $\{a_p\}$ bekannt sind. In Abbildung 5.12 ist der Zusammenhang zwischen dem berechneten Wasserspiegel und der Nachlieferung U, beziehungsweise der nach (5.3) gewichteten Nachlieferung U' dargestellt. Die hellgraue, dicke Linie zeigt den geringen Zusammenhang zwischen der Nachlieferung U(t)

Abbildung 5.12 Darstellung der piezometrischen Höhe h des simulierten Modells an der Stelle x = 0 und der Nachlieferung U beziehungsweise U'. Die einzelnen aufeinanderfolgenden Zeitpunkte sind mit einer Linie verbunden. U wurde mit verschiedenen Halbwertszeiten $t_{1/2}$ in eine neue autoregressive Reihe U' transformiert (Gleichung 5.3). Für $t_{1/2} =$ 4.69 Monate, was der Halbwertszeit des simulierten Systems entspricht, ist die Beziehung zwischen h und U' linear.

und dem berechneten Wasserspiegel h(t). Die Halbwertszeit 0.0 bedeutet, dass das System ungedämpft die Änderung des Eingangs an den Ausgang weitergibt. Der Zusammenhang ist in diesem Fall niedrig, da dies hier nicht zutrifft. Wird die Nachlieferung U(t) mit den Gewichten $\{a_p\}$, welche einer Halbwertszeit von 2 Monaten entsprechen, zur Nachlieferung U' transformiert, ist der Zusammenhang zwischen Wasserspiegel und Nachlieferung schon deutlich besser. Mit der für das simulierte System berechneten Halbwertszeit von 4.69 Monaten ist die Korrelation zwischen Wasserspiegel und Nachlieferung U' perfekt.

Analog kann die Methode auf Messungen des Wasserspiegels und der Nachlieferung in einem realen Hochmoor angewandt werden. Schmeidl et al. (1970) massen neben der Nachlieferung auch den Wasserspiegel etwa im Zentrum des wenig gestörten Moores. Die Darstellung des Wasserspiegel-Nachlieferungs-Diagramms zeigt, dass mit den für die Transformation der Nachlieferung benutzten Halbwertszeiten kein deutlicher Zusammenhang hergestellt werden konnte. Das Diagramm zeigt in allen Fällen eine extreme Nichtlinearität, das heisst bei gleicher Nachlieferung U treten ganz verschiedene Wasserspiegel h auf. Dieses Resultat wird einerseits durch die verwendeten Daten verursacht, da die Nachlieferung Schnee und die Speicherung in der Schneedecke nicht berücksichtigt, anderseits das hydrologische Modell einen vertikal homogenen Torfkörper annimmt. Dies ist einem schlenkenrei-

Abbildung 5.13 Darstellung der piezometrischen Höhe h wie sie von Schmeidl et al. (1970) in einem Hochmoor mit ähnlichen Eigenschaften wie das simulierte Modell gemessen wurde und der Nachlieferung U beziehungsweise U'. Das reale System ist nicht linear und lässt sich deshalb nicht durch eine zeitunabhängige Impulsantwortfunktion darstellen.

chen Hochmoor, wie in diesem Fall, sicher nicht der Fall. Die Leitfähigkeit des Torfkörpers nimmt mit steigendem Wasserspiegel zu. Auch die Kompressibilität des Torfs wurde im Modell nicht simuliert. Sie verstärkt gleichfalls die im realen Moor beobachtete Nichtlinearität.

Das hier dargestellte Modell ist also in einem realen Moor nur gültig, wenn sich die vertikale Leitfähigkeit in einem Torfkörper nicht stark ändert.

Resultate

Die simulierten piezometrischen Höhen sind in Abb. 5.14 dargestellt für das homogene Modell und jene Quotienten der Leitfähigkeit- bzw. des Speicherkoeffizienten, welche die maximale und minimale Varianz des Wasserspiegels erzeugen. Die Wasserspiegelschwankungen sind in komplexer Art und Weise vom Quotienten des Speicherkoeffizienten und der Leitfähigkeit abhängig. Die Schwankungen des Wasserspiegels sind im Vergleich zu den Veränderungen der Nachlieferung stark gedämpft. Dies wird deutlich beim Vergleich von Abb. 5.14 mit Abb. 5.5. Wird die Autokorrelation der Zeitreihe U(t), der Nachlieferung, und h(t), dem Wasserspiegel, berechnet, ist die Nachlieferung U nicht autokorreliert, während die piezometrische Höhe hüber einige Monate deutlich autokorreliert ist (Abb. 5.15). Der gegenwärtige Wasserspiegel ist also immer vom vorangehenden Wasserspiegel beeinflusst, und zwar über einige Monate.

Abbildung 5.14 Zeitlicher Verlauf der piezometrischen Höhe h für verschiedene Quotienten der Leitfähigkeit K und des Speicherkoeffizienten S. Die gestrichelte Linie gibt die Lage des stationären Wasserspiegels an. Die Varianz der piezometrischen Höhe h(x=0) ist für K0/K200 = 0.01 und S0/S200 = 0.14 maximal, für K0/K200 = 0.01 und S0/S200 = 7.0 minimal. Die Randbedingungen sind gegeben durch den Fluss $q_{(x=0)} = 0$ und das konstante Potential $h_{(x=200)} = 0.5$ m, die Nachlieferung U ist zeitabhängig (Abb. 5.5).

Die resultierenden Maxima der Simulation sind viel höher, als sie in einem Moor entstehen können, was auf der Annahme beruht, dass das simulierte poröse Medium gegen oben unbegrenzt ist, während es in Realität wenige Dezimeter über dem mittleren Wasserspiegel aufhört. Die Spitzen der Kurven in

Abbildung 5.15 Autokorrelation der Nachlieferung U(t) und der piezometrischen Höhe h(t) für das homogene Modell.

abweichung der piezometrischen Höhen $\sigma(h)$ für die extremen Leitfähigweisse bzw. schwarze Fläche umfasst den gesamten Bereich der Quotienten des Speicherkoef-

Abbildung 5.14 wären also in einem Moor wesentlich niedriger.

Die Standardabweichungen der piezometrischen Höhen, $\sigma(h)$ werden im Querschnitt des simulierten Modells für die extremen Quotienten der Leitfähigkeit (Abb. 5.16) und des Speicherkoeffizienten (Abb. 5.17) betrachtet. Das Amplitudendiagramm stellt alle 40 m die Variation der Standardabweichung der piezometrischen Höhen, $\sigma(h)$ im gesamten Gitter dar, welches durch die 9 Quotienten der Leitfähigkeit und die 7 Quotienten des Speicherkoeffizienten definiert ist (Abb. 5.18).

Die Standardabweichung $\sigma(h)$ ist in Abbildung 5.16 für den grössten (die Leitfähigkeit ist nahe der Wasserscheide hoch, am Rand des Moors niedrig) und kleinsten Quotienten der Leitfähigkeit K0/K200 dargestellt. Der Leitfähigkeitsquotient beeinflusst die Standardabweichung vor allem am Rand des Moores. Die Ausdehnung der weissen bzw. schwarzen Fläche zeigt den Einfluss der Quotienten des Speicherkoeffizienten. Bei einem kleinen Quotienten der Leitfähigkeit ist der Einfluss des Speicherkoeffizienten auf die Standardabweichung bedeutend, bei einem grossen Quotienten der Leitfähigkeit gering.

Die Quotienten des Speicherkoeffizienten S_0/S_{200} (Abb. 5.17) beeinflussen die Standardabweichung des Wasserspiegels σ_h vor allem nahe der Wasserscheide. Das Minimum der Schwankungen tritt auf, wenn ein grosser Quotient des Speicherkoeffizienten mit einem kleinen Quotienten der Leitfähigkeit kombiniert wird. Diese Situation entspricht physikalisch einem senkrecht-anisotropen Medium im ersten Viertel des Querschnitts (etwa 0 < x <50 m) und einem parallel-anisotropen Medium im letzten Viertel des Querschnitts (etwa 150 < x < 200) (Abb. 5.9). Eine verhältnismässig kleine Leitfähigkeit am Rand des Moores und grössere Speicherkoeffizienten im Innern

Abbildung 5.17 Standardabweichung der piezometrischen Höhen $\sigma(h)$ für die extremen Quotienten der Speicherkoeffizienten S über den gesamten Bereich der Quotienten der Leitfähigkeit K.

des Moores puffern die Wasserspiegelschwankungen. Eine grössere Leitfähigkeit am Rand lässt eine zusätzliche Nachlieferung schnell abfliessen. Ein kleiner Speicherkoeffizient im Inneren führt zu einem schnellen Anstieg des Wasserspiegels im Zentrum und erhöht dann den hydraulischen Gradienten rasch.

Ökologisch lässt sich dies als Bult-Schlenken-Struktur im Zentrum und Rüllen-Struktur am Rand interpretieren. Auffällig in Abbildung 5.17 ist die Kreuzung der oberen Kurvenschar für $S_0/S_{200} = 0.14$. Die Kreuzung kommt daher, dass mit dem Leitfähigkeitsverhältnis $K_0/K_{200} = 0.01$ die Standardabweichung stark ansteigt. Die grosse Standardabweichung rührt daher, dass der Gradient des Wasserspiegels recht gleichmässig ist (der stationäre Wasserspiegel entspricht dem tiefstgelegenen in Abb. 5.4) und die geringe Speicherkapazität nahe der Wasserscheide führt zu einer schnellen Übertragung des Impulses.

Die Amplitudendiagramme, dargestellt im Abstand von 40 m, zeigen ein komplexes Bild (Abb. 5.18). Die Richtung des Gradienten der Standardabweichung σ_h zeigt, ob der Quotient der Leitfähigkeit oder des Speicherkoeffizienten von grösserem Einfluss auf die Amplitude der Wasserspiegelschwankung σ_h ist. An der Stelle x = 0 m ist der Speicherkoeffizient von überragendem Einfluss, denn die Isolinien verlaufen etwa vertikal. Mit zunehmender Entfernung von der Wasserscheide gewinnt der Leitfähigkeitsquotient an Bedeutung. An der Stelle x = 160 m verlaufen die Isolininen praktisch horizontal. Das Minimum der Amplitude σ_h , σ_{min} , befindet sich immer beim kleinsten Leitfähigkeitsquotienten und dem grössten Quotienten des Speicherkoeffizienten.

Den Parametern des physikalisch begründeten Minimums σ_{min} entsprechen ökologisch am ehesten die in ungestörten Mooren im Zentrum auftretende Bult-Schlenken-Struktur und die Rüllenstruktur am Rand des Moores. Die in einem intakten Moor auftretende Abfolge von Pflanzenformationen ist eine optimale Struktur um die Amplitude des Wasserspiegels zu minimieren. Eine minimale Schwankung des Wasserspiegels ist auch für die Torfsedimentation optimal, da dann Zeitabschnitte mit aeroben Bodenverhältnissen selten sind. Werden die anisotropen Medien nicht berücksichtigt und nur die in einem homogenen Medium möglichen Quotienten betrachtet, so ist das homogene Modell bei wenig variierender Nachlieferung wahrscheinlich. Variiert die Nachlieferung stark, so ist das Modell mit einem grossen Leitfähigkeitsquotienten wahrscheinlich, da dann der Moorwasserspiegel öfters tief absinkt. Die Folgen einer solchen Entwässerung werden im nächsten Kapitel simuliert.

5.1.3. Auswirkung einer Entwässerung auf Leitfähigkeit und Wasserspiegel

Idee

In Kapitel 3.1.2, «Prozesse in einem Desaquist», wurde gezeigt, dass die hydraulische Leitfähigkeit des Torfes nach einer Entwässerung abnimmt. Da die Abnahme der Leitfähigkeit mit dem Flurabstand gekoppelt ist (positive Rückkoppelung), führt eine lineare Betrachtung nicht zum Ziel. Es werden deshalb in einem zweidimensionalen Modell eines Moorkörpers die zeitlichen und räumlichen Veränderungen der Leitfähigkeit K(t, x, y), der piezometrischen Höhe (Wasserspiegel) h(t, x, y) und der Wasserspiegeländerungen $\delta h(t, x, y) = h(t, x, y) - h(t_0, x, y)$ bzw. des Flurabstandes simuliert.

Modell, Anfangs- und Randbedingungen

Für das Modell wird Gleichung (3.3), welche die Abnahme der Leitfähigkeit beschreibt, mit Gleichung (3.26), welche den stationären Wasserfluss in einem zweidimensionalen Gebiet beschreibt, verknüpft. Der Wasserfluss wird mit dem Finiten-Differenzen-Modell, Gleichung (3.29 ff), simuliert.

Abbildung 5.18 Amplitudendiagramm der Standardabweichung σ_h für die Quotienten der Leitfähigkeit K_0/K_{200} und des Speicherkoeffizienten S_0/S_{200} . Das Modell ist in Abb. 5.4, die Parameter in Abb. 5.6 – 5.7 abgebildet.

Die Simulation der Rückkoppelung geschieht folgendermassen: Zuerst wird ein stationärer Wasserspiegel simuliert. Dieser Wasserspiegel ist identisch mit der Mooroberfläche (Kap. 5.1.1). Im simulierten Gebiet werden «Entwässerungsgräben gezogen», das heisst neue Randbedingungen definiert und der stationäre Wasserspiegel mit den neuen Randbedingungen berechnet. Die Wassserspiegeländerung wird dann dazu benutzt, die Änderung der Leitfähigkeit nach einem Zeitschritt mit Formel (3.1) zu berechnen. Wiederum wird ein stationärer Wasserspiegel berechnet, diesmal jedoch mit den veränderten Leitfähigkeiten. Dieser Vorgang wird fortgesetzt, bis die Änderungen der Leitfähigkeit und des Wasserspiegels nur noch klein sind. Dieser Zustand entspricht dann einem lange Zeit entwässerten Moor.

Der Grundriss des Modellgebietes ist in Abb. 5.19 dargestellt. Das Ausgangsmedium hat eine homogene hydraulische Leitfähigkeit K von 10 m/d. Die Grundfläche ist guadratisch mit 400 m Seitenlänge. Das Potential am Rand h_0 beträgt 0.5 m, darunter ist eine undurchlässige Schicht. Zur Zeit t =0 werden von der Mooroberfläche ausgehend 1 m tiefe Entwässerungsgräben gezogen mit einem Abstand von 50 bzw. 100 m. Die Anordnung der Gräben ist spiegelbildlich. Es entstehen damit 4 Typen von Einzugsgebieten. ① bis (4). Das quadratische Gebiet (1) beinhaltet das Zentrum des Moores, die Seitenlänge beträgt 200 m. Gebiet 2 und 4 liegen beide mit je einer Seite am Rand des Moores und sind auf drei Seiten drainiert. Gebiet @ ist quadratisch mit einer Seitenlänge von 50 m, Gebiet @ rechteckig mit der längeren Seite von 100 m parallel zum Rand. Gebiet 3 ist auf zwei Seiten am Rand des Moores gelegen und sonst wie Gebiet ⁽²⁾. Im Modell wurde der rechte untere Quadrant des in Abb. 5.19 dargestellten Gebietes simuliert, die anderen Quadranten sind spiegelbildlich. Das simulierte Gebiet $\Omega(x, y)$ ist definiert durch $\Omega(x, y) = \{0 \le x \le 200, 0 \le x \le 200\}$. Für die räumliche Diskretisierung wird ein konstanter Knotenabstand von 3.125 m verwendet. Dies führt zu 65×65 effektiven Knoten für den Ouadranten.

Die Nachlieferung wird mit 1.92 mm/d angenommen, was 700 mm/a entspricht.

Der Zeitpunkt t = -1 a bezeichnet den stationären Zustand im nicht drainierten porösen Medium. Die Entwässerungsgräben werden zur Zeit t = 0gezogen. Die Simulation wird dann bis zum Zeitpunkt t = 10 a durchgeführt, bei welchem die Änderungen der Leitfähigkeit und des Wasserspiegels nur noch klein sind. In der Simulation wird der Zeitraum $0 \le t \le 10$ in n = 14bzw. n = 26 Zeitschritte δt aufgeteilt. Für n = 14 beträgt $\delta t = 0.5, 0 \le t \le 3$ und $\delta t = 1., 3 < t \le 10$, für n = 26 sind die Zeitschritte halbiert.

Die Torfverdichtungsfaktoren γ entsprechen jenen der Tabelle 3.1. Die nach der Zeit t = 10 a wieder zunehmende Leitfähigkeit wird nicht simuliert, da hier von unkultivierten, nur entwässerten Moor ausgegangen wird. Die Torfverdichtungsfaktoren stellen empirisch erhobene Werte dar. Die hier simulierten Zeiten treffen für diese Faktoren zu, aber es kann vermutet

Abbildung 5.19 Grundriss des simulierten Gebietes. Die dicken Linien bezeichnen die natürlichen Randbedingungen mit $h_0 = 0.5$ m und den Rand des nicht entwässerten Moores. Die dünnen Linien bezeichnen die Drainagegräben, deren Sohle 1 m unter der ursprünglichen Oberfläche liegt. Die Pfeile bezeichnen Lage und Richtung der dargestellten Transsekte, deren Koordinate mit ξ bezeichnet wird.

werden, dass sie vom Klima abhängig sind. Die Zeitangaben sind deshalb unsicher, nicht jedoch der Prozess an sich.

Das Program für die Berechnungen «bogflo.for» ist in Anhang H.2., p. H-11 ff, dokumentiert.

Numerische Interpretation der Simulation

Ein Finite-Differenzen Modell wurde mit der analytischen Lösung (3.19) verglichen. Die Differenzen der Potentiale δh des analytisch berechneten Potentials h_{ana} und des numerisch berechneten Potentials h_{num} sind für das 6×6 Gitter kleiner 0.3 %, wie Abbildung 5.20 zeigt. Die Massenbilanz (Nach-

Abbildung 5.20 Vergleich einer Lösung des Finiten-Differenzen Modells mit der analytischen Lösung. Die gerasterten Flächen stellen die Abweichungen in Prozent dar, die beschrifteten Isolinien die analytische berechneten piezometrischen Höhen.

Abbildung 5.21 Massenbilanz des stationären Wasserflusses der Gebiete 1 bis 4 für jeden Zeitschritt.

lieferung – Ausfluss) ist besser als 0.02 %. Die homogen gewählten Parameter sind Leitfähigkeit K = 0.1 m/d, Nachlieferung U = 0.05 m/d, das konstante Potential am Rand h₀ = 2 m.

Im 65×65 Gitter ist Massenbilanz der einzelnen Gebiete und der einzelnen Zeitschritte für alle Gebiete deutlich besser als ein Prozent (Abb. 5.21). Die berechneten piezometrischen Höhe weichen deshalb gleichfalls vom wahren Wert wenig ab. Die unterschiedlichen Abweichungen von der Massenbilanz verursachen die Randbedingungen und die am Rande auftretenden Gradienten.

Die zeitliche Änderung der hydraulischen Leitfähigkeit in Gebiet ① ist in Abb. 5.22 dargestellt. Es ist dies das einzige Gebiet, in welchem während der Simulation die Leitfähigkeit zu oszillieren zunimmt und sich immer stärker aufschaukelt. Dieses Verhalten verursacht die Randbedingung der Wasserflussgleichung (3.26), welche im Gebiet ① auf zwei anschliessenden Seiten eine Wasserscheide ist. Diese Randbedingung führt zu einer sehr sensitiven Rückkoppelung, in welcher eine kleine Veränderung der Leitfähigkeit an den Rändern mit konstantem Potential zu einer grossen Änderung der piezometrischen Höhe am höchsten Punkt führt, wo sich die Wasserscheiden vereinigen. Deshalb oszilliert die Leitfähigkeit in Abbildung 5.22 im höchsten Punkt (x = 0, y = 200) am meisten.

Abbildung 5.22 Zeitliche Änderung der hydraulischen Leitfähigkeit im Gebiet ①. Es sind die Stellen (x = 0, y = 0) (unmittelbar neben Entwässerungsgraben), (x = 0, y = 13) und (x = 0, y = 100) m dargestellt. Bei der Lösung mit n = 14Zeitschritten beginnt sich das System an den Stellen (x = 0, y = 13) und (x = 0, y = 10) aufzuschaukeln. Mit n = 26 Zeitschritten ist die Oszillation gedämpft.

Die piezometrischen Höhen liegen in einem solchen Fall über der Mooroberfläche. Beim nächsten Zeitschritt wird die Leitfähigkeit dann wieder erniedrigt, was zu einem krassen Wasserspiegelabfall führt. Ist der Zeitschritt zu gross, nähert sich die Lösung nicht genügend langsam dem Gleichgewichtszustand. Auch mit 26 Zeitschritten ist eine, wenn auch wesentlich kleinere Oszillation zu sehen. Da die Lösung aber stabil ist, und mit der Lösung mit 14 Zeitschritten im Mittel übereinstimmt, wurde die Zeit nicht mehr feiner diskretisiert.

Hydrologische und ökologische Interpretation

Die Resultate der Simulation sind auf den folgenden Seiten als eine Art Bilderbuch einmal als Transsekt und einmal als Projektion in die Ebene dargestellt (Abb. 5.23 bis 5.25 Transsektdarstellungen, Abb. 5.26 bis 5.29 Darstellungen in der Ebene). Auf den hier dargestellten Transsekten, welche lokale Symmetrieachsen bilden, sind die Änderungen am grössten. Sie werden hier gebietsweise zusammen besprochen.

Die hydraulische Leitfähigkeit nimmt in Gebiet D am Rand zum Entwässerungsgraben stark ab. Die Randverdichtung ist so hoch, dass die Wasserspiegeländerung nur bis etwa 25 m vom Grabenrand entfernt kleiner als 0.2 m wird. Diese Wiedervernässung geht nach dem Modell sehr schnell, nach 2 Jahren ist der endgültige Wasserspiegel schon nahezu erreicht. Der endgültige Wasserspiegel liegt etwa 0.1 m tiefer als der Wasserspiegel vor der Entwässerung. Die Leitfähigkeit wird in etwa Dreiviertel des Gebietes um mehr als die Hälfte verringert. Der Quotient der Leitfähigkeit wie auch des Speicherkoeffizienten wird zwischen Zentrum und Rand gross.

Die Entwicklung der Leitfähigkeit und des Wasserspiegels sind in Gebiet ②, ③ und ④ sehr ähnlich. Die Transsektdarstellungen unterscheiden sich kaum, obwohl im Gebiet ④ nur halb soviel Quergräben simuliert wurden. Das am stärksten sich verändernde Gebiet ist Teilgebiet ③. Die Auswirkung des zusätzlichen Quergrabens in der Fläche ③ ist deutlich sichtbar. In allen drei Gebieten wird der ursprüngliche Wasserspiegel nur gegen den äusseren Rand des Gebietes wieder erreicht, dessen Potential ja nicht abgesenkt wurde.

Die Resultate zeigen, dass die Verringerung der Leitfähigkeit, welche durch einen niedrigeren Wasserspiegel stattfindet, am effizientisten am Unterrand wirkt, wie Teilgebiet D zeigt. Die Abdichtung wirkt sich weniger am Oberrand aus, wie die anderen Teilgebiete zeigen. Das Modell stimmt mit den Messungen, welche im Turbenriet (Schneebeli, 1988) gemacht wurden, überein. Die Sackung des Torfkörpers wurde in diesem Modell nicht berücksichtigt. Sie führt zu einer noch geringeren Differenz zwischen Oberfläche und Wasserspiegel als hier simuliert.

Abbildung 5.23 Zeitliche und räumliche Änderung der Leitfähigkeit in den Transsekten 1 bis 4 dargestellt in Abb. 5.18. Die Änderungen sind für die Zeiten 0, 1, 2, 5 und 10 Jahre dargestellt. Die Leitfähigkeit für t = -1 ist gleich wie für t = 0.

10.0⁻ 5.0⁻

> 1.0⁻ 0.5⁻

0.1

10.0⁻ 5.0⁻

1.0

K [m/d]

K [m/d]

Abbildung 5.24 Zeitliche und räumliche Änderung der piezometrischen Höhe h in den Transsekten 1 bis 4. Die Änderungen sind für die Zeiten 0, 1, 2, 5 und 10 Jahre dargestellt. Der Wasserspiegel zur Zeit t = -1 entspricht dem Wasserspiegel vor der Entwässerung und repräsentiert die Mooroberfläche.

Abbildung 5.25 Zeitliche und räumliche Änderung des Wasserspiegels δh gemessen vom Ausgangswasserspiegel zur Zeit t = -1 in den Transsekten 1 bis 4. Die Änderungen sind für die Zeiten 0, 1, 2, 5 und 10 Jahre dargestellt.

Abbildung 5.26 Räumliche und zeitliche Darstellung der Leitfähigkeit in der Ebene vor und nach der Entwässerung. Im Zeitpunkt t = 1 ist die Leitfähigkeit zwischen den Isolinien kleiner als 5.6 m/d. In den Zeichnungen ist immer der rechte, untere Quadrant des Gesamtgebietes abgebildet.

200. <u>t = -1 a</u> t=0a a 6,1 t = 2at=1a 0.7 0.50

100.

0.

200.

100.

0.

Abbildung 5.27 Räumliche und zeitliche Darstellung der piezometrischen Höhe in der Ebene vor und nach der Entwässerung. In den Zeichnungen ist der rechte, untere Quadrant des Gesamtgebietes abgebildet.

Abbildung 5.28 Räumliche und zeitliche Darstellung der Veränderung des Wasserspiegels gemessen von der Mooroberfläche (Flurabstand) in der Ebene vor und nach der Entwässerung. In den Zeichnungen ist der rechte, untere Quadrant des Gesamtgebietes abgebildet.

5.2. WACHSTUMSMODELL

In Kapitel 3 wurde einerseits das Klötzchen-Modell (Gleichungen 3.36 bis 3.38) und das gekoppelte Sedimentations-Grundwasser-Modell (Gleichungen 3.39 bis 3.46) hergeleitet. Die Flächen und Volumen, welche seit Beginn des Moorwachstums für das Turbenriet berechnet wurden (Kapitel 4.5), können mit diesen Modellen verglichen werden.

Für die Anpassung wird dabei der Anfangs- und Endwert vorgegeben, die Form der Kurve des Flächen- bzw. Volumenwachstums variiert. Für das Turbenriet kann angenommen werden, dass der Zersetzungsfaktor im Katotelm α_k sehr klein ist, es wird deshalb mit dem linearen Modell (3.43) gerechnet.

Die Berechnungen ergeben, dass die beiden Modelle perfekt übereinstimmen. Dieses überraschende Resultat ist eine Folge der sehr viel grösseren horizontalen Ausdehnung im Vergleich zur Höhe. Der Vergleich beschränkt sich deshalb auf das Klötzchen-Modell.

Das Modell wurde mit den Parametern $p_h = 1.87 \times 10^{-2}$ m/a für die horizontale Ausbreitungsrate, $p_v = 5.0 \times 10^{-4}$ m/a für die vertikale Sedimentationsrate berechnet.

In Abbildung 5.29 ist die Alter-Flächen-Kurve dargestellt. Das Modell kann den schnellen Flächenzuwachs, der um 6000 BC beginnt, nicht nachvollziehen. Würde der Endpunkt schon bei 0 AD festgelegt, so würde die Modellkurve eine kleinere Ausbauchung bilden. Ein Modell mit zeitlich variablen Parametern würde für das Turbenriet einen sigmoiden Verlauf aufweisen. Die sehr wenigen gemessenen Punkte erlauben jedoch kein Modell mit mehr Parametern.

Die Zeit-Volumen Kurve (Abb. 5.30) passt sich den Daten sehr gut an. Das zu Beginn zu kleine Volumen im Modell wird durch den raschen Anstieg um

Abbildung 5.29 Vergleich der mit dem Klötzchen-Modell simulierten Fläche und der gemessenen Fläche im Turbenriet. Anfangs- und Endpunkt sind im Modell fixiert.

Abbildung 5.30 Vergleich des mit dem Klötzchen-Modell simulierten Volumens und dem gemessen Volumen im Turbenriet. Anfangs- und Endpunkt sind im Modell fixiert.

6000 BC ausgeglichen. Das Klötzchen-Modell modelliert die langfristige Volumenentwicklung somit recht genau. Es steht somit ein einfaches Modell zur Verfügung, um die langfristige Sedimentation in Mooren abzuschätzen.

Diese Modellrechnung am Beispiel Turbenriet validiert die zugrunde liegenden vereinfachenden Gleichungen, welche die einzelnen Prozesse beschreiben. Der Anfangszustand, Fläche und Volumen gleich Null, ist gegeben. Der Schlusszustand ist ein Modellinput, nämlich die heutige Ausdehnung und Form des Moores. Die Validierung besteht nun darin, dass die Form des Modells der gemessenen Formentwicklung erstaunlich gut folgt. Die Messung des Hochmoorwachstums ist modellunabhängig und beruht auf der in Kapitel 4 dargestellten Datierung mittels Pollen- und ¹⁴C-Analysen. Die in den vorangehenden Kapiteln dargelegten Erkenntnisse lassen sich bei der Planung einer Moorregeneration anwenden. In den Kapiteln 3.3 und 5.1.3 wird gezeigt, dass Hochmoore von einem gestörten Zustand, in welchem das Ökosystem keinen Torf mehr bildet, wieder in einen ungestörten Zustand zurückkehren. Die Geschwindigkeit, mit der diese Rückkehr geschieht, kann mit technischen Massnahmen beeinflusst werden. Diese Beeinflussung wird etwas übertrieben als «Regeneration» bezeichnet. Die Planung und Ausführung einer Regeneration lässt sich in grundlegende Schritte gliedern, und es können Regeln für die einzelnen Massnahmen aufgestellt werden.

Die Berücksichtigung der natürlich ablaufenden Prozesse ist besonders deshalb wichtig, weil nur so eine ökologisch sinnvolle Regeneration möglich ist. Dies ist zugleich auch die ökonomisch günstige Lösung.

6.1. ZUSAMMENFASSUNG DER GRUNDLEGENDEN ERKENNTNISSE

6.1.1. Zeitdauer der Prozesse

In einem Hochmoor können drei wesentliche Prozesse auseinander gehalten werden. Diese Prozesse sind die Vegetationsentwicklung, die Bodenentwicklung und die Gesteinsbildung (Torfbildung). Für jeden dieser Prozesse kann eine Halbwertszeit bestimmt werden. Die Halbwertszeit ist ein Mass für die Dauer der Störung auf das System. Das sich am schnellsten anpassende System ist die Vegetation mit einer Halbwertszeit von einigen Jahren, danach die Bodenentwicklung mit einer Halbwertszeit von einigen Jahren, danach suletzt die Gesteinsbildung, welche eine Halbwertszeit von einigen hundert bis einigen tausend Jahren besitzt. Wegen dieser um Grössenordnungen verschiedenen Halbwertszeiten gibt es nicht eine Regeneration, sondern drei.

6.1.2. Stabilität eines torfbildenden Ökosystems

Sobald organische Substanz an die Luft kommt, der Boden aerober wird, wird die Struktur des Torfes feinkörniger und damit undurchlässiger. Der Wasserspiegel steigt danach relativ zur Bodenoberfläche wieder an und führt
im Endeffekt wieder zur Torfbildung. Dieser Prozess, welcher in Kapitel 5.1.3 simuliert wird, ist entscheidend für die Stabilität des torfbildenden Ökosystems. Er ist die Ursache für die lange Lebensdauer von Mooren und ebenso für ihr erneutes Wachstum nach einer Störung, welche natürlichen oder anthropogenen Ursprungs sein kann. Eine endgültige Störung des torfbildenden Systems erfolgt, wenn sich die hydrologischen Randbedingungen grundlegend ändern, was der Fall sein kann, wenn der Grundwasserspiegel im Mineralboden stark abgesenkt wird.

6.1.3. Wechselwirkung zwischen Vegetation und Wasserhaushalt

Vegetation, Boden- und Gesteinsbildung hängen in einem torfbildenden Ökosystem untrennbar zusammen. Gerade deshalb ist es äusserst wichtig, die einzelnen Prozesse bei einer Regeneration auseinanderzuhalten und die Reaktionen der Prozesse aufeinander zu betrachten.

Einer der häufig missverstanden Effekte ist das intensive Wachstum von Bäumen in gestörten, entwässerten Mooren. Wie aus der Simulation in Kapitel 5.1.3 hervorgeht, bewegt sich der Wasserspiegel nicht mehr ganz an die ursprüngliche Oberfläche, obwohl sich die hydraulische Leitfähigkeit um zwei Grössenordnungen verringert. Die Differenz zwischen Wasserspiegel und Oberfläche muss verschwinden, damit das Moor wieder wachsen kann und eine typische Hochmoorvegetation entsteht.

Die Differenz kann auf drei Arten zum Verschwinden gebracht werden. Natürlicherweise wird die aerobe Schicht im Laufe der Zeit zersetzt und dünner. Je nachdem, wie stark die Schicht belüftet wird, geschieht die Zersetzung schneller oder langsamer. Die effizienteste Belüftung geschieht durch Bäume. Eine waldartige Vegetation führt also natürlicherweise am schnellsten zum Abbau dieser belüfteten Schicht und zur Wiederherstellung des torfbildenden Systems. Künstlich kann die Schicht verringert werden, indem die Randbedingung verändert wird, das heisst der Wasserspiegel wird in den Gräben angehoben, oder das Moor wird soweit abgetorft, dass der Wasserspiegel wieder an der Oberfläche liegt. Ein Vorteil der Bäume ist, dass ihr Wurzelteller beim Umstürzen schlenkenartige Vertiefungen schafft, welche wassergefüllt das Torfmooswachstum anregen. Der Verlauf des Wasserspiegels bei einer solchen natürlichen Regeneration ist in Schneebeli (1989) dargestellt.

Die in einem entwässerten Moor entstehende waldartige Vegetation ist daher für die Regeneration sehr wesentlich und nicht eine zusätzliche Störung.

6.2. PLANUNG EINER REGENERATION

6.2.1. Grundlagen

Bei den verschiedenen Regenerationsprojekten hat es sich gezeigt, dass ein Plan mit 10, besser 5 m Höhenkurven, eine genaue Aufnahme der hydrologischen Verhältnisse (Bäche, Entwässerungsgräben, Schlucklöcher), eine Torfmächtigkeits-Karte und, je nach Objekt, eine Vegetationskarte notwendig ist. Je nach Komplexität des Objektes muss auch die Entwicklungsgeschichte untersucht werden. Aufgrund von Klimadaten ist die Wasser-Nachlieferung (Niederschlag – Verdunstung) über einen längeren Zeitraum abzuschätzen.

6.2.2. Zielsetzung

Bei einer Regeneration muss der Prozess der Torfbildung im Vordergrund stehen. Werden die Voraussetztungen für die Torfbildung verbessert, so stellen sich die schnelleren Prozesse der Vegetation und des Bodens selbständig ein.

6.2.3. Planung

Vor der Planung muss die für das Objekt spezifische Ursache der Torfbildung bekannt sein. Die geplanten Massnahmen rekonstruieren die ursprüngliche Situation. Die ältesten Moorteile sind deshalb am leichtesten wieder zum Wachstum zu bringen, während es bei jüngeren hydrologisch zunehmend schwieriger wird.

Müssen zum Beispiel Gräben mit Torf aufgefüllt werden, so kann es sinnvoll sein, das Moor zu rekonstruieren. In den jungen Gebieten kann abgetorft werden, um im alten, früher abgetorften Gebiet wieder die Torfbildung in Gang zu bringen.

Am Rand des nicht entwässerten Gebietes ist auch die Wirkung des sich selbst abdichtenden Torfes zu berücksichtigen.

6.2.4. Ausführung

Die Technik der Regeneration lässt sich in grundlegende Schritte gliedern. Die folgenden Regeln erweisen sich bei der Ausführung als nützlich:

- Beim Auffüllen der Gräben die Geschichte des Moores berücksichtigen. Drainagegräben im Mineralboden, welche entwässern, sind deshalb als erste aufzufüllen. - Staudämme in Gräben sind nur in Gebieten mit weniger als 1% Neigung effizient, in steileren Gebieten ist es viel wirksamer, die Gräben aufzufüllen.

- Wald stehen lassen, da er eine raschere Wiederherstellung der torfbildenden Vegetation bewirkt oder etwa 0.1 bis 0.3 m unter den aktuellen Wasserspiegel abtorfen.

6.3. **BEISPIEL**

Die vorstehend dargelegten Prinzipien werden am Beispiel des Turbenriet illustriert, welches in Kapitel 2 beschrieben ist.

Die zahlreich vorhanden Gräben im südlichen und südwestlichen Teil, der grosse Torfstichgraben im Süden und die kleineren Torfstiche im südwestlichen Teil durchschneiden das genetisch älteste Gebiet. Der grosse Torfstichgraben liegt östlich in einem relativ spät vermoorten, mächtigen Torfkörper (Abb. 2.1, 2.6 und 2.7, 4.11). Der mittlere, östliche Teil und das nördliche, am höchsten gelegene Gebiet sind intakt. Die Sohle der Gräben liegt im Torf oder nur wenig im Mineralboden, das Gefälle der Gräben ist grösser als 1%. Sie müssen deshalb mit Torf rückgefüllt werden.

Als Torfabbaustelle kommt nur das südöstliche Gebiet in Frage. Da dieses Gebiet um etwa ein bis zwei Meter abgetorft werden kann, können damit alle Gräben, die kleineren Torfstiche und der grosse Abbaugraben wieder aufgefüllt werden.

Die im abgetorften Gebiet gewachsenen Fichten- und Föhrenwälder sind stehenzulassen.

Die durch den Abbau im südöstlichen Teil entstehenden Tümpel ergänzen die noch vorhandenen Schlenken im mittleren, intakten Teil.

- Arbeitskreis für Bodensystematik der DBG (1985) Systematik der Böden der Bundesrepublik Deutschland. Kurzfassung. Mitteilungen Deutsche Bodenkundliche Gesellschaft, 44, 1–90.
- Baden, W. und R. Eggelsmann (1963) Zur Durchlässigkeit der Moorböden. Z. f. Kulturtechnik und Flurbereinigung 4: 226–254.
- Bantle, H. (1988) Niederschlags-Datenbank am RZ-ETH unter dem Betriebssystem NOS/VE: Programmdokumentation und Benützeranleitung. Schweiz. Meteorologische Anstalt, Abt. F., Zürich.
- Barber, K.E. (1981) Peat Stratigraphy and Climatic Change. A palaeoecolgical test of the theory of cyclic bog regeneration. Elsevier, Amsterdam.
- Biot, M.A (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26(2): 182–185.
- Birks, H.J.B. (1986a) Late-Quaternary biotic changes in terrestrial and lacustrine environments, with particular reference to north-west Europe. pp. 3–65 In: Handbook of Holocene Palaeoecology and Palaeohydrology. Ed. B.E. Berglund. Wiley, Chichester.
- Birks, H.J.B. (1986b) Numerical zonation, comparison and correlation of Quaternary pollen-stratigraphical data. pp. 743–774 *In*: Handbook of Holocene Palaeoecology and Palaeohydrology. Ed. B.E. Berglund. Wiley, Chichester.
- Boggie, R. (1977) Water-table depth and oxygen content of deep peat in relation to growth of Pinus contorta. Plant and Soil 48: 447-454.
- Bonani, G. H.-J. Hofmann, E. Morenzoni, M. Nessi, M. Suter and W. Wölfli (1986) The ETH/SIN dating facility: a status report. Radiocarbon 28 (2A): 246-255.
- Brandt, S. (1976) Statistical and computational methods in data analysis. 2nd ed., North-Holland, Amsterdam.
- Brutsaert, W. and A. I. El-Kady (1984) The relative importance of compressibility and partial saturation in unconfined groundwater flow. Water Res. Res. 20 (3): 400-408.
- Carslaw, H.S. and J.C. Jaeger (1959) Conduction of heat in solids. 2nd. ed., Clarendon Press, Oxford.
- Chason, D.B. and D.I. Siegel (1986) Hydraulic conductivity and related physical properties of peat, Lost River Peatland, Northern Minnesota. Soil Science 142 (2): 91–99.
- Chatfield, C. (1984) The analysis of time series. 3rd. ed., Chapman and Hall, London.
- Childs, E.C. (1969) An introduction to the physical basis of soil water phenomena. Wiley Interscience, New York.
- Clymo, R.S (1983) Peat. pp. 159–224 In: A.J.P. Gore: Ecosystems of the World 4A, Mires: Swamp, Bog, Fen and Moor, General Studies. Elsevier, Amsterdam.

- Clymo, R.S. (1984) The limits to peat bog growth. Phil. Trans. R. Soc. Lond., Ser. B, 303: 605-654.
- Crank, J. (1984) Free and moving boundary problems. Clarendon, Oxford.
- Dracos, T. (1980) Hydrologie, eine Einführung für Ingenieure. Springer, Wien.
- Du Rietz, G.E. (1954) Die Mineralbodenwasserzeigergrenze als Grundlage einer natürlichen Zweigliederung der nord- und mitteleuropäischen Moore. Vegetatio 5 - 6: 571– 585.
- Eggelsmann, R. (1967) Oberflächengefälle und Abflussregime der Hochmoore. Wasser und Boden 19: 247–252.
- Eggelsmann, R. und M. Schuch (1980) Moorhydrologie. pp. 210–224 In: Göttlich, K.: Moor- und Torfkunde, 2. Aufl., Schweizerbart, Stuttgart.
- Ellenberg, H. (1978) Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht. 2., völlig neu bearb. Aufl. Ulmer, Stuttgart.
- Everett, K.R. (1983) Histosoils. In: Pedogenesis and soil taxonomy. II. The soil orders. Eds. L.P. Wilding, N.E. Smeck and G.F. Hall. Elsevier, Amsterdam.
- Flühler, H. (1973) Sauerstoffdiffusion im Boden. Mitt. Schweiz. Anstalt Forstl. Versuchswesen 49: 123–250.
- Foster, D.R., H.R. Wright, Jr, M. Thelaus and G.A. King (1988) Bog development and landform dynamics in central Sweden and south-eastern Labrador, Canada. J. of Ecology 76: 1164-1185.
- Freeze, R.A. and J.A. Cherry (1979) Groundwater. Prentice Hall, Englewood Cliffs, N.J.
- Frenzel, B. (1983) Mires repositories of climatic information or self-perpetuating ecosystems? pp. 35-65 In: A.J.P. Gore: Ecosystems of the World 4A, Mires: Swamp, Bog, Fen and Moor, General Studies. Elsevier, Amsterdam.
- Friedman, R. M., C. B. DeWit, T. K. Kratz (1979) Simulating postglacial wetland formation: a quantitative reconstruction of Waubesa Marsh. IES Rep. 106. Center for Biotic Systems. Institute for Environmental Studies. Univ. Wisconsin, Madison.
- Fuchsman, C.H. (1980) Peat, industrial chemistry and technology. Academic Press, New York.
- Gambolati, G. and R.A. Freeze (1973) Mathematical Simulation of the Subsidence of Venice. 1. Theory. Water. Res. Res. 9: 721-733.
- Granlund, E. (1932) De svenska högmossarnas geologi. Sver. Geol. Unders. Ser. C, 373: 1–193.
- Hantke, R. (1967) Die würmeiszeitliche Vergletscherung im oberern Toggenburg (Kt. St. Gallen). Vierteljahresschrift Naturforsch. Ges. Zürich. 112: 223 -242.
- Hayward, P. M. and R. S. Clymo (1982) Profiles of water content and pore size in Sphagnum and peat, and their relation to peat bog ecology. Proc. R. Soc. Lond., Ser. B, 215: 299–325.
- Heinselman, M.L. (1970) Landscape evolution, peatland types, and the environment in the Lake Agassiz Peatlands Natural Area, Minnesota. Ecological Monographs 40 (2): 235-261.
- Hemond, H. F. and J. C. Goldman (1985) On non Darcian waterflow in peat. J. of Ecology. 73: 579-584.

- Hemond, H. F., W. K. Nuttle, R. W. Burke and K. D. Stolzenbach (1984) Surface infiltration in salt marshes: theory, measurement, and biogeochemical implications. Water Res. Res. 20: 591-600.
- Henley, S. (1981) Nonparametric geostatistics. Applied Science Publishers, Essex, England.
- Henrion, I. (1982) Untersuchungen zur Entwicklung von Sattelmooren im Oberharz. Diss. Univ. Göttingen.
- Ingram, H.A.P (1978) Soil layers in mires: function and terminology. J. Soil Science, 29: 224-227.
- Ingram, H. A. P. (1982) Size and shape in raised mire ecosystems: a geophysical model. Nature, 297: 300-303.
- Ingram, H. A. P. (1983) Hydrology. pp. 67-158 In: A.J.P. Gore: Ecosystems of the World 4A, Mires: Swamp, Bog, Fen and Moor, General Studies. Elsevier, Amsterdam.
- Ivanov, K.E. (1953) Gidrologiya bolot (Hydrology of mires). Gidrometeoizdat, Leningrad.
- Ivanov, K.E. (1981) Water movement in mirelands. Academic Press, London.
- Jenny, H. (1941) Factors of soil formation: A system of quantitative pedology. McGraw-Hill, New York.
- Kratz, T.K. and C.B. DeWitt (1986) Internal factors controlling peatland-lake ecosystem development. Ecology, 67 (1):100-107.
- Kulczynski, S. (1949) Peat bogs of Polesie. Mém. Acad. Polon. Sci. Lett., Cl. Sci. Math. Nat., Ser. B. Sci. Nat., 15: 1-356.
- Kusel Fetzmann, E. (1982) Hochmoorpflanzen. pp. 411–470 In: Pflanzenökologie und Mineralstoffwechsel. H. Kinzel (ed.). Ulmer, Stuttgart.
- Linder, A. und W. Berchtold (1979) Elementare statistische Methoden. Birkhäuser, Basel.
- Malmer, N. (1986) Vegetational gradients in relation to environmental conditions in northwestern European mires. Can. J. Bot. 64: 375-383.
- Middeldorp, A. A. (1984) Functional palaeoecology of raised bogs an analysis by means of pollen density dating in connection with the regional forest history. Diss. Univ. Amsterdam.
- Moore, P.D. (1986) Hydrological changes in mires. pp. 273–312 In: Handbook of Holocene Palaeoecology and Palaeohydrology. Ed. B.E. Berglund, Wiley, Chichester,
- Moore, P.D., Merryfield, D.L. and M.D.R. Price (1984) The vegetation and development of blanket mires. pp. 203–235 In: European mires (ed. P.D. Moore), Academic Press, London.
- Mosimann, J. E. (1965) Statistical methods for the pollen analyst: multinomial and negative multinomial techniques. In: B. Kummel and D. Raup (ed.) Handbook of paleontological techniques. Freeman, San Francisco.
- Murray, W.A. and P.L. Monkmeyer (1973) Validity of Dupuit-Forchheimer equation. J. Hydraulics Division (Amer. Soc. Civil Engineers) 97(HY9): 1573–1583.
- Oberdorfer, E. (1977) Süddeutsche Pflanzengesellschaften. Teil I. Fels-und Mauergesellschaften, alpine Fluren, Wasser-, Verlandungs- und Moorgesellschaften. Gustav Fischer, Stuttgart.

- Olsson, I.U. (1986) Radiometric dating. pp. 273-312 In: Handbook of Holocene Palaeoecology and Palaeohydrology. Ed. B.E. Berglund. Wiley, Chichester.
- Ortsgemeinde Grabs (1879) Übersichtsplan des Wald- und Weidgebietes der Gemeinde Grabs, aufgenommen Sommer 1879, A. Sulser, Ing. Massstab 1: 5000. Archiv Ortsgemeinde Grabs (ohne Nr.).
- Press, W.H., B.P. Flannery, S.A. Teukolsky, W.T. Vetterling (1986) Numerical Recipes. The art of scientific computing. Cambridge University Press, Cambridge.
- Richard, F., P. Lüscher, T. Strobel (1978) Physikalische Eigenschaften von Böden der Schweiz. Band 1. Eidg. Anstalt. forstl. Versuchswesen, Birmensdorf.
- Ringler, A. (1978) Die Hochmoore und Übergangsmoore der Allgäuer Alpen. Lage, Geologie, Morphologie. Telma. 8: 17-74.
- Rycroft, D. W., D. J. A. Williams and H. A. P. Ingram (1975 a) The transmission of water through peat. I. Review. J. of Ecology. 63: 535-556.
- Rycroft, D. W., D. J. A. Williams and H. A. P. Ingram (1975 b) The transmission of water through peat. II. Field experiments. J. of Ecology. 63: 557-568.
- Scheffer, F., P. Schachtschabel (1982) Lehrbuch der Bodenkunde. 11., neu bearbeitete Auflage von P. Schachtschabel, H.-P. Blume, K.-H. Hartge und U. Schwertmann. Enke, Stuttgart.
- Schmeidl, H. M. Schuch, R. Wanke (1970) Wasserhaushalt und Klima einer kultivierten und unberührten Hochmoorfläche am Alpenrand.. Schriftenreihe des Kuratoriums für Kulturbauwesen, 19. München.
- Schneebeli, M. (1988) Die Regeneration des Hochmoores Turbenriet Gamperfin, Gemeinde Grabs SG. Berichte der Botanisch-Zoologischen Gesellschaft Liechtenstein -Sargans - Werdenberg, 17: 101-223.
- Schneebeli, M. (1989) Zusammenhänge zwischen Moorwachstum und hydraulischer Durchlässigkeit und ihre Anwendung auf den Regenerationsprozess. TELMA, 19, Beiheft 2: 257–264.
- Schneebeli, M., M. Küttel, J. Fäh (1989) Die dreidimensionale Entwicklung eines Hanghochmoores im Toggenburg, Schweiz. Vierteljahresschrift Naturforsch. Gesellschaft Zürich 134 (1): 1-32.
- Schneider, S. (1980) Verteilung der Moore auf der Erde. p. 52–76 In: Göttlich, K.: Moorund Torfkunde, 2. Aufl., Schweizerbart, Stuttgart.
- Schuch, M. (1977) Hydrologie der südlichen Chiemseemoore. pp. 265–269 in: Ganss, O., Geol. Karte von Bayern, 1:25 000, Erläuterungen zu Blatt Nr. 8410, Prien am Chiemsee u. Blatt 8141, Traunstein, Bayer. Geol. Landesamt, München.
- Schuch, M. (1980) Physik des Torfes und der Moorböden. pp. 205- 210 In: Göttlich, K.: Moor- und Torfkunde, 2. Aufl., Schweizerbart, Stuttgart.
- Smith, G.D. (1985) Numerical solution of partial differential equations: finite difference methods. 3rd ed., Clarendon Press, Oxford.
- Soil Survey Staff (1975) Soil Taxonomy. Agriculture Handbook 436, Washington.
- Solem, T. (1986) Age, origin and development of blanket mires in Sør-Trøndelag, Central Norway. Boreas, 15 (2): 101–115.

- Stuiver, M. and G.W. Pearson (1986) High-precision calibration of the radiocarbon time scale, AD 1950–500 BC. Radiocarbon 28 (2B): 805–838.
- Stuiver, M. and P.J. Reimer (1986) A computer program for radiocarbon age calibration. Radiocarbon 28 (2B): 1022–1030.
- Swift, M.J., O.W. Heal and J.M. Anderson (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific Publications Oxford.
- Tallis, J.H. (1983) Changes in wetland communities. pp. 311–347 In: A.J.P. Gore: Ecosystems of the World 4A, Mires: Swamp, Bog, Fen and Moor, General Studies. Elsevier, Amsterdam.
- Tarantola, A. (1987) Inverse Problem Theory. Methods for Data Fitting and Model Parameter Estimation. Elsevier, Amsterdam.
- Taylor, J.A. (1983) The peatlands of Great Britain and Ireland. pp. 1–46 In: A.J.P. Gore: Ecosystems of the World 4B, Mires: Swamp, Bog, Fen and Moor, Regional Studies. Elsevier, Amsterdam.
- Tolonen, K., Huttunen, P. and H. Jungner (1985) Regeneration of two coastal raised bogs in eastern North America. Stratigraphy, radiocarbon dates and rhizopod analysis from sea cliffs. Ann. Acad. Scien. Fenn. Ser. A, III Geologia-Geographica, 139.
- Troels-Smith, J. (1955) Characterization of unconsolidated sediments. Dan. Geol. Unders., IV Raekke, 3 (10).
- Urfer, Ch., G. Gensler, F. Ambrosetti, E. Zenone (1979) Klimatologie der Schweiz Band II: Regionale Klimabeschreibungen. 2. Teil: Alpennordhang, Graubünden und Alpensüdseite. Beiheft Annalen Schweiz. Meteorol. Zentralanstalt (Jahrgang 1977).
- Vorob'ev, P.K. (1963) Investigations of water yield of low-lying swamps of western Sibiria. Soviet Hydrology (1963): 226–252.
- Wang, F.H. and M.P. Anderson (1982) Introduction to groundwater modeling. Freeman, San Francisco.
- Wickman, F. E. (1951) The maximum height of raised bogs and a note on the motion of water in soligenous mires. Geol. Fören. Förhandl., 73.
- Wildi, O. (1977) Beschreibung exzentrischer Hochmoore mit Hilfe quantitativer Methoden. Veröff. Geobot. Inst. Eidg. Tech. Hochschule. 60: 1 -128.
- Wildi, O. (1978) Simulating the development of peat bogs. Vegetatio 37 (1): 1-17.
- Wildi, O. (1986) Numerische Analyse vegetationskundlicher Daten. Veröff. Geobot. Inst. Eidg. Tech. Hochschule. 90: 1 -226.
- Withers, B., S. Vipond, K. Lecher (Bearb.) (1978) Bewässerung. Parey, Berlin und Hamburg.
- Yeh, W. W-G. (1986) Review of parameter identification procedures in groundwater hydrology: the inverse problem. Water Res. Res. 22: 95-108.

ANHANG A

KOORDINATEN DER

Messpunkte

1. KOORDINATEN DER MESSPUNKTE IM TURBENRIET

Die Koordinaten der Messpunkte wurden photogrammetrisch bestimmt. Die Koordinaten der auf den Luftbildern nicht sichtbaren Punkte wurden aufgrund der bekannten Distanz (50 m) und Richtung (x-Achse magnetisch Nord-Süd) berechnet, die Höhe aus den 1 m - Höhenkurven des Planes 1:1000 interpoliert. Diese Punkte sind in der vierten Kolonne mit einem * gekennzeichnet. Die Punktnummern 22, 37, 65 wurden markiert, aber nicht weiter verwendet, und sind nicht aufgelistet.

Nr	У	X	Z	
1	747153.80	226222.34	1302.43	
2	747152.	226272.0	1306.5	*
3	747151.40	226323.55	1309.60	
4	747147.	226376.	1312.2	*
5	747146.	226425.	1314.5	*
6	747144.	226477.	1317.1	*
7	747145.20	226523.95	1319.60	
8	747143.70	226532.05	1322.95	Punkt nur auf Luftbild
9	747206.15	226274.05	1312.2	
10	747203.1	226325.8	1314.15	
11	747201.6	226376.95	1316.3	
12	747200.05	226428.85	1316.35	
13	747197.9	226481.15	1320.0	
14	747196.8	226533.0	1321.7	
15	747194.8	226585.15	1325.2	
16	747194.00	226637.05	1327.8	
17	747191.4	226689.25	1331.31	
18	747185.	226742.	1336.	*
19	747186.	226792.	1345.	*
20	747185.6	226844.5	1352.	*
21	747185.20	226897.00	1354.25	
23	747258.9	226223.2	1310.5	
24	747257.05	226275.45	1314.7	
25	747254.95	226327.7	1314.9	
26	747253.05	226377.8	1317.45	

27747251.5	226428.8	1319.15	
28747249.6	226480.8	1321.4	
29747248.3	226533.5	1323.65	
30747246.6	226585.15	1325.8	
31747244.95	226637.55	1330.65	
32747244.05	226690.95	1333.75	
33747241.8	226742.1	1338.65	
34 747238.	226796.	1344.5	ł
35747238.35	226845.7	1355.7	
36747237.85	226898.55	1355.3	
38 747309.	226224.	1311.5	,
39747308.2	226276.9	1315.5	
40747306.5	226328.75	1317.	
41747305.3	226379.25	1317.55	
42747303.5	226430.45	1319.35	
43747302.1	226483.05	1322.6	
44747300.45	226535.3	1323.8	
45747298.75	226587.85	1325.2	
46747297.15	226639.75	1328.75	
47747295.5	226692.0	1332.9	
48747293.9	226744.15	1336.4	
49747291.2	226794	1341 5	×
50747290.8	226847 3	ca 1346	*
51747287.9	226898.5	ca 1351	*
52747359.65	226278.51	1313 95	
53747358.05	226329 75	1313.33	
54747357 65	226380 7	1317 65	
55747356.15	226430.30	1318 5	
56747354.4	226483 4	1320 5	*
57747352.55	226536 5	1323 3	
58747351.65	226589 05	1322 65	
59747350 4	226641 05	1325 2	
60747348.15	226693 4	1329 4	
61747345 55	226746 65	133/	
62747340.4	226794.1	1338 9	
63747343.2	226848.85	1343 1	
64747338.0	226898 35	1342 65	
66747409 1	226331 05	1315 2	
67747409 85	226382 38	1318 05	
68747407 45	226434 4	1315 1	
69747406 1	226493 1	1010 5	*
70747405 20	220403.1	1221 1	
71747401 0	226505.33	1220.0	
72 747401.0	220030.0	1215 5	Ĵ
73 747461	220332.	1310 1	Ĵ
74 747459	220303.	1210	Ĵ
13 141407. 75 747400	220430. 226150	1310. 1315 5	т х
1 141407.	220430.	1312.2	~

•

*

*

*

ANHANG B

NIEDERSCHLAGSMESSUNGEN IM TURBENRIET

Die Niederschlagsmessungen wurden vom 1. Juli (Tag 183) bis zum 29. August 1984 (Tag 242) mit einem automatischen Niederschlagsmesser mit Wippe in bodeneben aufgestellter Lage durchgeführt (Koordinaten 747250.5 / 226349.5).

 $\frac{1}{2}$ \leq

Tag	N [mm/Tag]	Tag	N [mm/Tag]	Tag N	[mm/Tag]
183	0	204	1.7	225	1.5
184	29.3	205	0.	226	7.4
185	27.4	206	0.	227	0.1
186	2.8	207	14.8	228	0.
187	1.6	208	39.9	229	1.5
188	0.	209	4.3	230	0.
189	0.	210	5.2	231	0.
190	0.	211	0.1	232	0.
191	0.	212	0.	233	0.
192	0.	213	0.	234	0.1
193	0	214	4.8	235	0.1
194	4.5	215	0.1	236	0.1
195	0.1	216	0.	237	3.5
196	0.	217	0.	238	7.1
197	31.2	218	18.4	239	3.1
198	14.7	219	0.1	240	0.0
199	4.6	220	0.	241	0.
200	0.4	221	4.5	242	Ο.
201	0.	222	0.2		
202	0.	223	22.3		
203	0.	224	25.1		

C.1 STRATIGRAPHISCHE TABELLEN

Die nachfolgenden Tabellen entsprechen der Datei, welche für die stratigraphischen Darstellungen benutzt wurde.

Abkürzungen

In der nachfolgenden Tabellen werden die folgenden Abkürzungen für die Haupt- und Nebenkomponenten sowie die Makroreste gebraucht:

ALH	Ainus-Holzreste	NST	Nadel-Streu
BRM	Braunmoose	ORG	Organisches Material
CAL	Carex limosa	(torfig)	-
ERR	Ericaceen-Reiser	PHR	Phragmites-Reste
EVA	Eriophorum vaginatum	PIN	Picea-Nadeln
HOL	Holzreste (indet.)	PSN	Pinus-Nadeln
HUM	Humus (Mull)	RIN	Rinden (indet.)
MEN	Menyanthes-Samen	SCH	Scheuchzeria palustris
MOD	Moder	TON	Ton
MST	Molinia-Streu	UEB	Übergang Torf-Ton

Die Probenummern entsprechen den Messpunktnummern, der Zersetzungsgrad ist nach vonPost.

Treten Haupt- und Nebenkomponenten auf, ist ihr anteilmässiges, von Auge geschätztes Verhältnis nach der Abkürzung in Quartilen angegeben.

Für die zeichnerische Darstellung wurden folgende Bestandteile als organisches Material zusammengefasst: ALH, HOL, MOD, MST, NST, ORG, PSN.

STRATIGRAPHISCHE TABELLEN

Probe	Tiefe	Zers.	Haupt-	Neb	Makroreste	Bemerkungen,
Nr.	ab	Grad	Komp.	Komp.		Farbe
3	0		NST		PIN	
	3		MOD 3	HUMI		
	1		EVA2	HUM2	EVA	MITTEL ZERS.
	24		EVA2	TON2		UEB
	26		TON			BRAUNGRAU
	40					
Probe	Tiefe	Zers.	Haupt-	Neb	Makroreste	Bemerkungen,
Nr.	ab	Grad	komp.	komp.		Farbe
4	0		SPH3	BRM1	PIN, BL	BLÄTTER v.VACC.
	3	3	SPH3	ERR1	EVA	
	12	3-4	SPH2	EVA2	ERR	
	19	4	EVA3	ERR1	SPH	
	42	5	EVA3	ERR1	MEN, CAL, ALH	
	50	6-7	EVA3	SPH1	MEN, CAL	BREIIG
	73	7	EVA3	SPH1	ALH	BREIIG, FEUCHT
	91	8	EVA2	SPH2	ALH	
	100		ORG2	TON2	ALH	
FASERI	G; DUNI	KELBRAU	N			
	110		ORG2	TON2		UEB; SCHWARZ
	115		TON3	ORG1		
FASER	G; DUNI	KELBRAU	N			
	150					
Probe	Tiefe	Zers.	Haupt-	Neb	Makroreste	Bemerkungen,
Nr.	ab	Grad	komp.	komp.		Farbe
5	0	1	SPH		SPH	SPH-ACUTIF-GR
	9	1-2	SPH		EVA	
	15	3	SPH2	EVA2	SPH, EVA	RELAT. TROCKEN
	30	3	EVA2	SPH2	ERR, MEN, RIN, CAL	VEREINZ.HOL 1CM
	40	3	EVA2	SPH2	HOL, CAL, MEN	
	50	4	EVA3	SPH1	HOL, CAL, MEN, 1CM	PIN
	67	4	EVA3	SPH1	CAL, ALH	
	75	5	EVA3	SPH1	ALH, PHR	
	80	5	EVA3	SPH1	HOL	
	90	4	EVA		SPH, PHR, HOL	
	105	4	EVA		SPH. CAL. ERR. ALH.	PHR
	115	4	EVA		SPH, HOL, SCH	
	125	4	EVA		SCH.ERR.HOL	2CM.VIEL SCH
	135	3-4	EVA		SCH, HOL	,
	144	-	HOL			HOLZHORIZONT
	147	4	EVA		HOL.SCH	
	151	3-4	EVA		SCH.MEN	
	160	:	EVA		SCH.CAL	
	170	3	EVA		SCH. ERR	
	190	3-4	EVA		SCH	
	202	3-4	EVA		SCH, MEN, HOL	
	220	4	EVA		HOL, ALH, MEN	
	236	4	EVA		HOL, MEN	
	240	4	EVA			
	250	5	EVA		HOL	
	260	6	EVA			
	271		EVA2	TON2		UEB

	273 275		TON		SCH	
Probe Nr.	Tiefe ab	Zers. Grad	Haupt- komp.	Neb komp.	Makroreste	Bemerkungen, Farbe
6	0 3 12 20 22		NST MOD MOD MOD MOD		PIN	FEIN ZERS. MOD FEIN ZERS. MOD FEIN ZERS. MOD SCHMIERIGER MOD
	27 29 20		MOD3 MOD2	TON1 TON2	SPH	GUT ERH. SPH
	45 50 60	3 3-4 3-4	EVA3 EVA EVA	SCH1	CAL, SCH, HOL SCH, CAL ERB, SCH	WENIG HOL
	70 80	4 4	EVA EVA3	SPH1	SCH, CAL, PHR, SPH ERR, SCH	
	90 100 105 115 125	3 3-4 4 4	EVA3 EVA3 EVA EVA	SPH1 SPH1	ERR, SCH ERR, SCH ERR, SCH SCH, ALH SCH, HOL	GROSSE EVA
	135 145 150 155	4 4 5 6 7	EVA3 EVA EVA EVA	SCH1	SCH, HOL SCH, HOL ERR HOL	1CM SCHLAMM
	175 185 195 200	5-4 4 4 4	EVA EVA EVA EVA		EVA EVA EVA	SCHLAMM TROCKEN SCHLAMM NASS SCHLAMM TROCKEN
	225 236 240 250	4	EVA EVA2 TON	ton2		UEB DGRAU
Probe Nr.	Tiefe ab	Zers. Grad	Haupt-	Neb	Makroreste	Bemerkungen, Farbe
9	0 5 10 15	2 3 4	SPH SPH SPH SPH		ERR, EVA, MOD ERR, EVA, SCH ERR, REZ.WURZELN EVA, ERR, PIN	KR MELIGER MOD
	25 28 29 35	5 5 5-4 4	SPH3 EVA EVA EVA	EVAL	HOL HOL HOL, SCH	ALNUS-ZAPFEN 1CM
	90 112 124 127	4343	EVA EVA EVA EVA EVA		SCH MEN HOL, RIN, EVA SCH, MEN, CAL HOL	LANGE SCH 102:SAMEN
	152 154 168 185	5 5 6-7	EVA EVA EVA EVA		HOL, SCH	
	190 200 230 237	7 7	EVA EVA EVA2 TON3	ton2 org1	EVA HOL SAN	SCHMIERIG
	247 260		TON	. –		BRAUNGRAU

Probe Nr. 10	Tiefe ab 0	Zers. Grad	Haupt- komp. SPH	Neb komp.	Makroreste	Bemerkungen, Farbe BEZENT
	5	1	BRM2	SPH2	ERR	NS2EN1
	20	6	SPH3	BRM1	ERR	
	25	7	SPH3	EVA1	2.4.	
	33	4	SPH2	EVA2	EVA . ERR . SCH	
	43	5	EVA	J.112	EVA ERP SDH	
	50	7	SPH3	EVA 1	EVA ENGLISH	
	60	5	SPH2	EVA2	BVA	
	65	ă	EVA3	SDH1		
	70	4-5	EVA3	CDU1		1.0M
	80	5	EVAS	SPU1	FUN HOI	ICM
	95	ĥ	EVA2	SDH2	EVA ALU	1.0M
	100	4	EVAS	CDU1	EVA, ADA	NIEL SCH
	120	4	-3	FUA	EVA, SCH	VIEL SCH
	130	3-4	EVA	DAV	FVA ATH CCU	SCH, EKK
	152	5 4	HOL		EVA, ADA, SCA	
	152	4	FVA		SCN	
	160	1-3	EVA EVA		SCH EDD	170. DTM
	100	3-4	EVA	CDUI	SCH, ERR	1/9:PIN
	200	J-4 1	EVAJ	SPH1	ERR, ALH, SCH	01.0
	200	е С	EVAS	SPHI	EVA, ERR	213:SAMENSCHALE X
	225	5	EVA DDMO		ERR, SCH	
	200	4	BRMZ	EVAZ	ALH	
	200	4	EVA3	SPHI	ALH, CAL	
	205	5	BRM3	EVAL	CAL, EVA, ERR	
	2/5	5-4	EVAJ	BRMI	ERR, MEN, SCH	
	200	4	EVA		BRM, SCH, CAL	
	210	4	EVAJ	SPHI		
	310	5	BRM2	EVA2		
	317	5-4	EVA		ALH, RIN, SCH	-
	319	4	EVA		ALH	3CM
	330	5	EVA		EVA	
	340	6	EVA			KOMPAKT
	350		EVA		ALH	BREIARTIG
	360	- ⁻ -	EVA		EVA, PHR	KOMPAKT
	370	5-4	EVA		ALH, PHR, SCH	
	400	5	EVA		PHR, SCH, EVA	
	410	e c	EVA		ALH, PHR, SCH	FEUCHTER
	420	5	EVA		PHR, SCH, HOL	1CM; HORIZONTAL
	400	5	EVA	TO 110		HORIZ.GESCH.
	401		EVAZ	TONZ		UEB
	402		TON			BRAUNGRAU
	490					
Probe	Tiafa	Tore	Haunt-	Nob -	Makaaaaa	Domo uluur an a
Nr	ah	Grad	haupt-	kemn	Makroreste	Bemerkungen,
11	0	Grad	вым	Komp.		
	1		NCT		EDD	PLEUR.SCHREBERI
	2	1	MOD		ERR	
	12	2	MOD		EKR	
	20	2	EVA CDU2	ETT 1	EVA, SCH, ERR	
	20	21	SPRS CDU2	EVAL	SCH, ERR, EVA	
	27	3-4	5243	EVAL	SCH, ERR, CAL	
	43	4	SPHZ	EVAZ	SCH, ERR, EVA	
	50	5	EVA		CAL, MEN, SCH, EVA, E	IKK FEUCHTER
	55	5	EVA CDUO	E173 0	CAL, SCH, BRM	
	75	5	orn2 opu2	EVAZ	CAL, SCH, ERR	
	22	2	ornz Ntu	EVA2	CAL, SCH, ERR	
	92 05	5	ALA EVA		011 TV1	
	90 100	2	EVA		CAL, EVA	
	110	4	EVA HOI		HOP	4.500
	114	5.6	RUL			4, JCM
	114 1	0.00	ъvд			SCHWARZ

	118 121 147 150		EVA2 TON TON	ton2		BRAUNGRAU BLAUGRAU
Probe Nr. 12	Tiefe ab 0	Zers. Grad	Haupt- komp. SPH	Neb komp.	Makroreste	Bemerkungen, Farbe REZENT
	5 60 63	6 6-5 5			ALH, SCH MEN, HOL, ERR EVA, ERR	REZ.POLYTRICHUM
	72	5-4	-		SPH, ERR, EVA	PICEA-KNOSPEN
	90	4	EVA3	SPH1	EVA, SCH, EKK	WIRK VERED.
	100		EVA3	TON1	ORG	
	103		TON3	EVA1	ORG	
	114		TON			BRAUNGRAU
	150		101			ine protocologica i de la companya de
Probe	Tiefe	Zers.	Haupt-	Neb	Makroreste	Bemerkungen,
13	0	Grau	SPH	Komp.		REZENT
	5	1-2	SPH		SPH, ERR	
	25	3	SPH2	EVA2	EVA, ERR	
	40	4	EVA2	SPH2	ERR, EVA	TROCKEN
	100	4-5	EVA		EVA, EKK, SCH	KOMPAKT
	110	5	EVA		EVA, SCH, ALH	FEUCHTER
	150	5-6	EVA		SCH, ALH	2CM
	200	7	EVA		EVA, ALH	225:MEN/235:SCH
	239	5 6-7	EVA		en Eva	
	274	7	EVA		PHR, ALH	
	287	7	EVA		PHR, SCH, ALH	3CM
	300	6	EVA		PHR, EVA, SPH	an ooken
	338	6-7	EVA		EVA HOL	BRETARTIG
	360	ັ 7	EVA		EVA	,ALH
	375	7	EVA		EVA, ERR, ALH	2CM
	400	7	EVA		EVA, SCH, MEN	1.01/
	405	7-6	EVA		EVA, ALH	KOMPAKT
	474	6	TON			DGRAU
	478		TON2	eva2		UEB, SCHWARZ
	482 490		TON			KIESEL
Probe	Tiefe	Zers.	Haupt-	Neb	Makroreste	Bemerkungen,
Nr.	ab	Grad	komp.	komp.		Farbe
14	5		MOD		FDD WITD	
	20	6	EVA2	SPH2	EVA, SPH	
	30	5	EVA		EVS, SCH	KL.KIESEL
	65	6	EVA			
	73		EVA2	TON2		UEB
	100		TON			GRAUBKAUN
Probe	Tiefe	Zers.	Haupt-	Neb	Makroreste	Bemerkungen,
NE. 15	ab N	Grad	KOMP. SPH2	KOMP. BBM2	SPH. BRM. DTN	Farde Polytrichum
	3	3	SPH2	EVA2	SPH, EVA	EVA 10CM LANG

	20 25 35 36 65 75 76 85	4 5 5	SPH2 EVA3 NST3 EVA EVA EVA2 TON	EVA2 SPH1 EVA1 TON2	ERR, EVA, SPH ERR, HOL PIN ERR, ALH	1CM 1,5CM UEB GRAUBRAUN
Probe Nr. 16	Tiefe ab 0 2 10 35 50 68 75 89 100	Zers. Grad 5-6 5-4 3 4	Haupt- komp. BRM SPH2 EVA3 EVA EVA EVA EVA EVA EVA2 TON	Neb komp. EVA2 SPH1 TON2	Makroreste BRM EVA EVA, ERR, HOL EVA PHR PHR	Bemerkungen, Farbe REZENTE BRM TROCKEN 47:PHR BRAUN GRAUBRAUN GRAU
Probe Nr. 20	Tiefe ab 0 10 25 40 42 50	Zers. Grad 4 5	Haupt- komp. SPH EVA3 EVA TON2 TON	Neb komp. SPH1 EVA2	Makroreste WUR	Bemerkungen, Farbe REZENT GRAUBRAUN
Probe Nr. 21	Tiefe ab 0 5 12 20 25 28 32 40 50 85 95 117 122 123 150	Zers. Grad 2 2-3 7 2 4-5 5-6 6 6 6 6	Haupt- komp. SPH SPH SPH SPH2 EVA EVA EVA EVA EVA EVA EVA EVA EVA EVA	Neb komp. EVA2 TON2	Makroreste PIN ERR ERR ERR ERR EVA, ERR SCH, ERR SCH, ERR SCH, ERR, SCH EVA SCH, ERR HOL HOL ORG	Bemerkungen, Farbe REZENTE SPH REZENTE SPH HORIZONTAL HORIZONTAL KOMPAKT GROSSE EVA KOMPAKT 1CM GRAUBRAUN
Probe Nr. 23	Tiefe ab 0 15 37 42 43 50	Zers. Grad 3 5	Haupt- komp. SPH3 SPH SPH2 EVA2 TON	Neb komp. BRM1 EVA2 TON2	Makroreste BRM	Bemerkungen, Farbe POLYTRICHUM HELLBRAUN DUNKELBRAUN GRAUBRAUN
Probe Nr. 24	Tiefe ab 0 9 19 35	Zers. Grad 2-3 3	Haupt- komp. SPH SPH SPH SPH3	Neb komp. EVA1	Makroreste ERR SPH SPH, EVA, ERR SPH, WUR, ERR	Bemerkungen, Farbe REZENT SEHR NASS NASS

	40 50 70 80 100 115 120 124 126 150	5-6 6 5 3 3 4 6	SPH2 EVA3 EVA EVA EVA EVA EVA EVA TON3 TON	EVA2 SPH1 SPH1 SCH1 EVA1	ERR, EVA, HOL EVA, HOL, SCH EVA, HOL EVA, ERR ERR, EVA, SCH ERR, SCH SCH	1CM; ANDROMEDA- BRAUN DUNKELBR, TROCKEN BRAUNGRAU
Ducho			11 a	Mah	Mahuanaaha	Demankungan
Probe	Tiere	Zers.	Haupt-	NeD	Makroreste	Bemerkungen,
259	a.)	Grau	FUA3	CDU1	FVA	rarbe
254	16	2	CDU2	SFRI EVA1	EVA	
	10	3-1	SFR3	EVAL EVAL	EVA	
	33	2	FUNS	CDUI	EDE WIID	
	53	43	EVA3	SPH1	SCH ERR	
	59	45 -2	EVAS	CDU1	FPP WIIP HOT.	
	88	3	EVAJ	CDU1	SCH	
	97	3-4	EVAJ	SPHI	SCH.ERR	
	108	J-4 4	EVAJ	SEMI	HOL	
	117	4	EVAR	SCH1	SPH. ERR	
	120	5	EVA2	SPH2	•••••	
	123	7	EVA3	SPH1	ERR	
	126	5	EVA3	SPH1		
	132	4	EVA3	SPH1	CAL	
	157	4-3	EVA		EVA	
	162	3	EVA		EVA	DICHT
	168	3	EVA3	BRM1	CAL, SCH	
	176	3	BRM3	EVA1	SCH, CAL, ERR	
	183	3	eva3	BRM1	ERR, SCH, CAL	
	192	3	BRM3	EVA1	ERR, CAL	
	197	3	EVA3	BRM1	SCH, CAL	
	202	3	BRMJ	EVA1	EVA	
	208	3	EVAS	BKMI	SCH, HOL, CAL	
	217	3-2	EVAJ	BRMI	SCH, CAL, EVA	
	241	2-3	EVAJ	BRM1	CAL CAP	
	255	2-3	BBWS	EVA1	CALL BRM	
	263	2-3	EVA3	BRM1	CAL, BRM. EVA	
	267	3	EVA3	BRM1	CAL, EVA, PIN	2VERSCH.BRM
	272	3	EVA		EVA, CAL, SCH	
	279	3	EVA		EVA, MEN	
	288	3	EVA		MEN, PHR	3CM LANG
	290	3	EVA		EVA, MEN, HOL	
	295	3	EVA		EVA, MEN	
	306	3	EVA		EVA	
	317	4	EVA		ALH	1CM
	321	4-5	EVA		EVA	
	327	5-4	EVA			
	332	4	EVA		EVA	FASERIG
	337	4	EVAZ	HOL2	HOL	3CM
	342	3	EVAZ	HOL2		DA CEDT 7
	34/	4	EVAS	HOLZ		FASER15
	333	2	EVA EVA	NOT 1	EVA, HOL	
	323	s c	EVAJ	HOPT	EUN HOI	
	202	0	EVA		EVA, HUL	
	377	ی ۵	eva FVD		EVA VOI	3CM LANG
	382	4	EVA EVA		HOL	KOMDAKT
	398	4	EVA3	PHR1	PHR, EVA	2X2CM
		-				

	402 413 420 438 448 457 465 483 492 510	5 4 4 5-6 7-8	EVA3 PHR2 EVA2 EVA3 ORG3 ORG2 TON3 TON TON TON	HOL1 EVA2 HOL2 HOL1 TON1 TON2 ORG1	HOL PHR, EVA, HOL EVA, HOL EVA EVA, HOL EVA ORG	1CM; HORIZONTAL 2X2CM; HORIZ. UEB DUNKELBRAUN BRAUNGRAU GRAU MIT WEISSEN KIESELN 1, 5CM
Probe Nr. 26	Tiefe ab 0 3 16 21 33 50 100 125 130	Zers. Grad 1 2 3 5 6 5-4 4 4	Haupt- komp. NST3 SPH SPH3 SPH2 EVA3 EVA EVA EVA EVA EVA2 EVA2	Neb komp. ERR1 EVA1 EVA2 SPH1 BRM2	Makroreste BRM, SPH, BL SPH, ERR SPH, ERR SPH, EVA EVA, ERR, HOL EVA, SCH EVA, ERR, SCH EVA, ERR, SCH, BRM EVA, BRM, CAL EVA, BRM, CAL	Bemerkungen, Farbe VACC.ULIG. LOCKER WIRR TROCKEN FEUCHT
	138 182 200 241 257 258 275 276 301 303 319 328 350	4 4 5 78	EVA EVA EVA HOL EVA EVA EVA EVA2 TON3 TON TON	TON2 ORG1	EVA, ERR, SCH EVA, ERR, HOL, SCH EVA, ERR, CAL, SCH EVA, SCH EVA, SCH HOL, RIN, EVA EVA, TON	FEUCHT BREIIG BREIARTIG BRÜCHIG UEB BRAUN BRAUNGRAU GRAU
Probe Nr. 27	Tiefe ab 0 7 33 50 63 80 100 144 146 150	Zers. Grad 1-2 5-6 5 6 7	Haupt- komp. SPH3 SPH EVA3 EVA EVA EVA EVA EVA EVA2 TON	Neb komp. BL EVA1 SPH1 TON2	Makroreste 1 ERR, SPH SPH, EVA, ERR, CAL EVA, ERR EVA, MEN EVA, SCH EVA, HOL	Bemerkungen, Farbe BL ANDROMEDA LOCKER UEB BRAUNGRAU
Probe Nr. 28	Tiefe ab 0 10 29 39 40 48 57 68 100 108 112 164	Zers. Grad 1 7 1 4 4 4-3 6 7 6	Haupt- komp. SPH SPH SPH3 SPH3 SPH3 SPH3 EVA EVA HOL3 EVA HOL3	Neb komp. EVA1 EVA1 EVA2 EVA1 EVA1	Makroreste SPH, BRM, BL SPH, BRM HOL SPH, SCH EVA, SPH, ERR, HOL EVA, SPH EVA, ERR, SCH, HOL EVA, SCH EVA, SCH EVA	Bemerkungen, Farbe POLYTR./VACC. POLYTR.; LOCKER BREIARTIG SUBREZ.SPH

ŝ

			•			
	167	6	EVA		EVA, SCH	
	200	7	EVA		EVA, ERR, SCH, MEN,	HOL
	250	7	EVA3	SPH1	EVA	
	278	7	EVA3	BRM1	EVA, BRM	
	280	6	EVA		EVA	
	341	7	EVA		EVA, HOL, SCH, ALH	328:ALH; BREIIG-
NAS	S					
	350	7	EVA		EVA, HOL	
	380	7	ORG3	TON1		
	390	7	TON3	ORG1		
	415		TON			418: SANDBAND; GRAU
	443					M. ABDUEN KIESEDN
Pro	be Tiefe	Zers.	Haupt-	Neb	Makroreste	Bemerkungen,
Nr.	ab	Grad	komp.	komp.		Farbe
29	0		SPH3	ERR1		REZENT
	3	1	SPH		SPH, ERR, EVA	LOCKER
	9	2-3	SPH3	EVA1	EVA, SPH, HOL	
	28	3	SPH		SPH, ERR, EVA	SPH: SUBREZENT
	31	3-4	EVA2	SPH2	EVA	
	35	6	EVA2	SPH2	EVA, SPH, ERR	
	58	4	EVA2	SPH2	EVA, SCH, ERR, MEN,	BRM
	100	3	EVA		EVA, SCH	114:HOL 2CM
	135	4	EVA		EVA, SCH	
	140	4-5	EVA3	SPH1	EVA, SCH	
	180	4-5	EVA		EVA, SCH, ERR	
	200	4-5	EVA3	SPH1	EVA, SCH	
	216	4	EVA2	SPH2	BRM, EVA, SPH	
	218	4	EVA		EVA, ERR, SCH	
	238	4	ALH3	MEN1	SCH, MEN, ALH	
	239	4-5	EVA		ALH, SCH, MEN, CAL	
	250	6-7	EVA		SCH, CAL, ALH	WASSERIG
	290	8	EVA3	ERR1	ERR, HOL	WASSERIG
	294	~	HOL			
	300	ъ 0	EVA3	ERRI	EVA, HOL	
	320	e	EVAJ	ERKI	EVA, HOL, TON	HED. TROCKEN
	370		OPC3	TONZ		SCHWAR7
	380		TON	IONI		GRAUBRAUN · SANDIG
	400		101			0121021210117 0111010
Pro	be Tiefe	Zers.	Haupt-	Neb	Makroreste	Bemerkungen,
Nr.	ab	Grad	komp.	komp.		Farbe
30	0		MOD 3	ERR1		
	5	1-2	SPH		HOL, ERR	
	9	5	SPH		ERR, EVA	
	29	5-0	SPA		EVA, ERR, HOL	AA.COU CURDEZENT
	50	7	EVA		EVA, HUL	NINKELBRAIN
	94	'	EVA2	TON2		LIEB
	96		TONS	OPGI		DUNKELBRAUN
	100		1000	01.01		20111220121011
Pro	be Tiefe	Zeis.	Haupt-	Neb	Makroreste	Bemerkungen,
Nr.	ab	G∷ad	komp.	komp.		Farbe
31	0		BRM		BL	VACC.BL
	2		MOD3	ERR1		
	6	ž	SPH		SPH, ERR	
	9	3	SPH2	EVA2	SPH, EVA, ERR	
	17	5-6	EVA		SPH, EVA, ERR	mp o o way
	100	e G	EVA		EVA, SCH, ALH	TRUCKEN
	1 4 1	0 *)	EVA		EVA, SCH	142/172.040
	T 48 T	1	E V A		11 Y A / A HA	/_/ <i></i>

EVA,ALI

	185 192 200 239 243 250 253 259 264 269 300	7 7-6 6 7-8	EVA2 EVA EVA EVA EVA2 TON3 TON2 TON3 TON	HOL2 TON2 ORG1 HOL2 ORG1	ALH EVA, PHR EVA, PHR HOL HOL	BREIIG HORIZONTAL UEB GRAUBRAUN GRAUBRAUN GRAU
Probe Nr. 32	Tiefe ab 0 4 13 26 37 65 100	Zers. Grad 3-4 4-5 6-7 6 6 6	Haupt- komp. SPH2 SPH TON3 EVA EVA3 EVA EVA	Neb komp. MOD2 ORG1 SPH1	Makroreste ERR SPH,ERR ERR ERR,EVA,CAL EVA,HOL,SCH,ERR EVA,SCH,HOL EVA	Bemerkungen, Farbe REZENT LOCKER
	118 150 173 176 200 229	7 7-8 7 7-8	EVA EVA SPH EVA EVA ALH3	EVA1	ERR, EVA, SCH EVA, ERR, ALH ERR, SPH EVA, SCH, ALH EVA, ALH	NASS, BREIIG FEUCHT WÄSSERIG 2CM
	235 242 248 266 280 286 296 300	8 5-6 7	EVA3 EVA EVA3 ORG3 ORG2 TON TON	ALH1 ALH1 TON1 TON2	ALH, TON EVA, TON SCH HOL, SCH, PHR PHR	BREIIG 278:PHP UEB BRAUNGRAU DUNKELGRAU
Probe Nr. 35	Tiefe ab 0 2 15	Zers. Grad	Haupt- komp. BRM2 MOD MOD2	Neb komp. SPH2 TON2	Makroreste ERR, SPH	Bemerkungen, Farbe REZENT
	16 28 29 61 72 74 82	7 4 7	SPH2 SPH SPH2 EVA TON2 TON	EVA2 EVA2 ORG2	SPH EVA, SCH EVA	SPH:SUBREZENT UEB; BRAUNGRAU GRAU
Probe Nr. 36	Tiefe ab 0 5 9 12 16 21 28 29 50 88	Zers. Grad 2 3 7 4 5 5-6 6 6	Haupt- komp. SPH3 SPH SPH SPH4 SPH3 SPH2 SPH2 SPH EVA EVA	Neb komp. ERR1 TON1 EVA2	Makroreste SPH, ERR SPH, ERR ERR EVA, ERR SPH EVA, SCH EVA, SCH EVA, SCH	Bemerkungen, Farbe REZENT LOCKER SUBREZENT
	114		TON2	ORG2		UEB

.

	115 135		TON		ORG	GRAUBRAUN
Probe Nr. 39	Tiefe ab 0 4 17 21	Zers. Grad 3 7 7	Haupt- komp. SPH2 SPH SPH SPH3	Neb komp. BRM2 EVA1	Makroreste BL SPH, ERR, HOL ERR, SPH SPH, ERR, TON EVA SCH ERB	Bemerkungen, Farbe VACC.;POLYTRICH. LOCKER BREIIG
	34 67 68 71 73 75 80	8	EVA ALH3 EVA3 ORG2 TON TON	EVA1 TON1 TON2	EVA, SCH, ERR	2CM UEB BRAUN GRAU
Probe Nr. 40	Tiefe ab 0	Zers. G∷ad	Haupt- komp. SPH3	Neb komp. ERR1	Makroreste	Bemerkungen, Farbe REZENT
	4 16 24 33 57 112 150 162 170 175 177 195 200	2 3 4 5 6-7 5 6 5	SPH SPH SPH3 EVA3 EVA3 EVA EVA EVA EVA EVA2 TON TON	EVA1 SPH1 SPH1 ERR1 TON2	SPH, ERR SPH, ERR, EVA SPH, EVA EVA EVA, SCH, ALH EVA, SCH SCH, ERR, HOL ERR ORG	LOCKER, D. BRAUN LOCKER; HELLBRAUN HELLBRAUN DUNKELBRAUN BREIIG UEB BRAUN BRAUNGRAU
Probe Nr.	ZUU Tiefe ab	Zers. Grad	Haupt- komp.	Neb komp.	Makroreste	Bemerkungen, Farbe
41	0 7 14 37 64 100 150 199 200 219 234 241 302 335 345 393 413 416 439 450	5 5 4 6-7 8 8 7 6 4 4 5-6 7-8	MOD2 SPH SPH3 EVA3 EVA EVA EVA3 EVA3 EVA3 EVA2 EVA EVA EVA EVA EVA3 EVA2 TON TON	MST2 EVA1 SPH1 SPH1 BRM2 TON1 TON2	SPH, ERR EVA, ERR, SPH, CAL EVA, SCH EVA, SCH, ERR EVA, ERR EVA, ERR EVA, ERR ERR, EVA EVA, ERR, SCH EVA, BRM, PHR, SCH, G SCH, CAL, ERR, BRM EVA, SCH, CAL, PHR PIN, PHR, MEN EVA, PHR EVA	LOCKER FEUCHTER NASS NASS BREIIG SCH CAL 270:BRM BREIIG VIELE PIN;BREIIG DUNKELBRAUN UEB GRAUBRAUN GRAU
Probe Nr. 42	Tiefe ab 0 2 12 14	Zers. Grad 2 3 4	Haupt- komp. SPH3 SPH SPH2 EVA3	Neb komp. BRM1 EVA2 SPH1	Makroreste SPH, BRM SPH, ERR EVA EVA	Bemerkungen, Farbe POLYTR. REZENT LOCKER

r aroc	
POLYTR.	REZENT
LOCKER	

	18 50 57 71 72 100	6 7 5	EVA3 EVA2 EVA3 TON2 TON	TON1 TON2 TON1 EVA2	EVA, ALH	UEB BRAUNGRAU
Probe Nr. 43	Tiefe ab 0 7 12 22 31 34 53 79 123 124 133 150	Zers. G:ad 1 2 3 5 6 7 7 7	Haupt- komp. SPH SPH SPH2 SPH EVA EVA EVA ORG2 TON TON	Neb komp. EVA2 TON2	Makroreste BL SPH, ERR SPH, ERR ERR, EVA, SPH SPH EVA, ERR EVA, HOL EVA, ALH, ERR	Bemerkungen, Farbe VACC. LOCKER SPH:SUBREZ;BREIIG BREIIG BREIIG UEB BRAUNGRAU GRAU
Probe Nr. 44	Tiefe ab 0 3 11 17 29 53 73 100 148 177 258 260 298 300 307 309 349 360 399 400	Zers. Grad 2 3 4-5 6 4 6-7 6-5 5-6 7 7 7-8 8 7-6	Haupt- komp. SPH SPH3 EVA SPH2 SPH2 EVA3 EVA3 EVA3 EVA3 EVA3 EVA3 EVA2 EVA2 EVA2 EVA2 EVA2 EVA2 EVA2 EVA2	Neb komp. ERR1 EVA2 EVA2 EVA2 EVA2 SPH1 SPH1 SPH1 SPH1 HOL2 SPH1 BRM2 TON2	Makroreste SPH, ERR SPH, ERR EVA SPH, EVA, ERR EVA EVA, ERR, SCH EVA, ERR, SCH EVA, ERR, SCH EVA, ERR, SCH EVA, BRM EVA, SCH, ERR, PHR, G HOL EVA EVA, BRM, SPH EVA, PHR, ERR, ALH PHR, ERR, ALH ORG	Bemerkungen, Farbe REZENT LOCKER 50:HOL 50:HOL BREIIC BREIIG BREIIG BREIIG BREIIG UEB GRAU
Probe Nr. 45	Tiefe ab 0 37 53 61 73 135 153 206 218 232	Zers. Grad 1 2 3-4 4-5 5 6-7	Haupt- komp. SPH3 SPH EVA2 EVA3 EVA3 EVA TON2 TON	Neb komp. ERR1 EVA1 SPH2 SPH1 SPH1 ORG2	Makroreste SPH, ERR SPH, ERR, EVA SPH, EVA, ERR BRM, SPH, EVA EVA, ERR, SCH, CAL SCH, EVA EVA, SCH, PHR, ALH EVA	Bemerkungen, Farbe REZENT LOCKER UEB; FEUCHT BRAUNGRAU
Probe Nr. 46	Tiefe ab 0 5 11	Zers. Grad 2 4-5	Haupt- komp. SPH SPH SPH2	Neb komp. EVA2	Makroreste SPH SPH, ERR EVA, ERR, MEN	Bemerkungen, Farbe REZENT LOCKER

•

27 HOL 5 BREIIG 28 EVA EVA, ERR, ALH ERR, SCH, ALH BREIIG 55 6 EVA 6--7 74 EVA EVA, SCH 125 TON2 ORG2 UEB 127 TON ORG GRAUBRAUN 138 TON ORG, HOL GRAU; Z.T. ORANGE 150 Probe Tiefe Zers. Haupt- Neb.-Makroreste Bemerkungen, Nr. ab Grad komp. komp. Farbe 47 0 SED.FEHLT 12 4 SPH3 ERR1 SPH, ERR, EVA KR MELIG 18 5-6 EVA EVA, MEN 45 6-7 EVA ERR, ALH, SCH BREIIG 7 102 EVA EVA, ALH BREIIG BREIIG 130 8 EVA EVA, ALH 192 8 EVA HOL, RIN, EVA 212 ORG2 UEB TON2 216 GRAU TON 230 Probe Tiefe Zers. Haupt- Neb.-Makroreste Bemerkungen, Nr. ab Grad komp. komp. Farbe 48 0 REZENT MOD2 ERR2 7 MOD2 EVA2 TROCKEN 5 42 TON2 ORG2 UEB 45 TON BRAUN 50 Probe Tiefe Zers. Haupt- Neb.-Makroreste Bemerkungen, Nr. Grad komp. Farbe ab komp. 52 0 SPH ERR REZENT 15 2-3 SPH3 EVA1 LOCKER 33 4-5 EVA3 SPH1 41 TON2 ORG2 UEB 42 TON ORG BRAUNGRAU 50 Probe Tiefe Zers. Haupt- Neb. -Makroreste Bemerkungen, G::ad Nr. ab komp. komp. Farbe 53 0 SPH SPH, BL ANDROMEDA, REZENT 3 2 SPH3 EVA1 SPH, ERR LOCKER SPH, EVA, ERR 23 3 SPH3 EVA1 DICHTER 31 SPH, EVA, ERR 4 SPH3 EVA1 41 SPH, ERR 4 SPH 42 5--6 SPH2 EVA2 EVA, ERR 48:PINUS-AST EVA, ERR 52 7 EVA BREIIG 62 6-7 EVA EVA, HOL, SCH, ERR HOL:113/119/122 124 TON2 ORG2 UEB 129 TON ORG GRAUBRAUN 145 TON BRAUNGRAU 150 Probe Tiefe Zers. Haupt- Neb.-Makroreste Bemerkungen, komp. Nr. ab Grad komp. Farbe 54 0 MST 2 MOD WUR FEIN 4 2 SPH SPH, WUR LOCKER 8 4 SPH DICHTER

12

28

62

4

4

4

SPH3

SPH3

EVA

EVA1

EVA1

SPH, EVA, HOL

HOL, ERR, MEN, PSH

EVA, SPH, ERR, SCH

KOMPAKT

38:MEN;48:PSH

C-13

	70	4	SPH2	EVA2	EVA, HOL, SCH	
	88	3	SPH		DW 101	
	102	3	SrnJ Spu2	EVAL	EVA, HOL	
	131	4	SPR3	EVAL FDD1	CDU FDD FVA	
	155	3	SFRJ FVB3	CDU1	CDU EVA CCU EDD	
	188	5-6	SDH2	SPH1 EVA2	SPH EVA, SCH, ERR	BRETTC
	200	6-7	EVA3	SDH1	EVA EDD SCH	BREIIG
	221	7	SDH2	FVA2	EVA, ERR, SCH	BREIIG, HORIZONTAL
	272	5	SDH3	EPR1	ERR EVA SCH	HORIZONTAL
		•	01.110	01442	CAL, PIN	ALNUS-BLÄTTER
	286	e	EVA3	SPH1	SCH. EVA. PIN	HORIZONTAL:
		•			MEN, BRM	296:MEN
	308		HOL		EVA	
	317		ORG2	TON2	PHR	UEB
	321		TON		ORG	GRAUBRAUN
	329		TON			BRAUNGRAU
	350					
Probe	Tiefe	Zorg	Haunt-	Nob -	Makroreste	Bemerkungen
Nr	ah	Grad	haupt-	komp	Makiolesce	Earbo
55	0	Grad	RRM3	MGT1	WID	PE7ENT
55	5	7-8	EVA	M011	FVA	SCHMIERIG
	44	้สั	EVA		EVA.ALH.BL.PIN.E	R BREITG
	76	7	EVA2	SPH2	EVA. SPH. ERR	at Briding
	93	8	EVA3	SPH1	EVA, SCH, ERR, ALH	BREIIG
	105	6	EVA		EVA, SCH, CAL	
	134	8	EVA		EVA, ERR, ALH	BREIIG
	163	8	EVA3	SPH1	EVA, ERR	BREIIG
	198	8	EVA3	SPH1	EVA, ERR, ALH	BREIIG; HORIZONTAL
	218	8	EVA		EVA, BRM, SCH	235:PIN
	268	7	EVA		PHR, ALH, MEN, ERR	1CM; 319:MEN
	350		HOL			NASS
	362	e	EVA		EVA	KOMPAKT
	377	7	EVA2	HOL2		NASS; ZERFALLEN
	381	8	EVA			NASS; ZERFALLEN
	389	8	EVA			FEUCHT
	413		TON2	ORG2		UEB
	420		TON		ORG	BRAUNGRAU
	432		TONS	ORGI	000	GRAUBRAUN
	437		TON		ORG	DUNKELGRAU
	450					
Probe	Tiefe	Zers.	Haupt-	Neb	Makroreste	Bemerkungen,
Nr.	ab	Grad	komp.	komp.		Farbe
57	0					SED.FEHLT
	23	3	MOD 3	EVA1		TROCKEN
	39		TON2	ORG2	ORG	UEB
	41		TON			GRAUBRAUN
	50					
Probe	Tiefe	Zers.	Haupt-	Neb	Makroreste	Bemerkungen,
Nr.	ab	Grad	komp.	komp.		Farbe
58	0		SPH		SPH, ERR	REZENT
	3	3	SPH3	ERR1	SPH, ERR, WUR	LOCKER
	14	3	SPH		SPH, ERR, EVA	
	31	6	EVA3	SPH1	EVA, ERR	
	48	6	EVA		EVA, ERR	
	71	•	EVA3	SPH1	EVA, SCH, PHR, CAL, A	ALH 90:PHR
	130	70	ALH			
	106	7-6	eva Eva		BVA, EKK, SCH, ALH	
	190 210	,-0 6	EVA EVA		CH FDD MEN	215. HOL 20M. HOPT?
	~ + V	•			Contraction and Contraction	210.1101 2011/1101112

	224 239 241 243 280	7 8	EVA EVA3 ORG2 TON	TON1 TON2	PIN, HOL, PHR HOL ORG	UEB BRAUNGRAU
Probe Nr. 60	Tiefe ab 0 3 8 31	Zers. Grad 2 6 7	Haupt- komp. SPH SPH SPH2 EVA OPG2	Neb komp. EVA2	Makroreste ERR SPH, ERR, WUR EVA, ERR EVA, ALH OPG	Bemerkungen, Farbe REZENT DICHT
	64 100		TON	1042	UND .	HELLBRAUN/GRAU
Probe Nr. 66	Tiefe ab 0	Zers. Grad	Haupt- komp.	Neb komp.	Makroreste	Bemerkungen, Farbe SED.FEHLT
	6 19 28 59 66 69 80 95	5-6 8 7 ຄ	SPH ORG3 EVA EVA ORG2 TON TON	ton1 ton2	SPH, ERR SCH, EVA, TON SCH, HOL, EVA SCH, ORG SCH, ORG HOL	NASS; LOCKER NASS; BREIIG UEB GRAUBRAUN GRAU
Probe Nr. 67	Tiefe ab 0 8 18 21 35 38 57 78 102 150 231 255 264 275 275 277 278 300	Zers. G::ad 1 3 4 3 6 7 5-4 7-8 8-9 8-7 6	Haupt- komp. SPH SPH SPH EVA3 EVA3 EVA3 EVA3 EVA3 EVA3 EVA3 EVA3	Neb komp. SPH1 SPH2 SPH1 SPH1 SPH1 TON1 ORG2	Makroreste SPH, ERR SPH, ERR SPH, ERR SPH, ERR, WUR, EVA SPH EVA, ERR EVA, ERR EVA, ALH, SCH BRM EVA, SCH EVA, SCH, ERR EVA, SCH, ERR EVA, SCH, ERR ORG, ERR	Bemerkungen, Farbe LOCKER; REZENT NASS LOCKER BREIIG 83: BRM BREIIG BREIIG BREIIG BREIIG; TROCKENEF UEB DUNKELGRAU
Probe Nr. 68	Tiefe ab 0 3 10 24 31 40 53 80 83 85 100	2ers. Grad 3 4-5 4 4-5 6	Haupt- komp. SPH3 MOD EVA SPH3 SPH3 SPH3 SPH2 EVA HOL TON2 TON	Neb komp. MST1 EVA1 EVA2 ORG2	Makroreste ERR ERR, WUR SPH, EVA SPH, ERR, CAL, EVA SPH, EVA, TON	Bemerkungen, Farbe REZENT KOMPAKT LOCKER FEUCHT UEB GRAUBRAUN

Probe Nr. 74	Tiefe ab 0	Zers. Grad	Haupt- komp. SPH	Neb komp.	Makroreste	Bemerkungen, Farbe REZENT
	4	2	SPH		SPH, ERR	LOCKER
	9	5	SPH3	ERR1	SPH, ERR	KR MELIG
	15	6	SPH		SPH, ERR, TON	
	25	4-5	SPH		SPH, ERR, EVA	SUBREZ.; LOCKER
	27	5	SPH2	EVA2	EVA, ERR, SPH	
	44	4	SPH2	EVA2	EVA, ERR	
	57	5-6	SPH2	EVA2	EVA, SCH, ERR	
	88	6	EVA		EVA, SCH, ALH	
	108	7	EVA		EVA, HOL, SCH	TROCKEN
	124		EVA3	TON1	EVA, MEN	
	128		TON2	ORG2	EVA, ORG	UEB
	131		TON		ORG	GRAUBRAUN
	144		TON			DUNKELGRAU

150 150

•

DUNKELGRAU

C. 2 STRATIGRAPHISCHE ABBILDUNGEN

Die Darstellung der Stratigraphie und des Zersetzungsgrades (Humifikation) basiert auf den Daten des Kapitels C.1. Bei den Punkten 12 und 68 wurde Torf abgebaut. Dies ist bei der Interpretation der Quertranssekte 6– 69, beziehungsweise 5–74 und der Längstranssekte 9–17 bzw. 66–69 zu berücksichtigen.

In den folgenden Darstellungen ist immer oben die Stratigraphie und vertikal versetzt die Humifizierung dargestellt. Die horizontale Achse ist in den Quertranssekten die y-Koordinate, in den Längsstranssekten die x-Koordinate. Die z-Koordinate ist die Höhe über Meer (Koordinaten der Bohrpunkte siehe Anhang A).

Stratigraphische Signaturen

Eriophorum-Torf Sphagnum-Torf Braunmoos-Torf

Schilf-Torf Organisches Material Grundmoräne (tonig)

Humifizierung nach von Post

	8	7 6 5 4 3 2	1
--	---	-------------	---

Abbildung C.1 Legende für die Darstellungen der Stratigraphie und der Humifikation. Die Signaturen lehnen sich an Troels-Smith (1955) an.

1310. 2 2 1310. 2 1310. 1310. 1310.

C.2.1 Quertranssekte: Stratigraphie und Humifikation

Abbildung C.2 Quertranssekt 9–52. oben: Stratigraphie, unten: Humifikation. Die horizontale Achse ist die y-Koordinate, die vertikalen Achse die Höhe [m ü.M.]. Mit Dreiecken ist die Lage der Bohrpunkte eingezeichnet.

7400.

7500.

7600.

7300.

7200.

7100.

Abbildung C.3 Quertranssekt 3-66

Abbildung C.4 Quertranssekt 4-73

Abbildung C.5 Quertranssekt 5–74. Punkt 12 und 68 liegen in abgetorften Gebieten und zeigen ein gekapptes Profil.

Abbildung C.8 Quertranssekt 7-57

Abbildung C.9 Quertranssekt 15-58

Abbildung C.10 Quertranssekt 16-59

Abbildung C.11 Quertranssekt 17-60

C.2.2 Längstranssekte: Stratigraphie und Humifikation

Abbildung C.12 Längstranssekt 2–7. oben: Stratigraphie, unten: Humifikation. Die horizontale Achse ist die y-Koordinate, die vertikalen Achse die Höhe [m ü.M.]. Mit Dreiecken ist die Lage der Bohrpunkte eingezeichnet.

Abbildung C.13 Längstranssekt 9-17

Abbildung C.14 Längstranssekt 23-33

Abbildung C.15 Längstranssekt 38-49

Abbildung C.16 Längstranssekt 52-61

Abbildung C.17 Längstranssekt 66-69

ANHANG D

Die nachfolgende Tabellen enthalten den für die Datierung mittels Pollenfrequenzen verwendeten Datensatz und die Prozentzahlen.

"sum2" und "sum" ist die Summe der gezählten Pollen der verwendeten Arten bzw. die Summe der gezählten Pollen nach der logarithmischen Transformierung. Die Tabellen sind dem Protokoll des Programms entnommen.

	GETDAT	13	.09.	89											
	Number	c of	used	pollen	spec:	ies i	s 15								
	names	of p	ollen	speci	es are	e:									
ABIE	s			APIAC	EAE		1	ARTEMI	SIA		E	ETUL	A IND.		
CARP	INUS			CICHC	RIACE	AE		ORYLU	s		F	AGUS			
POAC	EAE			PICEA			I	INUS	IND.		F	LANTA	GO LA	NCEOLA	ТΑ
SELA	GINEL	A SE	п.	ULMUS			Č	EREAL	IA &	JUGL	ANS				
	the na	111105	are :	horted	. to ti	he 4	firet	chara	cter	sint	he fr	1104	no ta	bles	
	cite in							01101.01							
				1											
	NUMDel	IOI	usea	sampie	S 15 4	231									
	Number	r or	samp.	es ins	trati	graph	1C Sec	Tuence	15	66					
	number	s of	samp	les ar	e: (t)	op: a	rray i	number	, bo	ttom:	samp.	e nun	nber)		
	1 2	2	3	4 5	6	7	8	9	10	11	12	13	14	15	
	4 9	91	.4 2	4 34	44	54	64	74	84	89	94	99	104	109	
														•	
1	6 17	1 1	8 1	9 20	21	22	23	24	25	26	27	28	29	30	
11	4 119) 12	4 12	9 134	139	154	164	174	184	194	204	214	224	234	
3	1 32	> 3	3 3	4 35	36	37	38	39	40	41	42	43	44	45	
24	4 255	5 26	4 27	4 284	294	299	304	309	314	319	324	329	334	344	
• •				1 201	2.24			505		517	52.7	52.5	00.	•••	
	c ^-		0 4	0 50	53	50	6.2	5.4	55	56	67	50	50	60	
25	A 250			1 204	204	404	414	124	125		440	454	460	161	
30	4 553	5 36	94 37	4 304	394	404	414	424	430	444	449	434	433	404	
						67		~~			-		74	75	
	1 64	2 6	03 0	4 63	66	6/	68	69	70	11	12	73	74	/5	
46	9 474	47	9 48	2 486	490	501	502	503	504	505	506	507	508	509	
	_	_													
7	6 71	ד ז	8	9 80	81	82	83	84	85	86	87	88	89	90	
51	0 511	51	.2 5	3 514	515	516	517	518	519	520	521	522	523	524	
9	1 92	29	I3 🥑	4 95	96	97	98	99	100	101	102	103	104	105	
52	5 526	5 52	7 52	8 529	530	531	532	533	534	535	536	537	538	539	
10	6 107	1 10	8 10	9 110	111	112	113	114	115	116	117	118	119	120	
54	0 541	54	2 5.	3 550	551	552	553	554	555	556	557	558	559	560	
12	1 122	2 12	3 12	4 125	126	127	128	129	130	131	132	133	134	135	
56	1 562	> 56	3 56	4 565	566	567	568	569	570	571	572	573	574	575	
•••						50.	500			0.1	5.2	0.0	9 .1		
12	6 13-	, 13	0 12	0 140	1.41	142	142	144	145	140	147	140	170	150	
57	6 13		0 13	0 500	141	192	143	244	140	140	147	140	143	100	
57	0 3/	51	0 3/	9 380	381	302	283	384	202	386	387	200	289	290	
15	1 152	: 15	3 15	4 155	156	157	158	159	160	161	162	163	164	165	
59	1 592	2 59	3 59	4 595	596	597	598	610	611	612	613	614	615	616	
16	6 167	16	8 16	9 170	171	172	173	174	175	176	177	178	179	180	
61	7 618	61	9 62	0 621	622	623	624	625	626	627	628	629	630	631	
18	1 182	18	3 18	4 185	186	187	188	189	190	191	192	193	194	195	
63	2 633	63	4 63	5 636	637	638	639	640	641	642	643	644	645	646	
								• • •	* • •	÷ .2	0.0	•		•.•	
19	6 197	19	8 19	9 200	201	202	203	204	205	206	207	208	209	210	

647	648	649	650	651	652	653	654	655	656	657	658	659	660	661
211 662	212 663	213 664	214 665	215 666	216 667	217 668	218 669	219 670	220 671	221 672	222 673	223 674	224 675	225 676
226 677	227 678	228 679	229 680	230 681	231 682	232	233	234	235	236	237	238	239	240

--- outliers of moving 5 point median cutoff is 10 times median

species	samp	old%	newŧ	oldC	newC
ABIES	454	1.33	.00	2	0
AP IACE	99	10.73	.71	30	2
APIACE	224	.28	.00	1	0
AP IACE	264	.23	.00	1	0
APIACE	274	.24	.00	1	0
AP IACE	314	.77	.00	3	0
AP IACE	319	. 95	.00	2	0
ARTEMI	94	.82	.00	2	0
ARTEMI	154	.22	.00	1	0
ARTEMI	284	.24	.00	1	0
ARTEMI	294	.28	.00	1	0
ARTEMI	314	.26	.00	1	0
ARTEMI	364	.16	.00	1	0
ARTEMI	404	.22	.00	1	0
ARTEMI	424	.83	.00	1	0
ARTEMI	444	1.47	.00	1	0
CARPIN	329	1.26	.00	2	0
CICHOR	9	.50	.00	1	0
CICHOR	14	1.44	.00	4	0
CICHOR	109	.65	.00	2	0
CICHOR	134	.18	.00	1	0
CICHOR	154	.43	.00	2	0
CICHOR	234	.27	.00	1	0
CICHOR	255	.22	.00	1	0
CICHOR	264	1.14	.00	5	0
CICHOR	284	.24	.00	1	0
CICHOR	294	.28	.00	1	0
CICHOR	314	.26	.00	1	0
CICHOR	319	5.71	.00	12	0
FAGUS	329	.63	.00	1	0
FAGUS	454	.66	.00	1	0
SELAGI	404	.15	.00	2	0
SELAGI	449	1.39	.00	2	0

1	poller	n cour	nts 2	2													
samp	ABIE	APIA	ARTE	BETU	CARP	CICH	CORY	FAGU	POAC	PICE	PINU	PLAN	SELA	ULMU	CERE	sum2	sum
type	1	2	22	1	1	2	1	1	3	1	3	2	3	1	2		
4	34	2	4	9	1	0	24	56	115	168	130	21	0	۲	3	574	338
9	16	2	3	17	13	0	6	39	70	64	272	18	0	1	11	532	199
14	12	2	2	27	12	0	14	69	136	80	57	26	0	3	18	458	273
24	73	3	5	10	9	0	30	140	62	176	42	1	0	5	5	561	464
34	65	1	0	9	16	0	30	203	27	175	31	3	0	1	4	565	513
44	49	1	1	7	4	0	14	173	31	104	55	5	0	1	0	445	366
54	28	3	3	17	16	0	27	180	85	134	67	11	0	4	0	575	431
64	33	0	0	23	22	0	50	204	49	154	23	4	0	7	0	569	504
74	73	2	4	6	4	0	20	122	81	115	49	8	· 0	3	0	487	365
84	62	1	0	24	9	0	27	101	41	88	34	2	0	7	0	396	328
89	100	3	4	25	2	1	53	105	68	116	147	1	0	3	0	628	422
94	54	2	0	10	4	1	22	77	32	62	79	1	1	0	0	345	240
99	59	2	0	22	0	1	20	59	50	80	43	0	0	1	0	337	251
104	52	0	0	9	5	0	28	87	49	107	22	2	1	3	0	365	299
109	79	1	3	21	0	0	24	53	19	108	79	2	0	6	0	395	304
114	70	0		15	3	0	21	153	24	125	24	0	0	14	0	452	410
119	67	1	1.	6	0	0	22	54	31	109	25	4	0	5	0	326	276
124	86	1	2	14	. 1	0	75	254	38	141	13	1	٥	2.	0	627	582
129	127	1		9	2	0	30	103	18	165	18	2	0	7	0	483	452
134	121	2	0	20	3	0	21	112	18	278	19	1	0	4	0	599	567
139	68	1	1	11	5	0	31	76	16	104	3	0	٥	8	0	324	308
154	115	2	(21	0	0	47	88	16	171	16	0	٥	9	0	485	458
164	93	0	(·	37	0	0	38	115	13	217	22	0	0	10	0	545	515
174	131	0	C	19	0	0	45	96	18	203	20	0	0	12	0	544	511
184	90	1	1	5	0	0	15	15	6	159	21	0	٥	15	0	328	305
194	111	1	3	13	0	0	21	35	10	279	26	0	0	7	0	506	475

204	117	1	1	10	0	٥	14	27	19	267	38	0	0	14	0	508	457
21 4	07	0	ō	11	0	0	12	10		165	22	0	0	0	0	226	304
214	95	U.					1.3	10		105	~~					520	504
224	122	0	0	7	0	0	17	4	6	188	37	0	0	13	0	394	356
234	124	0	0	4	0	0	25	9	9	171	23	0	0	31	0	396	369
244	120	~		-	Ň	-	20	1.5		220	10	<u>^</u>	-	22	<u>,</u>	450	475
244	120	U			U	U	29	12	2	220	19	U	Ų	23		438	435
255	114	0	;	8	0	0	31	14	Э	241	28	0	0	44	0	483	456
264	122	0	- 1	13	0	0	23	5	7	195	22	0	0	70	٥	457	433
207	122	Š	- <u>2</u>	13	Š	ž	2.5			195	~~~		š		ž	101	100
274	81	0	- 0	7	0	0	46	4	14	198	30	U	0	81	U	461	423
284	76	0	d l	8	0	0	90	5	8	162	17	0	0	68	0	434	413
204	02	Ā		Ē	õ	ñ	26	2	Ā	167	26	ñ	ñ	5.4	ň	277	351
294	32	U	J	5	U	0	20	3	4	101	20	U	0	54	0	211	221
299	53	0	0	2	0	0	38	1	6	85	22	0	0	54	0	261	237
304	209	٥	n	7	0	0	38	5	5	172	29	0	0	65	0	530	500
201	207			<i>.</i>		Š		~	1								
309	50	0	0	د	0	0	26	2	5	75	30	0	U	28	0	249	219
314	93	0	0	21	0	0	59	1	8	77	40	0	0	129	0	428	385
310	22	0	0	11	0	0	27	ò	7		29	٥	0	87	0	226	196
515	~~~~			11			~ ~ ~		-		20				ž	220	190
324	3	0	0	35	0	0	91	1	- 7	53	32	0	1	144	0	367	332
329	3	2	Û	16	0	0	38	0	3	15	16	0	0	78	0	171	155
324	Ā	-	~		~	Ā	47				20	Ā	0	61	, i	140	112
224		+	U	3	0	0	43	0	2	0	23	0	U	21		140	112
344	Q	4	D	6	0	0	45	D	1	3	15	D	D	51	0	125	111
354	0	1	0	15	ß	8	140	0	4	2	32	0	0	129	۵	331	299
260	~	÷	Ň	10	č	ň	1 2 2	č			25		Š	70		261	212
222	V	U	U	10	U	4	121	U	2	1	33	U	U	13	U	201	211
364	0	1	0	20	0	2	403	0	8	1	74	0	1	190	0	700	623
374	٥	5	٥	27	0	7	217	٥	11	٥	90	٥	0	145	0	502	407
2014		ž	ž									č		110			
384	U	- 2	0	25	U	9	303	0	19	U	83	U	0	229	U	6/6	281
394	0	3	0	37	0	11	369	0	7	. 0	120	0	0	230	0	777	656
404	0	1	ň	03	ñ	12	187	ñ	10	ň	210	ň	Ő.	160	0	695	156
101		-		23		12	102		10		219			100		000	450
414	0	2	0	90	0	4	105	0	12	0	292	0	0	61	0	566	270
424	0	8	0	79	0	2	8	0	29	0	430	0	0	13	0	569	119
435	•	è	~	60	Å	-	-	Å	21	~	202			1 2	<u> </u>	503	00
435		0	U	60	0	4		0	31	U	282	0	U	13	0	203	90
444	0	10	- 11	22	0	16	4	0	12	0	682	0	1	6	0	753	67
449	0	3	3	28	0	5	1	0	10	1	380	D	0	3	0	431	49
	ĩ	~			Ň	~~~				:	510	ž	,				
434	U	U		29	U	68	22	U	32	4	218	Ų	1	ΤT	U	689	147
459	0	0	2	17	0	5	4	0	111	2	588	0	0	С	0	729	41
464	0	٥	:	10	0	32	n	٥	78	0	481	0	31	0	0	635	58
401	Š	Š	,	10			ž				101	č	21		š	033	100
469	0	Q			0	103	2	0	30	0	331	0	.33	U	0	513	125
474	0	0	()	3	0	69	1	0	16	0	380	0	59	J	0	528	85
479	0	ò		3	ò	76		n.	20	Ň	377	, n	57	, o	0	645	0.4
413			•		0	70	+		30	Ų	211		51			545	34
482	0	0		1	0	72	2	0	16	0	404	0	193	Ū	0	689	90
486	0	n	•	3	0	37	4	0	5	n	308	0	98	a	. 0	456	56
400	~			Ē	Š		:	š	1.5		200	Š		Ň	Ň	407	20
490	U	U	U	2	0	22	2	0	12	0	306	U	111	0	U	49/	/8
501	39	1	0	7	0	0	26	14	22	105	17	0	0	5	0	236	202
502	48	1	0	7	0	2	80	2	3	54	44	٥	1	47	0	289	245
5002		-				-				31			-		ž	207	2 1 3
203	9	5	2	12	4	2	23	44	70	56	134	10	0	U		387	192
504	19	0	2	20	0	1	14	44	37	53	70	5	0	0	0	265	165
505	17	0	5	22	•	n	29	10	10	67	77	0	ò		1	204	104
500			÷		-	Š	10	40	10			ž	š	~~~		201	1.00
206	្វររ	Ų	U	Ŧ	0	U	19	0	1	8T	18	U	0	28	U	181	164
507	65	1	0	0	0	2	36	4	12	93	28	0	0	35	0	276	241
508	44	4	0	1	•	0	50	1	7	75	16	0	•	52	0	250	231
500		-	č	÷		š	20	-		13	10	š	Š	52	š	200	231
209	1	1	U	0	0	1	38	د	2	2	23	U	0	49	U	123	99
510	0	1	1	3	0	2	78	0	0	2	66	0	0	91	0	244	182
511	0	1	٥	11	n	1	43	n	2	2	25	٥	٥	56	0	141	117
510	Ň	÷	Ň	11	š	÷	1 40	Š	-	5	2.5	ž	š	150	Š	27.7	202
312	v	1	U		υ	5	143	U	4	2	34	U	0	123	0	331	323
513	1	0	0	5	0	2	199	0	0	2	23	0	0	93	-0	325	305
514	0	1	0	8	0	2	141	٥	1	0	18	. 0	0	50	0	221	204
515	ō	7	č		ň	5	10	Ň	-	~	1 4 5	ň	10	10		100	43
513		4	C.	0	U.	4	10	U	1	U	140	ų	10	12	U	195	43
516	0	1	11	10	0	4	3	0	6	0	183	0	9	8	0	224	35
517	0	0		11	0	3	2	0	4	۵	119	Û	30	0	0	170	26
510	ň	ĩ			ň	ň	ĩ	ň	ć	Ň	170	ň	20	Ň	ň	210	17
270		<u>+</u>		÷	U	U	5	U	0	U	1/9	U	20	U	U	Z18	11
519	0	0	0	2	0	5	2	0	1	0	211	0	57	0	0	278	,18
520	1	0	ti -	7	Ō	20	2	٥	5	1	48	0	204	n	۵	288	41
521	31	ĩ	•,	10	ž		15	č	~~~	<u>,</u>	20	~		4	ž	210	222
521	21	T	4	19	T	U	13	02	90	30	28	6	U	1	U	318	231
522	37	3	2	12	4	0	21	118	46	94	50	8	0	3	0	397	308
523	68	1	0	6	1	٥	11	53	15	74	18	1	n	1	0	249	221
624	05	-	· .	£ 0		ž			10	100			~	â	ž	440	222
524	60	3	0	50	U	1	41	49	29	158	10	U	0	8	U	440	3/1
525	137	0	()	7	0	0	20	65	103	192	31	٥	0	6	0	561	435
526	137	1	6	14	ñ	1	34	31	20	181	27	n	n	14	0	465	424
527		-		-7	ž	-		1	20	101		ž	ž		ž	100	-27
521	4	U	C.	U	0	U	31	O	5	10	13	0	0	41	U	104	90
528	5	0	0	1	0	1	26	0	2	25	15	0	0	46	0	121	107
529	2	n	Λ	ñ	ñ	2	35	ñ	2	22	21	ň	1	50	0	136	114
522	-	2	~	2	-	4	55		2	~~	41		1	50	ž	-100	++1
530	1	1	0	0	0	4	23	0	0	1	12	0	4	45	0	91	78
531	0	0	0	11	0	0	20	0	43	0	500	0	78	0	0	652	45
532	ò	ñ	ò	21	ň	ā	24	ñ	67	ň	07	ň	61	Ā	ñ	267	65
532		~	2	<u> </u>		0	24				65	, v	04	0		20/	65
233	1	0	0	6	0	2	21	0	25	3	163	0	139	1	0	361	47
534	0	0	0	16	0	3	20	0	25	0	34	0	51	1	0	150	50
535	46	n	0	15	0	0	50	21	Q	20	10	ň	ñ	Ē	ñ	263	2/1
620		ň	č		ž	ž	55	44		100	11	Š	ž		ž	203	241
230	41	3	U	1	U	Ų	28	12	12	102	14	U	0	14	Ų	269	248

D-3

							~										
537	51	1	0	23	0	0	76	19	2	108	18	0	0	4	0	302	285
538	77	7	U	0	0	2	42	20	114	76	20	0	0	19	0	377	250
539	77	1	n	à	ň	5	30	15	11	128	20	0	Ó	27	0	323	297
540	126	5	0	á	ň	5	51	20	0	203	21	ň	ň	14	ň	170	116
540	120	2			č	5	25	2	ĉ	205	10	č	č	49	Š	220	210
541	40	1	0			"	35		•		10			34		233	219
542	14	T	U	T	0	T	14	Ŧ	1	89	13	U	U	26	U	191	149
543	26	3	0	9	0	20	127	0	3	33	28	0	0	130	0	379	352
550	30	3	0	20	0	0	12	38	70	86	172	8	0	11	1	451	218
551	74	1	2	46	1	3	36	67	47	122	99	3	0	2	0	503	365
552	79	1	0	12	0	٥	38	28	4	167	16	1	1	6	0	353	336
553	5	ō	1		1	ő	6	- 0	72	24	44	11	ō	1	ñ	177	69
554	22	1	â	12	ż	õ	15	05	45	112	41		ŏ	-	ň	250	271
554	~~~	-	1	12			10	00	4.5	112	41	-	ő		Š	350	271
222	67		1	22	0	0	40	98	11	85	20	U U	0	10	U U	354	328
556	121	1	0	4	Q	0	11	52	5	169	9	0	0	0	0	312	361
557	61	10	0	11	0	1	32	15	36	103	9	0	0	· 17	0	295	255
558	66	4	0	3	0	2	24	23	49	119	14	0	0	6	0	310	253
559	32	0	4	17	Ø	0	13	104	29	51	28	3	0	3	0	284	233
560	61	1	1	13	0	0	10	49	16	85	21	0	0	3	0	260	228
561	54	5	ñ	17	ň	ñ	24	50	29	78	33	ñ	0	à	ň	296	240
542	31	ñ	ň	1,	ŏ	1	23	50	~ ^	20	7	õ	ň	ś	ň	07	210
502	54	2		10	ě	2	20	1		30	10	0	ő	14	Š	240	225
363	34	3		16	0	3	36	4	1	96	10	0	0	14	0	240	225
564	60	2	0	6	0	10	33	4	30	86	29	0	0	30	0	290	237
565	46	1	0	3	0	4	39	12	13	130	18	0	1	33	0	300	273
566	15	4	()	3	5	3	7	29	95	84	71	16	0	5	3	340	182
567	29	0		9	0	0	18	69	58	65	76	0	0	5	0	330	204
568	76	0	U	7	1	٥	28	48	35	99	29	0	0	2	٥	325	267
569	41	1	ŭ	0	ā	Å	14	2	6	114	16	ň	ň	15	ň	213	105
570	50	~ ~		~	2	r 0	- "	2	5	150	21	~	~	41	Ň	213	205
570	22	1			, e	0			5	139	21	Š	Š	41		107	203
5/1	39	Ţ	0	1	0	2	14	2	4	89		0	0	36		197	187
572	67	1	-2	24	0	1	28	84	29	97	12	1	0	3	1	350	314
573	47	1	1	23	0	0	23	18	29	83	16	0	0	13	0	254	215
574	37	4	Û	2	0	4	32	0	8	38	17	0	0	20	0	162	141
575	0	1	0	20	0	10	47	0	5	1	262	0	0	20	0	366	106
576	0	1	1	4	Ó	7	12	Ó	12	ō	299	Ó	26	0	0	362	36
577	20	ĩ	2		ò	'n	17	۰. م	24	57	13	2	-0		ň	230	207
570	20	5	5	7	Å	õ	27	54	24	102	13	4	0	4	š	259	207
576	50			-	0	0	21	57	30	125	24	0	U	0		339	211
579	50	8	1	1	0	4	32	5	29	97	27	0	0	23	Q	283	233
580	17	0	0	5	0	5	86	7	5	48	30	0	4	111	0	318	285
581	4	0	0	0	0	3	66	0	4	9	24	0	9	56	0	175	144
582	0	0	0	27	0	5	89	0	7	2	61	0	11	36	0	238	167
583	32	1	4	10	a	0	25	44	61	75	200	7	0	5	2	466	214
584	52	1	٦	à	1	ō	33	103	97	92	92	Ġ	ň	õ	ī	492	312
585	67	1	0		5	ň	20	105	10	225	21	ő	ŏ	20	â	414	370
500	107	â	ŏ	2	ő	15	25	2	17	102	10	õ	ŏ	20	õ	410	202
500	107	š	, v	5	~	15	2.5	2	11	192	10		0	32		410	202
287	62	2	4		0	5	18	3	5	134	10	0	0	46	0	291	274
288	62	1		11	1	0	10	81	23	62	19	3	0	- 2	Q	275	239
589	49	1	14	13	0	Q	12	69	29	93	17	0	0	7	0	290	250
590	60	2	11	47	0	0	62	13	78	71	35	0	0	15	0	383	277
591	66	0	- U	0	0	8	35	0	4	78	22	0	0	63	0	276	254
592	42	2	- 1	0	0	10	37	0	5	71	33	0	0	83	0	283	250
593	20	2	3	15	3	0	13	99	58	101	28	3	0	3	0	345	266
594	46	Ó		32	ō	Ō	16	56	30	83	13	3	ō	3	Ó	283	245
595	44	1	6	117	ň	ñ	18	22	30	49	23	ñ	ñ	2	ň	336	280
506	04	Ā	- 6	10	ň	17	50	16	20	200	20	ő	ŏ	12	ň	471	127
590	27			10	0	11	52	10	30	200	20	0	0	12.	š	474	427
597	50		0	2	0	5	50	10	10	207	40		0	30		4/4	424
598	53	1	0	2	U	6	51	0	5	134	34	0	0	63	U	349	315
610	58	1	1	35	0	0	22	61	18	55	8	0	0	1	0	260	238
611	93	2	0	22	0	1	36	52	41	132	14	1	0	0	0	394	345
612	92	2	1	21	0	0	22	61	23	123	14	2	0	6	0	367	335
613	98	0	0	0	0	6	13	11	6	138	24	0	0	6	0	302	276
614	22	٥	Ó	0	ò	n	٦	1	ň	41	5	ñ	n	ň	n	72	68
615	91	ĩ	ň	3	ň	3	40	11		140	24	ñ	õ	0	ň	324	210
610	27	1	2	1 4	~	2		100	~ 7	142	24	2	0	0	1	425	201
010	37	1	2	14	U	0	24	122	91	86	45	2	U	4	L -	435	301
617	/1	0	1	32	0	0	28	43	17	100	20	0	0	0	0	312	280
618	35	0	0	4	0	0	8	2	1	105	20	0	0	6	0	181	162
619	36	0	0	0	0	2	16	0	0	106	22	0	0	39	0	221	202
620	46	2	0	0	0	0	19	0	0	125	14	0	1	41	0	248	235
621	34	ō	0	2	ō	1	31	ō	ī	48	18	ō	ō	42	Ō	177	160
622	43	ñ	- Ē	41	ñ	ī	42	17	72	65	218	1	ň	R	ň	489	247
627	15	ñ	1.	41	ñ	ň	20	69	17	26	343	ń	ň	2	ň	522	180
674	60	õ	, ,		č	1	20	20	72	20	210	õ	ő	~	ŏ	501	210
024	09	0		00	0	1	41	33	12	07	210	2	0	8	0	731	210
625	40	2	(7	0	0	66	38	3	101	10	0	Q	4	Ū	2/1	261
626	63	7	(8	0	1	56	23	1	97	13	0	0	7	0	276	264
627	54	2	(8	0	1	36	26	2	133	15	1	0	8	0	286	272
628	27	2	ť	4	0	1	27	0	5	38	29	0	3	36	0	172	141
629	27	1	(1	0	5	30	0	6	36	25	0	10	4 7	0	188	154

.

D-4

630	00	1	0	17	0	٨	40	11	12	196	33	0	٥	25	n	437	397	
630	100	÷	2	1	0	17	40	20	12	231	19	ŏ	ĩ	33	ĩ	503	477	
031	107	1	~		Š		45	20		120	20	ŏ	â	22	â	304	204	
632	74		0	2		2	40	r 0		110	10	0	0	23	1	200	201	
633	14	2	Š	2		10	23	2	10	210	20	š	Š	20	÷.	477	200	
634	70	2			0	12	47	2	10	105	20	0	Ň	20	Ň	364	224	
635	/9	1			0		19			192	33			130	ő	364	334	
636	3	0	0	12	0	4	138	1	4	18	41	0	20	138		339	319	
637	0	1	0	4	0	3	18	1	20	1	391	0	32	16	0	493	56	
638	19	1	0	5	0	4	27	22	11	84	86	د	0	2	4	268	1//	
639	27	1	.)	26	0	6	25	20	40	105	59	1	0	8	0	318	226	
640	43	11		63	1	0	116	94	34	65	137	9	1	0	4	579	415	
641	65	3	0	56	0	0	67	106	25	101	45	1	0	1	0	470	407	
642	66	0		10	0	1	66	83	6	128	17	2	0	3	0	383	364	
643	89	Ó	0	0	0	1	24	22	2	160	19	0	0	8	0	325	307	
644	57	0	υ	0	0	2	19	22	2	109	19	0	0	5	0	235	217	
645	63	2	0	4	0	4	44	10	9	148	50	0	0	14	0	348	295	
646	52	3	3	10	3	1	21	156	45	148	57	4	0	8	3	514	419	
647	43	0	2	11	0	0	20	37	6	26	5	0	0	6	0	155	147	
648	96	0		10	0	0	17	64	12	114	12	0	0	9	1	336	316	
649	56	4	1	1	0	1	52	7	4	181	22	0	0	35	0	364	342	
650	49	8	3.	4	0	4	76	5	6	193	18	0	1	48	0	413	392	
651	22	0	0	0	0	0	12	1	2	61	22	0	0	16	0	136	115	
652	21	0	0	1	0	1	13	0	2	150	38	0	0	22	0	248	212	
653	42	1	0	1	0	2	8	0	3	197	35	0	0	31	0	320	286	
654	30	0	0	0	0	0	6	0	0	178	42	0	0	12	0	268	229	
655	22	1	0	37	4	0	46	81	14	52	13	2	0	5	0	277	255	
656	96	0	0	8	0	0	58	45	1	140	10	0	0	1	0	359	350	
657	77	0	0	7	0	0	30	17	16	126	9	0	1	4	0	287	265	
658	69	1	0	10	0	0	25	33	12	78	11	0	0	5	0	244	225	
659	59	3	0	3	0	4	29	13	6	134	37	0	0	23	0	311	273	
660	88	0	0	13	0	4	34	3	10	194	50	0	0	9	0	405	351	
661	69	1	0	9	0	4	38	2	1	194	32	0	0	13	0	363	333	
662	66	1	0	9	0	4	34	4	9	168	19	0	0	13	0	327	304	
663	58	2	3	22	0	1	23	82	9	54	7	4	0	1	0	266	254	
664	112	6	5	61	0	1	76	165	35	137	19	1	0	10	0	628	580	
665	64	1	Э.	22	0	0	27	62	3	96	18	0	0	4	0	297	279	
666	39	0	- (1	15	1	0	25	79	15	60	19	1	0	5	0	259	230	
667	55	1		6	0	0	5	44	6	77	8	0	0	3	0	205	194	
668	63	1	i)	2	0	1	11	38	18	79	19	0	0	6	0	238	206	
669	98	0	0	2	0	2	14	12	7	211	14	0	0	10	0	370	353	
670	84	1	0	2	0	1	20	11	6	249	14	0	0	15	0	403	387	
671	62	1	0	1	0	1	20	7	5	157	23	0	0	16	0	293	269	
672	46	7	Ð	5.	0	1	45	8	23	134	23	0	0	46	0	338	298	
673	23	2	0	10	0	2	11	35	53	96	53	6	0	7	1	299	200	
674	46	4	0	7	0	2	6	5	18	101	12	0	0	18	0	219	194	
675	68	2	0	2	0	4	14	1	3	120	17	0	0	26	0	257	240	
676	78	0	0	6	0	•	10	23	10	110	20	0				2.3 1		
677	97	-		•			13	20	10	110	20		0	8	ō	290	257	
678		0	ŏ	24	ō	5	37	17	5	158	25	ŏ	0	8 12	0	290 380	257 354	
679	55	0 3	0	24 14	0	5	37 39	17 17	10 5 16	118 158 114	· 20 25 22	0	0 0 0	8 12 8	0 0 0	290 380 293	257 354 260	
	55 0	0 3 2	0 0 7	24 14 3	000	5 5 2	37 39 5	17 17 0	10 5 16 33	158 114 2	25 25 22 221	000	002	8 12 8 3	0 0 0 0	290 380 293 280	257 354 260 33	
680	55 0 0	0 3 2 0	0 0 7 3	24 14 3 2	0 0 0	5 5 2 4	37 39 5 1	17 17 0 0	10 5 16 33 42	118 158 114 2 4	25 22 221 150	0000	0 0 2 2	8 12 8 3 0	0 0 0 0	290 380 293 280 208	257 354 260 33 23	
680 681	55 0 0 0	0 3 2 0 2	0 0 7 3 0	24 14 3 2 2	0 0 0 0	5 5 2 4 15	19 37 39 5 1 0	17 17 0 0	10 5 16 33 42 43	118 158 114 2 4 0	25 22 221 150 142	000000000000000000000000000000000000000	0 0 2 2 16	8 12 8 3 0 0	0 0 0 0 0	290 380 293 280 208 220	257 354 260 33 23 30	
680 681 682	55 0 0 0	0 3 2 0 2 0	0 0 7 3 0 0	24 14 3 2 2 4	0 0 0 0 0 0	5 5 2 4 15 59	37 39 5 1 0 2	17 17 0 0 0	10 5 16 33 42 43 16	118 158 114 2 4 0	25 22 221 150 142 154	000000000000000000000000000000000000000	0 0 2 2 16 9	8 12 8 3 0 0 0	0 0 0 0 0 0	290 380 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682	55 0 0 0	0 3 2 0 2 0	0 0 7 3 0 0	24 14 3 2 2 4		5 5 2 4 15 59	19 37 39 5 1 0 2	17 17 0 0 0	10 5 16 33 42 43 16	118 158 114 2 4 0 0	25 22 221 150 142 154	000000000000000000000000000000000000000	0 0 2 2 16 9	8 12 8 3 0 0 0		290 380 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682	55 0 0 0	0 3 2 0 2 0	0 0 7 3 0 0	24 14 3 2 4	000000000000000000000000000000000000000	5 5 2 4 15 59	19 37 39 5 1 0 2	17 17 0 0 0	10 5 16 33 42 43 16	118 158 114 2 4 0 0	25 22 221 150 142 154		0 0 2 2 16 9	8 12 8 3 0 0 0		290 38D 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682	55 0 0 0 0	0 3 2 0 2 0 vlati	0 0 7 3 0 0	24 14 3 2 2 4	00000	5 5 2 4 15 59	19 37 39 5 1 0 2	17 17 0 0 0	10 5 16 33 42 43 16	118 158 114 2 4 0 0	25 22 221 150 142 154		0 0 2 2 16 9	8 12 8 3 0 0 0		290 380 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682 samp	55 0 0 0 0 8~calc ABIE	0 3 2 0 2 0 0 sulati APIA	0 0 7 3 0 0 0 0 0 0 0 0 0 0 0	24 14 3 2 2 4 BETU	0 0 0 0 0 0 0 0 0 0 0	5 5 2 4 15 59 CICH	19 37 39 5 1 0 2 CORY	23 17 17 0 0 0 0 0 FAGU	10 5 16 33 42 43 16 POAC	110 158 114 2 4 0 0	25 22 221 150 142 154	0 0 0 0 0 0 0 0	0 0 2 2 16 9 SELA	8 12 8 3 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	290 380 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682 samp 4	55 0 0 0 8-calc ABIE 10.0	0 3 2 0 2 0 sulati APIA .6	0 7 3 0 0 0 .on 2 ARTE 1.2	24 14 3 2 4 BETU 2.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 2 4 15 59 CICH	19 37 39 5 1 0 2 2 CORY 7.1	17 17 0 0 0 0 7 FAGU 16.5	10 5 16 33 42 43 16 POAC 1.4	110 158 114 2 4 0 0 0 PICE 49.6	25 22 221 150 142 154 PINU 1.4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 2 16 9 SELA .0	8 12 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	290 380 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682 samp 4 9	55 0 0 0 8-calc ABIE 10.0 8.0	0 3 2 0 2 0 sulati APIA .6 1.0	0 0 7 3 0 0 0 ARTE 1.2 1.5	24 14 3 2 2 4 BETU 2.7 8.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 2 4 15 59 CICH .0	19 37 39 5 1 0 2 CORY 7.1 3.0	17 17 0 0 0 0 7 8 6 5 19.5	10 5 16 33 42 43 16 POAC 1.4 2.1	110 158 114 2 4 0 0 0 PICE 49.6 32.0	25 22 221 150 142 154 PINU 1.4 2.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 2 16 9 SELA .0 .0	8 12 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	290 380 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682 samp 4 9 14	55 0 0 0 0 ABIE 10.0 8.0 4.4	0 3 2 0 2 0 0 sulati APIA .6 1.0 .7	0 0 7 3 0 0 0 ARTE 1.2 1.5	24 14 3 2 2 4 BETU 2.7 8.5 9.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 2 4 15 59 CICH .0 .0	19 37 39 5 1 0 2 CORY 7.1 3.0 5.1	17 17 0 0 0 0 7 4 5 19.5 25.2	10 5 16 33 42 43 16 POAC 1.4 2.1 1.8	110 158 114 2 4 0 0 0 PICE 49.6 32.0 29.2	25 22 221 150 142 154 PINU 1.4 2.8 1.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 2 16 9 SELA .0 .0	8 12 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	290 38D 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682 samp 4 9 14 24	55 0 0 0 0 ABIE 10.0 8.0 4.4 15.7	0 3 2 0 2 0 3 4 2 0 3 1 0 1.0 .7 .6	0 0 7 3 0 0 0 ARTE 1.2 1.5	24 14 3 2 2 4 BETU 2.7 8.5 9.9 2.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 2 4 15 59 CICH .0 .0 .0	19 37 39 5 1 0 2 CORY 7.1 3.0 5.1 6.5	FAGU 16.5 25.2 30.1	5 16 33 42 43 16 POAC 1.4 2.1 1.8 .9	110 158 114 2 4 0 0 0 PICE 49.6 32.0 29.2 37.9	25 22 221 150 142 154 PINU 1.4 2.8 1.5 .8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 2 16 9 SELA .0 .0 .0	8 12 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	290 38D 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682 samp 4 9 14 24 34	55 0 0 0 0 k-calc ABIE 10.0 8.0 4.4 15.7 12.7	0 3 2 0 2 0 3 2 0 3 2 0 3 2 0 1 0 3 7 .6 .2	0 0 7 3 0 0 0 ARTE 1.2 1.5 1.5	24 14 3 2 2 4 BETU 2.7 8.5 9.9 2.2 1.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 2 4 15 59 CICH .0 .0 .0	19 37 39 5 1 0 2 CORY 7.1 3.0 5.1 6.5 5.8	FAGU 16.5 19.5 25.2 30.1 39.5	5 16 33 42 43 16 POAC 1.4 2.1 1.8 .9 .6	110 158 114 2 4 0 0 0 PICE 49.6 32.0 29.2 37.9 34.1	25 22 221 150 142 154 PINU 1.4 2.8 1.5 .8 .7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 2 16 9 SELA .0 .0 .0	8 12 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	290 380 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682 samp 4 9 14 24 34	55 0 0 0 0 ABIE 10.0 8.0 4.4 15.7 12.7 13.4	0 3 2 0 2 0 3 2 0 3 2 0 3 2 0 1.0 .7 .6 .2 .3	0 0 7 3 0 0 0 ARTE 1.2 1.5 1	24 14 3 2 2 4 BETU 2.7 8.5 9.9 2.2 1.8 1.9	CARP .3 6.5 4.4 1.9 3.1 1.1	5 5 2 4 15 59 CICH .0 .0 .0 .0	19 37 39 5 1 0 2 CORY 7.1 3.0 5.1 6.5 5.8 3.8	FAGU 16.5 19.5 25.2 30.1 39.5 47.2	10 5 16 33 42 43 16 POAC 1.4 2.1 1.8 .9 .6 .9	118 158 114 2 4 0 0 9 100 9 29.2 37.9 34.1 28.4	25 22 221 150 142 154 PINU 1.4 2.8 1.5 .8 .7 1.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 16 9 SELA .0 .0 .0 .0	8 12 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CERE 9 5.5 6.6 1.1 .8	290 380 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682 samp 4 9 14 24 34 44 54	55 0 0 0 *-calc ABIE 10.0 8.0 4.4 15.7 12.7 13.4 6.5	0 3 2 0 2 0 0 3 2 0 0 1.0 .7 .6 .2 .3 .7	0 0 7 3 0 0 0 ARTE 1.2 1.5 1.5 .0	24 14 3 2 4 BETU 2.7 8.5 9.9 2.2 1.8 1.9 3.9	CARP .3 6.5 4.4 1.9 3.1 1.1 3.7	55 24 15 59 CICH .0 .0 .0 .0 .0 .0	19 37 39 5 1 0 2 CORY 7.1 3.0 5.1 6.5 5.8 3.8 6.3	FAGU 16.5 19.5 25.2 30.1 39.5 47.2 41.7	10 5 16 33 42 43 16 POAC 1.4 2.1 1.8 .9 .6 .9 1.0	118 158 114 2 4 0 0 PICE 49.6 32.0 29.2 37.9 34.1 28.4 31.0	25 22 221 150 142 154 PINU 1.4 2.8 1.5 .8 .7 1.1 1.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 16 9 SELA .0 .0 .0 .0 .0	8 12 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CERE .9 5.5 6.6 1.1 .8 .0	290 38D 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682 samp 4 9 14 24 34 44 54 64	55 0 0 0 0 8-calc ABIE 10.0 8.0 4.4 15.7 12.7 13.4 6.5 6.5	0 3 2 0 2 0 3 2 0 3 2 0 3 2 3 3 .7 .0	0 0 7 3 0 0 0 ARTE 1.2 1.5 1.5 1.5	24 14 3 2 4 BETU7 8.5 9 9.2 1.8 1.9 3.9 4.6	CARP .3 6.5 4.4 1.9 3.1 1.1 3.7 4.4	5524 41559 CICH .0 .0 .0 .0 .0	19 37 39 5 1 0 2 7.1 3.0 5.1 6.5 5.8 3.8 6.3 9.9	FAGU 17 0 0 0 0 16.5 19.5 25.2 30.1 39.5 47.2 41.7 40.5	POAC 1.4 2.1 1.8 .9 .6 .9 1.0 .8	110 158 114 2 4 0 0 0 9 2 4 9.6 32.0 29.2 37.9 34.1 28.4 31.0 30.6	25 222 221 150 142 154 PINU 1.4 2.8 .7 1.1 1.0 .6	PLAN 6.2 9.5 .2 .6 1.4 2.5 .8	0 0 2 2 16 9 SELA .0 .0 .0 .0 .0 .0	8 12 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CERE 9 5.5 6.6 1.1 .8 .0 .0	290 38D 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682 samp 4 9 14 24 34 44 54 64 74	55 0 0 0 0 8-calc ABIE 10.0 8.0 4.4 15.7 12.7 13.4 6.5 6.5 20.0	0 3 2 0 2 0 0 3 APIA .6 1.0 .7 .2 .3 .7 .0 .5	0 0 7 3 0 0 0 ARTE 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	24 14 3 2 4 BETU 2.7 5 9.9 2.2 1.8 1.9 3.9 4.6 1.6	CARP .3 6.5 4.4 1.9 3.1 1.1 3.7 4.4 1.1	5524 1559 CICH .0 .0 .0 .0 .0 .0	19 37 39 5 1 0 2 CORY 7.1 3.0 5.5 5.8 3.8 6.3 9.9 5.5	FAGU 17 0 0 0 0 0 7 19.5 25.2 30.1 39.5 47.2 41.7 40.5 33.4	POAC 1.4 2.1 1.8 .9 .6 .9 1.0 .8 1.2	116 158 114 2 4 0 0 PICE 49.6 32.0 29.2 37.9 34.1 28.4 31.0 30.6 31.5	25 222 221 150 142 154 PINU 1.4 2.8 1.5 8 .7 1.1 1.0 .6 1.1	PLAN 6.2 9.5 .2 .6 1.4 2.5 .8 2.2	0 0 2 2 16 9 SELA .0 .0 .0 .0 .0 .0 .0	8 12 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CERE 9 5.5 6.6 1.1 .8 .0 .0	290 380 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682 samp 4 9 14 24 34 44 54 64 74 84	55 0 0 0 0 ABIE 10.0 8.0 4.4 15.7 13.4 6.5 6.5 20.0 18.9	0 3 2 0 2 0 0 3 APIA .6 1.0 .7 .6 .2 .3 .7 .0 .5 .3	0 0 7 3 0 0 0 ARTE 1.2 1.5 1.5 	24 14 3 2 4 BETU 2.7 8.5 9.9 2.2 1.8 9.9 2.2 1.8 9.9 2.2 1.8 9 3.9 4.6 7.3	CARP .3 6.5 4.4 1.9 3.1 1.1 3.7 4.4 1.1 2.7	CICH .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	19 37 39 5 1 0 2 CORY 7.1 3.0 5.1 6.5 5.8 8.3 9.9 5.5 8.2	FAGU 16.5 19.5 25.2 30.1 39.5 47.2 41.7 40.5 33.4 30.8	POAC 1.4 2.1 1.8 .9 .6 .9 1.0 .8 1.2 1.1	116 158 114 2 4 0 0 PICE 49.6 32.0 29.2 37.9 34.1 28.4 31.0 30.6 31.5 26.8	25 222 221 150 142 154 PINU 1.4 2.8 1.5 .8 .7 1.1 1.0 .6 1.1	PLAN 6.2 9.0 9.5 .2 .6 1.4 2.5 .8 2.2 .6	0 0 2 2 16 9 SELA .0 .0 .0 .0 .0 .0 .0 .0 .0	8 12 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CERE 9 5.5 6.6 1.1 .8 .0 .0 .0	290 380 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682 samp 4 9 14 24 34 44 54 64 74 84 89	55 0 0 0 0 ABIE 10.0 8.0 4.4 15.7 12.7 13.4 6.5 6.5 20.0 18.9 23.7	0 3 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1.0 .7 .6 .2 .3 .5 .3 .7	0 0 7 3 0 0 0 ARTE 1.2 1.5 1.5 1.5 1.5 1.5 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24 14 3 2 2 4 BETU 2.7 8.5 9.9 2.2 1.8 1.9 3.9 4.6 7.3 5.9	CARP .3 6.5 4.4 1.9 3.1 1.1 3.7 4.4 1.1 2.7 .5	CICH .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	19 37 39 5 1 0 2 CORY 7.1 3.0 5.1 6.5 5.8 6.3 9.9 5.5 8.2 12.6	FAGU 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 5 5 16 33 342 43 16 7 9 2.1 1.4 2.1 1.8 .9 .6 .9 .0 .8 1.2 1.1 1.0	1150 1154 114 2 4 0 0 0 9 2 3 2 0 2 9.2 3 7.9 3 4.1 2 8.4 31.0 30.6 31.5 26.8 27.5	205 222 221 150 142 154 22 154 1.4 2.8 1.5 .8 .7 1.1 1.0 .6 1.1 1.1 1.2	PLAN 6.2 9.0 9.5 .2 .6 1.4 2.5 .8 2.2 .6 .2 2.5 .8 2.2 .6 .2	0 0 2 2 16 9 SELA .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	8 12 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CERE 9 5.5 6.6 1.1 .8 .0 .0 .0	290 380 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682 samp 4 9 14 24 34 44 54 64 74 84 89 94	55 0 0 0 0 ABIE 10.0 8.0 4.4 15.7 12.7 13.4 6.5 20.0 18.9 23.7 22.4	0 3 2 0 2 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0	0 0 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24 14 3 2 2 4 8 5 9 9 2.2 1.8 9.9 9 2.2 1.8 1.9 3.9 4.6 1.7,3 5.9 4.2	CARP .3 6.5 4.4 1.9 3.1 1.1 1.1 2.7 .5 1.7	CICH .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	19 377 39 5 1 0 2 CORY 7.1 3.0 5.1 5.8 6.5 5.8 8.6.3 9.9 5.55.8 8.2 12.6 9.1	FAGU 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 5 16 33 42 43 16 POAC 1.4 2.1 1.8 .9 .6 .9 1.0 .8 9 1.0 .8 1.2 1.1 1.0 1.4	PICE 49.6 32.0 30.6 31.5 31.5 25.7 25.7	205 222 221 150 142 154 2.8 1.54 2.8 1.54 1.4 2.8 2.7 1.1 1.0 .6 1.1 1.1 1.2 1.8	PLAN 6.2 9.0 1.4 2.5 .8 2.2 .6 .2 .2 .6 .2 .2 .6 .2 .4	0 0 0 2 2 2 16 9 9 SELA .0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 12 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CERE 9 5.5 6.6 1.1 .0 .0 .0	290 380 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682 5 5 5 5 5 5 6 8 2 4 9 9 14 24 34 44 44 54 64 74 84 89 94 99	55 0 0 0 0 ABIE 10.0 8.0 4.4 15.7 12.7 13.4 6.5 20.0 18.9 23.7 22.4 23.7 23.4	0 3 2 0 2 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 2 0	0 0 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BETU BETU 2.7 8.5 9.9 2.2 1.8 3.9 4.6 1.6 7.3 4.2 8.7	CARP 3 6.5 4.4 1.9 3.1 1.1 3.7 4.4 1.1 2.7 1.7 .5 1.7 .0	CICH .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	19 37 39 5 1 0 2 CORY 7.1 3.0 5.1 6.5 5.8 3.8 6.3 9.9 5.5 2 12.6 9.1 7.9	232 17 17 0 0 0 0 0 7 40.5 33.4 47.2 41.7 40.5 33.4 30.8 22.0 23.4	FOAC 1.4 2.1 1.8 .9 1.0 .8 1.2 1.1 1.0 1.4 1.0	116 158 114 2 4 4 0 0 0 9 29.2 37.9 34.1 28.4 31.0 30.6 31.5 26.8 31.5 26.8 31.5 26.7 31.8	205 222 221 150 142 154 1.5 .8 8 .7 1.1 1.0 .6 1.1 1.1 2 1.8 1.5	PLAN 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 2 2 2 2 2 2 3 16 9 9 5 8 5 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 12 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CERRE 9 5.5 6.6 1.1 .8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	290 380 293 280 208 220 220 224	257 354 260 33 23 30 75	
680 681 682 4 9 14 24 34 44 54 64 74 64 74 89 99 104	55 0 0 0 0 8-calc ABIE 10.0 8.0 4.4 15.7 13.4 6.5 20.0 18.9 23.7 22.4 17.3	0 3 2 0 2 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 0 2 0 0 0 0 2 0	0 0 7 3 0 0 0 0 ARTE 1.2 1.5	BETU 24 BETU 2.7 8.5 9.9 2.2 1.8 1.9 9.9 2.2 1.8 1.6 7.3 5.9 4.2 8.7 3.9 4.6 1.6 7.3 5.9 3.0	CARP 3 6.5 4.4 1.9 3.1 1.1 3.7 4.4 1.1 2.7 .5 1.7 .0 1.7	CICH 15 59 CICH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	CORY 377 39 5 1 0 2 CORY 7.11 3.0 5.11 6.5 5.8 3.8 6.3 9.9 5.5 8.22 9.1 7.9 9.3	FAGU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POACC 1.4 2.1 1.8 .9 .6 .8 1.2 1.1 1.0 .8 1.2 1.1 1.0 1.4 2.1 1.0 .8 1.2 1.1 1.0 1.4 2.1 1.0 1.4 2.1 1.0 1.4 2.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	PICE 49.6 32.0 37.9 34.1 28.4 31.0 31.5 26.8 27.5 31.8 35.7	205 222 221 150 142 154 154 1.5 .8 .7 1.1 1.0 .6 1.1 1.1 1.2 1.8 1.5 1.0	PLAN 6.2 9.0 9.5 .2 .6 1.4 2.5 .8 2.2 .6 .2 .2 .6 .2 .2 .6 .2 .2 .6 .2 .2 .6 .2 .2 .6 .2 .2 .6 .2 .2 .6 .2 .2 .2 .6 .2 .2 .2 .6 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	0 0 0 2 2 2 1 6 9 9 5 5 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 12 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CERE 9 5.55 6.66 1.1 .8 .0 .0 .0 .0 .0 .0 .0 .0 .0	290 380 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682 4 9 14 24 34 44 44 44 44 44 44 44 64 74 89 99 104 109	55 0 0 0 0 ABIE 10.0 8.0 4.4 15.7 12.7 13.4 6.5 20.0 18.9 23.7 22.4 23.7 22.4 23.7 23.7 22.4 23.7 20.0	0 3 2 0 2 0 2 0 0 2 0 0 2 0 0 0 1000 7 .6 .2 .3 .7 .6 .5 .3 .7 .8 .8 .8 .0 .3	0 0 7 3 0 0 0 ARTE 1.2 1.5	BETU 2.7 8.5 9.9 2.7 8.5 9.9 2.7 8.5 9.9 2.7 8.5 7.3 5.9 4.6 7.3 5.9 4.6 7.3 5.9 4.6 7.3 5.9 4.6 7.3 5.9 4.6 7.3 5.9 6.9	CARP .3 6.5 4.4 1.9 3.1 1.1 2.7 .5 1.7 .0 1.7 .0	CICH 15 59 CICH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19 37 39 5 1 0 2 CORY 7.1 3.0 5.1 6.5 8 2 5.5 8.2 12.6 9.1 7.9 9.3 7.9	232 17 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POAC 1.4 2.1 1.0 1.2 1.1 1.0 1.2 1.1 1.0 1.4 1.0 1.2 1.1 1.0 1.3 1.0	PICE 49.6 32.0 29.2 37.9 30.6 25.7 31.8 35.7 35.5	25 22 221 1500 142 154 1.4 2.8 1.5 8 7 1.1 1.0 6 1.1 1.1 1.2 1.8 1.0 1.4	PLAN 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 2 2 2 2 16 9 9 5 5 5 16 0 9 9 9 5 5 5 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 122 8 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CERE 9 5.5 6.6 1.1 .8 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	290 380 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682 5 samp 4 9 14 24 34 44 44 54 64 74 89 99 104 109	55 0 0 0 0 0 k -calc ABIE 10.0 0 k -0 k -0 12.7 12.7 13.4 6.5 20.0 0 23.7 22.4 23.4 17.3 22.4 23.7 22.4 23.7 17.2 2.4 2.4 2.4 2.4 2.4 17.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4 17.2 2.4 2.4 2.4 17.2 2.4 2.4 17.2 2.4 2.4 17.2 2.4 17.2 2.4 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2	0 32 0 22 0 0 20 0 20 0 20 0 20 0 20 0	0 0 0 7 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BETU 2.7 8.5 9.9 2.2 4 BETU 2.7 8.5 9.9 2.2 1.8 1.9 3.9 4.66 7.3 5.9 4.2 8.7 3.0 9.7 3.7	CARP .3 6.5 4.4 1.9 3.1 1.1 2.7 4.4 1.1 2.7 .0 0 .7 .0 .7	CICH .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	19 37 39 5 1 0 2 CORY 7.1 3.0 5.1 6.5 5.8 3.8 6.3 9.9 9.5 5.5 8.2 12.6 9.1 7.9 9.5 5.1 2 5.5 8.2 5.5 8.2 5.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	FAGU 17 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FOAC 1.4 2.1 1.4 2.1 1.8 9 0.8 1.2 1.1 1.0 1.4 1.6 1.3 1.0 0.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	PICE 49.6 32.0 29.2 37.9 34.1 28.4 31.0 30.6 31.5 25.7 31.8 35.7 35.5 30.5	202 22 22 221 150 142 154 2.8 .7 1.1 1.0 .6 1.1 1.1 1.2 1.8 1.5 1.0 1.4 2.8 1.5 1.0 1.4 2.8 1.5 1.0 2.5 2.2 2.2 1.5 2.2 2.2 1.5 2.2 2.2 1.5 2.2 1.5 2.2 1.5 2.2 1.5 2.2 1.5 2.2 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	PLAN 6.2 9.0 9.5 .2 .6 1.4 2.5 .8 2.2 .6 .7 .7 .7 .7 .7 .7 .0	0 0 0 2 2 2 16 9 9 SELA .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	8 122 8 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CEERE 9 5.5 6.6 1.1 .8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	290 380 293 280 208 220 244	257 354 260 33 23 30 75	
680 681 682 5 5 5 5 5 4 9 14 24 34 4 54 64 74 84 84 84 99 90 9104 109 114 109	55 0 0 0 0 0 a BIE 10.0 8.0 4.4 4 15.7 13.4 6.5 20.0 18.9 23.7 23.4 17.3 26.0 17.1 22.4 23.4	0 32 0 22 0 2 0 0 0 2 0 0 0 2 0 0 0 0 2 0	0 0 0 7 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BETU 2.2 4 BETU 2.7 8.5 9.9 2.2 1.8 1.9 9.9 2.2 1.8 1.6 7.3 3.9 9.4.6 6.9 3.7 2.2	CARP .3 6.5 3.1 1.1 1.7 .0 1.7 .0 1.7 .0 .7 .0 .7 .0	CICH .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	CORY 139 5 10 2 CORY 7.10 5.1 6.5 5.8 3.8 9.9 5.5 8.2 19.6 7.9 9.3 7.9 9.3 7.9 9.1 8.0	232 17 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POAC 1.4 2.1 1.8 .9 .6 .9 1.0 .8 1.2 1.1 1.0 .8 1.2 1.1 1.0 .8 1.2 1.1 1.6 1.3 1.0 .8 1.2 1.1 1.6 .9 .9 .6 .9 .8 .9 .6 .9 .8 .8 .9 .8 .9 .8 .9 .8 .9 .8 .8 .9 .8 .8 .9 .8 .8 .9 .8 .8 .9 .8 .9 .8 .8 .9 .8 .8 .9 .8 .8 .9 .8 .9 .8 .8 .9 .8 .8 .9 .8 .8 .9 .8 .9 .8 .9 .8 .9 .8 .8 .9 .8 .8 .8 .9 .8 .8 .9 .8 .8 .9 .8 .8 .8 .9 .8 .8 .9 .8 .8 .9 .8 .8 .8 .9 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8	PICE 49.6 32.0 29.2 37.9 34.1 30.6 31.5 26.8 35.7 31.8 35.7 35.5 39.4	205 222 221 1500 142 154 154 1.5 1.5 .8 .7 1.1 1.0 .6 1.1 1.1 1.2 1.8 1.5 1.0 1.4 2.8 1.5 1.5 1.0 1.4 2.8 1.5 2.5 2.2 2.2 1.5 2.5 2.2 2.2 1.5 0.0 1.42 1.5 0.0 1.5 2.5 1.5 2.5 1.5 0.0 1.5 2.5 1.5 0.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	PLAN 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 2 2 2 2 9 9 5 5 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 122 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CEERE .9 5.5 6.6 1.1 .8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	290 380 293 280 208 220 244	257 354 33 33 30 75	
680 681 682 9 4 9 4 14 24 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	55 0 0 0 0 0 ABIE 10.0 8.0 4.4 15.7 13.4 6.5 6.5 6.5 6.5 6.5 6.5 22.4 23.4 17.3 26.0 0 17.1 24.2 14.8	0 32 0 22 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 7 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BETU 7.3 9.9 2.2 4 8.5 9.9 2.2 1.9 3.9 4.6 6.7 3.0 6.9 3.7 3.0 6.9 3.7 2.2 2.4	CARP 3 6.5 4.4 1.9 1.1 3.7 4.4 1.1 2.7 .5 1.7 .0 .7 .0 .7 .0 .2	CICH 155 59 CICH 155 59 CICH 00 00 00 00 00 00 00 00 00 0	CORY1 3.0 5.1 6.5 5.8 8.2 12.6 9.9 9.3 7.9 5.1 12.6 12.6 9.1 9.3 7.9 5.1 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12	FAGU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FOAC 5 16 33 42 43 16 FOAC 1.4 43 16 9 1.0 .8 .9 1.0 .8 .9 1.0 .8 .9 1.0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	PICE 49.6 32.0 29.2 37.9 34.1 30.6 31.5 25.7 35.5 30.5 30.5 39.4 24.2	200 25 22 221 150 142 154 2.8 1.5 4.8 1.5 1.0 1.1 1.1 1.2 1.8 1.5 1.0 1.4 2.8 1.2 2.2 1.4 2.8 1.5 2.2 2.2 1.5 1.42 1.54 2.8 1.14 2.8 1.54 2.8 1.14 2.8 1.14 2.8 1.14 2.8 1.14 2.8 1.14 2.8 1.14 2.8 1.14 2.8 1.14 2.8 1.14 2.8 1.14 2.8 1.14 2.8 1.14 1.14 2.8 1.14 1.14 1.14 1.14 2.8 1.14 1.14 1.14 2.8 1.14 1.14 1.14 1.14 2.8 1.14 1.14 1.14 1.14 1.14 2.8 1.14 1.14 1.14 2.8 1.14 1.14 1.14 2.8 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	PLAN 6.2 9.0 9.5 .2 .6 2.5 .8 2.2 .6 .2 .6 .2 .6 .2 .6 .2 .4 0 .7 .7 .0 1.4 .2	0 0 0 2 2 2 1 6 9 9 5 5 5 1 6 9 9 9 5 5 5 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 122 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0	CERE .99 5.55 6.6 1.1 .8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	290 380 293 280 280 208 220 244	257 354 260 33 23 30 75	

D-5

 $\gamma = \frac{1}{k_{\perp}} - \frac{1}{k_{\perp}} = \frac{1}{k_{\perp}} - \frac{1}{k_{\perp}$

134	21.3	.4	•1	3.5	.5	.0	3.7	19.7	.5	49.0	.5	.2	.0	.7	.0
154	22.0	.3	•••	3.6	1.6	.u .0	10.0	19.2	.9	37.3	.4	.0	.0	2.0	.0
164	18.0	.0	.)	7.2	.0	.0	7.4	22.3	,5	42.1	.6	.0	.0	1.9	.0
174	25.6	.0	.0	3.7	.0	.0	8.8	18.8	.6	39.7	.6	.0	.0	2.3	.0
194	29.4	.3	•i ii	2.7	.0	.0	4.9	4.9	. 6	58.7	1.0	.0	.0	4.9	.0
204	25.6	.2	.2	2.2	.0	.0	3.1	5.9	.6	58.4	. 8	.0	.0	3.1	.0
214	30.5	.0	.0	3.6	.0	.0	4.3	3.3	.5	54.2	1.0	.0	.0	2.6	.0
224	34.2	.0	.0	2.0	.0	.0	4.8	1.1	.5	52.7	1.0	.0	.0	3.6	.0
234	29.9	.0	.0	1.6	.0	.0	6.7	3.4	.5	46.3	.8	.0	.0	5.3	.0
255	25.0	.0	.0	1.8	.0	.0	6.8	3.1	.2	52.8	.7	.0	.0	9.6	.0
264	28.2	.0	.0	3.0	.0	.0	5.3	1.2	.4	45.0	•7	.0	.0	16.2	.0
274	19.1	.0	.0	1.7	.0	.0	10.9	.9	.6	46.8	.8	.0	.0	19.1	.0
294	26.2	.0	.0	1.4	.0	.0	7.4	.9	.4	47.5	.9	.0	.0	15.4	.0
299	22.3	.0	.0	.8	.0	.0	16.0	.4	. 8	35.7	1.3	.0	.0	22.7	.0
304	41.7	.0	.0	1.4	.0	.0	7.6	1.0	.3	34.3	.7	.0	.0	13.0	.0
314	24.1	.0	.0	5.4	.0	.0	15.3	.3	.5	20.0	1.0	.0	.0	33.4	.0
319	11.2	.0	.0	5.6	.0	.0	13.8	.0	1.0	22.4	1.7	.0	.0	44.3	.0
324	.9	.0	.0	10.5	.0	.0	27.4	.3	.6	15.9	1.0	.0	.0	43.3	.0
329	1.9	1.3	• • •	10.3	.0	.0	24.4	.0	1.0	9.6	3.0	.0	.0	50.0 45 3	.0
344	.0	3.6	J.	5.4	.0	.0	40.3	.0	.0	2.7	2.4	.0	.0	45.7	.0
354	.0	.3	•0	5.0	.0	2.7	46.7	.0	.5	.7	1.2	.0	.0	43.0	.0
359	.0	.0	.0	7.4	.0	.9	55.6	.0	.5	.5	1.6	.0	.0	33.5	.0
374	.0	1.2	.0	5.2 6.6	.0	1.7	53.2	.0	.5	.2	1.1	.0	.0	35.5	.0
384	.0	.3	.0	4.3	.0	1.5	53.2	.0	.5	.0	.8	.0	.0	39.4	.0
394	.0	.5	.0	5.6	.0	1.7	56.2	.0	.3	.0	.7	.0	.0	35.0	.0
404	.0	.2	.0.	20.4	.0	2.6	39.9	.0	6. ۵	.0	1.2	.0	.0	35.1	.0
424	.0	6.7	.0	66.1	.0	1.7	6.7	.0	2.8	.0	5.1	.0	.0	10.9	.0
435	.0	6.1	.0	61.0	.0	4.1	6.1	.0	3.5	.0	6.0	.0	.0	13.2	.0
444	.0	14.9	.0.	32.8	.0	23.9	6.0	.0	3.7	.0	9.7	.0	.0	9.0	.0
454	.0	.0	2.7	19.6	.0	46.0	14.9	.0	2.3	2.0	4.2	.0	.0	7.4	.0
459	.0	.0	4.9	41.4	.0	12.2	9.7	.0	11.5	4.9	15.5	.0	.0	.0	.0
464	.0	.0	5.1	17.0	.0	54.3	.0	.0	7.4	.0	10.5	.0	5.8	.0	.0
409	.0	.0	.8	3.5	.0	81.9	1.6	.0	3.2	.0	4.6	.0	2.8	.0	.0
479	.0	.0	1.1	3.2	.0	80.5	1.1	.0	3.6	.0	6.3	.0	4.3	.0	.0
482	.0	.0	1.1	1.1	.0	80.0	2.2	.0	3.1	.0	6.7	.0	5.8	.0	.0
400	.0	.0	1.8	5.3	.0	70 4	6.4	.0	2.8	.0	7 3	.0	8.1	-0-	.0
501	19.2	.5	.0	3.4	.0	.0	12.8	6.9	1.5	51.7	1.4	.0	.0	2.5	.0
502	19.5	.4		2.8	.0	.8	32.5	.8	.4	22.0	1.5	.0	.0	19.1	.0
503	4.7	2.6	1.2	12.1	2.1	1.0	12.0	22.9	2.2	29.1	2.5	8.3	.0	.0	3.6
505	8.7	.0		11.2	.5	.0	14.3	24.5	1.5	34.1	2.2	.0	.0	2.0	.5
506	20.0	.0	.0	.6	.0	.0	11.5	.0	.0	49.1	1.8	.0	.0	17.0	.0
507	26.9	.4	.0	.0 4	.0	.8	14.9	1./	1.0	38.5	1.4	.0	.0	14.5	.0
509	1.0	1.0	.0	.0	.0	1.0	38.1	3.0	1.6	2.0	3.1	.0	.0	49.1	.0
510	.0	.5	.5	1.6	.0	1.1	42.8	.0	.0	1.1	2.3	.0	.0	49.9	.0
511	.0	.8	.0	9.3	.0	.8	36.5	.0	.6	1.7	2.7	.0	.0	47.5	.0
513	.3	.0	.0	1.6	.0	.7	65.2	.0	.0	.7	1.0	.0	.0	30.5	.0
514	.0	.5	.0	3.9	.0	1.0	68.8	.0	.0	.0	1.4	.0	.0	24.4	.0
515	.0	9.2	.0 :	18.5	.0	4.6	23.1	.0	.0	.0	11.5	.0	5.3	27.7	.0
517	.0	2.0	3.8	20.4 41.4	.0	11.4	7.5	.0	5.2	.0	18.0	.0	12.8	.0	.0
518	.0	5.8	.0	5.8	.0	.0	29.0	.0	10.4	.0	30.1	.0	18.9	.0	.0
519	.0	.0	.0	10.9	.0	27.2	10.9	.0	.0	.0	29.1	.0	22.0	.0	.0
520 521	2.4 13.1	.0	.0.	16./	.0	4/.8 0	4.8	.0	3.9	2.4	9.3 1 4	.0	12.7	.0 4	.0
522	12.0	1.0	.3	3.9	1.3	.0	6.8	38.2	1.2	30.4	1.3	2.6	.0	1.0	.0
523	30.7	.5	.0	2.7	.5	.0	5.0	23.9	1.2	33.4	1.3	.5	.0	.5	.0
524	22.9	.8 ^	.0 :	13.4	.0	.3	11.0	13.2	1.1	34.4 44 1	.7	.0	.0	2.2	.0
526	32.3	.2	.0	3.3	.0	.2	8.0	7.3	1.7	42.7	.8	.0	.0	4.5	.0
527	1.4	.0	.0	.0	.0	.0	34.4	.0	1.8	11.1	2.8	.0	.0	45.5	.0
528	4.7	.0	-!	.9	.0	.9	24.2	.0	.6	23.3	2.5	.0	.0	42.8	.0
J2 9	2 • F	.0	• '		.0	· · · /	20.3	.0	. 0	12.2	2.1	.0	.0	43.0	- 0

		.0 .0		5.1	29.2	.0	.0	1.3	3.2		1.8	31.1	.0
531 .0	.0	.0 24.3	.0	.0	44.1	.0	8.3	.0	13.7	.0	9.6	.0	- 0
532 0	0	0 31 9	0	12 2	36 5	0	6 4	, n	67	0	6 3	0	0
532 .0		.0 31.7		12.2			<i>c</i>		10.0		10.5	~ ~ ~	
535 2.1	.0	.0 12.7	.0	4.2	44.4	.0	0.8	6.3	10.8		10.4	2.1	
534 .0	.0	.0 31.6	.0	5.9	39.5	.0	6.4	.0	7.0	.0	7.8	2.0	.0
535 19.0	.0	.0 6.2	.0	.0	24.4	8.7	. 9	36.4	1.2	.0	.0	3.3	.0
536 16.5	1.2	.0 2.8	.0	.0	23.4	6.0	1.0	42.3	1.1	.0	.0	5.6	.0
537 17.9	. 4	.0 8.1	.0	.0	26.6	6.7	.2	37.8	1.0	.0	.0	1.4	.0
539 30 7	2 9	0 0			16 0	8 0	1 0	30.3	1 2	0		7 6	0
536 50.7	2.0	.0 .0			10.0	0.0	1.9	30.3	1.2			7.0	- 0
539 25.9	د.	.0 3.0	.0	1.1	10.1	5.0	• 8	43.0	1.0	.0	•0	9.1	.0
540 28.2	.4	.0.7	.0	1.1	11.4	.4	.5	45.5	.7	.0	.0	11.0	.0
541 18.2	.5	.0 2.3	.0	4.1	15.9	.0	. 8	32.3	1.3	.0	.0	24.6	.0
542 9.4	.7	0.7	. n	7	9.4	.7	. 0	59 5	1.7	.0	0	17.4	.0
543 7 4		2.6			26.0			0.4				26 0	
343 7.4		. / 2.0	.0	3.1	30.0			9.4			.0	30.9	
550 13.7	1.4	. 9.2	.0	.0	5.5	17.4	1.9	39.4	2.4	3.1	.0	5.0	.5
551 20.2	.3	12.6	.3	.8	9.9	18.3	1.1	33.4	1.3	.8	.0	.5	.0
552 23.5	.3	.) 3.6	.0	.0	11.3	8.3	.4	49.7	.8	.3	.0	1.8	.0
553 7.2	.0	1.1 5.8	1.4	0	8.7	11.6	6.2	34.8	5.5	15.9	. 0	1.4	.0
554 0 1		0 4 4				21 2	1 4	41 0	3 4	1 5		36	
554 0.1		.0 4.4	2.2		3.5	31.3	1.4	41.2	1.4	1.5		2.0	
555 20.4	.0	.3 6.7	.0	.0	12.2	29.8	.7	25.9	.9	.0	-0	3.0	.0
556 33.4	.3	.0 1.1	.0	.0	3.0	14.4	.4	46.7	.6	.0	.0	.0	.0
557 23.8	3.9	.0 4.3	.0	.4	12.5	5.9	1.4	40.3	.9	.0	.0	6.6	.0
558 26.0	1.6	.0 1.2	.0	. 8	9.5	9.1	1.5	46.9	1.0	- 0	. 0	2.4	.0
550 13 7		1 7 7 3			5 6	AA 5	1 4	21 0	1 4	1 3		1.5	
509 15.7		1. 7.5			5.0	44.5	1.4	21.0	1.4	1.3		1	
560 26.7	.4	.4 5./	.0	.0	4.4	21.4	1.2	31.1	1.3	.0	.0	5.1	.0
561 22.4	.8	.0 7.1	.0	.0	10.0	20.8	1.4	32.4	1.5	.0	.0	3.7	.0
562 34.7	.0	.0 4.5	.0	1.1	10.1	6.7	1.6	33.6	2.2	.0	.0	5.6	.0
563 23.9	1.3	.0 7.1	.0	1.3	15.9	. 4	.0	42.5	1.2	. Ō	. 0	6.2	. 0
564 25 2		0 2 5		1 2	12 0	1 7	1 4	36 3	1 4			12 6	
569 23.2		.0 2.5		4.2	13.9	1.1	1.4	30.2	1.4		.0	12.0	
202 10.8	.4	.0 1.1	.0	1.5	14.3	4.4	.9	4/.5	1.1	.0	.0	12.1	.0
566 8.2	2.2	.0 1.6	2.7	1.6	3.8	15.9	2.5	45.9	2.3	8.8	.0	2.7	1.6
567 14.2	.0	.5 4.4	.0	.0	8.8	33.8	2.0	31.8	2.1	.0	.0	2.4	.0
568 28.4	.0	.0 2.6	. 4	.0	10.5	17.9	1.3	37.0	1.3	.0	.0	.7	.0
569 21 0	5	0 0	0	2 0	7 2	1 0		50 3	1 4	0		77	
570 20 7				2.0	1.2	1.0		50.5	1.7				
570 20.7	.0	.0 .0	.0	2.8	2.8	2.1	. 6	55./	1.1	.0	.0	14.4	.0
571 20.8	.5	.0.5	.0	1.1	7.5	1.1	.7	47.4	1.2	.0	.0	19.2	.0
572 21.3	.3	.6 7.6	.0	.3	8.9	26.7	1.1	30.8	.8	.3	.0	1.0	.3
573 21.8	.5	. 10.7	.0	.0	10.7	8.4	1.6	38.6	1.3	.0	. 0	6.0	. 0
574 26 1	28	1 1 4	0	2 8	22 5		1 5	26 8	2 0	0		14 1	0
J/7 20.1	2.0		••	2.0	22 · J			20.0	£.v			11.1	
575 0	•	. 10 0	~	• •		•		•		•		10.0	
575 .0	.9	.) 18.8	.0	9.4	44.3	.0	1.5	.9	5.2	.0	.0	18.8	.0
575 .0 576 .0	.9 2.7	.) 18.8 2./ 11.0	.0 .0	9.4 19.2	44.3 32.9	.0 .0	1.5 6.8	.9 .0	5.2 15.6	.0 .0	.0 8.9	18.8	.0
575 .0 576 .0 577 9.6	.9 2.7 .5	.) 18.8 2./11.0 1.: 1.9	.0 .0 .0	9.4 19.2 .0	44.3 32.9 8.2	.0 .0 45.2	1.5 6.8 1.5	.9 .0 27.4	5.2 15.6 1.2	0. 0. 1.0	.0 8.9 .0	18.8 .0 1.9	.0 .0 .0
575 .0 576 .0 577 9.6 578 27.3	.9 2.7 .5 .0	.) 18.8 2. / 11.0 1. : 1.9 .:) 2.2	0. 0. 0.	9.4 19.2 .0	44.3 32.9 8.2 8.7	.0 .0 45.2 18.3	1.5 6.8 1.5 1.1	.9 .0 27.4 39.5	5.2 15.6 1.2 1.0	0. 0. 1.0	.0 8.9 .0	18.8 .0 1.9 1.9	.0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4	.9 2.7 .5 .0 3.4	.) 18.8 2.' 11.0 1.: 1.9 .:) 2.2	0. 0. 0.	9.4 19.2 .0 .0	44.3 32.9 8.2 8.7 13 7	.0 .0 45.2 18.3 2 1	1.5 6.8 1.5 1.1	.9 .0 27.4 39.5 41 5	5.2 15.6 1.2 1.0	.0 .0 1.0 .0	.0 8.9 .0 .0	18.8 .0 1.9 1.9	.0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4	.9 2.7 .5 .0 3.4	.) 18.8 2. / 11.0 1. : 1.9 .0 2.2 .4 3.0	0. 0. 0. 0.	9.4 19.2 .0 .0 1.7	44.3 32.9 8.2 8.7 13.7	.0 .0 45.2 18.3 2.1	1.5 6.8 1.5 1.1 1.4	.9 .0 27.4 39.5 41.5	5.2 15.6 1.2 1.0 1.4	.0 .0 1.0 .0	.0 8.9 .0 .0	18.8 .0 1.9 1.9 9.8	.0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0	.9 2.7 .5 .0 3.4 .0	.) 18.8 2.' 11.0 1.: 1.9 .) 2.2 .4 3.0 .) 1.8	0. 0. 0. 0.	9.4 19.2 .0 .0 1.7 1.8	44.3 32.9 8.2 8.7 13.7 30.1	.0 .0 45.2 18.3 2.1 2.5	1.5 6.8 1.5 1.1 1.4 .6	.9 .0 27.4 39.5 41.5 16.8	5.2 15.6 1.2 1.0 1.4 1.2	.0 .0 1.0 .0 .0	.0 8.9 .0 .0 .0	18.8 .0 1.9 1.9 9.8 38.9	.0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8	.9 2.7 .5 .0 3.4 .0	.) 18.8 2.' 11.0 1.: 1.9 .) 2.2 .4 3.0 .) 1.8 .0 .0	0. 0. 0. 0. 0.	9.4 19.2 .0 .0 1.7 1.8 2.1	44.3 32.9 8.2 8.7 13.7 30.1 45.6	.0 .0 45.2 18.3 2.1 2.5 .0	1.5 6.8 1.5 1.1 1.4 .6 1.0	.9 .0 27.4 39.5 41.5 16.8 6.2	5.2 15.6 1.2 1.0 1.4 1.2 2.2	.0 .0 1.0 .0 .0	.0 8.9 .0 .0 .0 .5 1.5	18.8 .0 1.9 1.9 9.8 38.9 38.7	.0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0	.9 2.7 .5 .0 3.4 .0 .0 .0	.) 18.8 2.' 11.0 1. 1.9 .) 2.2 .4 3.0 .) 1.8 .0 .0 .0 16.1	0. 0. 0. 0. 0.	9.4 19.2 .0 .0 1.7 1.8 2.1 3.0	44.3 32.9 8.2 8.7 13.7 30.1 45.6 53.1	.0 .0 45.2 18.3 2.1 2.5 .0 .0	1.5 6.8 1.5 1.1 1.4 .6 1.0 1.2	.9 .0 27.4 39.5 41.5 16.8 6.2 1.2	5.2 15.6 1.2 1.0 1.4 1.2 2.2 2.5	.0 .0 1.0 .0 .0 .0	.0 8.9 .0 .0 .5 1.5 1.4	18.8 .0 1.9 9.8 38.9 38.7 21.5	.0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9	.9 2.7 .5 .0 3.4 .0 .0 .0	.) 18.8 2.' 11.0 1. 1.9 .) 2.2 .4 3.0 .) 1.8 .0 .0 .0 16.1 1.9 4.7	0. 0. 0. 0. 0.	9.4 19.2 .0 1.7 1.8 2.1 3.0	44.3 32.9 8.2 8.7 13.7 30.1 45.6 53.1 11.7	.0 .0 45.2 18.3 2.1 2.5 .0 .0 20.5	1.5 6.8 1.5 1.1 1.4 .6 1.0 1.2 1.9	.9 .0 27.4 39.5 41.5 16.8 6.2 1.2 35.0	5.2 15.6 1.2 1.0 1.4 1.2 2.2 2.5 2.5	.0 .0 1.0 .0 .0 .0 .0 .0	.0 8.9 .0 .0 .0 .5 1.5 1.4	18.8 .0 1.9 9.8 38.9 38.7 21.5 2.3	.0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7	.9 2.7 .5 .0 3.4 .0 .0 .0 .5 .3	.) 18.8 2./ 11.0 1.: 1.9 .:) 2.2 .4 3.0 .:) 1.8 .0 .0 .0 16.1 1.9 4.7 1.0 2.9	.0 .0 .0 .0 .0 .0	9.4 19.2 .0 1.7 1.8 2.1 3.0 .0	44.3 32.9 8.2 8.7 13.7 30.1 45.6 53.1 11.7	.0 .0 45.2 18.3 2.1 2.5 .0 .0 20.5 33.0	1.5 6.8 1.5 1.1 1.4 .6 1.0 1.2 1.9	.9 .0 27.4 39.5 41.5 16.8 6.2 1.2 35.0 29.5	5.2 15.6 1.2 1.0 1.4 1.2 2.2 2.5 2.5 1.4	.0 .0 .0 .0 .0 .0 .0 .0 3.3	.0 8.9 .0 .0 .5 1.5 1.4 .0	18.8 .0 1.9 9.8 38.9 38.7 21.5 2.3	.0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 583 14.9 584 16.7 585 17 6	.9 2.7 .5 .0 3.4 .0 .0 .0 .5 .3	.) 18.8 2.' 11.0 1.4 1.9 .) 2.2 .4 3.0 .) 1.8 .) .0 .0 16.1 1.9 4.7 1.0 2.9	.0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 .0 1.7 1.8 2.1 3.0 .0	44.3 32.9 8.2 8.7 13.7 30.1 45.6 53.1 11.7 10.6 7	.0 .0 45.2 18.3 2.1 2.5 .0 20.5 33.0	1.5 6.8 1.5 1.1 1.4 .6 1.0 1.2 1.9 1.5	.9 .0 27.4 39.5 41.5 16.8 6.2 1.2 35.0 29.5	5.2 15.6 1.2 1.0 1.4 1.2 2.2 2.5 2.5 1.4	.0 .0 1.0 .0 .0 .0 .0 3.3 1.9	.0 8.9 .0 .0 .0 .5 1.5 1.4 .0	18.8 .0 1.9 1.9 9.8 38.9 38.7 21.5 2.3 .0 7.4	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 585 17.6	.9 2.7 .5 .0 3.4 .0 .0 .0 .5 .3 .3	.) 18.8 2.' 11.0 1.: 1.9 .0 2.2 .4 3.0 .0 1.8 .0 .0 .0 16.1 1.9 4.7 1.0 2.9 .0 2.4	.0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 .0 1.7 1.8 2.1 3.0 .0 .0	44.3 32.9 8.2 8.7 13.7 30.1 45.6 53.1 11.7 10.6 7.6	.0 .0 45.2 18.3 2.1 2.5 .0 .0 20.5 33.0 1.3	1.5 6.8 1.5 1.1 1.4 .6 1.0 1.2 1.9 1.5 .8	.9 .0 27.4 39.5 41.5 16.8 6.2 1.2 35.0 29.5 61.8	5.2 15.6 1.2 1.0 1.4 1.2 2.2 2.5 2.5 1.4 .8	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .0 .0 .5 1.5 1.4 .0 .0	18.8 .0 1.9 1.9 9.8 38.9 38.7 21.5 2.3 .0 7.4	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 585 17.6 586 28.0	.9 2.7 .5 .0 3.4 .0 .0 .0 .5 .3 .3 .3	.) 18.8 2.' 11.0 1 1.9 .) 2.2 4 3.0 .) 1.8 .0 .0 .0 16.1 1.9 4.7 1.0 2.9 .0 2.4 .0 .8	.0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 1.7 1.8 2.1 3.0 .0 .0 3.9	44.3 32.9 8.2 8.7 13.7 30.1 45.6 53.1 11.7 10.6 7.6 6.5	.0 .0 45.2 18.3 2.1 2.5 .0 .0 20.5 33.0 1.3 .8	1.5 6.8 1.5 1.1 1.4 .6 1.0 1.2 1.9 1.5 .8 .7	.9 .0 27.4 39.5 41.5 16.8 6.2 1.2 35.0 29.5 61.8 50.2	5.2 15.6 1.2 1.0 1.4 1.2 2.2 2.5 2.5 1.4 .8 .7	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .0 .5 1.5 1.4 .0 .0 .0	18.8 .0 1.9 1.9 9.8 38.9 38.7 21.5 2.3 .0 7.4 8.4	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 585 17.6 586 28.0 587 22.6	.9 2.7 .5 .0 3.4 .0 .0 .0 .5 .3 .3 .3 .7	$\begin{array}{c} .) 18.8 \\ 2. ' 11.0 \\ 1. : 1.9 \\ 2.2 \\ 4 \\ 3.0 \\ 0 \\ 1.8 \\ 0 \\ 0 \\ 1.8 \\ 0 \\ 0 \\ 1.6 \\ 1.9 \\ 4.7 \\ 1.0 \\ 2.9 \\ 0 \\ 2.4 \\ 0 \\ 8 \\ 0 \\ 0 \end{array}$.0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 1.7 1.8 2.1 3.0 .0 .0 3.9 1.8	44.3 32.9 8.2 8.7 13.7 30.1 45.6 53.1 11.7 10.6 6.5 6.6	.0 .0 45.2 18.3 2.1 2.5 .0 20.5 33.0 1.3 .8 1.1	1.5 6.8 1.5 1.1 1.4 .6 1.0 1.2 1.9 1.5 .8 .7 .6	.9 .0 27.4 39.5 41.5 16.8 6.2 1.2 35.0 29.5 61.8 50.2 48.8	5.2 15.6 1.2 1.0 1.4 1.2 2.2 2.5 2.5 2.5 1.4 .8 .7 1.0	.0 .0 .0 .0 .0 .0 .0 3.3 1.9 .0 .0	.0 8.9 .0 .0 .5 1.5 1.4 .0 .0 .0	18.8 .0 1.9 9.8 38.9 38.7 21.5 2.3 .0 7.4 8.4 16.8	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 583 14.9 584 16.7 585 17.6 586 28.0 587 22.6 588 25.9	.9 2.7 .5 .0 3.4 .0 .0 .0 .5 .3 .3 .0 .7 .4	.) 18.8 2.' 11.0 1 1.9 2.2 4 3.0 1.8 0 16.1 1.9 4.7 1.0 2.9 2.4 2.9 2.4 2.9 2.4 3 2.9 3 3 4.7 1.0 4.19 4.20 4.19 4.19 4.19 4.19 4.19 4.19 4.19 4.7 4.19 4.19 4.19 4.20 4.19 4.19 4.19 4.7 	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 .0 1.7 1.8 2.1 3.0 .0 .0 .0 .0 3.9 1.8 .0	44.3 32.9 8.2 8.7 13.7 30.1 45.6 53.1 11.7 10.6 7.6 6.5 6.6 4.2	.0 .0 45.2 18.3 2.1 2.5 .0 20.5 33.0 1.3 .8 1.1 33.9	1.5 6.8 1.5 1.1 1.4 .6 1.0 1.2 1.9 1.5 .8 .7 .6 1.3	.9 .0 27.4 39.5 41.5 16.8 6.2 1.2 35.0 29.5 61.8 50.2 48.8 25.9	5.2 15.6 1.2 1.0 1.4 1.2 2.2 2.5 2.5 2.5 1.4 .8 .7 1.0 1.2	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .0 .5 1.5 1.4 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.9 38.7 21.5 2.3 .0 7.4 8.4 16.8 .8	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 585 17.6 586 28.0 587 22.6 588 25.9 589 19.6	.9 2.7 .5 .0 3.4 .0 .0 .0 .5 .3 .3 .0 .7 .4 .4	.) 18.8 2.' 11.0 1 1.9 .) 2.2 4 3.0 .) 1.8 .0 .0 .0 16.1 1.9 4.7 1.0 2.9 .0 2.4 .0 .8 .0 .0 .0 4.6 .0 5.2	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 .0 1.7 1.8 2.1 3.0 .0 .0 .0 3.9 1.8 .0 .0	44.3 32.9 8.2 8.7 13.7 30.1 45.6 53.1 11.7 10.6 7.6 6.5 6.6 4.2 4.8	.0 .0 45.2 18.3 2.1 2.5 .0 .0 20.5 33.0 1.3 .8 1.1 33.9 27.6	1.5 6.8 1.5 1.1 1.4 .6 1.0 1.2 1.9 1.5 .8 .7 .6 1.3 1.3	.9 .0 27.4 39.5 41.5 16.8 6.2 1.2 35.0 29.5 61.8 50.2 48.8 25.9 37.2	5.2 15.6 1.2 1.0 1.4 1.2 2.2 2.5 2.5 1.4 .8 .7 1.0 1.2 1.1	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .0 .5 1.5 1.4 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.9 38.7 21.5 2.3 .0 7.4 8.4 16.8 .8 2.8	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 585 17.6 586 28.0 587 22.6 588 25.9 589 19.6 590 21.6	.9 2.7 .5 .0 3.4 .0 .0 .5 .3 .0 .7 .4 .4 .7	.) 18.8 2.' 11.0 1 1.9 .) 2.2 .4 3.0 .0 18. .0 .0 18. .0 .0 16.1 1.9 4.7 1.0 2.9 .0 2.4 .0 2.8 .0 2.4 .0 .8 .0 .0 .0 4.6 .0 5.2 .0 16.9	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 .0 1.7 1.8 2.1 3.0 .0 .0 3.9 1.8 .0 .0 0 0	44.3 32.9 8.2 8.7 13.7 30.1 45.6 53.1 11.7 10.6 6.5 6.6 4.2 4.8 22.3	.0 .0 45.2 18.3 2.1 2.5 .0 .0 20.5 33.0 1.3 8 1.1 33.9 27.6 4.7	1.5 6.8 1.5 1.1 1.4 .6 1.0 1.2 1.9 1.5 .8 .7 .6 1.3 1.3	.9 .0 27.4 39.5 41.5 16.8 6.2 1.2 35.0 29.5 61.8 50.2 48.8 25.9 37.2 25.5	5.2 15.6 1.2 1.0 1.4 1.2 2.2 2.5 2.5 1.4 .8 .7 1.0 1.2 1.1 1.3	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .0 .5 1.5 1.4 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.9 38.7 21.5 2.3 .0 7.4 8.4 16.8 2.8 5.4	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 20 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 583 14.9 583 14.9 585 17.6 586 28.0 587 22.6 588 25.9 589 19.6 590 21.6	.9 2.7 .5 .0 3.4 .0 .0 .0 .5 .3 .0 .0 .5 .3 .0 7 .4 4 .4 .7	.) 18.8 2.' 11.0 1. a 1.9 .) 2.2 .4 3.0 .0 16.1 1.9 4.7 1.0 2.9 0 2.4 .0 .8 .0 .0 .0 2.4 .0 .8 .0 .0 .0 4.6 .0 5.2 .0 16.9	.0	9.4 19.2 .0 .0 1.7 1.8 2.1 3.0 .0 .0 3.9 1.8 .0 .0 .0 3.1	44.3 32.9 8.2 8.7 13.7 30.1 45.6 53.1 11.7 10.6 7.6 6.5 6.6 4.2 822.3 8	.0 .0 45.2 18.3 2.1 2.5 .0 20.5 33.0 1.3 .8 1.1 33.9 27.6 4.7	1.5 6.8 1.5 1.1 1.4 .6 1.0 1.2 1.9 1.5 .8 .7 .6 1.3 1.3 1.5	.9 .0 27.4 39.5 41.5 16.8 6.2 1.2 35.0 29.5 61.8 50.2 48.8 25.9 25.5 25.5 7	5.2 15.6 1.2 1.0 1.4 1.2 2.2 2.5 2.5 2.5 1.4 .8 .7 1.0 1.2 1.1 1.3	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.9 38.7 21.5 2.3 .0 7.4 8.4 16.8 2.8 5.4 24.8	.00.00.00.00.00.00.00.00.00.00.00.00.00
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 586 28.0 587 22.6 588 25.9 589 19.6 590 21.6 591 25.9	.9 2.7 .5 .0 3.4 .0 .0 .0 .5 .3 .3 .0 .7 .4 4 .7 .0	.) 18.8 2.' 11.0 1 1.9 .) 2.2 .4 3.0 .0 1.8 .0 .0 .0 16.1 1.9 4.7 1.0 2.9 .0 2.4 .0 .8 .0 .0 .0 4.6 .0 5.2 .0 16.9 .0 .0	.0	9.4 19.2 .0 1.7 1.8 2.1 3.0 .0 .0 3.9 1.8 .0 .0 3.1 2 1.8	44.3 32.9 8.2 8.7 13.7 30.1 45.6 53.1 11.7 10.6 7.6 6.5 6.6 4.2 4.8 22.3 13.8	.0 .0 45.2 18.3 2.1 2.5 .0 20.5 33.0 1.3 .8 1.1 33.9 27.6 4.7 .0	1.5 6.8 1.5 1.1 1.4 .6 1.0 1.2 1.9 1.5 .8 .7 .6 1.3 1.3 1.6 .5	.9 .0 27.4 39.5 41.5 16.8 6.2 1.2 35.0 29.5 61.8 50.2 48.8 25.9 37.2 25.5 30.7 4	5.2 15.6 1.2 1.0 1.4 1.2 2.2 2.5 2.5 1.4 .8 .7 1.0 1.2 1.1 1.3 1.2	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.9 38.7 21.5 2.3 7.4 8.4 16.8 2.8 5.4 22.8 5.4 27 27	.00.00.00.00.00.00.00.00.00.00.00.00.00
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 585 17.6 586 28.0 587 22.6 588 25.9 589 19.6 590 21.6 591 25.9 592 16.8	.9 2.7 .5 .0 3.4 .0 .0 .5 .3 .3 .0 .7 .4 .4 .7 .0 8	.) 18.8 2.' 11.0 1 1.9 2.2 4 3.0 1.8 0 .0 16.1 1.9 4.7 1.0 2.9 0 2.4 0 0.0 0	.0	9.4 19.2 .0 1.7 1.8 2.1 3.0 .0 .0 3.9 1.8 .0 .0 3.1 4.0	44.3 32.9 8.2 8.7 13.7 30.1 45.6 53.1 11.7 10.6 53.1 11.7 6.5 6.6 4.2 4.8 22.3 13.8 14.8	.0 .0 45.2 18.3 2.1 2.5 .0 20.5 33.0 1.3 .8 1.1 33.9 27.6 4.7 .0	1.5 6.8 1.5 1.1 1.4 .6 1.0 1.2 1.9 1.5 .8 .7 .6 1.3 1.3 1.6 .5 .6	.9 .0 27.4 39.5 41.5 16.8 6.2 15.0 29.5 50.2 48.8 25.9 37.2 25.5 30.7 28.4	5.2 15.6 1.2 1.0 1.4 1.2 2.2 2.5 2.5 1.4 7 1.0 1.2 1.1 1.3 1.2 1.4	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.9 38.7 21.5 2.3 7.4 8.4 16.8 2.8 5.4 24.8 33.2	.00.00.00.00.00.00.00.00.00.00.00.00.00
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 585 17.6 586 28.0 587 22.6 588 25.9 589 19.6 590 21.6 592 16.8 593 7.5	.9 2.7 .5 .0 3.4 .0 .0 .5 .3 .3 .0 .7 .4 .4 .7 .8 .8	$\begin{array}{c} .) 18.8\\ 2. & 11.0\\ 1. & 1.9\\ & 2.2\\ & 3.0\\ & 1.8\\ 0& .0\\ & 1.8\\ 0& .0\\ & 1.6\\ 1.9& 4.7\\ 1.0& 2.9\\ & 2.4\\ & 3.8\\ & 0& .0\\ & 2.4\\ & 3.8\\ & 0& .0\\ & 4.6\\ & 5.2\\ & 16.9\\ & .0\\ & 0& 0\\ 1.1& 5.6\end{array}$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 1.7 1.8 2.1 3.0 .0 .0 3.9 1.8 .0 .0 3.1 4.0 .0	44.3 32.9 8.2 8.7 13.7 30.1 45.6 53.1 11.7 10.6 7.6 6.5 6.5 6.6 4.2 4.8 22.3 13.8 14.8 4.9	.0 .0 45.2 18.3 2.1 2.5 .0 20.5 33.0 1.3 .8 1.1 33.9 27.6 4.7 .0 .0 37.2	1.5 6.8 1.5 1.1 1.4 .6 1.0 1.2 1.9 1.5 .7 6 1.3 1.3 1.6 .5 .6	.9 .0 27.4 39.5 41.5 16.2 1.2 35.0 29.5 61.8 50.2 48.9 37.2 25.5 30.7 28.4 37.9	5.2 15.6 1.2 1.0 1.4 1.2 2.5 2.5 1.4 .8 .7 1.0 1.2 1.1 1.3 1.2 1.4 1.3	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.7 21.5 2.3 .0 7.4 8.4 16.8 2.8 5.4 24.8 33.2 .0	.00000.00 .00000.00 .00000.00 .000000.00
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 585 17.6 586 28.0 587 22.6 588 25.9 589 19.6 590 21.6 591 25.9 592 16.8 593 7.5 594 18.7	.9 2.7 .5 .0 3.4 .0 .0 .5 .3 .0 .7 .4 .4 .7 .8 8 .0	$\begin{array}{c} .) 18.8 \\ 2. ' 11.0 \\ 1. & 1.9 \\ & 2.2 \\ .4 & 3.0 \\ & 1.8 \\ .0 & .0 \\ .0 & 16.1 \\ 1.9 & 4.7 \\ 1.0 & 2.9 \\ .0 & 2.4 \\ .0 & .8 \\ .0 & .0 \\ .0 & 2.4 \\ .0 & .8 \\ .0 & .0 \\ .0 & 4.6 \\ .0 & 5.2 \\ .0 & 16.9 \\ .0 & .0 \\ .0 & .0 \\ .1 & 5.6 \\ .4 & 13.0 \end{array}$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 .0 1.7 1.8 2.1 3.0 .0 .0 3.9 1.8 .0 .0 3.9 1.8 .0 .0 3.1 4.0 .0 .0	44.3 32.9 8.2 8.7 13.7 30.1 45.6 53.1 11.7 10.6 53.1 11.7 10.6 6.5 6.6 4.2 4.8 22.3 13.8 4.9 6.5	.0 45.2 18.3 2.5 .0 20.5 33.0 1.3 .8 1.1 33.9 27.6 4.7 .0 37.2 22.8	1.5 6.8 1.5 1.1 1.4 .6 1.0 1.2 1.9 1.5 .8 .7 .6 1.3 1.3 1.6 5.6 1.5 1.4	.9 .0 27.4 39.5 41.5 16.2 1.2 35.0 29.5 61.8 50.2 48.8 25.9 37.5 30.7 28.4 37.9 33.7	5.2 15.6 1.2 1.0 1.4 1.2 2.5 2.5 2.5 1.4 .8 .7 1.0 1.2 1.1 1.3 1.2 1.4 1.3 1.0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	.0 8.9 .0 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.7 21.5 2.3 .0 7.4 16.8 2.8 5.4 24.8 33.2 .0 1.2	.0000.093.000000.000.000.00000000000000
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 585 17.6 586 28.0 587 22.6 588 19.6 591 25.9 592 16.8 593 7.5 594 18.7 595 15.7	.9 2.7 .5 .0 3.4 .0 .0 .5 .3 .3 .0 7 .4 4.7 .8 8 .8 0 .4	$\begin{array}{c} .) 18.8 \\ 2.' 11.0 \\ 1. a 1.9 \\ 2.2 \\ 4 3.0 \\ 1 1.8 \\ 0 .0 \\ 0 16.1 \\ 1.9 4.7 \\ 1.0 2.9 \\ 0 2.4 \\ 0 .8 \\ 0 .0 \\ 0 5.2 \\ 0 16.9 \\ 0 5.2 \\ 0 16.9 \\ 0 .0 \\ 0$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 .0 1.7 1.8 2.1 3.0 .0 .0 .0 .0 3.9 1.8 .0 .0 .0 3.1 4.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	44.3 32.9 8.2 8.7 13.7 30.1 45.6 53.1 11.7 10.6 7.6 6.5 6.6 4.2 4.8 22.3 13.8 14.8 4.9 13.5	.0 .0 45.2 18.3 2.1 2.5 .0 20.5 33.0 1.3 1.1 33.9 27.6 4.7 .0 37.2 22.8 8.2	1.5 6.8 1.5 1.1 1.4 1.0 1.2 1.9 1.5 .6 1.3 1.3 1.6 .5 .65 1.4 1.3	.9 .0 27.4 39.5 41.5 16.8 6.2 1.2 35.0 29.5 61.8 25.9 37.2 25.5 30.7 28.4 37.7 28.4 37.7 17.5	5.2 15.6 1.2 1.0 1.4 2.2 2.5 2.5 1.4 .8 7 1.0 1.2 1.1 1.3 1.2 1.4 1.3 1.0 1.1	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.7 21.5 2.3 .0 7.4 8.4 16.8 2.8 5.4 24.8 33.2 .0 1.2 .7	.00000930000000000000000000000000000000
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 585 17.6 585 28.6 586 28.0 587 22.6 588 25.9 589 19.6 590 21.6 593 7.5 594 18.7 595 15.7 596 22.0	.9 2.7 .5 .0 3.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} .) 18.8 \\ 2. ' 11.0 \\ 1. & 1.9 \\ & 2.2 \\ & 3.0 \\ & 1.8 \\ & 0 & 0 \\ & 1.8 \\ & 0 & 0 \\ & 1.18 \\ & 0 & 0 \\ & 1.18 \\ & 0 & 2.4 \\ & 0 & .8 \\ & 0 & 0 \\ & 0 & 2.4 \\ & 0 & .8 \\ & 0 & 0 \\ & 0 &$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 .0 1.7 1.8 2.1 3.0 .0 .0 .0 .0 3.9 1.8 4.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	44.3 32.9 8.2 8.7 30.1 45.6 53.1 11.7 7.6 6.5 53.1 11.7 7.6 4.2 22.3 13.8 4.9 6.5 513.5 13.5	.0 45.2 18.3 2.5 .0 20.5 33.0 1.3 1.1 33.9 27.6 4.7 .0 37.2 22.8 2 3.7	1.5 6.8 1.5 1.1 1.4 1.9 1.5 .8 .7 .6 1.3 1.3 1.6 1.5 1.4 1.3 1.6 1.5 1.4 1.3 1.6 1.5 1.4 1.3 1.3 1.6 1.5 1.5 1.5 1.1 1.5 1.5 1.5 1.5 1.5 1.5	.9 .0 27.4 39.5 41.5 16.8 1.2 35.0 29.5 50.2 48.8 25.5 261.8 25.5 28.4 37.7 28.4 37.7 28.4 37.7 17.5 7	5.2 15.6 1.2 1.4 1.2 2.2 2.5 2.5 2.5 1.4 1.2 1.1 1.3 1.2 1.4 1.3 1.0 1.1 1.3 1.2	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.9 38.7 21.5 2.3 7.4 8.4 16.8 2.4 24.8 33.2 0 1.2 2.8 33.2 0 1.2 2.8	000000000000000000000000000000000000000
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 585 17.6 586 28.0 587 22.6 588 25.9 589 19.6 590 21.6 591 25.9 592 16.8 593 7.5 594 18.7 595 15.7 596 22.0	.9 2.7 .5 .0 3.4 .0 .0 .0 .0 .5 .3 .3 .0 .7 .4 .4 .7 .0 .8 .8 .8 .0 .4 .9 .0	$\begin{array}{c} .) 18.8 \\ 2. ' 11.0 \\ 1. : 1.9 \\ 2.2 \\ .4 \\ 3.0 \\ 1 \\ 1.8 \\ 1 \\$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 .0 1.7 1.8 2.1 1.8 2.1 3.0 .0 .0 .0 .0 3.9 1.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	44.3 32.9 8.2 13.7 13.7 145.6 53.1 11.7 6.5 6.6 6.6 4.2 22.3 13.8 4.9 6.5 13.2 13.8 14.8 2.3 13.8 2.3 13.2 14.8 2.3 13.2 2.3 13.2 2.3 13.2 2.3 13.2 2.3 13.2 2.3 13.2 2.3 13.2 13.2	.0 .0 45.2 18.3 2.1 2.5 .0 20.5 33.0 1.3 1.3 33.0 27.6 4.7 .0 37.2 22.8 8.2 3.7 4	1.5 6.8 1.5 1.1 1.4 6 1.0 1.2 1.9 1.5 1.3 1.3 1.3 1.6 5.6 1.5 1.4 1.3 1.5 1.4 1.3 1.5	.9 .0 27.4 39.5 41.5 6.2 1.2 29.5 61.8 8 6.2 1.2 25.5 30.2 25.5 30.2 25.5 30.7 25.5 30.7 31.7 5 30.7 48.8 8 37.9 31.7 5 5 48.8 37.9 5 30.7 5 48.8 30.7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.2 15.6 1.2 1.0 1.4 1.2 2.5 2.5 2.5 1.4 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.4 1.3 1.2 1.4 1.3 1.2 1.4 1.3 1.2 1.7 1.0 1.2 2.5 1.5 1.2 2.5 1.5 1.2 2.5 1.5 1.2 2.5 1.5 1.2 2.5 1.5 1.2 2.5 1.5 1.2 2.5 1.5 1.2 2.5 1.5 1.5 1.2 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .0 .5 .5 .5 .5 .5 .5 .5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.9 38.7 21.5 2.0 7.4 8.4 16.8 2.8 5.4 24.8 33.0 1.2 7.2 2.7 2.8 0 1.9 9.8 1.9 9.8 1.9 9.8 1.9 9.8 1.9 9.8 1.9 9.8 1.9 9.8 1.9 9.8 1.9 9.8 1.9 9.8 1.9 9.8 1.9 9.8 1.9 9.8 1.9 9.8 1.9 9.8 1.9 9.8 1.9 9.8 1.9 9.8 1.5 2.0 7.4 8.4 1.6 8.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 585 17.6 586 28.0 587 22.6 588 25.9 591 25.9 592 16.8 593 7.5 594 18.7 593 7.5 594 18.7 593 7.5 594 18.7 595 15.7 596 22.0 597 22.4 598 15.7 596 22.0 597 22.4	.9 2.7 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} .) 18.8 \\ 2.' 11.0 \\ 1 1.9 \\ 2.2 \\ 4 \\ 3.0 \\ 1.9 \\ 1 1.9 \\ 1.9 \\ 1.9 \\ 1.9 \\ 1.9 \\ 4.7 \\ 1.0 \\ 2.9 \\ 0.0 \\ 1.0 \\ 1.9 \\ 4.7 \\ 1.0 \\ 2.4 \\ 0.0 \\ 1.$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 .0 1.7 1.8 2.1 3.0 .0 .0 .0 .0 3.9 1.8 .0 .0 .0 .0 3.1 4.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	44.3 32.9 8.2 30.1 45.6 53.1 11.7 6.5 53.1 11.7 6.5 6.6 4.2 2.3 13.8 4.9 6.5 12.2 13.5 12.2 14.1	.0 .0 45.2 21 2.5 .0 .0 20.5 .0 20.5 .0 1.3 3.9 4.7 .0 .0 27.6 4.7 .0 .0 27.6 22.8 8.2 3.7 2.4	1.5 6.8 1.5 1.1 1.4 6 1.0 1.2 1.9 1.5 .8 1.3 1.3 1.3 1.6 .5 5 1.4 1.3 1.4 1.3 1.3 1.4 5 1.4 1.5	.9 .0 27.4 39.5 16.8 6.2 1.2 35.0 261.8 850.2 25.5 30.7 28.4 37.9 31.7 5 28.4 37.7 28.4 37.7 28.4 37.7 28.4 37.7 28.4 37.7 5 30.7 48.8 8 25.5 5 30.7 5 48.8 8 25.5 5 30.7 5 48.8 8 25.5 5 30.7 5 48.8 8 25.5 5 30.7 5 48.8 8 25.5 5 30.7 5 48.8 8 25.5 5 30.7 5 48.8 8 25.5 5 30.7 5 48.8 8 25.5 5 30.7 5 48.8 8 25.5 5 30.7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.2 15.6 1.2 1.4 1.2 2.5 2.5 2.5 1.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .5 1.5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.5 38.7 21.5 2.3 .7.4 8.4 16.8 2.8 33.2 .0 1.2 .7 2.8 9.0 0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 586 28.0 587 22.6 588 25.9 589 19.6 590 21.6 593 7.5 594 18.7 595 15.7 594 18.7 595 15.7 594 22.4 597 22.4 598 16.8	.9 2.7 .5 .0 3.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.) 18.8 2.' 11.0 1 1.9 .:) 2.2 .4 3.0 .:) 1.8 .0 .0 .0 16.1 1.9 4.7 1.0 2.9 .0 2.4 .0 .8 .0 .0 .0 4.6 .0 5.2 .0 16.9 .0 .0 .0 16.1 1.5 6 .4 13.0 .0 41.7 .0 4.2 .0 .7 6	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 .0 .0 1.7 1.8 2.1 1.7 3.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	44.3 32.9 8.2 13.7 30.1 145.6 6.5 53.1 11.7 7.6 6.5 6.6 6.6 4.2 22.3 13.8 14.8 4.9 6.5 5 13.6 12.2 14.1 16.2	.0 .0 45.2 2.1 2.5 .0 0 20.5 33.0 1.3 33.9 27.6 4.7 .0 0 37.2 22.8 8.2 22.8 8.3.7 2.4 .0 0 0 20.5	1.5 6.8 1.5 1.1 1.4 6 1.0 1.2 1.9 1.5 .8 .7 .6 1.3 1.3 1.3 1.3 1.3 1.5 .6 1.5 1.4 1.3 .8 .5 .5	.9 .0 27.4 39.5 16.8 29.5 50.2 29.5 50.2 25.5 30.7 25.5 30.7 33.7 33.7 33.7 33.7 5 48.8 42.5	5.2 15.6 1.2 1.4 1.2 2.5 2.5 1.4 .8 .7 1.2 1.1 1.3 1.2 2.5 1.4 .8 .7 1.2 1.1 1.3 1.2 1.4 1.2 2.5 1.4 1.2 2.5 1.4 1.2 2.5 1.4 1.2 2.5 1.4 1.2 2.5 2.5 1.2 2.5 1.4 1.2 2.5 1.4 1.4 1.2 2.5 2.5 1.4 1.4 1.2 2.5 2.5 1.4 1.4 1.2 2.5 2.5 1.4 1.4 1.2 2.5 2.5 1.4 1.4 1.2 2.5 2.5 1.4 1.4 1.2 2.5 2.5 1.4 1.4 1.2 2.5 2.5 1.4 1.4 1.2 2.5 2.5 1.4 1.4 1.2 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.99 1.99 9.8 38.5 2.3 38.7 7.4 8.4 16.8 2.8 5.4 24.8 33.2 .0 1.2 2.7 2.7 2.0 0 2.8 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 585 17.6 586 28.0 587 22.6 588 25.9 589 19.6 591 25.9 592 16.8 593 7.5 594 18.7 595 15.7 596 22.0 597 22.4 598 16.8 610 24.3	.9 2.7 .5 .0 .0 .0 .0 .0 .0 .5 .3 .3 .0 .7 .4 .4 .7 .0 .8 .8 .0 .4 .3 .3 .4	$\begin{array}{c} .) 18.8 \\ 2.' 11.0 \\ 1.a 1.9 \\ 2.2 \\ 4 3.0 \\ 1.8 \\ 0 \\ 0 \\ 1.9 \\ 4.7 \\ 1.0 \\ 2.9 \\ 4.7 \\ 1.0 \\ 2.9 \\ 0.0 \\ 1.0 \\ 2.4 \\ 0.0$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .00 .0 1.7 1.8 2.1 3.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	44.3 32.9 8.7 13.7 30.1 11.7 53.1 11.7 6.5 6.5 6.5 6.5 22.3 13.8 14.8 13.8 14.9 6.5 13.5 11.5 12.2 9.2	.0 .0 45.2 18.3 2.1 2.5 .0 0 20.5 33.0 1.3 33.9 27.6 4.7 .0 .0 37.2 22.8 8.2 3.7 2.4 4.7 .0 22.5 5.5	1.5 6.8 1.5 1.1 1.4 6 1.0 1.2 1.9 1.5 1.3 1.3 1.3 1.3 1.3 1.5 5.6 1.5 1.4 1.3 1.5 1.5 1.4 1.3 1.5 1.5 1.1 1.4 1.5 1.5 1.1 1.4 1.5 1.5 1.5 1.1 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	.9 .0 27.4 39.5 41.5 16.8 6.2 1.2 35.0 29.5 61.8 29.5 50.2 28.4 85.9 37.2 25.5 530.7 28.4 8.7 933.7 17.5 28.4 8.8 937.9 23.7 933.7 28.4 8.8 937.9 23.5 5 30.7 28.4 28.9 23.5 5 30.7 28.4 28.9 23.5 5 30.7 28.4 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5	5.2 15.6 1.2 1.0 1.4 1.2 2.2 2.5 2.5 2.5 2.5 1.4 .8 .7 1.0 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.0 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	.0 8.9 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.99 9.8 38.5 38.7 21.5 2.3 .0 7.4 8.4 16.8 .8 2.8 8.4 16.8 33.2 .7 2.8 33.2 .7 2.8 30.2 .7 2.8 30.2 .7 2.8 .7 .7 .7 .7 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 585 17.6 586 28.0 587 22.6 588 19.6 590 21.6 592 16.8 593 7.5 594 18.7 596 22.0 597 22.4 598 16.8 597 22.4 598 18.61 2610 24.3 611 26.9	.9 2.7 .5 0 3.4 .0 .0 .0 .5 .3 .3 .0 0 .5 .3 .3 .0 0 .7 .4 4 .4 .0 .8 8 .8 .0 .0 .2 .7 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0) 18.8 2.' 11.0 1. \cdot 1.9 .:) 2.2 .:4 3.0 .:) 1.8 .:0 .:0 .:0 16.1 1.9 4.7 1.0 2.9 .:0 2.4 .:0 .8 .:0 .:0 .:0 4.6 .:0 5.2 .:0 16.9 .:0 .:0 .:0 4.6 .:0 5.2 .:0 16.9 .:0 .:0 .:0 16.1 1.5.6 .:4 13.0 .:0 .:0 .:1 5.6 .:1 1.5 .:1 1.8 .:1 1.9 .:0 2.4 .:0 2.5 .:0 2.5	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .00 .0 1.7 1.8 2.1 3.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	44.3 32.9 8.7 13.7 13.7 130.1 145.6 6.5 53.1 10.6 6.5 53.1 10.6 6.5 6.6 6.5 4.2 22.3 13.8 14.8 4.9 6.5 12.2 13.2 14.1 16.2 2.2 3 12.2 14.1 16.2 2.2 3 13.2 12.2 13.8 14.5 10.6 14.5 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11	.0 .0 45.2 2.1 2.5 .0 0 20.5 33.0 1.3 3.8 1.1 33.9 27.6 4.7 .0 .0 37.2 22.8 8.2 3.7 2.4 .2 5.5 15.1	1.5 6.8 1.5 1.1 1.4 1.0 1.2 1.9 1.5 1.3 1.6 1.5 1.5 1.5 1.3 1.3 1.6 1.5 1.5 1.1 1.3 1.6 1.5 1.1 1.5 1.1 1.4 1.9 1.5 1.1 1.2 1.9 1.5 1.1 1.1 1.2 1.9 1.5 1.1 1.1 1.2 1.9 1.5 1.1 1.1 1.2 1.9 1.5 1.5 1.1 1.1 1.5 1.5 1.5 1.1 1.2 1.9 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	.9 .0 27.4 41.5 39.5 16.8 50.2 29.5 50.2 25.5 28.4 37.9 33.7 7 5 30.7 48.8 42.5 9 33.7 5 28.4 37.9 33.7 7 5 30.7 28.4 37.5 30.7 28.4 33.9 5 28.4 33.9 5 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28	5.2 15.6 1.2 2.2 2.5 2.5 2.5 2.5 1.4 1.2 1.0 1.2 1.1 1.3 1.0 1.2 1.4 1.3 1.0 1.1 1.3 1.0 1.1 1.3 1.0 1.4 1.3 1.0 1.4 1.3 1.0 1.4 1.3 1.0 1.4 1.3 1.0 1.0 1.4 1.0 1.0 1.4 1.0 1.0 1.4 1.0 1.0 1.4 1.0 1.0 1.4 1.0 1.0 1.4 1.0 1.0 1.4 1.0 1.0 1.4 1.0 1.0 1.0 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	.0 8.9 .0 .0 .5 .5 .1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.5 38.5 2.3 .0 7.4 8.4 8.4 8.4 33.2 .0 1.2 24.8 33.2 .0 1.2 24.8 33.2 .0 .7 .4 .5 .4 .5 .4 .5 .4 .5 .4 .5 .6 .5 .6 .5 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 585 17.6 586 28.0 587 22.6 588 25.9 589 19.6 590 21.6 591 25.9 592 16.8 593 7.5 594 18.7 595 15.7 596 22.4 598 16.8 610 24.3 611 26.9	.9 2.7 .5 .0 .0 .0 .0 .0 .0 .0 .5 .3 .3 .0 .7 .7 .4 .4 .4 .8 .8 .8 .0 .3 .4 .0 .5 .5 .3 .3 .0 .7 .5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} .) 18.8 \\ 2. ' 11.0 \\ 1. & 1.9 \\ .) 2.2 \\ .4 & 3.0 \\ .) 1.8 \\ .0 & .0 \\ .0 & 16.1 \\ 1.9 & 4.7 \\ 1.0 & 2.9 \\ .0 & 2.4 \\ .0 & .8 \\ .0 & .0 \\ .0 & 2.4 \\ .0 & .8 \\ .0 & .0 \\ .0 & 2.4 \\ .0 & .8 \\ .0 & .0 \\ .0 & 2.4 \\ .0 & .8 \\ .0 & .0 \\ .0 & 2.4 \\ .0 & .8 \\ .0 & .0 \\ .0 & 0 \\ .0 $.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .00 .0 1.7 1.8 2.1 3.0 .0 .0 3.9 1.8 .0 .0 .0 3.1 4.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	44.3 32.99 8.22 30.11 45.66 53.11 11.7 6.5 53.11 11.7 6.5 6.66 4.22 22.3 13.8 8 4.9 6.5 12.21 11.5 12.21 11.5 12.21 12.2	.0 .0 45.2 21 2.5 .0 .0 20.5 33.0 1.3 33.9 27.6 4.7 .0 .37.2 22.8 8.2 3.7 .2 4.7 .0 22.5 5.1 15.1 18.2	1.5 6.8 1.5 1.1 1.4 1.0 1.2 1.9 1.5 .6 1.3 1.3 1.3 1.6 1.5 1.4 1.3 1.5 1.5 1.4 1.5 1.5 1.4 1.9 1.5 1.5 1.1 1.1 1.9 1.5 1.5 1.1 1.1 1.9 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	.9 .0 27.4 41.5 39.5 41.5 35.0 29.5 61.8 25.9 25.5 50.2 28.4 9 33.7 17.5 28.4 9 33.7 17.5 28.4 9 33.7 28.4 9 33.7 5 38.2 23.5 5 38.5 23.5 5 38.5 23.5 5 38.5 23.5 5 30.7 5 5 5 5 28.5 5 30.7 5 5 5 5 28.5 5 30.7 5 5 5 5 29.5 5 5 5 29.5 5 5 5 29.5 5 5 5 29.5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 5 2 2 5 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 5 2 2 5 5 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5 5 2 2 8 8 8 7 7 7 7 5 5 5 5 2 2 5 5 5 5 2 2 5 5 5 5	5.2 15.6 1.2 2.2 2.5 2.5 2.5 1.4 1.2 2.5 2.5 1.4 1.2 1.2 1.1 1.3 1.2 1.4 1.3 1.2 1.4 1.3 1.2 1.4 1.3 1.2 1.0 1.0 1.2 1.0 1.0 1.4 1.0 1.0 1.4 1.2 2.5 2.5 2.5 1.0 1.0 1.0 1.0 1.4 1.0 2.5 2.5 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.4 1.0 2.5 2.5 2.5 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00 100 00 00 00 00 00 00 00 00	.0 8.9 .0 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.5 2.3 7.4 8.4 16.8 28.8 2.8 33.2 .7 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 583 17.6 585 17.6 586 28.0 587 22.6 588 25.9 592 16.8 593 7.5 594 18.7 595 15.7 596 22.0 597 22.4 501 25.9 597 22.4 508 16.8 507 22.4 511 26.9 612 27.4 613 35	.9 2.7 .5 0 0 3.4 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0	$\begin{array}{c} .) 18.8 \\ 2.' 11.0 \\ 1 1.9 \\ 2.2 \\ 4 \\ 3.0 \\ 1.9 \\$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .00 .0 1.7 1.8 2.11 3.00 .0 .0 .0 .0 3.9 1.8 4.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	44.3 32.99 8.22.92 8.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13	.0 45.2 18.3 2.1 2.5 33.0 .0 20.5 33.0 .0 27.6 4.7 .0 .0 37.2 22.8 8.2 3.7 2.4 2.5 5.1 18.2 2.5	1.5 6.8 1.5 1.1 1.4 .6 1.0 1.2 1.9 1.5 .6 1.3 1.3 1.3 1.3 1.5 .5 .6 1.5 .5 .5 1.4 1.1 1.2 1.9 1.5 .5 .6 1.1 1.1 1.1 1.2 1.9 1.5 .6 1.5 1.5 1.1 1.1 1.1 1.5 .6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	.9 .0 27.4 41.5 39.5 41.5 35.0 29.5 61.8 29.5 50.2 230.7 28.4 37.9 317.5 28.4 37.9 317.5 28.4 48.8 8.7 48.8 23.0 33.7 5 38.2 23.0 28.4 42.5 23.0 38.7 5 28.4 23.0 28.4 23.0 28.4 23.0 28.4 23.0 28.4 23.0 28.4 23.0 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5	5.2 15.6 1.2 2.5 2.5 2.5 1.4 1.2 2.5 2.5 1.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	00 100 00 00 00 00 00 00 00 00	.0 8.9 .0 .0 .5 .5 .5 .1 .4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.5 2.3 38.7 21.5 2.3 7.4 8.4 16.8 2.8 2.8 3.2 2.5 2.3 1.2 2.3 1.4 24.8 3.2 2.5 2.0 1.2 2.3 2.1 5 2.4 2.4 2.4 2.4 2.5 2.5 2.3 2.1 5 2.3 2.5 2.3 2.5 2.3 2.5 2.3 2.5 2.3 2.5 2.3 2.5 2.3 2.5 2.5 2.3 2.5 2.3 2.5 2.5 2.3 2.5 2.5 2.5 2.3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	.00.00 .00.00 .00.00 .00.00 .00.00 .00.00
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 582 .0 583 14.9 584 16.7 585 28.6 587 22.6 588 25.9 589 19.6 590 21.6 591 25.9 592 16.8 593 7.5 594 18.7 595 15.7 597 22.4 598 16.8 610 24.3 511 26.9 612 27.4 613 35.4	.9 2.7 .5 0 3.4 .0 .0 .0 .5 .3 .3 .0 .7 .4 .7 .0 .8 .8 .0 .0 .3 .4 .4 .7 .5 .5 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} .) 18.8 \\ 2. ' 11.0 \\ 1. a 1.9 \\ 2.2 \\ .4 3.0 \\ 1 18 \\ .0 0 \\ .0 16.1 \\ 1.9 4.7 \\ 1.0 2.9 \\ .0 2.4 \\ .0 .8 \\ .0 0 \\ .0 2.4 \\ .0 .8 \\ .0 0 \\ .0 4.6 \\ .0 5.2 \\ .0 16.9 \\ .0 0 \\ .0 0 \\ .0 16.9 \\ .0 0 \\ $.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .00 .0 1.7 1.8 2.1 3.00 .0 .0 3.9 1.8 .0 .0 .0 3.1 1.8 .0 .0 .0 .0 1.8 .0 .0 .0 .0 1.7 2.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	44.3 32.99 8.2 30.1 53.1 11.7 7.6 6.5 6.6 4.2 2.3 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13	.0 .0 45.2 18.3 2.1 2.5 .0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 33.0 20.5 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	1.5 6.8 1.5 1.1 4 .6 1.9 1.5 .6 1.3 1.3 1.6 5 .6 1.5 1.4 1.3 1.5 5 .5 5 1.4 1.9 .6 1.5 1.9 .6 .5 5 .5 5 1.1 1.1 1.4 .6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	.9 .0 239.5 41.5 16.8 29.5 50.2 29.5 50.2 25.5 30.7 28.4 42.5 33.7 17.5 23.0 23.5 30.7 28.4 42.5 33.7 33.7 48.7 48.7 48.7 48.7 48.7 23.6 23.6 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	5.2 15.6 1.2 2.5 2.5 1.4 1.2 2.5 2.5 1.4 1.2 1.2 1.4 1.3 1.2 1.1 1.3 1.2 1.4 1.3 1.2 1.4 1.3 1.2 1.4 1.3 1.2 1.4 1.3 1.2 1.4 1.3 1.2 1.0 1.4 1.2 2.5 2.5 1.0 1.0 1.4 1.2 2.5 2.5 1.0 1.0 1.4 1.2 2.5 2.5 1.0 1.0 1.2 2.5 2.5 1.0 1.0 1.2 2.5 2.5 1.0 1.0 1.2 2.5 2.5 1.0 1.0 1.2 2.5 2.5 1.0 1.0 1.2 2.5 2.5 1.0 1.0 1.2 2.5 2.5 1.0 1.0 1.2 2.5 2.5 1.0 1.0 1.2 2.5 2.5 1.0 1.0 1.2 2.5 2.5 1.0 1.0 1.2 2.5 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00 100 00 00 00 00 00 00 00 00	.0 8.9 .0 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.5 2.3 38.5 2.3 .0 7.4 8.4 16.8 2.8 33.2 .0 1.2 .0 1.2 .0 1.2 .0 1.9 9.8 38.5 1.9 9.8 38.5 2.3 .0 1.9 9.8 38.5 2.3 .0 1.9 9.8 38.5 2.3 .0 1.9 9.8 38.5 2.3 .0 1.9 9.8 38.5 2.3 .0 1.9 9.8 38.5 2.3 .0 1.9 9.8 38.5 2.3 .0 1.9 9.8 38.5 2.3 .0 1.9 .0 2.1 .5 .4 2.4 .8 .4 2.4 .8 .4 .4 .5 .4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 579 581 2.8 582 .0 583 14.9 585 17.6 586 28.0 587 22.6 588 25.9 592 16.8 593 7.5 594 18.7 595 15.7 596 22.0 597 22.4 598 16.8 610 24.3 611 26.9 612 27.4 613 35.4 614 32.1	.9 2.7 .5 0 3.4 .0 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .00 .0 1.7 1.8 2.1 3.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	44.3 32.99 8.2 8.7 13.7 13.7 13.7 10.6 6.5 6.6 6.5 4.2 22.3 11.7 7.6 6.5 6.4 22.3 11.3 8 14.8 13.8 14.8 13.5 12.2 11.4 9.2 10.4 4.7 4.4 2.4	.0 45.2 18.3 2.1 2.5 .0 .0 20.5 31.0 33.0 1.3 .8 1 33.9 27.6 4.7 .0 .0 37.2 22.8 8.2 3.7 2.4 25.5 15.1 18.2 4.0 1.5 2.5	1.5 6.8 1.5 1.1 1.4 1.0 1.2 1.9 1.5 .8 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	.9 .0 27.4 39.5 16.8 29.5 16.8 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5	5.2 15.6 1.2 2.5 2.5 2.5 2.5 2.5 1.4 4 1.2 2.2 2.5 1.4 1.1 1.3 1.0 1.2 1.1 1.3 1.0 1.1 2.2 2.5 2.5 2.5 2.5 1.4 1.2 1.0 1.4 1.2 2.2 2.5 2.5 1.0 1.4 1.2 2.2 2.5 2.5 1.0 1.4 1.2 2.2 2.5 2.5 1.0 1.4 1.2 2.2 2.5 2.5 1.0 1.0 1.4 1.2 2.2 2.5 2.5 1.0 1.0 1.4 1.2 2.2 2.5 2.5 1.0 1.0 1.4 1.2 2.2 2.5 1.0 1.0 1.4 1.2 2.2 2.5 1.0 1.0 1.1 1.1 2.2 2.5 1.0 1.0 1.1 1.1 2.2 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00000000000000000000000000000000000000	.0 8.9 .0 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.5 2.3 5.4 8.4 16.8 5.4 2.8 5.4 2.8 5.4 2.8 5.4 2.8 5.4 2.8 5.4 2.8 5.4 2.8 2.8 0 0 1.9 9.8 2.9 0 0 2.9 0 0 0 0 0 0 0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 585 17.6 586 28.0 587 22.6 588 25.9 590 21.6 593 7.5 594 18.7 596 22.0 597 22.4 598 16.8 597 22.4 598 16.2 597 22.4 598 16.8 610 24.3 611 26.9 612 27.4 613 35.4 614 32.1 615 29.3	.9 2.7 .5 0 3.4 .0 0 .0 .0 .0 .5 .3 .0 .0 .5 .3 .0 .7 .4 4 .7 .0 .8 .8 .8 .8 .0 .0 .3 .4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} .) 18.8\\ 2. ' 11.0\\ 1. a 1.9\\ 2.2\\ 4 3.0\\ 1 1.8\\ 0 .0\\ 0 16.1\\ 1.9 4.7\\ 1.0 2.9\\ 0 16.1\\ 1.9 4.7\\ 1.0 2.4\\ 0 .8\\ 0 .0\\ 0 16.1\\ 1.9 4.7\\ 1.0 2.9\\ 0 2.4\\ 0 .0\\ 1.1 5.6\\ 14.6\\ 14.6\\ 14.6\\ 14.6\\ 0 6.3\\ 0\\ 0 1.$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 .0 1.7 1.8 2.1 3.0 .0 .0 .0 3.9 1.8 4.0 .0 .0 .0 .0 .0 .0 .0 1.2 1.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	44.3 32.99 8.2 30.1 30.1 553.1 11.7 7.6 6.5 6.6 6.5 4.2 2.3 13.8 4.9 4.9 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	.0 .0 45.2 18.3 2.1 2.5 33.0 .0 20.5 33.0 20.5 33.0 .0 20.5 33.0 .0 37.2 22.8 8.2 3.7 2.4 25.5 15.1 18.2 4.0 25.5 3.5	1.5 6.8 1.5 1.1 1.4 4.6 0 1.2 1.9 1.5 1.3 1.3 1.6 1.5 1.4 1.3 1.5 1.4 1.3 1.5 1.4 1.3 1.5 1.2 1.9 1.5 1.5 1.1 1.4 1.5 1.3 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	$\begin{array}{c} .9\\ .0\\ 239.5\\ 41.5\\ 16.8\\ 29.5\\ 550.2\\ 25.5\\ 25.5\\ 25.5\\ 27.2\\ 25.5\\ 30.7\\ 17.5\\ 37.9\\ 33.7\\ 38.2\\ 23.0\\ 38.2\\ 3$	5.2 15.6 1.2 2.5 2.5 1.4 1.2 2.5 2.5 1.4 1.2 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.1 1.0 1.4 1.2 2.5 5 2.5 2.5 1.4 1.0 1.4 1.2 2.5 5 2.5 1.4 1.0 1.2 2.5 5 2.5 1.0 1.0 1.4 1.2 2.5 5 2.5 1.0 1.0 1.2 2.5 5 2.5 1.0 1.0 1.2 2.5 5 2.5 1.0 1.0 1.2 2.5 5 2.5 1.0 1.0 1.2 2.5 5 2.5 1.0 1.0 1.2 2.5 5 1.1 1.0 1.2 2.5 5 2.5 1.1 1.0 1.2 2.5 5 1.1 1.0 1.2 2.5 5 1.1 1.0 1.2 2.5 5 1.1 1.0 1.2 2.5 5 1.1 1.0 1.2 2.5 5 1.1 1.0 1.0 1.2 2.5 5 1.1 1.0 1.0 1.2 1.0 1.0 1.2 1.1 1.0 1.0 1.1 1.1 2.5 1.1 1.0 1.0 1.2 1.1 1.1 1.0 1.0 1.1 1.1 1.0 1.0 1.0 1.1 1.1	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .0 .5 1.5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.5 2.3 .6 7.4 8.4 16.8 5.4 24.8 33.25 .0 1.2 2.8 9.0 20.00 .4 .0 1.8 2.2 .2 .2 .2 .2 .2 .2 .2 .2	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 585 17.6 586 28.0 587 22.6 588 25.9 591 25.9 592 16.8 593 7.5 594 18.7 595 15.7 594 18.7 595 15.7 596 12.2 597 22.4 598 16.8 610 24.3 511 26.9 512 27.4 613 35.4 614 32.1 615 29.3 616 12.3	.9 2.7 .5 0 0 3.4 .0 0 .5 .3 3 .3 0 .0 .7 .5 .3 .3 .0 0 .7 .4 4 .4 .7 .0 .8 8.8 .0 0 .3 .4 .4 .0 0 .5 .5 .3 .3 .3 .3 .0 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} .) 18.8\\ 2. & 11.0\\ 1. & 1.9\\ & 2.2\\ .4 & 3.0\\ & 1.8\\ .0 & .0\\ .0 & 16.1\\ 1.9 & 4.7\\ 1.0 & 2.9\\ .0 & 2.4\\ .0 & .8\\ .0 & .0\\ .0 & 2.4\\ .0 & .8\\ .0 & .0\\ .0 & 2.4\\ .0 & .8\\ .0 & .0\\ .0 & 2.4\\ .0 & .8\\ .0 & .0\\ .0 & 1.6\\ .0 & 5.2\\ .0 & 16.9\\ .0 & .0\\ .0 & 1.0\\ .0 & 4.6\\ .0 & 6.3\\ .0 & .0\\ .0 & 1.0\\ .0 & 1.0\\ .0 & 4.6\\ \end{array}$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 .0 1.7 1.8 2.1 1.8 2.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	44.3 32.9 8.7 13.7 13.7 13.7 10.6 6.5 53.1 11.7 6.5 6.6 6.6 4.2 22.3 13.8 14.9 4.9 13.5 12.2 13.8 14.9 16.5 12.2 10.4 4.9 12.9 12.2 10.4 4.9 12.2 10.4 14.1 16.2 10.4 4.9 12.5 12.2 10.4 14.1 16.2 10.4 14.1 16.2 10.4 14.1 16.2 10.4 14.2 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12	.0 .0 45.2 21 2.5 .0 .0 20.5 33.0 1.3 3.9 27.6 4.7 .0 0 37.2 22.8 8.2 3.7 .0 0 37.2 22.8 8.2 3.7 .0 0 0 37.2 22.8 8.2 3.7 .0 0 25.5 .0 20.5 3.0 20.5 3.0 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	1.5 6.8 1.5 1.1 1.4 1.0 1.2 1.9 1.5 5 .7 .6 1.3 1.6 .5 1.4 1.3 1.6 .5 1.5 1.4 1.3 1.6 1.5 .5 1.4 1.3 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	.9 .0 27.4 41.5 39.5 41.5 29.5 50.2 29.5 50.2 25.5 30.7 28.4 33.7 25.5 38.2 23.0 7 33.7 5 48.8 84.8 23.0 33.7 5 38.2 23.5 5 9.3 33.7 5 48.8 84.8 23.5 9 33.7 5 48.7 23.5 5 38.2 23.5 5 48.8 84.8 33.7 5 23.5 5 38.2 23.5 38.2 23.5 5 38.2 23.5 5 38.2 23.5 5 38.2 23.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.2 15.6 1.2 2.5 2.5 2.5 1.4 1.2 2.5 2.5 1.4 1.2 1.2 1.4 1.3 1.2 1.1 1.3 1.2 1.4 1.3 1.2 1.4 1.3 1.2 1.4 1.3 1.2 2.5 1.4 1.0 1.2 2.5 2.5 1.0 1.0 1.4 1.2 2.5 2.5 2.5 1.0 1.0 1.2 2.5 2.5 1.0 1.0 1.2 2.5 2.5 2.5 1.0 1.0 1.2 2.5 2.5 2.5 1.0 1.0 1.2 2.5 2.5 2.5 1.0 1.0 1.2 2.5 2.5 2.5 1.0 1.0 1.2 2.5 2.5 2.5 1.0 1.0 1.0 1.2 2.5 2.5 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.5 2.3 38.5 2.3 7.4 8.4 16.8 2.8 2.4 2.4 8.4 16.8 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 585 17.6 586 28.0 587 22.6 598 19.6 590 21.6 593 7.5 594 16.7 593 7.5 594 16.7 593 7.5 594 16.8 593 7.5 594 18.7 595 15.7 596 22.0 597 22.4 501 24.3 610 24.3 611 26.9 612 27.4 613 35.4 614 32.1 615 29.3 616 12.3 616 12.3	.9 2.7 .5 0 0.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} .) 18.8 \\ 2.' 11.0 \\ 1 1.9 \\ 2.2 \\ 4 \\ 3.0 \\ 1.9 \\$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 1.7 1.8 2.1 3.0 .0 .0 3.9 1.8 .0 .0 .0 3.9 1.8 .0 .0 .0 3.1 1.9 2.2 .0 1.9 2.2 .0 0 1.2 2.1 1.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} 44.3 \\ 32.9 \\ 8.7 \\ 30.16 \\ 53.11 \\ 7.6 \\ 53.11 \\ 7.6 \\ 6.5 \\ 6.5 \\ 12.2 \\ 13.8 \\ 13.8 \\ 14.8 \\ 9.2 \\ 12.9 \\ 10.4 \\ 6.6 \\ 7.4 \\ 4.4 \\ 12.9 \\ 8.0 \\ 0.0 \\ 10.0 \\ \end{array}$.0 45.2 18.3 2.1 2.5 33.0 20.5 33.0 27.6 4.7 .0 37.2 22.8 8.2 3.7 2.4 25.5 15.1 18.2 25.5 15.1 18.2 4.0 5 3.5 3.5 15.3	1.5 6.8 1.5 1.1 1.4 1.0 1.2 1.9 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	.9 .0 239.5 39.5 16.8 29.5 29.5 29.5 29.5 29.5 29.5 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	5.2 15.6 1.2 2.5 2.5 2.5 1.4 1.2 2.5 2.5 1.4 1.2 1.2 1.1 1.3 1.2 2.1 1.1 1.3 1.2 1.4 1.3 1.2 1.4 1.3 1.0 1.1 1.4 1.3 1.2 2.5 5 1.4 1.0 1.0 1.4 2.2 2.5 5 1.4 1.0 1.0 1.4 1.2 2.5 5 1.4 1.0 1.0 1.4 1.2 2.5 5 1.0 1.0 1.0 1.4 1.2 2.5 5 1.0 1.0 1.0 1.0 1.4 1.2 2.5 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.5 2.3 7.4 8.4 16.8 8.4 24.8 3.2 2.0 1.2 2.0 1.2 2.0 1.2 2.0 1.2 2.0 1.2 2.3 1.5 2.3 3.8.7 2.4 8.4 2.4 8.4 2.4 8.5 4.9 9.0 2.0 0.0 1.9 9.8 3.8.7 2.1 5.5 2.3 0.0 1.9 9.8 3.8.7 2.1 5.5 2.3 0.0 1.9 9.8 3.8.7 2.1 5.5 2.3 0.0 1.9 9.8 3.8.7 2.1 5.5 2.3 0.0 1.9 2.1 5.5 2.3 0.0 1.9 2.0 0.0 1.9 2.1 5.5 2.3 0.0 1.9 2.0 0.0 1.9 2.0 0.0 1.9 2.0 0.0 1.9 2.0 0.0 1.9 2.0 0.0 1.9 2.0 0.0 1.9 2.0 0.0 1.9 2.0 0.0 1.8 2.2 2.6 1.8 2.2 3.0 2.0 0.0 1.8 2.2 0.0 1.8 2.2 0.0 1.8 2.2 0.0 1.2 2.6 1.8 2.2 0.0 1.8 2.2 0.0 1.0 2.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.00.00 .00.00 .00.00 .00.00 .00.00 .00.00
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 582 .0 583 14.9 584 16.7 590 21.6 593 7.5 594 18.7 595 15.7 596 16.8 597 22.4 596 16.2 597 22.4 596 16.2 610 24.3 611 26.9 612 27.4 613 35.4 614 32.1 615 29.3 616 12.3 616 12.3 616 12.3 616 12.5	.9 2.7 .5 0 0 3.4 .0 0 .0 .5 .3 .0 .7 .4 .4 .7 .0 8 .8 .0 .0 .3 .3 .4 .0 .0 .0 .5 .3 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} .) 18.8 \\ 2.' 11.0 \\ 1 1.9 \\ 2.2 \\ 4 3.0 \\ 1.8 \\ 0 \\ 0 \\ 0 \\ 1.9 \\ 4.7 \\ 1.0 \\ 2.4 \\ 0 \\ 0 \\ 1.9 \\ 4.7 \\ 1.0 \\ 2.4 \\ 0 \\ 0 \\ 1.9 \\ 4.7 \\ 1.0 \\ 2.4 \\ 0 \\ 0 \\ 1.9 \\ 4.7 \\ 1.0 \\ 2.4 \\ 0 \\ 0 \\ 1.0$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 .0 1.7 1.8 2.1 3.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	44.3 32.99 8.2 30.1 30.1 53.1 11.7 7.6 6.5 53.1 11.7 7.6 6.5 6.6 4.2 22.3 13.8 14.8 4.9 6.5 5 13.5 13.5 13.5 13.5 14.1 16.2 2.1 14.8 4.9 9.2 10.4 16.6 6.6 6.6 6.6 4.2 14.1 16.2 14.1 16.2 17.1 16.4 17.1 17.1 16.5 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17	.0 .0 45.2 18.3 2.1 2.5 .0 .0 20.5 33.0 20.5 33.0 .0 20.5 33.0 .0 37.2 22.8 8.2 27.6 4.7 .0 0 37.2 22.5 5.5 15.1 18.2 4.0 5.5 5.1 18.2 4.0 0.1 5.5 15.1 18.2 15.1 18.2 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19	1.5 6.8 1.1 1.4 1.0 1.2 1.9 1.5 .7 .6 1.3 1.3 1.6 .5 5 1.3 1.3 1.6 1.5 1.4 1.3 .5 5 .5 2 1.1 1.9 .6 1.3 1.5 1.2 1.9 1.5 .6 1.3 1.3 1.3 1.5 1.3 1.3 1.5 1.3 1.3 1.5 1.3 1.5 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	.9 .0 23.9 41.5 53.0 29.5 55.0 22.5 55.2 25.5 23.0 7 48.8 82.5 9.3 33.7 5 48.8 8.8 23.0 33.7 23.0 33.7 23.0 33.7 5 48.8 8.8 23.0 33.2 23.0 5 9.8 8 442.5 23.0 33.2 25.5 5 33.7 5 23.0 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	5.2 15.6 1.2 2.5 2.5 1.4 1.2 2.5 2.5 1.4 1.2 1.2 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.1 1.3 1.0 1.1 1.3 1.0 1.1 1.3 1.0 1.2 2.5 5 2.5 1.0 1.0 1.0 1.4 1.2 2.5 5 2.5 2.5 1.0 1.0 1.2 2.5 2.5 2.5 1.0 1.0 1.2 2.5 2.5 2.5 1.0 1.0 1.2 2.5 2.5 2.5 1.0 1.0 1.2 2.5 2.5 2.5 1.0 1.0 1.2 2.5 2.5 2.5 1.0 1.0 1.2 2.5 5 2.5 1.0 1.0 1.2 2.5 5 2.5 1.0 1.0 1.2 2.5 5 2.5 1.0 1.0 1.2 2.5 5 1.1 1.0 1.1 2.2 2.5 5 1.1 1.0 1.1 2.2 2.5 5 1.1 1.0 1.1 2.2 2.5 1.1 1.0 1.1 2.2 2.5 1.1 1.0 1.1 1.1 2.1 2.5 1.1 1.0 1.1 1.1 1.1 1.1 1.1 2.5 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .0 .5 5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.9 2.3 38.5 2.3 .6 7.4 8.4 16.8 5.4 24.8 33.2 .0 1.2 .0 1.2 .0 20.0 1.2 2.0 .0 1.2 .0 2.0 .0 1.9 9.8 38.5 2.3 .0 7.4 8.4 1.5 9.8 33.5 .0 1.9 9.8 5.2 .3 .0 7.4 8.4 1.6 8.4 1.6 8.4 1.6 8.4 2.8 5.4 2.4 2.0 0.0 7.4 2.4 2.4 2.4 2.5 1.5 2.3 .0 7.4 2.4 2.4 2.4 2.5 2.3 .0 7.7 2.3 .0 7.7 2.3 .0 7.7 2.4 2.4 2.4 2.8 2.8 2.9 2.9 2.0 .0 7.7 2.9 0.0 2.0 0.0 1.2 2.7 2.0 0.0 1.2 2.0 2.0 0.0 1.2 2.0 0.0 1.2 2.0 2.0 0.0 1.2 2.0 .0 1.2 2.0 .0 1.2 2.0 .0 2.0 .0 1.2 2.0 .0 .0 1.2 2.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 585 17.6 586 28.0 587 22.6 588 25.9 589 19.6 591 25.9 592 16.8 593 7.5 594 18.7 595 15.7 596 22.0 597 22.4 610 24.3 611 26.9 612 27.4 613 35.4 614 32.1 615 29.3 616 12.3 617 25.3 618 21.5 619 17	.9 2.7 .5 0.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} .) 18.8 \\ 2.' 11.0 \\ 1.a & 1.9 \\ & 2.2 \\ & 3.0 \\ & 1.8 \\ 0 & .0 \\ & 1.8 \\ 0 & .0 \\ & 1.8 \\ 0 & .0 \\ & 1.6 \\ & 2.9 \\ 0 & .0 \\ & 1.6 \\ & 2.4 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ \\$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 1.7 1.8 2.1 3.0 .0 .0 .0 3.9 1.8 4.0 .0 .0 3.1 4.0 .0 .0 3.1 1.2 1.9 2.2 1.9 2.2 1.0 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	44.3 32.99 8.2 8.7 13.7 13.7 13.7 10.6 55 3.1 11.7 6.5 6.6 4.2 22.3 11.7 10.6 6.5 6.4 22.3 11.7 10.6 5 5 3.1 11.7 7.6 6.5 6.4 22.3 11.3 12.2 11.3 12.2 11.3 12.2 11.3 12.2 11.3 12.2 12.2	.0 45.2 18.3 2.1 2.5 .0 .0 20.5 33.0 1.3 8.8 1 33.9 27.6 4.7 .0 .0 37.2 22.8 8.2 3.7 2.4 25.5 15.1 18.2 4.0 1.5 3.5 15.2 15.2 1 8.2 4.0 1.5 3.5 15.2 1 8.2 2.5 15.1 1.2 2.5 15.2 15.2 15.2 15.2	1.5 6.8 1.1 1.4 1.0 1.2 1.9 1.5 1.3 1.3 1.6 5.6 1.5 1.4 1.3 1.3 1.6 5.5 1.4 1.3 1.3 1.6 5.5 1.4 1.1 1.1 1.0 1.2 1.9 1.5 1.1 1.1 1.0 1.2 1.9 1.5 1.1 1.1 1.0 1.2 1.9 1.5 1.1 1.1 1.0 1.2 1.9 1.5 1.5 1.1 1.1 1.0 1.2 1.9 1.5 1.0 1.1 1.0 1.2 1.9 1.5 1.5 1.1 1.1 1.0 1.2 1.5 1.5 1.1 1.1 1.0 1.2 1.5 1.5 1.1 1.1 1.0 1.2 1.5 1.5 1.1 1.1 1.0 1.2 1.5 1.5 1.1 1.1 1.0 1.2 1.5 1.5 1.1 1.1 1.0 1.2 1.5 1.5 1.1 1.1 1.5 1.5 1.2 1.0 1.5 1.5 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.9 .0 39.5 39.5 16.8 35.0 261.8 25.5 28.8 825.9 27.2 25.5 28.7 27.9 33.7 25.3 28.4 23.0 28.8 82.9 37.2 25.5 28.8 82.9 33.7 25.5 28.8 82.9 33.2 28.5 48.8 82.9 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5	5.2 15.6 1.2 2.5 2.5 2.5 2.5 1.4 1.2 2.2 2.5 1.4 1.2 1.1 1.3 1.0 1.1 1.3 1.0 1.1 1.1 2.3 1.0 1.1 1.1 2.3 1.0 1.1 1.1 1.1 2.3 1.0 1.1 2.3 1.0 1.1 2.3 1.0 1.1 2.3 1.0 1.1 2.3 1.0 1.1 2.3 1.0 1.1 2.3 1.0 1.1 2.3 1.0 1.0 1.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.5 2.3 5.4 8.4 16.8 2.8 2.8 2.8 2.3 .7 2.4 8.4 16.8 2.8 2.8 2.8 2.3 .0 1.9 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 585 17.6 586 28.0 587 22.6 588 25.9 591 25.6 592 16.8 593 7.5 594 18.7 595 15.7 596 22.0 597 22.4 598 16.8 610 24.3 611 26.9 612 27.4 613 35.4 614 32.1 615 29.3 616 12.3 617 25.3 618 21.5 619 17.5 618 21.5 619 10.7 <tbbbb< td=""><td>.9 2.7 .5 0 3.4 .0 0 .0 .5 .3 .0 0 .5 .3 .0 0 .7 .4 4 7 .0 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td><td>$\begin{array}{c} .) 18.8\\ 2. & 11.0\\ 1. & 1.9\\ & 1.9\\ & 2.2\\ & 3.0\\ & 1.8\\ 0 & .0\\ & 1.8\\ & 1.8\\$</td><td></td><td>9.4 19.2 .0 .0 1.7 1.8 2.1 3.0 .0 .0 .0 3.9 1.8 .0 .0 .0 .0 3.1 4.0 .0 .0 .0 .0 .0 .0 .0 1.2 1.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td><td>44.3 32.99 8.2 30.16 453.11 7.6 6.5 6.6 4.2 22.3 13.8 13.8 13.8 14.8 4.9 51 12.2 14.1 16.2 2.2 14.1 16.2 2.2 10.4 4.9 2.2 10.4 4.7 13.8 14.8 2.2 13.8 14.2 2.2 14.1 15.7 17.6 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2</td><td>.0 .0 45.2 18.3 2.1 2.5 33.0 .0 20.5 33.0 .0 20.5 33.0 .0 20.5 33.0 .0 37.2 22.8 8.2 37.7 2.4 2.5 5.1 18.2 4.0 25.5 15.1 18.2 4.0 25.5 15.3 15.3 2.5 .0 .0 .0 20.5 20.5 20.5 20.5 20.5 2</td><td>1.5 6.8 1.5 1.1 1.4 1.0 1.2 1.9 1.5 1.3 1.3 1.6 1.5 1.3 1.3 1.6 1.5 1.4 1.3 1.5 1.2 1.1 1.4 1.5 1.2 1.9 1.5 1.2 1.1 1.4 1.5 1.1 1.1 1.4 1.5 1.5 1.1 1.1 1.2 1.9 1.5 1.5 1.1 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5</td><td>.9 .0 239.5 29.5 16.8 29.5 50.2 29.5 50.2 29.5 30.7 25.5 20.2 25.5 20.2 27.2 25.5 30.7 48.8 23.2 25.5 30.2 28.4 48.8 33.2 23.5 23.2 23.5 23.5 23.5 23.5 23.5</td><td>5.2 15.6 1.2 2.5 2.5 1.4 1.2 2.5 2.5 1.4 1.2 2.5 2.5 1.4 1.2 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.0 1.4 1.2 2.5 5 1.4 1.0 1.4 1.2 2.5 5 1.4 1.0 1.4 1.2 2.5 5 1.4 1.0 1.4 1.2 2.5 5 1.4 1.0 1.0 1.4 1.2 2.5 5 1.4 1.0 1.0 1.4 1.2 2.5 5 1.4 1.0 1.0 1.4 1.2 2.5 5 1.4 1.0 1.0 1.1 1.0 1.0 1.4 1.2 2.5 5 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0</td><td>.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td><td>.0 8.9 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td><td>18.8 .0 1.9 9.8 38.5 2.3 .6 7.4 8.4 16.8 2.8 2.8 2.3 .7 .4 8.4 16.8 3.2 .9 .0 1.9 2.3 .7 .4 8.4 16.8 3.2 .9 .0 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9</td><td>.00.00.00.00.00.00.00.00.00.00.00.00.00</td></tbbbb<>	.9 2.7 .5 0 3.4 .0 0 .0 .5 .3 .0 0 .5 .3 .0 0 .7 .4 4 7 .0 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} .) 18.8\\ 2. & 11.0\\ 1. & 1.9\\ & 1.9\\ & 2.2\\ & 3.0\\ & 1.8\\ 0 & .0\\ & 1.8\\ 0 & .0\\ & 1.8\\ 0 & .0\\ & 1.8\\ 0 & .0\\ & 1.8\\ 0 & .0\\ & 1.8\\$		9.4 19.2 .0 .0 1.7 1.8 2.1 3.0 .0 .0 .0 3.9 1.8 .0 .0 .0 .0 3.1 4.0 .0 .0 .0 .0 .0 .0 .0 1.2 1.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	44.3 32.99 8.2 30.16 453.11 7.6 6.5 6.6 4.2 22.3 13.8 13.8 13.8 14.8 4.9 51 12.2 14.1 16.2 2.2 14.1 16.2 2.2 10.4 4.9 2.2 10.4 4.7 13.8 14.8 2.2 13.8 14.2 2.2 14.1 15.7 17.6 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2	.0 .0 45.2 18.3 2.1 2.5 33.0 .0 20.5 33.0 .0 20.5 33.0 .0 20.5 33.0 .0 37.2 22.8 8.2 37.7 2.4 2.5 5.1 18.2 4.0 25.5 15.1 18.2 4.0 25.5 15.3 15.3 2.5 .0 .0 .0 20.5 20.5 20.5 20.5 20.5 2	1.5 6.8 1.5 1.1 1.4 1.0 1.2 1.9 1.5 1.3 1.3 1.6 1.5 1.3 1.3 1.6 1.5 1.4 1.3 1.5 1.2 1.1 1.4 1.5 1.2 1.9 1.5 1.2 1.1 1.4 1.5 1.1 1.1 1.4 1.5 1.5 1.1 1.1 1.2 1.9 1.5 1.5 1.1 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	.9 .0 239.5 29.5 16.8 29.5 50.2 29.5 50.2 29.5 30.7 25.5 20.2 25.5 20.2 27.2 25.5 30.7 48.8 23.2 25.5 30.2 28.4 48.8 33.2 23.5 23.2 23.5 23.5 23.5 23.5 23.5	5.2 15.6 1.2 2.5 2.5 1.4 1.2 2.5 2.5 1.4 1.2 2.5 2.5 1.4 1.2 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.0 1.4 1.2 2.5 5 1.4 1.0 1.4 1.2 2.5 5 1.4 1.0 1.4 1.2 2.5 5 1.4 1.0 1.4 1.2 2.5 5 1.4 1.0 1.0 1.4 1.2 2.5 5 1.4 1.0 1.0 1.4 1.2 2.5 5 1.4 1.0 1.0 1.4 1.2 2.5 5 1.4 1.0 1.0 1.1 1.0 1.0 1.4 1.2 2.5 5 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.5 2.3 .6 7.4 8.4 16.8 2.8 2.8 2.3 .7 .4 8.4 16.8 3.2 .9 .0 1.9 2.3 .7 .4 8.4 16.8 3.2 .9 .0 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	.00.00.00.00.00.00.00.00.00.00.00.00.00
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 582 .0 583 14.9 584 16.7 586 28.0 587 22.6 588 25.9 589 19.6 590 21.6 591 25.9 592 16.8 593 7.5 594 18.7 595 15.7 594 18.7 595 15.7 595 16.8 610 24.3 512 27.4 613 35.4 614 12.3 616 12.3 616 12.3 616 12.3 617 25.3 <tr t=""></tr>	.9 2.7 .5 0 0 3.4 .0 0 .5 .3 3 .0 0 .7 .5 .3 3 .0 0 .7 .4 4 .7 .0 0 .8 8 .0 0 .3 3 .4 .0 0 .5 .5 .3 .0 0 .0 0 .0 0 .0 0 .0 0	$\begin{array}{c} .) 18.8\\ 2. & 11.0\\ 1. & 1.9\\ & 2.2\\ .4 & 3.0\\ & 1.8\\ .0 & .0\\ .0 & 16.1\\ 1.9 & 4.7\\ 1.0 & 2.9\\ .0 & 2.4\\ .0 & .8\\ .0 & .0\\ .0 & 2.4\\ .0 & .8\\ .0 & .0\\ .0 & 2.4\\ .0 & .8\\ .0 & .0\\ .0 & 2.4\\ .0 & .8\\ .0 & .0\\ .0 & 2.4\\ .0 & .8\\ .0 & .0\\ .0 & 2.4\\ .0 & .8\\ .0 & .0\\ .0 & 2.4\\ .0 & .8\\ .0 & .0\\ .0 & 2.4\\ .0 & .8\\ .0 & .0\\ .0 & 1.0\\ .0 & .0\\ .0$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 .0 1.7 1.8 2.1 1.8 2.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	44.3 32.99 8.22 30.11 45.3.11 11.7 6.5 6.5 6.6 4.22 13.8 13.8 13.8 13.8 13.5 13.5 13.5 14.1 16.2 9.2 2.3 14.1 16.2 10.4 4.9 9.2 10.4 4.9 8.0 10.4 4.9 10.4 10.5 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	.0 .0 45.2 45.2 21 2.5 .0 .0 20.5 33.0 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	1.5 6.8 1.5 1.1 1.4 1.2 1.9 1.5 5 .7 .6 1.3 1.6 .5 1.3 1.6 .5 1.5 1.4 1.3 1.6 .5 5 .5 1.4 1.3 1.2 1.9 1.5 5 .5 1.4 1.1 1.0 0.0 0.0 0.0 0.0	$\begin{array}{c} .9\\ .0\\ 23.4\\ 23.5\\ 16.8\\ 25.9\\ 25.5\\ 30.7\\ 28.4\\ 25.9\\ 25.5\\ 30.7\\ 28.4\\ 42.5\\ 23.5\\ 33.7\\ 17.5\\ 28.4\\ 42.5\\ 23.5\\ 36.6\\ 49.8\\ 49.8\\ 28.5\\ 35.6\\ 64.4\\ 28.5\\ 53.0\\ \end{array}$	5.2 15.6 1.2 2.5 2.5 1.4 1.2 2.5 2.5 1.4 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.1 1.3 1.2 1.4 1.3 1.2 1.1 1.3 1.2 1.4 1.3 1.0 1.2 1.2 2.5 2.5 1.4 8 .7 7 1.0 1.2 2.5 2.5 1.4 1.0 1.2 2.5 2.5 1.4 1.0 1.2 2.5 2.5 1.4 1.0 1.2 2.5 2.5 1.4 1.0 1.2 2.5 2.5 1.4 1.0 1.2 2.5 2.5 1.4 1.0 1.2 2.5 2.5 1.4 1.0 1.2 2.5 2.5 1.4 1.0 1.2 2.5 2.5 1.1 1.0 1.2 2.5 2.5 1.1 1.0 1.2 1.1 1.1 1.1 1.2 2.5 2.5 1.1 1.1 1.1 1.1 1.2 2.5 2.5 1.1 1.1 1.1 1.2 2.5 1.1 1.1 1.1 1.1 1.1 2.5 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.5 2.3 38.5 2.3 .0 7.4 8.4 16.8 2.8 5.4 24.8 33.2 .0 1.2 .0 1.2 .0 1.2 .0 1.2 .0 1.2 .0 .0 1.9 9.8 33.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
575 .0 576 .0 577 9.6 578 27.3 579 21.4 580 6.0 581 2.8 582 .0 583 14.9 584 16.7 585 17.6 586 28.0 587 22.6 588 25.9 592 16.8 593 7.5 594 18.7 595 15.7 596 22.0 597 22.4 501 25.9 597 22.4 501 25.7 596 22.0 597 22.4 501 27.3 612 27.4 613 35.4 614 32.1 615 29.3 616 12.3 617 25.3 618 21.5 619 17.5 <tr td=""> 52.1 <tr td=""> <tr <="" td=""><td>.9 2.7 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td><td>$\begin{array}{c} .) 18.8\\ 2. ' 11.0\\ 1.a 1.9\\ 2.2\\ 4 3.0\\ 1.9\\ 2.2\\ 4 3.0\\ 1.9$</td><td>.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td><td>9.4 19.2 .0 1.7 1.8 2.1 3.0 .0 .0 3.9 1.8 2.1 3.0 .0 .0 3.9 1.8 .0 .0 .0 3.1 1.9 2.2 .0 1.9 2.0 0 1.2 1.9 2.0 0 0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>44.3 32.99 8.27 30.16 453.11 7.66 553.11 7.66 553.11 13.8 13.8 13.8 13.8 13.8 13.8 13.2 13.8 13.2 13.2 13.2 14.1 19.2 10.4 4.9 8.0 0.4 9.8 2 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10</td><td>.0 45.2 18.3 2.1 2.5 33.0 20.5 33.0 27.6 4.7 .0 37.2 22.8 8.2 3.7 2.4 25.5 15.1 18.2 25.5 15.1 18.2 2.5 15.3 1.5 3.5 12.5 0 .0 0 .0 0 27.6 4.7 .0 0 .0 0 27.6 2.5 5 15.1 18.2 2.5 10 0 0 27.6 20 20 20 20 20 20 20 20 20 20 20 20 20</td><td>1.5 6.8 1.5 1.1 1.4 4.6 0 1.2 1.9 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3</td><td>.9 .0 239.5 39.5 39.5 35.0 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5</td><td>5.2 15.6 1.2 2.5 2.5 2.5 1.4 1.2 2.5 2.5 1.4 1.2 1.2 1.1 1.3 1.2 2.5 1.4 1.3 1.2 1.1 1.3 1.2 2.5 1.4 1.3 1.2 1.0 1.1 1.3 1.2 2.5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0</td><td>.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td><td>.0 8.9 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td><td>18.8 .0 1.9 9.8 38.57 21.5 2.3 7.4 8.4 16.88 2.8 3.2 2.5 2.3 7.4 8.4 16.88 2.8 3.2 2.5 2.3 1.9 2.4 2.4 8.4 2.4 8.5 4.2 2.8 9.0 0.1 2.2 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4</td><td>. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></tr></tr></tr>	.9 2.7 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} .) 18.8\\ 2. ' 11.0\\ 1.a 1.9\\ 2.2\\ 4 3.0\\ 1.9\\ 2.2\\ 4 3.0\\ 1.9$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 1.7 1.8 2.1 3.0 .0 .0 3.9 1.8 2.1 3.0 .0 .0 3.9 1.8 .0 .0 .0 3.1 1.9 2.2 .0 1.9 2.0 0 1.2 1.9 2.0 0 0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	44.3 32.99 8.27 30.16 453.11 7.66 553.11 7.66 553.11 13.8 13.8 13.8 13.8 13.8 13.8 13.2 13.8 13.2 13.2 13.2 14.1 19.2 10.4 4.9 8.0 0.4 9.8 2 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10	.0 45.2 18.3 2.1 2.5 33.0 20.5 33.0 27.6 4.7 .0 37.2 22.8 8.2 3.7 2.4 25.5 15.1 18.2 25.5 15.1 18.2 2.5 15.3 1.5 3.5 12.5 0 .0 0 .0 0 27.6 4.7 .0 0 .0 0 27.6 2.5 5 15.1 18.2 2.5 10 0 0 27.6 20 20 20 20 20 20 20 20 20 20 20 20 20	1.5 6.8 1.5 1.1 1.4 4.6 0 1.2 1.9 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	.9 .0 239.5 39.5 39.5 35.0 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5	5.2 15.6 1.2 2.5 2.5 2.5 1.4 1.2 2.5 2.5 1.4 1.2 1.2 1.1 1.3 1.2 2.5 1.4 1.3 1.2 1.1 1.3 1.2 2.5 1.4 1.3 1.2 1.0 1.1 1.3 1.2 2.5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.57 21.5 2.3 7.4 8.4 16.88 2.8 3.2 2.5 2.3 7.4 8.4 16.88 2.8 3.2 2.5 2.3 1.9 2.4 2.4 8.4 2.4 8.5 4.2 2.8 9.0 0.1 2.2 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
.9 2.7 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} .) 18.8\\ 2. ' 11.0\\ 1.a 1.9\\ 2.2\\ 4 3.0\\ 1.9\\ 2.2\\ 4 3.0\\ 1.9$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 1.7 1.8 2.1 3.0 .0 .0 3.9 1.8 2.1 3.0 .0 .0 3.9 1.8 .0 .0 .0 3.1 1.9 2.2 .0 1.9 2.0 0 1.2 1.9 2.0 0 0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	44.3 32.99 8.27 30.16 453.11 7.66 553.11 7.66 553.11 13.8 13.8 13.8 13.8 13.8 13.8 13.2 13.8 13.2 13.2 13.2 14.1 19.2 10.4 4.9 8.0 0.4 9.8 2 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10	.0 45.2 18.3 2.1 2.5 33.0 20.5 33.0 27.6 4.7 .0 37.2 22.8 8.2 3.7 2.4 25.5 15.1 18.2 25.5 15.1 18.2 2.5 15.3 1.5 3.5 12.5 0 .0 0 .0 0 27.6 4.7 .0 0 .0 0 27.6 2.5 5 15.1 18.2 2.5 10 0 0 27.6 20 20 20 20 20 20 20 20 20 20 20 20 20	1.5 6.8 1.5 1.1 1.4 4.6 0 1.2 1.9 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	.9 .0 239.5 39.5 39.5 35.0 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5	5.2 15.6 1.2 2.5 2.5 2.5 1.4 1.2 2.5 2.5 1.4 1.2 1.2 1.1 1.3 1.2 2.5 1.4 1.3 1.2 1.1 1.3 1.2 2.5 1.4 1.3 1.2 1.0 1.1 1.3 1.2 2.5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.57 21.5 2.3 7.4 8.4 16.88 2.8 3.2 2.5 2.3 7.4 8.4 16.88 2.8 3.2 2.5 2.3 1.9 2.4 2.4 8.4 2.4 8.5 4.2 2.8 9.0 0.1 2.2 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
.9 2.7 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} .) 18.8\\ 2. ' 11.0\\ 1.a 1.9\\ 2.2\\ 4 3.0\\ 1.9\\ 2.2\\ 4 3.0\\ 1.9$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 1.7 1.8 2.1 3.0 .0 .0 3.9 1.8 2.1 3.0 .0 .0 3.9 1.8 .0 .0 .0 3.1 1.9 2.2 .0 1.9 2.0 0 1.2 1.9 2.0 0 0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	44.3 32.99 8.27 30.16 453.11 7.66 553.11 7.66 553.11 13.8 13.8 13.8 13.8 13.8 13.8 13.2 13.8 13.2 13.2 13.2 14.1 19.2 10.4 4.9 8.0 0.4 9.8 2 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10	.0 45.2 18.3 2.1 2.5 33.0 20.5 33.0 27.6 4.7 .0 37.2 22.8 8.2 3.7 2.4 25.5 15.1 18.2 25.5 15.1 18.2 2.5 15.3 1.5 3.5 12.5 0 .0 0 .0 0 27.6 4.7 .0 0 .0 0 27.6 2.5 5 15.1 18.2 2.5 10 0 0 27.6 20 20 20 20 20 20 20 20 20 20 20 20 20	1.5 6.8 1.5 1.1 1.4 4.6 0 1.2 1.9 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	.9 .0 239.5 39.5 39.5 35.0 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5	5.2 15.6 1.2 2.5 2.5 2.5 1.4 1.2 2.5 2.5 1.4 1.2 1.2 1.1 1.3 1.2 2.5 1.4 1.3 1.2 1.1 1.3 1.2 2.5 1.4 1.3 1.2 1.0 1.1 1.3 1.2 2.5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.57 21.5 2.3 7.4 8.4 16.88 2.8 3.2 2.5 2.3 7.4 8.4 16.88 2.8 3.2 2.5 2.3 1.9 2.4 2.4 8.4 2.4 8.5 4.2 2.8 9.0 0.1 2.2 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
.9 2.7 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} .) 18.8\\ 2. ' 11.0\\ 1.a 1.9\\ 2.2\\ 4 3.0\\ 1.9\\ 2.2\\ 4 3.0\\ 1.9$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9.4 19.2 .0 1.7 1.8 2.1 3.0 .0 .0 3.9 1.8 2.1 3.0 .0 .0 3.9 1.8 .0 .0 .0 3.1 1.9 2.2 .0 1.9 2.0 0 1.2 1.9 2.0 0 0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	44.3 32.99 8.27 30.16 453.11 7.66 553.11 7.66 553.11 13.8 13.8 13.8 13.8 13.8 13.8 13.2 13.8 13.2 13.2 13.2 14.1 19.2 10.4 4.9 8.0 0.4 9.8 2 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 4.9 8.0 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10	.0 45.2 18.3 2.1 2.5 33.0 20.5 33.0 27.6 4.7 .0 37.2 22.8 8.2 3.7 2.4 25.5 15.1 18.2 25.5 15.1 18.2 2.5 15.3 1.5 3.5 12.5 0 .0 0 .0 0 27.6 4.7 .0 0 .0 0 27.6 2.5 5 15.1 18.2 2.5 10 0 0 27.6 20 20 20 20 20 20 20 20 20 20 20 20 20	1.5 6.8 1.5 1.1 1.4 4.6 0 1.2 1.9 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	.9 .0 239.5 39.5 39.5 35.0 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5	5.2 15.6 1.2 2.5 2.5 2.5 1.4 1.2 2.5 2.5 1.4 1.2 1.2 1.1 1.3 1.2 2.5 1.4 1.3 1.2 1.1 1.3 1.2 2.5 1.4 1.3 1.2 1.0 1.1 1.3 1.2 2.5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 2.5 5 1.4 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 8.9 .0 .5 1.5 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	18.8 .0 1.9 9.8 38.57 21.5 2.3 7.4 8.4 16.88 2.8 3.2 2.5 2.3 7.4 8.4 16.88 2.8 3.2 2.5 2.3 1.9 2.4 2.4 8.4 2.4 8.5 4.2 2.8 9.0 0.1 2.2 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.3 0.2 1.9 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

623	8.3	.0	.0	22.7	.0	.0	11.1	37.6	1.6	14.4	3.2	.0	.0	1.1	.0
624	22.2	.0	.0	19.3	.0	.3	13.2	10.6	1.4	28.6	1.7	.0	.0	2.6	.0
625	15 3	9		2 7	0	0	25 2	14 5	4	38 6		0		1 5	0
625	72.0	2.6	•	2.1			21.2	17.5		36.0	1.0			2 6	
020	23.8	2.0	•0	3.0		.4	21.2	8./		30.7	1.0	.0		2.0	.0
627	19.8	!	•!!	2.9	.0	.4	13.2	9.5		48.8	1.0	.4	.0	2.9	.0
628	19.1	1.4	•0	2.8	.0	.7	19.1	-0	1.1	26.9	2.4	.0	.8	25.5	.0
629	17.5	.6	.0	.6	.0	3.2	19.4	.0	1.2	23.3	2.1	.0	1.5	30.5	٥.
630	22.6	.3	.0	4.3	.0	1.0	12.1	2.8	.6	49.2	.9	.0	.0	6.3	.0
631	22.8	1.7	.4	.8	.0	3.6	9.8	4.2	.5	48.4	.6	.0	.0	6.9	.2
632	21.8	.4	.0	1.1	.0	1.1	15.8	1.4	.5	48.9	1.1	.0	.0	8.1	.0
633	28.8	1.2	.0	1.2	.0	. 8	9.7	3.5	1.2	43.6	1.1	.0	.0	8.6	4
634	16 5	5	n	1 6	0	3 1	12 1	9.0		56 3			0	7 5	
635	22 6			1.0		2 1	5 7			50.5	1 0			0.0	
633	23.0		.0			2.1				50.5	1.0			3.0	.0
636	.9		.0	3.8		1.3	43.2		.4	5.6	1.2	.0		43.2	.0
637	.0	1.8	.0	7.1	.0	5.3	31.9	1.8	5.3	1.8	10.6	.0	6.1	28.3	.0
638	10.7	.6	.0	2.8	.0	2.2	15.2	12.4	1.3	47.2	2.5	1.7	.0	1.1	2.2
639	11.9	.4	.0	11.5	.0	2.6	11.0	8.8	1.6	46.3	1.8	.4	.0	3.5	.0
640	10.4	2.6	.2	15.2	.2	.0	27.9	22.6	. 8	15.6	1.2	2.2	.0	.0	1.0
641	16.0	.7	.0	13.8	.0	.0	16.5	26.0	. 8	24.8	.9	.2	.0	.2	.0
642	18.1	.0	.3	2.7	.0	.3	18.1	22.8	.5	35.1	. 8	.5	.0	. 8	.0
643	28 9	0			0		7 9	7 2		52 0	1 0			26	
614	26.2		.0				0 7	10 1	.2	50 1	1.0			2.0	
C 4 5	20.2		.0			.,	14 0	10.1	• • •	50.1	1.4			2.3	
645	21.3	• '	.0	1.4	.0	1.4	14.9	3.4	• '	50.2	1.3		.0	4./	
646	12.4	• /	• /	2.4	• /	-2	5.0	31.2	.9	32.3	1.0	1.0	.0	1.9	. /
647	29.2	.0	.7	7.5	.0	.0	13.6	25.1	1.2	17.6	1.1	.0	.0	4.1	.0
648	30.3	.0	.3	3.2	.0	.0	5.4	20.2	.8	36.0	.8	.0	.0	2.8	.3
649	16.4	1.2	.3	.3	.0	.3	15.2	2.0	.4	52.9	.9	.0	.0	10.2	.0
650	12.5	2.0	. :	1.0	.0	1.0	19.4	1.3	.5	49.1	.7	.0	.0	12.2	.0
651	19.0	.0	. 1	.0	.0	.0	10.4	. 9	.6	52.7	2.7	.0	.0	13.8	.0
652	9.9	.0	. 1	.5	. 0	.5	6.1	0	. 1	70.6	17	0	.0	10 4	0
653	14 7	- 1			0		2 9			68 7	1 2			10 0	
653	12 1		• •			• • •	2.0			77 6	1.2			10.0	
034	13.1		• •			.0	2.0			11.5	1.0	.0	.0	3.2	
633	.8.6	.4	• •	14.5	1.6	.0	18.0	31./	1.0	20.4	1.0	.8	.0	2.0	.0
656	27.4	.0	•0	2.3	.0	.0	16.6	12.8	.0	40.0	.7	.0	.0	.3	.0
657	29.0	.0	.י	2.6	.0	.0	11.3	6.4	1.0	47.4	.8	.0	.0	1.5	.0
658	30.5	.4	•0	4.4	.0	.0	11.1	14.6	1.1	34.5	1.1	.0	.0	2.2	.0
659	21.6	1.1	.0	1.1	.0	1.5	10.6	4.8	.7	49.0	1.3	.0	.0	8.4	.0
660	25.1	.0	.0	3.7	.0	1.1	9.7	.9	.7	55.2	1.1	.0	.0	2.6	.0
661	20.7	.3	.0	2.7	.0	1.2	11.4	.6	.0	58.2	1.0	.0	.0	3.9	.0
662	21.7	.3	.0	3.0	. 0	1.3	11.2	1.3	.7	55.2	1.0	0	.0	4.3	.0
663	22.8	8	1 2	87		4	9 1	37 3	à	21 2		1 6			
664	10 3	1 0		10 5			12 1	20.3	.,	22.4		1.0	.0	1 7	
665	22 0	1.0	.,	7 0		.2	13.1	20.4	.0	23.0	1.0	-2	.0	1.7	.0
666	16 0			7.9			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22.1		34.3	1.0			1.4	.0
000	10.9	.0	.0	0.3	.4	.0	10.8	34.3	1.2	26.0	1.3	.4	.0	2.2	.0
667	28.2	.5	.0	1.6	.0	.0	2.6	22.6	.9	39.5	1.1	.0	.0	1.5	.0
668	30.5	.5	.0	1.0	.0	.5	5.3	18.4	1.4	38.2	1.4	.0	.0	2.9	.0
669	27.7	.0	.0	.6	.0	.6	4.0	3.4	.6	59.7	.7	.0	.0	2.8	.0
670	21.7	.3	.0	.5	.0	.3	5.2	2.8	.5	64.3	.7	.0	.0	3.9	.0
671	23.0	.4	.0	.4	.0	.4	7.4	2.6	.6	58.2	1.2	.0	.0	5.9	.0
672	15.4	2.3	.0	1.7	.0	.3	15.1	2.7	1.1	44.9	1.1	.0	.0	15.4	.0
673	11.4	1.0	.0	5.0	.0	1.0	5.5	17.4	2.0	47.8	2.0	3.0	- 0	3.5	.5
674	23.7	2.1	.0	3.6	. 0	1.0	3.1	2 6	1.5	52 0	1 1	0	0	93	0
675	28.2			2.5 g	.0	1 7	5 0	2.0	5	49.9	1 2			10.9	
676	30 3	.3		2 2		1.1	7 4			15 0	1 2			2 1	
277	27.2	.0	• !	د. <i>د</i>			10 4	0.9	.,	10.0	1.3			2.1	
670	21.3	1.0	• !	0.8	.0	1.4	10.4	4.8		44.5	.9	.0	.0	3.4	.0
0/0	21.1	1.2	'	5.4	.0	1.9	12.0	6.5	1.1	43./	1.2	.0	.0	3.1	.0
6/9	.0	6.0	20.3	8.9	.0	6.0	14.9	.0	10.4	6.0	16.1	.0	2.1	8.9	.0
680	.0	.0	12.4	8.5	.0	17.1	4.3	.0	15.9	17.1	21.4	.0	3.0	.0	.0
681	.0	6.6	. i)	6.6	.0	49.2	.0	.0	12.3	.0	16.3	.0	9.1	.)	.0
682	.0	.0	.0	5.3	.0	78.7	2.7	.0	3.7	.0	6.7	.0	2.9	.0	.0

1	MA5 of	f stra	atigra	phic	seque	ince									
,	weight	s of	mov:r	ng ave	erage	are:	[1,4,	6,4,1	L]						
samp	ABIE	APIA	ARTE	BETU	CARP	CICH	CORY	FAGU	POAC	PICE	PINU	PLAN	SELA	ULMU	CERE
4	8.8	.8	1.3	5.4	2.9	.0	5.4	18.4	1.7	41.4	1.9	7.5	.0	1.4	3.1
9	.8.1	.8	1.2	6.9	4.0	.0	4.9	20.9	1.8	36.4	2.0	7.8	.0	1.1	4.3
14	9.0	.7	1.0	6.6	4.0	.0	5.1	25.4	1.6	33.7	1.6	6.3	.0	.9	4.2
24	11.5	.6	.7	4.4	3.1	.0	5.6	31.6	1.1	33.8	1.1	3.2	.0	.8	2.6
34	12.7	.4	.4	2.5	2.4	.0	5.5	38.3	.9	33.1	.9	1.4	.0	.5	1.0
44	11.2	.4	.3	2.6	2.5	.0	5.5	42.4	.9	31.2	. 9	1.4	.0	.5	.3
54	9.5	.4	.4	3.3	3.0	.0	6.5	42.1	.9	30.5	.9	1.7	.0	.8	0.0
64	11.1	.3	.5	3.7	3.1	.0	7.4	38.8	1.0	30.5	. 9	1.6	.0	1.1	.0
74	15.7	.4	.5	4.2	2.4	0.0	7.8	34.5	1.1	29.8	1.0	1.3	.0	1.3	.0
84	19.8	.5	.5	5.2	1.8	.1	8.8	30.6	1.1	28.3	1.1	.9	.0	1.3	.0
89	21.9	.6	.4	5.7	1.3	.2	9.9	28.6	1.2	27.4	1.3	.5	.0	.9	.0

94	22.5	.7		5.9	1.0	.3	9.6	27.8	1.3	28.4	1.5	.3	.0	.5	.0
99	21.8	.6	• 2	5.9	. 9	.3	8.9	26.7	1.4	31.2	1.4	.3	.0	.6	.0
104	21.3	.3	.3	5.5	. 8	.1	8.3	25.4	1.3	33.7	1.3	.4	.0	1.2	.0
109	21.3	.2	.6	4.9	.6	0.0	7.6	25.8	1.1	34.3	1.2	.5	.0	2.0	.0
114	20.9	.2	.7	4.0	. 4	.0	7.3	27.8	1.0	33.9	1.0	.6	.0	2.3	.0
119	20.4	.2	.6	2.9	.3	.0	8.4	30.1	.9	32.9	.9	.7	.0	1.8	.0
124	21.0	.2	.3	2.4	.3	.0	9.0	30.5	.8	33.0	.7	.5	.0	1.2	.0
129	22.4	.3	.2	2.6	.4	.0	7.8	27.1	.7	36.5	.6	.3	.0	1.1	.0
134	23.0	.3	.1	3.1	.7	.0	7.0	23.2	.7	39.7	.5	.2	.0	1.4	.0
139	22.7	.3	.1	3.9	.8	.0	8.1	21.8	.7	39.1	.5	.1	.0	1.9	.0
154	22.3	.3	.1	4.9	.4	.0	9.0	21.3	. 6	38.5	.5	0.0	.0	2.1	.0
164	22.6	.1	0.0	5.1	.1	.0	8.5	19.7	. 6	40.4	. 6	.0	. 0	2.3	.0
174	24.5	.1	.1	4.1	.0	.0	7.3	15.5	.6	44.4	.7	.0	.0	2.8	.0
184	26.0	.2	.3	2.8	.0	.0	5.8	10.1	. 6	50.4	- 8	.0	.0	3.1	.0
194	26.0	.2	4	2 4			4 5	6.8		55 5				2 9	
204	27.0	.2	.,	2.6	.0	.0	3 9	5.3	.5	56 6	.8			2.7	.0
214	30.0			2.6			1 3	3 6		54 7			.0	2.1	.0
224	32.3	0.0		2.0		.0	4.5	2.0		59.7	.,		.0	3.3	.0
224	32.5	0.0	0.0	1 6			5.2	2.7		50.0	.,			4.0	
234	20.7			1.0			0.1	2.5	.5	50.2	.0	.0		0.1	.0
244	29.7			1.0	.0	.0	6.5	2.8		30.4			.0	10.7	.0
235	21.2	.0	.0	2.0		.0	0.0	2.5	.4	49.9	• '	.0	.0	10.7	.0
204	24.0	.0	•0	2.2	.0	.0	8.2	1./	.4	4/.5	• • •	.0	.0	14.6	.0
2/4	22.0	.0	-0	2.1	.0	.0	11./	1.2	.5	44.9	.8	.0	.0	16.9	.0
284	21.4	.0	.0	1./	.0	.0	14.1	1.0	.5	43.3	.8	.0	.0	17.2	.0
294	23.8	.0	-0	1.4	.0	.0	13.4	- 8	.5	41.6	.9	.0	.0	17.5	.0
299	27.9	.0	-0	1.2	.0	.0	11.8	.8	.5	38.4	1.0	.0	.0	18.3	.0
304	30.1	.0	.0	1.5	.0	.0	11.2	.8	.6	34.6	1.1	.0	.0	20.2	.0
309	27.1	.0	.0	2.6	.0	.0	12.0	.7	.6	30.0	1.2	.0	.0	25.7	.0
314	20.2	.0	.0	4.5	.0	-0	14.3	. 4	.7	24.8	1.3	-0	.0	33.8	.0
319	12.0	.1	.0	6.8	.0	.0	18.1	.2	.7	20.1	1.3	.0	.0	40.6	.0
324	5.1	. 4	· .0	8.5	.0	.0	23.1	.1	.7	15.7	1.5	.0	.0	44.8	.0
329	1.6	.9	.0	8.3	.0	.0	28.9	.1	.7	10.9	1.9	.0	.0	46.6	.0
334	.5	1.6	.0	6.5	.0	.2	35.1	0.0	.6	6.8	2.3	.0	.0	46.3	.0
344	.1	1.7	.0	5.5	.0	.7	41.3	.0	.4	3.6	2.2	.0	.0	44.4	.0
354	.0	1.1	.0	5.5	.0	1.3	47.9	.0	.4	1.5	1.7	.0	.0	40.7	.0
359	.0	.4	.0	5.6	.0	1.2	54.5	.0	.4	.5	1.3	.0	.0	36.0	.0
364	.0	.4	.0	5.3	.0	1.0	57.7	.0	.5	.2	1.1	.0	.0	33.9	.0
374	.0	.6	.0	5.2	.0	1.3	56.4	.0	.5	.1	. 9	.0	.0	35.1	.0
384	.0	.6	.0	6.2	.0	1.6	53.8	.0	.5	0.0	.9	.0	.0	36.5	.0
394	.0	.4	.0	10.8	.0	1.9	50.1	.0	- 5	.0	1.0	.0	.0	35.4	.0
404	.0	.8	.0	21.8	.0	2.0	42.5	.0	.7	.0	1.5	.0	.0	30.7	.0
414	.0	2.4	.0	38.3	.0	2.0	30.1	.0	1.4	.0	2.8	.0	.0	23.0	.0
424	.0	5.2		51.7	.0	3.7	16.6	.0	2.4	.0	4.6	.0	- 0	15.8	.0
435	.0	8.1		53.3	.0	8.6	8.0	.0	3.3	.1	6.9	.0	.0	11.7	.0
444	.0	9.1	;	47.1	.0	15.5	5.6	.0	3.8	.7	8.8	.0		9.3	.0
449	.0	6.4	1.0	40.8	. 0	22 3	7.0	.0	4.2	1 7	9.4	.0		7 2	0
454	.0	2.5	2 ;	35 0		27 7	8 9		5 6	27	9 7	ň		4 9	
459	.0		3.8	28.6	.0	35 4	7 6		7.2	2.1	10 5		1 6	2.2	
464	.0	.0	31.	19 5		51 0	7.0		67	1 4	4 7		3.0	2.	-0
469	.0	.0	1 9	10.0	.0	70 2	1 6		4 6	1.4	7 4	.0	10		
474	.0	.0	 	4.6		79.2	1 2		3.0		6.4		4.2		
479	.0	.0	•	3.0	 n	79 5	1 9	 0	2.2		67		1.5		
482			1 .	2 1		75 0	2.0		3.3		7 5		6.0		
102	.0		1 1	3.1		73.8	5.3		3.2		1.3		0.0		
400	.0		1.1	4.3	.0	/1.5	3.2		3.1	.0	0.2	.0	6./	.0	

ALTER DER POLLENANALYTISCH

DATIERTEN PROBEN

E.1 ALTER IN TIEFEN DES STANDARDPROFILS

Das Alter wird in Bezug auf eine Probe des Standardprofiles angegeben. Die Probenummer entspricht dem Abstand von der Oberfläche zur Probestelle [cm]. Die Methode der Datierung ist in Kapitel 4 dargestellt.

P = Probe; K = Bohrkern; T = Probentiefe [cm]

Typ = Verwendung der Probe für Datierung:

BAS = Basisprobe; T1 = Transsekt 1; T2 = Transsekt 2; TX = Transsekt 1 & 2; UNU = nicht gebraucht

Ähnlichkeitsmasse:

MAN = Manhattan; EUC = Euklid; MAN-SQ = wurzeltransformiert, Manhattan; EUC-SQ = wurzeltransformiert, Euklid

p = Wahrscheinlichkeit; $\Psi = 90 \%$ Konfidenzintervall;

Р	ĸ	Ť	Тур	MAN P	Ψ	EUC P	Ψ	MAN-SQ P	Ψ	EUC-SQ p	Ψ	OPT p	Ψ
501	3	22	BAS	184.64	5	184.74	5	184.46	15	184.76	9	184.76	9
502	3	27	UNU	314.83	5	314.67	2	314.64	16	314.75	5	314.83	5
503	4	28	т2	14.54	2	14.72	2	9.61	2	14.50	2	14.72	2
504	4	56	T2	14.23	46	14.50	39	99.37	15	99.48	5	99.48	5
505	4	84	Т2	104.41	35	14.64	39	109.39	34	104.64	40	154.22	29
506	4	107	т2	274.52	9	274.56	10	274.42	14	294.55	11	274.56	10
507	4	112	BAS	299.53	5	299.52	2	299.62	2	299.64	2	299.64	2
508	4	117	т2	309.61	14	309.48	14	309.41	14	294.52	12	309.61	14
509	5	258	UNU	344.51	5	344.55	5	344.62	9	344.76	9	344.55	5
510	5	268	BAS	344.79	5	344.89	5	354.88	7	354.84	7	354.88	7
511	5	278	UNU	334.59	5	334.59	5	344.45	25	344.51	25	344.45	25
512	6	233	BAS	344.50	5	344.81	5	354.62	14	354.77	10	344.81	5
513	6	238	UNU	3641.00	5	3641.00	5	364.95	4	364.98	3	3641.00	5
514	6	243	UNU	3641.00	5	3641.00	5	364.64	5	364.95	5	3641.00	5
515	9	230	BAS	404.57	5	414.42	55	414.35	14	414.67	10	414.67	10
516	9	235	UNU	444.29	21	449.46	21	435.48	17	444.30	14	435.48	17
517	9	240	UNU	454.26	12	449.36	11	459.52	20	459.84	3	459.84	3
518	10	476	BAS	414.42	57	404.54	42	490.65	38	424.22	44	490.65	38
519	10	481	UNU	459.54	34	459.73	3	490.97	4	490.83	13	490.97	4
520	10	486	UNU	464.83	5	464.80	3	464.55	14	464.48	14	490.35	12
521	11	28	T2	24.34	60	24.45	55	104.27	52	104.37	19	24.45	55
522	11	56	т2	64.52	18	64.50	19	64.72	10	64.52	10	64.72	10
523	11	84	т2	134.29	31	129.39	37	129.50	30	129.53	15	129.53	15
524	11	107	UNU	1552	31	164.70	5	164.80	5	164.98	5	164.98	5
525	11	112	BAS	17· 91	5	174.87	5	174.88	5	174.57	5	174.91	5
526	11	117	UNU	23.64	32	234.65	31	184.38	28	184.71	29	184.71	29
527	12	118	BAS	33 . 50	9	334.54	7	329.54	5	334.38	9	329.54	5
528	12	128	UNU	32.71	2	324.63	2	324.69	2	324.49	2	324.71	2

529 12 138	UNU 329.	55 5	324.50	3	329.56	5	324.39	5	329.56	5
530 12 148	UNU 334.	60 2	334,76	2	344.69	5	344.80	5	344.80	5
531 13 472	11N11 404	79 5	414 59	5	404.73	5	414.95	5	414.95	5
532 13 472	DNO 404.	, y - 5 5 - 55	414.30	~~~	414 40		460 76	Š	414 70	22
532 13 4/1	BAS 414.	52 25	414.79	23	414.42	29	439.13	2	414.19	23
533 13 482	UNU 404.	46 49	404.87	5	459.20	75	459.39	46	404.8/	5
534 13 487	UNU 414.	62 5	414.88	5	414.63	5	414.65	25	414.88	5
535 14 64	UNU 154.	59 29	164.38	59	164.72	5	164.64	5	164.72	5
53614 69	BAS 294	an 5	284 97	5	284 58	50	284 61	49	284 90	5
53014 05	1010 154		204.57	= 6	104.07	50	164 76		164 07	5
53/14 /5	UNU 154.	63 3	284.57	26	104.97	5	104.70	5	104.97	
538 15 67	UNU 304.	82 2	304.53	2	244.39	54	299.34	57	244.39	54
539 15 72	BAS 255.	35 59	264.37	26	255.48	14	255.52	9	255.52	9
540 15 77	UNU 255.	35 29	264.44	24	299.58	21	294.39	17	299.58	21
541 16 60	UNU 309	70 14	309 56	14	309.62	16	309.41	13	309.70	14
542 16 70	DNG 305.	FO F	274 (1		224 66	Ę	374 61		274 66	<u></u>
542 16 70	DAS 204.	50 5	2/4.01	3	274.00	5	2/4.01	, ,	274.00	5
543 16 80	UNU 334.	78 5	334.65	5	334.63	9	334.59	5	334.78	5
550 23 35	TL 4.	52 76	4.73	72	4.48	76	109.54	75	4.73	72
551 23 40	BAS 104.	50 26	154.45	29	104.54	2	104.61	2	104.61	2
552 23 45	T1 184.	84 5	184.89	5	184.71	5	184.75	5	184.89	5
552 24 22	T1 A	5. J	101.05	2	4 94	2	41 00	Š	41 00	2
JJJ 24 JZ	11 4	20 2	4.55	2	4.94	~ ~	41.00	2	41.00	2
554 24 64	TI 24.8	32 5	24.91	5	64.79	52	64.87	5	64.87	5
555 24 96	T1 89.6	51 5	89.69	2	164.38	24	119.34	22	89.69	2
556 24 119	BAS 184.	50 5	184.61	5	174.50	5	184.78	10	174.50	5
557 24 123	T1 294	25 62	174 44	58	174 34	56	184 70	38	184 70	38
550,24 125	m1 104	01 5	104 70	50	104 07	50	104.04	50	104.04	50
558 24 127	11 184.	81 3	184.70	5	164.07	5	104.94	2	104.94	5
124 25 123	Tl 44.8	37 5	64.50	14	124.99	2	124.97	2	124.99	2
244 25 244	Tl 244.	37 14	244.32	14	234.45	9	234.46	9	234.46	9
364 25 364	T1 3641	.00 5	3641.00	5	3641.00	5	364.99	5	3641.00	5
679 25 460	T1 454	35 23	454 64	65	454.62	14	454.72	2	454.72	2
600 25 470	DAC 450	05 LU	450.70	216	464 80		450 70	~	450.05	-
680 23 470	BAS 439.	90 2	439.78	210	464.60		459.70	2	439.93	~ ~
681 25 480	TI 464.	71 14	464.81	14	469.35	12	469.66	1	464.81	14
682 25 490	T1 474.	49 6	474.45	6	474.57	9	474.60	9	474.60	9
55926 76	TX 44.5	56 14	54.49	14	64.37	33	74.52	32	44.56	14
560 26 152	TX 164	25 32	134.34	27	164.62	31	164.49	30	134.34	27
561 26 222	TY 154		104 30	20	164.00	-	164 03	50	164 00	
561 26 228	1. 154.	21 32	104.38	20	164.00	5	104.03		104.00	
562 26 289	TX 304.	44 61	304.36	61	234.36	58	174.32	70	234.36	58
563 26 294	BAS 294.	40 12	284.41	21	284.52	10	284.39	25	284.52	10
564 26 299	TX 294.	39 9	299.51	5	294.35	15	294.36	15	299.51	5
565 26 305	TX 284.	59 18	274.52	5	284.61	18	284.48	15	284.61	18
566 27 36	T1 41	00 2	41 00	2	41/ 00	2	41 00	2	41 00	2
567 27 72	m1 74		74 50	42	110 54	24	110 60	-	74 56	42
56727 72	11 /4.4	17 44	/4.30	43	119.34	24	119.60	3	74.30	43
568 27 98	TI 154.	60 16	154.38	16	154.48	16	154.28	19	154.60	16
569 27 139	T1 255.	35 27	204.64	28	244.37	19	244.64	10	244.64	10
570 27 144	BAS 264.	63 4	255.50	4	264.53	4	255.84	4	255.84	4
571 27 149	T1 264	46 10	274 55	5	274.57	10	274.34	20	274.57	10
572 28 96	TT 04 3	12 12	99 49	10	104 29	12	104 41		99.49	10
572 20 30	m1 10,	10 12	174 70	10	104.29	10	104.41	ź	174.04	10
573 28 192	TI 164.	43 86	1/4./0	5	1/4./3	TO	1/4.84	5	1/4.84	2
574 28 288	TI 309.	41 10	304.44	5	309.30	10	294.30	11	304.44	5
575 28 380	BAS 404.	93 5	404.98	5	404.95	5	404.92	5	404.98	5
576 28 390	T1 459.	52 26	459.58	25	490.63	15	459.82	16	459.82	16
577 29 94	T1 54.7	70 5	54 73	5	54.38	35	54.31	36	54.73	5
570 20 100	m1 16.	40 16	174 25	10	174 55	50	174 72	5	174 72	Ē
570 29 188	11 10	40 10	1/4.33	10	1/4.55		174.72		274.72	
579 29 282	T1 284.	52 10	284.48	16	284.54	17	274.36	19	284.52	10
580 29 365	Tl 324.	90 3	324.79	2	324.77	2	324.74	2	324.90	3
581 29 375	BAS 354.	57 7	354.55	7	344.56	11	344.82	5	344.82	5
582 29 385	T1 394	51 18	404 47	18	394 46	20	404 62	5	404 62	5
502 29 505	TI 394.	20 74	104.10	70	114 74	70	100.30		4 74	5
583 30 24	TI 104.	29 /4	104.38	16	114.34	16	109.30	54	4.24	23
584 30 48	TI 74.5	55 45	74.59	41	74.41	45	34.36	45	/4.59	41
585 30 88	T1 204.	52 23	204.81	5	244.37	14	255.76	9	204.81	5
586 30 93	BAS 244.	58 5	244.48	5	244.51	10	244.38	10	244.51	10
587 30 98	T1 264	82 5	264 85	5	264.71	5	264.64	20	264.85	5
500 31 44	204. m1 04.	54 J 51 10	04 57	~	104 75	24	01 77	20	04 53	~
J00 J1 64	.1 54.3	. 10	64.33		124.23	34	04.21	39	04.33	
589 31 128	ті 114.	51 14	114.44	15	164.75	27	164.64	23	114.51	14
590 31 192	T1 314.	44 101	304.30	72	314.45	70	164.71	55	164.71	55
591 31 254	BAS 309.	86 2	309.89	2	309.76	2	304.61	5	309.89	2
592 31 258	T1 314.	93 2	314.97	2	314.91	3	314.51	2	314.97	2
593 32 70	T1 3/ 4	67 10	34 52	14	64 61	5	54 60	5	34 67	10
504 22 140	J ⁿ . (רכ בא	104 60	55	100 53	10	100 51	2	104 60	25
594 32 140	11 10 ⁴ .	4.3 33	104.60	60	109.33	10	103.21	د ••	104.00	
595 32 210	TL 424.	43 155	424.96	5	164.88	31	99.57	31	164.88	31
_ · · · · ·										

•

~

										· · · · · ·	
59/ 32 2/0	ΤŢ	255.33	18	264.37	9	284.38	25	284.33	23	264.37	9
598 32 280	T1	284.98	5	284.96	5	284.62	5	284.59	5	284.98	5
610 39 60	BAS	94.76	2	89.49	2	94.60	34	94.78	2	94.78	2
611 39 65	UNU	154.50	32	164.52	9	164.45	34	164.60	34	164 60	34
612 20 71	LIMIT	164 50	10	164 46	10	174 30		164 40	21	164 50	10
012 39 71	DNU	104.30	10	104.40	10	1/4.38	31	104.48	31	164.58	18
613 40 173	BAS	224.75	5	224.72	5	224.52	9	224.49	9	224.75	5
614 40 177	UNU	214.53	9	214.42	9	224.53	9	214.63	9	214.63	9
615 40 181	UNU	244.59	21	244.49	5	234.38	15	234.66	14	234.66	14
616 41 104	T2	64.49	14	64.52	14	64.30	39	119.64	38	64.52	14
617 41 209	 	154 40	2.4	164 61		174 50		164 07		164 02	
617 41 208	12	134.40	34	104.01		1/4.38	5	164.93	5	164.93	2
618 41 312	т2	204.98	5	2041.00	5	224.48	9	214.56	10	2041.00	5
619 41 407	BAS	264.59	5	274.49	5	274.86	5	294.64	16	274.86	5
620 41 412	T2	264.78	5	264.68	5	274.73	5	294.66	16	264.78	5
621 41 417	Τ2	309 61	2	309 54	2	309 66	3	309 55	0	300 66	3
622 42 65	Dac	00 75	-	04.37	-	100.04	~~~	104 50		509.00	5
622 42 65	DAS	89.15	5	94.37	8	109.24	38	104.56	32	89.75	5
623 42 70	UNU	64.57	10	64.50	14	64.34	49	94.50	2	94.50	2
624 42 75	UNU	94.45	5	154.50	31	164.72	5	164.98	5	164.98	5
625 43 117	BAS	154.57	30	154.68	5	174.66	5	164.55	5	154.68	5
626 43 122	UNIT	174 42	14	174 45	63	174 49	5	174 74	5	174 74	5
(27 43 127	11	104 77	14	174.45	0.5	1/4.49		1/4./4	5	1/4./4	5
62/43 12/	UNU	184.//	5	184.64	5	184./4	5	184.57	5	184.77	5
628 44 352	UNU	314.59	2	314.62	2	314.65	2	314.69	2	314.69	2
629 44 362	BAS	314.88	2	314.89	2	314.77	2	314.78	3	314.88	2
630 45 212	BAS	255.30	29	255.73	10	244 42	24	244 50	5	255 73	10
621 45 217	IIMU	200.00	20	255.75	10	244.70	27	244.30		233.73	10
631 43 217	UNU	244.52	39	255.82	10	244./8	41	244.64	29	255.82	10
632 45 222	UNU	284.46	18	284.38	18	284.66	23	284.59	23	284.66	23
633 46 117	UNU	244.43	52	244.33	52	244.64	10	244.63	10	244.64	10
634 46 121	BAS	244.27	40	194.39	32	274.53	10	274.36	14	274.53	10
635 46 125	IINII	255 50	23	204 50	22	255 57	10	255 50		255 50	
000 40 120	DNO	233.33	23	204.50	23	233.37	10	233.38	14	255.59	23
636 47 212	BAS	344.12	5	344./6	5	344.71	9	344,71	5	344.76	5
637 47 217	UNU	344.32	37	404.44	34	354.39	36	344.40	32	404.44	34
638 48 40	BAS	174.35	85	4.84	79	174.34	85	4.32	78	4.84	79
639 48 45	UNU	174.54	5	4 51	81	174 74	5	174 60	5	174 74	5
640 50 36	Dac	1/1.01	5	1.01	01	1/4./4		1/1.00		1/4./4	
040 32 30	DAS	89.90	3	891.00	2	94.52	32	89.76	2	891.00	2
641 52 40	UNU	89.77	2	89.94	2	94.66	3	94.77	2	89.94	2
642 52 44	UNU	154.38	27	154.52	30	124.54	24	124.81	17	124.81	17
643 53 121	BAS	184.34	24	184.42	20	244.29	27	234 34	27	184 42	20
644 53 127	IINII	184 79		104 02		194 70	10	104 04		104.42	20
645 53 127	040	104.79		104.02	5	104.78	10	184.84	5	184.84	2
645 53 133	UNU	244.42	45	255.48	44	244.48	33	244.80	35	244.80	35
64654 80	T2	34.93	5	34.91	5	34.89	5	34.87	5	34.93	5
647 54 160	т2	89.66	2	89,91	3	164.67	30	89.45	31	164.67	3
648 54 240	Τ2	164 30	10	130 43	21	174 90	6	174 70		174 00	Ē
640 54 240	74	104.50	19	139.43	21	1/4.09		1/4./9	2	1/4.89	3
649 54 319	BAS	284.48	14	274.63	9	284.68	14	284.84	5	284.84	5
650 54 324	T2	284.98	5	284.97	5	2841.00	5	2841.00	5	2841.00	5
651 55 407	UNU	264.38	14	264.49	9	264.35	14	294.36	21	264.49	9
652 55 414	BAS	255.75	10	204.98	5	255.56	9	264 59	9	255 75	10
653 55 420	IIMI	255 62	27	2043 00	5	255 70	á	264.55	,	255.75	10
CEA EE 422		233.02	21	2041.00		233.19		200.00	4	235.19	9
654 55 433	UNU	2041.00	5	2041.00	5	224.40	14	255.39	19	255.39	19
655 57 38	BAS	84.43	7	74.39	11	84.45	14	84.41	14	84.45	14
656 57 43	UNU	174.96	5	174.71	5	174.90	5	174.64	5	174.96	5
657 58 220	UNU	1854	31	184.61	28	184.33	31	184 72	20	184 72	20
658 58 230	RAC	174 56	14	154 37	16	174 69	5	174 50		174 60	20
250 50 200		21-1.30	14	104.07	10	T13.00	-	1/4.50	5	1/4.08	5
639 38 242	UNU	255.34	12	255.50	39	244.63	15	255.48	10	244.63	15
660 60 55	UNU	214.37	14	204.55	15	214.48	5	224.85	5	224.85	5
6616060	BAS	204.82	5	204.60	5	274.34	38	224.39	15	224.39	15
662 60 65	UNU	204.36	20	194.51	27	224 46	34	244 40	15	244 40	15
663 66 63	DAC	00 72		00 70		00 50	51	211.10	15	299.90	10
005 00 02	DAS	09.75	~	89.70	2	89.52	5	89.58	2	89.73	2
664 66 66	UNU	89.83	2	89.97	2	89.88	15	89.82	2	89.97	2
665 66 70	UNU	154.47	30	154.38	29	164.84	5	164.88	5	164.88	5
666 67 69	T2	74.45	10	84.46	7	119.25	41	84 38	22	84 46	7
667 67 139	τ2	134 49	20	134 74	27	164 43	34	124 50	20	194 72	
CC0 C7 202		137.97	20	124.10	21	104.43	29	134.52	20	134.76	21
008 0/ 208	τZ	1/4.44	23	174.39	23	174.83	5	174.74	24	174.83	5
669 67 260	т2	204.70	5	204.83	5	214.66	10	214.65	10	204.83	5
670 67 263	BAS	2041.00	5	2041.00	5	214.45	14	204 43	20	2041 00	5
671 67 276	T2	204 64	22	204 65	10	244 52	10	244 71	15	244 71	15
672 67 270	70	204 01		201.00	10	277.32	13	477.11	10	299./1	10
CT2 C1 219	12	204.01	2	284.84	5	284.80	5	284.79	5	284.84	5
6/368 78	UNU	4.62	82	4.91	3	174.46	81	4.34	77	174.46	81
674 68 84	BAS	255.60	28	255.73	29	255.59	23	255.55	25	255.73	29
674 68 84 675 68 88	BAS UNU	255.60 255.66	28 14	255.73 255.67	29 10	255.59 255.68	23 10	255.55 255 52	25 14	255.73	29
674 68 84 675 68 88 676 74 123	BAS UNU UNU	255.60 251.66 184.66	28 14 28	255.73 255.67 184.64	29 10 27	255.59 255.68 184 60	23 10 28	255.55 255.52	25 14	255.73 255.68	29 10

•

677 74 128	BAS	174.44	39	184.45	32	174.36	31	184.38	30	184.45	32
678 74 133	UNU	174.55	60	174.62	5	174.73	10	174.50	5	174.73	10

.

E.2 ALTER IN ABSOLUTEN ALTERN

Die in Kapitel E.1 im Vergleich zum Standardprofil eingeordneten Proben sind hier mit dem absoluten Alter [ka] tabelliert. Die Transformation des Tiefen- in den Zeitmassstab ist in Kapitel 4 beschrieben.

P	к	Т	Тур МА	NP	Ψ Ευα	C p	Ψ MAN-	-SQ p	ΨЕ	UC-SQ	p '	₽ OF	ΥT Ρ	Ψ
501	3	22	BAS-3.37	.64 .11	-3.37 .	74 .10	-3.37	.46 .	33 -3.3	7 .76	.20	-3.37	.76	.20
502	3	27	UNU-5.38	.83 .11	-5.38	67 .05	-5.38	. 64 .	35 -5.3	8 . 75	. 11	-5.38	.83	.11
502		20	77 1 35	54 05	1 25	72 05	1 57		05 1 3	5 50	05	1 35		05
503	7	20	12 1.35	.54 .05	1.33	. 12 .03	1.57	.01 .			.05	1.55	. / 2	.05
504	4	56	T2 1.35	.231.02	1.35 .	.50 .86	5/	.3/ .	333	/ .48	.11	5/	.48	.11
505	4	84	T283	.41 .77	1.35 .	.64 .85	-1.09	.39 .	758	3.64	.87	-2.72	.22	.63
506	4 :	107	T2-4.94	.52 .20	-4.94	.56 .21	-4.94	.42 .	30 -5.1	9.55	.25	-4.94	.56	.21
507	4 :	112	BAS-5.25	.53 .10	-5.25	.52 .05	-5.25	.62 .	05 -5.2	25 .64	.05	-5.25	.64	.05
508	4 :	117	T2-5.34	.61 .30	-5.34 .	.48 .30	-5.34	.41 .	30 -5.3	9.52	.26	-5.34	.61	.30
509	5 2	258	UNU-5.65	.51 .10	-5.65	.55 .10	-5.65	.62 .	20 -5.0	5.76	.20	-5.65	.55	.10
510	5	268	BAS-5 65	79 .10	+5.65	89 .10	-5.78	88	16 -5	8 .84	.15	-5.78	88	.16
511	5	278	UNU_5 51	50 11	-5 51	50 10	-5 65	45	55 _5 /	5 51	55	-5 65	45	55
517	6	272	DIC 5.51	50 10	- 5.51	01 10	-5.05	.15 .	20			-5 65	01	10
512		233	BAS-3.63	.50 .10	-3.65	.01 .10	-3.70	.02 .	30 -3.	3	.22	- 3.03	.01	.10
513	6	238	UNU-6.13	.00 .10	-6.131.	.00 .10	-6.13	.95 .	08 -0		.07	-6.13	1.00	.10
514	6 2	243	UNU-6.13	.00 .10	-6.131.	.00 .10	-6.13	.64 .	10 -6	.3 .95	.10	-6.13	1.00	.10
515	9 :	230	BAS-8.02	.57 .11	-8.19	.421.22	-8.19	.35 .	31 -8.3	.9 .67	.21	-8.19	.67	.21
516	9 :	235	UNU-8.69	.29 .47	-8.78 .	.46 .46	-8.54	.48 .	37 -8.0	59.30	.31	-8.54	.48	.37
517	9 :	240	UNU-8.86	.26 .25	-8.78	.36 .24	-8.95	.52 .	44 -8.9	95 .84	.05	-8.95	.84	.05
518	10 4	476	BAS-8.19	.421.24	-8.02	.54 .92	-9.57	.65 .	84 -8.3	36 .22	.97	-9.57	.65	.84
519	10 4	481	UNU-8.95	.54 .75	-8.95	.73 .05	-9.57	.97 .	08 -9.5	57 .83	.28	-9.57	.97	.08
520	10 4	486	UNU-9.04	.83 .11	-9.04	.80 .05	-9.04	.55 .	31 -9.0	4 . 48	.31	-9.57	.35	.26
521	11	28	T7 97	341 31	92	451 21	- 83	271	15 - 6	3 37	42	92	451	21
522	11	56	T2 21	52 40	21	50 41	21	72	21 2	1 52	22	21	72	21
522	11	94	T2 - 2 29	30 20	-2 18	10.00	-2 14	50	45 _2 ·	A 52		-2 14	53	
525		107	12 -2.20	.29 .00	-2.14	20 10	-2.14		10 2.			-2.14		
524		107	UNU-2.72	.52 .69	-2.94	.70 .10	-2.94		10 -2.5	14 .90 	.10	-2.94	. 90	.10
525	11 .	112	BAS-3.15	.91 .11	-3.15	.87 .10	-3.15	.88 .	10 -3.	5.51	.10	-3.15	.91	.11
526	11 :	117	UNU-4.39	.64 .70	-4.39	.65 .69	-3.37	.38 .	62 -3	\$7 .71	. 64	-3.37	.71	. 64
527	12 :	118	BAS-5.51	.50 .20	-5.51	.54 .15	-5.48	.54 .	10 -5.5	51 .38	.20	-5.48	.54	.10
528	12 :	128	UNU-5.44	.71 .05	-5.44 .	.63 .05	-5.44	.69 .	05 -5.4	4 .49	.05	-5.44	.71	.05
529	12 1	138	UNU-5.48	.55 .10	-5.44	.50 .05	-5.48	.56 .	10 -5.4	4.39	.10	-5.48	.56	.10
530	12 :	148	UNU-5.51	.60 .05	-5.51	.76 .05	-5.65	.69 .	11 -5.0	55 .80	.10	-5.65	.80	.10
531	13 4	472	UNU-8.02	.79 .11	-8.19	.59 .10	-8.02	.73 .	11 -8.3	9.95	.11	-8.19	.95	.11
532	13 4	477	BAS-8.19	.52 .55	-8.19	.79 .50	-8.19	.42 .	85 -8.9	95 .75	.05	-8.19	.79	.50
533	13 4	482	UNU-8.02	.461.07	-8.02	.87 .11	-8,95	.201.	64 -8.9	5.39	1.01	-8.02	.87	.11
534	13 4	487	UNU-8.19	.62 .10	-8.19	88 .10	-8.19	. 63 .	11 -8.1	9 . 65	. 54	-8.19	.88	.10
535	14	64	UNII-2.72	59 .64	-2 94	381 29	-2 94	72	10 -2.0	4 64	10	-2 94	72	.10
536	14	69	BAS-5 07	90 11	-5 07	07 10	-5 07	501	11 _5 /	1	1 00	-5 07		11
637	1.4	75	1111-2 72	63 11	-5.07	571 22	-2.01	67	10 -2 0	14 .01 24 .01	10	-2.04	. 90	10
537.	16	67	UNU E 21	.03 .11	-5.07 .	571.22	-2.94	. 97 .	10 -2.5	74 ./C	1 24	-2.94	. 97	.10
536	12		UNU+5.31	.82 .05	-5.31 .	.53 .05	-4.5/	.391.	19 -5.4	23.34	1.24	-4.57	. 391	
539.	12	12	BAS-4./1	.351.30	-4.82	.3/ .5/	-4./1	.48 .	31 -4.	1.52	.21	-4.71	.52	.21
540.	15		UNU-4.71	.35 .64	-4.82	44 .53	-5.25	.58 .	46 -5.3	9.39	.38	-5.25	.58	.46
541 3	16	60	UNU-5.34	.70 .30	-5.34 .	.56 .30	-5.34	.62 .	35 -5.3	4 .41	.28	-5.34	.70	.30
542 :	16	70	BAS-4.82	.50 .10	-4.94 .	.61 .10	-4.94	.66 .	11 -4.9	94 .61	.20	-4.94	.66	.11
543	16	80	UNU-5.51	.78 .11	-5.51 .	.65 .11	-5.51	.63 .	20 -5.5	51.59	.11	-5.51	.78	.11
550	23	35	Tl 1.78	.521.67	1.78 .	.731.59	1.78	.481.	68 -1.0	9.54	1.65	1.78	.731	. 59
551 2	23	40	BAS 83	.50 .57	-2.72 .	45 .64	83	.54 .	058	3 .61	.05	83	.61	.05
552 2	23	45	T1-3.37	.84 .11	-3.37 .	89 .10	-3.37	.71 .	11 -3.3	7 .75	.10	-3.37	.89	.10
553 2	24	32	T1 1.78	.56 .05	1.78 .	55 .05	1.78	.94 .	05 1.7	81.00	.05	1.78	1.00	.05
554 2	24	64	T1 .92	.82 .11	. 92	91 .11	.21	.791.	15 .2	1 .87	.11	.21	.87	.11
555	24	96	T1 - 05	.61 .10	05	69 .05	-2.94	.38	53 -1 6	2 . 34	.48	05	. 69	05
556	24 1	119	RAS-3 37	50 10	-3 27	61 10	-3 15	50	10 -3 3		22	-3 15	50	10
557	24 1	127	T1_5 10	251 24	-2.27	AA1 36	-3.15	247	22 _2 2		.22	-3 37		. 10
550	57 J	127	TT - 2 . 19	03 10	-3.13 .	76 10	-3.13	.341.	23 -3.3	7 .70	.03	-3.3/	. / 0	.05
120 4	24 J 75 4	121	11 - 3.3/ m3	.01 .10	-3.37.		-3.3/		11 -3.3		• 11	-3.3/	.94	.11
124 4	20 1	123	11 .42	.8/ .11	.21 .	50 .30	-1.88	.99 .	UD -1.8	8 .97	.05	-1.88	.99	.05
244 2	25 2	244	TI -4.57	.37 .31	-4.57 .	32 .31	-4.39	.45 .	20 -4.3	9.46	.20	-4.39	.46	.20

364 25 364	T1-6.131.	00 .10	-6.131	.00 .1	0 -6.13	1.00	.10	-6.13	.99	.10	-6.131	.00	.10
679 25 460	T1-8.86 .	35 .50	-8.86	.641.4	3 -8.86	.62	.32	-8.86	.72	.05	-8.86	.72	.05
680 25 470	BAS-8.95 .	95 .05	-8.95	.784.7	5 -9.04	.80	.05	-8.95	.70	.05	-8.95	.95	.05
681 25 480	T1-9.04 .	71 .31	-9.04	.81 .3	9.14	.35	.26	-9.14	.66	.16	-9.04	.81	.30
682 25 490	T1 -9.25 .	49.14	-9.25	.45 .1	3 -9.25	.57	.21	-9.25	.60	.21	-9.25	.60	.21
559 26 76	TX .42 .	56.30	. 32	.49 .3	.21	.37	.72	.11	.52	. 69	. 42	.56	.30
560 26 152	TX -2.94	25 .71	-2.28	.34 .5	9 -2.94	. 62	. 68	-2.94	.49	. 66	-2.28	.34	.59
561 26 228	TY -2 72	27 70	- 83	38 6	2 - 2 94	88	.10	-2 94	83	10	-2 94	.88	10
567 76 789	TY -5 31	441 34	-5 31	361 3	5 _4 39	361	28	-3 15	321	54	-4 39	361	28
562 26 205	DAC-5.10	40 36	5 07	A1 A			220	-5 07	. 32	5.4	-5 07	52	
563 26 294	BAS-5.19.	40 .26	-5.07	.41 .4	5 -5.07	.52	.22	-5.07	.39	. 34	-5.07	. 32	
564 26 299	TX -5.19 .	39 .21	-5.25	.51 .1	1 -2.19	. 35	. 3 3	-5.19	.36	.32	-3.25	.51	.11
565 26 305	TX -5.07 .	59.39	-4.94	.52 .1	5.07	.61	.40	-5.07	.48	. 32	-5.07	. 61	.40
566 27 36	T1 1.781.	00 .05	1.781	.00 .0	5 1.78	1.00	.05	1.781	00	.05	1.781	.00	.05
567 27 72	Tl .11 .	49 .97	.11	.56 .9	4 -1.62	.54	.52	-1.62	.60	.10	.11	.56	.94
568 27 98	T1-2.72 .	60.36	-2.72	.38 .3	6 -2.72	.48	.36	-2.72	.28	.42	-2.72	.60	.36
569 27 139	T1-4.71 .	35 .60	-3.78	.64 .6	1 -4.57	.37	.42	-4.57	.64	.22	-4.57	.64	.22
570 27 144	BAS-4.82 .	63 .09	-4.71	.50 .0	9 -4.82	.53	.09	-4.71	.84	.09	-4.71	.84	.09
571 27 149	T1-4.82 .	46 .21	-4.94	.55 .1	1 -4.94	.57	.22	-4.94	.34	.44	-4.94	.57	.22
572 28 96	T157 .	36 .26	57	.49 .2	283	.29	.27	83	.41	.16	57	.49	.22
573 28 192	T1-2.94 .	431.89	-3.15	.70 .1	1 -3.15	.73	.21	-3.15	.84	.11	-3.15	.84	.11
574 28 288	T1-5.34 .	41 .22	-5.31	.44 .1	1 -5.34	.30	.21	-5.19	.30	.25	-5.31	.44	.11
575 28 380	BAS-8.02	93 .11	-8.02	.98 .1	-8.02	.95	.10	+8.02	.92	.11	-8.02	. 98	.10
576 28 390	T1 -8 95	52 57	-8 95	58 5	5 -9 57	63	34	-8 95	82	36	-8 95	82	36
577 20 04	T1 32	70 11	32	73 1	1 32	.05		32	31	70	32		11
570 20 100	T1 -2 04	10 .11	3 15	25 2	c . 3 16	.30	10	-2 15	.31	10	-2 15		10
570 29 100	11-2.94 .	40.30	-3.13		5 - 5.13	. 33	.10	-3.15	. 12	. 10	-3.13	. 12	.10
5/9 29 282	11-5.07 .	52 .21	-5.07	.48 .3	5 -5.07	. 54	.3/	-4.94	. 30	.42	-5.07	.52	.21
580 29 365	T1 -5.44 .	90 .05	-5.44	. /9 .0	5 -5.44	. / /	.05	-5.44	. /4	.05	-5.44	.90	.05
581 29 375	BAS-5.78.	57 .15	-5.78	.55 .1	5 -5.65	.56	.25	-5.65	.82	.11	-5.65	.82	.11
582 29 385	T1-7.57 .	51 .40	-8.02	.47 .4	5 -7.57	.46	.43	-8.02	.62	.11	-8.02	.62	.11
583 30 24	T183 .	291.63	83	.381.6	3 -1.35	.341	1.68	-1.09	.301	19	1.78	.241	.17
5843048	T1 .11 .	55 .99	.11	.59.8	9.11	.41	.99	.53	.36	.99	.11	.59	.89
585 30 88	T1-3.78 .	52 .50	-3.78	.81 .1) -4.57	.37	.32	-4.71	.76	.20	-3.78	.81	.10
58630 93	BAS-4.57 .	58 .12	-4.57	.48 .1	2 -4.57	.51	.21	-4.57	.38	.21	-4.57	.51	.21
587 30 98	T1-4.82 .	82 .10	-4.82	.85 .1	-4.82	.71	.11	-4.82	.64	.44	-4.82	.85	.10
588 31 64	T1 0.00 .	51 .22	0.00	.53 .2	0 -1.88	.25	.74	0.00	.27	.85	0.00	.53	.20
589 31 128	T1-1.35 .	51 .32	-1.35	.44 .3	2 -2.94	.75	.60	-2.94	.64	.51	-1.35	.51	.32
590 31 192	T1-5.38 .	442.22	-5.31	.301.5	8 -5.38	.451	1.53	-2.94	.711	.21	-2.94	.711	.21
591 31 254	BAS-5.34 .	86 .05	-5.34	.89 .0	5 -5.34	.76	.05	-5.31	. 61	.10	-5.34	.89	.05
592 31 258	T1-5.38 .	93 .05	-5.38	.97 .0	5 -5.38	. 91	.05	-5.38	.51	.05	-5.38	.97	.05
593 32 70	T1 .53 .	67 .21	.53	.52 .3		. 61	.10	. 32	. 60	.11	.53	. 67	.21
594 32 140	T1 - 83	43 72	83	.601 4	3 -1 09	53	.22	-1.09	.51	.05	- 83	601	.43
595 32 210	T1 -8 36	433 42	-9.36	96 1	1 _2 04		68	- 57	57	.03	-2 94	88	68
596 32 260	DAG_3 37	621 01	-2 37	70 .	2 2 . 0 0	.00	- 00	_3 37	12		-3 00	41	
507 32 200	T1 -4 71	32 101	-1 92	37 2	-5.90	. 10	56	-5 07	. 72	50	-1 02	37	21
509 32 270	11-4./1 .	33 .40	5 07	.3/ .2	1 - 5.07	. 30		-5.07		. 30	-4.02	. 37	.21
J98 J2 280	11-5.07 .	30 .10	-3.07	.90 .1	5.07	. 62	.10	-3.07	. 39	. 10	-3.07	. 20	.10
610 39 60	BAS 31 .	/6 .05	05	.49 .0	531	. 60	. /4	31	. /8	.05	31	. / 0	.05
611 39 65	UNU-2.72.	50 .70	-2.94	.52 .2	0 -2.94	.45	. /4	-2.94	.60	. /4	-2.94	. 60	. /4
612 39 /1	UNU-2.94.	58.38	-2.94	.46 .3	6 -3.15	.38	.69	-2.94	.48	.68	-2.94	.58	.38
613 40 173	BAS-4.18 .	75 .11	-4.18	.72 .1	1 -4.18	.52	.20	-4.18	.49	.20	-4.18	.75	.11
614 40 177	UNU-3.98 .	53 .20	-3.98	.42 .2	0 -4.18	.53	.20	-3.98	.63	.20	-3.98	. 63	.20
615 40 181	UNU-4.57.	59.45	-4.57	.49 .1	1 -4.39	.38	.32	-4.39	.66	.31	-4.39	.66	.31
616 41 104	T2 .21 .	49 .30	.21	.52 .3	1.21	.30	.86	-1.62	.64	.83	.21	. 52	.31
617 41 208	T2-2.72 .	40 .75	-2.94	.61 .2	0 -3.15	.58	.10	-2.94	.93	.11	-2.94	.93	.11
618 41 312	T2-3.78 .	98 .10	-3.781	.00 .1	0 -4.18	.48	.20	-3.98	.56	.22	-3.781	.00	.10
619 41 407	BAS-4.82 .	59.10	-4.94	.49 .1	0 -4.94	.86	.10	-5.19	.64	.35	-4.94	.86	.10
620 41 412	T2-4.82 .	78.10	-4.82	.68 .1	0 -4.94	.73	.10	-5.19	.66	.35	-4.82	.78	.10
621 41 417	T2 -5.34 .	61 .05	-5.34	.54 .0	5 -5.34	. 66	.05	-5.34	.55	.20	-5.34	. 66	.05
622 42 65	BAS 05 .	75 .10	31	.37 .1	6 -1.09	.24	. 84	- 83	.56	. 69	05	.75	.10
623 42 70	UNU 21	57 21	. 21	.50 3	0 21	.34	1.09	31	.50	.05	31	.50	.05
624 42 75	UNU - 31	45 11	-2 72	50 4	9 -2 94	72	10	-7 94	95	10	-2 94	. 98	10
625 43 117	BAS_2 72	57 66	-2 72	68 7	2.24 1 _ 2 1 =	L E C	10	-2 0/	55	10	-2 72	60	10
676 43 122	UNU_3 15	40 .00	-2.12	.00 .1	0 -0.10	.00	.10	-2.74		.10	-2.12	.00	11
020 43 122	UNU-3.15.	42.32	-3.15	.451.3	9 -J.15	.49	.11	-3.15	. /4	.11	-3.15	. 14	.11
02/43 12/	UNU-3.3/.	// .11	-3.3/	.04 .1	u -3.3/	. /4	.10	-3.3/	.57	.10	-3.3/		. 11
028 44 352	UNU-5.38 .	59.05	-5.38	.62 .0	5 -5.38	.65	.05	-5.38	. 69	.05	-5.38	. 69	.05
629 44 362	BAS-5.38.	88 .05	-5.38	.89.0	5 -5.38	. 17	.05	-5.38	. /8	.05	-5.38	.88	.05
630 45 212	BAS-4.71.	30 .64	-4.71	.73 .2	1 -4.57	.42	.53	-4.57	.50	.12	-4.71	. /3	.21
C 3 1 A C 317	11111-1 57	12 86	-4 71	.82.2	-4.57	.78	.91	-4.57	. 64	.64	-4.71	.82	.21
031 45 217	040-4.57	12 .00	4474			• • •		_	-		-		

633 46 117 UNU-4.57 .431.14 -4.57 .331.14 -4.57 .64 .23 -4.57 .63 .22 -4.57 .64 .23 634 46 121 BAS-4.57 .27 .89 -3.57 .39 .71 -4.94 .53 .22 -4.94 .36 .31 -4.94 .53 .22 635 46 125 UNU-4.71 .59 .50 -3.78 .50 .50 -4.71 .57 .21 -4.71 .58 .30 -4.71 .59 .50 636 47 212 BAS-5.65 .72 .10 -5.65 .76 .10 -5.65 .71 .20 -5.65 .71 .10 -5.65 .76 .10 637 47 217 UNU -5.65 .32 .82 -8.02 .44 .75 -5.78 .39 .79 -5.65 .40 .70 -8.02 .44 .75 638 48 40 BAS-3.15 .351.88 1.78 .841.74 -3.15 .341.88 1.78 .321.71 1.78 .841.74 639 48 45 UNU-3.15 .54 .11 1.78 .511.79 -3.15 .74 .11 -3.15 .60 .10 -3.15 .74 .11 640 52 36 BAS-.05 .90 .05 -.051.00 .05 -.31 .52 .70 -.05 .76 .05 -.051.00 .05 641 52 40 UNU-.05 .77 .05 -.05 .94 .05 -.31 .66 .05 -.31 .77 .05 -.05 .94 .05 642 52 44 UNU-2.72 .38 .60 -2.72 .52 .66 -1.88 .54 .52 -1.88 .81 .37 -1.88 .81 .37 643 53 121 BAS-3.37 .34 .53 -3.37 .42 .43 -4.57 .29 .59 -4.39 .34 .59 -3.37 .42 .43 644 53 127 UNU-3.37 .79 .20 -3.37 .82 .11 -3.37 .78 .21 -3.37 .84 .11 -3.37 .84 .11 645 53 133 UNU-4.57 .42 .98 -4.71 .48 .96 -4.57 .48 .73 -4.57 .80 .77 -4.57 .80 .77 646 54 80 T2 .53 .93 .11 .53 .91 .11 .53 .89 .11 .53 .87 .11 .53 .93 .11 647 54 160 T2 -.05 .66 .05 -.05 .91 .05 -2.94 .67 .66 -.05 .45 .67 -2.94 .67 .05 648 54 240 T2 -2.94 .30 .42 -2.39 .43 .47 -3.15 .89 .10 -3.15 .79 .10 -3.15 .89 .10 649 54 319 BAS-5.07 .48 .31 -4.94 .63 .20 -5.07 .68 .31 -5.07 .84 .11 -5.07 .84 .11 650 54 324 T2 -5.07 .98 .10 -5.07 .97 .10 -5.071.00 .10 -5.071.00 .10 -5.071.00 .10 651 55 407 UNU-4.82 .38 .30 -4.82 .49 .20 -4.82 .35 .30 -5.19 .36 .46 -4.82 .49 .20 652 55 414 BAS-4.71 .75 .21 -3.78 .98 .10 -4.71 .56 .20 -4.82 .59 .19 -4.71 .75 .21 653 55 420 UNU-4.71 .62 .59 -3.781.00 .10 -4.71 .79 .20 -4.71 .55 .09 -4.71 .79 .20 654 55 433 UNU-3.781.00 .10 -3.781.00 .10 -4.18 .40 .30 -4.71 .39 .41 -4.71 .39 .41 655 57 38 BAS 0.00 .43 .16 .11 .39 .25 0.00 .45 .31 0.00 .41 .30 0.00 .45 .31 656 57 43 UNU-3.15 .96 .10 -3.15 .71 .10 -3.15 .90 .11 -3.15 .64 .10 -3.15 .96 .10 657 58 220 UNU-3.37 .54 .69 -3.37 .61 .61 -3.37 .33 .69 -3.37 .72 .43 -3.37 .72 .43 658 58 230 BAS-3.15 .56 .31 -2.72 .37 .35 -3.15 .68 .10 -3.15 .50 .10 -3.15 .68 .10 659 58 242 UNU-4.71 .34 .33 -4.71 .50 .85 -4.57 .63 .34 -4.71 .48 .21 -4.57 .63 .34 660 60 55 UNU-3.98.37 .31 -3.78 .55 .33 -3.98 .48 .10 -4.18 .85 .11 -4.18 .85 .11 661 60 60 BAS-3.78.82 .11 -3.78 .60 .10 -4.94 .34 .83 -4.18 .39 .33 -4.18 .39 .33 662 60 65 UNU-3.78 .36 .44 -3.57 .51 .60 -4.18 .46 .74 -4.57 .40 .34 -4.57 .40 .34 663 66 62 BAS-.05 .73 .05 -.05 .70 .05 -.05 .52 .10 -.05 .58 .05 -.05 .73 .05 664 66 66 UNU-.05 .83 .05 -.05 .97 .05 -.05 .88 .32 -.05 .82 .05 -.05 .97 .05 665 66 70 UNU-2.72 .47 .66 -2.72 .38 .65 -2.94 .84 .10 -2.94 .88 .10 -2.94 .88 .10 666 67 69 T2 .11 .45 .22 0.00 .46 .15 -1.62 .25 .89 0.00 .38 .50 0.00 .46 .15 667 67 139 T2 -2.28 .49 .62 -2.28 .76 .60 -2.94 .43 .52 -2.28 .52 .45 -2.28 .76 .60 668 67 208 T2 -3.15 .44 .50 -3.15 .39 .50 -3.15 .83 .10 -3.15 .74 .53 -3.15 .83 .10 669 67 260 T2 -3.78 .70 .10 -3.78 .83 .10 -3.98 .66 .21 -3.98 .65 .21 -3.78 .83 .10 670 67 263 BAS-3.781.00 .10 -3.781.00 .10 -3.98 .45 .31 -3.78 .43 .44 -3.781.00 .10 671 67 276 12 -3.78 .64 .51 -3.78 .65 .21 -4.57 .52 .42 -4.57 .71 .33 -4.57 .71 .33 672 67 279 T2 -5.07 .81 .10 -5.07 .84 .10 -5.07 .80 .10 -5.07 .79 .10 -5.07 .84 .10 673 68 78 UNU1.78 .621.81 1.78 .91 .05 -3.15 .461.78 1.78 .341.69 -3.15 .461.78 674 68 84 BAS-4.71.60 .62 -4.71 .73 .63 -4.71 .59 .51 -4.71 .55 .54 -4.71 .73 .63 675 68 88 UNU-4.71 .66 .30 -4.71 .67 .21 -4.71 .68 .21 -4.71 .52 .31 -4.71 .68 .21 676 74 123 UNU-3.37 .66 .61 -3.37 .64 .60 -3.37 .60 .62 -3.37 .84 .42 -3.37 .84 .42 677 74 128 BAS-3.15 .44 .85 -3.37 .45 .70 -3.15 .36 .69 -3.37 .38 .65 -3.37 .45 .70 678 74 133 UNU-3.15 .551.31 -3.15 .62 .11 -3.15 .73 .21 -3.15 .50 .10 -3.15 .73 .21

¢ kisi n.

E.3 ABBILDUNGEN DER DATIERUNGEN

Die optimalen Lösungen sind in Kapitel 4 abgebildet, während hier die Ausgangslösungen für die optimale Lösung dargestellt sind. Zuerst werden die vier Lösungen in der Ebene, danach die vier Lösungen im Quertranssekt und zuletzt die vier Lösungen im Längstranssekt gezeigt.

Abb. E.1 Ebene: Manhattan. Die kleine weisse Zahl zeigt den ungefähren Ort und das Alter der ältesten Torfbildung an.

Abb. E.2 Ebene: Euklid

Abb. E.3 Ebene: Wurzeltranformiert, Manhattan

Abb. E.4 Ebene: Wurzeltransformiert, Euklid

r	1	2
H	1	1
-	-	-

Abb. E.5 Quertranssekt 4–73: Manhattan. Die Dreiecke bezeichnen die Lage der Bohrkerne, die punktierte Linie die Oberfläche des Moores vor der Entwässerung.

-	
H.	1/1
L'-	1-

Abb. E.6 Quertranssekt 4-73: Euklid

Abb. E.7 Quertranssekt 4-73: Wurzeltranformiert, Manhattan

E-	1	6
-	*	v

Abb. E.8 Quertranssekt 4-73: Wurzeltransformiert, Euklid

Abb. E.9 Längstranssekt 23–33: Manhattan. Die Dreiecke bezeichnen die Lage der Bohrkerne, die punktierte Linie die Oberfläche des Moores vor der Entwässerung.

Abb. E.10 Längstranssekt 23-33: Euklid

Abb. E.11 Längstranssekt 23-33: Wurzeltranformiert, Manhattan

Abb. E.12 Längstranssekt 23-33: Wurzeltransformiert, Euklid

ANHANG F

Flächen- und

VOLUMENWACHSTUM

Die Flächen sind aufgrund der optimalen Datierung bestimmt.

Flächenberechnungen

to	Beginn des Zeitintervalls
t ₁	Ende des Zeitintervalls
A ^{T23}	vertikale Fläche im Transsekt 23–33
Akum ^{T23}	kumulative vertikale Fläche im Transsekt 23-33
A ^{T4}	vertikale Fläche im Transsekt 4–73
Akum ^{T4}	kumulative vertikale Fläche im Transsekt 4–73
AS	horizontale Fläche (ganzes Untersuchungsgebiet)
A _{kum} S	kumulative horizontale Fläche

to	tı	AT23	Akum T23	A ^{T4}	Akum ^{T4}	AS	Akum ^S
[ka]	[ka]	[m ²]	[m²]	[m²]	[m²]	[m ²]	[m²]
-10	-9	0.3	0.3	•	•	664	664
-9	-8	30	31	•	•	2341	3005
-8	-7	37	68	•	•	3994	6998
-7	-6	40	108	•	•	5367	12365
-6	-5	123	230	8	8	19150	31515
-5	-4	132	362	99	107	27096	58611
-4	-3	154	516	164	272	15451	74063
-3	-2	158	674	142	413	7986	82049
-2	-1	59	733	42	455	3688	85737
-1	0	183	916	142	597	13558	99296
0	1	174	1090	127	724	1372	100667
1	2	216	1306	155	879	551	101218

Zuwachsraten und Zuwachsverhältnisse

•

A ^{T23} /L	über die Ausdehnung des Moores normalisierte vertikale
	Zuwachsrate, $L^{23} = 540$ m
A ^{T4} /L	normalisierte vertikale Zuwachsrate, L ⁴ = 330 m
A ^{T'} /L'	mittlere normalisierte vertikale Zuwachsrate, $(L^{23}+L^4)/2$
V	volumetrischer Zuwachs
V _{kum}	kumulativer volumetrischer Zuwachs
A _h ∕A _v	Verhältnis des horizontalen zum vertikalen, gemittelten
	Flächenzuwachs

A ^{T23} /L	AT4/L	A ^{T'} /L'	V	Vkum	Ah/Av
[m]	[m]	[m]	[10 ^{3*} m ³]	[10 ^{3*} m ³]	[m²/m²]
.0006	•	.0006	.0004	.0004	.0005
.06	•	.06	.2	.17	.013
.07	•	.07	.5	.65	.009
.07	•	.07	.9	1.56	.007
.23	.02	.13	4	5.53	.003
.24	.3	.27	15.9	21.47	.004
.28	.5	.39	29	50.45	.01
.29	.43	.36	29.6	80.03	.019
.11	.13	.12	10.2	90.19	.014
.34	.43	.38	38.2	128.39	.012
.32	.38	.35	35.6	163.96	.11
.4	.47	.43	44	207.93	.336

$\operatorname{Anhang} G$

HAMMARMOSSE

ALTER UND ZUWACHS

Die Ausgangsdaten stammen aus Tabellen und Graphiken der Arbeit von Foster et al. (1988).

Koordinaten, Alter und Langsamkeit

Probe	¹⁴ C-Probe (LU: Proben an der Universität Lund datiert), ?: keine
	näheren Angaben in Foster et al., – aus Lage am Rand des
	Moores hergeleitet
х, у	horizontale Koordinaten, willkürlicher Nullpunkt und
	Orientierung
Tiefe	Torfmächtigkeit an dieser Stelle
D, ∆D	horizontale Distanz von ältestem (LU-2534) oder zweitältestem
	(LU-2532) datierten Punkt
konv	konventionelles ¹⁴ C-Datum, Zeitangabe in Jahre vor heute
kalib, ∆kal	kalibriertes ¹⁴ C-Datum, Zeitangabe in Jahren BC/AD
hz L	horizontale Langsamkeit
vt L	vertikale Langsamkeit
•	fehlender oder nicht berechenbarer Wert

Probe	¥	v	Tiefe			kony	kalih	Akal	h z i	
1000	<u>.</u>	,			20	NUTIV	nallu			VI L.
	[m]	[m]	[cm]	[m]	[m]	[a]	[ka]	[ka]	[a/m]	[ka/m]
LU-2526	0	60	27	1350	96	20	1.93	.9	9.38	•
LU-2527	96	60	107	1254	198	920	1.03	1.5	7.58	.86
LU-2528	294	60	217	1056	321	2320	47	1.02	3.18	1.12
LU-2529	615	54	302	735	165	3140	-1.49	1.09	6.61	1.14
LU-2545	780	15	312	570	255	4130	-2.58	1.17	4.59	1.45
LU-2530	1035	30	304	315	315	4950	-3.75	1.02	3.24	1.87
LU-2534	1350	0	390	0	•	5820	-4.77	•	•	1.72
LU-2531	1665	6	380	315	315	5190	-4.04	.73	2.32	1.58
LU-2532	2025	30	370	0	•	5240	-4.11	•	•	1.64
?	2370	90	•	310	310	3460	-1.91	2.2	7.1	•
LU-2533	2439	54	175	474	164	2130	23	1.68	10.24	1.25
LU-2546	2523	60	117	558	84	1130	.62	.85	10.12	1.14
-	2610	60	0	630	72	0	1.95	1.33	18.47	•
LU-2542	1350	213	317	213	213	4200	-2.95	1.82	8.54	1.55

LU-2535	1380	405	240	405	192	2390	54	2.41	12.55	1.04
LU-2536	1350	525	135	525	120	1450	.5	1.04	8.67	1.07
-	1350	627	0	630	105	0	1.95	1.45	13.81	•

Flächenberechung

.

t₀, t₁ Anfangs- beziehungsweise Endzeitpunkt des Intervalls (aus kalibrierten ¹⁴C-Daten)

t ₀ [ka]	t ₁ [ka]	Zuwachsrate [km ² /ka]	Fläche [km ²]
1	2	0.462	2.47
0	1	0.486	2.01
-1	0	0.433	1.52
-2	-1	0.379	1.09
-3	-2	0.329	0.71
-4	-3	0.252	0.38
-5	-4	0.130	0.13
Die für die Berechnungen im Kapitel 5 wesentlichen Programme sind im folgenden mit ihrem Quellcode dokumentiert. Die verwendete Sprache ist FORTRAN-77 mit der Erweiterung do...repeat. Diese Erweiterung ist in Absoft MacFortran implementiert.

H.1. PROGRAMM ZUR BERECHNUNG DES PHASENDIAGRAMMS: FD1DIS

program FD1dis c algorithm and program m. schneebeli c parts of FTCS-solver from Press et al. (1986) c calculates relationship var(h(K,S)) (phase diagram) for onec dimensional aquifer under Dupuit-Forchheimer assumptions. c the head is hold fixed at a prescribed level on the no flow boundary, c therefore the mean K value must be determined using Newton-Raphson. It c minimizes the difference h_ - h with a given recharge f and ratio c Kmax/Kmin (inverse one dimensional problem). c data input: see subroutine inpfit c example files: fdini.dat, fdf.dat, fdratio.dat c output: see program, result output files have unit numbers greater 9. c example files: fdsshead.dat, fdk.dat, fdkhat.dat, fdishead.dat, c fdisadev.dat, fdissigma.dat include FD1dis.INC integer i, j c read input from files fdini.dat, fdf.dat, fdratio.dat call inpfit c calculate avererage of source terms f0 and get an initial value for h0 call aveld c initialize h0 and k do (i=1,n)h0(i)=ht(i,1) k(i)=khat repeat c calculate the steady state solution for the homogeneous case call ssld c hhat is leftmost node of h0 hhat=h0(1)c now the determiniation of the heterogeneous k-values and the MC-FD c simulation begins cc open output files open (10,file='fdsshead.dat',status='new') write (10,*) problem

```
open (11,file='fdk.dat',status='new')
     write (11,*) problem
     open (12,file='fdkhat.dat',status='new')
     write (12,*) problem
     open (13,file='fdishead.dat',status='new')
     write (13,*) problem
     open (14,file='fdisadev.dat',status='new')
     write (14,*) problem
     open (15,file='fdissigma.dat',status='new')
     write (15,*) problem
cc minimization for every ratio
     do (i=1,o)
       write(9,*) '** minimization',i
       call minild(i)
       write(10,*) i,(REAL(h0(j)),j=1,n)
       write(11,*) i,(REAL(k(j)),j=1,n)
       write(12,*) i,khat
       do (j=1,n)
         ht(j,1)=h0(j)
        repeat
       do (j=1,p)
         write (9,*) 'Instationary calculation', (i-1)*p+j
         call putstor (j)
         call solldt
          call statistics (i, j)
        repeat
      repeat
     end
C-----
                          subroutine inpfit
c inpfit: input for FD1dis simulation
c global variables
     include FD1dis.INC
c local variables
     double precision eta0, theta
      integer i, j, l
      character fileout*64,text*80
c open input file and test
      open (1,file='fdini.dat',status='old',action='read')
      open (2,file='fddebug.dat',status='new')
c read file
      read (1, '(a) ') problem !description of problem
      read (1,'(a)') text !get number of nodes in space
      read (1,*) n
      if (n>=ns) then
        write (2,*) 'number of nodes in space greater', ns,' !'
        write (2,*) 'redimension number of nodes'
        write (2,*) 'program aborted'
        stop
      endif
      read (1,*) disttit
                                   !get distance between nodes
      read (1,*) dx
                           !get number of nodes in time
      read (1,' a)') text
      read (1,*) m
      if (m>=nt; then
```

```
write (2,*) 'number of nodes in time greater', nt, ' !'
       write (2,*) 'redimension number of nodes in time'
       write (2,*) 'program aborted'
       stop
     endif
     read (1,*) text
                                !get times of interest
     read (1,*) (t(i),i=1,m)
      read (1, '(a) ') text !get heigth at x=0 and slope
     read (1,*) eta0, theta
     read (1, ' a) ') text !get height of impervious layer
      read (1,*) (eta(i),i=1,n)
     read (1,'(a)') ictit
                           !head initial
      read (1,*) (ht(i,1),i=1,n)
      read (1, '(a) ') ktit !conductivity
      read (1,*) khat
      close(1)
c calculate eta
      do (i=1,n)
        eta(i) = eta0 + eta(i) + (i-1) * dx*theta
      repeat
c open second input file
      open (1, file='fdf.dat', status='old', action='read')
      read (1, '(a) ') ftit !source
      read (1,*) i
      if (i<>n) then
       write (2,*) 'nr of space nodes <> in fdf.dat and fdini.dat'
       stop
      endif
      do (j=1,m;
       read (1, *) 1, (f(i,1), i=1, n)
     repeat
      close (1)
c open third input file
      open (1,file='fdratio.dat',status='old',action='read')
      read (1,*) !begin read log conductivity ratios
     read (1,*) o
     read (1,*) (kr(i),i=1,0)
     do (i=1, 0)
       kr(i)=10.**(kr(i))
     repeat
     read (1, *) !begin read storativities
     read (1,*) p
     read (1,*) (srl(i),i=1,p)
     read (1,*) (srr(i),i=1,p)
     close (1)
c debug is let open!
     end
C------
     subroutine aveld
c create average of flow vector
     INCLUDE FD1dis.INC
     integer i, j
     do (i=1,n)
       f0(i) = 0.
       do (j=1,m)
         f0(i) = f0(i) + f(i, j)
```

```
repeat
       f0(i)=f((i)/m
     repeat
     end
^______
     subroutine ssld
     INCLUDE FD1dis.INC
c local variables
     double precision k12(ns), eta12(ns), resid, two, anorm, anormf,
    6
                      zero, eps, a, b, e
     integer i, j, jj, idt, ol, ne, maxit
     parameter (zero=0.d0,two=2.0,eps=1.d-3)
     maxit=4*n*n
c steady state is at f0(0), h0(0)
c determine "medium" k12 and eta12
     do (i=1,n-1)
       eta12(i) = (eta(i) + eta(i+1)) / two
       k12(i) = (k(i)+k(i+1))/two
     repeat
     anormf=zero
     do (i=2,n-1)
       anormf=anormf+ABS(f0(i))
     repeat
     do (i=1,maxit)
       anorm=0_d0
ccc calculate for left noflow boundary
       i=1
       a=k12(j)*((h0(j)+h0(j+1))/two-eta12(j))
       e=2*a
       resid=2*a*h0(j+1)-e*h0(j)+f0(j)*dx*dx
ccc calculate h new
       anorm=anorm+ABS(resid)
       h0(j)=h0(j)+1.80*resid/e
ccc calculate
       do (j=2,n-1)
         a=k12(j)*((h0(j)+h0(j+1))/two-etal2(j))
         b=k12(j-1)*((h0(j-1)+h0(j))/two-eta12(j-1))
         e=a+b
         resid::a*h0(j+1)+b*h0(j-1)-e*h0(j)+f0(j)*dx*dx
ccc calculate h new
         anorm anorm + ABS (resid)
         h0(j)=h0(j)+1.80*resid/e
       repeat
ccc calculate for rightmost noflow boundary
С
        j≖n
        b=k12(j-1)*((h0(j-1)+h0(j))/two-eta12(j-1))
С
С
        e=2*b
С
        resid=2*b*h0(j-1)-e*h0(j)+f0(j)*dx*dx
ccc calculate h new
С
        anorm=anorm+ABS(resid)
с
        h0(j)=h0(j)+1.80*resid/e
       if ((i>1).and.(anorm.<eps*anormf)) return
     repeat
     write(2,*) 'max. number of iterations in SS1D exceeded'
     end
c minimize difference hhat-h(f(k)) using Newton-Raphson (see Press,
```

```
c chap. 9.4)
·c
       subroutine minild(ir)
       include FD1dis.INC
       integer i, j, ir, jmax
      double precision khat1, h1, h2, dk, dh, df, xacc, delta
      parameter (jmax=20)
      xacc=1.e-2
      do (j=1,jmax)
        call kprop(ir)
        call ssld
        h1=h0(1)
        khat1=khat
        dk=khat/100.
        khat=khat+dk
        call kprop(ir)
        call ssld
        df = ((hhat-h0(1)) - (hhat-h1))/dk
        delta=(hhat-h1)/df
        khat=khat1-delta
        if (ABS(hhat-h1).LT.xacc) return
       repeat
      write(2,*) 'MINI1D: max. iterations exceeded'
      end
 c calculates for given length of domain, ratio (K_left/K_right), average
 c khat inverse proportionally distributed k(n) s
       subroutine kprop (j)
       include FD1dis.INC
       integer i, j, node
       real alpha (ns), len, rat, kn, sum
 c creates proportianally distributed k-values
       sum=0.
       len=(n-1) "dx
       rat=kr(j)
       do (i=1,n)
        alpha(i) = (rat+(1-rat)/(n-1)*(i-1))
        sum=sum+len/(alpha(i)*n)
       repeat
       kn=khat*sum/len
       do (i=1,n)
        k(i) =alpha(i) *kn
      repeat
      end
 C-----
           subroutine putstor (is)
 c put linearly interpolated values for storativity s in array
       INCLUDE FD1dis.INC
       integer i, j, is
       double precision ds
      ds=(srr(is)-srl(is))/(n-1)
      do (i=1,n)
        s(i)=sr.(is)+(i-1)*ds
      repeat
      end
```

```
subroutine solldt
c solldt: solver for the FTCS-scheme for one dimensional, unconfined,
c instationary saturated flow on a variing slope
c global variables
      include FD1dis.INC
c local variables
      double precision k12(ns), eta12(ns), D, dxx, two, dxl, dxr
      integer i, j, ii, jj, idt, ol, ne
      parameter (two=2.0)
c determine "medium" k12 and eta12
      do (i=1, n-1)
        eta12(i) = (eta(i) + eta(i+1)) / two
        k12(i) = (k(i)+k(i+1))/two
      repeat
c loop over times of interest
      do (i=1,m-1)
          write (9,*) 'timestep',i
cx
cc get an approximative D and set h(j,1) to ht(j,i)
        D=0.0
        do (j=1,n)
          D=MAX((ht(j,i)-eta(j))*k(j)/s(j),D)
          h(j,1)=ht(j,i)
          h(j,2)=ht(j,i)
        repeat
        if (D>1 e30)then
          write(2,*) 'D>1.e30 AT TIME',t(i); stop
        endif
cc determine timestep dt
        dt=dx*dx/two/D
        dt=dt*0.8 !get security
        idt=DINT((t(i+1)-t(i))/dt)+1
        dt = (t(i+1) - t(i)) / idt
cc begin loop over one time of interest
        do (ii=1,idt)
ccc change index depending on ii even or uneven
          ol=1:ne=2
          if (MOD(ii,2)=0) then
            ol=2; ne=1
          endif
ccc calculate dxx for left noflow boundary
          dxx=k[.2(1)
     &
                  *((h(1,ol)+h(2,ol))/two-etal2(1))
     £
                  (two*h(2, ol) - two*h(1, ol))/dx/dx
сx
        write (2,*) '!',i,h(1,ne),h(1,ol),dt,s(1),f(1,i)
          h(1, ne) = h(1, ol) + dt/s(1) * dxx+dt/s(1) * f(1, i)
ccc calculate d:x
          do (j=2,n-1)
            dxx=:((k12(j)*((h(j,ol)+h(j+1,ol))/two-eta12(j))
     £
                        *(h(j+1,ol)-h(j,ol))/dx)
                -(k12(j-1)*((h(j-1,ol)+h(j,ol))/two-eta12(j-1))
     &
     £
                        (h(j,ol)-h(j-1,ol))/dx))/dx
ccc calculate h new
        write (2,*) '!!',ii,i,j,h(j,ne),h(j,ol),dt,s(j),f(j,i)
сx
            h(j,ne)=h(j,ol)+dt/s(j)*dxx+dt/s(j)*f(j,i)
          repeat
        repeat
```

```
ccc write result. on ht
        h(n, ne) = h(n, ol)
        do (j=1,n)
         ht(j,:+1)=h(j,ne)
        repeat
      repeat
     end
C------
                    c calculate average, absolute deviation, and standard deviation from
resulting array ht
      subroutine statistics (ik, is)
c global variables
      include FD1dis.INC
      integer ik, is
c local variables
      integer i j
      double precision have (ns), hadev (ns), hsig (ns), ss, pp
      do (i=1,n)
        ss=0.
        do (j=1,m)
          ss=ss+ht(i,j)
        repeat
        have(i) =ss/m
        hadev(i)=0.
        hsig(i)=0.
        do (j=1,m)
          ss=ht(i,j)-have(i)
          hadev(i)=hadev(i)+ABS(ss)
          pp=ss*ss
          hsig(i)=hsig(i)+pp
        repeat
        hadev(i)=hadev(i)/m
        hsig(i) = SQRT(hsig(i) / (m-1))
      repeat
      write (13,*) ik, is, (REAL(have(i)), i=1, n)
      write (14,*) ik, is, (REAL(hadev(i)), i=1, n)
      write (15,*) ik, is, (REAL(hsig(i)), i=1, n)
      end
```

Das File "FD1dis.INC" muss während der Kompilation miteingeschlossen werden. Hier sind alle globalen Variablen definiert, welche über einen Common-Block übergeben werden.

```
IMPLICIT NONE
 INTEGER ns, nt, nr, n, m, o, p
 PARAMETER (ns=30, nt=150, nr=15)
 DOUBLE PRECISION f(ns,nt), ht(ns,nt), t(nt), h(ns,2), f0(ns), h0(ns),
£
       eta(ns), x(ns), k(ns), s(ns), kr(nr), srl(nr), srr(nr), dx, dt,
£
       hhat, khat
CHARACTER problem*128, filename*64, disttit*80, ictit*80, ktit*80,
£
       stit*80,ftit*80
COMMON /fit1/ f(ns,nt), ht(ns,nt), t(nt), h(ns,2), f0(ns), h0(ns),
£
       eta (ns), x (ns), k (ns), s (ns), kr (nr), srl (nr), srr (nr),
&
       dx, dt, hhat, khat,
£
       problem, filename, disttit, ictit, ktit, stit, ftit,
8
       n, m, o, p
```

```
Verwendetes Inputfile "fdini.dat"
phase diagram input data
number of nodes in space
21
distance between nodes [m]
10.
number of timesteps of interest (including initial)
120
times [d]
0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. 390. 420.
450. 480. 510. 540. 570. 600. 630. 660. 690. 720. 750. 780. 810. 840.
870. 900. 930. 960. 990. 1020. 1050. 1080. 1110. 1140. 1170. 1200. 1230.
1260. 1290. 1320. 1350. 1380. 1410. 1440. 1470. 1500. 1530. 1560. 1590.
1620. 1650. 1680. 1710. 1740. 1770. 1800. 1830. 1860. 1890. 1920. 1950.
1980. 2010. 2040. 2070. 2100. 2130. 2160. 2190. 2220. 2250. 2280. 2310.
2340. 2370. 2400. 2430. 2460: 2490. 2520. 2550. 2580. 2610. 2640. 2670.
2700. 2730. 2760. 2790. 2820. 2850. 2880. 2910. 2940. 2970. 3000. 3030.
3060. 3090. 3120. 3150. 3180. 3210. 3240. 3270. 3300. 3330. 3360. 3390.
3420. 3450. 3480. 3510. 3540. 3570.
eta at x=0 and slope (tan alpha) (added to height of impervious layer)
0.0 0.0
height of impervious layer
21*0.
initial head at t=0 [m]
 2.81603 2.81261 2.80236 2.78517 2.76094 2.72947 2.69050 2.64371
2.58867 2.5248 2.45153 2.36787 2.27271
                                             2.16453 2.04127 1.90000
                          .999400
1.73632 1.5431: 1.30736
                                   .500000
mean conductivity (space) [m/d]
10.
```

Das Inputfile "fdf.dat" enthält die variierende Nachlieferung für jeden räumlichen und zeitlichen Knoten.

precip-pETPrainfall, tab.25, Schmeidl et. al. 1970 21 1 21*1.260000E-03 2 21*3.326667E-03 3 21*2.356667E-03 4 21*1.733333E-04 5 21*9.000002E-05 6 21*2.640000E-03 7 21*2.276667E-03 8 21*5.733333E-03 9 21*6.200002E-04 10 21*1.623333E-03 11 21*-2.510000E-03 12 21*-8.333333E-04 13 21*7.966667E-04 14 21*2.526667E-03 15 21*3.203333E-03 16 21*2.553333E-03 17 21*2.656667E-03 18 21*8.100000E-04 19 21*1.986667E-03 20 21*4.456666E-03

21	21*1.650000E-03
22	21*4.096667E-03
23	21*1.120000E-03
24	21*1.596667E-03
25	21*1.890000E-03
26	21*9.900000E-04
27	21*2.100000E-04
28	21*1.550000E-03
29	21*2.363333E-03
30	21*1.213333E-03
31	21*7.530000E-03
32	21*-4.299998E-04
33	21*1.193333E-03
34	21*4.183333E-03
35	21*-1.773333E-03
36	21*-4.933333E-04
37	21*8.166666E-04
38	21*4.423333E-03
39	21*2.5266671:-03
40	21*2.100000E-03
41	21*1.350000E-03
42	21*1.5666668-04
43	21*6.120001E-03
44	21*3.966667E-04
45	21*1.790000E-03
46	21*-1.863333E-03
47	21*1.270000E-03
48	21*-5.733334E-04
49	21*1.193333E-03
50	21*3.876667E-03
51	21*6.633333E-04
52	21*4.066667E-04
53	21*2.040000E-03
54	21*0.000008E-04
55	21*9.90000/E-04
50	21*3.170000E-03
59	21*1.170000E-03
50	21*2.3033338+03
60	21*5 0333341-04
61	21*1.7833331:-03
62	21*6.100000E-04
63	21*7.6000001:-04
64	21*1.070000E-03
65	21*1.760000E-03
66	21*2.116667E-03
67	21*4.453334E-03
68	21*1.773333E-03
69	21*-1.400000E-03
70	21*2.503333E-03
71	21*-1.266665E-04
72	21*6.596666E-03
73	21*3.946667E-03
74	21*1.183333E-03
75	21*1.923333E-03
76	21*1.943333B-03
77	21*2.520000E-03

78	21*5.320000E-03
79	21*9.696668E-03
80	21*5.680000E-03
81	21*2.133333E-03
82	21*-6.766668E-04
83	21*1.953333E-03
84	21*-1.320000E-03
85	21*1.876667E-03
86	21*4.323333E-03
87	21*1.243333E-03
88	21*2.090000E-03
89	21*2.5666671:-03
90	21*1.996667E-03
91	21*4.593333E-03
92	21*3.203334E-03
93	21*5.116667E-03
94	21*5.210000E-03
95	21*4.866666E-04
96	21*2.796667E-03
97	21*1.396667E-03
98	21*3.816667E-03
99	21*2.270000E-03
100	21*4.433333E-04
101	21*2.883333E-03
102	21*2.686667E-03
103	21*1.503334E-03
104	21*2.520000E-03
105	21*2.076667E-03
100	21*9.266665E-04
107	21*3.96666''E-04
108	21*-1.833335E-04
109	21*6.733334E-04
110	21*2.110000E-03
111	21*2.920000E-03
112	21*1.233333E-03
113	21*-8.333333E-05
114	21*1.999995E-05
115	21*1.653333E-03
116	21*1.163333E-03
117	21*2.126667E-03
118	21*2.503334E-03
119	21*8.933335E-04
120	21*1.630000E-03

.

Das Inputfile "fdratio.dat" enthält die Leitfähigkeiten- und Speicherkoeffizientenverhältnisse.

```
k-ratios (log10
9 !number of ratios
-2. -1.5 -1. -0 5 0. 0.5 1. 1.5 2. !left boundary/right boundary
s- effective
7 !number of ratios
.1 .2 .3 .4 .5 6 .7 !left boundary
.7 .6 .5 .4 .3 2 .1 !right boundary
```

H.2. PROGRAMM ZUR BERECHNUNG DER INSTATIONÄREN VERÄNDERUNG DER LEITFÄHIGKEIT: BOGFLO.FOR

```
program bogflo
c algorithm and program m. schneebeli
c SOR solver is partially from press et al. 1986
c calculates influene of compacting peat on head
c solution is based on a grid with 66x66 nodes, distance 3.125 m
c initial heads may be given in file bogflo.in
c boundary condition is constant head h = 0.5 m
c depth of drainage ditches is 1 m, may be changed in subroutine
0
    'calcdrain'
c output is written to bogflo.h, bogflo.dh, bogflo.k and bogflo.sim.out
      include FLO2D.inc !from general purpose 2D-FD program
      integer tst
      parameter (tst=27)
      real ghe(nq,nq),ghe0(nq,nq),gco(nq,nq),gdh(nq,nq),t(tst),
            tk(tst),k0
     £
      integer i, j, k, l
c t are the timesteps, tk the factors of e^{(tk z)}, where z=z(t)-z(0)
c water
c first set with tst=14
c
       data t /0.,.5,1.,1.5,2., 2.5,3., 4.,5., 6., 7., 8., 9., 10./
       data tk /0.,.5,1.,1.9,2.8,3.15,3.5,3.8,4.,4.1,4.25,4.35,4.45,4.5/
С
c second set with tst=27
      data t /0.,.25,.5,.75,1.,1.25,1.5,1.75,2.,2.25,2.5,2.75,3.,3.5,
     £ 4.,4.5,5.,5.5,6.,6.5,7.,7.5,8.,8.5,9.,9.5,10./
      data tk /0.,.25,.5,.75,1.,1.45,1.9,2.35,2.8,2.98,3.15,3.33,3.5,
     £ 3.65, 3.8, 3.9, 4., 4.05, 4.1, 4.18, 4.25, 4.3, 4.35, 4.4, 4.45, 4.48, 4.5/
      l=tst
      k0=10.
                  !initial overall hydraulic conductivity [m/d]
      r0=1.92e-3 !overall steady state recharge [m/d]
      call time (it0)
c open general output files
      open (20,file='bogflo.he',status='new')
      open (21,tile='bogflo.dh',status='new')
      open (22,rile='bogflo.co',status='new')
c open simulation log file
      open (30,file='bogflo.sim',status='new')
      write (30,*) 'region simnr omega iter solv inflo ',
     £
           'outflo difflo percflo'
c get inital solution over entire domain
cc prepare input
      call prepglob(k0)
cc solve
      call init
      call solver
      call exit
      call simout ('global', 0)
cc put h(-\infty) and K(-\infty) to file and delete fictitious nodes
      call putglob (ghe,ghe0,gco)
```

```
cc change ghe to drained initial conditions
      call calcdrain (ghe)
c drained solutions
      do (k=1,tst)
        write (9,*) 'timestep',k
        type (9,*) 'region:'
cc get new K-values for next step
        call calccon (k,ghe,ghe0,gco,gdh,tk,k0)
cc calculate solutions for subregions
        do (i=1,4)
          type (9,*) i
ccc data
          call prepsubreg (i,ghe,gco)
ccc solve
          call init
          call solver
          call exit
          call simout('subregion'//CHAR(48+i),k)
ccc output to global matrix
          call putsubreg (i,ghe)
        repeat
cc output to files
        call putfile (k,ghe,gdh,gco,t)
        write (9,*)
      repeat
      call time (it)
      write (30,*) 'simulation time', it-it0,' s'
c end of time-loop
      end
C-----
      subroutine prepglob(k0,r0)
      include FLO2D.INC
      integer i, j
      logical inpexist
      real k0, r0, x, y, f2d
      nx=66; ny=66
      dxy=3.125
      conf=.false.
ccc boundary condition
      do (i=1,nx)
        bc(i, 1) = 1
      repeat
      do (j=2,ny-2)
         bc(1, j) = 9; bc(2, j) = 0
        do (i=3, nx-1)
          bc(i, j) = 2
        repeat
        bc(nx, j)=1
      repeat
      bc(1, ny-1) = 9
      do (i=2,n::-1)
        bc(i,ny-1)=0
      repeat
      bc(nx, ny-1)=1
      do (i=1,nx:)
        bc(i,ny) = 9
      repeat
```

```
ccc initial heads
      do (i=1,nx)
       do (j=1,ny)
          vin(i,j)=0.5
        repeat
      repeat
ccc calculate analytical solution with k0 or get file
      inquire (file='bogflo.in', exist=inpexist)
      if (inpex.st) then
        open (1,file='bogflo.in',status='old')
        read (1,*)
        do (j=1,65)
          read (1,*) (vin(i,j),i=2,66)
        repeat
      else
        do (i=2,nx-1)
          x=(i-2)*dxy
          do (j=2,ny-1)
            y=-(ny-1-j)*dxy
            vin(i, j) = f2d(0.5, x, y, nx*dxy, nx*dxy, 1.92e-3, k0)
          repeat
        repeat
      endif
      do (j=2,ny)
        vin(1, j) = vin(3, j)
      repeat
      do (i=2,nx)
        vin(i,ny) = vin(i,ny-2)
      repeat
      write (9,*) 'max z=',vin(2,ny-1)
ccc recharge
      do (i=1,nx)
        do (j=1,ny)
          r(i,j)=r0
                    !set in program
        repeat
      repeat
ccc conductivity
     do (i=1,nx)
        do (j=1,ny)
          c(i,j)=k0
        repeat
      repeat
     end
subroutine putglob (ghe,ghe0,gco)
     include FLO2D.INC
      integer i, j, k, l
     real ghe (nq, nq), ghe0 (nq, nq), gco (nq, nq)
c head
     write (20,*) 'Wasserspiegel [m] t = [-1,0['
     do (j=1,ny-1)
       write (20,*) (REAL(v(i,j)),i=2,nx)
     repeat
c delete fictitious nodes
     1=0
     do (j=1,ny-1)
       l=l+1; k=0
```

```
do (i=2,nx)
         k=k+1
         ghe(k, 1) = v(i, j)
         ghe0(k;, 1) = v(i, j)
         gco(k, 1) = c(i, j)
       repeat
     repeat
     end
subroutine calcdrain (ghe)
     include FLO2D.INC
     integer i, j
     real ghe(nq,nq),ghe0(nq,nq),gdh(nq,nq)
c introduce new initial conditions
cc middle of region in x-direction
     do (i=1,65)
       if (ghe i, 33)>=1.5) then
         ghe(i, 33) ≠ghe(i, 33)-1.
       else
         ghe(i,33)=0.5
       endif
     repeat
cc top of region in x-direction
     do (i=33,65)
       if (ghe(i,65)>=1.5) then
         ghe(i,65)=ghe(i,65)-1.
       else
         ghe(i, 65) = 0.5
       endif
     repeat
cc middle of region in y-direction
     do (j=1,64)
       if (j<>33) then
         if (ghe(33,j)>=1.5) then
           ghe [33, j) = ghe (33, j) -1.
         else
           ghe (33, j)=0.5
         endif
       endif
     repeat
     end
c-----
     subroutine prepsubreg (k,ghe,gco)
     include FLO2D.INC
     integer i, j, k
     real ghe (nq, nq), gco (nq, nq)
c top left region
     if (k=1) then
                     !top left
       nx=34; ny=34
cc boundary conditions
       bc(1,1)=9; bc(2,1)=0
       do (i=3,34)
         bc(i,1)=1
       repeat
       do (j=2, 32)
         bc(1, j) = 9; bc(2, j) = 0
         do (i::3,33)
```

```
H-14
```

bc(i,j)=2repeat bc(34, j) = 1repeat bc(1,33) = 9do (i=2,33) bc(i, 33) = 0repeat bc (34,::3)=1 do (i=1,34) bc(1,34)=9 repeat cc conductivities do (i=1,33) do (j=33,65) c(i+1, j-32) = gco(i, j)repeat. repeat do (j=33,65) c(1, j-32) = gco(2, j)repeat do (i=1,33) c(i+1,34)=gco(i,64) repeat cc initial heads do (i=1,33) do (j=33,65) vin i+1,j-32)=ghe(i,j) repeat. repeat do (j=33,65) vin(1, j-32) =ghe(2, j) repeat do (i=1,33) vin(i+1,34)=ghe(i,64) repeat c top right region elseif (k=2) then nx=33; ny=33 cc boundary conditions do (i=1,nx)bc(i,1)=1repeat do (j=2,ny-1) bc(1, j) = 1do (i=?,nx-1) bc(1,j)=2 repeat bc(nx, j)=1 repeat do (i=1,nx)bc(i,r.y)=1repeat cc conductivities do (i=33,65) do (j=33,65) c(i-32, j-32) = gco(i, j)

repeat. repeat cc initial heads do (i=33,65) do (j≕33,65) vin(i-32,j-32)=ghe(i,j) repeat. repeat c bottom right region elseif (k=3) then nx=33; ny=33 cc boundary conditions do (i=1,nx)bc(i,1) = 1repeat do (j=2, ny-1)bc(1, j) = 1do (i=2,nx-1)bc(i,j)=2repeat. bc(nx, j) = 1repeat do (i=1,nx)bc(i,ny)=1repeat cc conductivities do (i=33,65) do (j=1,33) c(i-32,j)=gco(i,j)repeat repeat cc initial heads do (i=33,65) do (j=1,33) vin(i-32, j) = ghe(i, j)repeat repeat c bottom left region elseif (k::4) then nx=34; ny=33 cc boundary conditions bc(1,1)=3; bc(2,1)=0do (i=3,34) bc(i, 1) = 1repeat do (j=2,32) bc(1, j) = 9; bc(2, j) = 0do (i=3, 33)bc(i,j)=2repeat bc(34,j)=1 repeat bc(1, 33) = 9do (i=2,34)bc(i, 33) = 1repeat cc conductivities

```
do (i=1, 33)
         do (j≕1,33)
          c(i+1,j)=gco(i,j)
         repeat
       repeat
       do (j=1,33)
         c(1, j) = gco(2, j)
       repeat
cc initial heads
       do (i=1,33)
         do (j=1,33)
           vin(i+1, j)=ghe(i, j)
         repeat.
       repeat
       do (j=1,33)
         vin(1, j) = ghe(2, j)
       repeat
     else
       pause 'invalid k in prepsubreg'
       stop
     endif
     end
subroutine putsubreg (k,ghe)
     include FLO2D.INC
     integer i,j,k
     real ghe (nq, nq)
     if (k=1) then
       do (i=2,nx-1)
         do (j=2,ny-1)
           ghe (i-1, j+32) =v(i, j)
         repeat.
       repeat
     elseif (k=2) then
       do (i=2, nx-1)
         do (j≕2,ny-1)
           ghe(i+32, j+32) = v(i, j)
         repeat.
       repeat
     elseif (k=3) then
       do (i=2,nx-1)
         do (j=2,ny-1)
           ghe(i+32, j) = v(i, j)
         repeat
       repeat
     elseif (k=4) then
       do (i=2,nx-1)
         do (j=?,ny-1)
           ghe i-1, j) = v(i, j)
         repeat
       repeat
     endif
     end
c-----
                   subroutine calccon (k,ghe,ghe0,gco,gdh,tk,k0)
     include FLO2D.INC
```

```
integer i, j, k
     real ghe(nq,nq),ghe0(nq,nq),gco(nq,nq),gdh(nq,nq),tk(*),k0
c calculate mathix gdh
     do (i=1,65)
       do (j=1,65)
         gdh(i, j) = ghe(i, j) - ghe0(i, j)
       repeat
     repeat
c calculate new matrix gco
     do (i=1,65)
       do (j=1,65)
        gco(i, j) = k0 * exp(tk(k) * gdh(i, j))
       repeat
     repeat
     end
subroutine putfile (k,ghe,gdh,gco,t)
     include FLO2D.INC
     integer i, j, k
     real ghe(nq,nq),gco(nq,nq),gdh(nq,nq),t(*)
     write (20, '(a,f5.1)') 'Wasserspiegel [m], t =',t(k)
     call rf(20,ghe,nq,65,65)
     write (21, '(a, f5.1) ') 'Wasserspiegeländerung [m], t = ', t(k)
     call rf(21,gdh,nq,65,65)
     write (22, '(a, f5.1) ') 'Durchlässigkeit [m/d], t ='.t(k)
     call rf(22,gco,nq,65,65)
     end
c initialisation
subroutine init
     include FLO2D.INC
c locals
     integer i,j,nxx,nyy
     real buf
c initialize v and change v to v*v for unconfined case
     do (j=1,ny)
       do (i=1, nx)
        buf=vin(i,j)
         if (.not. conf) then
          buf≕buf*buf
          vin(i,j)=buf
         endif
         v(i, j) = buf
       repeat
     repeat
c multiply recharge r by dxy*dxy, r is the source term vector
     do (i=1,nx)
       do (j=1,ny)
         if (bc(i, j)=2.OR.bc(i, j)=1.OR.bc(i, j)=0) then !interior
recharge
          r(i, j) = r(i, j) * dxy * dxy
         elseif (bc(i,j)=1.OR.bc(i,j)=9) then !fixed head bc
           r(i, j) = 0.
```

```
elseif (bc(i,j)=8) then
                                 !fixed flow bc
           r(i, j) = r(i, j) * dxy
         endif
       repeat
     repeat
c multiply conductivity by initial heads if problem confined
(transmissivity)
     if (conf) then
       do (j=1,ny)
         do (i=1,nx)
           c(i,j) = vin(i,j) * c(i,j)
         repeat
       repeat
c divide conductivity by 2 if problem unconfined
     else
       do (j=1, ny)
         do (i=1,nx)
           c(i, j) = c(i, j)/2.
         repeat.
       repeat
     endif
c calculate alpha, beta, gamma, delta (heterogeneous case)
cc set coefficients to zero
     do (j=1,ny)
       do (i=1,nx)
         a(i,j)=0.; b(i,j)=0.;g(i,j)=0.;d(i,j)=0.;e(i,j)=0.
       repeat
     repeat
cc we never need factors a... e on boundary points
     nxx=nx-1; nyy=ny-1
     do (j=2,nyy)
       do (i=2,nxx)
с
          a(i, j) = (c(i+1, j)+c(i, j))/2.
                                        !arithmetic mean
С
          b(i, j) = (c(i-1, j)+c(i, j))/2.
С
          g(i, j) = (c(i, j+1)+c(i, j))/2.
С
          d(i, j) = (c(i, j-1)+c(i, j))/2.
         a(i,j)=SQRT(c(i+1,j)*c(i,j))
                                        !geometric mean
         b(i,j)=SQRT(c(i-1,j)*c(i,j))
         g(i,j)=SQRT(c(i,j+1)*c(i,j))
         d(i, j) = SQRT(c(i, j-1) * c(i, j))
         e(i, j) = -a(i, j) - b(i, j) - g(i, j) - d(i, j)
        repeat
     repeat
c include boundary conditions in coefficients a to e
     call flowbc
     end
               C-----
c flowbc updates coefficients with flow boundary information
C-----
     subroutine flowbc
     include FLO2D.INC
c locals
     integer i, j
c set flow boundaries
cc bottom side no flow or prescribed flow
     if (bc(3,1)=9) then
       do (i=2,nx-1)
```

```
d(i, 2) = 0.
          g(i,2) = 2.*g(i,2)
        repeat
      elseif (bc(3,1)=8) then
        do (i=2, nx-1)
          d(i,2)=0.
          q(i,2) = 2.
          e(i,2)=e(i,2)+2.*dxy*r(i,1)/((c(i,2)+c(i,3)/2.))
        repeat
      endif
cc left side no flow or prescribed flow
      if (bc(1,3)=9) then
        do (j=2, ny-1)
         b(2, j) = 0.
          a(2,j)=2.*a(2,j)
        repeat
      elseif (bc(1,3)=8) then
        do (j=2,ny-1)
         b(2, j) = 0.
         a(2,j)=2.
         e(2, j) = e(2, j) + 2 \cdot dxy + r(1, j) / ((c(2, j) + c(3, j) / 2.))
        repeat
      endif
cc top side no flow or prescribed flow
      if (bc(3,ny)=9) then
       do (i=2, nx-1)
         g(i, n, -1) = 0.
          d(i, ny-1) = 2.*d(i, ny-1)
        repeat
      elseif (bc(3,1)=8) then
        do (i=2, nx-1)
          g(i, ny-1) = 0.
         d(i, ny-1) = 2.
         e(i, ny-1) = e(i, ny-1) + 2 \cdot dxy * r(i, ny) / ((c(i, ny-1)+c(i, ny-2)/2.))
        repeat
      endif
cc right side no flow or prescribed flow
      if (bc(nx,3)=9) then
       do (j=2,ny-1)
         a(nx-1, j)=0.
         b(nx-1, j) = 2.*b(nx-1, j)
        repeat
      elseif (bc(nx,3)=8) then
       do (j=2, \y-1)
         a(nx-1, j) = 0.
         b(nx-1, j) = 2.
         e(nx-1, j) = e(nx-1, j) + 2 \cdot dxy + r(nx, j) / ((c(nx-1, j) + c(nx-2, j) / 2.))
        repeat
      endif
     end
c solver is essentially the SOR-algorithm from press et al. 1986, p659,
c with Chebyshev-acceleration
c recharge term r is positive, because additional water into the
c aquifer is by convention positive, but for mass conservation negative
```

```
subroutine solver
      include FLO2D.inc
      real*8 anormr, resid, zero, half, qtr, one, rjac, pi
      integer n, j, l
     eps=1.d-5
      zero=0.d0
     half=.5d0
      qtr=.25d0
      one=1.d0
     maxit=3*nx*ny
c calculate optimal rjac
     pi=3.1415926
      rjac=0.5*(COS(pi/nx)+COS(pi/ny))
c set initial anormr
      anormr=zero
      do 12 j=2,nx-1
        do 11 1.2, ny-1
          anorm:=anormr+abs(r(j,l))
11
        continue
12
      continue
      omega=one
      do 15 n=1, maxit
        anorm=zero
        do 14 j=2,nx-1
          do 13 1=2, ny-1
            if(mod(j+1,2).eq.mod(n,2))then
              resid=a(j,l)*v(j+1,l)+b(j,l)*v(j-1,l)+
     £
                 g(j, l) * v(j, l+1) + d(j, l) * v(j, l-1) +
     £
                 e(j, 1) * v(j, 1) + r(j, 1)
              anorm=anorm+abs(resid)
              v(j, l) = v(j, l) - omega * resid/e(j, l)
            endif
13
          continue
14
        continue
        if(n.eq 1) then
          omega=one/(one-half*rjac**2)
        else
          omega::one/(one-qtr*rjac**2*omega)
        endif
        if((n.gt.1).and.(anorm.lt.eps*anormr)) then
          iter=n
          eps=eps*anormr
          return
        endif
15
     continue
      iter=n
     eps=eps*anormr
      end
c exit undos transformations of v, r, c depending on problem,
c calculates mass balance and flows through fixed head boundaries
subroutine exit
     include FLO2D.INC
c locals
```

```
integer i, j, jj, k, kk, l, ll, hi, lo
c divide conductivity by initial heads if problem confined
      if (conf) then
        do (j=1,ny)
          do (i=1,nx)
            c(i,j)=c(i,j)/vin(i,j)
          repeat
        repeat
c change v*v to v (identical h) and
С
      multiply conductivity by 2 if problem unconfined
      else
        do (j=1, ny)
          do (i=1,nx)
            if(v(i,j)<0) then
              v(i,j)=-2.**127.*1.9999999 !smallest negative number
            else
              v(i,j) = SQRT(v(i,j))
              vin (i,j)=SQRT(vin(i,j))
              c(i, j) = c(i, j) * 2.
            endif
          repeat
        repeat
      endif
c calculate mass balance
cc determine sides with flow bc, get effective nodes
      k=1; kk=nx; l=1; ll=ny
      if (bc(3,1)=9.OR.bc(3,1)=8) then
                                            !bottom
        1=2
      endif
      if (bc(nx, 3)=9.0R.bc(nx, 3)=8) then !right
        kk=nx-1
      endif
      if (bc(3,ny)=9.0R.bc(3,ny)=8) then !top
        ll=nv-1
      endif
      if (bc(1,3)=9.OR.bc(1,3)=8) then
                                           !left
        k=2
      endif
cc calculate inflow (0.0 for Laplace PDF)
      inflo=0.
      do (i=2, nx-1)
        do (j=2,ny-1)
          if (bc(i,j) <> 0) then
            inflo=inflo+r(i,j)
          else
                                      !under noflow bc!
            inflo=inflo+r(i,j)/2.
          endif
        repeat
      repeat
cc calculate out.flow
ccc set outflo and bndflo to zero
      outflo=0.
      do (i=1, 4)
        do (j=1,MAX(nx,ny))
          bndflo(i,j)=0.0
        repeat
      repeat
```

```
do (i=1,4)
       bckl(i,:)=1; bckl(i,2)=-1
     repeat
ccc calculate flow on sides, bckl contains effective begin and end of
           array bndflo
CCC
     do (i=1,4)
cccc bottom side:
       if (i=1) then
         j=k; jj=kk-1
         if (bc(3,1)<>9) then !NOT a noflow side
           hi=1+1; lo=1
           call bndfcalc (i, j, jj, hi, lo)
         endif
cccc right side
       elseif (i=2) then
         j=l; jj=ll-1
         if (bc(nx,3) <>9) then
           hi=kk-1; lo=kk
           call bndfcalc (i,j,jj,hi,lo)
         endif
cccc top side
       elseif (i=3) then
         j=k; jj=kk-1
         if (bc(3,ny) <> 9) then
           hi=11-1; lo=11
           call bndfcalc (i, j, jj, hi, lo)
         endif
cccc left side
       elseif (i=4) then
         j=l;jj=ll-1
         if (bc(1,3)<>9) then
           hi=k+1; lo=k
           call bndfcalc (i,j,jj,hi,lo)
         endif
       endif
       bckl(i,1)=j; bckl(i,2)=jj
     repeat
c undo transformations in recharge
     do (i=1,nx)
       do (j=1.ny)
         if (bc(i,j)<>8) then
                                  !interior recharge
           r(i, j) = r(i, j) / dxy / dxy
                                  !fixed flow bc
         else
           r(i, j) = r(i, j) / dxy
         endif
       repeat
     repeat
     end
c bndfcalc calculates flow trough boundaries, positive is flow out of
region,
С
    negative flow into region
                                      ______
subroutine bndfcalc (is,1,11,hi,10)
     include FLO2D.INC
     real*8 dhdx
     real cbar, vbar
```

```
real bndrť
     integer is,l,ll,hi,lo,i,j
c is is used for array indexes, 1 is begin of bndflow-index, 11 end of
С
     bndflow-index, hi is "inside", lo "outside" of region
c dhdx is gradient, cbar is mean conductivity, vbar is mean head,
     bndflo contains flow in [L^3/T]
С
c calculate from left to right or from bottom to top, respectivly
     do (i=1,11)
cc for left and right sides
       if (MOD(is, 2)=0) then
         dhdx = (v(hi, i) + v(hi, i+1) - v(lo, i) - v(lo, i+1))/dxy/2.
         cbar=(c(hi,i)*c(hi,i+1)*c(lo,i)*c(lo,i+1))**0.25
         vbar= v(hi,i)+v(hi,i+1)+v(lo,i)+v(lo,i+1))/4.
cc for bottom and top sides
       else
         dhdx = (v(i,hi) + v(i+1,hi) - v(i,lo) - v(i+1,lo))/dxy/2.
         cbar= (c(i,hi) *c(i+1,hi) *c(i,lo) *c(i+1,lo)) **0.25
         vbar = (v(i,hi) + v(i+1,hi) + v(i,lo) + v(i+1,lo))/4.
       endif
       bndrf=dhdx*cbar*vbar*dxy
       bndflo(is,i)=dhdx*cbar*vbar*dxy
       outflo=outflo+bndflo(is,i)
     repeat
     end
subroutine simout(simtit, simnr)
     include FLO2D.INC
     integer i, j, simnr
     character simtit*(*), solv*10
     real diff.o,percflo
     if (iter>=maxit) then
       solv='unsolved'
     else
       solv='solved'
     endif
     difflo=inflo-outflo
     percflo=difflo/inflo*100.
     write (30,*) TRIM(simtit), simnr, omega, iter, solv, inflo, outflo,
    £
                      difflo,percflo
     end
c rf creates unformatted output for real 2D matrix
subroutine rf (unit, z, nq, nx, ny)
     implicit none
     real z(nq,nq)
     integer unit, nq, nx, ny, nn, nnn, nnx, i, j, ii, numuf
     parameter (numuf=80)
     nn=nx/numi.f-1
     nnn=nx-(nr.+1) *numuf
     nnx=MIN(n):,numuf)
     do (j=1,ny)
```

write(ur.it, *) (z(i,j),i=1,nnx)

```
do (ii=1,nn)
         write(unit,*) (z(i,j),i=ii*numuf+1,(ii+1)*numuf)
       repeat
       if (nnn>0.AND.nn>-1) write(unit,*) (z(i,j),i=(nn+1)*numuf+1,nx)
     repeat
     end
C----
                                         c function f2d gets the function value
     real*4 function f2d(z0,x,y,l2,l1,q,k)
     implicit none
     integer n
     real*4 term, x, y, 12, 11, q, k, z, z0, pi, sum
     pi=3.141592653589793
     sum=0.0
     do (n=0, 15)
       term=((-1)**n*COS((2*n+1)*pi*x/(2*11))
                *COSH((2*n+1)*pi*y/(2*12)))
     £
     £
                /((2*n+1)**3*COSH((2*n+1)*pi*12/(2*11)))
       sum=sum+term
     repeat
     f2d=SQRT(z0**2+((q/k)*(l1**2-x**2))-(32*(q/k)*(l1**2/pi**3)*sum))
```

```
Das File "FLOW2D.INC" enthält globale Variablen und Parameter für das 
Programm "bogflo.for"
```

end

```
c FLOW2D.INC is include file for global parameters
      implicit none
c nq is maximal dimension of nodes in x and y direction
      integer*4 ng
      parameter (ng=100)
c global arrays
С
      bc: boundary conditions, bckl: index for bd-flow calculations
С
      v: head, vin: initial head, r: recharge,
С
      c: conductivity or transmissivity
С
      a,b,g,d,e,f=r: coefficients for elliptic pde, bndflo: flow through
c
      rectangular boundaries
      double precision v(nq,nq)
      integer bc(nq,nq),bckl(4,2)
      real vin (nq, nq), r (nq, nq), c (nq, nq), a (nq, nq), b (nq, nq), g (nq, nq),
     £
           d(nq, nq), e(nq, nq), bndflo(4, nq)
c global variables
С
      nx, ny: actual number of nodes in x- and y-direction, iter: number
С
      of iterations, maxit: max. number of iterations, it0 its0, its,
itp0,
С
      itp, it: time in seconds
С
      dxy: distance between nodes (equal for x and y),
      maxerr: maximal error within one iteration, eps: max. error aloud,
С
С
      omega: acceleration parameter for SOR, outflo: sum of outflow,
С
      inflo: sum of inflo, conf: status for aquifer confined
(conf=.true.)
С
      or unconfined (conf=.false.)
С
     problem: description of problem,
С
     filename: input file name
С
      disttit: distance title, ictit: initial condition title,
```

```
rectit: recharge title, contit: conductivity title
с
      real*8 anorm, eps
      integer nx, ny, iter, maxit
      integer it,it0,its,its0,itp,itp0
      real*4 dxy,omega,inflo,outflo
      logical conf
      character problem*128, filename*64, disttit*80, ictit*80,
     £
                 rectit*80, contit*80
c define all global arrays and parameters as common block
      COMMON /FLO2D1/ v(nq,nq),bc(nq,nq),bckl(4,2),
     æ
                    vin(nq,nq),r(nq,nq),c(nq,nq),
     ۶
                    a (nq, nq), b (nq, nq), g (nq, nq), d (nq, nq), e (nq, nq),
     æ
                                bndflo(4,nq),
     £
                    nx, ny, iter, maxit, dxy, anorm, eps, omega, inflo, outflo,
     æ
                    conf, problem,
     £
                     filename, disttit, ictit, rectit, contit
      COMMON /FLO2D2/ it, it0, its, its0, itp, itp0
```

Lebenslauf von Martin Christoph Schneebeli

1958 geboren in Zürich

>

- 1965-79 Primar- und Kantonsschule in Winterthur und Luzern
- 1979 Matura Typus B
- 1979–1984 Studium an der Abteilung für Kulturtechnik und Vermessung an der ETH Zürich
- 1984-1990 wissenschaftlicher Mitarbeiter und Assistent am Fachberich Bodenphysik der ETH Zürich