
Diss. ETH No. 8905

FRICTION AT TBE BASE

OF A GLACIER

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of

Doctor of Natural Science

presented by

Jurg Schweizer

dipl. Natw. ETH Zurich

born August 3, 1960

citizen of Schonholzerswilen (TG)

and Buhwil (TG)

accepted on the recommendation of

Prof. Dr. D. Vischer, examiner

Prof. Dr. St. Muller, co-examiner

Dr. Almut Iken, co-examiner

1989



Leer - Vide - Empty



- 3 -

Acknowledgements

This study was made possible by Prof. Dr. D. Vischer,

head of the Laboratory of Hydraulics, Hydrology and Glaciolo-

gy (VAW) at ETH Zurich and referee of this thesis, who per¬

mitted free access and use of all laboratory facilities. His

goodwill and continuous support played a significant role in

my work and are hereby gratefully acknowledged.

From the very beginning of my studies Prof. Dr. St. Muel¬

ler from the Geophysical Institute provided guidance and en¬

couragement for my work. His participation in the thesis com¬

mittee is greatly appreciated.

Sincere thanks are extended to my advisor, Dr. Almut

Iken, who guided me through the ups and downs of my work. It

was her commitment and personality combined with her broad

experience which made it possible to complete this thesis.

A valuable sharing of ideas and knowledge took place in

many fruitful discussions with Prof.Dr. C. Raymond (Seattle),

Prof. Dr. H. Rothlisberger, Prof. Dr. K. Hutter and PD Dr. W.

Haeberli, all of whom contributed to a productive working at¬

mosphere.

The drawings were skilfully prepared by B. Nedela, and G.

Zwosta typed parts of the manuscript. Dr. P. Fritz helped to

manage the FE-code, which he personally had developed, and

Susan Braun-Clarke corrected the Englisch manuscript. Their

work is greatly appreciated.

I am indebted to all my colleagues at the VAW for valu¬

able comments and suggestions.

During this work financial support was provided by the

Swiss National Science Foundation under contract number 2000-

4.748.

Lastly, I would like to thank my parents for their un¬

failing support and encouragement.



Leer - Vide - Empty



- 5 -

CONTENTS

Acknowledgements 3

Abstract 7

Zusammenfassung 9

A INTRODUCTION 11

B ICE DYNAMICS 17

B. 1 Introduction 17

B.2 Assumptions and Boundary Conditions 18

B. 3 Basic Equations 20

B. 4 Laminar Flow 22

C GLACIER SLIDING 25

C. 1 Introduction 25

C.2 Sliding without bed separation 29

C.3 Sliding with bed separation 47

C.3.1 Subglacial water pressure 47

C.3.2 Classic theories 49

C.3.3 Sliding over a sinusoidal bed 53

C.3.3.1 Stress distribution without bed separation 54

C.3.3.2 Bed separation: separation and critical

pressure 57

C.3.3.3 Bed separation: stress distribution

and cavity length 60

C.3.4 Possible sliding law 65

D FRICTION 67

D. 1 Introduction 67

D.2 Coulomb friction 69

D.3 Sandpaper friction 75

D. 3.1 Basic concepts 75

D.3.2 Friction without bed separation 7 6

D.3.3 Sandpaper friction with bed separation 77

D.3.3.1 Frictional drag 77

D.3.3.2 Separation and critical pressure 79

D.3.3.3 Influence on the sliding motion 83

D.4 Hallet friction 84



- 6 -

E NUMERICAL APPROACH 89

E.l Introduction 89

E. 2 Solution method 90

E. 3 General assumptions of the model 92

E. 3.1 Temperature 93

E. 3.2 Flow law 93

E.3.3 Summary 100

D.4 Geometry 101

E.4.1 Shape of the modelled area 101

E.4.2 Real bed topography 102

E.5 Boundary conditions 107

E.5.1 Top, front and back side 107

E.5.2 Bottom boundary condition 108

E.5.2.1 No slip 109

E.5.2.2 Perfect slip 109

E.5.2.3 Sliding with friction 110

E.5.2.4 Bed separation 116

E.6 Test computation 118

E.6.1 Geometry and material properties 120

E.6.2 Analytical solution 120

E.6.3 Numerical solution 120
E.6.4 Discussion 122

F NUMERICAL SIMULATION OF

GLACIER SLIDING: RESULTS.. 123

F.l Sliding without bed separation 124

F.l.l Linear viscous sliding 124

F.l.2 Nonlinear viscous sliding 132

F.l. 3 Sliding with friction 142

F.2 Sliding with bed separation 153

F.2.1 Frictionless sliding with bed separation 153

F.2.2 Sliding with friction in presence
of bed separation 159

G CON C LU S I ON S 166

G. 1 Summary 166

G.2 Conclusions 169

G.3 Open questions and outlook 170

References 171

List of Symbols 177

Acknowledgements 181



- 7 -

Abstract

The motion of glaciers and ice sheets due to gravity consists

of two components: the flow and the sliding motion. The flow

of an ice mass is the internal deformation. The sliding is

the motion at the interface between ice mass and substratum

existing only if the temperature at the interface is at the

pressure melting point. The roughness of the glacier bed pre¬

vents the ice mass from slipping away: the ice is forced to

flow around the bed obstacles. The classic theories usually

assume that this sort of motion occurs in a frictionless way,

since a very thin water film does exist between ice and un¬

derlying substratum, i.e. there is no local shear stress.

This assumption may be true for clean ice, however, basal ice

is debris loaden and friction occurs between the substratum

and rock particles embedded in the basal ice, as can be seen

from striaes on rock bumps.

The aim of this study is to investigate the influence of deb¬

ris concentration on the sliding process. The actual condi¬

tions where certain types of friction apply are defined and

the consequences for the sliding law are formulated. The

classic Coulomb friction is modified according to the notion

that a glacier is rubbing over its bed like a piece of sand¬

paper. For small debris concentrations the concept of Hallet

applies where the friction depends on the sliding velocity.

Hence a numerical approach is required. The numerical modell¬

ing of the sliding of an ice mass over an undulating bed, in¬

cluding the effect of both the subglacial water pressure and

the friction, is done by solving the problem by the finite

element method using an existing two-dimensional code.

Friction between a dirty basal layer and the glacier bed is a

relevant process and can be seen as a reduction of the driv¬

ing shear stress. The frictional drag can therefore be in¬

cluded into existing sliding laws which should contain as an

important variable the critical pressure. A functional rela¬

tionship between the sliding velocity, the effective basal

shear stress and the subglacial water pressure is given. Con¬

sidering the seasonal velocity variations, valley glaciers
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may be classified according to the glacier bed characteris¬

tics and probably vice versa. A more detailed classification

and the simulation of the dynamic movement of an actual gla¬

cier are two possible directions of further investigations

outlined.
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Zusammenfassung

Die Bewegung der Gletscher und Eisschilder beruht auf der

Schwerkraft. Man unterscheidet das Fliessen und das Gleiten.

Mit Fliessen bezeichnet man den Vorgang der internen Verfor-

mung. 1st die Temperatur am Grund des Gletschers gleich dem

Druckschmelzpunkt, so beginnt das Eis uber den Untergrund zu

gleiten. Die Rauhigkeit des Gletscherbettes verhindert, dass

der Gletscher absturzt, da das Eis die Unebenheiten umflies-

sen muss, so dass eine in der Regel gleichformige Bewegung

entsteht. In den klassischen Theorien wird davon ausgegangen,

dass die Gleitbewegung reibungsfrei sei als Folge eines Was-

serfilms zwischen Eis und Untergrund. Somit existiert lokal

gesehen keine Scherspannung, was unter Umstanden bei sauberem

Eis zutrifft. Tatsachlich aber ist das basale Eis eine ge-

schichtete Mischung aus Eis und Felspartikeln. Schliffspuren

auf Felsbuckeln zeugen von der Reibung zwischen dem felsigen

Untergrund und 1m Eis emgefrorenen Steinen.

Ziel dieser Arbeit ist es, den Einfluss unterschiedlicher

Schuttkonzentrationen des basalen Eises auf die Gleitbewegung

zu untersuchen. Verschiedene Arten der Reibung werden charak-

terisiert, und es werden die Auswirkungen auf das Gleitgesetz

besprochen. Die Coulomb-Reibung wird modifiziert lm Hinblick

auf die Idee, dass der Gletscher wie em Stuck Sandpapier den

felsigen Untergrund abschmirgelt. Fur geringe Schuttkonzen-

tration wird das Modell von Hallet verwendet: die Reibung

hangt von der Gleitgeschwindigkeit ab. Somit drangt sich eine

numerische Behandlung auf. Mit der Methode der finiten Ele-

mente wird das entstehende Differentialgleichungssystem zur

Simulation der Gleitbewegung gelost, wobei verschiedene Para¬

meter wie Schuttgehalt und subglazialer Wasserdruck, die das

Gleiten beeinflussen, varnert werden konnen.

Die Reibung erweist sich als ein fur die Gleitbewegung mass-

geblicher Faktor. Die Wirkung der Reibung kann durch die Ein-

fuhrung einer vermmderten, effektiven Scherspannung beruck-

sichtigt werden. Auf diese Weise lassen sich die fur reines

Eis gultigen Gleittheorien formal auf den Fall schutthaltigen

Eises ubertragen. Ein funktionaler Zusammenhang zwischen der
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Gleitgeschwindigkeit, der basalen Schuttkonzentration und dem

subglazialen Wasserdruck bei gegebener Schubspannung wird er-

mittelt. Aus der Art der saisonalen Schwankungen der Oberfla-

chengeschwindigkeit von Talgletschern lassen sich Ruckschlus-

se ziehen auf die Natur des Untergrundes und die Art der Rei¬

bung. Eine detailiertere Klassifikation und die Simulation

der dynamischen Bewegung eines bestimmten Gletschers sind

mogliche zukiinftige Forschungsvorhaben.
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Chapter A

INTRODUCTION

Glaciers are moving. This fact, well known by the

inhabitants of the Alpine regions, was a source of scientific

controversy in the past century. The mountain-dwellers exper¬

ienced the moving force of a glacier at the beginning of the

Little Ice Age, when advancing Alpine glaciers passed over

meadows and forests and destroyed huts (Vogele, 1987). With

the awakening interest in nature in the 16th and 17th century

a series of travel books appeared describing the glacierized

regions with a mixture of horror and awe. In the 18th centur¬

ies the description of natural phenomena became more realis¬

tic, accurate and scientific. Horace Benedict de Saussure

(1740-1799), one of the first glaciological investigators in

the modern scientific sense, held the view that glaciers

slide due to gravity. One of the first very remarkable over¬

views of this topic was written by Bernhard Friedrich Kuhn

(1762-1825), a lawyer and statesman, who grew up in the vici¬

nity of glaciers in Grindelwald. In the 19th century major

interest was concentrated on the mechanism of glacier motion.

In addition to the sliding theory, the dilatation theory and

the viscous flow theory were proposed and fiercely defended.
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The exponent of the latter was James D. Forbes. Inspired by

Louis Agassiz (1807-1873) he investigated the Mer de Glace

during the same period as Agassiz did his pioneering work on

the Unteraargletscher. In those times the different ideas

were in strong competition with each other and it was incred¬

ible to think that both sliding and viscous flow could con¬

tribute to the motion of glaciers. A further confusing fact

was that ice is brittle and viscous. Even nowadays the mater¬

ial properties are not fully understood and the search for a

creep law forms a branch of glaciology (Clarke, 1987).

John Nye established the glacier flow mechanics,

mathematically formulated, and together with John Glen's flow

law, adopted from metallurgy, his studies are the fundamental

base of the present research work. Finally, the recent era of

investigation on the sliding problem was opened in 1957 by

Hans Weertman. He proposed two sliding processes: regelation

and ice flow around obstacles. John Nye and Barclay Kamb de¬

veloped Weertman's idea further by introducing more realistic

bed topographies. Louis Lliboutry brought up a third mecha¬

nism: the formation of subglacial cavities.

In the last thirty years extensive field observa¬

tions and numerical modelling made possible by computer faci¬

lities growing at a fantastic rate have broadly enlarged the

view on the sliding problem.

Sliding is not restricted to temperate glaciers

where it can account for 50% or more of the total movement,

but exists also under cold glaciers or ice sheets where the

ice is not at the melting point. The effect is of course min¬

imal, but not negligible in a paleoglaciological sense. Sea¬

sonal and shorter-term variations in surface velocity must

result from sliding, because ice deformation depends on para¬

meters such as ice thickness, surface slope and temperature,

which do not change rapidly. Velocity variations are strongly

related to the amount of water beneath a glacier, as could be

shown by water pressure measurements in boreholes. Hence the

subglacial hydraulic system seems to control the sliding mo¬

tion. Furthermore it is now obvious that not all glaciers and

ice sheets are lying on a hard rock bed as is implicitly as-
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sumed in current sliding theories Deformable and permeable

sediment beds are widespread and certainly affect the glacier

motion (Paterson, 1987)

As a result a great deal of scientific energy was and still

is being concentrated on the lower boundary between the ice

and its substrata The relevant physical processes occur at

this level, controlling the motion, and the complex interac¬

tions between ice, water, rock and sediment also take place

there Yet in spite of the growing knowledge the definition

of a complete basal boundary condition seems to be further

away than ever. However, in order to predict the behaviour of

igure A.l The fact that glaciers are moving can be mainly

perceived by studying crevasses and moraines. Serac

zone at the junction of Pers- and Morteratschglet-

scher.
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a glacier, for instance whether, a water intake will be over¬

run, a sliding law is essential as a basis for modelling. An

understanding of processes of glacial erosion or deposition

is only possible provided it is based on a comprehensive the¬

ory of glacier motion.

Observations in accessible subglacial cavities (e.g.

Vivian and Bocquet, 1973) and borehole photography (Engel-

hardt, Harrison and Kamb, 1978) suggest that the classic

sliding theories, based on the assumption of clean ice,

should be modified to allow for the effect of basal debris.
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Figure A.2 Sliding velocity versus subglacial water pres¬

sure showing the discrepancy between theory (a) and

observation (b) modified from Iken and Bmdschadler

(1986) .
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Detailed measurements of velocity and subglacial water pres¬

sure at the Findelengletscher were done by Iken and Bind-

schadler (1986). Their results agree qualitatively with cur¬

rent sliding theories. However, the measured water pressure

values are too large as compared to the observed sliding ve¬

locities. According to theory the glacier should in some

cases have reached the state of accelerated motion (Figure

A.2) . This, in fact, is not the case. It is supposed that

friction between the dirty basal ice and the glacier bed pre¬

vents the glacier from slipping off.

Only a few attempts were made to include friction in

the sliding law. Morland (1976b) studied a sort of Coulomb

friction, but without regard to the actual physical processes

at the sole. Bindschadler (1983) made implicitly the same as¬

sumption by defining a bed separation index I ~ t/N which is

equivalent to the friction coefficient. Boulton (e.g. 1976)

has dealt in full with the problem of friction in connection

with abrasion and erosion, especially in the case of soft

sediment beds. He argues that the normal load of the ice is

the relevant variable, an assumption probably true if the de¬

bris concentration is very large. Hallet (1981) developed a

physical model based on what really could happen at the ice-

rock interface, if the debris concentration is small.

This study investigates the influence of the debris

concentration in the basal ice on the sliding velocity of a

glacier for various debris concentrations. The actual condi¬

tions where certain types of friction apply are defined and

the consequences for the sliding law are formulated. The

classic Coulomb friction is modified in accordance with the

notion that a glacier is rubbing over its bed like a piece of

sandpaper (Drewry, 1986) . The main objective then is to ex¬

tend Hallet's concept to the general case of sliding on an

undeformable bed, including both debris friction and the ef¬

fect of subglacial water pressure. Hallet assumes that fric¬

tion occurs due to rock particles which, embedded in the bas¬

al ice, are pressed against the rigid, unpermeable rock bed

and dragged along. This process acts on the upstream side of
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bed undulations. As the frictional force depends on the local

velocity field, a numerical approach is required. The numeri¬

cal modelling of the sliding of an ice mass over a undulating

bed, including the effect of both the subglacial water pres¬

sure and the friction, is done by solving the problem by the

finite-element method using the existent, well established

two-dimensional code: RHEO-STAUB (Fritz and Arn, 1983).

It is not possible to give a simple sliding law, but the pre¬

sent study can provide an idea of which variables are rele¬

vant and how they could be included in a realistic relation.

In Chapter B the model with assumptions, basic equations and

boundary conditions is presented. The only closed form solu¬

tion, the laminar flow, is derived.

The classic theories on sliding are reviewed in Chapter C and

a relation for the amount of bed separation is developed.

Chapter D deals with debris friction. Coulomb, sandpaper and

Hallet friction are compared and implications for the separa¬

tion process are studied.

Details on numerical modelling including Hallet friction and

bed separation, are discussed in Chapter E. Numercial values

for the modelling are chosen on the basis of field observa¬

tions and the FE-code is tested.

In Chapter F the results of the numerical simulations with

varying flow law, bed geometry, subglacial water pressure and

basal debris concentration are given.

Chapter G contains a detailed summary, conclusions and some

future perspectives.
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Chapter B

ICE DYNAMICS

B.l Introduction

The motion of glaciers and ice sheets consists of

two components: the flow and the sliding motion.

The flow of an ice mass is the deformation due to

the gravitational force. The critical point for the flow is

the sort of constitutive relation called flow law which means

the relation between stress and strain rate, that is, the

rheological properties of ice. The deformational process is

also called creep (continuous deformation under steady load).

Sliding is the motion at the interface between ice

mass and substratum existing only if the temperature at the

interface is at the pressure melting point. That is the clas¬

sic definition. Nowadays one knows that sliding can occur

well below the freezing temperature (Shreve, 1984; Echelmeyer

and Zhongxiang, 1987), yet exercise little effect on the

large-scale motion.

The temperature of the ice is involved in the ice

dynamics too, influencing primarly the constitutive relation
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and as mentioned the basal boundary condition. There is pro¬

duction of heat due to deformation and transport of heat

within the ice mass also partly by migrating water.

Glacier ice is not an isotropic, homogenous medium.

There are different sorts of ice (fabric, grain size, impuri¬

ties, grain boundaries etc.), different temperature zones and

cracks, crevasses and moulins; thus glacier ice is further¬

more a porous medium, but usually considered to be imperme¬

able.

In temperate glaciers where the ice is at the mel¬

ting point there exists a lot of water in cracks, in crevas¬

ses and in the ice itself. The water is partially drained by

the subglacial water system which, characterized by subgla¬

cial water pressure, plays a significant role in the sliding

process. The state of the subglacial drainage system is sup¬

posed to be the critical point for the sort of sliding prob¬

ably responsible for the surge phenomena (a tremendous gla¬

cier advance of some kilometers in some months).

Whether a glacier will advance or retreat, one of

the most striking and popular features, is the effect of

changing environmental conditions. Accumulation - ablation

and the thermal boundary conditions control this process.

The brief discussion above has touched on some as¬

pects involved in the problem of moving glaciers and ice

sheets. The response of a glacier or an ice sheet to gravita¬

tional forces and external environmental conditions is a com¬

plicated thermo-mechanical problem (Hutter, 1983) .

B.2 Assumptions and Boundary Conditions

In consideration of the great number of phenomena

surrounding a glacier or an ice sheet, some simplifying as¬

sumptions must be made in order to obtain a mathematical for¬

mulation.
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First of all, ice is to be considered as an imperme¬

able, viscous, isotropic, incompressible fluid at constant

temperature.

The assumption of impermeability is justified since the pos¬

sible water flow between grain boundaries is negligible com¬

pared to the water flow through the subglacial drainage sys¬

tem. Berner, Stauffer and Oeschger (1978) studied ice samples

from Griesgletscher (Switzerland) and found water flow values

between 0.02 to 0.04 m/a.

The most simple rheological law is that of constant viscosity

(Newtonian fluid). A better description of the flow of ice is

a power law, Glen's flow law, which is popular but controver¬

sial. Other relations such as polynoms were proposed (Smith

and Morland, 1982) concurring more effectively with the ex¬

perimental creep data. There are efforts to adapt the flow

law to the effect of impurities, different ice fabrics and

other inhomogeneities introducing, for example, an enhance¬

ment factor (Dahl-Jensen, 1985) . Furthermore, the question of

accelerating or tertiary creep due to recrystallization is

not clear. Aspects of ice rheology are discussed in detail by

Hutter (1983) and Lliboutry and Duval (1985).

The temperature is not regarded as independent variable and

therefore temperature and velocity field can be decoupled - a

great but unavoidable simplification. Nevertheless, in a num¬

erical analysis the temperature can be taken into account

through the flow law parameter by an iterative scheme.

The boundary condition at the glacier surface is

free surface, which means free of stress, and velocity compo¬

nents normal to the surface are balanced by accumulation or

ablation. Thus the glacier is in a steady state. The basal

boundary condition is the crucial one in ice dynamics. For a

cold glacier (ice temperature below the melting point) the

problem is still easy to solve. There is no sliding and the

boundary condition is the no-slip condition. Perfect-slip is

the most common condition for temperate glaciers. The basal

ice and the substratum in the following called "bed" (unde-

formable and impermeable) are therefore not in contact with

each other but separated by a very thin layer of water pre-
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venting the transfer of any shear stress. Hence there is no

friction at the interface. The velocity vector is parallel to

the non-deformable bed since vertical components due to melt¬

ing and refreezmg are neglected. This is of course a small-

scale view, but physically correct. Nevertheless of major

interest is the large-scale view where the no-friction condi¬

tion is no longer valid. At this scale one needs as bottom

boundary condition a relation between basal shear stress and

basal velocity, a so-called sliding law. To find an easy-to-

use sliding law for large-scale glacier motion is one of the

main objectives of glaciological research work.

B.3 Basic Equations

The assumptions from Section B.2, in particular con¬

sidering ice as being an impermeable, viscous, incompressible

fluid at constant temperature, result in the following set of

equations for a mathematical ice flow model:

u =0 (B.l)
1,1

P Ui,t
=

t1Jl3 + P gi (B-2>

t13
= f( t;D) (b.3)

expressing the mass conservation (B.l), the balance of momen¬

tum (B.2) and the constitutive relation between strain rate

tensor and deviatoric stress tensor (B.3). The Einstein con¬

vention for vectors, tensors and deviations was used in the

above. Stated in more detail:

u : velocity vector
l

J

p : density of ice

t : stress tensor
13
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g. : vector of external forces (gravity)

t. .: strain rate tensor

e,. = 1/2 (u. . + u. .)

t!.: deviatoric stress tensor
13

13

t! .
= t. .

- p8. .

13 ij
^

13

hydrostatic pressure

P = 1/3 tu
Kronecker symbol

The upper boundary condition (stress free surface)

is

ti;j iru = 0 . (B.4)

The basal boundary condition for the case of no ice-bedrock

separation is either the no-slip condition

u±
= 0 (B.5a)

or the perfect-slip condition

tijn.
-

(tklnknl)ni = 0 (B.5b)

together with a kinematic boundary condition (neglecting

melting and refreezing)

u± nL
= 0 (B.5c)

where m. and n's are unit vectors normal to the surface and

to the bed respectively. For the case of not vanishing tan¬

gential stress, that means if there is friction between the

ice and the bed, Eq. B.5b turns to

fcijnj
"

(tklnknl)ni =

Tfi (B-5d>

where Tf. is the vector of the tangential traction or the

frictional drag.
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For the case of bed separation the boundary in the separated

area is

t n n + p =0 . (B.5e)
13 ! 3 w

where p is the water pressure in the subglacial hydraulic

system.

A general solution to the above equations for any

given glacier geometry has not yet been found because of the

nonlmearity of the constitutive relation and the complexity

of the boundary conditions, and is probably not worth seek¬

ing. The alternative is to introduce more or less reasonable

omissions and approximations which simplify the system. This

traditional procedure established by Nye, especially the re¬

striction to two-dimensional problems, has thrown light on

quite a lot of glaciological phenomena. Another more modern

approach is to try to solve the problem numerically yet of¬

fering the same sort of complications, but allowing to choose

more complex domains.

An analytical solution for a cold glacier adhering

at its bed is briefly presented below. Chapter C reviews some

known solutions for the sliding motion problem.

B.4 Laminar Flow

The ice flow problem Eq. (1 - 5a) can be solved for

a parallel, infinitly wide ice slab on an inclined plane as¬

suming that there is no sliding: the ice is frozen to the

bedrock (Figure B.l).

The infinite width leads to a two-dimensional pro¬

blem. The stress tensor reduces to the components o , a and

x . u and v are the velocity vector components in x and y
xy

direction respectively. From the infinite length it follows

that the solution is independent of x. Thus for the stress
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u

7^

(X)

Figure B.l Coordinate system of parallel-sided slab,

h glacier thickness, a bed slope, u,v velocity

vector components.

field one obtains

ox(y) <* (y) = P 9 Y cosa

and the velocity is

tv,, (y) = P g y sina
xy

u(y) 1^ (p g sina)n (hn+1 - yn+1) (B.6)

assuming that the constitutive relation is a power law of

Glen's type

n-1

£ij = A IhI) "^

Hi (B.l)

The flow law parameters are A: a constant including the tem¬

perature dependence of the creep, and n: the exponent in the

flow law usually taking values between 2 and 4 (for n = 1 a

linear relation results), t' = 1/2 t..t. . is the second in¬

variant of the deviatoric stress tensor.

The vertical velocity component is v = 0; thus the flow lines

are parallel to the surface of the slab: the flow is laminar.
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The velocity u at the surface (y = 0) is

us
= nTT1 <V"h (B-8)

where x, is the shear stress at the bed (y = h):

t. = p g h sino . (B.9)

The basal shear stress is independent of the flow

law. The above formula is fundamental and can explain several

glaciological features as, for instance, the fact that a gla¬

cier is thin where the surface is steep, and thick where the

surface slope is small (Paterson, 1983).

On the other hand, the laminar flow model is often too primi¬

tive. Some factors limit the use of Eq. (B.6) and Eq. (B.8)

(Drewry, 1986):

(a) The temperature gradient through the ice mass

affecting the flow law parameter A is not taken

into account.

(b) In the case of valley glaciers, Eq. (B.8) for

the shear stress has to be corrected by a shape

factor (Nye, 1965).

(c) Changes of accumulation and ablation influence

the ice flux and therefore the velocity and

stress field.

(d) Longitudinal stress gradients exist but are not

considered.

Nevertheless, the laminar flow model is the first consistent

mathematical formulation of the glacier flow problem and

therefore of broad interest.
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Chapter C

GLACIER SLIDING

C.1 Introduction

In Chapter B, a solution to the flow problem was

presented whereby all motion takes place within the glacier.

The ice mass is frozen to the bed and motion is due only to

deformation. This is the case within cold glaciers, Alpine

glaciers at high altitudes, or polar ice sheets.

Most of the measured surface velocities on Alpine

glaciers are essentially larger than only the corresponding

creep velocity determinable simply by surface slope and ice

thickness. Findelengletscher in the Zermatt area (Swiss Alps)

(Figure C.l) is, in the most intensively studied area (about

2730 m.a.s.l.), about h = 180 m thick and the mean surface

slope is a = 6.5" (Iken and Bindschadler, 1986).
-3 -1

Taking flow law parameters A = 0.16 bar a and n = 3, and

a shape factor f = 0.6, a creep velocity (Eq. B.8) at the

surface u = 18 m/a results. Summer velocities at Findelen-
s

gletscher are in the range of 0.5 m/d, corresponding to an

annual velocity of 180 m/a.
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Figure C.l Findelengletscher m 1985. Study area is above

the first ice fall. 1985 was the end of an active

advancing phase of the temperate, 9 km long valley

glacier.

The difference between observed and calculated surface veloc¬

ities accounts for basal sliding. Thus it is quite possible

that 90% of the motion of a glacier is due to sliding at the

ice/bed interface. Sliding velocities of some 100 m/a are not

exceptional. Jacobshavn Glacier in Greenland, a fast-flowing

ice stream, moves in the lower part at speeds of 7 km/a, yet

it is not clear whether these high speeds are mainly due to

sliding. The contribution of the sliding to the overall mo¬

tion may vary temporarily and spatially on a glacier. This is

probably an effect of a different amount of water at the gla¬

cier bed, an assumption based on the fact that the surface

velocity increases at the beginning of the melt season (Iken,

1978). Basal sliding is likely responsible for a large part

of the erosive effect of glaciers.

Yet glacier sliding is one of the least understood

glaciological phenomena. Paterson (1981) writes:
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"Obtaining a better understanding of sliding is

the major unsolved problem m glacier physics."

This lack of knowledge is not hard to comprehend and follows

from the difficulty to directly observe the glacier bed Such

observations are possible in man-made ice tunnels (Figure

C 2), subglacial water intakes of hydroelectric power stati¬

ons and through boreholes. Moreover, the theoretical treat¬

ment of the sliding problem is complex, in particularly the

formulation of the basal boundary condition. The present

state of knowledge derives from a few contributions of a

small number of investigators Weertman (1957), Lliboutry

(1968, 1975, 1987), Nye (1969, 1970), Kamb (1970, 1987) Mor-

land (1976a, 1976b), Hallet (1979, 1981) and Fowler (1981,

1987) .

Before attempting to solve the sliding problem one

Figure C.2 Basal ice and glacier bed in an ice tunnel at

the snout of Findelengletscher. The ice containing a

basal layer of debris and regelation ice is separa¬

ted from the bed
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should take stoke of what is or could be going on at the base

of a glacier and then decide which phenomena one will include

in the model. An incomplete list:

plastic deformation

regelation (melting/refreezing around bed irregu¬

larities)

water from regelation

geothermal heat

frictional heat

deformational heat

meltwater from surface ablation

cavities, particulary in the lee (downstream

side) of bed irregularities

debris loaden basal ice

friction between basal ice and substrata

special rheology of basal ice (different

fabric and chemical composition)

temperature at the melting point

different substrata (deformability, permeability)

plucking

etc.

Modelling means to choose the relevant factors and to neglect

the unimportant ones and simultaneously to ensure that the

resulting fluid dynamic problem is well posed.

The aim of all investigators is to find a realistic,

but simple bottom boundary condition involving some variables

describing to a certain extent the phenomena listed above.

The pertinent variables are the shear stress on the bed t.,

the normal stress p ,
the sliding velocity u,, in the case of

bed separation the water pressure P m the cavities, and

some parameters describing roughness of the bed, and several

physical properties of ice and possibly of the glacier bed.
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A review follows of some known analytical and semi-

analytical solutions to the sliding problem, distinguishing

between sliding without and with formation of water filled

cavities leading to bed separation. The presentation follows

partly the one of Raymond (1980) and Paterson (1981), but al¬

ways with a critical look at the original literature and with

the particular situation of Findelengletscher in mind. A spe¬

cial focus is on theories relating to friction between rock

particles embedded in the ice and the glacier bed. Chapter D

deals principally with friction.

C.2 Sliding without bed separation

A temperate ice mass, that is, one not frozen to the

bed, can only rest stably on an inclined plane if irregulari¬

ties of the bed balance out the gravitional driving force,

provided there is no friction between the basal ice and the

glacier bed. The upstream side of rock bumps has to be steep¬

er than the mean bed slope (Figure C.3), otherwise the glaci¬

er is accelerating and may fall as a catastrophic ice avalan¬

che. Thus an irregular or rough bed is one of the basic con¬

ditions.

Sliding, meaning real material motion at the icerock

interface, is possible by means of two physical processes

proposed by Weertman (1957): regelation and creep. Both of

them enable the ice mass to overcome the obstacles at the

bed. Since the ice is at the pressure melting point at the

base, regelation follows from the fact that on the upstream

side of rock bumps the pressure is higher than on the down¬

stream side, leading to a difference in the pressure melting

point. Thus the ice melts on the upstream side of an obstacle

and is transferred as water in a very thin, only a few micro¬

ns thick, layer to the lee side where it refreezes. The lat¬

ent heat flows back through the rock bump to the melting



Figure C.3 Ice mass sliding over undulating bed. For stable

motion (5 must be larger than a.

plane in the upstream side. The thermal conductivity of the

bedrock is therefore one of the parameters controlling the

regelation process. Regelation takes place also in the exper¬

iment where a weighted loop of wire slowly passes through a

block of ice without splitting the ice. The second mechanism

is enhanced plastic deformation produced by local stress con¬

centrations on the upstream side of rock bumps giving rise to

enlarged strain rates and accordingly to increased flow.

Considering these two processes, an exact analytical

solution for the sliding problem exists, if the following as¬

sumptions are made:

(1) Clean, impermeable ice is sliding over an un-

deformable and impermeable rock surface.

(2) There is no friction between basal ice and sub¬

stratum, which means the sole is free of local

shear stress. In other words: the perfect-slip

condition is assumed.
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(3) No ice/bed separation. The ice sole is entirely

in contact with the rock surface through a very

thin water layer.

(4) Small slope and roughness of the rock bed.

(5) The ice deforms as Newtonian fluid with con¬

stant viscosity i\.

The first solution was presented by Weertman (1957)

modelling the glacier bed as an inclined plane with cubical

bumps on it. He also included a Glen type power law for the

ice rheology and determined the sliding velocity due to each

of the two sliding mechanisms alone.

The velocity u. is the result of the regelation process:

.. ..

Xb
ul 2

a r

where x,: the average shear stress at the bed, a: the side

length of the cubical obstacles, r = a/X : the so-called

roughness parameter and X : generally the wavelength of the

bed undulations or in Weertman's model of the bed the dis¬

tance between cubical obstacles (from center to center of the

cubes). u. is inversely proportional to the obstacle length

a, thus regelation is most effective for small bumps.

The second mechanism, enhanced deformation, causes a contri¬

bution u„ to the sliding velocity u,:

xb

u"7j

where in the above n is : the exponent in the Glen type flow

law. u~ increases with increasing obstacle size a.

The two mechanisms, regelation and deformation, therefore

compete with each other at an intermediate obstacle size
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where the two contributions u. and u~ are equal. Weertman

calls such an obstacle a controlling one.

The sliding velocity u, is now derived as the sum of the pro¬

cesses, assuming that the controlling obstacle size complete¬

ly determines the sliding velocity:

n+1

ub
"

n+1
• (C-1)

r

For the most common value of the exponent n = 3 the sliding

velocity is proportional to the square of the basal shear

stress x, and inversely proportional to the fourth power of

the roughness r. The above relation is the first so-called

sliding law connecting the basal shear stress, the bed topog¬

raphy and the sliding velocity. It is possible now to deter¬

mine the basal velocity by macroscopic values such as surface

slope, glacier thickness and geometry of the bed.

Lliboutry (1968), Nye (1969,1970) and Kamb (1970)

improved Weertman's solution. They developed sliding theories

with a more realistic model of the glacier bed for linear

viscous deforming ice. The bed topography is expressed in

terms of a spectral decomposition by Fourier transformation

methods rendering it possible to choose an arbitrary periodic

bed profile, yet many of the results were found for so called

white roughness, in other words the roughness (the amplitude

to wavelength ratio) is independent of wavelength.

Again they all found a characteristic wavelength called by

Kamb transition wavelength X^, for which the contributions of

regelation and deformation are equal. For wavelengths greater

than X+ the creep process dominates and regelation can be

neglected, and for smaller ones accordingly vice versa. A

typical value for the transitional wavelength is X^. = 0.5 m,

thus of the order of magnitude 10 m.

Kamb's definition in the case of linear flow law is:

xl = 2 „ (kx + kb) _£j.
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where in the above k., k, are: thermal conductivity of ice

and bedrock respectively, C : Clausius-Clapeyron constant and

L : specific latent heat of fusion.

Nye and Kamb found as a sliding law with linear rhe-

ology the relation

ub
- \ (C.2)

r

corresponding to Weertman's solution, yet with a flow law

exponent n = 1.

Lliboutry (1975) derived a simpler formula for the

sliding law yet with a different representation of the bed

profile (in form of spectral power density):

Xb

nu -I r n

where mA is a measure of roughness, n the ice viscosity and r

a constant arising from the regelation process containing ice

density, latent heat of fusion, thermal conductivity of both

bedrock and ice, and the Clausius-Clapeyron constant.

For a sinusoidal bed with only one wavelength the

sliding velocity can be given neglecting regelation as (Nye,

1969) :

(C.3a)

X xb
ub

8

X3
xb

ub
8 « ii a

xb
ub

1 a k

<C.3b)

(C.3c)

where k is the wave number k = 2n/X
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A numerical example is considered:

glacier thickness:

surface slope:

shape factor:

basal shear stress:

wavelength:

roughness:

h = 200 m

a = 6.5°

f = 0.68

xb
= 1.2 x 105 Pa

X = 20 m

r = 0.05

13
viscosity: r\ = 1 x 10 Pa s

producing a sliding velocity

u, = 3.87 x 10~7m/s = 12.2 m/a
b

a value of reasonable order of magnitude: 10 m/a.

The surface velocity u due to internal deformation of the
J

s

u -
J— x, h (C.4)

s 2 t| b

would be

37.8 m/a

assuming the same numerical values as above. Thus the whole

motion at the surface is U = u, + u =50.0 m/a consisting of
b s

24% sliding and 76% deformation. The portion of sliding vari¬

es as the wavelength and inversely as the square of rough¬

ness .

In detail with Eq.(C.3) and Eq.(C.4) for sliding and

surface velocity respectively, one obtains the portion of

sliding on the total motion:

u, ,

b . , X

u, + u [ubJ "

3 T~—T
b s 4 rc r h + A.

Figure C.4 shows the dependence on roughness and wavelength

for the above numerical example with wavelengths of X = 5,

10, 20, 50 m. However, the important elements are not the

absolute values of X, but the magnitude of X relative to the

glacier thickness. Since the considered glacier thickness is

h = 200 m, the four curves m Figure C.4 correspond to the



_ ^ r

Figure C.4 Portion of sliding at the whole motion at the

surface depending on roughness r and on wavelength

of bed undulations. Glacier thickness is h = 200 m.

For details see text below.

dimensionless wavelengths [X] = X/h = 0.025, 0.05, 0.1, 0.25.

Thus for a glacier 500 m thick with bed undulation wavelength

of 50 m the same curve results as for h = 200 m and a wave¬

length of X = 20 m. The curve with [X] = 0.25 represents a

rather unrealistic case and is more an uppermost boundary be¬

cause a wavelength only four times smaller than the glacier

thickness describes large-scale bed topography and no longer

bed roughness. Therefore, one can say that a high proportion

of sliding always indicates a small bed roughness or in more

general terms, a glacier bed offering not too much drag to

motion.

The above considerations are made for the case of

linear viscosity, but are probably also true for non-linear

deforming ice, since the viscosity affects both the sliding

and the deformational surface velocity in the same way. If

there is friction at the sliding interface due to debris in

the basal ice, the sliding velocity decreases and thus the

above statement is even reinforced. The case where water
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filled cavities are forming can be interpreted as a smoothing

of the bed leading to a smaller roughness, which in turn

leads to a larger sliding velocity. Again, a high proportion

of sliding corresponds to small roughness.

Kamb (1970) and Lliboutry (1975) attempted to expand

their theories to include nonlinear rheological properties.

It was only possible to reach this aim by the use of approxi¬

mation methods. The second invariant of the stress deviator

called effective viscosity in the Glen type power law depends

on the strain rate itself, thus the stress distribution can¬

not be determined directly, unless with iterative methods. To

avoid this complication Kamb assumes that for a given sliding

velocity and a given bed the pattern of local motion and

strain rate are approximately the same for the linear and the

nonlinear case. The effective viscosity therefore depends

only on the distance from the ice-rock interface. Lliboutry

made another simplification. In his derivation the effective

viscosity is the same for all spectral components of the bed.

The component of the transition wavelength from the solution

of the linear problem determines the value of the effective

viscosity as a lower bound.

Both authors again found a transition wavelength; it is no

longer constant, but dependent on roughness and stress dis¬

tribution as a consequence of the variable effective viscosi¬

ty. The sliding velocity varies in the case of white rough¬

ness (constant roughness independent of wavelength) with the

shear stress as Weertman (1957) has proposed:

n+1

ub
* Tb~Z_ •

If the short wavelengths were absent, as in a case called by

Kamb "truncated white roughness" the sliding velocity is pro¬

portional to the n-th power of the basal shear stress:

u,
~ x,

b b
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It makes sense to neglect the short wavelengths with regard

to the well-polished rock bumps beneath former glaciers.

Furthermore, the sinusoidal bed, which has only one wave¬

length, provides an interesting case for comparison. In addi¬

tion, it is assumed that the considered wavelength is much

greater than the transition wavelength (X » X*), so plastic

deformation dominates the sliding process. Starting with

Kamb's Eqs.(92) and (96) (Kamb, 1970, p. 703) one obtains

from the above simplifications a relatively simple expression

for the sliding velocity:

n-1

2_2 2,

[1 + i e r ] ,

ub
~

,0
.n+2 n-'l—FT+T

K

(2%) e r

Tb
(C.5a)

The coefficient e is the base of natural logarithm and N

originates from Kamb's definition of the nonlinear flow law

and corresponds to the more usual flow law parameter A:

(2N)n
or vice versa

_

1

7\N = i
A

n

Eq.(C.5a) can therefore be written as:

n-1

2 2 2 —2~
[l + 7cer] ,,

n
,„ _.,

ub
=

.
n+2 n-1 n+1

X A Xb <C"5b)

4 it e r

In the case of linear rheology where n=l Kamb's Eq.(C.5a) is

merged in Nye's Eq.(C.3a):

ub
=

.-,.3 2
x
-y

(2jc) r N

where the parameter N in the nonlinear flow law is just equal

to the linear viscosity r|, so the two theories are consis¬

tent.
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Kamb tested his theory with eight well-studied field

examples where both basal shear stress and sliding velocity

had been estimated from field mesurements of e.g. surface

slope, velocity and from borehole measurements. From these

values the roughness needed for agreement with the theory was

calculated and compared with the expected roughness from ob¬

servations of the glacier forefield. The predicted values

were lower than the expected ones by a factor of 2 to 4, par-

ticulary in the examples of relatively high sliding velocity

(u. > 20 m/a) where creep dominates. From a different point

of view that means that for the actual observed bed roughness

a sliding velocity that is too slow would result. A possible

explanation for this discrepancy would be ice-bed separation

leading to an effective smoothing of the bed and therefore to

a larger sliding velocity.

How does Findelengletscher, the example considered

above, fit into Kamb's theory? From the numerical values guv-

en below (proposed by Iken and Bindschadler, 1986):

xb
= 1.2 bar (= 1.2 x 105 Pa)

N = 0.92 bar a1'3 (equivalent to A = 0.16 bar^a"1)
X = 20 m

r = 0.05

n = 3

follows (Eq. C.5) a sliding velocity for the case of a sinus¬

oidal bed:

u, = 114 m/a.
b

This is an intermediate value midway between the summer and

the winter sliding velocity. In 1982 the surface velocity in

the summer was about 0.5 m/d and in the winter about 0.3 m/d.

The extent of deformation is about 20 m/a, thus summer and

winter sliding velocities of 160 m/a and 90 m/a respectively

are to be assumed. If one takes a roughness of 0.02, which is

a rather low value but nevertheless a reasonable one, regard¬

ing the exposed former glacier bed m front of the tongue of
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Figure C.5 Former glacier bed of Findelengletscher. Small-

scale roughness m the centimeter range is absent.

Glacier bed with well-polished rock bumps gives the

impression of being very smooth Also visible via

chemical deposition is the extent of cavities.

Findelengletscher (Figure C.5), one obtains a sliding veloci¬

ty of

ub
= 3860 m/a (')

which really is a tremendously high, unrealistic speed.

Thus it seems that m contrary to the statement above, Eq.C 5

produces sliding velocities that are too large. It is not at

all easy to say under what sort of conditions the Kamb formu¬

la for nonlinear sliding over a sinusoidal bed is appropriate

and gives reasonable values. There are several knotty ques¬

tions involved:

(1) Wavelengths of 10, 20 m are very large compared

to the transition wavelength which is two orders

of magnitude smaller (in the centimeter range).
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(2) An idealized sinusoidal bed has to be of about

double roughness compared to the roughness of

the actual bed topography. This doubling seems

necessary to account for the fact that the gla¬

cier bed consists of several different wave¬

lengths and three-dimensional as well. Refer to

Kamb (1970, p. 706, Table 2) where the roughness

calcuated from a bed with truncated white spec¬

trum is about half the roughness determined from

theory for a bed with a single wavelength.

Therefore, if the observations suggest a low

roughness value of 0.02, it could be appropriate

to choose for the calculation an intermediate

value of 0.05 to achieve agreement with field

measurements.

(3) The dependence of the sliding velocity with the

n+l-th power on the inverse roughness is doubt¬

ful and should be reduced (Figure C.6). The num¬

erator in Eq. (C.5) would be responsible for the

reduction, but is not sufficiently effective as

it is nearly independent of roughness.

The last point gives rise to an improvement made by Raymond

(1978) . He proposed to take for the numerator in Eq. C.5 just

a dimensionless constant K to be determined by numerical

methodes:

k (ka)n+1

Tb

I N J

Kn

<2K)n+"rn+1
X

N

(C.5C)

For n = 1 and for low roughness (as in all theories) Nye's

formula (C.3) follows K = 1.

Raymond solved the sliding problem over a sinusoidal bed num¬

erically using the finite element method, and calculated the
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Figure C.6 Dependence of the sliding velocity (calculated

after Nye [1969] and Kamb [1970]) on the roughness

(constant wavelength X = 20 m) for linear and non¬

linear viscous flow law (n = 3). Normalized repre¬

sentation:

(a): Linear sliding velocity normalized to the value

where r = 0.1

(b): Nonlinear sliding velocity normalized to the

value where r = 0.1 showing the much stronger

dependence on the roughness than in the linear

viscous case,

(c): Nonlinear sliding velocity normalized to the

linear value where r = 0.1, showing the depend¬

ence on the roughness compared to the linear

viscous case.
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constant K from the solution for the sliding velocity. Values

of K with n = 3 are in the range of 0.5.

Kamb's numerator in Eq.(C.5) is about equal to one, thus one

order of magnitude larger than Raymond's value. Hence sliding

velocities in the km-range are no longer possible. The strong

dependence on the inverse roughness is diminshed due to Ray¬

mond's improvement. But the problem is that the value of K is

known only for a very few different combinations of wave¬

length and roughness.

However, the sophisticated derivation by Kamb pro¬

vides the only possibility to get an idea of the effect of

the nonlinear rheology of ice. In the example of Findelen¬

gletscher the sliding velocity in the nonlinear case is about

ten times larger then the one calculated by the linear theory

of Nye, a fact that can be seen well in Figure C.6. Local

stress concentrations due to bed undulations cause a soften¬

ing of the ice through the stress dependent effective visco¬

sity and thus lead to larger basal sliding velocities.

Members of a new generation of investigators, Mor-

land (1976a) and Fowler (1981), have reformulated the sliding

problem from a more mathematical point of view. Morland's

derivation of the sliding velocity for linear rheology veri¬

fies the solution of Nye. In his theory the gravitational

force and therefore surface slope a and glacier thickness h

enter explicitly.

Again a simple solution for the sliding over a sinusoidal bed

is presented (Morland, 1976a, eq.(92)):

2 X
pgh sina co + 1 *

Ub
"

~~n ~7

where co = X/X+. For wavelengths X (= 1/k) much greater than

the transition wavelength X± (co >> 1) the above relation can

be simplified:

_

pgh sina X

ub
"

2
•

r\ r
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3
This differs from Nye's result (a factor 8tc ) in that it fol¬

lows from a different definition of the wavelength. Morland

furthermore presents a second order solution of the velocity

and stress field for the case of a sinusoidal bed. Hence he

developed a simple criterion for the onset of formation of

water filled cavities which will be studied thoroughly m the

next section.

Fowler introduces the idea of matched asymptotic ex¬

pansions, a well known method in fluid dynamic boundary layer

theory. Thus the problem is split into the flow m a basal

boundary layer and the outer large scale or bulk glacial

flow. The so-called sliding law is therefore the boundary

condition of the outer flow at the smoothed bed and the some¬

what ill-defined terms basal shear stress and basal velocity

became clear from this point of view. Ill-defined because the

real boundary condition at the ice-rock interface is the per¬

fect-slip condition, thus the shear stress immediately at the

base equals zero. Fowler formulates the sliding problem prop¬

erly in nondimensional units. A priori assumptions as small

roughness and surface slope are not necessary. The regelation

process is neglected, since it is only important at the mil¬

limeter scale as is shown by scaling arguments. However, to

solve the whole system (stress and velocity field) for a non¬

linear flow law and an arbitrary undulating bed proves to be

impossible. Nevertheless Fowler succeeds in deriving the fol¬

lowing dimensionless form of the sliding law:

* - n

ub
= C xb

*

very similar to the ones already known, u, is the dimension¬

less velocity and C is a function of bed topography.

In contrast to Lliboutry (1976) who argues that the Weertman

type sliding law can be obtained by a simple dimensional con¬

sideration, since there would exist only four physically re¬

levant constants: basal velocity, basal shear stress, viscos¬

ity and a constant describing the regelation process, Fowler



- 44 -

is convinced that a further physical parameter, the glacier

depth h, enters the sliding law. The thickness is essential

for matching the inner to the outer flow and appears in the

dimensional form of the sliding law:

* C
.

n

ub
~

E n+1 Tb
r

Untill now all theories were based on the basal per¬

fect-slip condition. As a matter of fact, friction exists at

the ice-rock interface mainly due to debris in the basal ice.

Friction occurs at single points where rock particles embedd¬

ed m the ice and dragged along are m contact with the bed.

But to get a treatable analysis one must assume that the mean

effect of the individual debris contacts can be described by

friction laws which apply continously over the bed surface.

There has to exist a tangential traction xf at the interface.

The boundary condition (B.5bb) is modified as follows:

t n m = x_

lj 1 j f

The friction law is hence a relation between tangential trac¬

tion (also called frictional shear stress or frictional drag)

and another quantity like normal stress (known as Coulomb

friction) or, for example a power of the sliding velocity.

Morland (1976b) has studied the possible effects of

friction on the sliding over a sinusoidal bed assuming linear

rheology for two different friction laws. The solution he

constructed for the Coulomb law of friction proved to be in¬

valid for all possible ranges of bed inclination a, since for

all values of a extended cavity formation occurs due to ten¬

sile normal tractions at the base. The tangential traction

xf has to be smaller than the mean downward component of the

gravity force, but is in the mathematical solution of the

same order of magnitude as the normal stress. Morland con¬

cludes that the Coulomb friction is only applicable if sig-
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nificant cavity formation takes place.

The second friction law Morland considers is a velocity power

law producing smaller sliding velocities than one would ex¬

pect and a different stress distribution at the glacier bed.

The latter is important for the onset of bed separation.

Fowler (1981) also has included in his theory on

sliding over a wavy bed in the absence of cavity formation

the possibility of a non vanishing tangential traction. If

there is friction (xf > 0) the sliding law is:

u* = C xn (1 - x*)n (C.6a)

where asterisks denote dimensionless values: if
= xf/x

The above equation can be written in the form

* 1/n

x = R ub
1/u

+ xf (C.6b)

where R. = C is a measure of the bedrock roughness; this

implies that the shear stress x is additively dependent on

the ice flow and the frictional drag under the limiting as¬

sumption of small rouhgness. Seen from another viewpoint this

means that in the presence of friction the driving basal

shear stress is reduced:

xb
= (x - xf)

and accordingly the basal sliding velocity:

u* = C (x - xf)n (C.6c)

The above result is one of the basal assumptions of

Hallet's (1981) sliding theory. The principal aim of Hallet

was the development of a model of bedrock abrasion by rock

fragments dragged against the ice-rock interface. His general

model for linear ice rheology starts just from the assumption
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that the average shear stress at the base x (due to gravity)

consists of two components: the ice flow and the frictional

drag (Figure C.7):

- R ub + xf (C.7)

The proportionality factor is a function of bedrock roughness

and ice viscosity.

The second improvement of Hallet's theory lies in the sort of

friction he is postulating. In contrast to a wide-spread as¬

sumption that friction depends on the normal so-called ice

overburden pressure, hence primarly a function of the glacier

thickness, he adopts the results of an early theory on abra¬

sion by Gilbert (1910). Gilbert recognized that abrasion de¬

pends on the basal sliding velocity, the pressure exerted by

rock particles on the bed, the concentration of rock frag¬

ments, the bed topography and the hardness of both the rock

fragments and the bedrock.

Hallet's general model writes as follows (Hallet, 1981,

Eq. (1)) :

= % n u. H c F (C.8)

where \

H

c

F

coefficient of bed geometry

ice viscosity

coefficient of friction

aeral concentration of rock particles

contact force between rock fragment and the bed

(proportional to the ice velocity v normal to

the bed)

Hallet's model appears appropriate for glaciers with rather

small concentrations (<15% in volume) of rock fragments in

the basal layer. For glaciers with a dominately debris-con¬

taining basal layer a different approach for determing the

friction term in the sliding law would be required. For more

details see Chapter D.
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There exist no results which indicate to what extent friction

of the Hallet type would slow down the glacier sliding.

Hallet concentrates on the calculation of abrasion rates.

The foregoing represents the state of the art in

sliding theories without bed separation. For some years re¬

search interest has been concentrated mainly on the subgla¬

cial hydraulics and related phenomena as formation of water-

filled cavities or particulary as surging glaciers.

C.3 Sliding with bed separation

C.3.1 Subglacial water pressure

Fast glacier flow can be explained on the basis of

the sliding theories presented above, at least insofar as

surface velocities larger than the velocity due to internal

deformation follow from sliding motion at the ice/rock inter¬

face. In the sliding theories mentioned, the sliding velocity

u, is a function of the basal shear stress x.
, a fixed value

b b

for a given glacier geometry. Hence it is impossible to in¬

terpret variations of the surface velocity. As a matter of

fact, there are changes, seasonal and diurnal, in glacier

flow as many observations illustrate (e.g. Aellen and Iken,

1979) .

Increased velocity after heavy melting or rain suggests that

water at the base influences the sliding velocity. This oc¬

curs mainly from surface meltwater penetrating through the

glacier to the bed, and not by means of water originating

from geothermal heating or from the regelation process. At

the base the water flows partially delayed through a system

of passageways, channels and connected cavities, forming in
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the lee of bed undulations, to the terminus, where often only

one, or a few, large tunnels exist. Thus the water pressure

P in this complex subglacial hydraulic system can be chosen

as a further relevant variable in a realistic sliding law

Since the cavities are interconnected, the water pressure is

the same in all cavities, neglecting differences in altitude,

described by Lliboutry (1976) as interconnected hydraulic re¬

gime .

However, the hydraulic system itself is varying, for instance

at the beginning of the melt season- the cavities are grow¬

ing, passageways between cavities are forming, tunnels are

reopening. Iken (1981) and Iken et al. (1983) calculated and

observed that the sliding velocity is a maximum when the cav¬

ities are growing. Probably both the water pressure and the

state of the subglacial hydraulic system influence the slid¬

ing velocity.

Lliboutry (1958) was the first to point out that in

addition to the two processes, introduced by Weertman (1957),

regelation and deformation, a third one, that is, flow with

cavitiy formation, should be considered.

Figure C.7 Cavity in an ice tunnel near the tongue of

Findelengletscher
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The compressive stress p (x,y) normal to the bed due

to gravity varies according to the varying geometry along the

glacier bed. At locations where p becomes tensile, most

likely on the downstream side of rock bumps, the ice will

separate from the rock to form a cavity. Wherever the water

pressure P is larger than the normal stress p water will

intrude between ice and rock to form a water-filled cavity.

There exist many observations of air and water-filled caviti¬

es (Figure C.7).

Hence the formation of water-filled cavities depends on the

difference between p and P
. As soon as

*n w

Pw > Pn(x,y) (C.9)

the condition for cavities to form is given. To get a more

handy relation the local varying stress p (x,y) is substitut¬

ed by the pressure P
,

the average normal stress p (x,y) and
o n

equal to the weight per unit area of the ice. P is usually
0

called ice overburden pressure. A new parameter can be given

by

N = P - P (CIO)
o w

where N is known in the literature as effective normal pres¬

sure. The smaller the effective pressure N, the more extended

is the bed separation.

Cavities in the lee of bedrock bumps reduce the

roughness and so increase the sliding velocity. By introduc¬

ing the effective pressure N in the sliding law it seems to

be possible to explain velocity fluctuations.

C.3.2 Classic theories

Lliboutry (1958, 1968, 1979, 1987a,b) has with great

effort studied in detail the problem of sliding with forma-
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tion of subglacial cavities. In 1968 he published a paper en¬

titled "General theory of subglacial cavitation and sliding

of temperate glaciers". Nearly twenty years later (1987a) he

wrote in the conclusions, p. 9109, of the paper "Realistic,

yet simple bottom boundary conditions for glaciers and ice

sheets": "We have tried to expose clearly the main concepts

which have been successively introduced in sliding theory ...

The most important ones are (1) a sliding law holds for some

space scale only, and (2) for a given space scale, the law

may be completely different according to the models which are

adopted for the microrelief and for the subglacial hydrau¬

lics." In other words, a general sliding law fiercely claimed

by modellers and by applied glaciologists is not yet in

sight. In the following section some steps in the development

indicated are pointed out.

In 1958 Lliboutry found that the friction due to the

-1/2
process of flow with cavity formation varies as u, ,

a

result corrected in 1959 to u, . Assuming that the fric¬

tion of the three processes contributing to sliding are addi¬

tive a total friction results

Xb
= \ K r N

independent of the speed of sliding u, . In this case sliding

is reduced to a simple Coulomb friction relation, in which

the ratio x,/N gives the equivalent coefficient of friction.

In 1979 he derived the following general relation between x. ,

u, ,
and N :

x, = k N f
b

where k is a constant. For the case of a bed profile of ran¬

dom bumps of similar rather large wavelengths (compared to

the transition wavelength) , he found:
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, 1/n
,

,„?;_,, 2/n+l
x. = k, u. + k_NF + k-, u,
b lb 2 3 b

where F is a function of the properties of the bed profile,

and k., k„, k~ are constants.

In Lliboutry (1987a,b) the sliding problem is split for dif¬

ferent length scales: a decimetric scale corresponding to the

transition wavelength and usually included in the classic

theories, a decametric scale yielding sliding laws to be used

in mountain glacier modelling and thirdly, a kilometric scale

relevant for ice sheet modelling. At the intermediate scale

for a gently undulating profile with random roughness, an

asymptotic sliding law can be given:

xb
= k4 N + k5 ub

N1-"

where k. and k,. denote constants depending on the distribu¬

tion of the bump heights and on typical bed and ice proper¬

ties respectively. The asymptotic sliding applies in case of

extended bed separation and therefore large sliding velocity.

When no bed separation occurs a different sliding law,

ub
= k6 Xbn + k7 xb

not consistent with the above one, is postulated. It is not

clear how the transition between the two sliding laws operat¬

es .

Fowler (1986) reformulated the sliding with bed separation as

a Hilbert problem and presented a solution for the particular

case of a periodic bedrock. The deduced sliding law for ice

as linear viscous material can be written dimensionlessly in

the form

Tb
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where asterisks denote dimensionless variables. Given in

more detail, the values are x. - Tb/[X], Ub
= u]-/ [U]J and

p = r N/[x], where [x] and [u. ] are typical values for basal

velocity and shear stress and r is a sort of roughness.

The dimensional sliding law is therefore

r N f

Generalized for a non-Newtonian flow law

Xb
= r N f

uv.

a relation strongly resembling the one developed by Lliboutry

(1979). Thus Fowler partially reproduced Lliboutry's results.

Fowler's basic result is that, for the sort of bedrock pro¬

files studied, the sliding law is multi-valued as illustrated

by Hutter (1982) (Figure C.8). The surge behavior suggests

U

T

Figure C.8 Sliding velocity as a function of basal shear

stress (from Hutter 1982b).

a) Regular "Weertman-type" sliding law

b) Sliding law with a range of basal shear stress

for which the sliding velocity is multi-valued

c) For a critical value of the shear stress sliding

velocity grows fast.
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such a solution. Fowler nevertheless expects that for a gen¬

eral bedrock profile a single-valued sliding law would result

and that the surge phenomenon could be explained by the

different state of the subglacial hydraulic system, an as¬

sumption based on recent results of the 1982-1983 surge of

Variegated Glacier (Kamb et al. 1985, Kamb 1987).

Fowler doubts whether the often used "generalized Weertman

law" of the form

Tb
=

ub N

is appropriate to describe fast sliding. However, the results

of an experimental study by Budd et al. (1979) and an analys¬

is by Bindschadler (1983) support the above relation. They

proposea=

|

popular form

proposea=

P =

t-.
Thus the sliding law can be given in the

xh3
u, = k J2- (C.ll)
"b

N

The sliding law (Eq. C.ll) is frequently used in ice sheet

models as shown in an overview by Bentley (1987).

Hence no sophisticated law, but a very crude relation between

some of the relevant parameters, is used without any regard

for the recent development. The above relation (C.ll) can

perhaps be matched with field data but has less to do with

the physics down at the glacier base. The sliding law de¬

scribed is a simple empirical relation between sliding veloc¬

ity and subglacial water pressure.

C.3.3 Sliding over a sinusoidal bed

The sliding over a perfectly lubricated sinusoidal

bed is a well-studied particular case of the sliding problem

(e.g. Lliboutry, 1968). It is therefore worthwhile to focus
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on it more closely and develop some details such as separa¬

tion and critical pressure. In the section below only the

process of enhanced creep is considered; regelation is neg¬

lected.

C.3.3.1 Stress distribution without bed separation

On a sinusoidal bed the stress distribution normal

to the bed is principially given by the vertical and horizon¬

tal force balance (e.g. Raymond, 1980, eq.46a,46b). Here hor¬

izontal means parallel, vertical means perpendicular to the

average bed slope (Figure C.3). The direction perpendicular

to the local (oscillating) bed is considered "normal".

The pressure which the sliding ice mass exerts vertically on

the bed is on the average equal to the ice overburden pres¬

sure P = pgh cosa, but due to the undulating bed, it is os-
0

dilating: larger than the ice overburden pressure on the up¬

stream faces of bed undulations and smaller on the downstream

faces. In the down-glacier direction the force balance re¬

quires that the sum of components in x-direction of the nor¬

mal stress p (x) is equivalent to the average shear stress

x = pgh sina. In detail for a two-dimensional model (Figure

C.3)

1

X

ayh(x)

(x) —^— dx
dx

(C.12)

and

P = J P_(x)
X „' Pn(x)

3yb(x>
. 3x .

dx (C.13)

In the above equations an approximation for small roughness

(r s 0.1) is already included

sin p = tan
3yb(x)
—3x—
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where p is the angle of the local bed compared to the mean

bed (see Figure C.3) and yh(x) describes the bed geometry

yb(x) a sin &

Since the normal stress p (x) is undulating as mentioned

above it can be given as

Pn(x) p + Ap(x)

where p is a constant and Ap(x) a fluctuating contribution.

It is reasonable to choose the following expression for the

normal stress:

Pn(x) p + Ap cos (^i)
r

Mnax A
(C.14)

assuming that the normal stress is varying with the same

wavelength as the glacier bed.

The two unknowns, p and Ap, can be determined by the balance

conditions (Eq. C.12 and C.13)

.21CX,
^b(x)

—3x—

l
(K

x =

£ J Apmax cos (i^)
—^— dx (C.12a)

J [p + Ap(x
dyb(x)
l—?x—J

dx (C.13a)

Usually it is tacitly assumed that

dyb(x)
—3x"~

and with

1

X p dx
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it follows that the constant contribution is equal to the ice

overburden pressure

p = P
0

The usual assumption as given above is only valid for small

roughness. The integral in Eq.(C.13a) can be solved numeric¬

ally, which was done for the special case of a sinusoidal bed

profile with X = 2 jc and different values of the wave

amplitude to

1.0

[p]
II

0.5
0 0.04 0.08 0.12 0.16

»- r

roughness

Figure C.9 Constant contribution [p] to the fluctuating

normal stress p in dependence on the roughness r.

For r i 0.01, p - P follows, [p] is dimensionless
0

and normalized [p] = p/P
0

take into account different roughness. The result for a quar¬

ter of a wavelength varies between ic/2 and 1 for an amplitude

range of 0 £ a s 1. Figure C.9 shows that the assumption

p = P is justified for a roughness r s 0.1 (the deviation is
0

in this case less than about 10%).

The balance condition parallel to the mean bed slope requires

2jia .

\X 2.2tcx.
,

x =

—7 Ap J cos (__) dx .

X
max

0
K
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The integral expression is equal to X/2 and therefore

APmax = M • <C-14>

Thus finally the local normal stress which the ice exerts on

the bed can be expressed (for small roughness only) as

?n<x> =

P„ + MC0S(£?> (C-15)

C.3.3.2 Bed separation: separation and critical pressure

For large values of the fluctuating contribution to

the normal stress

Ap > P
"max

„

the normal stress becomes tensile, that means the ice will

separate from the glacier bed without any effect of basal wa¬

ter: an air-filled cavity is forming unless water exists at

the base. The condition for tensile stresses at the bed is

tan a z % r

where a is the mean bed slope and r (= a/X) the roughness.

The above relation can be deduced considering that

x = P tan a

0

If the normal stress is compressive everywhere, bed

separation takes place only at a sufficiently large subgla¬

cial water pressure. If the water pressure reaches the mini¬

mum normal stress bed separation starts and water-filled cav¬

ities form. The so-called separation pressure P is well

established and has been introduced in the classic sliding

theories (Lliboutry 1958, Nye 1969, Kamb 1970, Morland

197 6a). The separation condition can be given as
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P = p = p - hi (C.16)
w s o arc

or with x = P tan a

P = P - -i_
s o i r

The water pressure at which the sliding ice mass at¬

tains the state of unstable motion is called critical pres¬

sure P . It is well-known that usually the critical pressure

is below the ice overburden pressure. Therefore, it is prob¬

ably preferable to introduce the critical pressure rather

than the effective one in a possible sliding law. A deriva¬

tion is presented by Iken (1981) and Iken and Bindschadler

(1986) regarding an ice mass resting on a rectangular stepped

bed profile. In this special case the critical pressure cor¬

responds to the force moving the ice mass upward along the

stoss faces with accelerating velocity. Details are given in

Section D. Independent of the sort of bed profile the criti¬

cal pressure can be written as (Iken, 1981)

P = P i

X

u (C.17)
c o tan |}

where in the above P : the overburden pressure, x: the basal
0

shear stress and p: the angle which the stoss faces make with

the mean downstream slope.

For the special case of a sinusoidal bed, the steep¬

est tangent of the stoss face is

,. a,
2 ita

(tan P'max
=

IT

and thus

Pc =

P0
- 7s! <C-17a)

x
P = P
c 0 Znr
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This means in general that the critical pressure is always

halfway between the ice overburden and the separation pres¬

sure

7 <P0 + Ps>

slope

Figure C.IO Dependence of dimensionless, normalized critical

pressure [P

ter [a].

= P /P
C 0

on dimensionless slope parame-

Figure C.IO shows that on a horizontal bed the glacier is

afloat only if the water pressure exceeds the ice overburden

pressure: P = P = P
S C o

In Figure C.IO a measure for roughness and average bed slope

is introduced defined as follows

[a]
tan a

(tan P),
tan a

2jcr

The critical pressure varies as roughness and inversely as

bed slope. One can easily see that for a very smooth, per¬

fectly lubricated glacier bed only a small amount of water

pressure is necessary to initiate the accelerating motion, an

effect even enlarged for increasing slope. In other words, as

one would expect a glacier is most stable on a gentle and

rough slope.
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C.3.3.3 Bed separation: stress distribution

and cavity length

If the water pressure exceeds the minimum normal

stress the ice exerts on the bed, the ice separates from the

bed and water-filled cavities will form. This happens in the

lee of bed undulations. The stress distribution (Eq. C.15)

which determines the bed separation is changed itself by the

bed separation. Hence, the formation of water-filled cavities

is distinctly a dynamic process. The subsequent balance

considerations describe only a singular transient state and

can help to understand the process of bed separation, but

cannot fully describe the dynamics.

It is assumed that a cavity forms symmetrically

around the inflexion point (x = X/2) on the lee side of a

rock bump. The length of the separated zone is 21 (see Figure

C.ll). The bed separation is described by the bed separation

parameter s = 21A. To determine the stress distribution aft¬

er the separation and to give the cavity length at a certain

water pressure, we make the assumption that the force balance

parallel and perpendicular to the mean bed slope has to be

fulfilled. Otherwise an accelerating force would arise, which

is not allowed, since glaciers move with constant velocity

(at constant water pressure) even when the ice is partly

separated from the bed. The movement becomes unstable only if

the water pressure exceeds the critical pressure.

The stress distribution along one wavelength of the sinusoid¬

al bed can be given as follows:

£+1 s x s £-1
(C.18)

£-1 S X s £+1

The continuity at the end of the cavity requires

p^(x) = p' + Ap'cosf^E) for

p' (x) = P
*n w

for

Pw = p' + Ap'cos(^(^ + 1))
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A/2-1 A/2

Figure C.ll Bed geometry and stress distribution before

(p (x)) and after (p'(x)) bed separation

Hence the constant contribution p' is

p' = Pw + Ap'cos(^i)

and thus

p^(x) = Pw + Ap'[cos(^i) + cosf-**1 (C.19)

This expression reduces to equation C.15 when bed separation

ceases (1 = 0, P Ps =

P, APmax>•

The amplitude of the fluctuating contribution can be deter¬

mined considering the force balance. In y-direction the mean

stress perpendicular to the bed has to be equal to the ice

overburden pressure P . As the stress distribution is symmet-

rical to the inflexion point in the lee of the bed undula¬

tion, only half a wavelength is considered.
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X

J
p!(x)

P X/2 =

J

p (x) dx

X/2
n

„X/2 + l X

P X/2 = J P dx + J p' (x) dx

X/2
w

X/2+1
n

P 1 +
w

X

J [pw + Ap'[cos(^i)+cos(i^) ]Jdx

It follows that

X/2 + 1

P + Ap' [ - sin tcs + cos its (1 - s)
W II

II (P - p )
ft w

Ap' =

nd - s) cos us + sin its
(C20)

The stress distribution is not yet determined, since we do

not know the bed separation parameter s, nor the water pres¬

sure P
. To find a relation between these two variables the

w

force balance in x-direction (parallel to the mean bed) is

considered. The sum of the stress components in x-direction

has to be equal to the driving shear stress:

X/2-1
g

xX = J (pw + Ap'[cos(2£i)+cos(2££)]j £> dx

-X/2+1

X/2-1 3

f 9yb
+ J P

°

-X/2+1
w TO

dx

It follows that

x = ^Ap' [cos its sin us + jc(1 - s) ] . (C.21)

In Equation C.21 the water pressure no longer appears. So Ap'

can be given by choosing a value of the bed separation param¬

eter s. Together with Equation C.20 the corresponding water

pressure can be calculated. Hence, by combining Equations
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C.20 and C.21 one gets a functional relationship between the

subglacial water pressure and the bed separation

p p - hi (sin rcs + rc(l - s>cos rcs . .„

22.
w o Jta sin its cos its + it (I - s)

' ( '

or otherwise

itr (P p
.

sin its cos its + it(l - s)

w sin its + it (I - s)cos its

In order to make the expression independent of the geometry a

new dimensionless water pressure [P ] is introduced
w

[P ]
w

Ap - (P
*max o

P )
w

P - P
w s

Ap
(C.23)

At the separation pressure [P ] = 0, at the critical pressure

[P ] = 0.5 and the ice overburden pressure corresponds to

Figure C.12 Bed separation as a function of the subglacial

water pressure for a sinusoidal bed: (a) without

friction, (b) with sandpaper friction (|i = 0.1, Eq.

D.22). Broken line indicates erroneous solution, if

the force balance in y-direction alone is consider¬

ed.
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[P ] = 1 -

sin its + it(l - s)cos its
(C.22a)

w sin its cos its + u(l - s)

Figure C.12 shows the bed separation as a function of the

subglacial water pressure assuming that the force balance in

y-direction over the cavity length is the same as without bed

separation (a condition which holds for small cavities only).

In contrast to the theories of Lliboutry (1968), Fowler

(1986) and Kamb (1987), the critical pressure where the ice

is practically fully separated from the bed is the crucial

variable.

Neglecting the force balance in x-direction leads to a much

smaller bed separation, indicated in Figure C.12 by a brojcen

line. In that case, at the critical pressure the bed separa¬

tion parameter is not s = 1 but s - 0.6 and reaches s = 1 at

the ice overburden pressure. This misunderstanding gives rise

to an overrating of the effective pressure N which in our

opinion should not appear in a realistic sliding law.

Friction between the basal ice and the bed can be

introduced in Equation C.22, assuming that friction can be

seen as a reduction of the driving shear stress. The effect

on the bed separation is shown in Figure C.12 (line (b)) by

an example where the friction coefficient is |i = 0.03, calcu¬

lated by substituting x in Equation C.22 with the effective

basal shear stress x. = x - x~ :

x - t. = jcr (P - P')
sin its cos rcs + ltd - s)

f o w sin its + n(l - s)cos its

Here it has been neglected that the friction slightly changes

the stress distribution. Further details on friction follow

in the next chapter.
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C.3.4 Possible sliding law

In the sliding law generally used (Eq.C.11), the

sliding velocity varies as the inverse effective pressure.

For constant shear stress the sliding velocity tends to in¬

finity if the water pressure reaches the ice overburden pres¬

sure. Most glaciers attain this state of accelerated motion

not at a well-defined value such as the ice overburden pres¬

sure. Some never become instable, probably since the glacier

bed offers too much drag or a high water pressure cannot

build up. From the theoretical treatment of the sliding over

a sinusoidal bed it seems clear that one of the pertinent

variables to introduce in a sliding law is the critical pres¬

sure, more exactly the difference between the acting water

pressure and the critical pressure. Also the separation pres¬

sure as a point where the sliding velocity is increasing due

to cavity formation should appear in a realistic global bot¬

tom boundary condition. Unfortunately it is not possible to

give a general relation for all possible values of the water

pressure, particulary for the sliding without bed separation

(P = 0). The expression proposed below are intended to give

an idea how a possible sliding law could look

ub
- xbn for Pw < Ps ,

and for sliding with bed separation

[ub]
Tb

P—=~P~
i. c wJ

n

for Pw > Pg . (C.25)

Such a functional relationship could describe the results of

the extended water pressure and surface velocity measurements

at Findelengletscher (Iken and Bindschadler, 1986), however

only in a qualitative sense.

From the calculation of the critical pressure for the case of

Findelengletscher follows a much too small value compared to

the measured water pressure values. The glacier should be at
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the most in a state of unstable motion, what is actually not

the case. Thus, with the above theory a too low value for the

critical pressure results. Probably friction at the base be¬

tween rock particles embedded in the ice and the rock bed

gives rise to a higher value of the critical pressure. This

aspect of the problem is examined more closely in Chapter D.
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Chapter D

FRICTION

D.1 Introduction

A glacier does not slide frictionlessly over its bed

as assumed in most of the theoretical work (Weertman, 1957,

Lliboutry 1968, Nye 1969, 1970, Kamb 1970, Morland 1976a,

Fowler 1981). This fact is obvious and can be seen via erosi¬

ve patterns such as grooves and striaes on ruck bumps in the

forefield of glaciers (Figure D.l).

Basal ice generally contains debris in varying con¬

centrations and sizes. When a glacier is sliding over a bed

of rigid or deformable substrata, there is some rock-to-rock

friction slowing down the sliding motion. The result of this

rubbing contact is abrasional wear with production of wear

debris. The most important factors for abrasion are the hard¬

ness of both the rocks held in the ice and the bedrock, the

relative velocity between rock particle and bed (not a priori

equal to the sliding velocity) and the contact force by which

the clast is pressed against the bed (Drewry, 1986).



Figure D.l Grooves on a rock bump near the front of

Limmerngletscher (Glarnese Alps).

There have been several attempts to describe this phenomena

and there are quite different friction laws (Lliboutry 1979,

Morland 1976b, Reynaud 1973, Boulton 1974, Hallet 1979).

A dynamic friction law connects a friction force al¬

ways opposite to the direction of motion, to any characteris¬

tic properties of the bodies involved. Thus there is a fun¬

damental difference between sliding and friction laws. In

that sense the so-called solid friction law (Liboutry, 1968)

is a possible sliding law.

Generally, the science of interacting surfaces in

relative motion is called tribology (Szeri, 1987); m a more

modern sense it can be defined as the study of friction, wear

and lubrication. Even early theories of friction were based

on the fact that practically all surfaces are rough on the

microscopic scale. The experimental "laws" governing fric¬

tion, namely (1) friction is proportional to the normal load,

and (2) friction is independent of the apparent area of con¬

tact, were first established by da Vinci, rediscovered by
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Amontons and improved upon by Coulomb. Bowden and Tabor

(1964) developed the adhesion theory by which the above-men¬

tioned laws of friction can easily be explained. They propos¬

ed that friction is the force required to overcome welded

junctions formed between solids as a result of their molecul¬

ar interactions.

There exists no uniform theory of friction. A lot of findings

seem to be preliminary and extremely dependent on the actual

circumstances in play. This makes it difficult to treat ques¬

tions of friction without the know-how of an expert.

D.2 Coulomb friction

Coulomb friction is the most popular friction theo¬

ry, including the above-mentioned experimental laws.

Coulomb friction is for the most part solid-solid friction.

In the case of a glacier, this would mean that ice is a rigid

body resting on a rigid rock bed. There is no motion at the

sliding interface except if the shear stress due to the

weight driving the sliding mass is great enough to overcome

the frictional drag (Figure D.2).

Figure D.2 Rigid body on a slope, first primitive model of

a glacier. F and FN are components of the weight W

parallel and normal to the slope. Ff denotes sliding

or friction force.
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To initiate the sliding motion a force at least as

large as the friction force Ff, but of opposite direction

Ff = ^sFN V-U

is required, where u : coefficient of static friction and

F : normal force, component of the weight W normal to the

sliding interface.

Once sliding commences, the force to maintain the motion is a

bit smaller than Ff because |i is replaced by ji.: the coeffi¬

cient of dynamic friction (p. .
< n ) .

Regarding the glacier as a uniform slab on an inclined plane

(angle a) the motion starts if:

u s tan a
s

In the following the friction coefficient is just called \i.

However, in the above case there is no deformation

in the glacier considered to be an absolutly rigid material.

Figure D.3 Rigid body with rough sliding interface only in

contact at a limited number of asperities.
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A rigid body with a rough surface is not entirely in

contact with the bed, but is so only at a limited number of

asperities. The real contact area A is much smaller than the

apparent area A of contact (Figure D.3).

At the asperities high stress concentrations will occur in¬

creasing with increasing load. This leads to deformation of

the asperities until the contact areas are large enough to

support the load. There seems to exist a typical size of

contact area for a certain weight (Bowden and Tabor, 1964).

Let P be the pressure the asperities can support and A the

real contact area, that is the sum of the areas of individual

asperity contacts, then

W PA P

Pn =

Tq-
= ^~ = r^s ">•*>

where 1 - s is the proportion of real contact area on the to¬

tal area defined as:

A

*- "

-r-
a

and P is the pressure on the apparent area due to the weight

of the body (in glaciology usually called ice overburden

pressure) defined as

P =

W

o ~A~

In the case where there are water-filled cavities

with water pressure P
,

the normal pressure at the contact

areas gets smaller, because some of the weight of the body is

balanced by the water pressure P expressed as height h of

water column in a borehole. So

A p.gh + (A - A )(p.gh-p gh )

rri3 a r >Ki3 Kw^ w'

Pn -

JC

AP +(A -A)(P -P)

p =

r o a r' o w'

n A
r
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where p. and p : density of ice and water respectively and

with the effective pressure N = P - P the normal pressure

o w
c

at the asperities is

P - P

P = -S
- + P = _J!— + P .

(D.3)

n I - s w 1 - s w
*"•->/

If the real contact area is very small compared to the appa¬

rent contact area (i.d. s » 0) the water pressure P in

(D.3) can be neglected:

P - «_
.

n I - s

As long as the water pressure P is not equal to the ice

overburden pressure P there are some small contact areas. A
0

continuous water film exists only if the water pressure

equals the overburden pressure. Then the ice mass considered

as a rigid body is afloat and moving in an unstable way. As

we know, in a real glacier this stage of accelerated motion

is already reached at a lower water pressure than the ice

overburden pressure, unless some stoss faces of the undulat¬

ing bed are vertical.

Although there is no continuous water film, usually

the true pressure P at the asperities is not considered but

an average pressure F referring to the total area A :

PA
.,

A

F = JL£
= (,

N

+ P ) ^
n TJ (I - s w' 3r

a a

A

= N + P _£
W A

a

Fn = N + Pw(l - S)

If the real contact area A is very small compared to the

total area A , the second term can be neglected:

F - N = (P - P )
n o w'
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and the friction law can simply be written as:

F_ - (1NA . (D.4)

Again there is only a sliding motion if the frictional force

is smaller than the downhill component of the weight:

UN s x = pgh sina

It follows assuming x = Pntana

or

H

where brackets denote a dimensionless value: [P 1 = ?„/?_ •

Without a subglacial water pressure P one arrives at the

usual balance condition

[i s tan a

Figure D.4 shows that for an intermediate value of the fric¬

tion coefficient (\i = 0.6) and a mean bed slope of 5.7° (tana

= 0.1) a sliding motion is only possible if the water pres¬

sure is at least 80% of the ice overburden pressure. Consid¬

ering a larger friction coefficient and a smaller basal shear

stress (due to the friction from the valley walls) the slid¬

ing would be impossible under most conditions, except the

very extraordinary case when the water pressure reaches the

ice overburden pressure.

Yet in the above situation friction between rigid

bodies is considered and thus there is no deformation in the

basal ice. A glacier is certainly a sort of viscous body and

therefore the Coulomb friction seems not to be appropriate.

Coulomb friction is usually not used in the strict

sense of friction between rigid bodies as described above. In

P tana
o

~H

tana

- IP J
w
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Figure D.4 Coulomb friction: Dependence of sliding on water

pressure [P ] = P /P and friction coefficient u.
c

w w o

Three cases are considered with different mean bed

slopes: tana = 0.05, 0.1, 0.2. Above a line, sliding

(for a given mean bed slope) is possible, since P

is large enough or \i is small enough.

some of the literature (e.g. Reynaud, 1973) it is just the

basal boundary condition in the sliding process which de¬

scribes the interaction between the moving ice mass and the

glacier bed.

The reason for this complication is the nature of

the basal ice. Basal ice consists of two different materials:

rigid rocks and deformable ice. The choice of the friction

law should reasonably depend on the sort of ice-rock mixture.

The more rock debris there is in the ice, the stiffer the ba¬

sal ice layer, which can be adequately described by a sort of

Coulomb friction law. On the other hand, if there are fewer

rock particles which are not in contact, a friction law such

as Hallet (1979) proposed seems appropriate. Accordingly, in

the following section a distinction is made between so-called

sandpaper friction and Hallet friction.
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D.3 Sandpaper friction

D.3.1 Basic concepts

The concept that will be referred to as sandpaper

friction is based on a two layer model consisting of a thin

sediment layer poor in ice and a huge layer of more or less

clean ice. In the sediment layer the rock particles are close

together; the ice can no longer flow around them and is simp¬

ly the glue holding the clasts together, yet due to the ice

the basal layer is deformable. Between the rock particles in

the layer and the rockbed there is Coulomb friction. Hence

the basal layer rubs over the bedrock like a piece of sandpa¬

per (Figure D.5). The difference between sandpaper and Cou¬

lomb friction is that the ice mass is really everywhere in

contact with the bed, since the basal layer is deformable and

adapts to the contours of the bed. The prinicipal difference

will become visible and decisive if a subglacial water pres¬

sure is in operation. In that case Coulomb friction is simply

proportional to the effective pressure N (eq. D.4) since the

water pressure has access everywhere through the scratches

Figure D.5 Sandpaper friction, two layer model
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between the two rigid bodies with rough surfaces. In contrast

to the sandpaper friction, the water pressure can only act

where the ice mass (including the basal layer) is separated

from the bed.

D.3.2 Friction without bed separation

The force pressing the clast to the bed is the sum

of the buoyant weight of the clast and the weight of the

overlaying ice column (Boulton 1974). Disregarding the influ¬

ence of the buoyant weight of the rock particles, the fric¬

tional force Ff is

Ff = HPnAa (D.5)

where P is the normal force per square unit or the mean nor¬

mal pressure. The normal stress p (x) varies along the sli¬

ding interface (see Section C.3.3.1):

p (x) = P + Ap(x) (D.6)

where P (= pgd cosa) is the ice overburden pressure, and if
0

there is no bed separation the mean pressure is

pn = p-jK) =

^ .

The frictional drag xf is, as in the case of Coulomb fric¬

tion.

tr = HP (D.6)
1 0

and the sliding velocity ub (assuming a Weertman-type sliding

law) (Weertman, 1957) is decreasing according to the reduc¬

tion of the basal shear stress xb

ub
- xb3 ~ (x - xf)3, (D.8)
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assuming that a part of the driving shear stress x is used to

overcome the frictional drag x_.

D.3.3 Sandpaper friction with bed separation

D.3.3.1 Frictional drag

When cavities in the lee of bed undulations are for¬

ming, the contact area for friction gets smaller and there¬

fore the frictional drag is reduced. With regard to an arbi¬

trary bed geometry, let A be the area where cavities exist

and s is the portion compared to the whole sliding interface

Aa '

Ac

a

The remaining area A
,
the real contact area, where friction

occurs is:

Ar = Aa
"

Ac = (1 " s) Aa '

The frictional force Ff is:

-

JS

Ff = H JJ Pn(x) dA . (D.9)
A
r

The above double integral is in the case of bed separation no

longer equal to the product of the ice overburden pressure P
0

and the glacier bed area A
. The local normal pressure p„ (x)

a n

is greater of amount AP on the upstream side of rock bumps

where friction still is active than on the downstream side.

The frictional force Ff is therefore not reduced proportion¬

ate to the decrease of the contact area A
,
but a bit less:

F, = n (P + AP) A^



= H (P + AP) (1 - s) A
. (D.10)

o a

From the balance condition (normal to the sliding interface):

PA = P A + (P + AP) A
o a w c o r

P A= = P SA= + (P + AP) (1 - S)A
o a w a o a

AP = (P - P ) JL- (D.ll)
W 1-S

one gets

and therefore

Ff = MP^
-

sPw) Aa , (D.12)

and the frictional drag, related to the whole glacier bed

area, is

xf
= (i(P -

sPw) . (D.12a)

The frictional drag gets smaller if water pressure is in op¬

eration, but is not, as usually assumed, proportionate to the

effective pressure N. The friction is not reduced as a conse¬

quence of a smaller effective pressure, but as a result of

the smaller contact area. On the area without separation

still in contact with the bed, the friction is about the same

as before for small bed separation. Only in the case of ex¬

tended separation do very large stress concentrations exist

on the upstream side of a rock bump. For small values of s

the reduced friction area is not compensated for by a surplus

of the normal stress, and hence it follows

xf
= n(P - sPw) > nN

Using the effective pressure N leads to an inadequate fric¬

tional drag. The friction is not linearly (proportionate to

the effective pressure) reduced with increasing water pres-
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w
I,

c

o

u

0

Ps pc
- Pw

water pressure

Figure D.6 Comparison of the dependence of Coulomb (a) and

sandpaper (b) friction on the subglacial water pres¬

sure, normalized to P =0 and s = 0 respectively.

Only the interval between separation and critical

pressure, in case of friction: P' and P', is shown.

sure, but more slowly. At the critical pressure the above

drag terms for sandpaper and Coulomb friction respectively

are identical (Figure D.6).

D.3.3.2 Separation and critical pressure

Friction along the sliding interface causes higher

limiting values for both the separation and the critical

pressure. In the special case of a sinusoidal bed, the sepa¬

ration and the critical pressure can be given as (Iken, 1981;

see also Chapter C):

Ps
and

Pc

respectively.

x

it r

1- = P -

T

itr 0 tan p

(D.13)

(D.14)
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First of all, the influence of friction on the critical pres¬

sure will be studied. In the case of friction, an additional

force is required to move the ice mass upward along the

steepest tangent of the undulating glacier bed. In the fol¬

lowing derivation a water pressure value near to the critical

pressure is considered where the friction is restricted to a

small area around the inflexion point. Until now the projec¬

tion of the contact and the separation area on the mean slope

was considered. This approximation is justified for small

roughness. Yet near the critical pressure the difference

between local bed slope (P) and mean slope (a) is largest.

The real contact area, A
,

is therefore

A = ilz£> X .

c cos p

Now accordingly, the force balance parallel to the steepest

tangent is considered

P' X sinp = P X sinp + 11 p'
(1~s>

X
c

r
c

r r
n cos p

and hence the critical pressure in case of friction is

P' = P + H P' —(u~s!
.,

(D.15)

c c
r

n cosp sinp
\^.i~>/

where apostrophes denote values in the case of friction.

The pressure distribution at the bed is changed by the fric¬

tion. P', the pressure the ice exerts on the bed, can be eva¬

luated considering the force balance in y-direction

P = s pi+ Pi
1~s

cosp -up1 (1-s) slnS
o w n cos p

K r
n

'

cosp

and hence

P - s P'

?' = /-.-.A n-H-^m 03.16)
n (1-s)[1-utanP]

Inserting in Eq. (D.15) it follows that
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H (P - sP )

P' = P,
°

c c cosp sinp [1-ntanp]

Again for small roughness, we make the following assumptions

for the trigonometric expressions: sinp >= tanp and cosP - 1.

The critical pressure in the case of friction can be given in

simplified form as

pc = pc +

ranr <p.
"

SV • <D-17>

Introducing the frictional drag xf
= \i (P

-

sPw) (Eq. D.12),

it becomes obvious that friction can be seen as a reduction

of the driving shear stress

x x - xf

p' = p + ,—L,. = p - _—Jl
. (D.17a)

c c tanp 0 tanp

At the critical pressure s = 1 can be assumed, and for a si¬

nusoidal bed tanp = 2ita/X, such that the critical pressure

including the effect of friction can explicitly be expressed

as

P + ,.^ p

P' = —
2H—a. (D.17b)

c 1
+ V

1
+

Titr

Assuming that the friction should have the same effect on the

separation as on the critical pressure it follows that

Ps " P,
' ^Ttr^ • <D-18>

Before the ice separates from the bed (s = 0) the frictional

drag is x, = |iP and hence
r o

Ps " Ps + irrP, • (D-18a)

The derivation, based on an argument by analogy, of the sepa¬

ration pressure including the effect of friction, can be ver¬

ified with the help of the formula for the bed separation,

depending on the subglacial water pressure (Eq. C.24). In¬

serting the expression for the frictional drag and evaluating
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the two extreme cases where s = 0 and s

Equations D.18a and D.17b result.

1 respectively, the

Figure D.7 contains a surprising result: since the

frictional drag is reduced by increasing water pressure, the

effect of friction on the separation pressure is much more

pronounced than on the critical pressure. Thus the separation

pressure exceeds the critical pressure for already small val¬

ues of the friction coefficient. In the example considered

(Figure D.7) of a sinusoidal bed with rather large roughness

r = 0.16, this is the case for n = 0.2 (for smaller roughness

values e.g. r = 0.05, the separation pressure is equal to the

critical pressure at a friction coefficient \i = 0.06). This

means for larger values of the friction coefficient the slid¬

ing motion of an ice mass is constant (probably equal to ze¬

ro) , independent of the water pressure, unless the critical

pressure is exceeded. In that case the glacier switches to

the state of unstable motion (see Figure D.8, line (c)).

friction coefficient

Dependence of separation [P'] and critical pres-Figure D.7

s

of sandpaper friction

sure [P'] on the friction coefficient ji in the case
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D.3.3.3 Influence on the sliding motion

We again assume that the friction leads to a reduc¬

tion of the driving shear stress. The resultant effective

shear stress is called basal shear stress x' = x - x..
b f

Accordingly the proposed functional relationship between sub¬

glacial water pressure and (dimensionless) sliding velocity

(Eq. C.25) (for Pw > P^) is modified

[ufa]
*b

(D.24)

O
O

>

c

;u
"55

water pressure

Figure D.8 Functional relationship between the water pres¬

sure and the sliding velocity without (a) and with

sandpaper friction (b),(c) (values with apostro¬

phes) . Line (c) reflects the feature that for large

friction the separation pressure can exceed the cri¬

tical pressure. Thus as long as the water pressure

is below the critical pressure the sliding motion is

uniform. At the critical pressure the ice mass

switches at once to the state of unstable motion.
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Figure D.8 shows qualitatively the effect of sandpaper fric¬

tion on the sliding motion. Line (a) gives the relation for

debris-free ice; lines (b) and (c) indicate a possible rela¬

tion between subglacial water pressure and sliding velocity

for debris-rich basal ice. In case (b) the separation pres¬

sure is below the critical pressure. Line (c) illustrates the

aforementioned "stick-slip" motion for large values of the

friction coefficient.

D.4 Hallet friction

When the basal debris is rather sparse (< 15 % per

volume) the contact force F pressing the rock particles to

the bed no longer depends on the ice overburden pressure. Ac¬

cording to Hallet (1979, 1981), the contact force F is pro¬

portional to the ice velocity v normal to the bed. Friction
r

n

only occurs on surfaces along which ice converges with the

bed, which correspond to positive values of v . On the lee

side of bumps v is negative, and hence there is no friction.

If again it is assumed that the driving shear stress

is partly used for deformational motion and partly for over¬

coming the frictional drag, the sliding velocity u, is (ac¬

cording to a linear sliding law):

ub
= C (x -

xf) (D.25)

where u,: basal sliding velocity

C : constant describing bedrock roughness and ice

viscosity

x : average shear stress at the base (due to gravity)

xf: frictional drag

In Hallet's notation the above equation is written as fol¬

lows:
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ub
= A (T " " C F)

where % : coefficient of bed geometry

T) : ice viscosity

\i : coefficient of friction

c : aeral concentration of rock particles in contact

with the bed

F : contact force between rock fragments and the bed

(proportional to the ice velocity v normal to the

bed)

A weak point in Hallet's theory is that he tacitly

assumes that there are always enough rock particles on the

upstream side of rock bumps. Shoemaker (1986) has shown,

based on the fundamental work of Rothlisberger (1968), that a

rock particle embedded in the basal ice is able only one time

to contribute to friction and then is absorbed, if, as Hallet

assumes, the melting rate is neglected. However, in large-

scale straining areas (e.g. where the glacier is flowing over

a step or a riegel) enough rock particles are transported to

the bed, so that the Hallet friction concept applies.

Shoemaker (1988) adopts the linearized sliding law

from Hallet (1981) (Eq. D.25) from a more global point of

view. He does not look at a single bump as Hallet does, but

is interested more in abrasional features on a large glacier

bed area. His aim is to develop a basal friction drag term

for a sliding law. Thus he rewrites Equation D.25

X = Kx Ub + K2 C Ub .

He furthermore argues that the contribution of basal melting

to the vertical particle velocity u is not negligible. In¬

deed the particle velocity u , or more exactly the sliding

velocity normal to the bed v , arises from three contribu¬

tions: regelation sliding, uniform melting (due to geothermal

heating and sliding friction) and vertical straining. Howev¬

er, it is difficult to determine which factor dominates, as

it depends somewhat on the circumstances.
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In the Hallet model of friction it is not so easy to

determine the sliding velocity u., since the fricional term

in the sliding law depends itself on the sliding velocity.

Thus an iterative solution procedure is necessary.

What happens now when cavities in the lee of rock

bumps are forming? Will the friction on the remaining smaller

contact area intensify or not, and what is the influence on

the separation and the critical pressure?

Iken (1985, unpublished) made an attempt in this direction

and estimated the new critical pressure depending on particle

concentration and size.

Starting again with the rectangular step model for the gla¬

cier sole she developed an expression for the critical pres¬

sure P' when friction according to the Hallet theory is in

operation. An additional force is necessary to move the ice

mass upwards (Figure D.9):

P' = P + e b/c u c F
c c — —

r
(D.26)

where eb is the contact area (areas b and c are shown in Fig¬

ure D.9). The contact force is (following Hallet)

F =

R* + R2

4it f ri v
1 n

Figure D.9 At the critical water pressure the glacier sole

touches a sinusoidal bed at the contact area eb.

a and a are stress components normal respectively

parallel to the bed (from Iken, unpublished).
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The normal stress a on the contact area eb follows from the
n —

force balance

n

= i (P„ + T tanP "

Pc> + Pc •

Assuming that the stress component parallel to the bed is

equal to the critical pressure (o = P ), the stress deviator
P c

a' ,
the corresponding strain rate and finally the normal ve¬

locity v can be calculated. Actually, a may be larger than

P , thus the calculated v is probably an upper bound.

The resulting critical pressure including the effect of Hal¬

let friction, therefore also represents an upper boundary.

Considering a numerical example with a sinusoidal

bed (wavelength X = 5 m), other numerical values are:

(suggested by Hallet, 1981)

(
" "

)

(
" " )

(only one size of debris particle

will be considered)

(corresponding to an areal concen¬

tration of one-tenth of a close

packing of spherical particles)

Without friction due to debris a critical water pressure

P = 3.75 bar is obtained. With debris containing basal ice:

X = 1 bar

p =

0

R* =

15.

0.

.9 bar

.1 m

f = 2..4

v " 1..0

R = 0..1 m

c = 2.
-2

.5 m

P' <. 10.3 bar . For higher values of the critical pressure
c

-2
P' a larger debris content than c = 2.5 m particles with

2
radius R = 0.1 m per an area of 1 m has to be assumed.

As in the case of sandpaper friction, friction of

the Hallet type reduces the sliding velocity in the order of

some ten percent and results in a higher critical water pres¬

sure. Yet the influence on the separation process can not be
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estimated. The question of whether or not cavity formation

will lead to stronger friction, cannot be answered, not even

in a qualitative sense. As the normal velocity plays a deci¬

sive role in the Hallet friction model, a detailed study re¬

quires a numerical approach and an iterative procedure, since

the flow pattern is changed by every change of the basal

boundary condition.
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Chapter E

NUMERICAL APPROACH

E.l Introduction

In Chapter B the sliding problem was mathematically

formulated. It was mentioned that an analytic or closed form

solution for only very special conditions such as laminar

flow can be found. As soon as a more complicated and thus

more realistic glacier geometry is considered, a numerical

solution is an absolute necessity. Since the field equations

(the balance of mass and momentum and the constitutive rela¬

tion for the stress [assuming that the thermal and mechanical

effects are decoupled]) are of elliptic form, the finite-ele¬

ment method is appropriate.

However, the numerical treatment does not solve the

problems involved in glacier sliding. Crucial points such as

the formulation of the bottom boundary condition or the con¬

stitutive relation are still present. Closed form solutions

are often crude, but still very usefull for discussing the

influence of different parameters, for detecting singular

points in the mathematical model and for checking the numeri-
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cal computation. The latter one is quite essential and there¬

fore the same simple model representing a complex natural

system should be used in numerical calculations as in analyt¬

ical ones offering the possibilty to test the numerical solu¬

tion for a particular case where a closed form solution ex¬

ists. Thus in all simulations done in this work, the model is

the one described by the set of Equations B.l to B.5. Except

in the case where the ice is separating from the bed (produc¬

ing a mixed-boundary problem) the model was not modified in

any way. The boundary conditions and assumptions on which the

above model is based are in general the ones stated in Sec¬

tion B.2.

The numerical simulations are only done for the case

of sliding over a sinusoidal bed. A more complex bed topog¬

raphy was not considered to have a well-defined basal inter¬

face and to strictly separate effects of bed topography and

different bottom boundary conditions. Principally the influ¬

ence on the basal sliding velocity of bed topography, of con¬

stitutive relation, of water pressure and of friction at the

ice/rock interface was studied. Varying one or more of the

above parameters the numerical simulations were generally a

sensitivity study for the basal sliding velocity.

E.2 Solution method

The finite-element method (FEM) is used to solve the

above set of partial differential equations being of the el¬

liptic type. The FEM is one of the methods regularly used in

glacier and ice sheet modelling, but still has not the impor¬

tance that one would, expect being a technique very popular

in fluid dynamics. Some of the applications of the FEM in

glaciology can be found in Iken (1977), Hooke et al. (1979),

Emery and Mirza (1980), Iken (1981), Sikonia (1982), Meysson-

nier (1983), Ott (1985), Schweizer (1985), Haeberli und

Schweizer (1988) .
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As it would be beyond the scope of this work, it is not the

authors's intention at this juncture to give a detailed in¬

troduction to the FEM. There exist a number of fine textbooks

on the FEM (e.g. Zienkewicz [1977], Schwarz [1984]). In Zien-

kewicz (1977) the FEM is introduced by solving the flow prob¬

lem of a viscous fluid. A few words on the principles of a

numerical approach are follow (Lliboutry, 1987c).

Solving a set of differential equations numerically

means to take the approach opposite to the one chosen in

mathematics in the 18th century: from the continuum back to

discrete points. All relevant functions of the coordinates

are computed at some points, called nodes. The set of partial

differential equations is therefore replaced by an approxima¬

te set of ordinary equations, termed difference scheme. In

the FEM the studied domain is divided into a mosaic of ele¬

ments (preferably triangles in the case of a plane problem)

with the nodes on the periphery of the elements. In each

element a set of functions, usually polynomials, is chosen

uniquely describing the problem in terms of its nodal values.

A polynomial has to fulfill going from one element to other

specific continuity requirements. Thus a nodal value must be

the same for all adjacent elements. This procedure to ensure

continuity is called assembling. Thus it is finally possible

to obtain an approximate value of, for example, the displace¬

ment, at a certain discrete number of locactions for the dom¬

ain studied. The accuracy of the computation and the resolu¬

tion is merely a question of the chosen number of nodes and

elements. A general test of accuracy is, incidentally, to

double the number of elements which, if the numerical proce¬

dure is appropriate, should lead to improved accuracy of the

computation.

Several different techniques exist, for instance the

initial strain or displacement formulation (DISP) or the ve¬

locity-pressure formulation (V-P) within the FEM. The code

used in this study is based on a hybrid stress model for the

linear elasticity equations. It was developed for rock mecha-
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nical problems at the Institut fur Bauplanung und Baubetrieb

der ETH Zurich (IBETH) and is called RHEO-STAUB (Fritz 1981,

Fritz und Arn [1984]). Different rheologies can be studied by

the combination of rheological models consisting of springs,

dashpots and friction contacts arranged in parallel or in

series. Thus the available principal elements are the Hooke,

the Newton and the St.Venant elements, describing elastic,

viscous and plastic material behavior respectively. With ref¬

erence to this one is quite free to model different rheologi¬

es and a constitutive relation of the Glen type is well prac¬

ticable. Although written for elastic problems in rock mecha¬

nics, the perfect analogy between elasticity and viscosity

allows use of the program for the viscous, time dependent

flow (Zienkewicz [1977], pp.610-612). And although the code

is meant for the solution of two dimensional plane problems,

the excellent postprocessing and the fine documentation make

this program an easy-to-use and efficient tool for flow and

stability problems in glaciology.

E.3 General assumptions of the model

In this section there is special focus on parameters

involved in the sliding problem. Information will be given

concerning which parameters are chosen and which neglected,

and how this choice is made. It is important to note from the

start that ice will be considered as an isotropic, incompres¬

sible fluid of constant density.

In the FE-program RHEO-STAUB the incompressibility is expres¬

sed as Poisson's ration v (chosen value is v = 0.499999,

since v = 0.5 is not accepted). The assumption of constant

density is justified since the lowest meters of the ice mass

are considered. For simulation of high Alpine glacier flow

much influenced by a compressible firn layer, a model with

varying density and compressibility (increasing with depth)

has to be applied (Schweizer, 1988).
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E.3.1 Temperature

The temperature of an ice mass is fundamental for

the description of the deformational characteristics and the

basal boundary condition. Glaciers and ice sheets are not

isothermal, but in general polythermal, meaning that they

consist of two zones, cold and temperate, in which the ice is

below and at the melting point respectively (Haeberli, 1975).

The non-uniform temperature distribution leads to a coupling

between temperature and velocity field by the constitutive

relation.

Even in a numerical approach it does not seem possible to

maintain the thermo-mechanical coupling and to determine tem¬

perature and velocity simultaneously. An iterative procedure

where the two unknown functions are sucessively computed to

serve each other as input for the next loop till convergence

is reached, is, on the other hand, conceivable.

In this study temperature and velocity field are not coupled,

thus the constitutive relation does not depend on the temper¬

ature. The whole ice mass is at a constant temperature near

the melting point.

Although the glacier is sliding and the ice temperature

therefore should be at the melting point, a value for the

viscosity in the flow law is chosen corresponding to a tem¬

perature value below the melting point, since no reliable

viscosity values at 0°C exist. Therefore the calculated

sliding velocities represent more likely a lower boundary.

E.3.2 Flow law

Two sorts of constitutive relations are considered:

a Newtonian and a non-Newtonian called Glen's flow law

(Figure E.l). If written in terms of second deviatoric stress

and strain rate invariants, t' and eTT the nonlinear

relation can be given as

e =
A

t'
n

EII
A

CII
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where A is the flow law parameter. The flow law parameter can

be a function of different physical properties of the ice,

such as temperature, water content, ice fabrics, ice crystal

size and impuritiy concentration. It was proposed to split

the flow law parameter in a temperature dependent factor and

a so-called enhancement factor, depending on the other ice

parameters (Dahl-Jensen, 1985). The exponent n in the power

law can be set equal to 3 for an intermediate stress range

(Duval, 1981). Lliboutry and Duval (1985) concluded that the

creep law of ice does not exist, since there were too many

kinds of ice. Nevertheless, in modelling glaciers and ice

effective stress

Figure E.l Newtonian and various non-Newtonian stress-

strain rate relations, (a): perfect plasticity

(b): Bingham fluid, (c): power law,

(d): Newtonian

sheets one has to select a particular creep law. There is in

fact no choice, but the best compromise seems to be the above

isotropic power-law viscosity as introduced by Glen and Nye.

The linear viscous flow law is accordingly

• 1

"II -nfcii
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where r\ is the viscosity. For the purpose of perfect analogy

to the elastic behaviour, the viscosity r\' is introduced de¬

fined as

2n

In this context the second invariant of the stress deviator

and the strain rate tensor are written as x and e. The con¬

stitutive relations used simplify to

and

A Xn

From the compilation of different flow law parame¬

ters by Paterson (1981) a value A for the computation

-15 -3 -1
A = 3.5 x 10 kPa °s

i

= 0.11 bar~3a_1

is chosen. This value corresponds to a temperature about

1.6 'C below the melting point of ice at atmospheric pres¬

sure.

For n = 1 and x = 1.18 bar = 118 kPa a value for the Newtoni¬

an viscosity t\
'
can be determined by

to

n1 =

* t —

l_
2

AX

2.06 x 1013 Pa s

This viscosity value corresponds in the FE-program RHEO-STAUB

to an input value of the elasticity constant

E = 100 t/m2

Of course the simulation of Glen's flow law is not

foreseen in the FE-program, but as mentioned above can be
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approximated (Figure E.2). The Glen's flow law is simulated

by a series of bodies consisting of a Newton and a St.Venant

element parallely arranged. Thus ice is considered as a vj s-

co-plastic material.

m

oi

m

a2

+

n'z Vn

Figure E.2 Rheological model simulating the nonlinear vis¬

cous flow of ice by a series of bodies consisting of

a Newton and a St.Venant element arranged in paral¬

lel.

The power law curve is stepwise linearized, i.e. for a cer¬

tain stress range the deformation is linear viscous. So with

higher stress values the viscosity decreases, not continuous¬

ly but stepwise due to the plastic elements describing the

feature of strain weakening or softening (Figure E.3). In

detail the procedure was the following: m a certain stress

interval the power law curve was approximated by a straight

line respecting the principle of least square deviation (Fig¬

ure E.3). To obtain the best possible approximation the

stress interval should not be of identical length, but the

varying length of the power law curve in an interval should

be taken in account. Nevertheless, in this study the consid¬

ered stress range was divided into 12 identical intervals

(due to a program limit) assuming that the error from the ap¬

proximation is negligible.

Much more relevant is the selection of the stress

range in which the power law should best be approximated. To

get an idea of the sort of effective stress values occurring

the linear viscous case was analysed (Figure E.4).
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0 100 2200 300 400 [kPa]
T

Figure E.3 Stepwise linear approximation of Glen's flow law



effective shear stress

Figure E.4 Histogram showing the distribution of the

effective shear stress in the lowest 25 m of a

200 m thick glacier (linear rheology assumed).

A simple histogram representation shows that about 90% of the

effective stress values are between 100 and 500 kPa. Hence

the stress range of 0 to 480 kPa was divided in 12 identical

intervals. Figure E.3 shows the principle for the same stress

range, but only with 3 intervals of 160 kPa.

The approximative stress-strain rate relation can be

expressed as (in simplified form)

e - I fHfil

i=l I *»! J

where o^ is the yield stress of the St.Venant element of the

i'th body. The yield stress of the first body a. is zero,

(see Figure E.2).

A test of the above relation will be presented in a subse¬

quent section.

The approach starting with rheological models is not

very modern, but it is easy to perform. Another possibility
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to overcome the nonlinearity of the constitutive relation is

an iterative procedure computing the effective shear stress

and the accordingly effective viscosity with a linear flow

law, adjusting the viscosity locally and restarting the com¬

putation (Iken, 1981). The disadvantage of this method is

that one has to interact permanently with the computer, as

the method is not implemented in the program.

The FE-program RHEO-STAUB was primarily developed to

analyse the elastic deformation of rocks and therefore a

viscous problem has to be transformed to an elastic one. In

our case the Glen's flow law is simulated by a series of

visco-plastic bodies and has to be transformed to a series of

elasto-plastic bodies. To do so, one uses the rheological

time dependent version of the program offering the facility

to combine rheological models. However there is the restric¬

tion that in a rheological model all three bodies (Hooke,

Newton and St.Venant) have to appear. So it is impossible to

just substitute the viscosity with corresponding elasticity

values. The rheological body has to consist of a viscosity

value. As Dashpot and spring are arranged in parallel, into a

so-called Kelvin or Voight body, it follows that the elastic

deformation or the strain occurs not instantaneously, but is

reached gradually (Jaeger, 1969):

_E t

e = I ( 1 - e
1

).

The larger the viscosity value the sooner the strain will

reach its yield value: x/E.

In summary one can say that first the Glen's flow is

approximated by a stepwise linear viscous relation and the

according viscosity values were transformed to elasticity

values. The stress intervals of the stepwise linearization

define the plasticity values and the viscosity values, pre¬

ferably very large ones, are arbitrarily chosen. These three

values determine the flow charateristics of a rheological
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body. Table 1 gives the input values of the twelve rheologi¬

cal bodies arranged in series which have been used in all

models with Glen's flow law.

Table E.l Input values of the rheology simulating Glen's

flow law. E is elasticity, ETA viscosity and C plas-
2 ?

ticity value in t/m . (1 t/m = 9.81 kPa). To illus¬

trate the original viscosity values (now transformed

to elasticity ones) are given in Pa s. n is the num¬

ber of body. 12 bodies arranged in series, each body

consisting of a Newton (ETA) ,
a Hooke (E) and a

St.Venant (C) element arranged in parallel are used.

n E ETA C V

1 1151 - - 2.37 x 1014

2 111.4 148500 4.1 2.30 x 1013

3 53.88 71840 8.2 1.11 x 1013

4 36.13 48170 12.2 7.45 x 1012

5 27.06 36080 16.3 5.58 x 1012

6 21.65 28870 20.4 4.46 x 1012

7 18.05 24060 24.5 3.72 x 1012

8 15.47 20620 28.6 3.19 x 1012

9 13.53 18040 32.6 2.79 x 1012

10 12.03 16040 36.7 2.48 x 1012

11 10.83 14440 40.8 2.23 x 1012

12 9.84 13120 44.9 2.03 x 1012

E.3.3. Summary

In this study no improvement concerning the ice pro¬

perties were made compared to similar modelling studies. The

state of knowledge for instance on the creep behaviour does

not allow to leave the old tracks. Temperature effects on the

other hand, may be important but were neglected, leading to

an untractable form of the model. The purpose of all simpli¬

fications is to gain a consistent, well-posed problem as the

basis for our study on the bottom boundary condition.
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E.4 Geometry

E.4.1. Shape of the modeled area

The glacier sliding problem over an undulating wavy

bed is studied in a longitudinal section along the flow di¬

rection. This can be achieved by considering the ice mass to

be infinitely wide, presenting us with a plane problem. The

glacier is in a steady state, i.e. it does not change its

shape. Compressing or extending flow is compensated only by

accumulation and ablation. Climatic changes prevent a real

glacier from reaching this ideal state, at least for a long

time. As the present study is not modelling the response of a

glacier to climatic changes, the steady state assumption is

well justified. Our focus is on the bottom boundary condition

and therefore on the lowest meters of a glacier or ice sheet.

Hence only a section of 25 x 60 m is chosen for simulation of

the flow (Figure E.5) and not the whole ice mass. Of course,

the same conditions have to be fulfilled in the small sec¬

tion, just as if the whole glacier were being modelled. This

means on the upper border of the section the boundary condi¬

tion has to be such that the weight of the overlaying, not

modelled ice is included. Since the FE-program RHEO-STAUB

makes it possible in each node to specify certain boundary

conditions the desired effect can easily be achieved.

The whole glacier is assumed to be 200 m thick and

the average slope is 0.1, corresponding to an angle of 5.7°
.

In the section of 25 x 60 m the distance from node to node,

or the mesh-size is about 1 m, varying between 70 cm at the

bottom and nearly 4 m at the top (Figure E.6). The grid in

Figure E.6 is used for all computations. The number of nodes

is 1271 and there are 2400 triangle elements.

The height of the modelled section is 25 m, since it

is assumed that about one wavelength above the mean bed the

velocity variations due to the undulating bed are of minor

importance. The length of 60 m for the undulating bed was

chosen to include three wavelengths of 20 m. It is necessary
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Figure E.5 Modeled section at the bottom of the ice mass.

to consider more than one wavelength to be able to adjust the

boundary condition at the front and the back end such that

the modelled section is in equilibrium, i.e. there exists no

longitudinal stress accelerating or slowing down the ice

mass. A wavelength of 20 m guarantees that the sliding is

only due to the process of enhanced deformation and not of

regelation. On the other hand, as 20 m is rather at the limit

for small-scale bed topography, the length of the section,

60 m, makes it easy to study the flow over a sinusoidal bed

with a smaller wavelength than 6, 10 or 12 m. Even smaller

ones are of course possible, but need a greater number of

nodes, i.e. a finer mesh has to be developed. In addition to

the wavelength the roughness (= amplitude/wavelength) is

varied. Typical roughness values are 0.02, 0.05, 0.10.

E.4.2. Real bed topography

In order to obtain an idea of the roughness and

wavelength of a real undulating rock bed, the forefield of

Findelengletscher was studied. In 1980 Iken (personal commu-
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nication) surveyed two profiles in front of the advancing

snout, currently overrun by the glacier. In 1987 a few more

profiles in the flow direction indicated by striaes were sur¬

veyed (Figure E.7). For the situation see Figure E.8.

When seen for the first time all profiles (Figure

E.9) look very smooth. If one examines the general downhill

trend, i.e. the large scale bed topography, in Profiles 1 and

2 (indicated in Figure E.9 by a broken line) a wavelength of

Figure E.7 Surveying of the former glacier bed of Finde¬

lengletscher in 1987: Hermann Bosch operating the

distance measurement instrument.

about 30 m and an amplitude of 50 cm is found. Thus the

roughness would be about 0.02. In Profile 3 the wavelength is

even longer. Profile 5 which is on the left side of the

stream where the topography seems to be more small scaled

confirms the first impression. The wavelength is about 20 m.
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628800 629 000 629200

Figure E.8 Map of the area in front of Findelengletscher.

Profiles surveyed in 1980: A and B, and in 1987:

1 to 5.

Contour interval is 5 m. Numbers are Swiss national

survey coordinates.

It is obvious that in this sort of investigation

there is a danger of locating the survey at the place where

one expects to find the results desired. In other words, it

can not be proved that the measured profiles are representa¬

tive, especially not for a general glacier bed. Nevertheless,

the aim of the small study of the forefield was to show that

the assumptions that our model is based on may be considered

realistic. In actual fact a rather large wavelength and a

small bed roughness were found.
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E.5 Boundary conditions

In this section the detailed boundary conditions

around the modelled section, the lowest 25 m of a glacier or

ice sheet, are described.

E.5.1 Top, front and back side

At the top of the modeled section the weight of the

overlying ice (a column of h = 175 m) has to be introduced

by accordingly prescribed nodal forces. As the surface of the

ice mass is free of stress, no other conditions must be con¬

sidered. The distance between adjacent nodes at the top is

1.0 m and correspondingly, the area on which the ice overbur-

2
den pressure is acting is A = 1.00 m . The nodal forces in x-

and y-direction are:

F = pgh sin a A

F = pgh cos a A

In the x'- y'-system used in the numerical computations the

3 2
following input values result (p = 900 kg/m , g = 9.81 m/s

,

h = 175 m, a = 5.71" ) :

2
F

,
= pgh cosa sina A = -15.594 t/m

F
,
= pgh cos2a A = -155.94 t/m2

At the front and the back side of the 25 x 60 m section the

boundary conditions have to be chosen such that no accelerat¬

ing force exists. It is the same sort of problem as in simu¬

lating the flow of an infinitely wide, parallel sided slab

(laminar flow), but as the bed is undulating and the ice mass

is sliding, the nodal forces cannot simply be determined with

the help of the analytic solution of laminar flow. An itera¬

tive procedure has to be applied in order to achieve a steady
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state. This complication could be overcome by introducing a

periodic boundary condition requiring the velocity on the

front and back side to be identical (Raymond, 1978) . This

very tricky procedure is not applicable since it is not im¬

plemented m our FE-program. Instead, the trial and error

method must be chosen: taking the inner stress values of the

previous computation as new boundary conditions at the front

and the back side, again and again, until the velocity dif¬

ference between the front and back side is negligible. When

initially carried out, this procedure was not very effective.

Convergence is achieved faster if one adopts the nodal forces

according to the deviation from the mean of front and back

side velocity values. This means for instance, if the front

velocity is 2 % larger than the average velocity the nodal

forces at the front are chosen 2 % larger than the computa¬

tion before. By repeating this procedure 3 to 6 times a sta¬

ble and hence not accelerated ice mass, is arrived at.

A change in the basal boundary condition as varying

roughness or debris concentration affecting the friction in¬

fluences the boundary conditions at the front and back end.

Thus the adjustment of the nodal forces is a nearly permanent

and rather troublesome requirement.

E.5.2 Bottom boundary condition

Three cases are generally considered: no slip, per¬

fect slip and sliding with friction.

It is always assumed that the ice mass is lying on an imper¬

meable and undeformable bed: a classic hard bed (Paterson,

1985). This assumption is controversial, since a great number

of glaciologists (e.g. Boulton, Clarke) argue that the hard

bed would be a very exotic case and that most glaciers and

ice sheets are lying on sediments: on a soft bed. We do not

want to revive this sophisticated dispute. It is quite prob¬

able that both camps are right. In fact, soft and hard beds

do exist. However, in a numerical computation one needs a

certain distinct interface. It would be altogether possible
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to introduce a sediment layer between ice and bed-rock and a

part of the deformation could be within the sediment. The

hard bed is certainly not the only possibility, but it is a

realistic case and an attractive interface for modelling.

E.5.2.1 No slip

In this case there is no sliding; the ice mass ad¬

heres to its bed. This sort of bottom boundary condition is

chosen only for test computations or, for instance to deter¬

mine the portion of deformation on the whole motion. It mere¬

ly prescribes that in each node along the bottom the velocity

components are equal to zero.

E.5.2.2 Perfect slip

This is the usual bottom boundary condition: the ice

mass is sliding frictionless (due to a thin water layer be¬

tween rock and ice) over the undulating glacier bed. The

roughness prevents the glacier from slipping away. The fric¬

tionless sliding is simulated by prescribing that the veloci¬

ty vector have the direction of the local bed. The ice is

forced to move along the bed profile. Most of the computa¬

tions were performed with this classic basal boundary condi¬

tion.

To move in the direction of the bed means to deter¬

mine in each node a slope. At first it was not clear which

slope should be chosen: the slope to the preceding node or

the slope to the succeeding one, or the average of both.

(Figure E.10) After a series of tests with different examples

the best results were obtained for the slope of the tangent

to the real sinusoidal curve at the point of the node. This

is of course theoretically the right solution, but the ice is

now in the numerical model no longer flowing along the ice

rock interface, since the sinusoidal bed is approximated by

straight lines from node to node.
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Figure E.10 Section of the glacier bed in the numerical

model, n-1, n, n+1 are three nodes connected by

straight lines, approximating the sinusoidal bed

(dashed line). For the "perfect-slip" condition

the direction of the tangent at the sinusoidal curve

is chosen as the prescribed flow direction.

E.5.2.3 Sliding with friction

As outlined in Chapter D, friction between the rock

bed and particles embedded in the basal ice plays an impor¬

tant role in the sliding process. In the numerical modelling

a friction of the Hallet type was introduced, appropriate in

the case of sparse debris. In general the dimension and con¬

centration of the rock particles and the sliding velocity

normal to the bed are the pertinent variables.

The frictional drag is (Hallet [1981], for RA- R, see Section

D.5) :

x, = ucF = 2nfucTiRv
f

r ^
n

where |i : coefficient of friction

c : aeral concentration of rock fragments in

contact with the bed

F : contact force

f : factor of the viscous drag of sphere near

the bed
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n : viscosity of ice

R : radius of rock particle

v : sliding velocity normal to the bed

The velocity v normal to the bed will be determined by the

computation. The other variables are constants for a particu¬

lar case in the numerical simulation. The following values

are chosen:

H = 1.0

c = 2.5 m

f = 2.4

R = 0.1 m

Discussion of numerical values:

(a) Friction coefficient ji

H = 1.0 suggested by Hallet is of course an upper

limit. Under most rock-rock contact conditions \i is likely to

be in the order of 0.5 to 0.7 (Drewry, 1986).

(b) Debris concentration c

-2
c = 2.5 m corresponds to an aeral concentration of

one-tenth of a close packing of spherical particles, i.e. in

2
an area of lm 2.5 particles of 10 cm radius are in contact

with the bed and hence contribute to friction. Hallet defines

a debris concentration P :

* 2
P = 4 Re ,

*

where P is the portion of the bed effectively covered by de-

bris. The maximum possible concentration is P =1, repre¬

senting a close cube packing of spherical particles all in

contact with the bed. The model Hallet developed is applicab¬

le for debris concentrations smaller than about 30%.

The principle for considering a single striating

rock inclusion is introduced for modelling purposes. Many

7.5 m
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glaciers possess a dirty basal layer in which the concentra¬

tion of debris may rise to 50-60% by volume (Drewry,1986) .

In the ice tunnel (dug in fall 1985) at the snout of

Findelengletscher it was possible to study the basal ice in

detail (for situation see Figure E.8). At the end of the tun¬

nel the glacier bed was present as a well-polished rock bed.

The ice was separated from the bed, probably due to a large-

scale longitudinal compression (in 1985 the glacier was at

the end of a 200 m advance) . The lowest 10 - 30 cm a dirty,

stratified layer consisting of ice and debris of very differ¬

ent size (10 m to 10 m) was observed. On the larger parti¬

cles on the bottom side, striaes from rock to rock contact

were visible. Some parts were broken out of the basal layer

for closer examination in the cold laboratory of the VAW.

Three things were chiefly of interest: (1) Is the

ice in the debris layer regelation or glacier ice? (2) What

is the debris concentration? (3) How large is the contact

area?

(1) The first question could be answered by an analysis of

grain size. Attempts were made, but due to a lack of equip¬

ment (no multi-stage available) and experience the investiga¬

tion was not successful. In principal, Souchez and Lorrain

(1987) studied the basal ice layer from the chemical point of

view. They found that ice accretion may be a frequent phenom¬

enon at the glacier sole.

(2) The debris concentration was determined simply by weigh¬

ing, melting and reweighing the sample. The mean concentra¬

tion from 5 samples is 72% by weight. Smallest concentration

is 64%, largest 83%. With a density of rock (p = 2.7 g/cm3)
3

r

and of ice (p = 0.9 g/cm ) the average debris concentration

(by volume) is 46%. However the determination of the debris

concentration is only a rough estimation, due to the small

number of probes and the inhomogenity of the basal layer. But

at least it seems clear that a basal layer with a high (let

say 50%) debris concentration at the specific location of the

tunnel does exist.
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(3) The third question is difficult to answer, especially

since only small parts of the bottom of the ice were visible.

Figure E.ll shows the bottom of a piece broken out of the

basal debris layer. One means of determining the areal con¬

centration is to count out the contact area with the help of

a frame. Each visible rock fragment (larger than 0.5 cm in

diameter) is marked with a square. The contact area is com¬

pared to the total area of the bottom. In our particular case

about 22 % were covered with rock fragments (Figure E.12) .

Again it must be said that only a single piece was studied

and that the result may be accidental.

In summary one can say that the basal ice layer was

dirty and stratified. It seems to be developed by ice and de¬

bris accretion and it plays an important role controlling

partly both erosion and sliding.

Figure E.ll Bottom side of a piece broken out of the basal

ice layer accessible in the ice tunnel at the snout

of Findelengletscher. Grid distance is 1 cm.
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Figure E.12 Primitively digitized bottom of a rock fragment

with rock contact areas (dashed squares).

See Figure above.

(c) Factor f

f = 2.4 is suggested by Hallet primarily based on

an unpublished study by Watts, f takes into account the vis¬

cous drag of a sphere contacting the glacier bed.

(d) Particle radius R

It is assumed that the debris fragments are spheres

with a radius R = 10 cm, a value suggested by Hallet. Smaller

and larger sizes can easily be introduced. However, for

smaller fragments a finer FE-grid has to be developed. A mesh

size equal to the particle size would be ideal. The model

could definitely be improved by considering different parti¬

cle sizes.

(e) Normal velocity v

The normal velocity is mainly responsible for the

value of the contact force. The particle size influences the

sliding velocity normal to the bed. As the fragments contri-
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butmg to the friction have to be in contact with the bed, v
n

is determined at the centre of the spherical particle. Thus

one has to calculate the sliding velocity normal to the bed

at a distance from the bed equal to the particle radius. As

the FE-mesh is not fine enough, the velocity 10 cm above the

bed is interpolated from the velocity value in the first node

above the bed (about 60 cm above). At the bed the normal ve¬

locity is of course zero, since the ice slides along the bed.

v is partly positive (on the upstream side of rock

bumps where the ice flows towards the bed) ,
about zero (at

the top of the bumps) and partly negative (on the leeward

side where the ice flows away from the bed). A typical value

1 m above the bed is 50 cm/a. It is assumed that the normal

velocity decreases linearly with depth. Thus at the centre of

normal velocity [cm/a]

-400-200 200 400

x [m]

Figure E.13 Distribution of the sliding velocity normal to

the bed some meters above a rock bump. Flow direc¬

tion from right to left. "+" sign denotes positive

values of the normal velocity (which means the ice

flows towards the bed), "-"
sign denotes negative

values, respectively.
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the spherical rock particles (R = 10 cm) the normal velocity

is about 5 cm/a. Figure E.12 shows some velocity values nor¬

mal to the bed above a bump.

For varying the amount of friction different values

of the concentration c are selected. In principal, the par¬

ticle radius R or the friction coefficient ji could also

be changed with a similar effect. The friction varies as the

friction coefficient and as the square of the particle radi¬

us. A change of the debris concentration, for instance, from

-2 -2
c=2.5m to c = 10.0 in corresponds to a doubling of the

particle radius. In other words, in a sensitivity study on

the friction it does not really matter which of the varia¬

bles, debris concentration, particle size or friction coeffi¬

cient, are changed; the effect on the friction can be identi¬

cal
.

E. 5.2.4 Bed separation

Bed separation occurs if the subglacial water pres¬

sure is larger than the minimal normal stress the ice exerts

on the glacier bed. The effect of the water pressure is simu¬

lated by introducing a force normal to the local bed slope.

The force corresponding to a certain given water pressure is

principally acting in all nodes where the normal stress is

smaller than the water pressure. However, the separation area

is larger than the area where the normal stress is smaller

than the water pressure. This fact is known (e.g. Iken, 1981)

and a relationship between water pressure and cavity length

was given m Section C.3.3.3. For the numerical computation

this means that in each wavelength, at least in the two ad¬

jacent nodes, where the normal stress is already larger than

the water pressure, the normal force is also introduced. Fig¬

ure E.14 indicates the nodes in which water pressure is ac¬

ting. Generally, the amount of bed separation is chosen to

ensure the largest possible basal sliding velocity. This

means that it was at times necessary to perform a series of

numerical computations to determine the separation area.
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Figure F.14 Distribution of the normal stress and area of

bed separation along a wavelength for different

water pressure values.

E.5.2.5 Summary

To give an overview on the basal boundary conditions

used an example with friction and acting water pressure is

considered. This means three different boundary conditions

apply: (1) perfect slip, (2) bed separation and (3) friction

(see Figure E.15) . Perfect slip means that a node at the bed

is forced to move in a certain direction (parallel to the lo¬

cal slope). Bed separation is performed such that at a node a

force according to the given water pressure is acting upward

normal to the local slope. The friction condition is similar

but the force is directed parallel to the local slope but

against the direction of motion. The ice mass is then deform¬

ing due to its own weight respecting prescribed forces and

directions of motion.
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Figure E.15 Overview of the different boundary conditions at

the base: (1) perfect slip, (2) water pressure lead¬

ing to bed separation and (3) frictional force.

E.6 Test computation

It is an absolute necessity to compare the results

of a numerical computation with a closed form solution. In

glacier motion problems the relevant test case is the laminar

glacier flow. For a Newtonian fluid this was done by Schwei¬

zer (1985) and again independently by Wagner (1988). The FE-

program RHEO-STAUB proved to be an excellent tool for the

solution of two-dimensional, linear viscous flow problems.

The above-mentioned tests showed that the error of

the numerically calculated velocity vectors and stress com¬

ponents was less than about 1% and 5% respectively. The ac¬

curacy of the stress values is generally poorer. Deviations

from the analytical solution, for instance, for the shear

stress at the base of 12%
,

did exist. Principally, the ac¬

curacy is fine inside the studied domain. The fact that the

nodal values are mean values leads to inaccuracy at the edg¬

es, at the surface and at the bottom.
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However, this lack of accuracy can be eliminated by

an improvement in the FE-mesh. The smaller the stress differ¬

ences between adjacent nodes, the smaller the error at the

edges due to averaging. If the number of nodes in an ice col¬

umn is doubled twice, when modelling the linear viscous flow

of an ice mass 200 m thick, the result is a remarkable im¬

provement in accuracy (Figure E.16). The error of the basal

0

£ 100
a

CD

200

\
\

+\

V
X

mesh with

— 4 lines of elements

o 8 lines of elements

+ 16 lines of elements

exact solution

X
X.

\,
TN

V

5 10 15

shear stress [t/m2]

\ ^x

20 t/m2

Figure E.16 Shear stress x in a 200 m thick ice mass

(inclination 5.71° ) for three models with different

FE-mesh sizes. In an ice column there are 5, 9 and

17 nodes respectively. The improvement of the FE-

mesh leads to a much better accuracy at the bottom

and at the surface. Errors at the bottom are 12.5%,

6.25% and 3.14% respectively.

shear stress is 12.5%, 6.25% and 3.14% respectively for the

three cases. In the third one with the finest mesh the veloc¬

ity values were exact within 0.2%.

It remains to be shown here that with the rheologi¬

cal form of the FE-program the non-Newtonian flow can be sim¬

ulated.
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E.6.1 Geometry and material properties

The problem of plane laminar flow is considered for

testing purposes. In a 200 m deep glacier a section of 200 x

500 m is chosen. The ice is considered as a non-Newtonian,

incompressible fluid of constant density adhering at the gla¬

cier bed. In detail the following values are used:

length: 1 = 500 m

slope: a = 5.71°

depth: D = 200 m cosa = 199 m

_24 -3 -i
flow law parameters: A = 3.5 x 10 Pa s

n = 3

3
density: p = 900 kg/m

2
grav. acceleration: g = 9.81 m/s

E.6.2 Analytical solution

The analytical solution follows from the Equations

B.5 to B.8. The ice overburden pressure, the basal shear

stress and the surface velocity correspond to the numerical

values above:

a
x

A velocity profile is given in Table E.2 and in Figure E.17.

E.6.3 Numerical solution

Some results of the calculation of the velocity

field are given in Table E.2 and Figure E.17. Stress values

at the bottom are

ox
= 17.05 bar

a = 17.10 bar

xxy
= 1.70 bar

.

y
17,.

5 bar

X

xy
1..75 bar

u =

s
58,.

7 m/a



- 121 -

The above values are already transformed such that they can

be directly compared with the above values of the closed form

solution. The velocity at the surface is

U = 53.5 m/a .

s

Table E.2 Comparison of some velocity values of the analyt¬

ical (u) and the numerical (U) solution in case of a

non-linear flow law. Subscript s denotes surface ve¬

locity.

y u u/us U U/U

[m] [m/a] [m/a]

200 58.7 1.000 53.5 1.000

175 58.7 1.000 53.4 0.999

150 58.5 0.996 53.2 0.995

125 57.5 0.980 52.2 0.975

100 55.0 0.938 49.9 0.933

75 49.7 0.847 44.9 0.839

50 40.1 0.684 36.2 0.677

25 24.3 0.414 21.7 0.408

0 0. 0. 0. 0.

0 1
^_

velocity

Figure E.17 Velocity profile for linear (a) and nonlinear

(b) viscous flow law. Comparison between analytical

solution (curve) and numerical solution (dots).

Dashed line shows numerical solution normalized to

the analytical one.
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E.6.4 Discussion

The surface velocity of the numerical solution is

definitely too small. However, the difference between it and

the analytical solution can be explained by the too small ba¬

sal shear stress. As the velocity at the surface varies as

the third power of the shear stress at the bottom, a shear

stress of only 97% should lead to a surface velocity of only

91% : 53.5 m/a. That is in fact the case. The inaccuracy of

the velocity values is mainly due to inexact stress values

resulting from averaging in the numerical solution method.

Therefore it seems clear that one could reach the exact solu¬

tion by a continuous improvement of the FE-mesh. It is prob¬

able and shown in fact for the case of linear viscous flow

(Figure E.14) that the numerical solution approximates the

analytical one. In other words, the rheological model (Table

E.l) used in all nonlinear computations is able to simulate

nonlinear viscous, so-called Glen's flow.

The confidence in the rheological version of the program is

supported by the coincidence of the velocity profiles. The

typical bulging profile of Glen's flow can be reproduced

sucessfully.
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Chapter F

NUMERICAL SIMULATION OF

GLACIER SLIDING: RESULTS

This chapter contains the results of the numerical

computations of the sliding of an ice mass over a rigid si¬

nusoidal bed. The influence of bed geometry, rock-to-rock

friction and subglacial water pressure on the sliding veloci¬

ty is studied. The basal boundary condition is varied essen¬

tially.

The results support the fundamental statement that

the properties of the basal ice, especially the debris con¬

centration, are relevant variables in the sliding process.

Starting with a perfectly lubricated bed the friction can

affect the sliding velocity as much as the subglacial water

pressure, however with an inverse sign.

Most of the numerical calculations are done for both

the linear viscous and the nonlinear viscous ice rheology.

The reason that all computations do not consistently include

the nonlinear flow law is based on the tremendous time sup¬

ply. A typical calculation time (CPU-time) on a CDC Cyber

180-855 is ten hours, whereas the calculations using a linear

viscous flow law normally run in less than one minute.
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F.l Sliding without bed separation

The sliding over a rigid perfectly lubricated sinus¬

oidal bed is, in the case of a linear viscous flow law, the

only instance where a comparison with a closed form solution

is practicable (Nye, 1969).

F.l.l Linear viscous sliding

The results of simulations of the sliding with a

linear viscous flow law (in the following simply called "lin¬

ear viscous sliding") are compared with the solution of Nye

(1969). Nye's solution which considers a bed geometry with

only one wavelength substantially larger than the transition

wavelength (thus regelation can be neglected), can be given

as (see Section C.2, Eq. C.3a)

X xb
Ub

=

8 *3 n r2
•

With the values of our model (in the following called princi¬

pal model: X = 20m, x = 1.75bar, r = 0.05, n = 1 x 1013 Pa s;

for details see Chapter E) one gets a sliding velocity

u, = 17.24 m/a .

The numerically calculated velocity is

Ub = 17.25 m/a .

Accordingly the error is smaller than 0.1 %. This test com¬

parison shows that the assessment of the boundary condition

at the bottom and the top of the modelled section is appro¬

priate. In detail the perfect slip condition at the ice-rock

interface is well simulated.

The velocity value U, of the numerical calculation is the
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mean of the nodal values along the bed, but only of the

middle of the three wavelength.

At the top of the modelled section the velocity is

Ufc = 28.40 m/a ,

thus the deformational part of the motion is

U. = 11.56 m/a .

d

Starting with Eq. B.7 one would expect

u, = 12.47 m/a
d

as deformation in the lowest 25 m of a 200 m thick ice mass.

The difference cannot only be due to too small shear stress

values, but the deformation seems to be in fact smaller if

the bed is undulating. When modelling the whole 200 m thick

ice mass (frozen to its bed) ,
the deformation in the lowest

25 m is 12.08 m/a. In comparison, the deformational velocity

is 4,3 % smaller in the case of the undulating bed.

The properties of ice as an incompressible, linear

viscous fluid are reflected in the feature of the flow or ve¬

locity field (Figure F.l). Where the flow is confined to a

narrow band the ice is flowing and sliding faster, and cor¬

respondingly slower where it is wide. This characteristic is

also visible in Figure F.l via the contour lines of constant

velocity. The sliding velocity is largest on the crest of the

rock bumps and smallest down in the valley. However, looking

closely, the velocity minimum does not occur at the bed, but

about 2 m above it. One reason may be that the flow line is

shorter there than at the bed and hence, in order to fulfill

the continuity requirement, the velocity has to be a bit

smaller than it is directly at the bed.
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Figure F.2 shows the stress field represented by

principal stresses. On first view it can be easily seen that

the modelled section is well balanced, that at the top more

or less laminar flow conditions are valid and that on the

uphill side of the bumps large compressive stresses exist. In

a subsequent section the stress distribution at the bed will

be discussed in detail.

In the following some pertinent variables along the

ice-rock interface are particulary studied.

(a) Sliding velocity U.

As previously mentioned, the numerically calculated

sliding velocity indicated above is an average value. The

velocity is larger on the crest and smaller on the base of a

rock bump (Figure F.3): a typical flow pattern of a fluid.

The sliding velocity varies between 16.85 m/a and 17.68 m/a.

(b) Velocity normal to the bed V

The normal velocity directly at the bed is identical

to zero. Values as for instance in Figure F.3, are always

given at a certain distance (mostly 10 cm or 1 m) above the

bed, calculated from the first node line above the bed (see

Section E.5.2.3). In contrast to the normal stress or the

sliding velocity, the normal velocity is not a single harmon¬

ic function. We don't see any plausible explanation for this

feature. It could be an effect of not quite accurate inclina¬

tion values. To calculate the normal velocity, the direction

of the velocity vector is compared with the bed inclination

and a certain deviation is expressed as normal velocity. As

was aforementioned, the normal velocity is calculated from

velocity values 1 m above the bed. The error and therefore

the second harmonic could well be due to this discrepancy be¬

tween the place from where the inclination angles are taken

and the place where the velocity is calculated.

Maximum and minimum values of the normal velocity occur where

one would expect them to: on the uphill and downhill side re¬

spectively, but not at the inflexion points.
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A typical value 1 m above the bed is 50 cm/a. Near the bed

the ice flows a few centimeters per year against the rock.

30 bar

Figure F.3 Numerically calculated values along the sliding

interface of normal stress P
,
normal component of

stress deviator t normal velocity V
, sliding

velocity U, and bed topography y,.
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(c) Normal stress P

The pressure the ice exerts on the bed is oscillat¬

ing, as shown in Section C.14

pn(x) =

Po + Apmaxcos <2£i) .

In the considered case of the principal model there is

P = 17.5 bar

and

Ap =11.1 bar
rmax

Thus the normal stress p varies between 6.35 bar and 28.6
*n

bar. Figure F.3 depicts the result of the numerical solution

generally reproducing the analytical one within 1 %.

However, there is a large deviation in the lee of the bed un¬

dulations where the pressure is minimal: 7.11 bar instead of

6.35 bar, an error of 12 %. In Figure F.3 the three fine

straight lines indicate the theoretical values of the average

normal pressure and the two extreme ones between which the

pressure is oscillating.

(d) Normal stress deviator t'
n

The stress deviator component normal to the bed rep¬

resents the local stress distribution without the influence

of the hydrostatic pressure. It could be a pertinent variable

for simulating sliding with friction. On areas where the nor¬

mal stress deviator is positive (meaning compressive) the

friction would be active. Figure F.3 supports this idea. The

normal stress oscillates in accordance with the bed topogra¬

phy, simply shifted by a quarter of a wavelength. Positive

values contributing to friction are on the uphill side, and

negative ones on the downhill side of rock bumps. However,

the results of the nonlinear viscous sliding (in a subsequent

section) suggest that one should reject the idea outlined

above of involving the normal component of the stress devia¬

tor to simulate sliding with friction.
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A series of different models are computed for the

purpose of studying the effect of varying geometry and for

again testing the solution of Nye (1969). Nye suggests that

the basal sliding velocity varies as the wavelength and as

the inverse of the second power of the roughness. This de¬

pendence and also the velocity values could be reproduced by

the numerical computations. Table F.l provides an overview.

The numerically calculated values generally coincide well

with the analytically computed ones. Larger variations exist

if the velocity is significantly different from the one of

the principal model (X = 20 m, r = 0.05). This is due to

boundary conditions which are not sufficiently adapted to the

new conditions. A continuous improvement of the boundary con¬

ditions at the front and the back side could probably guaran¬

tee a coincidence within more than 99 % accuracy.

Table F.l Compilation of numerically calculated velocity

values (in m/a) compared to exact values from the

Nye solution. To each pair of roughness and wave¬

length two values are given: the upper one origi¬

nates from the closed form solution of Nye and the

lower one is numerically computed.

N.
r 0.02 0.04 0.05 0.06 0.08 0.10

6 m 32.33 8.08 5.17

5.28

3.59 2.02 1.29

10 m 53.89

53.52

13.47

13.11

8.62

8.76

5.99

5.79

3.37

3.27

2.16

2.10

20 m 107.77

112.56

26.94

27.09

17.24

17.25

11.97

11.69

6.74

6.43

4.31

4.06

30 m 302.36 75.59 48.38

46.36

33.59 18.90 12.09
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To summarize, the sliding of an ice mass along a

distinct undulating interface considering linear viscous ice

rheology can be simulated. In so far as the numerically cal¬

culated results can be compared with an analytical solution

and therefore the accuracy can be estimated, it is justified

to say that the simulation is done well and the model pro¬

duces satisfactory results.

F.l.2 Nonlinear viscous sliding

The results of the simulations of the sliding of an

ice mass over a undulating bed considering nonlinear viscous

ice rheology (in the following simply called: "nonlinear vis¬

cous sliding") can be compared with the treatment of Kamb

(1970). However, Kamb's solution is an approximate one. In

case of large deviations between two different, both not

exact approaches, it is hard to say which one is more appro¬

priate. The detailed tests outlined above mainly justify con¬

fidence in the results of the numerical computations.

In the following section the results of the simulation of the

nonlinear viscous sliding are compared with the results of

the simulation of the linear viscous sliding.

Considering again the principal model (X = 20 m and

r = 0.05) one gets a numerically calculated sliding velocity

Ub = 47.44 m/a .

Kamb's solution for a wavelength of the bed undulation much

larger than the transition wavelength (Eq. C.5a) predicts a

more than 5 times larger sliding velocity

u, = 246 m/a

This discrepancy cannot be explained by shear stress values

that are possibly too small due to averaging in the FE-pro-
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gram. One reason could be that Kamb's solution being an ap¬

proximate one is not appropriate to the characteristics of

our model. This means that the wavelength could be too large

(X = 20 m). However, the numerically computed value seems to

be quite realistic. Together with the velocity due to inter¬

nal deformation a surface velocity of 106 m/a seems to be

reasonable for a 200 m thick glacier.

At the top of the modelled section (25 m above the

bed) the total motion in one year is

Ufc = 86.23 m/a

Hence the creep velocity is

U, = 38.80 m/a
d

Without sliding, thus frozen to the bottom, but still with a

wavy bed the velocity due to deformation is only 20.51 m/a.

Theoretically the creep velocity in the lowest 25 m of a 200

m thick ice mass should be (see Section E.6.3)

u. = 24.29 m/a
d

In the numerical simulation of the whole 200 m thick ice mass

frozen to its bed only 21.69 m/a results. Again, as in the

case of linear viscous sliding, the deformation is smaller if

the bed is undulating.

But on the other hand, now the deformational part of

the motion is larger in the case of sliding than in the case

of none. This additional contribution: 18.29 m/a is an effect

of the strain softening. If the ice is sliding, the larger

stress concentrations around the bumps lead to enhanced

creep.

The velocity field in Figure F.4 is strikingly simi¬

lar to the linear viscous sliding field in Figure F.l. Corre¬

sponding to the much larger deformational motion, the rela-
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tive difference between the velocity at the bottom and at the

top of the modelled section is about 20% larger. In contrast

to the linear viscous case the minimal velocity value is di¬

rectly at the bed. The bed undulations become apparent higher

up. Even at the top of the section the velocity vectors can

clearly be seen to submerge and emerge. The y-component vari¬

es ±25% around the average value which represents laminar

flow. In the linear viscous case the variation is only 0.5% .

One would in fact rather expect the opposite, namely that the

effect of the bed undulations is concentrated more closely

near the bed, because the ice is more deformable than in the

case where it is considered a linear viscous fluid. It is

possible that the much larger (by a factor of 3) sliding ve¬

locity turns it the other way round.

The stress field (Figure F.5) is quite different as

compared to the linear viscous case (Figure F.2). In contrast

to the velocity field there are some differences visible on

the first view, especially at the top and at the bottom of

the modelled section. Again all stresses are compressive.

In the uppermost node line there is a very strange orienta¬

tion of some principal axes of stress, a feature not at all

existent in the adjacent node line below. At the bottom one

can recognize larger stress values and also larger differenc¬

es between the two principal stresses, hence the stress devi¬

ator values will be larger, too. Furthermore, it is obvious

that it is not possible to balance the ice mass exactly such

that the stress values at the edges (left and right) are the

same as the corresponding ones in the middle.

All together one gets the impression that the stress field

does look somehow suspicious. The more detailed discussion

below will show that a certain pattern is also emerging in

the stress field. And on the other hand, the velocity field

does not give rise to any doubt.

Again some variables along the sliding interface are

more fully discussed.
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(a) Sliding velocity U.

The sliding velocity at the bed varies much more

(±9.1%) (Figure F.6) than in the case of linear viscous slid¬

ing (±2.4%) (Figure F.3). This is an effect of the strain

softening leading to correspondingly larger velocity values

where there are stress concentrations.

(b) Velocity normal to the bed V

The normal velocity is larger than in the linear

viscous case. A typical value is 2 m/a (1 m above the bed) .

This increase is not only due to the larger sliding. There is

an effective increase of about 20%. This difference will be

important for modelling the friction. In contrast to the lin¬

ear viscous case there is only one minimum and one maximum

within one wavelength. However, the normal velocity is again

not a single harmonic function. The extreme values are not at

the inflexion points but shifted more to the crest of a rock

bump.

(c) Normal stress P
n

As for the normal velocity, the curve of the normal

stress (Figure F.6) is asymmetrical. The extreme values are

about 10% larger and shifted towards the crest of a rock

bump. It follows that the stress concentrations and differ¬

ences are larger around a bump. The normal stress function

resembles a saw-blade.

(d) Normal stress deviator t '

n

The component of the stress deviator normal to the

bed (loosely referred to as "normal stress deviator") (Figure

F.6) is calculated as follows

V (x) = Pn<x)
"

2<ai+02)

where a. and o2 are the principal stresses. The asymmetrical

characteristic of the normal stress P gives rise to a rather

strange course of the local stresses at the bed, for instance

negative, thus tensile on the uphill side of rock bumps.
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Figure F.6 Some variables along the sliding interface of

the principal model simulating the motion of an ice

mass over a wavy bed considering ice as a nonlinear

viscous fluid.
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From the definition above it is clear that in the case of an

asymmetrical distribution of the normal stress such features

will appear. The idea of choosing the stress deviator compo¬

nent normal to the bed as a pertinent variable for simulating

sliding with friction is abandoned.

Again, as in the case of the sliding with a linear

viscous flow law, some models with different wavelength and

roughness are computed. Table F.3 provides an overview.

The sliding velocity does not, as Kamb (1970) proposed, vary

as the wavelength and as the inverse of the fourth power of

the roughness (in fact, the roughness appears also in the nu¬

merator but with less effect compared to the fourth power in

the denominator). Taking the example with wavelength X = 20 m

and roughness r = 0.08 the sliding velocity should, following

Kamb, increase by a factor of about 12 from (taking our nu¬

merically computed value) 13.8 m/a to 168 m/a, if the rough¬

ness is halved to r = 0.04. Table F.2 shows in our case only

an increase by a factor 6.3, still more than in the case of a

linear viscous flow law where for constant wavelength a halv¬

ing of the roughness leads to a four times larger sliding ve¬

locity. Thus the dependence on the roughness is stronger than

in the linear viscous case but not as strong as Kamb proposed

(Figure F.l).

>.
r 0.04 0.05 0.06 0.08 0.10

xNv

10 m 26.3 16.2 9.9 5.0 3.0

20 m 86.8 47.4 29.2 13.8 7.9

Table F.2 Numerically calculated sliding velocity (non¬

linear viscous ice rheology) in m/a for varying

roughness r and wavelength X.
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Figure F.7 Dependence of sliding velocity on roughness

according to sliding theories by Nye (1969) and Kamb

(1970) and derived by finite-element solution.

In Section C.2 another approach, a numerical one by

Raymond (1978), was presented. This author introduced into

the sliding law a constant K to be determined by numerical

computation to damp down the strong dependence on the rough¬

ness. The K-value for the different models in the above table

can be determined (Table F.3). Raymond calculated two K-val-

ues (n = 3) also with a finite-element program for roughness

0.005 and 0.10 and got 0.44 and 0.6 respectively.
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^v r 0.04 0.05 0.06 0.08 0.10

*\

10 m 0.24 0.28 0.30 0.35 0.39

20 m 0.29 0.31 0.34 0.39 0.43

Table F.3 Values of the constant K in the sliding law

(Eq. C.5c) (Raymond, 1978) deduced by finite-element

solution (see Table F.2) for different roughness r

and wavelength X.

Values taken are: xfc
= 1.748 bar, N = 1.042 bar a1/3

Considering that the velocity values generally tend to be a

bit too small, the K-values (Table F.3) are likely to be lar¬

ger, and thus the values given are lower bounds. For in¬

stance, a 50% larger sliding velocity would lead to a 14%

larger constant K. However, definitely smaller sliding veloc¬

ities result from this, as opposed to Kamb's derivation. To

get for instance the velocity given by Kamb (24 6 m/a), a val¬

ue of K = 0.54 would be necessary (we proposed K = 0.31).

It was mentioned earlier that the deformational part

of the overall motion is in the case of a nonlinear viscous

flow law much larger due to strain softening. For the above

presented models with different roughness values and wave¬

length X = 20 m, the effect of enhanced creep is studied. It

is obvious (Table F.4) that an increasing roughness is caus¬

ing a larger portion of deformation due to strain softening.

The larger the roughness, the higher the stress concentra¬

tions, and creep is enforced accordingly. In the last column

of Table F.4 the contribution of the strain softening is com¬

pared to the sliding velocity supporting the above statement.
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r Ut Ub U, + U
d ss Uss U /U,

ss b

0.04 135.0 86.8 48.2 26.5 0.31

0.05 86.2 47.4 38.8 17.1 0.36

0.06 62.5 29.2 33.3 11.6 0.40

0.08 41.6 13.8 27.7 6.0 0.44

0.10 33.1 7.9 25.2 3.5 0.45

Table F.4 Sliding and deformational part of the motion (in

m/a) for varying roughness (wavelength X = 20 m).

There are:

U. : velocity at the top of the modelled section

U, : velocity at the bed

U, : velocity due to deformation

U : velocity due to strain softening

It follows: a = U, + U
,

+ U
t b d ss

U . is taken from the results of the model simulating

the flow of the whole ice mass: U, = 21.7 m/a .

C.F. Raymond (personal communication) proposes to define the

sliding velocity as sum of the velocity at the interface (U, )

and of the velocity due to strain softening (U ). This would

lead to a 30-45% larger sliding velocity.

F.l. 3 Sliding with friction

The next step in simulating the sliding of an ice

mass over a wavy, rigid bed is to introduce a friction at the

sliding interface due to a dirty, debris-rich basal ice lay¬

er. Thus the sliding interface is no longer perfectly lubri¬

cated, but there is a frictional force parallel to the bed

rock slowing down the motion. Rock particles embedded in the

basal ice and pressed against the bed give rise to friction.

Principally the influence of a varying debris concentration
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in the basal ice on the sliding velocity is studied. The

friction model of Hallet (1981) is adopted to the finite-

element computation (for details see Section E.5.2.3). It

must be pointed out that in Hallet's model the debris concen¬

tration does not correspond to the conventional definition,

but refers to the number of rock particles in contact with

the bed per unit area (called by Hallet "aeral concentration

of rock particle in contact with the bed"). This sort of de-

finiton is appropriate in simulating the frictional effect of

rock particles in the basal layer, but it is difficult to ap¬

ply for determining by field measurements (Shoemaker, 1988).

First of all, for three different geometries the ef¬

fect of increasing debris concentration on the sliding velo¬

city is studied. The three models are: the so-called "princi¬

pal model" (X = 20 m, r = 0.05; called "2005"), one with lar¬

ger roughness (X = 20 m, r = 0.10; called "2010") and one

with a smaller wavelength (\ = 10m, r = 0.05; called "1005").

The simulations are done using a linear viscous flow law.

Table F.5 is a compilation of the results, illustrated in

Figures F.8a,b. For all three geometries the reduction of the

c 0. 1.25 2.5 3.75 5.0 6.25 7.5

5i=10m 8.76 7.70 6.64 5.58 4.53 3.46 2.41

r=0.05 87.9% 75.8% 63.7% 51.7% 39.6% 27.5%

X=20m 17.25 15.30 13.53 11.76 9.99 8.23 6.46

r=0.05 88.7% 78.4% 68.2% 57.9% 47.7% 37.4%

X=20m 4.31 4.01 3.70 3.40 3.09 2.79 2.48

r=0.1 92.9% 85.9% 78.8% 71.8% 64.7% 57.6%

Table F.5 Effect of areal concentration of rock particles
-2

(c in m ) on the sliding velocity (in m/a) for

varying wavelength and roughness. Reduced sliding

velocity is given as percentage.
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sliding velocity is linear to the debris concentration. The

model known as "1005" is slowed down the most, while "2010"

with the smallest sliding velocity is slowed down the least.

However, with only three models it is almost pure speculation

to say that the reduction of the siding velocity varies as

the inverse of both the roughness and the wavelength.

debris concentration

debris concentration

7.5 m"*

c Figure F.8a,b

Dependence of slid¬

ing veloctiy on de¬

bris concentration

for three models

with different

geometries. Above

(a) in absolute

values, below (b)

normalized to the

sliding velocity

for the case of no

friction (so-called

reduced sliding

velocity).

7.5 m
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The above results can be used only in a qualitative

sense, since the sliding velocities are much too small. This

follows simply from the fact that the frictional force is

proportional to the normal velocity calculated from the model

without friction. Thus to get an appropriate result one is

forced to use an iterative procedure. The numerically comput¬

ed normal velocity of the previous run is used to calculate

the fricitonal force as input for the subsequent run. Conver¬

gence within three digits is reached after about ten steps.

The iterations are done for the principal model for two dif-

-2 -2
ferent debris concentrations: c = 3.75 m and c = 6.25 m

-2
An aeral concentration of c = 3.75 m means that 15% of the

c 3.75 6.75

ubf

ubf/ub

13.5 11.8

0.78 0.67

Table F.6 Sliding velocity (Ubf in m/a) of the principal

model (iterative solution) for two different values

-2
of the debris concentration (c in m ). The quotient

U, f/U. denotes the reduced sliding velocity.

U. : sliding velocity for debris-free ice.

7.5 m"

debris concentration

Figure F.9 Dependence of reduced sliding velocity on the

debris concentration. Upper points and dashed line

show iterative solution.
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sliding interface is covered with rock particles of 10 cm ra¬

dius contributing to friction. Table F.6 contains the re¬

sults.

It is surprising that the two cited above reduced sliding ve¬

locities and the one without friction are not located on a

straight line (Figure F.9). Thus the reduced sliding velocity

does not vary linearly as the inverse of the debris concen¬

tration.

We are now looking more closely at the principal mo-

-2
del with a debris concentration of c = 3.75 m . The sliding

velocity is as mentioned

U.
_

= 13.5 m/a
bf

At the top of the modeled section the velocity is

U
f

= 24.6 m/a

Thus the difference obtained is the velocity due to deforma¬

tion

Udf = 11.1 m/a ,

a value slightly smaller (3.5%) than m the case of no fric¬

tion.

The velocity field (Figure F.10) is not remarkable m any

way. It is very similar to the one without friction (Figure

F.l), altough the velocity vectors are smaller. The scale m

Figures F.l and F.10 is the same, so the velocities can be

directly compared.

The stress field (Figure F.ll) distinctly shows the two dif¬

ferent boundary conditions at the glacier bed. On the up¬

stream side of the rock bumps the orientation of the axis of

principal stress is about 45° inclined to the interface, the
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effect of a large shear stress due to friction. On the lee

side where no friction is existent and the bed is perfectly

lubricated, one of the axes of principal stress is nearly

parallel to the sliding interface.

Figure F.12 unites some variables along the sliding

interface, subsequently discussed in detail.

(a) Sliding velocity U. _

The sliding velocity varies between 13.0 m/a and

14.0 m/a (Figure F.12). The variation is a bit larger (±3.7%)

than in the case of no friction (±2.4%), probably an effect

of the varying boundary condition. The curve of the sliding

velocity is no longer in phase with the bed undulation, but

shifted downhill about one-tenth of a wavelength. At the top

of rock bump is the last node where a frictional force slows

down the motion, thus the largest velocity is a bit later

just after the top, in the lee where the bed is again per¬

fectly lubricated.

(b) Velocity normal to the bed V

The velocity component normal to the sliding inter¬

face is calculated from the velocity values in the node line

1 m above the bed. Although the sliding velocity is in case

of friction generally smaller, the component normal to the

bed is it not, but is increasing relatively about 15-20% com¬

pared to the case of no friction. This means that the normal

velocity is generally reduced less than the sliding velocity.

In addition the curve (Figure F.12) is very similar to the

one without friction.

(d) Normal stress P_
n

The normal stress (Figure F.12) is substantially

less oscillating than in the case of no friction, however, it

still has a mean pressure of about 17.4 bar. Varying between

26.5 bar and 9.1 bar the amplitude of the stress oscillations

is only

Ap =8.66 bar
Mnax
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instead of 11.1 bar as one could expect from the theory.

The result is important for the case where subgla¬

cial water pressure is acting. Key values such as the separa¬

tion pressure depend on the minimal normal stress. In the

considered case of friction the minimum normal stress is in¬

creased from 6.4 bar to 9.1 bar, an increase of more than

40%. The amplitude of stress oscillation is defined as (Eq.

C.15)

X x.

AP„

Figure F.12 Some typical values along the sliding interface

of the principal model for sliding with friction

(aeral basal debris concentration c

iterative solution).

3.75 m
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As wavelength and amplitude of bed undulation are constant,

the smaller amplitude of the normal stress must be due to a

smaller driving shear stress. In the case of solid friction

between ice and rock, a part of the shear stress due to

gravity is used to overcome the friction, thus less is left

for driving the ice mass downhill. A basal shear stress

x, = 1.36 bar
b

results, only 78% of the shear stress due to gravity

x = pgh sina = 1.75 bar.

The reduction of the shear stress is in perfect agreement

with the reduction of the sliding velocity. The shear stress

used to overcome the friction is

x - x. =

xf
= 0.387 bar .

(d) Normal stress deviator t'

The curve of the stress deviator component normal to

the bed (Figure F.12) is, as the curve of the sliding veloci¬

ty, shifted downhill. Maximum and minimum values do not coin¬

cide with the inflexion points of the undulating bed. Absolu¬

te values are about the same as in the case of no friction:

1.5 bar.

There are some computations done for the case of a

nonlinear viscous flow law of ice to detect the general

trend. The idea was to take the principal model and to numer¬

ically calculate the sliding velocity for the same increasing

values of the debris concentration. The normal velocity val¬

ues of the principal model without friction are used to de¬

termine the frictional nodal forces. But already a debris

-2
concentration of c = 3.75 m leads to an uphill motion at

the base of about 5 m/a (Table F.7, Figure F.13).
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c 1.25 1.875 2.5

..., . . . .

3.75

ubf

ubf/ub

25.52

0.538

17.38

0.366

10.52

0.222

-5.35

Table F.7 Sliding velocity (U, , in m/a) of the principal

model for different values of the debris concentra-

-2
tion (c in m ) using a nonlinear viscous flow law.

Ubf/U, is the reduced sliding velocity.

[u

O

O

>

c

;o
"co

7.5 m
-2

— c

debris concentration

Figure F.13 Dependence of nonlinear viscous sliding veloc

lty U. _ on the debris concentration c. Dashed line

indicates probable curve of iterative solution.

It is obvious that if the iterative procedure to determine

the frictional force were applied, the reduction of the slid¬

ing velocity would not be so tremendous. It was shown above

that the reduction of the sliding velocity corresponds to a

reduction of the driving shear stress x,. Using a nonlinear

viscous flow law such as Glen's law with exponent n = 3 it

can be assumed that the decrease in the sliding velocity is

correspondingly larger. For a debris concentration of

-2
c = 3.75 m one gets a reduced sliding velocity of 0.78 when
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a linear viscous flow law is applied. It is supposed that

3
with nonlinear ice rheology the reduction is (0.78) = 0.48,

which means that if about 15% of the glacier bed is covered

with rock particles embedded in the basal ice contributing to

friction, the sliding velocity is halved compared to the case

of clean ice on a perfectly lubricated bed (Figure F.13).

F.2 Sliding with bed separation

Sliding with bed separation as an effect of sub-

lacial water pressure was studied in detail by Iken (1981)

using an earlier version of the finite element code RHEO-

STAUB. In particular the transient stages of growing and

shrinking water-filled cavities at the ice-bedrock interface

were analysed. The introduction of a frictional drag at the

sliding interface is the innovation of the present study. In

this context the effect on the separation and the critical

pressure is of main interest. The present work does not ex¬

tend to the point where the cavities reach a steady state

shape. Except for one, all computations are done using a lin¬

ear-viscous flow law. The effect of subglacial water pressure

on the sliding velocity without any friction is considered

first, as the basis for this study, and the friction is added

afterwards.

F.2.1 Frictionless sliding with bed separation

According to the theory, bed separation and hence

the onset of cavity formation starts when the subglacial

water pressure reaches the minimal normal stress. This limit¬

ing value is known as separation pressure. In the case of the

principal model (X = 20 m, r = 0.05) the separation pressure
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is given as

Ps = 6.35 bar

(for details see Section C.3.3.2). At a subgacial water

pressure

P > 11.91 bar = P
w c

(called critical pressure) the glacier motion becomes accel¬

erated, i.e. unstable. For studying the effect of the subgla¬

cial water pressure on the sliding velocity, eight different

models with increasing water pressure values between 6.35 bar

and 11.64 bar are chosen.

Table F.8 and Figure F.14 contain the results of the

numerical computations of the corresponding sliding veloci¬

ties.

p
w

[P ]
w Ubw Ubw/Ub

7.46 0.1 17.06 0.99

8.58 0.2 17.61 1.02

9.13 0.25 18.42 1.07

9.69 0.3 19.58 1.14

10.25 0.35 22.44 1.30

10.80 0.4 25.32 1.47

11.36 0.45 37.26 2.20

11.91 0.475 45.01 2.66

—I.., , ,

Table F.8 Numerically calculated sliding velocity U^ (in

m/a) for different values of the subglacial water

pressure P (in bar). U, /U, represents the relative

increase compared to the sliding velocity without

bed separation (U, = 17.25 m/a). The normalized

dimensionless water pressure [P ] expresses the

relation to the separation pressure (P : [P ] = 0),

the critical pressure (P : [P ] = 0.5) and the mean

ice overburden pressure (P : [P ] = 1.0).
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Figure F.14 shows the very typical relationship be¬

tween the sliding velocity and the subglacial water pressure:

For a given geometry the sliding velocity is a constant, as

long as the water pressure is below the separation pressure

(determined, neglecting friction, only by the geometry). Then

the velocity is progressively increasing with increasing wa¬

ter pressure. However, if the water pressure exceeds the

critical pressure the ice mass accelerates and becomes unsta¬

ble and the velocity theoretically tends to infinity. The

above is true only for the very special case of an ice mass

sliding without friction over a rigid, sinusoidal rock bed.

No effects of friction nor any changes in the subglacial

hydraulic system are considered.

[u
I

>~
4—'

O

O

ID
>

O)
c

o

Ps Re ^o

fpj
water pressure

l J

Figure F.14 Dependence of sliding velocity on the subgla¬

cial water pressure. Normalized representation:

[V = ubw/ub and [pwJ - VV ub = 17-25 m/a'

P = 17.48 bar.
0
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A few words on the details of the numerical computa¬

tion: For a given water pressure the sliding velocity depends

strongly on the area where the water pressure is acting. As

discussed in Chapter E, stable cavities cover a larger area

than one would expect from the distribution of the normal

stress. For the numerical computation considering transient

cavities, the area of acting water pressure was chosen with

the help of the theoretical relationship for the bed separa¬

tion (see Section C.3.3.3). However, since only certain dis¬

crete values for the area can be chosen taking three, five,

seven etc. nodes, the curve (Figure F.14) describing the re¬

lation between subgacial water pressure and sliding velocity

grows not continuously but stepwise. This deficiency could

only be removed by increasing the number of nodes directly at

the sliding interface. For a given cavity size, the sliding

velocity varies with the water pressure. Only when the area

where the water pressure can attack is enlarged by including

another two nodes, does the slope become steeper and finally

the typical progressively increasing curve results.

Again a characteristic velocity (Figure F.15) and

stress (Figure F.16) field of the principal model are shown

for a water pressure value of 11.6 bar (near to the critical

pressure of 11.9 bar). Some features are worth pointing out:

Clearly visible is the flow away from the bed m the lee of

the rock bumps (producing cavities) and the upward motion at

the top of the modelled section. This means the subglacial

water pressure is lifting the whole ice mass a little bit.

Remarkable in the stress field are the principal stresses in

the lee of the bed undulation, representing exactly the pre¬

scribed boundary condition, and the large stress values on

the upstream side being important with regard to simulating

friction.

There is only a single numerical computation per¬

formed for the case of a nonlinear flow law. The sliding

velocity is calculated at a water pressure P =10.8 bar
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U. = 67.78 m/a
bw

a comparably small value, since the sliding velocity where no

water pressure is acting is

U. = 47.44 m/a
b

The quotient U, /Uh expressing the increase of the sliding

velocity in the case of bed separation is even a little

smaller than the one obtained using a linear viscous flow law

(1.43 compared to 1.47). Therefore one can say that the sort

of flow law used seems not to be important for the amount of

the velocity increase in the case of bed separation, at least

in the case studied where the bed separation is rather small

(s = 0.35) .

F.2.2 Sliding with friction in presence of bed separation

Up to this point the two effects of bed separation

and of friction due to debris in the basal ice were studied

separately. Combining the two important variables, subglacial

water pressure and aeral basal debris concentration will

show, for instance, whether the friction is enforced if the

ice is separating from the rock bed.

As pointed out in the previous section, a crucial

variable is the area of bed separation varying with the de¬

bris concentration. It is therefore critical to compare cases

with different debris concentrations. For the sake of clari¬

ty, the amount of bed separation s is given in most results

of the numerical computations (for the definition of s see

Section C.3.3.3). The parameter s is determined only approxi¬

mately by simply comparing the number of nodes where the wa¬

ter pressure is acting with the number of all nodes (=20) in

one single wavelength.
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c Ubwf Ubwf/Ubw

0. 25.32 1.0

1.25 21.00 0.84

2.5 17.19 0.68

3.75 13.38 0.53

5.0 9.61 0.37

6.25 5.90 0.22

7.5 2.45 0.07

Table F.9 Numerically calculated sliding velocity values

(U.

bwf
in m/a) for increasing debris concentration

(c in m ) at a constant water pressure P = 10.8bar.

J. : sliding velocity of debris-free ice

The dependence of the sliding velocity on the debris concen¬

tration in the case of bed separation was studied with a con¬

stant value of the subglacial water pressure P = 10.8 bar and

o

©
>

"co

7.5 m~2

»- c

debris concentration

Figure F.17 Dependence of sliding velocity on the debris

concentration in basal ice for a water pressure of

10.8 bar and a bed separation parameter of s = 0.35.

Upper line gives the relation in the case of no bed

separation.
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a constant bed separation parameter s = 0.35 (a rather unre¬

alistic assumption). The results can be found in Table F.9

and in Figure F.17 where the reduction of the sliding veloci¬

ty is also given for the case of no bed separation (see Table

F.5) . The water pressure P 10.8 bar has to be seen in re¬

lation to the separation and the critical pressure. In the

case of clean basal ice (c = 0) the water pressure P is near
w

the critical pressure, and on the other hand, for dirty basal

ice (c = 5.0) the chosen water pressure is about in the mid¬

dle between the two limiting pressures (as will be shown be¬

low) . In other words it is not easy to give precise quantita¬

tive values for the increase of friction in the case of bed

separation. However, an increase is explicitly proven and a

p
w

s Ubwf <Wub

8.58 0.15 13.19 0.76

9.69 0.25 13.40 0.78

10.80 0.35 15.01 0.87

11.36 0.45 17.68 1.03

11.64 0.45 19.12 1.11

11.91 0.45 20.56 1.19

12.47 0.55 30.11 1.75

Pw s Ubwf Ubwf/Ub

10.80 0.15 9.68 0.56

11.36 0.15 9,79 0.57

11.64 0.35 16.75 0.97

11.91 0.35 17.33 1.01

13.03 0.45 26.36 1.53

13.47 0.55 42.57 2.47

Table F.10a,b Dependence of the basal sliding velocity Ub -

(in m/a) on the subglacial water pressure P (in

bar) in the case of friction for two values of the

-2
debris concentration: above (a) for c = 2.5 m and

_2
below (b) for c = 5.0 m . The amount of bed separa¬

tion is expressed by the parameter s. Without bed

separation and without friction the sliding velocity

is Ub = 17.25 m/a.
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rough estimation is 50%. Without considering the effect of

the smaller sliding velocity in the case of friction (leading

to smaller frictional forces) the reduction of the sliding

velocity varies linearly as the debris concentration for a

certain constant water pressure. No iterations are made to

take into account the reduction of friction due to the reduc¬

ed sliding velocity.

How the sliding velocity in the case of friction is

dependent on the water pressure is studied for two different

-2 -2
debris concentrations: c = 2.5 m and c = 5.0 m (Tables

F.lOa and F.lOb). Hence, in contrast to the computation

above, the amount of friction is constant but the separation

area increases with increasing water pressure. However, the

separation process is different for the two debris concentra-

O
O

0)
>

To

7.5 m
-2

c

debris concentration

Figure F.18 Dependence of basal sliding velocity on the de¬

bris concentration in basal ice in the case of no

bed separation (P = 0, iterative solution, see Fig¬

ure F.9) and in the case of bed separation for a wa¬

ter pressure of P =10.8 bar. Dashed line shows es¬

timated iterative solution for the case of bed sepa¬

ration. Linear viscous flow law is used.
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M
2.5

o
o

>

O)

"o5

2.0

1.5

1.0

0.5

c = 0m
2 J ]\

c = 2.5m
^

y /
"

/i
c = 5.0m~2

•s

water pressure
^Rw

Figure F.19 Dependence of the basal sliding velocity U. on

both the subglacial water pressure P and the basal

debris concentration c. The sliding velocities are

normalized to the velocity which was calculated

without friction and without bed separation. Two

-2 -?
cases with c = 2.5 m and c = 5.0 m are consider¬

ed. Horizontal lines at left side represent the

state before bed separation starts. Dashed vertical

lines (asymptotes) give the critical pressure, ris¬

ing with increasing debris concentration.
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tions. The larger the friction the later starts the separa¬

tion. For instance, at a water pressure of P =10.8 bar the

bed separation parameter is s = 0.35 and s = 0.15 respective¬

ly for the debris concentrations studied. In Figure F.18 this

effect is taken into account and it is tried to give an over¬

view including an estimation of an iterative solution in the

case of friction. In contrast to Figure F.17 in which the

variation of the bed separation is neglected, the sliding ve¬

locity varies not linearly as the debris concentration.

Figure F.19 shows the results of the numerical com¬

putations of sliding with friction in the case of bed separa¬

tion for both, varying debris concentration and varying water

pressure. The typical relationship between sliding velocity

and subglacial water pressure remains valid, also in the case

of friction. However, the curves are shifted to the right, to

larger water pressure values. This simply means separation

and critical pressure are larger in the case of friction.

The critical and the separation pressure depend on

the normal stress amplitude Ap which is as shown in Sec¬

tion F.l.3 smaller in the case of friction than without.

Based on the calculation of the normal stress amplitude for a

-2
debris concentration of c = 3.75 m (see Section F.l.3), the

_2
stress amplitude for the debris concentrations c = 2.5 m

_2
and c = 5.0 m can be determined by a linear interpolation

to 9.48 bar and 7.84 bar respectively. This values of the

normal stress amplitude can be used to calculate (Eq. C.16

and C.17) the separation and the critical pressure in the

case of friction. The smaller oscillation of the normal

stress leads to smaller values of the separation and the

critical pressure. Table F.ll is a compilation of calculated

values of the separation and the critical pressure based on

the numerical computation of the normal stress amplitude in

Section F.l.3.

Figure F.18 shows clearly that the pressure values

calculated in the way described above coincide with the val¬

ues which can be drawn from the figure. This fact is a fur-
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c 0. 2.5 5.0

p
s

p
c

6.35 7.99 9.64

11.91 12.74 13.56

Table F.ll Separation (p ) and critical pressure (P )
s c

(in bar) of the principal model for different debris
-2

concentrations (c in m ); P = 17.5 bar.
0

ther indication that the assumption that friction can be seen

as a reduction of the driving shear stress may be true.

In contrast to the theoretical considerations on

Coulomb friction in section D.3.3.2, the assumption (from

sliding without friction) that the critical pressure is half¬

way between the separation and the ice overburden pressure

holds true. It seems obvious that for larger debris concen¬

trations the critical pressure at which the unstable sliding

motion starts can well be near the ice overburden pressure.

However, the separation pressure is increasing accordingly.

From the field work on the Findelengletscher (iken and Bind¬

schadler, 1986) a stronger effect on the critical pressure

than on the separation pressure was expected. This observa¬

tion could not be reproduced by the numerical calculations.
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Chapter G

CONCLUSIONS

6.1 Summary

The results from the field work on the Findelenglet¬

scher (Iken and Bindschadler, 1986) formed the starting

point of this report. The glacier advanced about 185 m bet¬

ween 1979 and 1982. Theoretical studies of glacier sliding

should help to understand the mechanics involved, in particu¬

lar in the presence of friction. However, the reader is not

provided with a complete state-of-the-art account of sliding,

since the problem is much too complex.

Long-term combined velocity and water pressure mea¬

surements on Findelengletscher gave rise to the key question:

What causes the Findelengletscher to move stably at water

pressure values near the ice overburden pressure?

From the theoretical point of view there are no ar¬

guments to refute the existence of a critical pressure caus¬

ing unstable sliding well below the ice overburden pressure.

The probable explanation is that friction at the base leads

to the observed feature. Thus the aim of the study was to
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clarify the influence of friction on the sliding behaviour of

a glacier with special regard to the critical pressure.

Based on the well-known theory on frictionless slid¬

ing over a sinusoidal bed (Nye, 1969) a relation was develop¬

ed between the subglacial water pressure and the bed separa¬

tion in which the critical pressure is a pertinent variable.

If the water pressure exceeds the critical pressure the ice

is fully separated and the water pressure has access to the

whole glacier bed area: the motion becomes unstable.

The classic basal boundary condition is the perfect

slip condition where a thin water film prevents all friction.

This assumption is doubtful, as striaes on rock bumps demon¬

strate. Friction is mainly due to the interaction between

rock particles in the basal ice layer and the glacier bed.

Relevant to the sort of process is the debris concentration

in the basal ice layer. We distinguish between sandpaper

friction and Hallet friction. Sandpaper friction applies for

large debris concentrations (>50% per volume) with particles

being in close contact and is a sort of Coulomb friction. Be¬

cause Coulomb friction is basically reserved for the friction

between rigid bodies (ice is a viscous one), the term sandpa¬

per friction was invented based on the image of the ice mass

rubbing like a piece of sandpaper over the undulating bed.

Hallet friction is based on the abrasion model by Hallet

(1981) and is appropriate for small debris concentration,

where the rock particles are no longer in contact with each

other and the ice can accordingly flow around them. Hence the

force pressing the particles to the bed depends in this case

not on the ice overburden or effective pressure, but on the

local flow pattern.

To evaluate the effect of friction of the Hallet

type on the sliding velocity in the presence of subglacial

cavity formation a numerical approach is necessary. Consider¬

ing ice as an incompressible, viscous fluid the resulting set

of differential equations describing the glacier flow was

numerically solved by the finite-element method using a well-

established code (RHEO-STAUB).
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Frictionless sliding was simulated as a test of the

solution method. Nye's (1969) solution for linear viscous

flow law could be reproduced. Yet, using a nonlinear flow

law, the results were different from those obtained by Kamb

(1970). His approximative solution seems to depend too

strongly on the roughness.

The numerical simulations of sliding with friction

showed clearly that in the case of a nonlinear viscous flow

law, a debris concentration of about 10% per volume slows

down the sliding motion to 50% of the value calculated with

debris-free ice. Thus friction is an important factor in the

sliding process. When the ice separates from the bed the Hal¬

let friction does not vary much, but to start the bed separa¬

tion a larger water pressure must operate: 25% larger in the

case where the debris concentration is about 10%. With or

without friction the sliding velocity increases strongly when

the water pressure approaches a certain value: the critical

pressure. Friction gives rise to an increase of the critical

pressure, closer to the ice overburden pressure. Thus the as¬

sumption remains that the critical pressure is halfway bet¬

ween the separation and the ice overburden pressure. This re¬

sult is compiled in Figure F.19.

The sandpaper friction has a similar effect on the

sliding motion, providing the sliding starts at all. It can

easily prevent any sliding to occur. For instance, for a mean

bed slope of 5.7° and an intermediate value of the friction

coefficient (\i = 0.5), a sliding motion is only possible if

the water pressure is at least 80% of the ice overburden

pressure. If the ice separates from the bed the frictional

drag is decreasing, not proportional to the decreasing effec¬

tive pressure, but more slowly. The bed separation is affect¬

ed by the frictional drag and as in the case of Hallet fric¬

tion, both separation and critical pressure are shifted to

larger water pressure values. It is possible that the separa¬

tion pressure is theoretically larger than the critical pres¬

sure.
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rather slow-moving and debris-covered in the lower part. Cal¬

culation of the surface velocity, based on internal ice de¬

formation, suggests that the sliding velocity is negligible,

except during the melt season. The basal debris concentration

seems to be high and hence sandpaper friction is acting.

G.3 Open questions and outlook

A distinct classification of a larger number of gla¬

ciers is not yet possible, partly due a lack of field data,

partly due to the more qualitative results of the study. This

work was primarily conceived as a sensitivity study on slid¬

ing. Realistic, but not actually measured values were chosen

for the numerical simulation describing a very idealized sit¬

uation. A glacier is of course not two-dimensional and the

bed is not sinusoidal.

A weak point in Hallet's theory is that he tacitly

assumes that there are always rock particles in contact with

the bed. Actually the rock fragments tend to move away from

the bedrock by the action of the strain field. It is not

clear whether the production of new rock fragments by erosion

will balance the first effect. These physical processes at

the base, including abrasion and erosion, remain to be inves¬

tigated.

The next step should be to become even more specific

and try to model the dynamic movement of certain real gla¬

ciers for which abundant data is available. Detailed informa¬

tion of the geometry (three-dimensional), the surface veloci¬

ty, the internal deformation and the mass balance is neces¬

sary. A relatively large amount of information exists for

Findelengletscher. Investigations on former glacier beds

could perhaps improve the knowledge on actual glacier beds.

More attention should be paid to the question of sediment

("soft") beds, as they are widespread.

Because sliding can be a dominant process in the

motion of glaciers, it would be worthwhile to seek a general

sliding law (a rather far-off aim at present).
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List of Symbols

General: symbols which are explained where they oocur are

only listed, if they appear again subsequently.

A flow law parameter

a amplitude of sine function

C Clausius-Clapeyron constant

c aeral concentration of rock fragments

A apparent area of contact between ice and bed rock
a

A real contact area between ice and bed rock
r

A separated area

E elasticity constant (Young's modulus)

F contact force between rock fragment and the bed

f shape factor

g gravity constant

g. vector gravity acceleration

h glacier thickness

i counting index

k wave number

k. thermal conductivity of ice, rock
1, r

J '

L latent heat of fusion

1 characteristic length

m exponent in sliding law

m. unit normal vector
i

m4 measure of roughness (Lliboutry, 1970)

N effective pressure

N flow law parameter (Kamb, 1970)

n flow law paramter

n. unit normal vector
l

p pressure (general)

P ice overburden pressure
0

P water pressure

P separation pressure

P critical pressure

P debris concentration

p normal stress
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Ap amplitude of normal stress
max

p' constant contribution of the normal stress in the

case of friction

Ap' fluctuating contribution of the normal stress in the

case of friction

q flux (general)

R radius of rock particle

r roughness of the glacier bed (= a/A.)

s bed separation parameter

t time variable

t. . stress tensor

t! . stress deviator
13

t|T second invariant of stress deviator

u. velocity vector

u velocity vector component

uh basal sliding velocity

u . velocity due to internal deformation

u surface velocity
s

U._ basal sliding velocity in the case of friction

U. basal sliding velocity in the case of bed separation

Ubwf basal sliding velocity in the case of bed separation

and friction

U. velocity at the top of the modelled section

v velocity vector component

v velocity normal to the sliding interface

W weight

x,y,z cartesian coordinates

y, transverse coordinate describing the base

a mean inclination angle of basal surface

P inclination angle of basal surface

r constant in sliding law (Lliboutry, 1975)

8.. Kronecker delta

I. . strain rate tensor

r| viscosity

X wavelength

X+ transition wavelength

|i coeffient of friction
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Poisson's ratio

coeffient of bed geometry (Hallet, 1981)

mass density

stress tensor component

shear stress

effective basal shear stress

frictional drag
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