CONDITIONS DANS LA COUCHE BASALE
DES GLACIERS TEMPERES:
CONTRAINTES, TENEUR EN EAU ET
FROTTEMENT INTERIEUR.

présentée à
L'ECOLE POLYTECHNIQUE POLYTECHNIQUE FEDERALE ZURICH

pour l'obtention du
titre de Docteur ès sciences naturelles

par
Amédée Sylvestre Zryd
ing. phys. EPFL
né le 28.02.1961
originaire de Frutigen, BE.

acceptée sur proposition
des professeurs D. Vischer , rapporteur
H. Roethlisberger , corapporteur
W. Benoit , corapporteur

1990
Les conditions à l'interface glace-rocher sont mal connues et jouent pourtant un rôle important dans la modélisation du mouvement des glaciers tempérés. Les contraintes existant dans la couche basale du glacier sont reliées à la loi de glissement et dépendent de la loi de déformation de la glace tempérée et donc de la teneur en eau qui est le paramètre thermodynamique principal.

Des mesures de contraintes in situ ont été tentées au lit du glacier de Findelen. Pour ce faire, des capteurs de pression ont été placées dans un obstacle artificiel par dessus lequel passait le glacier. Ces mesures ont démontré l'existence de forces de frottement du glacier sur son lit, mis en évidence une déformation particulière de la couche basale due éventuellement à la non-linéarité de la loi de déformation. Elles laissent aussi supposer l'importance de la teneur en eau sur ces mécanismes de déformation.

Une expérience de mesure de la teneur en eau a été proposée, basée sur la propagation d'une onde de froid dans la glace tempérée. Cette expérience a nécessité la résolution numérique du problème de Stefan de propagation de la chaleur avec changement de phase, à une et deux dimensions. Des essais ont été tentés in situ, démontrant la faisabilité de l'expérience. Des valeurs de teneur en eau variant entre 0.5 et 2 % ont été mises en évidence.

Dans le but d'étudier la rhéologie de la glace près du point de fusion, des mesures de frottement intérieur ont été effectuées.
sur des échantillons de glace basale. Ces mesures ont révélé un pic de frottement intérieur à haute température. Les caractéristiques de ce pic laissent supposer que le joint de grains subit une transition de phase près du point de fusion et évolue d'une structure cristalline vers une structure plus désordonnée. Cette transition de phases peut expliquer l'influence de la teneur en eau sur la déformation plastique.
ABSTRACT

Conditions at the bedrock are badly known, but play an important role on the movement of temperate glaciers. Stresses in the basal layer of glaciers are related to the sliding law and depend on the deformation law of temperate ice, hence on water content which is the principal thermodynamical parameter.

Stress measurements have been done at the bed of Findelenglacier. For this, stress gages have been incorporated in an artificial obstacle over which the glacier was sliding. These measurements have shown important friction on the bed and a particular deformation of the basal layer due probably to the non-linearity of the deformation law. They reveal the importance of the water content on this law.

A measure of water content based on the propagation of a cold wave through temperate ice has been proposed. This experiment required a numerical solution to Stefan's problem of propagation of heat with phase change, in one and two dimensions. In situ measurements have been done, showing water contents varying between 0.5 and 2 %.

In order to study rheology of ice near the melting point, internal friction measurements have been realised on natural glacier ice. These measurements revealed a high temperature peak. Characteristics of this peak may be explained by a phase transformation at the grain boundary near the melting point during which the crystalline structure would transform into a less ordered structure. The influence of water content on plastic
deformation could be related to this phase transition.