Doctoral Thesis

Early cretaceous carbon isotope stratigraphy of the Maiolica formation, Southern Alps (Northern Italy and Southern Switzerland) stratigraphic and paleoenvironmental significance

Author(s):
Lini, Andrea

Publication Date:
1994

Permanent Link:
https://doi.org/10.3929/ethz-a-000961611

Rights / License:
In Copyright - Non-Commercial Use Permitted
EARLY CRETACEOUS CARBON ISOTOPE STRATIGRAPHY OF THE MAIOLICA FORMATION, SOUTHERN ALPS (NORTHERN ITALY AND SOUTHERN SWITZERLAND): STRATIGRAPHIC AND PALEOENVIRONMENTAL SIGNIFICANCE

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of
Doctor of Natural Sciences

presented by
Andrea Lini
Dipl. Natw. ETH-Zürich

born August 16, 1964

citizen of Waltensburg/Vuorz GR

accepted on the recommendation of
Prof. H. Weissert, ETH-Zürich examiner
Prof. D. Bernoulli, ETH-Zürich co-examiner
Dr. E. Erba, Università di Milano co-examiner

1994
ABSTRACT

Lower Cretaceous pelagic carbonates outcropping along the Southern Alps of northern Italy and southern Switzerland provide the opportunity to establish a biostratigraphically and magnetostratigraphically calibrated carbonate carbon isotope stratigraphy. The analysis of bulk samples from 12 well dated sections resulted in a carbonate carbon isotope record which is marked by two major positive excursions within the Tithonian to Aptian time slice.

A first carbonate carbon isotope excursion, dated as late Valanginian-Hauterivian in age, is recorded in sediments from the Maiolica Formation. Although the absolute isotopic values differ slightly from section to section, the relative pattern of fluctuations is consistent. δ¹³C values near 1.25-1.50‰ determined in Berriasian and lower Valanginian sediments (C. angustiforatus nannofossil Zone) are replaced by more positive δ¹³C values near 3‰ in the late Valanginian (C. oblongata nannofossil Zone). The isotope excursion ends in the late Hauterivian (L. bollii nannofossil Zone) with values fluctuating around 1.5‰. The magnetostratigraphic data indicate that the excursion begins in chron CM12n and peaks in CM11; between CM10N and CM8 the δ¹³C ratios return to pre-excursion background values. The carbonate carbon isotope excursion is accompanied by a positive excursion in the total organic carbon (TOC) carbon isotope curve.

Biostratigraphy and magnetostratigraphy in the examined sections provide an age model for the analysis of the duration of the isotope event. Based on the age model, which uses the GTS89 timescale of Harland et al. (1990), the δ¹³C excursion starts at about 137 Ma reaching peak values within 1 my. The values then decrease from 136 Ma and attain the pre-excursion level at about 132 Ma. The estimated duration of the excursion is around 5 my. The tight age control allows the rates of change of δ¹³C to be estimated. The onset of the carbon isotope event indicates a rate of change of δ¹³C of about 1.5‰ per my. The peak values are maintained for about 1 my, and the event decays at a rate of about 0.5‰ per my. Based on these estimates the Late Valanginian-Early Hauterivian carbon isotope event shows a distinct asymmetric shape, with a fast rate of increase of carbon isotope values and a much slower decay rate.

The Valanginian carbon isotope excursion identified in the pelagic carbonates of the Maiolica Formation is not limited to the Southern Alpine area. Comparable carbon isotope records have been obtained in sediments from other areas of the southern Tethyan margin, as well as from the northern Tethyan margin, and in sediments recovered at North Atlantic and Pacific Deep Sea Drilling Project (DSDP) sites. Furthermore, the correlation between carbonate and TOC carbon isotope stratigraphy observed in the Tethyan sediments is also recognized in North Atlantic sediments.
A second carbonate carbon isotope event of major stratigraphic significance is recorded during the Aptian in sediments of the Scaglia Variegata/Marne di Bruntino Formation. This event is characterized by a prominent positive "double spike": two positive carbon isotope periods are interrupted by an excursion to more negative values. A first shift from values around 2‰ towards heavier δ¹³C values near 4‰, occurs within the C. litterarius nanofossil Zone. These values persist with some fluctuations throughout the S. cabri Zone. The values start to decrease in the G. ferreolensis Zone and reach the lowest values between 1.5 and 2‰ in the G. algerianus Zone. A second positive shift starts at the G. algerianus/H. trocoidea transition, reaching values over 3.5‰. This second positive event ends during the Late Aptian within the T. bejaouaensis Zone.

Both the late Valanginian-Hauterivian and the Aptian carbon isotope event correlate with major changes in pelagic facies. The established carbon isotope stratigraphy thus provides a record of Tethyan paleoceanography as well as of low frequency fluctuations in the global carbon cycle.

The times of positive carbon isotope values are interpreted as times of accelerated carbon cycling coupled with increased burial rates of organic carbon in oceanic sediments. High accumulation rates of terrestrial organic carbon and of deep sea siliciclastics suggest that the change in the mode of functioning of the global carbon cycle coincided with changes in the global water cycle. A warm and humid climate, possibly coupled with a high atmospheric CO₂ content and a high global sea level, may have triggered the acceleration of the global carbon cycling. In this case, the late Valanginian carbon isotope event would reflect a first episode of "Greenhouse Earth" conditions during the Cretaceous.
RIASSUNTO

Le successioni carbonatiche pelagiche del Cretaceo inferiore affioranti nella fascia Sudalpina del Nord Italia e della Svizzera meridionale (canton Ticino), offrono l'opportunità di costruire una stratigrafia isotopica del carbonio dei carbonati calibrata bio- e magnetostratigraficamente. L'analisi di campioni provenienti da 12 sezioni ben datate ha permesso di ricostruire una curva delle variazioni della composizione isotopica dei carbonati per l'intervallo compreso tra il Titoniano e l'Aptiano. Tale curva mostra due eventi caratterizzati da valori isotopici marcatamente positivi.

Una prima "escursione isotopica" positiva, di età Valanginiana-Hauteriviana, è stata documentata nella successione pelagica della Maiolica. Nel Berriasiano e Valanginiano inferiore (Zona a C. angustiforatus) i valori del δ^{13}C del carbonato sono prossimi a 1.5‰. Questi valori vengono sostituiti nel corso del Valanginiano (Zona a C. oblongata) da valori intorno ai 3‰. L'escursione termina nell'Hauteriviano (Zona a L. bollii), quando il segnale isotopic o dei carbonati ritorna ai valori iniziali. I dati magnetostratigrafici indicano che l'escursione inizia durante CM12n e che i valori massimi vengono raggiunti in corrispondenza di CM11. Tra CM10N e CM8 il δ^{13}C ritorna ai valori iniziali. L'escursione positiva osservata nel segnale isotopico dei carbonati è accompagnata da un'analoga escursione nella composizione isotopica del carbonio nella materia organica totale (TOC).

I dati bio- e magnetostratigrafici ottenuti nelle sezioni esaminate permettono di stimare la durata del sopraccitato evento. Usando la scala numerica delle età di Harland et al. (1990) si ottiene un'età di circa 137Ma per l'inizio dell'escursione, che raggiunge i valori massimi in circa 1 my. Tra 136Ma e 132Ma i valori del δ^{13}C decrescono. La durata dell'evento è quindi di circa 5my. Con i dati a disposizione è possibile stimare il tasso di variazione del δ^{13}C: il tasso calcolato per l'intervallo caratterizzato dall'aumento dei valori del δ^{13}C è di 1.5‰ per my, quello per l'intervallo caratterizzato dalla diminuzione dei valori del δ^{13}C è di 0.5‰ per my.

Un secondo evento caratterizzato da un drastica variazione del segnale isotopico dei carbonati verso valori marcatamente positivi si osserva nei depositi della Scaglia Variegata/Marne di Bruntino durante l'Aptiano. Questo evento è in realtà composto da due escursioni positive ben distinte. Una prima variazione del δ¹³C da valori prossimi a 2‰ a valori di poco superiori a 4‰ si osserva nella Zona a *C. litterarius*. Questi valori persistono con minori fluttuazioni nella Zona a *S. cabri*. Nelle Zone a *G. ferreolensis* e *G. algerianus* il δ¹³C diminuisce fino a raggiungere valori attorno all'1.5-2‰. La seconda escursione inizia in corrispondenza della transizione tra la Zona a *G. algerianus* e la Zona a *H. trocoidea*. I valori massimi raggiunti si aggirano intorno a 3.5‰. Questa seconda escursione termina durante l'Aptiano superiore nella Zona a *T. bejaouaensis*.

Entrambe le escursioni isotopiche del Valanginiano-Hauteriviano e dell'Aptiano avvengono in corrispondenza di variazioni di litofacies. La stratigrafia isotopica permette quindi di ricostruire variazioni temporali della composizione isotopica dei carbonati pelagici legate ad eventi paleoceanografici. Permette inoltre di analizzare variazioni a lungo termine nel funzionamento del ciclo del carbonio.

Gli intervalli caratterizzati da valori del δ¹³C del carbonato positivi sono interpretati come periodi in cui il ciclo del carbonio funziona a ritmo accelerato. Durante questi periodi il tasso di accumulazione di materia organica negli oceani aumenta. Inoltre, gli alti tassi di accumulazione di materia organica continentale e di siliciclasti suggerisce cambiamenti pure nel ciclo dell'acqua. Un clima caldo e umido, possibilmente collegate a un elevato tasso di CO₂ atmosferico è indicato come possibile causa dell'accelerazione del ciclo del carbonio. In tal caso, l'evento isotopico del Valanginiano-Hauteriviano rappresenterebbe il primo episodio di "effetto serra globale" duramente il Cretaceo.