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Summary

The stability analysis of time-delay systems forms the centre of this work.

Three tools are typically used to investigate the stability of such systems:

Razumikhin theory, Lyapunov-Krasovskii theory, and (for linear time-delay

systems) eigenvalue considerations. However, none of these basic concepts

represents applicable stability tests in terms of the system matrices. There-

fore, based on the three stability concepts mentioned some suitable algebraic

stability tests are developed in this work. The stability tests obtained can be

categorized into four groups, depending on how much information con-

cerning the delays is required for these tests:

• Delay-independent stability criteria: The length of the delay need not be
known for the application of these stability tests. The delays may be state-
dependent and/or time variable. The only assumption needed is that the
delays are continuous and bounded.

• Stability criteria independent of constant delays: In the second group it is
assumed that the delays of the system are constant; no further information
on the delays is necessary.

• Stability criteria independent of a delay constant: This type of stability cri-
teria presumes that the delays are constant and that the ratios of size of the
delays are known.

• Delay-dependent stability criteria: This group includes exact algebraic
stability criteria depending on the delay and on the system constants and
stability criteria which yield an upper bound of the admissible delay.

The need for delay-independent (and related) stability tests is obvious, since

in practice the delays are difficult to estimate, especially those that are time

variable and state dependent. While algebraic stability tests independent of

delays are suitable to apply, exact algebraic stability conditions depending on

the delay and the system constants are known only in some special cases. In

this context a method is presented to achieve some extensions. The method

permits the investigation of the stability of systems which are general enough

to demonstrate the differences among the four types of stability tests. The

stability of general, linear time-delay systems, however, can be checked

exactly only by eigenvalue considerations. Unfortunately, the computation of
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the eigenvalues is a cumbersome task, since the corresponding transcen-

dental characteristic equation contains exponential terms which induce

extreme gradients. An improved version of a well-known method for the

computation of the eigenvalues is illustrated.

In connection with stability considerations the robustness of nondelayed

systems against delays is studied as well. It turns out that the largest singular

value of the control system can be used to analyse the robustness of the

system against delays in the input. Furthermore, the H∞-norm yields an esti-

mate of the robustness against delays in the state. In order to analyse the

robustness of time-delay systems against unstructured uncertainties, some

suitable criteria are derived based on the three stability concepts.

Algebraic stability tests are also useful in connection with control methods

for time-delay systems. A comparison between the assumptions and the

possibilities of the various known control methods for time-delay systems

shows that a combination of finite dimensional approximation techniques

and optimal control theory is the most suitable approach for delayed systems.

Nevertheless, the stability of the resulting closed-loop system cannot be

guaranteed a priori. Hence, algebraic stability tests are necessary to check

this property. The model of the Williams-Otto process is used to demonstrate

that the three tools

•  finite dimensional approximation
•  optimal control
•  algebraic stability criteria

in combination remarkably improve the behaviour of the control system.

Besides, the stability of the closed-loop system is guaranteed even if the

delay is not constant.
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Zusammenfassung

Die Stabilitätsanalyse von totzeitbehafteten Systemen bildet den Schwerpunkt
der vorliegenden Arbeit. Um die Stabilität von solchen Systemen abzuklären,
stehen drei Werkzeuge zur Verfügung: Razumikhin-Theorie, Ljapunow-
Krasovskii-Theorie und (für lineare Systeme) Eigenwertbetrachtungen. Diese
grundlegenden Konzepte stellen aber bei Totzeitsystemen keine direkt
anwendbaren Kriterien zur Untersuchung der Stabilität dar. Deshalb sind in
dieser Arbeit mit Hilfe der allgemeinen Stabilitätskonzepte algebraische
Stabilitätskriterien entwickelt worden. Die so gewonnenen Stabilitätstests
lassen sich in vier Kategorien einteilen, abhängig davon, wieviel Information
über die Grösse der Totzeit für den Stabilitätstest benötigt wird:

• Totzeitunabhängige Stabilitätskriterien: Die Information über die Grösse
der Totzeiten wird nicht gebraucht. Die Totzeiten dürfen zeit- und zu-
standsabhängig sein. Es wird lediglich vorausgesetzt, dass die Totzeiten
durch stetige und beschränkte Funktionen beschrieben werden können.

• Stabilitätskriterien unabhängig von konstanten Totzeiten: Bei der zweiten
Gruppe von Stabilitätskriterien wird vorausgesetzt, dass die Totzeiten des
Systems konstant sind. Weitere Informationen über die Totzeiten sind
nicht erforderlich.

• Stabilitätskriterien unabhängig von einer Totzeitkonstante: Für diesen Typ
von Kriterien wird vorausgesetzt, dass die Totzeiten konstant sind und
dass die Grössenverhältnisse zwischen den verschiedenen Totzeiten be-
kannt sind.

• Totzeitabhängige Stabilitätskriterien: Zu dieser Gruppe gehören Kriterien,
mit deren Hilfe man die Stabilität exakt untersuchen kann, sowie Kriteri-
en, die eine obere Schranke für die Grösse der zulässigen Totzeit liefern.

Totzeitunabhängige Stabilitätstests zu entwickeln ist naheliegend, weil in der
Praxis die Grösse der Totzeit oft schwierig abzuschätzen ist, vor allem, wenn
diese zeit- und zustandsabhängig ist. Die meisten algebraischen Stabilitäts-
bedingungen, insbesondere die totzeitunabhängigen, sind selbst für MIMO-
Systeme sehr gut anwendbar. Hingegen sind exakte algebraische Stabilitäts-
kriterien in Abhängigkeit der Totzeiten und Systemkonstanten nur für sehr
spezielle Fälle bekannt. Verallgemeinerungen gelingen durch eine neue
Methode, die in diesem Rahmen vorgestellt wird. Diese Methode erlaubt es,
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Systeme zu betrachten, die immerhin so allgemein sind, dass Unterschiede
zwischen den vier verschiedenen Stabilitätstypen deutlich gemacht werden
können. Um allgemeine, lineare Totzeitsysteme exakt auf ihre Stabilität hin
zu untersuchen, sind wir auf Eigenwertbetrachtungen angewiesen. Die
Berechnung der Eigenwerte ist aber insofern problematisch, als die numeri-
sche Lösung der entsprechenden transzendenten, charakteristischen Glei-
chung einen erheblichen Aufwand darstellt. Eine verbesserte Version der
gängigen Methode zur Berechnung der Eigenwerte von Totzeitsystemen
wird vorgestellt. 

Im Zusammenhang mit der Stabilität wird auch die Robustheit von linearen,
nicht totzeitbehafteten Systemen gegen Totzeiten betrachtet. Es zeigt sich,
dass man mit Hilfe des grössten Singularwertes des Regelsystems auf einfa-
che Weise die Robustheit des Regelsystems gegen Eingangstotzeiten analy-
sieren kann. Ferner liefert die H∞-Norm des Regelsystems eine Abschätzung
der Robustheit des Regelsystems gegen Totzeiten im Zustand. Mittels der all-
gemeinen Stabilitätskonzepte lassen sich leicht anwendbare Kriterien zur
Untersuchung der Robustheit eines Totzeitsystems gegen nichtlineare, zeit-
variable, unstrukturierte Unsicherheiten entwickeln.

Algebraische Stabilitätskriterien sind auch in Verbindung mit Regelme-
thoden für Totzeitsysteme nützlich. Ein Vergleich der Möglichkeiten und
Grenzen der verschiedenen, bekannten Zustandsregelmethoden für Totzeit-
systeme zeigt, dass endlich dimensionale Approximationstechnik in Verbin-
dung mit optimaler Regelung die geeignetste Regelmethode für Totzeitsy-
steme darstellt. Die Stabilität des resultierenden Regelsystems kann jedoch
nicht a priori garantiert werden. Der Einsatz von algebraischen Stabilitätskri-
terien ist hier sinnvoll, insbesondere, wenn die Modellierung der Totzeiten
Unsicherheiten beinhaltet. Am Beispiel des Williams-Otto-Prozesses wird
illustriert, dass mittels der drei Werkzeuge

•  endlich dimensionale Approximationstechnik
•  optimale Regelung
•  algebraische Stabilitätskriterien

auf einfache Weise das Verhalten des Regelsystems verbessert werden kann.
Dabei ist die Stabilität des Gesamtsystems garantiert, selbst wenn in der Rea-
lität die Totzeiten nicht konstant sind.
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Preliminaries

1 Introduction

In the early decades of this century, various theories of elasticity and of

evolution were extensively tested. In both of these areas the need for explicit

analytical reasoning became soon apparent. The mathematical description of

certain processes within these topics led to an investigation of systems with

delays.

One of the first descriptions of a system with retardation was given by Boltz-

man (1874), who studied retarded elasticity effects. His publication,

however, did not point out clearly the need of the past states for a realistic

modelling of retarded elasticity effects. In the early 1900’s a controversy

arose over the necessity of specifying the earlier history of a system in order

to predict its future evolution. This view stood in contradiction with the

Newtonian tradition which claimed that the knowledge of the present values

of all relevant variables should suffice for prediction. Picard (1907) took the

view that the past states are important for a realistic modelling. In his train of

thought he analysed a system with essential hidden variables, not themselves

accessible to observation. He claimed that the prediction of that system

requires also the knowledge of the earlier values of the hidden variables. His

paradigm for that situation was a pendulum clock whose descending weight

is encased. As long as we cannot observe the present position of the weight

and its rate of descent, a prediction of the future motion of the clock hand

requires the knowledge of when the clock was last wound.

Systematic work with mathematical models on medicine and biology began

with the epidemiological studies of Ross (1911). Ross was laying the

foundation for the mathematical theory of epidemics in terms of differential
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equations. His results were extended and improved in the 1920’s. The need

for delays was emphasised both by Lotka (see Sharpe & Lotka, 1923), who

discussed the discrete delays due to the incubation times in the Ross malaria

epidemic model, and by Volterra (1927). Independently of each other, Lotka

in the United States and Volterra in Italy began to concentrate their mathe-

matical efforts on the problem of the variations and fluctuations in the

numbers of individuals and species. From the very beginning of their

ecological investigations, both Lotka and Volterra realized that, in order to

achieve some degree of realism, delayed effects had to be explicitly taken

into account.

Lotka’s main previous interest had been in physical chemistry, with special

emphasis on the oscillations of chemical reactions. He had also dealt with

demographic problems and with evolutionary theory.

Volterra’s previous interests were mostly in mechanics, including irreversi-

ble phenomena and elasticity. The latter had led him to develop the theory of

functionals and integro-differential equations, for which he became well

known [142], [143]. He also attempted to introduce a concept of energy func-

tion to study the asymptotic behaviour of the system in the distant future.

Minorsky (1942), in his study of ship stabilization and automatic steering,

pointed out very clearly the importance of the delay considerations in the

feedback mechanism. The great interest in control theory during those and

later years has certainly contributed significantly to the rapid development of

the theory of differential equations with dependence on the past state.

While it became clear a long time ago that retarded systems could be handled

as infinite dimensional problems, the paper of Myshkis (1949) gave the first

correct mathematical formulation of the initial value problem. Furthermore,

in his book published in 1955, Myshkis introduced a general class of equa-

tions with delayed arguments and laid the foundation for a general theory of

linear systems.

Subsequently, several books appeared which presented the then current

knowledge on the subject and which greatly influenced later developments.

In their monograph at the Rand Corporation, Bellman and Danskin (1953)
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pointed out the diverse applications of equations containing past information

to other areas such as biology and economics. They also presented a well-

organized theory of linear equations with constant coefficients and the begin-

nings of stability theory. A more extensive development of these ideas is

contained in the book of Bellman and Cook (1963). Some important results

were supplied also by Krasovskii, who studied stability and optimal control

problems for time-delay systems [67]. Further important works have been

written by El’sgol’ts (1966) and Hale (1977). In recent years several books

have been published on this topic [40], [66], [83], [85], [131].

The above historical introduction shows that delays must be taken into

account to describe or to control certain processes. Nowadays, one of the

main goals of the development of automatic manufacturing processes is to

reach a high production rate while maintaining a guaranteed quality level.

This high production rate requires a high-speed variation of control varia-

bles. It is therefore necessary to include the consideration of delay effects

within control methods. Delay effects occur not only in technology. They are

equally observable in biology, chemistry, medicine, and economics. The

most typical areas in which delays play an important role are transport, mix-

ing, burning, evolution, bureaucracy, and economic fluctuations.

1.1 Classification of functional differential equations

Assume that τmax = const ∈[0, ∞), and let x(t) be an n-dimensional variable

describing the behaviour of a process in the time interval t ∈[t0 – τmax, t1].

Most generally a functional differential equation (FDE) is formulated as

follows. Let T1(t) and T2(t) be time-dependent sets of real numbers, defined

for all t ∈[t0, t1]. Let us assume that x is a continuous function in [t0, t1]. We

shall use the convention that x
.
(t) for t ∈[t0, t1] denotes the right-hand
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derivatives of x. For each t ∈[t0, t1], xt is defined by xt(s) = x(t + s), where

s ∈ T1(t). Analogously, 
.
xt is defined by 

.
xt(s) =

.
x(t + s), where s ∈T2(t). We

say that x satisfies an FDE in [t0, t1] if for almost every t ∈[t0, t1] the

following equality holds

x
.
(t) = f(t, xt, x

.
t, u(t)) (1.1)

where the control u(t) is given for the whole time interval necessary. The

equation above contains three types of differential equations.

i) An FDE is retarded or, as we say, a retarded functional differential

equation (RFDE), if T1(t) ⊂ (– ∞, 0] and Τ2(t) = ∅ for t ∈[t0, t1].

Therefore the right-hand side of (1.1) does not depend on the derivative

of x

x
.
(t) = f(t, xt, u(t)) . (1.2)

In other words, the rate of change of the state of an RFDE is determined

by the inputs u(t), as well as the present and past states of the system.

An RFDE is sometimes also designated as an hereditary differential

equation or, in control theory, as a time-delay system. 

ii) If the rate of change of the state depends on its own past values as well,

the system can be governed by a neutral functional differential equation

(NFDE). That is, we have Τ1(t) ⊂ (– ∞, 0] and Τ2(t) ⊂ (– ∞, 0] for

t ∈[t0, t1]. The following scalar linear system is an example of a neutral

system

x
.
(t) =

.
x(t – 1) + x(t) + u(t)

whereas the equation

..
x(t) =

.
x(t – 1) + x(t – 1) + u(t)

is of the retarded type (1.2), since the highest derivation is not delayed.
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iii) An FDE is called an advanced functional differential equation

(AFDE), if T1(t) ⊂ [0, ∞) and Τ2(t) = ∅ for t ∈[t0, t1]. An equation of

the advanced type may represent a system in which the rate of change

of a quantity depends on its present and future values of the quantity

and of the input signal u(t).

Since in applications t usually represents time, the solution in the direction of

an increasing t is required. One should note that an RFDE converts into an

AFDE for t < 0, and vice versa, and an NFDE converts into another differen-

tial equation of a neutral type. However, in the following we deal mainly with

RFDE, because in reality this type of system is encountered frequently.

In most applications (and in the above classification) the delays are usually

bounded. Systems with infinite delay will not be considered here. Those

aspects are treated comprehensively in [48].

If the set T1(t) is finite for every t ∈[t0, t1], a retarded FDE is called an FDE

with lumped or discrete delays. Other names for this type of equations are

retarded difference differential equations or simply difference differential

equations or differential difference equations. An example of a system with

a lumped delay is 

.
x(t) = f(x(t), x(t – τ(t))) .

If the set T1(t) is a continuum, the FDE contains distributed delays. The fol-

lowing system has a distributed lag

.
x(t) =  .

Delays which are constant are called fixed point delays. Systems which have

only multiple constant time lags can be classified further. Delays which are

related by integers will be called commensurate delays. The linear commen-

surate time-delay system

.
x(t) =

g x s( ) t s, ,( )ds
t h–

t

∫

A0x t( ) Aix t ih–( )
i 1=

k

∑+
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is frequently discussed in the literature. If the delays are not so related, the

system is called a noncommensurate delay system. For example, the delays

of the system 

.
x(t) = x(t) + x(t – 1) + x(t – π)

are noncommensurate. A brief survey of the above mentioned expressions is

given in Fig. 1.1.

Functional differential 

equations (FDE)

Advanced functional 

differential equations 

(AFDE)

Neutral functional 

differential equations 

(NFDE)

Retarded functional 

differential equations 

(RFDE)

differential equations 

with noncommensu-

rate delays

differential equations 

with commensurate 

delays

differential equations 

with fixed point de-

differential equations 

with lumped delays 

differential equations 

with distributed delays

Fig. 1.1 Classification of FDEs and RFDEs
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1.2 Examples of systems with time-delays

The Williams-Otto process
The Williams-Otto process [153] has many characteristics of a typical chem-

ical process and is therefore frequently discussed in the literature, especially

in journals of chemical engineering. Here, common operations such as sepa-

ration (through decanting and distillation) and reaction are involved. The

system considered is a model of a refining plant. The schematic of the flow-

sheet for the Williams-Otto process is shown in Fig. 1.2.

Upon entering the chemical reactor two kinds of raw materials take part in

three chemical reactions which produce the desired product, along with some

by-products. The feed rates of the raw materials are denoted by FA and FB. A

heat exchanger is required to cool the reactants to a temperature at which an

undesirable by-product (FW1) will settle out of the reactant mixture. This

settling takes place in the decanter. Subsequently the material enters a distil-

lation column. The material contains the desired product, impurities, and a

certain percentage of the raw material with some by-products of the chemical

reaction. The valuable product (FP) is removed in the overhead of the distil-

lation column. At the bottom of the column the purge (FW2) is led off,

Reactor

Heat exchanger Decanter

Coolant

Coolant

FB

Distillation

Column

Fig. 1.2 Flowsheet of the Williams-Otto process

FA

FW2

FP

FW1



8

whereas the raw material with the by-products is recycled to the chemical

reactor, where it is reprocessed. The recycle loop ensures that useful products

will not be discarded.

The recycle loop represents a significant transport lag. In practical situations,

it is not at all unusual for material to take ten minutes to travel from the chem-

ical reactor through the cooler, the decanter, the distillation column, and the

recycling to the reactor.

The differential equations governing this chemical process are nonlinear.

However, for the determination of proper corrections of the feed rates FA and

FB at the desired operating point, a corresponding linearized model is useful.

For a recycle time of 10 minutes, the linearized and time-scaled (one time

unit is 10 min) equations are [122]:

.
x(t) = (1.3)

where 

, (1.4)

and

 . (1.5)

The dimensionless components x1, x2, x3, and x4 of the state vector x repre-

sents the deviations in the weight compositions of the raw materials A and B,

of an intermediate product, and of the desired product, respectively, from

their nominal values. The control inputs u1 and u2 are defined to be equal to

δFA/6VR and δFB/6VR, respectively, where VR is the volume of the chemical

reactor (VR = ), and δFA and δFB are the deviations in the

A0x t( ) A1x t 1–( ) Bu t( )+ +

A0

4.93– 1.01– 0 0

3.20– 5.30– 12.8– 0

6.40 0.347 32.5– 1.04–

0 0.833 11.0 3.96–

= A1

1.92 0 0 0

0 1.92 0 0

0 0 1.87 0

0 0 0 0.724

=

B

1 0

0 1

0 0

0 0

=

92.8ft3 2.628m3≈
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feed rates (in pounds per hour; 1 pound = 0.453592 kg) of the raw materials

A and B, respectively, from their nominal values.

Wind tunnel
At the NASA Langley Research Center in Hampton, VA, a wind tunnel was

constructed to achieve Reynolds numbers of one order of magnitude higher

than those in existing tunnels. The desired test chamber temperatures are

maintained at cryogenic levels by injection of liquid nitrogen into the

airstream near the fan section of the tunnel. Fine control of the Mach number

in the test chamber is effected through changes in the inlet guide vane angle

setting in the fan section. Schematically, the tunnel can be depicted as in

Fig. 1.3.

Modelling this system based on the Navier-Stokes theory does not lead to

useful equations for the design of a control law. A simple model for the Mach

number control loop was proposed in [3]. In order to take into account the

flow times through sections of the tunnel, a transport lag was included in the

model. The proposed equations for this system are as follows

.
x(t) = (1.6)

Fig. 1.3 Wind tunnel

Test
chamber

Fan 
section

gaseous
N2

liquid
N2

a– 0 0

0 0 0

0 ω2– 2ξω–

x t( )
0 ka 0

0 0 0

0 0 0

x t 0.33–( )
0

0

ω2–

u t( )+ +
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where 1/a = 1.964 [sec–1], ω = 6.0 [rad/sec], ξ = 0.8 [-], and k = – 0.0117

[ ]. The state vector  consists of the variation in

Mach number δM, the variation in guide vane angle δθ, and the variation in

guide vane angle velocity δθ
.
.  The control u(t) represents the guide vane

angle actuator input.

Gasoline Engine 

A modern engine test bench was developed at the Measurement and Control

Laboratory of the Swiss Federal Institute of Technology (ETH) in Zurich.

This test bench is used for various purposes, e.g. the emulation of the load

dynamics of the drivetrain of the target vehicle for the engine under test, the

development of system identification methods for SI engines, or the testing

of multivariable model-based controllers for SI engines to control the air-to-

fuel ratio and the speed.

In the work of Onder (1993), [112] an efficient method for the off-line iden-

tification of an engine model is presented. The general nonlinear, delayed

model contains continuous-time and discrete-time subsystems. It turns out

that delays have to be taken into account in order to describe this system in

an appropriate way. The dynamic model can be partitioned into the following

five subsystems:

• throttle actuator

• intake manifold

• torque generation and rotational inertia

• air-to-fuel ratio sensor

• wall-wetting dynamics.

In [112], the engine model is not given in the form of a linear delayed, state-

space model. However, from the linear model described in [112] on page 137,

together with the information about the delays presented on page 131, one

immediately obtains a state-space model with seven different delays in the

state and three delays in the control. Simulations show that for our purposes

an appropriate single-delay system is a sufficiently good approximation to

deg 1– x δM δθ δθ
.

,,[ ]T=
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describe the behaviour of the engine. (All delays in the control are neglected,

whereas the delays in the states are rounded to the maximal delay.) Following

in this way the results of [112], the corresponding model for a six-cylinder

3.4-litre BMW engine with sequential injection working at idle speed,

αthrottle = 6° m* air flow = 470 g/min

pmanifold = 0.45 bar αignition = 18° 

n = 900 rpm Mload = 38 Nm 

λ = 1 Texhaust = 693°K

is

.
x(t) = (1.7)

where τ = 2 ⁄ 9 [sec] and 

.

A0x t( ) A1x t τ–( ) B0u t( ) Bdd t( )+ + +

A0

3.00 101⋅– 0 0 0 0

2.62 10 1–⋅ 3.11– 1.97 10 3–⋅– 0 0

0 2.05 10 2⋅ 4.96 10 2–⋅– 0 0

0 0  0 2– 0

0 0  0 0 8.60– 10 1–⋅

=

A1

0 0 0 0 0

0 0 0 0 0

1.61 10 2⋅ 1.17 103⋅ 6.68 10 1–⋅– 0 9.18 102⋅

3.51 10 1–⋅– 4.83  2.76 10 3–⋅ 0 2.00–

2.45 10 2–⋅ 0 1.33 10 4–⋅– 0 0

=

B

30 0 0

0 0 0

0 7.89 10 2⋅ 1.66 101⋅
0 1.72– 0

0 1.20 10 1–⋅ 0

= Bd

0

0

12.4–

0

0

=
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The variables x(t), u(t), and d(t) represent the deviation from their nominal

values (idle speed) with respect to the following physical meanings:

x1 : Throttle position [degree]

x2 : Intake manifold pressure [bar]

x3 : Engine speed [rpm]

x4 : Lambda signal [-]

x5 : State of the wall-wetting model [g/min]

u1 : Commanded throttle position [degree]

u2 : The base value of the metered fuel is multiplied by u2 [-]

u3 : Difference between demanded spark angle to static calibra-

tion [degree]

d : External load torque [Nm].

Note that the load torque is considered as a disturbance. The corresponding

model for a four-cylinder 1.8-litre BMW engine have recently been analysed.

The model is of the form (1.7). Of course, the numerical values of the system

matrices are different. At idle speed,

αthrottle = 10° m* air flow = 470 g/min

pmanifold = 0.48 bar αignition = 18° 

n =900 rpm Mload = 20 Nm 

λ = 1 Texhaust = 693°K

the corresponding matrices are as follows:

A0

3.50 10 1⋅– 0 0 0 0

1.68 10 1–⋅ 2.35   – 1.63 10 3–⋅– 0 0

0 1.23 102⋅ 6.36 10 2–⋅– 0 0

0 0 0 2– 0

0 0 0 0 1.50 101⋅–

=
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, .

The delays of the models mainly represent retarded influences of some states

on the torque generation and on the air-to-fuel ratio. The subsystem of the

lambda sensor additionally contains a transport delay. The non-negligible

influence of all these delays can be demonstrated with the models given

above. The values of time constants for the corresponding delay-free systems

are between 1 and 0.03 [sec]. The time-delay τ = 2/9 [sec] is of the same

order of magnitude. 

The first four states can be measured. Some (or all) of these measured signals

can be used to control the air-to-fuel ratio and the speed. The design of

controllers which show a good disturbance rejection as well can be based on

linear models. These controllers have been tested with success.

A1

0 0 0 0 0

0 0 0 0 0

2.87 10 1⋅ 1.83 103⋅ 8.87 10 2–⋅– 0 2.59 102⋅

2.22 10 1–⋅– 3.97 2.22 10 3–⋅ 0 2.00–

4.16 10 1–⋅ 0 3.47 10 3–⋅– 0 0

=

B0

35 0 0

0 0 0

0 2.07 102⋅ 1.57 101⋅
0 1.60– 0

0 3.00 0

= Bd

0

0

16–

0

0

=
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2 On the solution of time-delay systems

The initial value problem for RFDEs is briefly considered. Suppose that

τmax = const ∈ [0, ∞).  By Rn
 the n-dimensional vector space over the reals

with the Euclidean norm  is denoted. C([t0 – τmax, t0]; Rn
) is the space of

continuous and bounded functions mapping the interval [t0 – τmax, t0] into Rn
.

For any x ∈ C([t0 – τmax, t1]; Rn
), t1 > t0, xt is defined as xt = x(t + θ),

θ ∈ [–τmax, 0]. The initial value problem for the system

.
x(t) = f(t, xt, u(t)) (2.1)

with a given control u(t) consists of determining a continuous solution x(t) of

(2.1) for t ≥ t0 such that x(t0) = x0 and x(t) = ϕ (t) for , where

ϕ is a continuous function called the initial function (Fig. 2.1). It is often as-

sumed that ϕ (t0) = x(t0). For given initial values (x0, ϕ (t)) the solution of

equation (2.1) is often denoted as x(x0, ϕ, f) [43, p. 37]. If the function f in

(2.1) is continuous and satisfies a local Lipschitz condition in ϕ and u, then

the local existence and uniqueness of the solution can be proved as well as

its continuous dependence on the initial data [40], [43].

The variable u(t) indicates the input to the system or the control variable.

Usually, the state of a system at time t is defined as a collection of infor-

mation which, together with the knowledge of the input, is sufficient to

.

t0 τmax t t0<≤–

t0 – τmax

t
t0

ϕ (t), x(t)

Fig. 2.1
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determine the output of the system. Therefore, the state space of continuous

time-delay systems is an infinite-dimensional vector space C([t0 – τmax, t1],

Rn
), whereas the phase space of such a system is the space of the n-dimen-

sional vector x(t) at each instant time t.

2.1 Method of steps

In Part III simulation programs are applied to study the behaviour of some

delayed control systems. One possibility to test these programs is by

comparing the numerical with the exact solutions. The so-called method of

steps (or method of successive integration) is a way to calculate explicit solu-

tions [33].

The desired solution is found on successive intervals by solving ordinary

differential equations without delays in each interval. To illustrate the

method we consider the following delayed differential equation together with

a given initial condition

.
x(t) = f(t, x(t), x(t – τ)) t ≥ t0 (2.2)

x(t0) = x0 t = t0 (2.3)

x(t) = ϕ(t) t0 – τ ≤ t < t0 . (2.4)

For t ∈ [t0, t0 + τ] the above differential equation can be represented as an or-

dinary differential equation

x
.
(t) = f(t, x(t), x(t – τ)) t0 ≤ t ≤ t0 + τ

x(t0) = x0 t = t0 .

Assuming the existence of a solution x(t) = ϕ1(t) on the entire segment

[t0, t0 + τ], we obtain analogously for the next time interval 
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.
x(t) = f(t, x(t), ϕ1(t – τ)) t0 + τ ≤ t ≤ t0 + 2τ

x(t0 + t) = ϕ1(t0 + t) t = t0 + τ .

In this way, the method allows us to calculate step by step the solution on

some finite segment.

Example 2.1: For the system 

.
x(t) = 6x(t – 1) t ≥ 0 

ϕ(t) = t – 1 ≤ t ≤ 0 

the solution on the time interval [0, 2] is

x(t) = 3(t – 1) 2 – 3 0 ≤ t ≤ 1

x(t) = 6(t – 2) 3 – 18t + 21 1 ≤ t ≤ 2.

The tested integration programs of the software package MatrixX yields very

good results. A program which directly uses the method of steps is called

Delsol [152].

For continuous ϕ and f ∈ C∞ the solution x(t) of equation (2.2) has a contin-

uous derivative for t0 < t < t0 + τ. Consequently the solution of equation (2.2)

is twice differentiable for t0 + τ < t < t0 + 2τ, and so on. Therefore, the solu-

tion x(t) smooths out as t grows.

It is obvious that the method of successive integration can be extended to

solve the initial value problem for systems with time-varying delays or for

neutral systems. Furthermore, the method is always involved in existence

and uniqueness proofs for FDEs [43]. However, the method is not suitable

for the generation of stability or controllability criteria. Even for the simple

system [33]

.
x(t) = a.x(t – 1) t ≥ t0 

x(t) = c t0 – τ ≤ t < t0 

the solution
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is difficult to analyse concerning stability. In the next section, some other

ways for representing the solution of a time-delay system are considered.

2.2 Fundamental matrix

The integral form of differential equation (2.1)

is sometimes quite useful to represent a solution of (2.1). We will use this

form in Section 2.3 to establish a Comparison Theorem. Since an explicit

solution for nonlinear time-delay systems can be given only in very special

cases, we shall restrict our considerations in this section to the following

linear differential equation

.
x(t) = t ≥ t0 (2.5)

x(t) = ϕ(t) t0 – τk ≤ t < t0 (2.6)

where 0 < τ1 < . . . < τk, A0, Ai ∈ Rn × n
, x(t) ∈ Rn

, B0 ∈ Rn × m
, u(t) ∈ Rm

. A

widespread representation of the solution of (2.5) is given by

 . (2.7)

Equation (2.7) is used in Section 3 to derive a simple algebraic stability con-

dition. The first term on the right-hand side of equation (2.7) describes the

x t( ) c ai t t0– i 1–( )N–( )i

i!
------------------------------------------

i 1=

N

∑= N 1 t N≤ ≤–

x t( ) x0 f s xs u s( ), ,( )ds
t0

t

∫+=

A0x t( ) Aix t τ i–( ) B0+ u t( )
i 1=

k

∑+

x t( ) e
A0t

x0 e
A0 t s–( )

Aix s τ i–( ) B0u s( )+
i 1=

k

∑
 
 
 

ds
t0

t

∫+=
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influence of x0 = ϕ (t0) on the system. An alternative characterization of the

solution is obtained if the first term describes the influence of the entire ϕ on

the system:

. (2.8)

The fundamental matrices Φ and Φu are determined by

Φ
.

(t, s) = A0Φ(t, s) + t ≥ t0

Φ (t, s) = t, s ∈ [t0 – τk, t0]

Φ
.

u(t, s) = A0Φu(t, s) + 

Φu(t, t) = I

Φu(t, t) = 0 t < s

where I ∈ Rn × n
 is the identity matrix and δ is the Dirac function. An iterative

method for the construction of Φ and Φu is given in [106, p. 93]. The example

below illustrates an application of (2.7) together with the method of steps.

Furthermore, the result obtained is used in Section 2.4.

A function is called absolutely continuous if it is continuous and maps

bounded sets in C into bounded sets in R
q
. We shall denote by L

2
([a, b]; R

q
)

the space of square integrable R
q
-valued functions on [a, b]. W 1, 2([a, b]; Rq

)

is the space of absolutely continuous R
q
-valued functions on [a, b] with

square integrable derivatives.

Example 2.2: Show that (2.5) admits a solution x ∈ L
2
([t0 – τmax, t0]; Rn

) ∩
W 1, 2([t0, t1]; Rn

) for every input u ∈ L
2
([t0, t1]; R

m
) and every initial condi-

tion ϕ ∈ L
2
([t0 – τmax, t0]; R

n
). 

For t ∈ [t0, t0 + τk], equation (2.7) can be rewritten as

 .

x t( ) Φ t s,( )ϕ s( )ds
t0 τk–

t0

∫ Φu t s,( )B0u s( )ds
t0

t

∫+=

AiΦ t τ i s,–( )
i 1=

k

∑

I δ t s–( )⋅

Ai

i 1=

k

∑ Φu t τ i s,–( ) t t0≥

x t( ) e
A0t

x0 e
A0 t s–( )

Aiϕ s τ i–( ) B0u s( )+
i 1=

k

∑
 
 
 

ds
0

t

∫+=
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The right-hand side of the above equation implies that x ∈ L
2
 for

t ∈ [t0, t0 + τk]. Again considering equation (2.5) we conclude that also

x
. ∈ L

2
, which implies that x ∈ W 1, 2. By analogy we may now proceed for the

next time interval t ∈ [t0 + τk, t0 + 2τk] and so on.

2.3 A Comparison Theorem

In order to establish a stability condition in Chapter 3, a Comparison Theo-

rem is derived. As mentioned in Section 2.2, the solution of

x
.

(t) = f(t, xt) t > t0 (2.9)

x(t0) = x0 t = t0 (2.10)

x(t) = ϕ(t) t0 – τmax ≤ t < t0 . (2.11)

can be expressed as

 .

For several reasons we will consider here the slightly more general integral

equation

 . (2.12)

The symbol ℑ n
 = C([t0 – τmax, t0]; Rn

) denotes the space of continuous func-

tions with domain [t0 – τmax , t0] and range Rn
. J is defined by J = [t0, t1]. For

any two elements x, y ∈ Rn we write x ≤ y iff xi ≤ yi for each i = 1, ..., n. Fur-

thermore, we define the following expressions

max[x, y] = z = (z1, z2, ..., zn) (2.13)

where zi = max(xi, yi). For example z(t) = max[y(t), x(t)] implies that

x(t) ≤ z(t) and consequently x(t + θ) ≤ z(t + θ) for θ ∈ [– τmax, 0], t > t0. The

last inequality between x and z is denoted by xt ≤ zt = max[y, x]t.

x t( ) x0 f s xs,( )ds
t0

t

∫+=

x t( ) g0 t( ) F t s xs, ,( )ds
t0

t

∫+=
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Definition 2.1 (analogous to [76], Vol. 2, p. 36, Def. 6.9.2): Let r(g0, ϕ, F)

be a solution of (2.12) defined on [t0, t1]. If any other solution x(g0, ϕ, F) of

(2.12) defined on the same interval satisfies

x(g0, ϕ, F) ≤ r(g0, ϕ, F)

then r(g0, ϕ, F) is said to be a maximal solution of (2.12).

Definition 2.2 (analogous to [76], Vol. 1, p. 316, Def. 5.1.1): We shall say

that the integral operator F is monotone nondecreasing if, for any ,

∈ C([t0 – τmax , t1]; Rn
) such that for any t1 > t0

t0 – τmax ≤ t ≤ t1

implies

 .

Theorem 2.1 (Comparison Theorem): Let F(t, s, xs) ∈ C([J × J × ℑ n
]; R

n
),

be monotone nondecreasing in xt for each (s, t) and 

t0 ≤ t ≤ t1 (2.14)

where g0 ∈ C([t0, t1]; Rn
), x ∈ C([t0 – τmax , t1]; Rn

). Assume that r(t) is a

maximal solution of 

(2.15)

existing on [t0, ∞). Then 

on [t0, t1]. (2.16)

φ
φ̃

φ t( ) φ̃ t( )≤

F t s φs, ,( )ds
t0

t1

∫ F t s φ̃s, ,( )ds
t0

t1

∫≤

x t( ) g0 t( ) F t s xs, ,( )ds
t0

t

∫+≤

m t( ) g0 t( ) F t s ms, ,( )ds
t0

t

∫+=

x t( ) r t( )≤



21

Proof: Define

. (2.17)

Equation (2.13) implies that xtŠ ≤ max[y, x]t for any function y. From the mo-

notonicity of F and (2.17), it therefore follows that

for any function yt . (2.18)

Let r*(t) be the maximal solution of

existing on [t0, t1] such that 

.

From (2.18) we conclude that

.

Applying (2.14) we obtain

. (2.19)

To complete the proof we have to show that r*(t) is also a maximal solution

of (2.15). It results from (2.19) and (2.13)

and consequently, due to (2.17),

.

Thus r*(t) is also the maximal solution of (2.15). Hence (2.19) proves the de-

sired result (2.16). ❏  

K t s yt, ,( ) F t s max y x,[ ]t, ,( )=

K t s yt, ,( ) F t s xt, ,( )≥

m t( ) g0 t( ) K t s ms, ,( )ds
t0

t

∫+=

r* t( ) g0 t( ) K t s rs
*, ,( )ds

t0

t

∫+=

r* t( ) g0 t( ) F t s xs, ,( )ds
t0

t

∫+≥

r* t( ) x t( )≥

max r* t( ) x t( ),[ ] r* t( )=

max r* t( ) x t( ),[ ] t r*
t=

K t s r*
t, ,( ) F t s r*

t, ,( )=
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Corollary 2.1: Let f(t, xs) ∈ C([J × ℑ n
]; R

n
) be monotone nondecreasing in

xt for each t and 

where x0 ∈ Rn
, x ∈ C([t0 – τmax, t1]; Rn

). Assume that r(t) is a maximal solu-

tion of 

(2.20)

existing on [t0, ∞). Then 

on [t0, t1] . (2.21)

2.4 A transformation for time-delay systems

The transformation presented here converts a multiple delay system into a

single delay system, leaving the trajectory invariant. Using this transforma-

tion, the stability and controllability criteria derived for single delay systems

can at once be extended to multiple delay systems. The relation between the

transformed and the original systems concerning system properties is ana-

lysed in Sections 3.3 and 4.1. In this section, both the construction of the

transformation and sufficient conditions for the transformed system to have

the same trajectory as the original system are studied. The time-delay system

under consideration is described by a linear differential difference equation

x t( ) x0 f s xs,( )ds
t0

t

∫+≤

m t( ) x0 f s ms,( )ds
t0

t

∫+=

x t( ) r t( )≤
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and a static output equation:

t ≥ t0 (2.22)

t ≥ t0 (2.23)

t0 – τk ≤ t ≤ t0 (2.24)

where 0 < τ1 < . . . < τk, A0, Ai ∈ Rn × n
, x(t) ∈ Rn

, B0 ∈ Rn × m
, u(t) ∈ Rm

,

C0 ∈ Rp × n
, y(t) ∈ Rp

. We denote the natural numbers by N, the rational num-

bers by Q, and the positive real numbers by R
+
. Under the assumption that

the system (2.22) is commensurate, the delays may be represented uniquely

in the factorization

where ci, di ∈  N and v ∈  R
+

\ Q ∪  {1}. In order to generate the transformation

such that the number of state variables of the transformed system is minimal,

we look for the maximal value of the delay constant  which is derived from

the equations

(2.25)

where li ∈ N and τ* ∈ R+. The tuple {l1, ..., lk, τ*} determined by the equations

(2.25) can be derived with the following Lemma.

Lemma 2.1: The delay constant  is maximal under consideration of

the property , iff relation (2.26) holds 

 . (2.26)

x t( ) A0x t( ) Aix t τ i–( ) B0u t( )+
i 1=

k

∑+=

y t( ) C0x t( )=

x t( ) ϕ t( )=

τ i

ci

di
----v=

τ*

τ1 l1τ*=

τ2 l2τ*=

:

τk lkτ*=

τ* R+∈
li N∈

τ* gcd ci{ }
lcm di{ }
--------------------v=
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Proof: First we have to check whether  satisfies the equations (2.26).

For any τi with  and  we may write

⇒  .

Any combination  where

destroys the property of li being an element of N. ❏  

With the following transformation the multiple delay system (2.22) – (2.24)

is related to a single delay system with the same trajectory. Let us consider

the maximal delay constant τ*. Then the new state, control, and output

vectors, , , and , respectively, are given

by

(2.27)

(2.28)

τ* R+∈
c̃ gcd ci{ }= d̃ lcm di{ }=

τ i

ci

di
----v

cid̃c̃

dic̃d̃
----------v= =

li

cid̃
c̃di
-------= li N∈

c'˜ d'˜,( )

c'˜ c̃> d'˜ d̃<

x t( ) R lk n⋅∈ u t( ) Rlk m⋅∈ y t( ) Rlk p⋅∈

xj t( ) x t j 1–( )τ*–( )=

x t( )
x1 t( )

:

xlk
t( )

= t t0≥

uj t( ) u t j 1–( )τ*–( )=

u t( )
u1 t( )

:

ulk
t( )

= t t0≥
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(2.29)

where j ∈ {1, 2, . . ., lk}. Furthermore, we define  and

 to be

(2.30)

(2.31)

where the function f remains to be defined. The transformed system is then

of the form

(2.32)

(2.33)

(2.34)

where the system matrices , , and

 have the following structures

yj t( ) y t j 1–( )τ*–( ),=

y t( )
y1 t( )

:

ylk
t( )

= t t0≥

ϕ t( ) R
lk n⋅∈

f t( ) R
lk n⋅∈

fj t( ) f t j 1–( )τ*–( )=

f t( )
f1 t( )

:

flk
t( )

= t t0≥

ϕ j t( ) ϕ t j 1–( )τ*–( ),=

ϕ t( )
ϕ1 t( )

:

ϕ lk
t( )

= t0 τk– t t0≤ ≤

x t( ) A0x t( ) A1x t τk–( ) B0u t( ) f t( )+ + += t t0≥

y t( ) C0x t( )= t t0≥

x t( ) ϕ t( )= t0 τk– t t0≤ ≤

A0 A1, R
lk n lk n⋅×⋅

∈ B0 R
lk n lk m⋅×⋅

∈
C0 R

lk p lk n⋅×⋅∈
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(2.35)

 (2.36)

(2.37)

. (2.38)

Because of (2.26) and (2.27), Ai (for i ∈ {1, 2, . . ., k – 1}) builds the li upper

secondary block diagonal of  and the lk – li lower secondary block diago-

nal of . All other secondary block diagonals are zero. Furthermore, let us

A0

A0 . . A1 . . Ak 1–

A0 . . A1 . . Ak 1–

. . . . . . .

. . . . . . .

. . . . . . Ak 1–

. . . . . .

. . . . .

. . . A1

. . .

. .

0 A0

=

A1

Ak 0
. Ak

. . .

Ak 1– . . .

. Ak 1– . . .

. . . . . .

A1 . . . . . .

A1 . . . . . .

. . . . . . .

. . . . . . .

A1 . . Ak 1– . . Ak

=

B0 diag B0 … B0, ,[ ]=

C0 diag C0 … C0, ,[ ]=

A0

A1
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call the vector-valued function  an initial control. This approach enables

us to perform the transformation without restrictive assumptions on the orig-

inal system. In the following, the symbol ∆ is defined by ∆ = τk – τ* .

Theorem 2.2: The system (2.22) – (2.24) with multiple delays in state and

with a given vector-valued initial function ϕ ∈ L
2
([t0 – τk, t0]; Rn

) ∩
C 1([t0 – ∆, t0]; Rn

) can be represented by an equivalent single delay system

(2.32) - (2.34) with the same trajectory if is chosen as follows

: (2.39)

where

(2.40)

for t0 – ∆ ≤ t < t0 .

Proof: We first deal with the vector-valued initial function . Equation

(2.31) requires the knowledge of ϕ(t) on the interval [t0 – τk – ∆, t0]. Because

of equation (2.24) the initial function ϕ(t) is given only on [t0 – τk, t0]. We ex-

tend ϕ(t) to the interval [t0 – τk – ∆, t0] such that ϕ ∈ L
2
([t0 – τk – ∆, t0]; R

n
)

∩ C1([t0 – ∆, t0]; R
n). Once ϕ(t) is chosen on the prolonged interval, the func-

tion ∈ L
2
( [t0 – τk, t0]; R

lk . n
) is given by (2.31). For  we proceed in an

analogous way: We choose u(t) arbitrarily on [t0 – ∆, t0] such that

u ∈ L
2
( [t0 – ∆, t1]; R

m
). The control ∈ L

2
( [t0, t1]; R

lk . m
) is then deter-

mined by equation (2.28). Assuming the two functions  and  to be

fixed, the initial control function  is fully determined. For  with t ≥ t0

f(t)

f (t)

f1 t( ) 0= t t0≥

f2 t( ) f t τ
*

–( )
0

=
t0 t t0 τ*+<≤

t t0 τ*
+≥

flk
t( ) f t lk 1–( )τ*

–( )
0

=
t0 t t0 ∆+<≤

t t0 ∆+≥

f t( ) ϕ· t( ) A0ϕ t( )– Aiϕ t τ i–( )
i 1=

k

∑– B0u t( )–=

ϕ (t)

ϕ u(t)

u

ϕ (t) u(t)

f(t) x1(t)
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we have

, (2.41)

 . (2.42)

For t ≥ t0, f(t) vanishes. For the computation of  we have to find f(t) on

the interval [t0 – ∆, t0] using (2.40). Equations (2.30) and (2.42) yield (2.39).

From the equations (2.31), (2.28), and (2.39) it follows that ∈
L

2
( [t0 – τk, t0]; R

lk . n
), ∈ L

2
( [t0, t1]; R

lk . m
), and ∈ L

2
( [t0, t0 + ∆]; R

lk . m
).

Therefore, it is obvious that the system (2.32) – (2.34) admits a unique solu-

tion ∈ L
2
([t0 – τk, t0]; R

lk . n
) ∩ W

1, 2
([t0, t1]; R

lk . n ) [43]. ❏

Equation (2.39) shows that  influences the transformed system only for

t ∈ [t0, t0 + ∆]. The initial control  corrects the influence of the arbitrary

extensions of ϕ(t) and u(t). 

Example 2.3: The original system is given by

 

 

where

x1 t( ) x t( ) A0x t( ) Aix t τ i–( )
i 1=

k

∑ B0u t( ) f t( )+ + += =

f t( ) x t( ) A0x t( )– Aix t τ i–( )
i 1=

k

∑– B0u t( )– 0= =

f(t)

ϕ
u f

x

f(t)

f(t)

x t( ) A0x t( ) A1x t 1–( ) A2x t 2–( ) A3x t 3–( )+ + +=

B0u t( )+ t 0≥

y t( ) C0x t( )= t 0≥

ϕ t( ) 1 1–,[ ] T≡ 0 t 3–≥ ≥

u t( ) 2 2–,[ ] T≡ t 0≥

A0
5– 1

3– 7–
= A1

0 1

2– 0
= A2

0 0

0 1
= A3

1 0

0 0
=

B0
3 2

1 2
= C0 1 2=
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The corresponding transformed system is described by

(2.43)

(2.44)

The extension of ϕ(t) is chosen to be  for all t ∈ [–5, –3) and

 for all t ∈ [–2, 0).  and  are calculated by (2.31) and

(2.28). Equation (2.40) then yields

We then construct  with (2.39)

The solution  to (2.43), (2.44) computed

with the variable Kutta-Merson integration method is shown in Fig. 2.2.

x t( )
A0 A1 A2

A0 A1

A0

x t( )
A3

A2 A3

A1 A2 A3

x t 3–( )+ +=

B0

B0

B0

u t( ) f t( )++

y t( )
C0

C0

C0

x t( )=

ϕ t( ) 0 0,[ ] T≡
u t( ) 0 0,[ ] T≡ ϕ (t) u(t)

f t( )
0 0,[ ] T

7 1–,[ ] T

7 2–,[ ] T

≡
t 0≥

1– t 0<≤
2– t 1.–<≤

f(t)

f2 t( )
7 1–,[ ] T

0 0,[ ] T
≡

0 t 1<≤
t 1   ≥

f3 t( )
7 2–,[ ] T

7 1–,[ ] T

0 0,[ ] T

≡
0 t 1<≤
1 t 2<≤

t 2 .  ≥

y t( ) y1 t( ) y2 t( ) y3 t( ), ,[ ] T=
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Next, two cases are shown in which the introduction of an initial control  

can be neglected.

I) In the first case, we choose u(t) such that u ∈ L
2
([t0 – ∆, t1]; Rm

). We as-

sume Ak to be regular and ϕ ∈ L
2
([t0 – τk, t0]; R

n
) ∩ C

1
([t0 – ∆, t0]; R

n
). In

order to achieve our goal, we calculate ϕ(t) on the extended interval

[t0 – τk – ∆, t0 – ∆] by backward continuation. Under the above assumptions,

the solution exists and is unique [43, Section 2.5]. We realize the backward

continuation with the help of the inverse of the method of steps as follows.

Corollary 2.2: If Ak is regular, ϕ ∈ L
2
([t0 – τk, t0]; Rn

) ∩ C
1
([t0 – ∆, t0]; Rn

),

and the extension of ϕ(t) is chosen to be

(2.45)

for , j ∈ {2, . . ., lk}, then  vanishes.

Fig. 2.2  Solution of the system (2.43) – (2.44)

y(t)

time

y1

y2
y3

f(t)

ϕ t( ) Ak
1– ϕ· t τ k+( )[ A0ϕ t τ k+( )– +=

Aiϕ t τk τ i–+( )
i 1=

k 1–

∑– B0u t τk+( ) ]–

t0 ∆– jτ*– t t0 ∆– j 1–( )τ*–<≤ f (t)
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Proof: Consider  where . In

order to show that  vanishes,  is expressed

in terms of (2.40) where for ϕ (t) relation (2.45) holds. ❏

The relation (2.45) is recursive, except if Therefore, the

solution is found on successive intervals. From the extended ϕ (t), 

follows immediately by equation (2.31). In the scalar case of (2.22) – (2.24),

it is always possible to omit the initial control.

Example 2.4: For the system defined by

ϕ (t) = – 0.5t + 2

the extension of ϕ(t) is calculated by applying (2.45)

.

The differential difference equation of the corresponding transformed system

is described by

 (2.46)

. (2.47)

The construction of ∈ R5 and the solution of the corresponding trans-

formed system is shown in Fig. 2.3.

fj t( ) f t j 1–( )τ*–( )= t0 t t0 j 1–( )τ*+<≤
f t j 1–( )τ*–( ) f t j 1–( )τ*–( )

τk 1– τ1 τ*.= =

ϕ (t)

x t( ) x t( )– x t 2–( ) x t 3–( )– 2x t 5–( )+ += t 0≥

5– t 0<≤

ϕ t( ) 0.25t– 0.25–= 7– t 5–<≤

ϕ t( ) 0.125t– 1.125–= 8– t 7–<≤

ϕ t( ) 0.25t– 0.375–= 9– t 8–<≤

x t( )

1– 0 1 1– 0

0 1– 0 1 1–

0 0 1– 0 1

0 0 0 1– 0

0 0 0 0 1–

x t( )

2 0 0 0 0

0 2 0 0 0

1– 0 2 0 0

1 1– 0 2 0

0 1 1– 0 2

x t 5–( )+= t 0≥

x t( ) ϕ t( )= 5– t 0<≤

ϕ t( )
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II) In the second case, we choose ϕ(t) on the extended interval

[t0 – τk – ∆, t0 – τk] such that ϕ belongs to L
2
([t0 – τk – ∆, t0]; Rn

) ∩
C 1([t0 – ∆, t0]; Rn ).

Corollary 2.3: If m = n, B0 is regular, ϕ ∈ L
2
([t0 – τk – ∆, t0]; Rn) ∩

C 1([t0 – ∆, t0]; Rn ), and the extension of u(t) is chosen to be

, (2.48)

, then  vanishes.

Proof: The Corollary can simply be proved by replacing u(t) in (2.40) with

the help of (2.48). ❏

x2(t)

x3(t)

x4(t)

x5(t)

backward  
continuation

– 5

0

 5
ϕ (t)

– 10

t

x1(t)

Fig. 2.3 x(t) for all t ∈ [–5, 5] for the system (2.46) – (2.47) 

u t( ) B0
1– ϕ· t( )[ A0ϕ t( )– Aiϕ t τ i–( ) ]

i 1=

k

∑–=

t0 ∆– t t0<≤ f (t)
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Structural Properties

3 Stability

Roughly speaking, the stability of a system is its ability to resist any

unknown small influences. Since in reality disturbances are always encoun-

tered, stability is an important property of any control system, delayed or

nondelayed. The following Cauchy problem is considered:

x
.
(t) = f(t, xt) t ≥ t0 (3.1)

x(t) = x0 t = t0 (3.2)

x(t) = ϕ (t) t0 – τmax ≤ t < t0 . (3.3)

We assume in this and all further chapters that f is bounded and completely

continuous (i.e., f is continuous and maps bounded sets in C into bounded

sets in Rn
), and that it is regular such that for any initial state ϕ ∈ C there

exists a unique solution x(x0, ϕ). Furthermore, it is assumed that (x0, ϕ) is

bounded and the initial function ϕ is continuous.

Definition 3.1: A constant function φe is called an equilibrium state if

f (t, φe) = 0 for all t ≥ t0 .

Even in the linear case of (3.1) the system may have more than one equilib-

rium state in general. But the stability analysis of any equilibrium φ may be

reduced to the analysis of the zero equilibrium by the substitution z(t) =

x(t) – φe, ψ(θ) = ϕ(θ) – φe . For z we obtain
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z
.

(t) = f(t, zt + φe) t ≥ t0

z(t0) = 0 t = t0

z(t) = ψ(t) t0 – τmax ≤ t < t0.

Therefore, it is no restriction if we assume in the future that f(t, 0) = 0.

Definition 3.2: The equilibrium state φe = 0 is stable in the Lyapunov sense,

if for any positive numbers t0 and ε there exists a δ(ε, t0) > 0 such that every

continuous solution of (3.1) which satisfies

max |x(t) | ≤ δ(ε, t0)  t0 ≤ t ≤ t0 + τmax

will also satisfy

max |x(t) | ≤ ε  t0 ≤ t ≤ ∞ .

Definition 3.3: The stable equilibrium state φe = 0 is asymptotically stable if

every continuous solution of (3.1) also satisfies  .

In the definitions given above the number δ depends on both t0 and ε. If a

δ > 0 can be found independent of t0 the solution φe of (3.1) is designated as

uniformly stable or uniformly asymptotically stable, respectively.

Definition 3.3 can be simplified if equation (3.1) is linear in x and (x0, ϕ) ∈
M 2 = R

n × L
2
([t0 – τmax, t0]; Rn

). M 2 is a Hilbert space with the inner product

. Hence the induced norm is

given by [39, p. 98]:

||x0, ϕ||
M 2  = .

The following conditions are equivalent and imply that the system is asymp-

totically stable if equation (3.1) is linear in x and (x0, ϕ) ∈ M 2 [39, p. 99]

i)

x t( ) 0→
t ∞→
lim

x0 ϕ,( ) y0 ψ,( ),〈 〉M2 x0 y0,〈 〉R n ϕ ψ,〈 〉L2+=

x0
2 ϕ θ( ) 2dθ

t0 τmax–

t0

∫+
1 2⁄

x t( )
t ∞→
lim 0→
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ii)

iii)   α, β = const ∈ [0, ∞).

In the next section, we will introduce three basic tools to analyse the stability

of retarded systems.

3.1 Stability concepts

In this section, the method of Lyapunov functionals and the method of Razu-

mikhin are briefly introduced. Furthermore, we consider the characteristic

equation to determine the stability of the solution for linear time-delay sys-

tems.

I) Lyapunov’s direct method: From the stability of ordinary differential

equations, the efficiency of Lyapunov’s direct method (or second method) to

analyse stability problems is well known. (Lyapunov’s first method provided

that an explicit solution of the considered differential equation is known.)

Krasovskii [69] was the first who generalized this method to RFDE’s. Since

to each solution of an RFDE there is an integral curve in the space Rn × C

(see Sections 2.1 and 2.2), it is a natural generalisation to use Lyapunov func-

tionals in this space instead of Lyapunov functions. These functionals are of-

ten called Lyapunov-Krasovskii functionals.

Suppose V(t, xt): R × C → R is continuous function and x(t) is the solution

of (3.1). The function 
.
V(t, xt) is the upper right-hand derivative of V(t, xt)

along the solution of (3.1) (see, e.g., [66, p. 100], [43, p. 105]). We denote by

wi(r) for r ≥ 0 some continuous nondecreasing functions such that wi(0) = 0

and wi(r) > 0 for r > 0 .

x t( ) 2dt
0

∞

∫ ∞<

x t( ) βe α t– x0 ϕ,( )
M 2≤
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Theorem 3.1 [43, p. 105]: Let there exist a continuous functional V(t, xt):

R × C → R such that 

(3.4)

and 

 . (3.5)

Then the trivial solution of (3.1) is uniformly asymptotically stable.

It is an interesting fact that if the trivial solution of (3.1) is asymptotically sta-

ble, then there exists a continuous functional V(t, xt) satisfying (3.4) and

(3.5) [69, Theorem 5.3]. 

II) Razumikhin’s method: The idea of the Razumikhin-type theorem is to

treat the stability problem with functions rather than with functionals. In the

beginning of his research, Razumikhin (1958) considered the single delay

system
.
x(t) = f(x(t), x(t – τ)) and investigated the stability problem on the

basis of first approximations. He demonstrated that the zero solution of this

system is asymptotically stable if a positive-definite function V(t, x) has a

negative-definite derivative along the solution of (3.1) with the additional

condition V(t – τ, x(t – τ)) < V(t, x(t)). In the late seventies, Hale [43]

presented a stronger version of the Razumikhin-type theorem. We read on

page 126 in [43]: “A few moments of reflection in the proper direction indi-

cate that it is unnecessary to require that V
.

be nonpositive for all initial data

in order to have stability. In fact, if a solution of an RFDE begins in a ball and

is to leave this ball at some time t, then |xt| = |x(t) |; that is |x(t + θ) | = |x(t)|
for all θ ∈ [– τmax, 0]. Consequently, one needs only consider initial data

satisfying this latter property.”

Theorem 3.2 [43, p. 127]: Let there exist a continuous function V(t, x):

R × Rn → R such that 

(3.6)

w1 x( ) V t xt,( ) w2 xt( )≤ ≤

V· t xt,( ) w3 x( )–≤

w1 x( ) V t x,( ) w2 x( )≤ ≤
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and 

 . (3.7)

If

(3.8)

for θ ∈ [– τmax, 0] and w1(s) → ∞ as s → ∞, then the trivial solution of (3.1)

is uniformly asymptotically stable.

III) Characteristic equation: The following linear autonomous system is a

special case of equation (3.1), but it is important in control theory:

.
x(t) = (3.9)

where 0 < τ1 < . . . < τk < ∞, h ∈ [0, ∞), A0, Ai ∈ Rn × n
. It is assumed that the

elements of the function matrix A01(θ) are continuous and bounded. The

so-called characteristic equation for the linear hereditary differential equa-

tion (3.9) is given by

. (3.10)

The function det[∆(s)] is sometimes called the characteristic quasipolynomi-

al. In the following, Re(s) designates the real part of s, and  is the set of

complex numbers.

Theorem 3.3 [40, p. 54 and p. 132]: System (3.9) is uniformly asymptotically

stable iff 

Re(s) < 0 (3.11)

for all s ∈  satisfying det[∆(s)] = 0 .

Note that for linear neutral systems the ‘natural’ corresponding extension of

Theorem 3.3 is not true in general. In [29] an example is given of a linear un-

V· t x,( ) w3 x( )–≤

V t θ x t θ+( ),+( ) w4 V t x t( ),( )( )≤

A0x t( ) Aix t τ i–( )
i 1=

k

∑ A01 θ( )x t θ+( )dθ
h–

0

∫+ +

det ∆ s( )[ ] det sI A0– Aie
sτ i–

i 1=

k

∑– A01 θ( )esθdθ
h–

0

∫–=

C

C
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stable neutral differential difference equation whose spectrum lies in the left

half plane. 

Calculating the exact value of the roots of the characteristic equation is

possible only in very special cases. An approximate computation of the

eigenvalues of the system (3.9), and some properties of the eigenvalues will

be discussed in Section 3.4.

3.2 Stability tests

The tools to investigate the stability of RFDEs introduced in the last section

are applied in the following to establish simple, algebraic stability condi-

tions. The search for easily applicable stability tests has become a popular

field of research over the last number of years. These stability criteria are

classified into two categories. The stability criteria which do not need any

information about the delay are called delay-independent criteria, while

those which exploit information about the delays involved are called

delay-dependent criteria. In [18], [49], [50], [57], [59], [60], [82], [145],

[155] (to mention a few), a further classification is stated: the so-called

stability criteria independent of delay, abbreviated to i.o.d. stability criteria.

(These criteria are valid only for systems with constant lags.) The expression

i.o.d. might appear to be equivalent to the term delay-independent, but it is

not. For example in [57] the exact i.o.d. stability condition for the

system
.
x(t) = a0x(t) + a1x(t – h) + a2x(t – 2h) is derived. However, this

condition is not valid for the system 
.
x(t) = a0x(t) + a1x(t – h) + a2x(t – 3h).

The i.o.d. criteria discussed in Subsection 3.2.3 below do not need any infor-

mation on the delay constant h. As soon as the system has further delays, the

i.o.d. stability criteria depend on the ratio of the delays. This of course

implies that the ratio of the delays has to be known exactly! (In the systems
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mentioned above the ratios of the delays are 1:2 and 1:3, respectively.) More

accurate than the term “i.o.d.” would thus be the expression independent of

a delay constant. We will use only the latter terminology. From now on, we

say that a stability criterion is delay-independent or independent of delay if,

for a system with multiple constant delays, the ratio of the delays does not

have to be known for this criterion to be applicable. Furthermore, we distin-

guish whether it is assumed that the delays are constant or not. To sum up,

we distinguish between the following four types of stability tests:

• delay-independent or independent of delay stability criteria

(delays may be constant or variable)

• stability criteria independent of constant delays

• stability criteria independent of a delay constant

• delay-dependent stability criteria. 

Of course, necessary and sufficient conditions for asymptotic stability

criteria will be delay-dependent. Consequently, there is a gap between

delay-independent criteria and exact ones. Several examples of this gap are

visualized in Subsection 3.3.1. Note that exact stability conditions in terms

of the system coefficients are known only for ‘simple’ systems, while

delay-independent stability conditions are derived for much more general

systems. Delay-independent stability criteria are very useful, since in reality

it is difficult to estimate the delays, especially if those delays are

time-varying and/or state-dependent.

Before starting the following subsections, some notation is introduced:

λi(A) Eigenvalue of the matrix A ∈ Rn × n
 

λmax(A) Eigenvalues with the largest real part of the matrix A

λmin(A) Eigenvalues with the smallest real part of the matrix A

Re(.) Real part of ( .)

Im(.) Imaginary part of (.)
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vector norm:

matrix norm:

matrix measure:

3.2.1 Stability tests: Independent of delays

For the system 
.
x(t) = A0x(t) + A1x(t – τ); A0, A1 ∈ Rn × n

 with a constant

delay τ, Mori et al. (1981) presented the well-known stability criterion

µ(A0). + ||A1||. < 0 . Cheres et al. (1989) [25] indicated that this stability con-

dition for . = 2 is also valid if the delay is time-dependent. Wang et al. (1991)

[145] showed that this type of criterion for . = 2 can also be formulated for

x . x 1 xi

i 1=

n

∑=

x 2 xi
2

i 1=

n

∑

1 2⁄

=

x ∞ max
i

xi=

A . A 1 max
j

aij

i 1=

n

∑=

A 2 λmax ATA( )=

A ∞ max
i

aij

j 1=

n

∑=

µ A( ). µ A( )1 max
j

[Re ajj( ) aij ]
i 1=
i j≠

n

∑+=

µ A( )2 0.5 λ⋅ max AT A+( )=

µ A( )∞ max
i

[Re aii( ) aij ]
j 1=
j i≠

n

∑+=
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systems with multiple constant delays. Indeed, the statement can be general-

ized for the following system

x
.
(t) = A0x(t) + t ≥ t0

(3.12)
x(t) = ϕ (t) t0 – τmax ≤ t ≤ t0

where A0, A1 ∈ Rn × n
. It is assumed that the delays are continuous and

bounded, satisfying the inequality 0 < τi(t, x(t)) < τmax . The first stability

condition is established using comparison techniques, while the other

stability criteria are derived with the help of the Razumikhin concept.

Theorem 3.4: System (3.12) is asymptotically stable independent of delays

(a.s.i.d) if the inequality

(3.13)

is valid for any . = 1, 2, ∞ .

Proof: The solution of (3.12) can be represented as

t ≥ t0

where x0 = ϕ (0). Taking the norm on both sides of the equation yields

 .

Now we use the inequality [27]:  for t ≥ t0 and define v(t) =

|x(t) |.; v0 = |x(t0) |.

; t ≥ t0

t0 – τmax ≤ t ≤ t0

Aix t τ i(t, x(t))–( )
i 1=

k

∑

µ A0( ). Ai .
i 1=

k

∑+ 0<

x t( ) eA0tx0 eA0 t s–( ) Aix s τ i(s, x(s))–( )
i 1=

k

∑ ds
t0

t

∫+=

x t( ) . eA0t
. x0 . eA0 t s–( )

. Ai . x s τ i(s, x(s))–( ) .
i 1=

k

∑ ds
t0

t

∫+≤

eAt . eµ. A( )t≤

v t( ) e
µ. A0( )t

v0 e
µ. A0( ) t s–( )

Ai .v s τ i(s, x(s))–( )
i 1=

k

∑ ds
t0

t

∫+≤

v t( ) ϕ t( ) .=
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Corresponding to the above inequality, the following integral equation is

considered

; t ≥ t0

t0 – τmax ≤ t ≤ t0 .

The variable z(t) is the solution of the following scalar differential difference

equation

z
.
(t) = t ≥ t0 (3.14)

z(t) = |ϕ(t)|. t0 – τmax ≤ t ≤ t0 . (3.15)

Using the comparison theorem (see Section 2.3) we obtain

.

Obviously, asymptotic stability of system (3.14) implies that of system

(3.12). It is known (cf. [43, p. 129]; or [2]) that the solution of the scalar dif-

ferential difference equation of the form

.
x(t) =

is asymptotically stable for all bounded continuous functions τi (t, x(t)) if the

inequality

holds. Applying this result to (3.14) and (3.15), Theorem 3.4 follows. ❏

Theorem 3.5: System (3.12) is a.s.i.d. if the inequality

(3.16)

holds for some symmetric, positive-definite matrix P ∈ Rn × n
. 

z t( ) e
µ. A0( )t

v0 e
µ. A0( ) t s–( )

Ai .z s τ i(s, x(s))–( )
i 1=

k

∑ ds
t0

t

∫+=

z t( ) ϕ t( ) .=

µ. A0( ) z t( ) Ai .z t τ i(t, x(t))–( )
i 1=

k

∑+

x t( ) . v t( ) z t( )≤=

a0x t( ) aix t τ i t x t( ),( )–( )
i 1=

k

∑+

a0 ai

i 1=

k

∑ 0<+

µ PA0( )2

λmax P( )
λmin P( )
------------------ PAi 2

i 1=

k

∑+ 0<
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Proof: The Lyapunov-Razumikhin function is chosen to be of the quadratic

form

V(x) = x(t)
T
Px(t) (3.17)

where the symmetric matrix P is positive-definite. Using the properties of the

numerical range of P (also called Rayleigh quotient), it is always possible to

find a suitable w1(|x(t) |) and w2(|x(t) |) to satisfy condition (3.4) of Theorem

3.2. An appropriate choice of w1 and w2 is as follows:

.

Determining the derivative of (3.17) along the trajectory of (3.12) yields

.
V = x(t)

T
[A0

T
P + PA0]x(t) + 2x(t)TP

i = 1
Σ
k

Aix(t – τi(t, x(t)) . (3.18)

Next, we have to satisfy inequality (3.8). The nondecreasing function w4 is

chosen such that w4(V(x(t))) = V(x(t)). Based on condition (3.8) equation

(3.17) implies that 

 . (3.19)

Thus, (3.18) together with (3.19) yields 

.

From the above inequality, it follows that
.

V is negative along the trajectory

of (3.12) if condition (3.4) is valid, and thus the proof is complete. ❏

Corollary 3.1 [25]: The system (3.12)  is a.s.i.d. if the inequality

(3.20)

is valid for some symmetric, positive-definite matrix P ∈ Rn × n
 .

w1 x t( )( ) λmin P( )x t( )Tx t( ) V x t( )( )≤=

w2 x t( )( ) λmax P( )x t( )Tx t( ) V x t( )( )≥=

x t τ i(t, x(t))–( )
λmax P( )
λmin P( )
----------------- x t( )<

.
V x t( )T A0

TP PA0+[ ] x t( ) 2
λmax P( )
λmin P( )
----------------- PAi 2 x t( ) 2

i 1=

k

∑+<

µ PA0( )2

λmin P( )

λmax P( )3
--------------------⋅ Ai 2

i 1=

k

∑+ 0<
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Proof: Using the relation  we immediately obtain Corol-

lary 3.1 from Theorem 3.5. Corollary 3.1 was first presented by Cheres et al.

(1989) for a system with a single time-varying delay. ❏

Note that Theorem 3.5 for P = I produces the same stability condition as

Theorem 3.4 for . = 2 .

A remarkable stability criterion of the a.s.i.d. type was derived by Ameniya

(1989) using the M-matrix technique. The reason for not stating that partic-

ular result here is that it is valid only for a special class of single-delay

systems.

A conclusion of the above stability condition is that the asymptotic stability

of a time-delay system is guaranteed, if the eigenvalues of the composite

matrix  lie behind a certain boundary in the left half plane. The ques-

tion now is whether or not it is sufficient to require that the eigenvalues of A0

lie behind a certain boundary in the left half plane to guarantee asymptotic

stability of the system. Such a stability criterion would be highly applicable,

since a number of the controller design methods for linear nondelayed

systems could be extended to delay systems by means of a pool-placing

method. 

P Ai⋅ PAi≥

A0 A0
T+
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3.2.2 Stability tests: Independent of constant delays

The concept of Lyapunov functionals is used to treat the stability problem for

time-delay systems. If the delays were state- and/or time-dependent the

Lyapunov’s principle would yield stability criteria which would require the

complete knowledge of 
.τ i(t, x(t)), as was demonstrated in [129]. However,

for the system with constant delays described below, Lyapunov’s principle is

useful.

.
x(t) = (3.21)

whereby A0, Ai ∈ Rn × n
 and 0 < τ1 < . . . < τk < ∞ .

Theorem 3.6: System (3.21) is asymptotically stable if there exist symmetric,

positive-definite matrices P0, Pi ∈ Rn × n such that

 . (3.22)

Proof: Let V(xt) be a Lyapunov functional given by

 . (3.23)

Then, according to Theorem 3.1 the sufficient stability conditions for (3.21)

are

a) w1(|x(t)|) ≤ V(xt) ≤ w2(|xt|)

b) V
.

(xt) ≤ – w3(|xt|) .

Approach (3.23) admits to fulfill a) since the functions w1 and w2 can be cho-

sen as follows

w1(|x(t)|) = λmin(P0) |x(t)|2 ≤ V(xt)

A0x t( ) Aix t τ i–( )
i 1=

k

∑+

A0
TP0 P0A0 Pi P0AiPi

1– Ai
TP0+

i 1=

k

∑+ + 0<

V xt( ) x t( )TP0x t( ) x s( )T Pix s( )ds
t τ i–

t

∫
i 1=

k

∑+=



46

V(xt) ≤ [λmax(P0) + λmax(Pi)]|x(t)|2 = w2(|xt|) .

To show b) the proof proceeds as follows. Calculating the derivative of V

using (3.21) yields

.
V = +

+  .

The right-hand side of the above equation is expressed below as a quadratic

form. In order to ensure asymptotic stability of the system (3.21) this quad-

ratic form has to be negative-definite.

(3.24)

where v(t)T = [x(t)T, x(t – τ1)
T, . . ., x(t – τk)

T] and

Inequality (3.24) is rewritten in the following, using a basic theorem for sym-

metric partitioned matrices. Kreindler and Jameson (1972) showed that for

the matrices U11, U12, and U22 with appropriate dimensions, the condition 

is equivalent to

τ i

i 1=

k

∑

x t( )T A0
TP0 P0A0 Pi

i 1=

k

∑+ +
 
 
 

x t( ) x t( )TP0Aix t τ i–( )
i 1=

k

∑+

x t τ i–( )TAi
T P0x t( )

i 1=

k

∑ x t τ i–( )TPix t τ i–( )
i 1=

k

∑–

0 v t( )TMv t( )>

M

A0
TP0 P0A0 Pi

i 1=

k

∑+ + P0A1 . . . P0Ak

A1
TP0 P1– 0

. .

. .

. .

Ak
TP0 0 Pk–

=

U11 U12

U12
T U22

0<
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U11 < 0 and

U11 – .

Applying this fact to condition (3.24), we obtain

and (3.25)

 . (3.26)

Only the latter relation is relevant, since it includes condition (3.25). Thus,

there exists a positive constant c3 such that

V
.

(xt) ≤ – c3(|xt|)

if condition (3.26) is satisfied. This completes the proof. ❏

Corollary 3.2 [105]: Assume that A0 < 0. If the symmetric, positive-definite

matrices P0 and Q associated with the Lyapunov equation 

(3.27)

satisfy the inequality

(3.28)

then system (3.21) is asymptotically stable. 

Proof: If all Pi are replaced by Q in (3.22) and the term  in

(3.22) is replaced by – (k + 1).Q using (3.27), inequality (3.28) follows.❏

Corollary 3.3: Assume that µ(A0) < 0, then the system (3.21) is asymptotical-

ly stable if the inequality

(3.29)

holds. 

U12U22
1– U12

T 0<

A0
TP0 P0A0 Pi

i 1=

k

∑+ + 0<

A0
TP0 P0A0 Pi P0AiPi

1– Ai
TP0+

i 1=

k

∑+ + 0<

A0
TP0 P0A0+ k 1+( ) Q⋅–=

Q– P0AiQ
1– Ai

TP0

i 1=

k

∑+ 0<

A0
TP0 P0A0+

λmax A0 A0
T 4k Ai A0 A0

T+( ) 1– Ai
T

i 1=

k

∑⋅–+ 0<
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Proof: With the appropriate choices for P0 and Pi:

and (3.30)

Corollary 3.3 follows from Theorem 3.6. ❏

A discussion on the sharpness of the stability criteria presented follows later

because first the influence of unstructured perturbations (Section 4.1) and

certain methods to reduce the conservatism of the criteria (see Section 3.2.4)

are introduced.

3.2.3 Stability tests: Independent of a delay constant

Given a delay differential system

x
.
(t) = (3.31)

with delays equal to integer multiples of a fixed delay constant h ∈ [0, ∞).

The characteristic equation of the system (3.31) is denoted in the following

by P(s, e–hs). From Theorem 3.3 it follows that the system is asymptotically

stable independent of the delay constant h, iff

P(s, e–hs) ≠ 0, Re(s) ≥ 0, ∀ h ∈ [0, ∞) . (3.32)

In this situation, two branches of development can be distinguished.

P0 I= Pi  
1

2k
------ A0

T A0+( )–=

A0x t( ) Aix t ih–( )
i 1=

k

∑+



49

I) Kamen (1980) claimed that the condition (3.32) is equivalent to the

two-variable criterion

P(s, z) ≠ 0 , Re(s) ≥ 0 , (3.33)

where z = ejω, ω ∈ [0, 2π], j = . Based on this work a number of papers

were published. Jury and Mansour (1982) described a method to reduce the

two-variable criterion to that of checking the positivity of a one-dimensional

polynomial. They gave necessary and sufficient conditions of asymptotic

stability independent of the delay constant h for several scalar systems. Lui

and Mansour (1984) showed that under suitable conditions a system can be

alternately stable; i.e. stable–unstable–stable ... as the delay h increases.

Brierley et al. (1982) presented a stability criterion in terms of solutions of a

complex Lyapunov matrix equation. They claimed that the system (3.31) is

asymptotically stable independent of the delay constant h, iff for any

positive-definite Hermitian matrix Q(z) the solution of the complex

Lyapunov matrix equation 

A(z)TK(z) + K(z)A(z) = – Q(z) where (3.34)

is also a positive-definite Hermitian matrix K(z) for all ω ∈ [0, 2π]. Hmamed

(1986) and Wang et al. (1991) [147] used this result of Brierley to derive a

sufficient stability test for large-scale systems. (The stability of large-scale

time-delay systems with uncertainties is discussed in Section 4.3.) Further-

more, Wang et al. (1991) [145] applied condition (3.34) to establish a suffi-

cient stability criterion for the system (3.31):

, ∀ | z | = 1 .

An improved version of this condition was given by Hmamed (1991):

∀ | z | = 1 . (3.35)

Using the properties of the matrix measure (see Appendix of [101]), it is easy

1–

A(z) Aiz
i

i 0=

k

∑=

µ A0( ) µ Aiz
i

i 1=

k

∑( )+ 0<

µ A0 Aiz
i

i 1=

k

∑+( ) 0<
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to show that condition (3.35) is less restrictive than those given by Wang et

al. (1991) [145] and Mori et al. (1981):

.

However, most of the authors mentioned above (and others) were not aware

of the fact that Kamen (1983) corrected his own result: condition (3.32) is not

equivalent to (3.33). The two-variable criterion (3.33) is equivalent to (3.32)

plus the additional condition

P(0, z) ≠ 0 , ∀ | z | = 1 .

The consequences are that the stability criteria (3.33), (3.34), and those

presented in [57], [82] are only sufficient rather than necessary and suffi-

cient. Therefore, Boese (1989) made another attempt to find exact stability

conditions independent of the delay constant h, in particular, for the

system
.
x(t) = a0x(t) + a1x(t – h) + a2x(t – 2h). Astonishingly, he obtained

the same necessary and sufficient condition as Kamen (1980) and Jury and

Mansour (1982):

a2 < 0 (3.36)

or

a0 < 3a2 . (3.37)

Kamen (1983) showed that the system x
.
(t) = – x(t) – x(t – h) is asymptoti-

cally stable independent of the delay constant h. Unfortunately, this system

does not fulfill the conditions (3.36) and (3.37). Therefore, these conditions

are only sufficient rather than necessary and sufficient, and hence the

problem remains open.

II) Assume that the system (3.31) with h = 0 is asymptotically stable, then it

is also asymptotically stable for sufficiently small values of h > 0 (cf. Sugi-

yama (1961)). Using this fact, Yoshizawa (1975), (cf. [40, p. 114]) showed

µ A0 Aiz
i

i 1=

k

∑+( ) µ A0( ) µ Aiz
i

i 1=

k

∑( )+ µ A0( ) Ai 2

i 1=

k

∑+≤ ≤

a0

a1
2

8a2
-------- a2+<

a0 a1 a2 0<+ +
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that the system (3.31) is asymptotically stable independent of the delay con-

stant h, iff the system

.
x(t) = (3.38)

is asymptotically stable and the matrix

(3.39)

has no nonzero eigenvalues on the imaginary axis for all ω ∈ [0, 2π]. Several

authors [119], [137], [138] proposed to simplify the calculation of the condi-

tion on the matrix (3.39) by a suitable auxiliary equation. Based on an at-

tempt of Rekasius (1980), Thowsen in [137] showed that the system (3.31)

is asymptotically stable independent of the delay-constant h, iff the system

(3.38) is asymptotically stable and the matrix

(3.40)

has no roots on the imaginary axis for some T ≥ 0. Furthermore, MacDonald

et al. (1985) used the ideas of Rekasius (1980) to show that the condition for

the matrix (3.40) can also be formulated as follows: the matrix

has no roots on the imaginary axis for all real values of T. The substitution

methods of Thowsen and Macdonald are sometimes designated as pseudo-

delay techniques. It is important to note that these methods are not approxi-

mation methods. The substitution is not equivalent to Padé approximation

techniques. The motivation for such an approach is that under such a change

of variable from h to T, the characteristic equations are reduced to finite poly-

nomial equations and hence possess only a finite number of solutions. More-

over, it is then possible to make use of results for delay-free systems such as

A0 Ai

i 1=

k

∑+ x t( )

A0 ejiωAi

i 1=

k

∑+

sI A0–
1 sT–
1 sT+
--------------- 
 

2i

Ai

i 1=

k

∑–

sI A0–
1 sT–
1 sT+
--------------- 
 

i

Ai

i 1=

k

∑–
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the Routh-Hurwitz criteria. Furthermore, the pseudo-delay technique can be

applied to also determine the range of h, where the system (3.31) is asymp-

totically stable. This is the topic of Subsection 3.3.2.

Olbrot in [109] has shown that if a delay grows to infinity, then either the

delay differential system becomes unstable or, at least, some of its eigen-

values approach the imaginary axis. If the eigenvalues approach the imagi-

nary axis, the system may become extremely sensitive to changes of other

parameters, which means practical instability. Therefore, the case of h

growing to infinity is always excluded here.

The stability criterion given by Yoshizawa and the related methods described

in Subsection 3.2.3.II are the most interesting ones of this subsection, since

they are easier to compute than the stability conditions mentioned in Subsec-

tion 3.2.3.I. 

The stability criteria in this section presume that the delays are constant and

that if i > 1 the ratios of the delays are exactly known. Especially the last

assumption is often very restrictive from the practical point of view.

3.2.4 Stability tests: Delay-dependent

Exact stability conditions are delay-dependent. Unfortunately, exact alge-

braic stability conditions are known only for simple systems. Nevertheless,

there exists a rich literature on this topic. Therefore, this subject is treated in

a separate section (see Section 3.3). Here, only sufficient delay-dependent

stability criteria are enumerated (which are valid for n-dimensional systems).

The time-delay system considered is described by the following differen-



53

tial-difference equation

x
.
(t) =  (3.41)

where 0 < τ (t) < τmax is continuous. From Sugujama (1961) we know that if

the system x
.
(t) = (A0 + A1)x(t) is asymptotically stable, then system (3.41)

is so as well for sufficiently small values of τmax. Su and Huang (1992) were

able to give an estimate of the values τmax such that the system (3.41) is

asymptotically stable.

Theorem 3.7 [132]: Suppose A0 + A1 is asymptotically stable. Then system

(3.41) is asymptotically stable, if there exists a symmetric positive-definite

matrix P such that the inequality

(3.42)

holds.

The stability criterion (3.42) is less conservative than the delay-independent

stability criterion (3.4) when the delay is small [132]. 

Mori et al. (1989) presented another delay-dependent stability criterion.

Their method has serious limitations since it requires to solve transcendental

characteristic equations over a certain range. An attempt to simplify the

calculation was made by Alastruey et al. (1992) using Taylor series approx-

imations. However, that method guarantees the stability only over a small

time interval. Furthermore, the calculation of the Euclidean norm of a matrix

is required which necessitates a certain computational effort. Therefore, this

method is not introduced here in detail.

A0x t( ) A1x t τ (t)–( )+

τmax

µ P A0 A1+( )( )2–

A1 A0 A1+( ) 2

----------------------------------------
λmin P( )

λmax
3 P( )

-----------------⋅<
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3.2.5 Stability tests: An application of the transformation

In this Section, it is shown that the transformation introduced in Section 2.4

is a tool to extend certain stability criteria for single-delay systems to multi-

ple-delay systems. The transformation converts the multiple-delay system

.
x(t) = (3.43)

into the single delay system

(3.44)

leaving the trajectory invariant. The matrices  and  are given by (2.35)

and (2.36).

Theorem 3.8: The eigenvalues of the original system (3.43) are a subset of

the eigenvalues of the transformed system (3.44).

Proof: In the sequel, the notation Γ = sI – A0 – Ake
– sτk ; zli = eτ*s.li = eτi s will

be used. The characteristic equation of the system (3.44) is

 . (3.45)

Applying (2.35) and (2.36), the characteristic equation of the transformed

system (3.44) is expressed as det(ℑ ) = 0, where ℑ  is defined by

 . (3.46)

A0x t( ) Aix t τ i–( )
i 1=

k

∑+

x t( ) A0x t( ) A1x t τk–( ) f t( )+ +=

A0 A1

det sI A0– Ake
sτk–

–[ ] 0=

ℑ

Γ . . Ai–
1 li 1+,( )

.

.
. .

.
Ai

lk li– 1 1,–( )
z

lk–
– .

Ai–
lk li lk,–( )

. ..

Ai

lk li,( )
z lk–– . . Γ

=
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 is a partitioned matrix with n × n submatrices. From (3.45),

(2.35), and (2.35) it follows that the main diagonal of ℑ is built by Γ, while

the outer diagonals are built of zeros, or –Ai, or . The symbols in

parentheses indicate the place of the submatrices in ℑ . In the following defi-

nition of the matrix T, these indices are displayed as subscripts to increase

readability

 . (3.47)

I ∈ Rn × n
 is the identity matrix and D is defined by D = – I. The inverse T –1

of the matrix T is obtained from (3.47) by setting D = I. Using T for a simi-

larity transformation, the proof is established as follows:

det(T –1 ℑ T) = (3.48)

=  . ❏

Corollary 3.4: If the transformed system (3.44) is asymptotically stable, then

the original system (3.43) is asymptotically stable as well.

Proof: Corollary 3.4 is a consequence of Theorem 3.8. The proof can also be

performed independently of Theorem 3.8. Suppose the original system is

ℑ R
lk n lk n⋅×⋅

∈

A– iz
lk–

T

I 1 1,( ) Dz 1 2,( ) . . Dz 1 li 1+,( )
li . . Dz 1 lk,( )

lk 1–

I 2 2,( ) 0
.

.

.

0 I lk lk,( )

=

det

sI A0– Aie
sτ i–

i 1=

k

∑– 0 … 0

V1 V2

det sI A0– Aie
sτ i–

i 1=

k

∑– det V2( )⋅



56

unstable and the corresponding transformed system is asymptotically stable.

Then it is not possible for the transformed system to have the same trajectory

as the original system because the state of a stable system cannot increase.

But the transformation assures trajectory invariance. From the contradiction

the Corollary follows. ❏  

The converse of Corollary 3.4 is false in general. To see this, we consider the

system 
.
x(t) = – x(t) – x(t – 1) + x(t – 2). The dominant eigenvalue is λmax =

– 0.3651168.... For the corresponding transformed system, we have λmax =

0.2963534.... 

Stability criteria for single delay systems can immediately be extended with

the help of the transformation to systems with multiple delays. This applica-

tion of the transformation is illustrated by an example.

Example 3.1: Extend Theorem 3.7 for the following system with multiple

constant delays

.
x(t) =  . (3.49)

Corollary 3.4 and Theorem 3.7 imply that the system (3.49) is asymptotically

stable if  and if there exists a symmetric, positive-definite matrix

P such that the inequality 

holds, where  and  are given by (2.35) and (2.36).

Because the eigenvalues of the transformed and of the original system are not

generally identical, it is expected that criteria extended with the help of the

transformation have a certain loss of sharpness. Therefore, the transforma-

tion is only useful if this extension is not straightforward. This particular situ-

ation arises if one has to extend the stability conditions given by [99], [100],

[101], [139], [132], and [1].

A0 Aix t ih–( )
i 1=

k

∑+

A0 A1+ 0<

kh
µ P A0 A1+( )( )2–

A1 A0 A1+( ) 2

----------------------------------------
λmin P( )

λmax
3 P( )

-----------------⋅<

A0 A1
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3.2.6 Stability tests: Reduction of the conservatism of the
criteria

The stability criteria presented above can be remarkably improved by apply-

ing an appropriately chosen transformation matrix. Using transformed state

vector techniques, it is easy to show that, for example, stability condition

(3.4) of Theorem 3.4 can be rewritten as

 , (. = 1, 2, ∞),

where T is a regular matrix. The determination of the matrix T which mini-

mizes the left-hand side of the inequality leads to nonlinear transcendental

conditions, in general. However, simple numerical methods are very effec-

tive to find an appropriate matrix T (e.g., method of steepest descent, thresh-

old accepting, simulated annealing).

Example 3.2: The Williams-Otto process was introduced in Section 1.2. The

homogeneous part of this system has the form

.
x(t) = x(t) + x(t – 1) .

Without a similarity transformation, stability condition (3.4) fails for this

system:

 .

Using an appropriate diagonal matrix T = diag[– 0.37; 1.30; – 0.52; 1.06],

the asymptotic stability of the system is confirmed:

 .

µ T 1– A0T( ). T 1– AiT .
i 1=

k

∑+ 0<

4.93– 1.01– 0 0

3.20– 5.30– 12.8– 0

6.40 0.347 32.5– 1.04–

0 0.833 11.0 3.96–

1.92 0 0 0

0 1.92 0 0

0 0 1.87 0

0 0 0 0.724

µ A0( )2 A1 2+ 0.657 / 0<=

µ T 1– A0T( )2 T 1– A1T 2+ 0.61– 0<=
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Moreover, the calculation above shows that the system is asymptotically

stable even if the delay is not constant. The matrix T was computed with the

help of the steepest descent method.

For systems with constant delays there is another possibility to improve the

stability tests. The idea consists of omitting those elements of the matrices

A0, Ai which do not have any influence on the characteristic equation. This

procedure yields the matrices ~A0 and ~Ai which are then used for the stabil-

ity test instead of the matrices A0, Ai. In the light of Theorem 3.3 the validity

of this procedure is obvious.
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3.3 Exact stability criteria

Necessary and sufficient algebraic stability conditions are known only for

certain types of single-delay systems: for the scalar system x
.
(t) = a0x(t) +

a1x(t – h) (Subsection 3.3.1) and for the multivariable system x
.
(t) =

A1x(t – h), where A1 is a constant matrix (see Subsection 3.3.3). For a

specific system with given time lags and with given values for all of the

system parameters, the roots of a transcendental equation can be computed

(see Section 3.4). This permits an analysis of the system’s stability. In the

τ-decomposition method (Section 3.3.2), the values of the delay for which

the system is asymptotically stable is determined, while in the D-decompo-

sition method, the time lag is held constant and the stability region in the

parameter space is studied. In the subsection below, an improved D-decom-

position method is presented.

3.3.1 Modified D-decomposition

Sufficient stability and instability criteria together with the D-decomposition

method can be used to derive necessary and sufficient stability conditions for

time-delay systems with constant delays. In this section, the linear system

with multiple constant delays

.
x(t) = (3.50)

where 0 < τ1 < . . . < τk < ∞ is studied. The characteristic equation of the sys-

tem (3.50) can be written in the form

A0x t( ) Aix t τ i–( )
i 1=

k

∑+
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(3.51)

where

with , = 1, and the sum is extended over all different

sets of the positive integers for which . For numerical exam-

ples see [21] and [22]. Furthermore, let

(3.52)

The method developed here is based on the D-decomposition method [33,

p. 49]. For a fixed value of the delay parameter h, the zeros of the character-

istic equation (3.51) are continuous functions of its coefficients. In the usual

D-decomposition method, the coefficient space is partitioned into different

regions by means of hypersurfaces, the points of which are characterized by

the corresponding characteristic equation (3.51) having at least one zero on

the imaginary axis. (This procedure is called D-subdivision.) The points in

the interior of each region correspond to a characteristic equation with the

same number of zeros with positive real parts. The number of zeros with

positive real parts can only change when a zero passes across the imaginary

axis, i.e., when the point in the coefficient space passes across the boundary

of the region.

Here, the goal is finding all of the regions in the coefficient space where the

characteristic equation has no zero with positive real part. These regions κ
are regions of asymptotic stability. In order to check how the number of roots

with positive real parts changes when crossing the boundary, the differential

dν of the real part of the root (which crosses the imaginary axis) can be de-

termined. The number of roots with positive real parts decreases (increases)

if the sign of dν is negative (positive). For a given characteristic equation

(3.53)

P s e sτ–,( ) sn j– α j e sτ–( )
j 0=

n

∑=

α j e sτ–( ) aj
i1 … ik, ,( )e s τ1i1 … τkik+ +( )–

i1 … ik j≤+ +
∑=

aj
i1 … ik, ,( ) R∈ a0

0 … 0, ,( )

i1 … ik j≤+ +

pmax max
i1 … ik n≤+ +

τ1i1 … τkik+ +( ) .=

P s a0
0 … 0, ,( ) … aj

i1 … ik, ,( ) …, , , ,( ) 0=
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we obtain [33, p. 55]

 . (3.54)

However, equation (3.54) is not always well-suited for singling out asymp-

totically stable regions because, in general, there is an infinite number of

boundaries which are given in parametric form. In order to simplify the

search for the regions κ, sufficient stability criteria and the following insta-

bility criterion are used.

Theorem 3.9 [22]: The system (3.50) with the characteristic equation (3.51)

is not asymptotically stable if

(3.55)

or if

(3.56)

The search for the regions in the coefficient space corresponding to asymp-

totic stability of the dynamic system is particularly simple if the boundaries

of the various regions do not intersect. In order to demonstrate the modified

D-decomposition method, it is applied to two dynamical systems for which

this particularly nice constellation arises.

I) In the first case, the system x
.
(t) = a0x(t) + a1x(t – h) is considered. Its

stability region in the coefficient space (a0, a1) has been established in [45]

and in [43, p. 108 and 337], based on an extended Routh-Hurwitz criterion.

dν Re

P∂
aj

i1 … ik, ,( )∂
---------------------- aj

i1 … ik, ,( )d
j 0=

n

∑

P∂
s∂

------
-----------------------------------------------------

 
 
 
 
 
 

–=

0 an
i1 … ik, ,( )

i1 … ik n≤+ +
∑≥

0 an 1–
i1 … ik, ,( )

i1 … ik n 1–≤+ +
∑ +≥

an
i1 … ik, ,( ) τ1i1 …τkik+( ) +

1 i1 … ik n≤+ +≤
∑–

pmax an
i1 … ik, ,( ) .

i1 … ik n≤+ +
∑+
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In [33, p. 56] the D-decomposition method was applied to study this stability

problem. However, with the help of equation (3.54) only two boundaries

were discussed there.

Theorem 3.10: The time-delay system 
.
x(t) = a0x(t) + a1x(t – h) (3.57)

is asymptotically stable, iff the following three conditions hold for some

y ∈ [0, π ⁄h)

a0 + a1 < 0 (3.58)

(3.59)

. (3.60)

Proof: The characteristic equation of (3.57)

P(s, e–sh) = s – a0 – a1e–sh (3.61)

has a zero root if

0 = a1 + a2 . (3.62)

Equation (3.62) defines the boundary curve c1 depicted in Fig. 3.1. The other

boundaries with purely imaginary roots of the form s = iy result from (3.61)

in the following parametric form:

 . (3.63)

The infinite number of boundary curves defined by (3.63) are classified as

follows

a0
y cos⋅ yh( )

sin yh( )
-------------------------=

a1
y–

sin(yh)
---------------->

a0
y hy( )cos

hy( )sin
-----------------------= a1

y–
hy( )sin

-------------------=
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c2: y ∈ [0, π ⁄h,) or y ∈ (–π ⁄h, 0] (3.64)

dj: y ∈ (2j.π ⁄h, (2j + 1).π ⁄h) or y ∈ (–(2j + 1).π ⁄h, –2j.π ⁄h) (3.65)

em: y ∈ ((2m – 1).π ⁄h, 2m.π ⁄h) or y ∈ (–2m.π ⁄h, –(2m – 1).π ⁄h) (3.66)

where j, m ∈ {1, 2, . . .}. The boundary curves c1, c2, d1, d2, e1, e2 are depicted

in Fig. 3.1. The curve c2 has a maximum for y = 0 and for the vector of coef-

ficient (a0, a1) = (1 ⁄ h, –1 ⁄ h). This point lies also on c1 and is denoted in

Fig. 3.1 as

 .

The region κ1 enclosed by c1 and c2 and lying to the left of the

above-mentioned intersection points of c1 and c2 corresponds to asymptotic

stability of the time-delay system (3.57) because it contains the family of

systems 
.
x(t) = a0x(t) with a0 < 0.

a1

e2

e1

c2

d1

d2

c1

Fig. 3.1 Boundary curves c1, c2, d1, d2, e1, e2; Stabil-
ity region κ1; not asymptotically stable region (3.67)

Stability region κ1 not asymptotically

stable region (3.67)S

S
1
h
---  

1
h
---–, 

 =

 a0
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From (3.63) and (3.66) the following properties of all of the curves em can be
derived: The curves em lie in the upper-half plane, a1 > 0, and extend to
a0 → –∞ and a0 → +∞. They do not intersect the straight line c1 for finite
values of a0 and a1. Furthermore, any two curves ej, em, m ≠ j , do not inter-
sect. The obvious analog statement holds for the curves dj in the lower-half
plane, a1 < 0. Of course, any two curves dj and em do not intersect.

Now, Theorem 3.9 is used. According to (3.55), the system (3.56) is not
asymptotically stable if 

or . (3.67)

The instability region described by (3.67) is marked in Fig. 3.1. It follows
that the region κ1 is the only stability region because the region described by
(3.67) intersects all of the other regions. ❏

II) In the second case, the time-delay system

x
.
(t) = a0x(t) + a1x(t – h) + a2x(t – 2h) (3.68)

is considered. Delay-independent stability conditions were investigated by
Jury and Mansour (1982), Liu and Mansour (1984), and Boese (1989).
Buslowicz (1983) used this system to demonstrate his instability criterion.
For some special cases of the system (3.68), the exact stability conditions
were analysed by MacDonald (1989), by Stépán (1989), and by Walton and
Marshall (1987). However, the exact delay-dependent algebraic stability
conditions of the system (3.68) are not known.

Theorem 3.11: The time-delay system (3.68) with |a2| < π ⁄ (2h) is asymptot-
ically stable, iff the following three conditions hold for some y ∈ [0, π/h) 

a0 + a1 + a2 < 0 (3.69)

(3.70)

 . (3.71)

0 a0 a1+≤ 1
h
--- a0≤

a0
y yh( )cos

yh( )sin
---------------------- a2+=

a1
y–
yh( )sin

------------------ 2a2 yh( )cos–>
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Proof: The characteristic equation of (3.68) is

. (3.72)

The root s = 0 implies the boundary surface c1 defined by

a0 + a1 + a2 = 0 . (3.73)

For purely imaginary roots s = iy the boundary surfaces are obtained in the

following parametric form

(3.74)

 . (3.75)

The infinite number of boundary surfaces described by (3.74) and (3.75) are

classified by (3.64), (3.65), and (3.66):

c2: y ∈ [0, π ⁄h) or y ∈ (–π ⁄h, 0] (3.64)

dj: y ∈ (2j.π ⁄h, (2j + 1).π ⁄h) or y ∈ (–(2j + 1).π ⁄h, –2j.π ⁄h) (3.65)

em: y ∈ ((2m – 1).π ⁄h, 2m.π ⁄h) or y ∈ (–2m.π ⁄h, –(2m – 1).π ⁄h) (3.66)

From now on, only nonnegative values of y will be considered since they de-

fine the complete surfaces. The region in the three-dimensional parameter

space which is bounded by c1 and c2 and which contains the ray (a0, 0, 0) with

a0 < 0 is named κ2.

This region κ2 contains a stability region because its intersection with the

plane a2 = 0 is identical to the (two-dimensional) region κ1 of Case 1. The

whole region κ2 is a stability region, provided it is not intersected by any of

the surfaces dj or em . However, for sufficiently large values of a2 such inter-

sections do occur.

We now derive the range for a2 such that the surfaces dj and em do not inter-

sect the region κ2 and hence do not intersect the surfaces c1 and c2.

0 s a0– a1e sh–– a2e 2sh––=

a0
y yh( )cos

yh( )sin
----------------------- a2+=

a1
y–
yh( )sin

------------------- 2a2 yh( )cos–=
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Intersections with c1: A condition for any surface dj to intersect c1 is obtained

by combining (3.73) – (3.75) and by factoring the resulting equation. This

leads to the intersection condition

(cos(yh) – 1) . (y – 2a2sin(yh)) = 0 (3.76)

where y ∈ (2j.π ⁄h, (2j + 1).π ⁄h). The first factor vanishes for y = 2jπ. These

values of y correspond to intersections of dj with c1 at infinity. The second

factor cannot vanish provided

. (3.77)

Hence, if (3.77) is satisfied, none of the surfaces dj intersects c1. Similarly, if

the condition

(3.78)

is satisfied, none of the surfaces em intersects c1. 

Intersections with c2: A condition for any surface dj to intersect c2 is obtained

as follows. Let y0 ∈ [0, π ⁄h) and y1 ∈ (2j.π ⁄h, (2j + 1).π ⁄h). The intersec-

tion condition a0(y0) = a0(y1) and equation (3.74) yield

(3.79)

with cos(y0h) ≠ 0. The intersection condition a1(y0) = a1(y1) and the equa-

tions (3.79) and (3.75) yield 

 (3.80)

for cos(y0h) ≠ 0 (since values for y0 such that cos(y0h) = 0 do not produce

any intersections of dj and c2). The first factor vanishes for y = 2jπ. These

values of y correspond to intersections of dj and c2 at infinity. The second fac-

tor cannot vanish if 

a2
3.894…

h
-------------------<

a2
2.301…–

h
----------------------->

y1

y1h( )sin
---------------------

y1h( )cos
y0h( )cos

----------------------⋅
y0

y0h( )sin
---------------------=

0 1
y1h( )cos
y0h( )cos

----------------------–
y1

y1h( )sin
--------------------- 2a2 y0h( )cos–⋅=



67

 . (3.81)

(This estimate is conservative.) Hence, if (3.81) is satisfied, none of the sur-

faces dj intersects c2. Similarly, if the condition

(3.82)

is satisfied, none of the surfaces em intersects c2. (Again, this is a conserva-

tive estimate.) Another (conservative) estimate shows that no pair of any of

the surfaces defined by (3.65) and/or (3.66) intersects if (3.82) holds.

From (3.77), (3.78), (3.81), and (3.82) we obtain the sufficient condition

(3.82) for the whole region κ2 to be a stability region for the system (3.68).

Now, Theorem 3.9 comes into play. According to Theorem 3.9, the system

(3.68) is not asymptotically stable if 

or . (3.83)

In the coefficient space, equation (3.83) defines an instability region. Consid-

ering the above-mentioned properties of the surfaces dj and em under the

restriction (3.82) for a2, equation (3.83) implies that the region κ2 is the only

stability region. ❏

The stability region κ2 in the parameter space for the system (3.68) x
.
(t) =

a0x(t) + a1x(t – h) + a2x(t – 2h) is depicted in Fig 3.2. Note that Theorem

3.11 is conservative with respect to the bound (3.82) assumed for a2. Further-

more, Theorem 3.11 includes the result of Case 1.

Remark 3.1: The gap between delay-independent criteria and exact ones is

sketched in Fig. 3.3. For the time-delay system

x
.
(t) = a0x(t) + a1x(t – 1) – 1.x(t – 2) (3.84)

π
h
--- a2>

π
2h
------ a2>

0 a0 a1 a2+ +≤ 1
h
--- 2a0 a1+≤
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the exact conditions (3.69) – (3.71) are depicted. For the system (3.68) x
.
(t) =

a0x(t) + a1x(t – h) + a2x(t – 2h), the stability conditions independent of the

delay constant h [16], [57], [82]:

for (3.85)

or

for (3.86)

are also shown in Fig. 3.3. Furthermore, for the related system 

.
x(t) = a0x(t) + a1x(t – τ1(t)) + a2x(t – τ2(t)) (3.87)

a1

a0

a2

Fig. 3.2 Stability region for the system (3.68):
.
x(t) = a0x(t) + a1x(t – 1) + a2x(t – 2).

The solid lines indicate where a1 = 0 or a2 = 0.

a0

a1
2

8a2
-------- a2+< a2 0<

a0 a1 a2+ + 0< a0 3a2<
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where τ1(t) and τ2(t) are bounded continuous functions, the delay-independ-

ent stability condition given by Theorem 3.4

(3.88)

is displayed in Fig. 3.3 as well.

Remark 3.2: For calculating the intersection of c1 and c2 in Case 2, equation

(3.76) is used

(cos(yh) – 1) . (y – 2a2sin(yh)) = 0 (3.76)

where y ∈ [0, π ⁄h). The first factor yields a solution for y = 0, and implies

the intersection in form of a the straight line defined by

 (3.89)

a0 a1 a2+ + 0<

a1

Fig. 3.3 Stability charts:
1) exact stability conditions (3.69) – (3.71) for the system

.
x(t) = a0x(t) + a1x(t – 1) – 1.x(t – 2)

2) stability conditions (3.85) – (3.86) independent of h for
.
x(t) = a0x(t) + a1x(t – h) – 1.x(t – 2h)

3) delay-independent stability condition (3.88) for
.
x(t) = a0x(t) + a1x(t – τ1(t)) – 1.x(t – τ2(t))

a0

1)

2)

3) ( + a2, – – 2a2)
1
h
---

1
h
---

S
1
h
--- a2+

1
h
---– 2a2– a2, , 

 =
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(cf. Figs. 3.2, 3.3, and 3.4). The second factor of (3.76) yields a solution iff 

. (3.90)

If (3.90) holds, the intersection of c1 and c2 relevant for the stability region

κ2 is no longer given by (3.89), but is defined by the solution of the transcen-

dental equation y = 2a2sin(yh), and by (3.74), and (3.75). The part of the

coefficient space which is bounded by c1 and c2 and for which the inequality

a0 + a1 + a2 ≥ 0 holds corresponds to instability of the system due to (3.83).

As an example, the stability region κ2 of the system 

.
x(t) = a0x(t) + a1x(t – 1) + 1.x(t – 2) (3.91)

is displayed in Fig. 3.4. In contradistinction to the system of (3.84) (cf.

Fig. 3.3) S of (3.89) does not give rise to the corner of the stability region of

the system of (3.91) because (3.90) holds. 

1
2h
------ a2<

a0

a1

( 0.36.. , –1.36.. )

Fig. 3.4 Exact stability region for the system
.
x(t) = a0x(t) + a1x(t – 1) + 1.x(t – 2)

S = ( 2, –3)
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 a0

Fig. 3.5 Boundary curves e1 . . . e20 for the

system 
.
x(t) = a0x(t) + a1x(t – 1) – 100 .x(t – 2)

e20

e1

200100

100

-100-200

-100

200

300

a1

a1

a0

d20

d1

100

-100

-200

-300

-100-200 100 200

Fig. 3.6 Boundary curves d1 . . . d20 for the

system 
.
x(t) = a0x(t) + a1x(t – 1) – 100 .x(t – 2)
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Remark 3.3: For the sake of completeness, some clues are given about the

influences of the surfaces dj and em on the stability region for the case (not

covered by Theorem 3.11) in which (3.82) does not hold: As a2 increases

(decreases, respectively), more and more of the surfaces dj and em intersect

the surfaces c1 and/or c2. Therefore, an exact stability criterion for arbitrary

values of a2 would have to be formulated piecewise for intervals of values of

a2. For very large values of a2 the various dj’s and em’s are approximately

described by (3.85) and (3.86). 

In order to illustrate this case in Figs. 3.5 and 3.6, respectively, the intersec-

tions of the surfaces dj and em with the plane a2 = –100 are plotted for the

time-delay system

.
x(t) = a0x(t) + a1x(t – 1) – 100.x(t – 2) . (3.92)

3.3.2 τ-decomposition

In the τ-decomposition we are interested in the effects of the delay τ on the

stability. The time-lag τ is allowed to vary while other parameters are kept

fixed. The positive half of the τ-axis is first divided into intervals by bound-

ary points at which purely imaginary roots of the characteristic equation

exist. The points in the interior of each interval correspond to characteristic

equations with the same number of zeros with positive real parts. This

implies that within each interval the stability character of the system does not

change. The number of zeros with positive real parts can only change when

a zero passes across the imaginary axis, i.e., when the point in the interval

passes across the boundary of the interval. In order to find the intervals in
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which the characteristic equation has no zero with positive real part, the

direction of motion of the imaginary roots is calculated by differentiating the

characteristic equation with respect to τ. This procedure is rather practical for

singling out asymptotically stable intervals, since usually only a few bound-

ary points have to be considered.

A number of suggestions [46], [83], [137], [138] have been made to improve

the concept introduced above. In the remaining part of this section, an ana-

lytical method is introduced which is based on the results of Thowsen (1981)

[137], [138] and Hertz et al. (1984) [46]. The following system is considered

.
x(t) =  . (3.93)

The characteristic equation of (3.93) is 

. (3.94)

Theorem 3.12 [138]: The value s = jω (ω ≥ 0) is an imaginary root of

(3.94) for some h ≥ 0 iff s = jω is also a root of 

(3.95)

for some nonnegative number T.

Corollary 3.5 [137]: Let 0 ≤ T < ∞. Then e–sh equals (1 – Ts)2 ⁄ (1 + Ts)2 at

s = jω iff h and T are related by

h = arctan(ωT) + 2π (3.96)

where m = 0, ±1, . . . .

A0x t( ) Aix t ih–( )
i 1=

k

∑+

det sI A0 Aie
ihs–

i 1=

k

∑–– 0=

det sI A0 Ai
1 sT–
1 sT+
---------------- 
 

2i 

i 1=

k

∑–– 0=

4
ω
----

m
ω
----
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Corollary 3.6 [138]: If s = jω is an imaginary root of (3.94) for h = h0, then

s = jω is also an imaginary root of (3.94) for h = h0 + 2πm ⁄ ω.

Theorem 3.12 and Corollaries 3.5 and 3.6 imply the following procedure to

determine the intervals of delay values for which the system is asymptoti-

cally stable.

Step 1: The standard Routh (-Hurwitz) stability test reveals those values of

T for which the polynomial (3.95) has imaginary roots. In the

following, these particular values of T are designated by .

Step 2: Determine for each  the corresponding imaginary roots of (3.95)

.

Step 3: Calculate for each  with the corresponding  the associated value

of  by applying Corollary 3.6 under the restriction that ≥ 0 .

Step 4: Check the direction of motion of the imaginary roots . The

direction of the root loci is determined by the sign of the real part of

(ds ⁄ dh) for the values of  and the corresponding value of

. If Re(ds ⁄ dh) = 0 at one of these points, and the multiplicity of

the zero of Re(ds/dh) is odd, the root loci only touche the imaginary

axis but do not cross it [46]. For this value of , the system is

unstable. However, the two adjacent intervals for which the above

value of  is a common point are both either asymptotically stable

or unstable intervals. If the zero of Re(ds ⁄ dh) is of even multi-

plicity, the direction of the imaginary-axis crossing root is deter-

mined by the sign of the first derivative which is not zero.

Step 5: Analyse the stability of the system (3.93) for h = 0.

Step 6: The intervals of delay values for which the system is asymptotically

stable follow from the results of Steps 4 and 5.

T̂

T̂

s jω̂±=

T̂ ω̂
ĥ ĥ

jω̂

s jω̂=

ĥ

ĥ

ĥ
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Example 3.3: Find all values of the delay constant h such that the system

.x1(t) = x2(t)

.
x2(t) = –x1(t) – x2(t – h)

with the characteristic equation

P(s, e–hs) = s2 + se–hs + 1 = 0 

is asymptotically stable. The auxiliary equation (3.95) becomes

T2s4 + 2T(1 + T)s3 + (1 + T2)s2 + 2(1 + T)s + 1 = 0

and the first column of the associated Routh’s array (see, e.g., [34, p. 123])

is computed to be

T 2 

2T(1 + T)

T 2 – T + 1

1 .

All elements in this column are positive for all T ∈ (0, ∞) except for the

penultimate one which is zero for T = 1 = . That  yields a pair of imagi-

nary roots at s = ±j. Since = 1 and = 1, the direction of the root loci has

to be checked at s = j and h = π+ 2π ⁄ |m|

 .

For s = j, h = (2 |m | + 1)π we have

 .

Therefore, we have to check the multiplicity of this zero

 .

2
T 1–( )2 T 1+( )

T2 T– 1+
-------------------------------------

T̂ T̂

T̂ ω̂

ds
dh
------

s2e hs–

2s 1 e hs– 1 sh–( )+ +
--------------------------------------------------=

Re
ds
dh
------ 
  Re j

1–
2 h+
------------ 

  0= =

ds2

dh2
--------

s j h, 2 m 1+( )π= =

2 1 j–( )–
2 h+( )2

------------------------=



76

The multiplicity of the zero of Re(ds/dh) is 1 (odd), and hence the root locus

only touches the imaginary axis but does not cross it. Thus, the system is

asymptotically stable for all values of h except for 

 .

3.3.3 Stability of 
.
x(t) = A1x(t – τ)

Consider the linear delay-differential system

.
x(t) = A1x(t – τ) . (3.97)

The stability problem of the system (3.97) has been studied by Barszcz and

Olbrot (1979), Mori and Noldus (1984), and Buslowicz (1987).

The criterion for exponential stability with decay rate γ, γ ≥ 0, of the system

(3.97) given by Barszcz and Olbrot (1979) requires the solution of transcen-

dental equations and is therefore not simple to apply.

The condition for asymptotic stability of the system (3.97) presented by Mori

and Noldus (1984) is expressed in terms of the eigenvalue locations of the

matrix A1 in the complex plane.

Theorem 3.13 [99]: System (3.97) is asymptotically stable iff all eigenvalues

of A1 lie in the open region Ω. This region is bounded by the parametrically

defined curve

where –π ⁄2 < τy < π ⁄2 and is shown in Fig. 3.7

h 2 m 1+( )π=

b1 y τy( )sin–=

b2 y τy( )cos=
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Based on the results of Mori and Noldus (1984), Buslowicz (1987) presented

an analytical necessary and sufficient criterion for asymptotic stability of the

system (3.97).

Theorem 3.14 [23]: System (3.97) is asymptotically stable iff 

Re(λi(A1)) < 0

and

for all i ∈ {1, ..., n} .

Fig. 3.7 Stability region Ω in the complex

plane for the system 
.
x(t) = A1x(t – τ)

Ω

b2, Im(λ i(A1))

0
b1 , Re(λ i(A1))

1–
2τ
------1–

τ
------

π–
2τ
------

1–
2τ------

1
2τ-----

τ
arctan

Re λ i A1( )( )
Im λ i A1( )( )
------------------------- 
 

λ i A1( )
----------------------------------------------<
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3.4 Computation of the eigenvalues

The eigenvalues associated with the system

.x(t) =  (3.98)

play an important role in many control problems such as stability (Theorem

3.3), controllability (Chapter 5), and feedback stabilization (Section 7.2).

These eigenvalues coincide with the zeros of the characteristic equation of

(3.98):

P(s, e–sh) = det[∆(s)] =  . (3.99)

In general, equation (3.99) is transcendental, therefore numerical methods

are applied to find a solution. Since this equation contains exponential func-

tions, the solution is very sensitive with respect to s. A method which over-

comes such problems was presented by Manitius et al. (1987) [92]. It is

composed of several algorithms. The following is a brief summary of these

algorithms. (They are explained in detail in the Subsections 3.4.2 through

3.4.6.)

• The algorithm of [20] enables us to compute the two-variable polyno-

mial P(s, e–sh) directly from the system matrices A0, Ai (cf. Subsec-

tion 3.4.2).

• The eigenvalues of large modulus (modulus = absolute value of an

imaginary number), which are distributed in some curvilinear strips,

are estimated from the coefficients of the characteristic equation [13,

Chapter 12] (cf. Subsection 3.4.3).

• The eigenvalues contained in some bounded region around the origin

are approximately computed by an algorithm suggested by [73] (cf.

Subsection 3.4.4). 

• The roots estimated by the two above mentioned algorithms are used

as initial guesses to start Newton’s method for improvement. In

A0x t( ) Aix t i h⋅–( )
i 1=

k

∑+

det sI A0– Aie
si h⋅–

i 1=

k

∑–
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Subsection 3.4.5, a numerical procedure is proposed which is more

efficient than the one suggested in [92]. 

• An algorithm proposed by Carpentier and Dos Santos (1982) [24] is

used to verify that all eigenvalues of an analytic function in a given

region have been found (cf. Subsection 3.4.6). In Subsection 3.4.1,

upper bounds for the real and for the imaginary part of the eigen-

values are given. These bounds, together with the method of [24]

enable us to check whether all eigenvalues with a positive real part

have been found.

The method of [92] detailed in the following subsections is restricted to

linear systems with commensurate delays of the form (3.98). However, an

extension to systems with noncommensurate (and even neutral) delays is

possible, albeit more cumbersome in coding. Since in practice the delays are

always commensurate and noncommensurate time-delay systems can be

approximated by (3.98), the method in the present form is useful. Before

starting the introduction of the computation of the eigenvalues some proper-

ties of the eigenvalues are enumerated.

3.4.1 Properties of the eigenvalues

It is known that the eigenvalues of the system (3.98) have the following prop-

erties.

i) They are symmetric with respect to the real axis [40, p. 54].

ii) They are of finite multiplicity [40, p. 54] (see also Subsection 3.3.2

for properties of the root loci).

iii) The real parts of the eigenvalues are bounded above. For any constant

, the number of eigenvalues with real parts exceeding  is finitec c
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[40, p. 54]. This implies that the time-delay system (3.98) always has

a finite number of eigenvalues with non-negative real parts.

In general, the set of eigenvalues is infinite and countable [40, p. 54]. In

Subsection 3.4.3, an asymptotic description is given which reveals some

qualitative information about the roots’ location in the complex plane. 

However, it is also possible that a time-delay system possesses only n eigen-

values. This case arises if the characteristic equation contains no ‘delay

terms’ of the form e–sih . 

Example 3.4: The homogenous part of the wind tunnel model of Section 1.2

is an equation of the form

.
x(t) = x(t) + x(t – 0.33)

where 1/a = 1.964 [sec–1], ω = 6.0 [rad/sec], ξ = 0.8 [–], and k = – 0.0117

[deg–1]. This time-delay system has only three eigenvalues: λ1 = 0.5092,

λ2/3 = – 4.8 ± 3.6.j.

The following Corollary yields bounds on the real and the imaginary part of

the eigenvalues of the system (3.98).

Corollary 3.7: Every eigenvalue λ i of the system (3.98) satisfies the

following inequalities

(3.100)

 if Re(λ i) ≥ 0 (3.101)

for any . = 1, 2, and ∞ .

a– 0 0

0 0 0

0 ω2– 2ξω–

0 ka 0

0 0 0

0 0 0

Re λ i( ) A0 . Ai .
i 1=

k

∑+≤

Im λ i( ) A0 . Ai .
i 1=

k

∑+≤
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Proof: Clearly, inequality (3.100) is satisfied for every λ i with negative real

part. In the following it is assumed that Re(λi) ≥ 0. For every eigenvalue of

the system (3.98) we may write

where w is some nonzero element of Rn
. Taking the norm on both sides of the

equation yields

 . (3.102)

Since

and Re(s) > 0, we obtain from (3.102)

 . (3.103)

From (3.103) and inequality Re(λi) ≤ |λi| condition (3.100) follows. Further-

more, inequality |Im(λi) | ≤ |λi| together with inequality (3.103) implies

(3.101). This completes the proof. ❏

Condition (3.100) can be improved by applying a transformation:

 .

An appropriate transformation matrix T can be found using numerical

methods, e.g., the method of steepest descent. Those elements of the

matrices A0, Ai which do not arise in the characteristic equation can be

omitted for the estimate.

The properties (i) – (iii) of the eigenvalues are also valid for linear hereditary

systems of the form

.
x(t) =  .

λ iw A0 Aie
λ ii

.h–

i 1=

k

∑+ w=

λ i w A0 . Ai . e
λ ii

.h–

i 1=

k

∑+ w≤

e
λ ii

.h–
e

Re λ i( )i.h–
=

λ i A0 . Ai .
i 1=

k

∑+≤

Re λ i( ) T 1– A0T . T 1– AiT .
i 1=

k

∑+≤

A0x t( ) Aix t τ i–( )
i 1=

k

∑ A01 θ( )x t θ+( )dθ
h–

0

∫+ +
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The corresponding characteristic equation given by

(3.104)

can be rewritten in a form similar to (3.99) if the integral can be analytically

solved. This is illustrated by the following examples.

Example 3.5: According to (3.104), the scalar system 

.
x(t) = a0x(t) +a1x(t – 0.5) +

has the characteristic function

g1(s) = s – a0 – a1e
–0.5s – k = 0 for s ≠ 0

a0 + a1 + k = 0 for s = 0 .

Let 

g2(s) = s2 – [a0 + a1e
–0.5s].s – k(1 – e–s) = 0 .

The functions g1(s) and g2(s) have the same roots (except that g2(s) possesses

an additional root at the origin). However, the form of g2(s) is similar to that

of (3.99).

Example 3.6: The system

.
x(t) = a0x(t) +a1x(t – 0.5) +

is associated with the characteristic equation

s – a0 – a1e
–0.5s – k = 0 for s ≠ ± π.j

a0 = 0, for s = ± π.j

which can be easily rewritten in the desired form (3.99).

det sI A0– Aie
sτ i–

i 1=

k

∑– A01 θ( )esθdθ
h–

0

∫– 0=

k.x t θ+( ) θd

1–

0

∫

1 e s––
s

---------------

k sin πθ( ) x⋅ ⋅ t θ+( )dθ

1–

0

∫

1 e s–+
s2 π2+
----------------

π a1–
k
2
---– 0=
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3.4.2 The coefficients of the characteristic equation

The algorithm due to [20] and [92] enables us to compute the characteristic

equation directly from the system matrices A0, Ai. The numbers k and n are

given by (3.98). The matrix Φi , j ∈ Rn × n
 and the numbers θi , j ∈ R are defined

by

θ0,0 = 1

θi , j = 0 for j < 0 or j > i.k, i ≥ 1

Φ1,j = 0.I for j < 0 or j > (i – 1).k, i ≥ 1

and by the recursive algorithm

Φ1,0 = I

θi , j = – i = 1, ..., n, j = 0, ..., i.k

Φi + 1,j = i = 1, ..., n – 1, j = 0, ..., i.k .

The numbers θi , j are the coefficients of the characteristic equation of the

system (3.98):

P(s, e–sh) = sn + + +

(3.105)

+  .

1
i
---tr  ArΦi j r–,

r 0=

k

∑

ArΦi j r–, θi j, I+
r 0=

k

∑

θ1 j, e sh j⋅– sn 1–

j 1=

k

∑ θ2 j, e sh j⋅– sn 2–

j 0=

2k

∑

θn j, e sh j⋅–

j 0=

nk

∑
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3.4.3 Approximation of the poles with large modulus

Although it probably is impossible to express the roots of the characteristic
equation by elementary operations and functions, asymptotic descriptions for
roots with large moduli are available. Following [33, p. 32], [13, Chapter 12],
[88], [92] we shall show a method for obtaining them.

Let H ∈ R(n + 1) × (k.n + 1)
 denote the matrix of coefficients θi , j in the polyno-

mial P(s, e–sh), with θ0,0 in the upper left corner of H, and with j increasing
in the horizontal direction, i in the vertical.

The nonzero elements of the matrix H are associated with a diagram, the
so-called distribution diagram [13, p. 410]. Fig 3.8 shows the relationship of
the distribution diagram to the characteristic equation:

From here on the distribution diagram is used in a normalized form, as
depicted in Fig. 3.9.

H

θ0 0, 0   . . 0 0   . . 0 0     . . 0 

θ1 0,     θ1 1,   . .     θ1 k, 0   . . 0 0     . . 0 

θ2 0,     θ2 1,   . .     θ2 k,     θ2 k 1+, . .     θ2 2k, 0     . . 0 

: : : :   : :     : 

θn 0,     θn 1,   . .     θn k,     θn k 1+, . .     θn 2k,     θn 2k 1+, . .     θn kn,

=

Fig. 3.8 Coefficients θi, j stored as a quasi-triangular ma-
trix. The symbol * denotes the (possibly) nonzero elements.

e–shj

sn – i

*

s0

e–0

sn–2

sn–1

sn

*

** *

*

1 0

e–hs e–khs e–(k+1)hs e–2khs e–(2k+1)hs e–nkhs. .. .. .

..

. .

*

* . .

. . 0 0 . . 0 0 . . 0

* 0 . . 0 0 . . 0

* * . . * 0 . . 0

. .. . * * . . *

.. .. .... .. .. ..
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Let L1, L2, . . ., Lv, . .., Lf denote an upward convex polygonal graph in the
normalized distribution diagram, with the straight line Lv having a slope of
– mv, where mv > 0. Furthermore, the polygon possesses the properties that
no points lie above it, and the point (n, 0) is connected with the upper- and
right-most point. An example of a polygon is displayed in Fig. 3.10. 

For each Lv the polynomial 

(3.106)

is calculated. The sum is taken over those θi , j which are located on the
segment Lv. A root zi of the polynomial (3.106) is denoted by zi. This root z i

corresponds to the eigenvalues s in the complex plane as follows [92],
[13, p. 409]:

Fig. 3.9 The asterisk ✩  denotes a (possible)
point in the normalized distribution diagram

✩

0

0

n – 2

n – 1

n

✩

✩

h kh (k+1)h 2kh (2k+1)h nkh. .. .. .

..
. .

✩ . . . .

. .. . . .

.. .. .... ..

✩

✩✩

✩

✩ ✩

✩ ✩

✩ ✩ ✩

Fig. 3.10 An example of a normalized distribution diagram

0

0

2

3

n = 4

h = 1 3 4 6 7 852

1

L1

L2

φv z( ) θi j, zn i–

Lv

∑=
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Re(s) = mv{ln |zi | – ln|2r.mvπ+ mvarg(zi) – mvπ ⁄2 |} + o(1) (3.107)

Im(s) = mv{2rπ+ arg(zi) – π ⁄2} + o(1) . (3.108)

where r = 1, 2, .. .; arg(zi) ∈ [0, 2π]; and the symbol o(.) indicates the error

of magnitude. Equations (3.107) and (3.108) are an approximation of the

eigenvalues with positive imaginary part. They describe a so-called chain of

eigenvalues in the complex plane. If the polynomial (3.106) has several

roots, there exist several chains. These chains are collected in a strip. For

another mv, we obtain another polynomial of the form (3.106) and hence,

another strip with one or more chains. Furthermore, formula (3.107) and

(3.108) show that the eigenvalues of (3.98) are asymptotically located on the

curve [13, Theorem 12.8]

(3.109)

and are asymptotically separated from each other by the distance 2π ⁄h. The

curve (3.109) bounds the region in the complex plane where the eigenvalues

of a time-delay system are located in general [13, p. 100]. This region is

denoted by Γ in Fig. 3.11.

Re s
ln s( )

h
-----------+ 

  zln
h

-----------=

Fig. 3.11 Region Γ

Im

Re

Γ
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Example 3.7: The scalar system

.
x(t) = a0x(t) + a1x(t – h) + a2x(t – 2h) (3.110)

with the corresponding characteristic equation

P(s, e–sh) = s – a0 – a1e–sh – a2e–s2h = 0

yields the following matrix H

 .

This matrix implies the points (0, 0), (0, 1), (h, 0), and (2h, 0) in the normal-
ized distribution diagram illustrated in Fig. 3.12. 

The only polygon connecting the points (0, 1) and (2h, 0) under the restric-
tion of being convex is the straight line L1 with the slope – m1 = – 1 ⁄ (2h).
Therefore, the polynomial (3.106) is of the form

φ1(z) = z – a2 .

Its root is z1 = a2. For this root, the equations (3.107) and (3.108) yield the
following estimate of the eigenvalues:

Re(s) = 1 ⁄ (2h){ln |a2 | – ln|π ⁄h.(r – 0.25)|} + o(1)

Im(s) = 1 ⁄ (2h){2rπ– π ⁄2} + o(1)

where r = 1, 2, .. . .

Example 3.8: We consider the system

..
x(t) = – 4π2x(t) – π2x(t – h) . (3.111)

H  1 0 0

a0– a1– a2–
=

Fig. 3.12 Normalized distribution diagram for the system (3.110)

L1

2hh0

1

0
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Its characteristic equation is of the form

 .

The coefficients of the above equation determine the matrix H:

 .

The corresponding normalized distribution diagram is shown in Fig. 3.13. 

The only polygon connecting the points (0, 1) and (h, 0) under the restriction

of being convex is the straight line L1 with the slope – m1 = – 2 ⁄ h.
According to (3.106) the straight line L1 produces the polynomial

φ1(z) = z2 + π2 

with the roots z1 / 2 = ± π.j. This means that the eigenvalues with large

moduli are located in one strip with two chains. The equations (3.107) and

(3.108) yield the following estimates of the eigenvalues:

1st chain: Re(s) = 1 ⁄ h{ln|h ⁄ (4π) |} + o(1)

Im(s) = 4πr ⁄ h + o(1)

2nd chain: Re(s) = 2 ⁄ h{ln |π| – ln|2π(2r – 1) ⁄ h |} + o(1)

Im(s) = 2π ⁄h{2r + 1} + o(1)

where r = 1, 2, .. . .

s2 4π2 π2e sh–+ + 0=

H
 1 0 0

0 0 0

4π2 π2 0

=

Fig. 3.13 Normalized distribution diagram for the system (3.111)

L1

2hh0

1

0

2
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3.4.4 Approximation of the poles near the origin

The method of Kuhn [73] finds the roots of a function f(s) in a given

rectangle Q in the complex plane. The rectangular region Q is partitioned into

triangles such that a grid results as illustrated in Fig. 3.14. 

Each mesh-point is weighted by the function l (s):

1 if –π ⁄ 3 ≤arg(f(s)) ≤ π ⁄ 3 or if f(s) = 0

l (s) = 2 if π ⁄ 3 <arg(f(s)) ≤ π (3.112)

3 if –π <arg(f(s)) < –€π ⁄ 3 .

Let {l (s1), l (s2), l (s3)} be a triple of distinct points. The triangle with vertices

s1, s2, s3 is said to be ‘saturated’ [92] or ‘completely labelled’ [73], if

l (s1) = 1, l (s2) = 2, and l (s3) = 3. Let the length of edge of a saturated triangle

be smaller than ε. For all points lying inside of such an ε-small, saturated

triangle it can be shown that |f(s)| ≤ 2ε ⁄  [73]. By subdividing a saturated

triangle into smaller triangles and finding the saturated ones, a sequence of

shrinking triangles can be constructed, the centres of which converge to a

zero of the function f(s). Hence, the problem of finding the zeros of f(s) in a

given bounded region can be attacked by constructing a subdivision of the

region into triangles and finding the saturated ones.

Fig. 3.14 Rectangle Q in the complex plane partitioned into triangles

Re(s)

Im(s)

Q

∂Q

3
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In Fig. 3.15, the values of l (s) with respect to the following characteristic

equation 

(3.113)

associated with the system 

.
x(t) = x(t) + x(t – π ⁄ 4)

are shown. The plot reveals four eigenvalues. Furthermore, Fig. 3.15 illus-

trates how the algorithm can be computed efficiently. First, the boundary of

Q is considered. The pairs of points of ∂Q at which the value of l (s) changes

are stored. From these points the algorithm follows the boundary of two

zones into the inside of Q. In this way the algorithm proceeds along a

boundary until either a saturated triangle has been found, or the boundary of

Q is reached again. The search continues until all the boundaries have been

traversed. In the next stage, the algorithm proceeds to a subdivision of rectan-

gles, including saturated triangles, by decreasing the mesh size. This subdi-

vision is performed several times until the desired accuracy of approximation

is reached. The centres of the saturated rectangles (a rectamgle is called satu-

rated if it contains a saturated triangle) then serve as starting points for a

refinement via Newton’s method (see next subsection). The roots of suffi-

ciently large modulus are more quickly computed by the “asymptotic

formulas” (3.107) and (3.108) introduced in the previous section.

s2 4π2 π2e sπ 4⁄–+ + 0=

0 1

4π2– 0

0 0

π2– 0
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Fig. 3.15 l (s) computed for characteristic function (3.113)
-region: l (s) = 1; -region: l (s) = 2; empty spaces: l (s) = 3
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3.4.5 Refinement of the approximation

The approximation of the roots computed with the algorithms of Kuhn

(Subsection 3.4.4) and Bellman and Cook (Subsection 3.4.3) are used as an

initial guess to start Newton’s method for improvement. This method is

defined by the well-known iteration formula

 . (3.114)

The formula requires the evaluation of the characteristic equation and its

derivation = det[∆(λ)]. In Subsection 3.4.2, a procedure was

illustrated to determine the coefficients of the characteristic equation. Mani-

tius et al. (1984) suggest to use this algorithm for obtaining .

However, there is a more efficient way to evaluate (3.114). Since λ i is a given

numerical value, there is no problem to compute

 .

The term  is evaluated in two steps. First, the matrices 

(3.115)

and

(3.116)

are stored. Next, the following relation is used [14], [115, p. 18]:

λ i 1+ λ i

det ∆ λ i( )[ ]
det ∆ λ i( )[ ] '
-------------------------–=

det ∆ λ i( )[ ] ' λ∂
∂

det ∆ λ i( )[ ] '

det ∆ λ i( )[ ] det Iλ i A0– Aie
λ ih

.i–

i 1=

k

∑–=

det ∆ λ i( )[ ] '

∆ λ i( ) Iλ i A0– Aie
λ ih

.i–

i 1=

k

∑–=

∆ λ i( )1 1,∂
λ i∂

--------------------- ..
∆ λ i( )1 n,∂

λ i∂
---------------------

: :

∆ λ i( )n 1,∂
λ i∂

--------------------- ..
∆ λ i( )n n,∂

λ i∂
---------------------

I h.i Aie
λ ih

.i–

i 1=

k

∑+=
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= det + . . . +

+ det  .

The right-hand side of the latter equation can be computed with the help of

the stored matrices (3.115) and (3.116). 

Note that λi is a multiple eigenvalue, if  .

3.4.6 Test on the number of eigenvalues

The improved eigenvalues are arranged in order of increasing modulus in one

list. The number of eigenvalues within a given disc D of prescribed radius ρ
is then counted. Then the Carpentier-Dos Santos algorithm [24] is applied to

verify that all eigenvalues have been found in the disc D. The algorithm

consists of the computation of the value of a circulation integral over the disc

D. For the numerical evaluation of this integral the circle is subdivided into

M pieces as illustrated in Fig. 3.16.

det ∆ λ i( )[ ] '

∆ λ i( )1 1,∂
λ i∂

---------------------   ∆ λ i( )1 2, .. ∆ λ i( )1 n,

: : :

∆ λ i( )n 1,∂
λ i∂

---------------------   ∆ λ i( )n 1, .. ∆ λ i( )n n,

∆ λ i( )1 1, ..   ∆ λ i( )1 n 1–,
∆ λ i( )1 n,∂

λ i∂
---------------------

: : :

∆ λ i( )n 1, ..   ∆ λ i( )n n 1–,
∆ λ i( )n n,∂

λ i∂
---------------------

det ∆ λ i( )[ ] ' 0=
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The function  is defined by

Then, the number of eigenvalues C0 within the given disc D is equal to [24]

[ ⁄ ] .

Numerical errors may occur if the roots are close to the boundary of the disc.

Therefore, Carpentier and Dos Santos (1982) proposed the following test on

the computed values of ⁄ :

If for all i = 1, ..., M  is such that

(i) |arg{ ⁄ }| < 3π ⁄ 4

and

(ii) 1 ⁄ 6.1 < | ⁄ | < 6.1

the computed value of C0 is accepted.

If either of the conditions (i) or (ii) is not satisfied, the index C0 is recalcu-

lated with M replaced by 2M. A good starting value of M is M = 128. In our

experience this algorithm is very reliable. 

Fig. 3.16 Circle with mesh-points, Disc D,
radius ρ, and angle θi in the complex plane

Re(s)

Im(s)

D
ρ
θi

∆ θi( )

∆ θi( ) ∆ s = ρeθi( )=

C0
1

2πj
----------  ln

i 1=

M

∑≅ ∆ θ i( ) ∆ θi 2π M⁄–( )

∆ θi( ) ∆ θi 1–( )

∆ θi( )

∆ θi( ) ∆ θi 1–( )

∆ θi( ) ∆ θi 1–( )
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3.4.7 Summary and examples

The various algorithms illustrated in the previous subsections are used to

compute the eigenvalues directly from the system matrices A0, Ai. The

program realized with the help of the MatrixX software packages is struc-

tured as suggested by [92], with some modifications. The implementation of

Newton’s method has been considerably simplified (cf. Subsection 3.4.5).

Furthermore, Corollary 3.7 is used to check whether all eigenvalues with

nonnegative real part have been found. 

First, Corollary 3.7 is used to find an upper bound of the real part of the roots

in the right-hand side of the complex plane. Let us denote this value by ν.

This value is used to define in the complex plane a quadratic region with the

edges e1 = ν + ν .j, e2 = ν – ν .j, e3 = –ν – ν .j, and e4 = –ν + ν .j.

According to Corollary 3.7, all eigenvalues with a nonnegative real part

always lie inside of this square, designated in the following by Q1. The algo-

rithm of Kuhn is used to search the eigenvalues in the region Q1. This esti-

mate of the roots is improved by Newton’s method. Next, the generalized

Faddev algorithm (cf. Subsection 3.4.2) is applied to determine the coeffi-

cients of the characteristic equation from the system matrices A0, A1. The

knowledge of the coefficients permits the computation of the eigenvalues

with large moduli (cf. Subsection 3.4.3). Again, Newton’s method is used for

improving the numerical accuracy of the eigenvalues. Finally, the number of

eigenvalues within a circle enclosing the square Q1 is counted and tested by

applying the procedure of [24]. If the test result is positive, we are sure that

all eigenvalues with nonnegative real part have been found.

As an example we consider in the following the system (3.111)

..
x(t) = –4π2x(t) – π2x(t – h)

and its characteristic equation (3.112)

 .

Fig. 3.17 shows the first 22 eigenvalues for the constant delay h = π ⁄8. It

was checked that all roots had been found in the displayed region. The first

s2 4π2 π2e sh–+ + 0=
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ten eigenvalues are listed in Table 3.1. The calculations in example 3.6 reveal

that the roots with a sufficiently large modulus are arranged in one strip

consisting of two chains. In Fig. 3.17, these two chains are marked with the

symbols ◆  and . Since the delay h = π ⁄8 is small with respect to the

system coefficients, the chains have a certain distance to the dominant eigen-

value. (The delay can even be neglected for stability considerations if the

delay is sufficiently small [133]). However, if the value of the delay is of the

same magnitude as the system coefficient, the eigenvalues of the chains are

closer to the imaginary axis and the delay is of course relevant. (For an

increasing delay the poles converge to the imaginary axis [109]). This is

illustrated in Fig. 3.18 where the first 22 eigenvalues of the system (3.111)

are depicted for h = π are depicted. The numerical values of these poles are

recorded in Table 3.2.

In Fig 3.19 the root loci of the first six eigenvalues for an increasing value of

h are sketched. From the observation that the eigenvalues enter and leave the

right-half plane, one may suppose that the system is alternately asymptoti-

cally stable (i.e., stable–unstable–stable–..., as the delay h increases).

Indeed, applying the τ-decomposition method (cf. Subsection 3.3.2) we find

that the system (3.111) is asymptotically stable iff

 or  .

As a further example, the eigenvalues of the model of the Williams-Otto

process (cf. Section 1.2) of the form

.
x(t) = x(t) + x(t – 1) .

are computed. According to the method described in Subsection 3.4.3, the

eigenvalues with a large modulus are arranged in four chains collected in one

strip (cf. Fig. 3.20). 

✛

1

3
------- h

2

5
-------< < 3

3
------- h

4

5
-------< <

4.93– 1.01– 0 0

3.20– 5.30– 12.8– 0

6.40 0.347 32.5– 1.04–

0 0.833 11.0 3.96–

1.92 0 0 0

0 1.92 0 0

0 0 1.87 0

0 0 0 0.724
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❋
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Fig. 3.17 The first 22 eigenvalues computed for the system
..
x(t) = – 4π2x(t) – π2x(t – π ⁄ 8) .

The roots, which were found by applying Kuhn’s and Newton’s method, are
marked with the symbol . The other roots were obtained by using the
“asymptotic formulas” (3.107) and (3.107) together with the Newton
method. The latter’s eigenvalues are located in one strip containing two
chains. The two chains are marked with the symbols  and .
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Fig. 3.18 The first 22 eigenvalues computed for the system 
..
x(t) = – 4π2x(t) – π2x(t – π).
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k λk |det∆ (λk)|

1 0.5125866951081 ± 5.8612301778918.j 1.8.10 –13

2 – 7.7709153749941 ± 12.7898921461502.j 2.7.10 –12

3 – 11.7909090749649 ± 30.0267151620273.j 9.3.10 –12

4 – 13.9060327510865 ± 46.4961588500000.j 5.4.10 –11

5 – 15.3787712955928 ± 62.7650027658605.j 6.9.10 –11

6 – 16.5145897893815 ± 78.9434946965780.j 1.9.10 –11

7 – 17.4407190325485 ± 95.0721505091676.j 7.9.10 –11

8 – 18.2231767015346 ± 111.1699761040171.j 1.8.10 –10

9 – 18.9008394703398 ± 127.2472318439467.j 3.3.10 –10

10 – 19.4986017669266 ± 143.3100003744767.j 1.8.10 –10

k λk |det∆ (λk)|

1 0.29154380731165 ± 6.39282352532310.j 1.3.10 –13

2 – 0.11751250169763 ± 5.02636843241820.j 2.4.10 –13

3 – 0.28164636021213 ± 7.94010300686203.j 1.8.10 –13

4 – 0.35964609615850 ± 3.02267366287452.j 2.7.10 –13

5 – 0.43462577567080 ± 1.00720873955413.j 4.8.10 –13

6 – 0.57490130595404 ± 9.93907538142810.j 5.1.10 –13

7 – 0.75019152920180 ± 11.94497509110028.j 9.5.10 –13

8 – 0.87923926724846 ± 13.94983015985700.j 1.6.10 –12

9 – 0.98277788801663 ± 15.95370323553014.j 2.1.10 –12

10 – 1.06985187323271 ± 17.95686956898248.j 2.7.10 –12

Table 3.1 The first ten eigenvalues computed for the system 
..
x(t) = – 4π2x(t) – π2x(t – π ⁄ 8).

Table 3.2 The first ten eigenvalues computed for the system 
..
x(t) = – 4π2x(t) – π2x(t – π).
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Fig. 3.19 Root loci of the first six eigen-
values of the system (3.111) for h ∈ [0.3, 7]
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4 Robustness

In many cases, a system is considered as robust if its stability is unaffected

by perturbations, as far as possible. These perturbations represent several

types of modelling uncertainties. To begin with, we will treat delays as an

extra perturbing input of a delay-free system. Frequency-domain concepts

are mainly used to study this robustness problem. The frequency-domain

representation of the system

x
.
(t) = A0x(t) + (4.1)

y(t) = C0x(t) + (4.2)

where A0, Ai ∈ Rn × n
, B0, Bi ∈ Rn × m

, and C0, Ci ∈ Rp × n
, expressed in terms

of its system matrices, is

G(s, e–sh) = [C0 + ][sI – A0 – ]
– 1

[B0 + ]. (4.3)

It is assumed that the plant G(s, e–sh) is connected with the controller K(s) as

illustrated in Fig. 4.1.

In Section 4.1, the delays in the input/output are considered as a perturbation.

As an introduction, the Nyquist criterion is briefly discussed for single-input

Aix t i h⋅–( ) B0u t( ) Biu t i h⋅–( )
i 1=

ku

∑+ +
i 1=

kx

∑

Cix t i h⋅–( )
i 1=

ky

∑

Cie
sih–

i 1=

ky

∑ Aie
sih–

i 1=

kx

∑ Bie
sih–

i 1=

ku

∑

K

Fig. 4.1

G
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single-output (SISO) systems. The relation between the phase margin of a

delay-free system and its robustness against input/output delays is shown by

using the Bode diagram. These considerations are then applied to analyse

multi-input multi-output (MIMO) systems using singular values and the

small-gain theorem. In Section 4.2, state delays are treated as a perturbation. 

In the last two subsections, robustness bounds for unstructured uncertainties

of time-delay systems are presented. With respect to modelling uncertainties

of the delays these bounds are considered in Section 4.3. Robustness bounds

for large-scale systems with time-dependent and state-dependent delays are

investigated in Section 4.4.

4.1 Robustness against input/output delays

This section deals with control systems having delays in the input and/or in

the output. First some graphical methods are discussed. The main graphical

scheme for stability of systems with constant delays is the classical approach

of the Nyquist criterion. The application of this method is suitable for

checking the stability of SISO systems with input and/or output delays. The

Bode diagram is then used to show the relation between the phase margin and

the robustness of a nondelayed system against input and/or output delays.

These considerations are extended for MIMO systems using standard tools

in the frequency domain such as singular values, the small-gain theorem, and

the complementary sensitivity function.

Let us start with the Nyquist criterion for SISO systems. The transfer func-

tion of the system shown in Fig. 4.1 is 
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T(s, e–sh) = =  . (4.4)

It is assumed that 

(i) all eigenvalues of the function G0(s, e–sh) have negative real part

(ii) 0(jω,e–jωh) = 0.

Nyquist criterion, Theorem 4.1 [94, p. 55]: The transfer function T(s) is as-

ymptotically stable iff the frequency response of G0(jω, e–jωh) in the com-

plex plane does not encircle the point (– 1, 0.j) for ω ∈ [0, ∞].

Theorem 4.1 is also valid if the control system G0 contains delays in the state.

However, condition (i) is particularly easy to check if the system only has

delays in the control input or/and in the output, since the corresponding char-

acteristic equation has no delay terms. Another possibility to study the

stability of T(s, e–sh) is to consider the characteristic equation of the

closed-loop system. Since this characteristic equation contains delay terms,

the Nyquist criterion is easier to apply.

Example 4.1: An illustrative example of the form

(4.5)

is considered. The Nyquist graph is given by 

Re(G0(jω, e–jωh)) =

Im(G0(jω, e–jωh)) = – .j

The Nyquist curves for the following numerically given open-loop systems

G s e sh–,( )K s( )

1 G s e sh–,( )K s( )+
------------------------------------------

G0 s e sh–,( )

1 G0 s e sh–,( )+
---------------------------------

G
ω ∞→
lim

G0 s e sh–,( )
b0 b1e sh–+

s a0+
-------------------------=

a0b0 b1a0cos ωh( ) b1ωsin ωh( )–+

a0
2 ω2+

---------------------------------------------------------------------------------

ωb0 ωb1cos ωh( ) a0b1sin ωh( )+ +

a0
2 ω2+

---------------------------------------------------------------------------------



103

(4.6)

(4.7)

are depicted in Figs. 4.3 and 4.4. The plots illustrate that both closed-loop

systems are asymptotically stable. Assumption (i) is not fulfilled for (4.7),

since this G0 possesses a pole s = 0 on the imaginary axis. Nevertheless, the

method yields a correct stability analysis (cf. Theorem 3.10). Indeed,

Theorem 4.1 is also valid if G0 has one or two poles at s = 0 [34, Subsections

4.4.3 and 4.4.5]. Finally, the example illustrates the typical spiralling of the

Nyquist contours near the origin for open-loop systems with delays. 

In the frequency domain there is no possibility to judge whether the delay

term is associated with an input or an output retardation in the time-domain.

Therefore, it is no restriction if in the following we consider only input

delays.

Note that a SISO system may have delayed and non-delayed inputs simulta-

neously. As an example the signal flow diagram of the system 
.
x(t) = a0x(t) +

b0u(t) + b1u(t – h) related to the transfer function (4.5) is shown in Fig. 4.2.

If the input is purely delayed, which means that we have a delay-free system

in cascade with a delay,

T(s, e–sh) = (4.8)

the checking of the stability of T(s, e–sh) can be remarkably simplified. 

G0 s e sh–,( )
1 0.5e sh––

s 1+
-------------------------=

G0 s e sh–,( )
e sh–

s
--------=

a0

Fig. 4.2

b0

b1 e–sh

u

x

G0 s( )e sh–

1 G0 s( )e sh–+
-------------------------------
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Re(G0(jω,e–jωh))

Im(G0(jω, e–jωh))

0.1– 0.1 0.2 0.3 0.4 0.5

– 0.1

– 0.2

– 0.3

– 0.4

Fig. 4.4 Nyquist curve for (4.7)

Im(G0(jω,e–jωh))

Re(G0(jω,e–jωh))
0.3– 0.3– 0.6– 0.9

– 0.3

– 0.6

0.3

– 1

Fig. 4.3 Nyquist curve for (4.6)
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This simplification is based on the following facts:

 .

Using these facts several methods for testing the stability of (4.8) have been

suggested. They are summarized in [94, Sections 4.4 – 4.6]. Here, the anal-

ysis is treated by superimposing the polar plot on the Bode diagram as

suggested by [104]. We choose this concept since we extend it to the MIMO

case later.

Let ωc, i be a crossover frequency, which means that for this frequency

|G0(jωc, i)| = 1. The phase margin of the nondelayed system is defined by 

ϕ = min
i

{π+ arg(G0(jωc, i))} = π+ arg(G0(jωc, min)).

The system (4.8) is asymptotically stable if ϕ – ωc, minh > 0 or, in other

words, the system (4.8) is asymptotically stable for all constant delays h

satisfying the following inequality

h < hmax =  . (4.9)

The value hmax is usually designated as delay margin.

Example 4.2: The Bode diagram for the system 

(4.10)

is shown in Fig. 4.5. From condition (4.9) and the Bode diagram, we obtain

the delay margin hmax < 0.1.

Nyquist criteria are also available for unstable MIMO systems. These exten-

sions presume the solution of some transcendental equations and the compu-

tation of the eigenvalues of a delayed system (see, e.g., [75]). Furthermore,

G0 jω( )e jωh– G0 jω( )=

G0 jω( )e jωh–arg G0 jω( ) ωh–arg=

ϕ
ωc min,
-------------

G0 s( )
16

s2 1.6s 16+ +
---------------------------------=
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the method is only a stability test and does not yield robustness bounds for a

nondelayed system. Therefore, we prefer to define the delay margin for

MIMO systems and to investigate the relation between this delay margin and

the complementary sensitivity function.

Definition 4.1: The MIMO delay margin hmax is the largest constant retarda-

tion which can be tolerated independently in each input of a system such that

it remains asymptotically stable. 

Since the input delays are considered as an uncertainty we may use the

MIMO phase shift concept for linear delay-free systems [28, p. 52]. In Fig.

4.6, scalar multiplicative uncertainty is applied independently at each actu-

ator or input of G. (This could also be done at the outputs of G.) This causes

Fig. 4.5 Bode diagram for the system (4.10)

|G0(jω)|

ω

ω

arg{G0(jω)}

42 6 8

8642

ϕ

ωc, min

1

2

0

– π/2

– π

0.5

1.5

2.5
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the nominal gains in each channel, at the affected points in the loop, to be

multiplied by 1 + ∆ i. When the scalar uncertainty blocks ∆i are gathered into

a single diagonal uncertainty matrix ∆ = diag(∆1, ..., ∆m), the transfer matrix

“seen” by ∆ is the complementary sensitivity function at the input

T(s) = K(s)G(s)[I + K(s)G(s)]–1 . (4.11)

A lower guaranteed bound of the delay margin can be computed using

standard frequency-dependent singular values:

=  .

Theorem 4.2: The lower bound h* of the MIMO delay margin hmax  for system

(4.11) satisfies the inequality

 . (4.12)

Proof: The small-gain theorem [28, p. 47 and p. 53] says that the perturbed

system shown in Fig. 4.11 is asymptotically stable if < 1 for all

frequencies s = jω. This implies the stability condition

GK

∆1

Fig. 4.6

∆i

∆m

..
.

..
.

σ T jω( )( ) T jω( ) 2 λmax T jω( )∗ T jω( ){ }=

h∗ ω 2 arcsin
1

2σ T jω( )( )
-------------------------- 
 ⋅≤

σ ∆( ) σ T( )
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< = r(ω) . (4.13)

The function r(ω) is introduced for convenience. As mentioned above, each

input of the plant is multiplied by 1 + ∆ i . The values of this factor are studied

in the complex plane (cf. Fig. 4.7). The case in which the system is unper-

turbed, (∆ i = 0) is represented by the point (1, 0.j). The circle with the radius

r(ω) and the centre (1, 0.j) covers all values of 1 + ∆ i for which the per-

turbed system is asymptotically stable according to (4.13). When the ∆ i val-

ues are complex and satisfy the equality 1 + ∆ i = e–jhω, they correspond to

delays at the plant inputs. These values of 1 + ∆ i lie on the unit circle.  

The angle ϕ, defined in Fig. 4.7 by the points (1, 0.j), (0, 0.j), and the inter-

section point of the unit circle and the stability circle with radius r(ω) and the

centre (1, 0.j) is given by

ϕ(ω) = 2.arcsin(r(ω) ⁄ 2) . (4.14)

This leads to the following condition

(4.15)

which completes the proof. ❏

σ ∆( )
1

σ T( )
-----------

ϕ(ω)

1

1

0

Fig. 4.7

r ω( )
2

----------

r ω( )
2

----------

Im(∆ i + 1)

Re(∆ i + 1)

hω h∗ ω≤ 2 arcsin
r ω( )

2
---------- 
 ⋅≤
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Clearly, this test is conservative. The procedure of this robustness analysis is

summarized in the following.

Step 1: Determine the function r(ω) from (4.13) and (4.11).

Step 2: Compute the function ϕ(ω) using (4.14).

Step 3: Draw the function ϕ(ω) in the phase diagram (cf. Fig. 4.8). Further-

more, plot the straight line υ which starts at the origin and is a

tangent of the function ϕ(ω) (and never intersects it). Inequality

(4.15) implies that the slope of s is the delay margin h*.

The method confirms that a high bandwidth of the system (4.11) of the

open-loop system reduces the delay margin. 

r(ω)

ω

ω

42 6 8

8642

1

3

π/3

π

0

2

0

2π/3

ϕ(ω)

υ

Fig. 4.8  The functions r(ω), ϕ(ω), and s are computed for the system 

(4.11), where K(s)G(s) = G0(s) is given by (4.10); here h* ≈ hmax ≈ 0.1

0

0
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4.2 Robustness against state delays

The robustness of a nondelayed system against state delays is considered.

Again the small-gain theorem is used. Note that a closed-loop system is also

of the form (4.3). Its stability is determined only by its dynamics denoted by

 . (4.16)

The dynamics of the corresponding delay-free system are denoted by 

 . (4.17)

The H∞ norm of the delay-free system is denoted by γ = ||G(jω)DF||∞ =

Some properties of singular values collected in the Lem-

ma below are then used to establish Theorem 4.3.

Lemma 4.1 [115, p. 898]: 

If A–1 exists, (4.18)

If A–1 exists, (4.19)

(4.20)

 . (4.21)

Theorem 4.3: System GCL is asymptotically stable if the following inequality

for the H∞ norm γ of the delay-free system GDF holds:

 . (4.22)

Proof: Using the relations listed in Lemma 4.1, we may write

G s( )CL sI A0– Aie
sih–

i 1=

k

∑–

1–

=

G s( )DF sI A0–[ ] 1–=

max
ω

σ G jω( )DF( ) .

σ A( )
1

σ A 1–( )
----------------=

σ A( )
1

σ A 1–( )
----------------=

σ αA( ) α σ A( )=

σ A( ) σ E( )– σ A E+( )≤

γ 1

1 Ai 2

i 1=

k

∑+

------------------------------<

σ G jω( )CL( ) σ jωI A0– Aie
jωih–

i 1=

k

∑–

1–

 
 
 

=
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 .

From the small-gain theorem it follows that the inequalities

(4.23)

must be satisfied for all frequencies ω to guarantee the stability of the system

(4.16). From (4.23) we obtain

which implies stability condition (4.22). ❏

Condition (4.22) can be rewritten as 

 .

A similar condition has been derived by Kojiama et al. (1993) using the

Lyapunov method and the small-gain theorem. But their result is proven for

a more restrictive assumption, namely: . Furthermore, those

authors defined γ as the H∞ norm of an optimally controlled time-delay

system, while in our case γ is the H∞ norm of a delay-free system.

Condition (4.22) can be remarkably improved, if all elements of the matrices

A0, Ai which are not involved in the corresponding characteristic equation

are omitted (cf. Subsection 3.2.6).

σ G jω( )CL( ) σ jωI A0– Aie
jωih–

i 1=

k

∑–
 
 
 

1–

=

1
σ G jω( )CL( )
----------------------------- σ jωI A0– Aie

jωih–

i 1=

k

∑–
 
 
 

=

1
σ G jω( )CL( )
----------------------------- σ jωI A0–[ ]( ) σ Aie

jωih–

i 1=

k

∑–
 
 
 

–≥

1
σ G jω( )CL( )
-----------------------------

1

σ jωI A0–[ ] 1–( )
---------------------------------------- Ai 2

i 1=

k

∑–≥

1
σ G jω( )CL( )
-----------------------------

1

σ jωI A0–[ ] 1–( )
---------------------------------------- Ai 2

i 1=

k

∑– 1>≥

1
G jω( )CL ∞

-----------------------------
1
γ
--- Ai 2

i 1=

k

∑– 1>≥

1 γ–
γ

----------- Ai 2

i 1=

k

∑>

Ai 2

k

∑ 1<
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4.3 Robustness bounds for unstructured uncertainties

The uncertain dynamical system

x
.
(t) = A0x(t) + + ∆0(t, x(t)) (4.24)

is considered. The function ∆0(t, x(t)) is unknown and represents the

system’s nonlinear parametric perturbation with respect to the current state

x(t). It is assumed that ∆0(t, x(t)) is cone bounded, i.e.,

 . (4.25)

Here, a system is said to be robust if it is tolerant to changes within certain

specific bounds of perturbation. As described in Section 3, we distinguish

among several types of robust stability tests depending on the information of

the delay involved in the test:

• delay-dependent stability criteria (delays may be constant or variable)

• stability criteria independent of constant delays

• stability criteria independent of a delay constant.

The proofs of the criteria presented in the following are straightforward.

Since they are elaborated in Section 3 for single-delay systems, we will here

only note the stability conditions.

Delay-independent: It is assumed that the delays τi of the system (4.24) are

continuous and bounded, satisfying the inequality ∞ > τi(t, x(t)) > 0. Using

the reasoning of Theorem 3.4, we obtain the following sufficient stability

condition

(4.26)

while the stability test

Aix t τ i–( )
i 1=

k

∑

∆0 t x, t( )( ) 2 β x t( ) 2⋅≤

µ A0( )2 Ai 2

i 1=

k

∑ β 0<+ +
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(4.27)

is a special case of Theorem 4.4 established in the next subsection. An

improvement of the stability condition using a transformed state vector tech-

nique of the form z(t) = Tx(t) (cf. Subsection 3.2.6) is not likely, since the

term β in (4.26) and (4.27) becomes ||T –1||.||T ||.β.

Independent of constant delays: A convenient robustness test of this type

follows from Corollary 3.3. The system (4.24) with constant delays τ i is

asymptotically stable if the inequality

(4.28)

holds.

Independent of a delay constant: None of the various stability conditions

listed in Subsection 3.2.3 have been analysed for perturbed systems of the

form (4.24). However, the stability condition of Hmamed (1991) is suitable

to be applied to this problem. The system (4.24) with constant delays of the

form τ i = i.h is asymptotically stable if 

∀ | z | = 1 (4.29)

where z = ejω, ω ∈ [0, 2π]. Checking the validity of (4.29) for all values

|z | = 1 is generally a cumbersome task. However, for systems of low order

the condition is applicable.

Example 4.3: The simple uncertain time-delay system

(4.30)

is considered to compare the various stability conditions. They yield the fol-

lowing bounds:

µ A0
1
2
--- AiAi

T

i 1=

k

∑+( )
2

1
2
--- β+ 0<+

λmax A0 A0
T 2βI 4k Ai A0 A0

T 2βI+ +( )
1–
Ai

T

i 1=

k

∑–+ +( ) 0<

µ A0 Aiz
i

i 1=

k

∑+( )
2

β 0<+

x· t( ) 3– 1

1– 5–
x t( ) 0.5 0

0.75 1
x t τ–( ) ∆ t x t( ),( )+ +=
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 (4.26):

 (4.27):

 (4.28):

 (4.29):

Condition (4.29) is less restrictive than the others for a constant delay but re-

quires the greatest calculation effort. Condition (4.27) is remarkable since it

is easy to apply and is valid also for systems with variable delays. However,

a general comparison of the criteria is not available.

4.4 Robustness bounds for large-scale time-delay systems

In recent years, a number of stability criteria for large-scale systems with

delays have been developed. Mori et al. (1981) derived a stability criterion

using the comparison method. With the aid of the complex Lyapunov theo-

rem, Suh and Bien (1982), Hmamed (1986), as well as Wang and Song

(1989) obtained sufficient conditions for stability of large-scale systems.

Furthermore, Lee et al. (1984) studied the stabilization problem of

time-delay systems via generalized algebraic Riccati equations. Moreover,

Wang et al. (1991) gave a stability criterion using the Lyapunov theorem.

We deal with the Razumikhin stability theorem for uncertain large-scale sys-

tems. The uncertainties may be linear, nonlinear, and/or time-varying. The

result is presented in a scalar inequality which contains the matrices of each

subsystem. While in the above-mentioned papers the stability conditions are

derived for constant delays only, the result presented here is valid for arbi-

trary bounded continuous delays depending on time and state variables.

∆0 2 1.71…<

∆0 2 2.34…<

∆0 2 2.36…<

∆0 2 2.41…<
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Consider an uncertain large-scale system with delays which is composed of

N interconnected subsystems Si, i = 1, 2, ..., N. Each subsystem is described

by

: 
.
Xi(t) = (4.31)

where Xi ∈ Rni represents the state of the subsystem Si. It is assumed that all

of the delays τi j(Xj(t), t) are bounded and continuous functions. For briefness

we shall write τ i j instead of τi j(Xj(t), t). Furthermore, it is supposed that the

nonlinear parametric uncertainties are bounded by the following inequalities:

 where . (4.32)

Theorem 4.4: System (4.31) is asymptotically stable independent of delay, if 

i = 1, ..., N . (4.33)

Proof: Given the assumption above, the Razumikhin theorem (cf. Section

3.1) can be applied to establish stability condition (4.33). The Lyapunov-Ra-

zumikhin function is chosen to be of the class of quadratic forms

 . (4.34)

Determining the derivative of (4.34) and using (4.31) and (4.32), we obtain

 (4.35)

Using the fact that for any matrices U1 and U2 with appropriate dimensions

[146], [156]

Si AiXi t( ) ∆i Xi t( ) t,( ) AijXj t τ ij Xj t( ) t,( )–( )
j 1=

N

∑+ +

∆i Xi t( )( ) 2 βi Xi t( ) 2≤ βi 0 ∞ ),[∈

µ Ai
1
2
--- AijAij

T

j 1=

N

∑+( )
2

βi
N
2
----+ + 0<

V Vi

i 1=

N

∑ Xi t( )TXi t( )
i 1=

N

∑= =

Vi

i 1=

N

∑ X{ i t( )T

i 1=

N

∑ Ai
T Ai+[ ] Xi t( ) 2βi Xi t( ) 2

2+ +≤

2 Xi t( )TAijXj t τ ij–( )} .
j 1=

N

∑+

U1
TU2 U2

TU1 U1
TU1 U2

TU2+≤+
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we obtain from (4.35)

(4.36)

According to Razumikhin, the inequality

and hence 

must be satisfied to ensure asymptotic stability. Thus, (4.36) yields

(4.37)

Inequality (4.37) can be rewritten as

(4.38)

where

and

Vi

i 1=

N

∑ X{ i t( )T

i 1=

N

∑ [Ai
T Ai AijAij

T

j 1=

N

∑+ + ]Xi t( ) 2βi Xi t( ) 2
2+ +≤

Xj t τ ij–( )TXj t τ ij–( ) }  .
j 1=

N

∑+

Vi Xi t( )( )
i 1=

N

∑ Vi Xi θ( )( )
i 1=

N

∑≥ t τmax– θ t≤ ≤

Xj t( )TXj t( )
j 1=

N

∑ Xj t τ ij–( )TXj t τ ij–( )
j 1=

N

∑≥

Vi

i 1=

N

∑ Xi t( )T{
i 1=

N

∑ [Ai
T Ai AijAij

T

j 1=

N

∑+ + ]Xi t( ) 2βi Xi t( ) 2
2+ +<

Xj t( )TXj t( ) } .
j 1=

N

∑+

Vi

i 1=

N

∑ x t( )T

M1 0

.

.

0 MN

x t( )<

x t( )T X1 t( )T … XN t( )T, ,[ ]=
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 .

Here,  is the identity matrix. Since V
.

i has to be negative along the

trajectories of (4.31) condition (4.33) follows from inequality (4.38). The

proof is complete. ❏

Example 4.4: In order to illustrate the stability condition, we consider the

large-scale time-delay system with linear uncertainties given in Wang et al.

(1991):

Applying condition (4.33) we calculate the robustness bounds for the above

system such that the inequalities

(4.39)

Mi Ai
T Ai AijAij

T I 2βi N+( )⋅+
j 1=

N

∑+ +=

I R
ni ni×

∈

X1 t( ) 5– 1

2 7–
∆1+

 
 
 

X1 t( ) 1 1

1 1
X1 t τ11–( )+ +=

0.1 0.2

0.1 0.2
X2 t τ12–( ) 0.2 0.3

0.2 0.3
X3 t τ13–( )+ +

X2 t( ) 6– 2

1 6–
∆2+

 
 
 

X2 t( ) 1 1

1 1
X2 t τ22–( )+ +=

0.3 0.2

0.3 0.2
X1 t τ21–( ) 0.4 0.2

0.4 0.2
X3 t τ23–( )+ +

X3 t( ) 7– 2

1 5–
∆3+

 
 
 

X3 t( ) 1 1

1 1
X3 t τ31–( )+ +=

0.4 0.3

0.4 0.3
X1 t τ32–( ) 0.2 0.5

0.2 0.5
X2 t τ33–( )+ +

∆i µ Ai
1
2
--- AijAij

T

j 1=

N

∑+( )
2

–
N
2
----–≤
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hold. From (4.39) we find the following allowable bounds

 .

The bounds given by Wang et al. (1991) are

 .

Note that the method of Wang et al. (1991) has been proven for constant de-

lays only.

Example 4.5: Applying Theorem 4.4, it can be shown that the large-scale

system discussed by Hmamed (1986) and Wang and Song (1989) is also

asymptotically stable independent of any continuous bounded time-varying

and state-dependent delay. In contrast to the methods of Hmamed (1986) and

Wang and Song (1989) , no complex Lyapunov equation needs to be solved.

∆1 2 0.6336<

∆2 2 0.6700<

∆3 2 0.2850<

∆1 2 0.3117<

∆2 2 0.5833<

∆3 2 0.3117<
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5 Controllability

Controllability is a fundamental structural attribute of any control system,

dealing with the relationship between the input and the state of the system.

More specifically, system controllability addresses the following question:

Does a control u always exist which can transfer the initial state of the system

to any desired state in a finite time?

The aim of this chapter is to give a survey of the various controllability and

related stabilizability concepts of linear systems with time delays of the form

x
.
(t)  = A0x(t) + t ≥ t0 (5.1)

x(t) = ϕ(t) t0 – τk ≤ t ≤ t0 (5.2)

where A0, Ai ∈ Rn × n
, B ∈ Rn × m

. Unless noted otherwise, it is assumed in the

following that the delays are constant and commensurate, i.e., τi = i .h with

h > 0. In certain cases, controllability criteria for systems with noncommen-

surate or time-dependent delays are noted. It would be very useful to have

controllability criteria independent of a delay constant or of time-varying

delays, since the values of the delays are difficult to estimate. Unfortunately,

such robust controllability criteria are known only in some special cases. 

The literature on controllability of delay systems is quite rich. In early works,

the research concentrated mainly on the reachability of the trajectory

endpoint x(t1) for some final time t1 (cf. Section 5.1). Next, some authors

tried to examine reachability of arbitrary final states xt1
 in some function

spaces (cf. Section 5.2). It soon appeared that this concept is much too strong

to be useful in control theory since it typically requires rank(B) = n. It turns

out that the concept of approximate controllability (cf. Section 5.3) is much

less restrictive. However, in many systems not all of the components of the

state are delayed. For such systems the requirement that all the components

of the state must be approximately controllable in a function space might be

too strong as well. This provides some motivation for a controllability

Aix t τ i–( ) Bu t( )+
i 1=

k

∑
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concept, called F-approximate controllability which is weaker than the

approximate controllability concept (cf. Section 5.4). The concepts of

approximate, F-approximate, and function-space controllability are strongly

related to spectral controllability (cf. Section 5.5). The latter mainly deals

with eigenvalues considerations.

5.1 Rn-controllability

In time-optimal control theory, it is assumed that starting from some initial

state the target point can be reached in a finite time by using some admissible

control. We consider here the target to be a point in the Euclidean space Rn .

Definition 5.1 [26, p. 193]: The linear control process (5.1) is Rn
-control-

lable (also denoted as Euclidean controllable or relatively controllable) if for

every ϕ ∈ C([t0 – τk, t0], Rn
) there exist a finite time t1 and a square inte-

grable control u such that x(t1) = x1 ∈ Rn
. 

Definition 5.2: The linear control process (5.1) is Rn
-null-controllable (also

denoted as Euclidean null-controllable or relatively null-controllable) if for

every ϕ ∈ C there exist a finite time t1 and a square integrable control u

such that x(t1) = 0.

Rn
-null-controllability is sometimes designated as controllability to the

origin. Since in the literature the latter expression is used for different types

of controllability, e.g., compare [85, p. 134] and [150], we have not

mentioned it in Definition 5.2. It may be somewhat surprising that

Rn
-controllability and Rn

-null-controllability are defined separately, since

Rn
-controllability implies Rn

-null-controllability. However, Rn
-null-control-



121

lability is not sufficient for Rn
-controllability. This fact is outlined below.

It is well known that the linear, nondelayed system

x
.
(t) = A0x(t)

has the property that for every x1 = x(t1) there exists a vector x0 such that the

trajectory emanating from x0 at time t0 reaches x1 at time t1. A system with

this property is called pointwise complete. Weiss (1967) conjectured that the

system (5.1) with B = 0 is pointwise complete. Popov [117] and Zverkin

[159] showed independently that this conjecture is false. There exist linear

constant delay systems with the property that the trajectories associated with

admissible initial functions all attain values in a subspace of Rn
 at some t > t1.

This feature is observed in Popov’s example:

.
x1(t) = 2x2(t) t ≥ 0 = t0 (5.3)

.
x2(t) = – x3(t) + x1(t – 1) t ≥ 0 (5.4)

.
x3(t) = 2x2(t – 1) t ≥ 0 . (5.5)

Equation (5.4) yields

.
x
.
2 (t) = –

.
x3(t) +

.
x1(t – 1) t ≥ 0

.
x
.
2 (t) = – 2x2(t – 1) + 2x2(t – 1) t ≥ 1

.
x
.
2 (t) = 0 t ≥ 1 . (5.6)

Let c1, c2, and c3 be integration constants. Equation (5.6) yields

x2(t) = c1t + c2 (5.7)

for t ≥ 1. Using (5.7) together with (5.3) we obtain

x1(t) = c1t
2 + 2c2t + c3 (5.8)

and from (5.4) we find 

x3(t) = c1t2 – 2c1t + 2c2t – 2c2 + c3 . (5.9)
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Consequently,

(5.10)

for t ≥ 1. Viewed geometrically all trajectories reach the plane P:

x1(t) – 2x2(t) –  no later than t ≥ 1 and remain on P for all future

time. Such a system is called pointwise degenerated (as opposed to pointwise

complete).

Definition 5.3 [135]: The homogenous part of system (5.1) is pointwise de-

generate if there exist some non-zero η ∈ Rn
 and some time t1, t1 > t0 such

that η T.x(t1) = 0 for all initial conditions ϕ ∈ C([t0 – τk, t0], Rn
). (The com-

plementary property is called pointwise completeness.)

5.1.1 Pointwise completeness

Before discussing the connection between Rn
-controllability and pointwise

degeneracy some interesting published results on pointwise degeneracy are

briefly mentioned.

For single-delay systems, dimension 3 is the lowest dimension for which a

system can be pointwise degenerated [117]. For systems with two delays,

pointwise degeneracy may occur for n = 2 [159].

If a system is pointwise degenerate at time t1, then it is also degenerate at any

t2 where t2 > t1 [117]. Furthermore, if n = 2 and k = 2 (k = 3) degeneracy can

not occur before t = 2 (t = 3), where t0 = 0 [5]. A corresponding extension of

the latter statement is open as well as a general, easily verifiable condition

for pointwise completeness. However, for a single-delay system of the form

1 2– 1–

x1 t( )

x2 t( )

x3 t( ) 0≡

x3 t( ) 0≡
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x
.
(t) = A0x(t) + A1x(t – 1) (5.11)

the necessary and sufficient conditions are known [157]. The following nota-

tion is introduced to note the criterion. The matrices  ∈ Rn(j +1) × n(j + 1) and

Ej ∈ Rn × n(j + 1)
 j = 0, 1, 2, ... are defined by

where = A0, E0 = I ∈ Rn × n
. The matrices Uj ∈ Rn × n

, Zj ∈ Rn(j + 1) × n
, and

Fj ∈ Rn(j + 1) × m
 are defined in a recursive form:

U0 = I

Uj = Ej

Fj = Zj B .

Theorem 5.1 [157]: System (5.12) is pointwise complete at time t1 = j, j =

1, 2, ... iff the matrix

(5.12)

has rank n.

Condition (5.12) is laborious to apply. The criteria stated below are easy to

check but they are only sufficient.

Aj
˜

Aj
˜

A0 0

A1 A0

 .  . 

 .  . 

0 A1 A0

=

Ej 0 … 0 I, , ,[ ]=

Ã0

I

e
Ãj 1– Uj 1–

Zj U0
T … Uj

T, ,[ ]=

M(j) Ej 1– Fj 1– … Ej 1– Aj 1–
nj 1– Fj 1– EjZj,, ,[ ]=
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Corollary 5.1 [19]: System (5.11) is pointwise complete for all t1 ∈ [t0, ∞)

whenever A0A1 = A1A0.

Corollary 5.2 [4]: If there exist two n-dimensional column vectors a and b

such that A1 = abT, then the system (5.11) is pointwise complete.

5.1.2 Rn-controllability and Rn-null-controllability

While Rn
-controllability is unaffected by whether the system is pointwise de-

generate, Rn
-null-controllability is not. Since the null vector in Rn

 lies on the

terminal manifold on which all trajectories of the (free) degenerated system

end up, the available controls need only effect a transfer to the origin from

any point on this manifold to guarantee Rn
-null-controllability. Conditions

for Rn
-controllability are therefore sufficient for Rn

-null-controllability but

not vice versa unless the system is pointwise complete. However, Gabasov

and Kirillova [36, p. 61] presented an algebraic necessary and sufficient con-

dition for Rn
-controllability. This criterion is valid for the system

x
.
(t) = A0x(t) + (5.13)

where 0 < τ1 < .. . < τk < ∞ are constant delays. First, the so-called deter-

mining equation is introduced

(5.14)

where j = 0, 1, 2, . . ., (n – 1) and s ∈ [t0, t1].

Aix t τ i–( ) Bu t( )+
i 1=

k

∑

Vj s( ) A0Vj 1– s( ) AjVj 1– s τ i–( )
i 1=

k

∑+=

V0 s( )
  B  s = 0

  0  s 0≠
=
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Theorem 5.2 [36, p. 61], [40, p. 259]: System (5.13) is Rn
-controllable on

[t0, t1] iff

rank[{Vj (s)}j, s] = n (5.15)

where s ∈ {t0, t1}, j = 0, 1, ..., n – 1 .

Theorem 5.3 [85, p. 137]: System (5.13) is Rn
-null-controllable on [t0, t1] if

condition (5.15) is satisfied. Furthermore, this condition is also necessary if

the system is pointwise complete.

Example 5.1: The algebraic rank condition (5.15) is illustrated for the system

x
.
(t) = A0x(t) + A1x(t – h) + Bu(t) t ≥ 0 = t0 (5.16)

with n = 3. According to (5.14), V0 is nonzero only for s = 0:

V0(s = 0) = B

while V1 is a nonzero matrix at s = 0 and s = h:

V1(s = 0) = A0V0(0) + A1V0(– h)

V1(0) = A0B

V1(s = h) = A0V0(h) + A1V0(0)

V1(h) = A1B .

Similarly, we obtain for V2:

V2(0) = A0V1(0) + A1V1(– h)

V2(0) =

V2(h) = A0V1(h) + A1V1(0)

V2(h) = [A0A1 + A1A0]B

V2(2h) = A0V1(2h) + A1V1(h)

V2(2h) =  .

The nonzero values of Vi can be arranged in a scheme as shown in Table 5.1.

A0
2B

A1
2B
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Table 5.1

Now, Theorem 5.2 says that the system (5.16) is R3
-controllable for t1 > 0 iff

rank[B, A0B, ] = 3

and it is R3
-controllable for t1 > h iff

rank[B, A0B, , A1B, [A0A1 + A1A0]B] = 3 .

Furthermore, system (5.16) is R3
-controllable for t1 > 2h iff

rank[B, A0B, , A1B, [A0A1 + A1A0]B, ] = 3 .

If the latter condition is not valid for a system of the form (5.16) where n = 3,

then this system is not R3
-controllable for any t1 > 0.

Example 5.2: The system

x
.
(t) = A0x(t) + A1x(t – τ1) + A2x(t – τ2) +Bu(t)

with n = 3 is considered. The matrices V1(s), V2(s), and V3(s) are shown in

Table 5.2. It turns out that we have to distinguish between three cases, viz.:

τ1 < 0.5τ2, τ1 = 0.5τ2, and τ1 > 0.5τ2.

This example illustrates that the criterion is easier to apply if the delays are

commensurate (τi = i.h). The simplification is due to the fact that the variable

s has to be considered only for the values 0, h, 2h, .... The simplified proce-

dure for checking the R3
-controllability of commensurate delay systems is

summarized in the following corollary.

s = 0 s = h s = 2h

V0(s) B

V1(s) A0B A1B

V2(s) [A0A1 + A1A0]BA0
2B A1

2B

A0
2B

A0
2B

A0
2B A1

2B
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τ 1
<
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Corollary 5.3 The system

x
.
(t) = A0x(t) + (5.17)

is Rn
-controllable for t1 > (j f – 1).h iff the following matrix Q has rank n:

Q = [Q1, 1, ..., Qn, 1, Q1, 2, ...,Qn, 2, ..., Qn, jf
] (5.18)

where

Q1, 1 = B
(5.19)

Qr + 1, j = A0Qr, j +

r = 1, ..., n

j = 1, ..., jf ; jf ∈ [1, k(n – 1) + 1] ⊂ N

and Qr, j = 0 for j ≤ 0, or r ≤ 0, or j > r + k – 1.

Proof: For the system (5.17) the matrix Vi(s) is nonzero for s = 0, h, 2h, . . . .

Let be l = 0, 1, 2, .. . . We may write Vi(l .h) = Qi + 1, l + 1. Replacing i + 1 by r

and l + 1 by j, the recursive definition of Qi, j (5.19) follows from (5.14) and

the controllability matrix Q is obtained from (5.15). ❏

Corollary 5.3 is an extension of the controllability criterion of [85, p. 139]

formulated for single-delay systems. However, in our notation the indices are

defined differently such that the matrices Qi, j fit within the matrix scheme

introduced in Examples 5.1 and 5.2 (cf. Tables 5.1 and 5.2). The general

matrix scheme is shown in Table 5.3.

Table 5.3

s = 0 s = h ..

V0(s) Q1, 1 0 ..

V1(s) Q2, 1 Q2, 2 . .

: : : : :

Aix t i.h–( ) Bu t( )+
i 1=

k

∑

AiQr j i–,
i 1=

k

∑
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Furthermore, with this concept of indices, the exact lower bound for t1 and

its relation to the controllability matrix Q can be given. Theorem 5.2 shows

that the delays affect the value of t1 but not the algebraic rank condition

(5.15). Consequently, a controllability criterion independent of any delay

does not require the knowledge of the value τi for obtaining t1. Therefore,

Rn
-controllability on [0, τ1] implies Rn

-controllability independent of

constant delays since the only restriction for t1 is t1 > 0. Applying Theorem

5.2 for Rn
-controllability on [0, τ1] yields the following result.

Corollary 5.4: If the system 

x
.
(t) = A0x(t) + Bu(t)

is Rn
-controllable, then system (5.13) is Rn

-controllable independent of

constant delays.

Proof: Choosing jf = 1 in (5.19) Corollary 5.3 follows. ❏

In contrast to stability, Rn
-controllability can be checked by a linear

delay-free system. Another controllability criterion based on the considera-

tion of a delay-free system is given for the single-delay system

x
.
(t) = A0x(t) + A1x(t – τ(t)) + Bu(t) . (5.20)

It is assumed that the delay is continuous and bounded such that

0 ≤ τ(t) ≤ τmax < ∞.

Corollary 5.5 [81]: If the system 

x
.
(t) = (A0 + A1)x(t) + Bu(t)

is Rn
-controllable, then system (5.20) is Rn

-controllable for t1 > n.τmax .
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5.2 Function-space controllability

The true state of the system (5.1) is an element of some function space. Thus

the state at time t denoted by xt = x(t + θ), θ ∈ [– τk, 0] is a segment of the

trajectory (cf. Chapter 2). This supplies some motivation for examining the

question of controlling the difference-differential equation (5.1) from an

initial function to a terminal function. In this context the space of square inte-

grable Rq
-valued functions on [a, b] denoted by L

2
([a, b], Rq

) and the space

of absolutely continuous Rq
-values functions on [a, b] with square integrable

derivatives denoted by W
1, 2

([a, b], Rq
) are useful. Indeed, if ϕ ∈

W
1, 2

([t0 – τk, t1], Rn
) and u ∈ L

2
([t0, t1], Rm

) then x(t) is absolutely contin-

uous and by (5.1) it follows that x
. ∈ L

2
([t0, t], Rn

). Hence x ∈
W

1, 2
([t0, t1], Rn

) so that xt ∈  W
1, 2

([t0 – τk, t1], R
n
) for all t ∈ [t0, t1]. There-

fore, L
2
 as the class of admissible controllers and the Sobolev space W1, 2 as

the state space are frequently used in the literature, e.g. in [9], [26, p. 197].

Definition 5.4 [26, p. 197]: System (5.1) is called controllable (also denoted

as W1, 2-controllable, complete controllable or controllable to all functions

in W1, 2) if for every α, ϕ ∈ W1, 2 there exist a finite time t1 and a control

u ∈ L2 such that x t1
= α t .

Definition 5.5: System (5.1) is called null-controllable (also denoted as exact

null-controllable or controllable to zero function) if for every ϕ ∈ W1, 2 there

exist a finite time t1 and a control u ∈ L2 such that xt1
= 0 .

Function-space controllability criteria are available for the system 

x
.
(t) = A0x(t) + (5.13)

where the delays 0 < τ1 < .. . < τk < ∞ are constant and A0, Ai ∈ Rn × n
,

B ∈ Rn × m
. It is easy to see that if rank[B] = n the system (5.13) is control-

lable. Banks et al. 1975 [9] showed that this condition is also necessary:

Theorem 5.4: System (5.1) is controllable for any t1 > t0 + τ1 iff rank[B] = n.

Aix t τ i–( ) Bu t( )+
i 1=

k

∑
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The full rank of B required by Theorem 5.4 is very strong since we must have

as many control variables as state variables. There are very few practical situ-

ations where this condition will hold. However, weaker conditions are

obtained if controllability to the zero function is required only.

Theorem 5.5 [9]: System (5.13) is null-controllable for any t1 > t0 + τ1 iff 

(5.21)

and
rank[B, A0B, ..., ] = n (5.22)

where B† denotes the Moore-Penrose generalized (or pseudo) inverse of B.

(See [84, p. 32] for properties and [158, p. 156] for the computation of the

pseudo inverse.)

The conditions for null-controllability are still very restrictive as Theorem

5.5 shows. These restrictive conditions for the system matrices arise since t1
may be chosen from the interval [t0 + τ1, ∞) or, in other words, there are

systems which are not null-controllable for some t1 > t0 + τ1 but for t2 where

t2 > t1. This fact is especially important for a final time chosen from the

interval [t0, t0 + nτk]. For a final time t1 ≥ nτk + t0, Banks et al. (cf. Corollary

5.1 in [9]) showed that function-space controllability remains invariant to the

final time t1. This means that if the system (5.13) is not controllable for any

final time t1 in the interval [t0, t0 + nτk], then it is also not controllable for any

final time t1 > t0 + nτk. (This is also true for Rn-controllability as follows

from Corollary 5.3; see also Example 5.1.) The dependence of func-

tion-space controllability on t1 is illustrated by the two examples below.

Example 5.3: It follows from Theorem 5.5 that the system

x
.
(t) = A1x(t – τ1 ) + bu(t) (5.23)

with A1 ∈ Rn × n
 b ∈ Rn × 1

 is not null-controllable for any t1 > t0 + τ1.

However, Gabasov and Kirillova (1977) [36, p. 84] showed that (5.23) is

BB† Ai

i 1=

k

∑ Ai

i 1=

k

∑=

A0
n 1– B
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null-controllable for some finite time t1 if rank[B, A1B, ..., ] = n.

Equivalently, we could say that if (5.23) is Rn
-controllable, it is null-control-

lable for some finite time t1.

Example 5.4: A further system where Rn
-controllability implies controlla-

bility to a zero function is the following one:

x
.
(t) = A1x(t – τ1) + Bu(t)

where A1 ∈ Rn × n
, B ∈ Rn × m

, and rank[A1] = n. This system is null-control-

lable for a finite t1 according to [36, p. 79], but it follows from Theorem 5.5

that this system is not null-controllable for every t1 > t0 + τ1 .

These examples show that in some cases Rn
-controllability implies control-

lability to the zero function for some finite time t1. However, this is not true

in general as proven by a counterexample in [36, p. 84].

If t1 > n.τk then null-controllability is equivalent to spectral controllability

[111]. Spectral controllability will be discussed in Section 5.5. In order to list

all the important criteria for null-controllability the rank condition is stated

here, as well. Recall that the matrix ∆(s) is defined in Section 3.1 as follows:

∆(s) =  . (3.10)

The symbol Λ denotes the set of all eigenvalues of (5.13).

Theorem 5.6: System (5.13) is null-controllable for any t1 > n.τk iff 

rank[∆(s), B] = n ∀ s ∈Λ .

A1
n 1– B

sI A0– Aie
sτ i–

i 1=

k

∑–
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5.3 Approximate controllability

The previous subsection showed that function-space controllability is very re-

strictive. However, in many practical situations it is sufficient to reach the pre-

scribed final state xt1
 only approximately. A controllability concept which

prescribes the final state only approximately is called approximate controlla-

bility. It is supposed that this type of reachability is less restrictive than func-

tion-space controllability. However to the author’s knowledge, this conjec-

ture has not been confirmed. The available exact algebraic rank condition for

both controllability concepts are valid for different final times. Moreover, ap-

proximately null-controllable is equivalent to exact null-controllable for

t1 > n.τk [111]. The following controllability definitions and criteria refer to

the system

x
.
(t) = A0x(t) + t ≥ t0 (5.24)

x(t0) = x0 t = t0 (5.25)

x(t) = ϕ(t) t0 – τk ≤ t < t0 (5.26)

where A0, Ai ∈ Rn × n
, B ∈ Rn × m

, τ1 < .. . < τk < ∞, ϕ ∈ L2([t0 – τk, t0), Rn
),

and u ∈ L2([t0, t1], Rm
). The product space M2 = Rn × L2([– τk, 0], Rn

) is the

space of pairs (x, xt) = z, x ∈ Rn xt ∈ L2([– τk, 0), Rn
) with the inner product

.

This defines a norm [72, p. 129] 

 

and a metric on M2 given by

 .

Aix t τ i–( ) Bu t( )+
i 1=

k

∑

z y,〈 〉
M2 xTy x t θ+( )T

τk–

0

∫+= x t θ+( )dθ

z
M2 z z,〈 〉

M2 x
Rn
2 xt L2

2+= =

z y–
M2 z y– z y–,〈 〉

M2=
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Definition 5.6 [89]: System (5.24) is M2-approximately controllable if for

any z0 = (x(t0), xt0
) ∈ M2 and any α ∈ M2 there exist a finite time t1 and a

control u ∈ L2 such that  for every ε > 0 where (x(t1), xt1
) = zf . 

Definition 5.7 [89]: System (5.24) is approximately null-controllable if for

any z0 ∈ M2 there exist a finite time t1 and a control u ∈ L2 such that

 for every ε > 0 . 

The concept of the closure is usually applied to define M2-approximate

controllability [89], [111], and [40, p. 269]. We use the metric since it is

closer to the engineering way of thinking. An algebraic characterization of

this controllability concept was given by Manitius (1981):

Theorem 5.7 [89]: System (5.24) is approximately controllable for any

t1 > n.τk iff 

rank[∆(s), B] = n for all s ∈Λ (5.27)

and 
rank[Ak, B] = n. (5.28)

Theorem 5.8 [123]: System (5.24) is approximately null-controllable for any

t1 > n.τk iff 

rank[∆(s), B] = n for all s ∈Λ . (5.29)

Theorem 5.8 says that M2-approximately null-controllability is equivalent to

spectral controllability. A device for the verification of condition (5.27) or

(5.29), respectively, is illustrated in Section 5.5 where spectral controllability

is considered.

zf α–
M2 ε<

zf M2 ε<
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5.4 F-approximate controllability

Full state space controllability as illustrated in the last two sections has been

studied by the approach of approximate controllability in M2 and exact

controllability in W1, 2. In each case, controllability in the full state space led

to very restrictive conditions for the system matrices. This suggests that from

the controllability point of view, the full state space is “too big” and that one

therefore should search for a “smaller space” in which controllability would

be characterized by less restrictive conditions, without losing the link with

stabilizability and spectral controllability. The idea is that in many systems

not all of the components of the state are delayed. For such systems the

requirement that all the components of the state be approximately/exactly

controllable might be too strong. In 1976, Manitius introduced the concept of

F-approximate controllability which corresponds to controllability of a

delayed system in a subspace of M2. (Since this subspace is characterized by

an operator denoted by F this reachability concept is called F-controllability.

We shall not consider this operator here; for details see [123].) To this

author’s knowledge, exact F-controllability is not discussed in the literature,

except the dual problem: exact F-observability [107]. We shall not consider

this concept here since the corresponding criterion is hard to apply. Before

stating the available results on F-approximate controllability, some notation

has to be defined. In this section, system (5.17) is considered:

x
.
(t) = A0x(t) + t ≥ t0 (5.17)

x(t0)= x0 t = t0 

x(t) = ϕ(t) t0 – τk ≤ t < t0 

where Ai ∈ Rn × n
, B ∈ Rn × m, ϕ ∈ L2([t0 – τk, t0), Rn

), and u ∈ L2([t0, t1], Rm
).

Again the product space M2 is used (cf. Section 5.3). The pairs z0 = (x0, xt0
)

and zf = (x(t1), xt1
) are elements of M2 and characterize the initial and final

state, respectively.

Aix t i.h–( ) Bu t( )+
i 1=

k

∑
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Definition 5.8 [90]: System (5.17) is F-approximately controllable if for any

z0 ∈ M2 and any α = (α 0, α t) ∈ M2 there exist a finite time t1 and a control

u ∈ L2 such that

for every ε > 0 . 

Theorem 5.9 [123]: System (5.17) is F-approximately controllable for any

t1 > n.τk iff 

rank[∆(s), B] = n (5.30)

and 

rank = n + rank  (5.31)

for all s ∈Λ  .

For systems with no delays, F-approximate controllability is equivalent to

the standard Euclidean controllability. Moreover, if det[Ak] ≠ 0 F-approxi-

mate controllability is equivalent to approximate controllability [90]. Finally,

from the fact that F-approximate controllability is weaker than approximate

controllability and implies spectral controllability [90], Theorem 5.10

follows:

Theorem 5.10: System (5.17) is F-approximately null-controllable for any

t1 > n.τk if

rank[∆(s), B] = n for all s ∈Λ . (5.32)

x t1( ) α0–
Rn
2 Aixt1

Aiα t–
L2

2

i 1=

k

∑+ ε<

A0 sI– A1 . . Ak B

A1 . . Ak 0 0

. . . .

. . . .

Ak 0 0 0

A1 . . Ak

. .

. .

Ak 0
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5.5 Spectral controllability

A linear system is spectrally controllable if there exists a controller which
can move all of the eigenvalues of the system to any position in the complex
plane. Moreover, (spectral) stabilizability implies the existence of a control-
ler which can move all of the eigenvalues with positive real parts to the left
side of the complex plane. In general, a time-delay system has infinitely
many eigenvalues, but it possesses only a finite number of eigenvalues with
positive real part. This caused some Russian authors, e.g. [68], to investigate
the stabilizability of retarded system. Krasovskii considered the subspace of
the state space which is spanned by the eigenvectors of the unstable eigen-
values. Since this subspace is finite dimensional, the verification of the sta-
bilizability and the design of a stabilizing state-feedback controller is
calculable. This method, based on the decomposition of the state space,
belongs to the spectral decomposition theory (cf. [43] Section 7.1-7.4, [6],
[7], [140]). A further result obtained with the help of this theory was the gen-
eralisation of the Popov-Belevitch-Hautus test for time-delay systems. This
result was derived independently by Bhat and Koivo (1976) [7] and, for a
more general system, by Pandolfi (1976) [114]. The definitions and theorems
in the following refer to the difference-differential equation of the form

x
.
(t) = A0x(t) + (5.13)

where A0, Ai ∈ Rn × n
, B ∈ Rn × m

, and 0 <  τ1 < .. . < τk < ∞ .

Definition 5.9 [114]: System (5.13) is spectrally controllable if there exists a
controller of the form

(5.33)

such that all eigenvalues of the closed-loop system 

(5.34)

can be assigned.

Aix t τ i–( ) Bu t( )+
i 1=

k

∑

u t( ) K0x t( ) K1 θ( )x t θ+( ) θd
τk–

0

∫+=

x· t( ) A0 K+ 0[ ] x t( ) Aix t τ i–( )
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k
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Definition 5.10 [114]: System (5.13) is ν-stabilizable (where ν is a finite real

number) if there exists a controller of the form (5.33) such that all of the

eigenvalues of (5.34) with Re(λ) ≥ ν can be assigned.

Theorem 5.11 [114]: System (5.13) is stabilizable iff 

rank[∆(s), B] = n for all s ∈Λ with Re(s) ≥ 0 . (5.35)

Theorem 5.12 [114]: System (5.13) is spectrally controllable iff 

rank[∆(s), B] = n for all s ∈Λ . (5.36)

Condition (5.36) can be formulated as an extended Kalman rank condition,

which is a more common form of the criterion.

Theorem 5.13 [130]: System (5.13) is spectrally controllable if

rank[B, , ..., ] = n (5.37)

for all s ∈Λ .

Note that condition (5.37) is only sufficient as has been shown by Spong and

Tarn (1981). A generalisation of Theorem 5.11 for systems with additional

delays in the control was given by Olbrot (1978). Condition (5.35) is strongly

related to the existence of an optimal LQ-regulator for time-delay systems

(cf. Chapter 6). 

The verification of condition (5.35) can be performed numerically by

computing the eigenvalues with positive real parts using the algorithm intro-

duced in Section 3.4. The algorithm of Carpentier-Dos Santos (cf. Subsection

3.4.6) and Corollary 3.6 enable us to check whether all of the eigenvalues in

the right half of the complex plane have been found. At first glance, (5.36)

might require the computation of all the eigenvalues of (5.13). 

A0 Aie
sτ i–

i 1=

k

∑+ B A0 Aie
sτ i–

i 1=

k
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This can actually be avoided by a device of Manitius and Triggiani (1978):

adj[∆(s)]. B ≠ 0 ⇒ rank[∆(s), B] = n

where s ∈Λ  and adj means the matrix adjoint (cf. [84, p. 10]). 

Example 5.5: The system

.
x(t) = (5.38)

is considered. For which values of the delay τ is the system (5.38) spectrally

controllable or stabilizable? We have

 .

Suppose 

 .

From the first row we have e–sτ = 0.5. Substituting this into the second row

we have s – 0.5 = 0, hence s must be 0.5. Then the equality e–sτ = 0.5 is sat-

isfied only for τ = – 2.ln(0.5) ≈ 1.386. For that particular delay and for

s = 0.5 the matrix

has rank 1. Therefore, the system (5.38) is spectrally controllable as well as

stabilizable for all τ > 0 except for τ = – 2.ln(0.5). 

0 1–

2  2
x t( ) 1   2

1 3–
x t τ–( ) 0

1
u t( )+ +

∆ s( )    s e sτ–– 1 2e sτ––

2– e sτ––       s 2– 3e sτ–+
=

adj ∆ s( )[ ] s 2– 3e sτ–+     – 1 2e sτ–+

2 e sτ–         +     s e sτ––
=

adj ∆ s( )[ ] B⋅ 1– 2e sτ–+

s e sτ––
0= =

∆ s = 0.5( ) B,
0  0  0

2.5–  1  1
=
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5.6 The dual problem: Observability

The concept of observability is concerned with the following problem. Given

the system

x
.
(t) = A0x(t) + Bu(t)

y(t) = Cx(t)

its input u, and output y over a finite time interval, determine the initial func-

tion. Since it is assumed that u and B are known and the solution of differen-

tial equation above can be superposed by the zero-initial state response and

the zero-input response, the problem of system observability can be

addressed when the control u is identically zero. This means that given a

system and its zero-input response over a finite time interval, find the initial

state. Thus, with no loss of generality we can assume that  and study the

observability of the system

x
.
(t) = A0x(t) + t ≥ t0 (5.39)

x(t0)= x0 t = t0 

x(t) = ϕ(t) t0 – τk ≤ t < t0 

y(t) = Cx(t) t ≥ t0 . (5.40)

The observability of system described by (5.39) and (5.40) is dual to the con-

trollability of the system

x
.
(t) = x(t) + + . (5.41)

This means that controllability of system (5.41) implies observability of

system (5.39), (5.40) (cf. [40, Sections 8.1 and 8.4]). Consequently, there are

several observability concepts. 

An observability type is denoted as strong if the observation time is restricted

to the length of the maximum delay τmax = k.h of the system. Furthermore,

Aix t ih–( )
i 1=

k

∑

u 0≡

Aix t ih–( )
i 1=

k

∑

A0
T Ai

Tx t ih–( )
i 1=

k

∑ CTu t( )
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if a system is not observable on [0, n.k.h] it is not observable on any larger

(or smaller) time interval. Below, the exact definitions together with the

corresponding available criteria are enumerated. 

Definition 5.11: System (5.39), (5.40) is Rn
-observable if the initial point

x(t0) can be uniquely determined from the observation y(t) over a finite

interval of time [t0, t1] for any function ϕ ∈ L2([t0 – kh, t0), R
n
). 

Theorem 5.14: System (5.39), (5.40) is Rn
-observable for t1 > (j f – 1).h, iff

the following matrix Q has rank n:

Q = [Q1, 1, ..., Qn, 1, Q1, 2, ...,Qn, 2, ..., Qn, jf
] (5.42)

where

Q1, 1 = CT 

Qr + 1, j = Qr, j +

r = 1, ..., n

j = 1, ..., jf ; jf ∈ [1, k(n – 1) + 1] ⊂ N 

and Qr, j = 0 for j ≤ 0, or r ≤ 0, or j > r + k – 1.

Definition 5.12: System (5.39), (5.40) is called observable (or function space

observable or W1, 2-observable) if every ϕ ∈ W1, 2([t0 – kh, t0], Rn) can be

uniquely determined from the observation y(t) over a finite time interval

[t0, t1].

Theorem 5.15: System (5.39), (5.40) is strongly observable (i.e., observable

for t1 > t0 + kh) if rank[C] = n.

A function-space observability criterion for time-varying systems has been

suggested in [85, p. 145]. However, for a time-invariant system of the form

(5.39), (5.40) this criterion is equivalent to the Rn
-observability rank test of

Theorem 5.14. Therefore, these results are questionable.

A0
T Ai

TQr j i–,
i 1=

k

∑
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Definition 5.13: System (5.39), (5.40) is M2-approximately observable if

every initial state z0 = (x(t0), xt0
) ∈ M2 can be estimated by = ( (t0), t0)

from the observation y(t) over a finite time interval [t0, t1] such that

 for every ε > 0 .

Theorem 5.16: System (5.39), (5.40) is approximately observable for any

t1 > n.k.h, iff 

 (5.43)

for all s ∈Λ  and 
rank[ , ] = n (5.44)

where Λ is the set of eigenvalues of (5.39).

Definition 5.14: System (5.39), (5.40) is F-approximately observable if every

initial state z0 = (x(t0), xt0
) ∈ M2 can be estimated by = ( (t0), t0

) from

the observation y(t) over a finite time interval [t0, t1] such that 

for every ε > 0 .

Theorem 5.17: System (5.39), (5.40) is F-approximately observable for any

t1 > n.k.h, iff 

 (5.45)

for all s ∈Λ  and 

rank = n + rank  . (5.46)

ẑ0 x̂ x̂

z0 ẑ0–
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Definition 5.15: System (5.39), (5.40) is spectrally observable if all its eigen-

values are observable. An eigenvalue λ is observable when any corre-

sponding eigensolution of the form x(t) = x(t0)e
λ t, x(t0) ≠ 0 yields y(t) ≠ 0 on

[0, ∞).

Definition 5.16: System (5.39), (5.40) is ν-detectable (where ν is finite and a

real number), if all its eigenvalues with Re(λ) ≥ ν are observable.

Theorem 5.18: System (5.39), (5.40) is spectrally observable iff

(5.47)

for all s ∈Λ . System (5.39), (5.40) is ν-detectable iff (5.47) holds for all s ∈Λ
with Re(s) ≥ ν.

Theorem 5.19: System (5.39), (5.40) is spectrally observable if

rank = n .

for all s ∈Λ .

rank ∆ s( )

C
n=

C

C A0 Aie
shi–

i 1=

k

∑+

:

C A0 Aie
shi–

i 1=

k

∑+

n 1–
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Control

6 State-feedback control methods: A classification

This chapter is devoted to a brief overview of state-feedback control

approaches for time-delay systems of the form

x
.
(t) = A0x(t) +  . (6.1)

Various methods have been proposed to control this time-delay system.

These methods can be classified into six groups, which are briefly described

below:

I) The algebraic approach over a ring of polynomials

II) The spectrum decomposition method

III) The finite spectrum assignment technique

IV) Optimal control

V) Suboptimal control

VI) Finite dimensional approximations

I) The algebraic approach over a ring of polynomials [42], [61]: Using the

delay operator dix(t) := x(t – i.h), the retarded system (6.1) can be rewritten

as

.
x(t) = A(d)x(t) + Bu(t) (6.2)

where A(d) = A0 + A1d
1 + ... + Akd

k. System (6.2) is called a system over

rings. It is of the form of an ordinary system, with the big difference that the

elements of the matrix A(d) are polynomials in d. The necessary and

Aix t τ i–( ) Bu t( )+
i 1=

k

∑
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sufficient conditions in terms of the matrices A(d) and B for stabilizability,

controllability, and observability are known [42]. Perhaps one of the most

interesting results of that theory is that a stabilizable delay system can always

be stabilized by a finite-dimensional compensator [61]. However, up until

now, this compensator has been determined approximately only [42], [61].

Furthermore, optimal control problems are not considered for systems over

rings of the form (6.2). A survey of the results concerning systems over rings

has been published in [42]. 

II) The spectrum decomposition method [68], [114], [140], [43, Sections

7.1-7.4]: In this method, the subspace C+ of the state space C of (6.1) is con-

sidered. This subspace C+ is spanned by the eigenfunctions of the unstable

eigenvalues of (6.1). Since a time-delay system has only a finite number of

eigenvalues with positive real part, the spectral projection of system (6.1)

into C+ is described by a finite dimensional system of the form
.
xλ(t) =

Aλxλ(t) + Bλuλ(t) where Aλ and Bλ are real matrices. The stabilizability of the

system (6.1) guarantees the existence of a controller uλ(t) = Kλxλ(t) such that

the term Aλ + BλKλ is stable. The matrix Kλ can be found, e.g., by solving an

algebraic Riccati equation of the form  =

0 where Qλ ≥ 0, Rλ > 0, and Kλ = – . In the state space of the origi-

nal system (6.1), the controller uλ(t) = Kλxλ(t) is given by

 . (6.3)

The matrices K0 and K1(θ) are determined by Kλ and the left and right eigen-

functions of the associated unstable eigenvalues (for details see [140]).

An advantage of this method is that all tools which are available for linear,

nondelayed systems can be applied for time-delay systems as well. However,

this requires the knowledge of the open-loop spectrum in the right-half com-

plex plane as well as the calculation of the corresponding left and right eigen-

functions. Especially the latter calculations can be a cumbersome task, since

they usually have to be performed analytically. Furthermore, the controller

always influences only a finite number of eigenvalues of (6.1).

Aλ
TPλ PλAλ PλBλRλ

1– Bλ
TPλ– Qλ+ +

Rλ
1– Bλ

TPλ

u t( ) K0x t( ) K1 θ( )x t θ+( ) θd
k h⋅–

0

∫+=
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III) The finite spectrum assignment technique [114], [148]: The goal is the

construction of a linear state feedback such that the corresponding closed-

loop system has a finite number of eigenvalues located at an arbitrarily pre-

assigned set of points in the complex plane. This method does not require a

preliminary knowledge of the plant’s spectrum. It requires only that n spec-

tral points be assigned, while the others are automatically eliminated. Iff the

system is spectrally controllable, it is finite spectrum assignable. However,

to this author’s knowledge, all spectrum assignment control laws are valid

for SISO systems only. Furthermore, the resulting controller usually cannot

be expressed in the form (6.3), since it requires additional terms. This

increases the implementation effort of this controller.

IV) Optimal control: The study of optimal control for systems with delays

has a history of over thirty years. In the early days, the so-called LQ-regulator

was the main research topic (see, e.g., [67] and [122]). The LQ-regulator is

the optimal regulator for the linear system (6.1) associated with the following

quadratic cost function

where Q ≥ 0 and R > 0. The regulator is of the form 

. (6.4)

Subsequently, the existence of the optimal controller, its characterization by

Riccati equations, and the existence of Riccati solutions for systems with

delays in the state were studied, e.g., [30]. Generalizations of the delay struc-

tures in systems and costs were established in further research, e.g., [31],

[52]. Furthermore, for a cost criterion with infinite horizon

(6.5)

J u( ) x t( )TFx t( ) x t( )TQx t( ) u t( )TRu t( )+{ } td
t0

t1

∫+=

u t( ) K0 t( )x t( ) K1 t θ,( )x t θ+( ) θd
k h⋅–

0

∫+=

J u( ) x t( )TQx t( ) u t( )TRu t( )+{ } td
t0

∞

∫=
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the stability of the optimally controlled system was established in [31].

Moreover, the resulting closed-loop system was found to have the same de-

sirable sensitivity and robustness properties as finite-dimensional systems

do. It has in fact been shown in [80] that the closed-loop system satisfies the

circle condition. The calculation of the LQ-regulator for the system (6.2) as-

sociated with the cost criterion (6.5) involves the problem of solving partial

differential equations, the so-called infinite-dimensional Riccati equation.

Various efficient algorithms for this problem have been derived. Two suitable

numerical methods are introduced in Chapter 8. In Chapter 7 the correspond-

ing optimal control problem is considered.

A similar development can be observed for related optimization problems

such as time-optimal control [26, Chapter 7], dynamic programming [85,

Section 6.5], and the Hamilton-Jacobi-Bellman equation [8]. However, these

developments are not subjects of this work.

V) Suboptimal control [85, Chapter 7]: The LQ-regulator problem is consid-

ered for a finite, preassigned time interval. Suboptimal control approaches

for time-delay systems avoid the computation of the infinite-dimensional

Riccati equation. The control laws obtained are of the form

whereas the exact solution (LQ-regulator) is of the form (6.4)

 .

Suboptimal control approaches involve solving nondelayed, linear optimiza-

tion problems repeatedly, such that their solutions move closer to the optimal

solution as the number of repetitions increases. One approach for deter-

mining suboptimal control for time-delay systems is based on the concept of

optimal control sensitivity. In this technique, the control is expanded into a

MacLaurin series in some parameters. The coefficients of the truncated series

are computed from the optimization of some related nondelayed system.

Another method is to treat the delay terms in the state as extra perturbing

u t( ) K0x t( ) g t( )+=

u t( ) K0 t( )x t( ) K1 t θ,( )x t θ+( ) θd
k h⋅–

0

∫+=
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inputs, such that the problem is converted into a nondelayed problem. Subop-

timal control methods are not considered here, since the corresponding

control laws are valid only for a finite time.

VI) Finite dimensional approximations: The idea of this approach is to

approximate time-delay systems by finite-dimensional systems. The approx-

imation can be performed in the frequency and in the time domain. The rela-

tion between these two approaches has not been completely investigated.

The approximation methods in the time-domain can be classified into two

types: the semi-discretization technique and the full discretization technique.

The first type consists of the replacement of the delay-differential equation

by a linear ordinary differential equation (discretization of the space variable

only). In the full discretization technique, a time-delay system is replaced by

a discrete time system by a simultaneous discretization of the space and the

time variables. In both methods, the dimension of the approximation system

grows with the desired precision. During the last two decades the semi-

discretization approach has mainly been considered and various efficient

algorithms have been derived. A finite-dimensional approximation of a time-

delay system allows to apply all control design tools to linear nondelayed

systems or to discrete-time systems, respectively. However, these techniques

lead to high-order systems. In Chapter 8, two approximation techniques of

time-delay systems using state-space representations are considered.

Each approach has its advantages and disadvantages. However, combina-

tions of the various approaches yield easily applicable controller design

methods. For instance, finite-dimensional approximations of a time-delay

system can be used to solve the infinite-dimensional Riccati equation for

obtaining an approximation of the LQ-regulator. Moreover, stability criteria

may be used to confirm the closed-loop stability. This procedure is outlined

in Chapter 8. The other approaches are not considered further, since their

applications are limited, as mentioned above.
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7 Optimal Control: The optimal regulator

Consider a nonlinear retarded functional differential equation described by

x
.
(t) = f(x(t), x(t – h), ..., x(t – k.h), u(t)) t ≥ t0 (7.1)

x(t) = x0 t = t0 (7.2)

x(t) = ϕ(t) t0 – k.h ≤ t < t0 (7.3)

where f is bounded and continuous. It is assumed that ϕ and u are continuous

and bounded functions. Let the cost function be defined by

(7.4)

where F(.) is the final state penalty term and t1 is a given final time. The func-

tion L(.) is supposed to reflect the cost of deviation from zero of the state

variables and the control. The optimal regulator of a time-delay system can

now be stated as follows. Find an optimal function uo(t), t ∈ [t0, t1] which

satisfies equation (7.1) for some given initial state (7.2), (7.3) and minimizes

the performance index (7.4). The maximum principle is applied to perform

this optimization. The extension of the maximum principle to time-delay

systems has been developed by Kharatishvili (1967) (cf. also [85, Chapter

6]). As in the non-delayed case, a set of necessary conditions can be given.

Let the Hamiltonian function be as follows

H(t, x(t), x(t – h), ..., x(t – k.h), u(t), λ(t)) = – L(t, x(t), u(t)) +

+ λ(t)Tf(t, x(t), x(t – h), ..., x(t – k.h), u(t)) (7.5)

where λ(t) ∈ Rn
 remains to be defined. If uo(t) is the optimal regulator and

xo(t) the resulting optimal trajectory, then there exists a costate vector λo(t)

such that the following state equations holds:

J u( ) F x t1( ) t1,( ) L t x t( ) u t( ), ,( ) td
t0

t1

∫+=
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state equations:

.
x(t) = t ≥ t0 (7.6)

xo(t0) = x0 t = t0 (7.7)

xo(t) = ϕ(t) t0 – k.h ≤ t < t0 (7.8)

costate equations:

t0 ≤ t ≤ t1 – k.h (7.9)

t1 – k.h < t ≤ t1 – (k – 1).h (7.10)

:

t1 – h < t ≤ t1 (7.11)

t = t1 (7.12)

maximization of the Hamiltonian:

t ≥ t0 . (7.13)

A general solution of the two-point boundary-value (TPBV) problem

(7.6) – (7.12) is not known. However, using the method of steps, an exact

solution can be derived for linear time-delay systems and for an appropriate

performance index. The method of steps reduces a delayed TPBV problem

to a nondelayed TPBV problem (cf. also Section 2.1). It is obvious that this

procedure can be applied only for a finite horizon, i.e., t1 < ∞. The method is

illustrated by an example.

Example 7.1: The optimal regulator for the system

.
x(t) = x(t) + x(t – 1) + u(t) t ≥ 0 (7.14)

x(t) = c – 1 ≤ t ≤ 0 (7.15)

minimizing the performance index

H oλ∇

λ· o
t( ) H ox∇– H t i h⋅+( ) ox∇

i 1=

k

∑–=

λ· o
t( ) H

ox∇– H t i h⋅+( )
ox∇

i 1=

k 1–

∑–=

λ· o
t( ) H

ox∇–=

λo t1( ) F x t1( ) t1,( )
o

x t1( )∇=

0 H
ou∇–=
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is determined. The Hamiltonian function according to (7.5) is given by

H(x, λ, u) = – u(t)2 + λ(t) .[x(t) + x(t – 1) + u(t)] .

Condition (7.13) yields

 .

The above relation is used to eliminate u in the state equations (7.14) and in

the differential equations of the adjoint system (7.9) – (7.12):

.
xo(t) = xo(t) + xo(t – 1) + λο(t) 0 ≤ t ≤ 2 (7.16)

xo(t) = c – 1 ≤ t ≤ 0 (7.17)
.
λο(t) = – λο(t) – λο(t + 1) 0 < t ≤ 1 (7.18)
.
λο(t) = – λο(t) 1 < t ≤ 2 (7.19)

λο(2) = F.xo(2) t = 2 . (7.20)

The method of steps (or method of successive integration) is now applied to

evaluate λο(t). In a first step, the differential equation (7.19) is integrated

with respect to its boundary condition (7.20). We obtain

λο(t) = F.xo(2)e2 – t 1 ≤ t ≤ 2 . (7.21)

In the next step, solution (7.21) is used to solve (7.18):

λο(t) = λο(0)e– t – F.xo(2)e1 – t . t 0 ≤ t ≤ 1 . (7.22)

The constant of integration λο(0) is chosen such that λο(t) described by (7.21)

and (7.22) is continuous at time t = 1. This continuity condition yield

λο(0) = F.xo(2).e[e + 1] . (7.23)

J
F
2
---x 2( )2 1

2
--- u t( )2dt

0

2

∫+=

1
2
---

H∂
u∂

-------
o

0 uo t( ) λo t( )+–= =
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With the help of (7.22) and (7.23), λο(t) is replaced in (7.16). The differential

equation obtained is integrated with respect to its boundary condition (7.17).

We obtain the optimal state trajectory for the interval of time t ∈ [0, 1]:

xo(t) = – c + et{2c + xo(2)e[0.5 + e]} – e1 – t xo(2){0.5 + e – t}. (7.24)

Equation (7.24) represents the initial condition of (7.16) for t ∈ [1, 2]. The

solution of (7.16) for t ∈ [1, 2] is therefore

1 ≤ t ≤ 2 .

The value of xo(2) can be determined by the latter equation. This value,

together with the desired optimal regulator, is stated in the following equa-

tions:

uo(t) = F.xo(2)e1 – t[e + 1 – t] 0 ≤ t ≤ 1

uo(t) = F.xo(2)e2 – t 1 ≤ t ≤ 2

where

 .

For the special case c = 1 and F = 3, this optimization problem was solved

numerically in [10]. 

The application of the method of steps is only useful for an optimization

involving linear, low-order control systems (n ≤ 2) associated with a

quadratic performance index with short horizon. Otherwise, the effort of

F
2
---

F
2
---

xo t( ) et 2c 4e 1– c–
F
4
---xo 2( ) e 1– 1– 2e– 2e2+[ ]+ +⋅=

2ce 1– F
2
---xo 2( ) 0.5 e+[ ]+ t⋅ c++ +

e t– F
4
---xo 2( ) e2– e3 e2 t⋅–+[ ]⋅+

xo 2( )
1 2e2+( )– c

1–
3F
4

------–
F
2
---e

F
4
---e2 F

2
---e3 F

2
---e4+ + + +

------------------------------------------------------------------------------=
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calculation becomes intolerable. Numerical methods are applied to solve

more general optimization problems. Many of these methods use the Riccati

equations for time-delay systems. These equations are discussed below. The

considered system is of the form

.
x(t) = A0x(t) + + Bu(t) t ≥ t0 (7.25)

x(t0) = x0 t = t0 (7.26)

x(t) = ϕ(t) t0 – kh ≤ t < t0 (7.27)

where A0, Ai ∈ Rn × n
 and B ∈ Rn × m

. The cost criterion which is to be mini-

mized is of a quadratic form

(7.28)

where Q ∈ Rn × n
 is a positive-semidefinite matrix and R ∈ Rm × m is a posi-

tive-definite matrix. It is assumed that the system (7.25) is stabilizable, i.e., 

for all s being eigenvalues with nonnegative real parts of the system (7.25)

(cf. Section 5.5, Theorem 5.11). Now, we can state the solution to the infi-

nite-time optimal control problem: if the system (7.25) is stabilizable, then

the optimal regulator (LQ-regulator) minimizing (7.28) is given by

(7.29)

provided the matrices P0 ∈ Rn × n
, P1(θ) ∈ L2([– kh, 0], Rn × n

), and P2(θ, ξ) ∈
L2([– kh, 0] × [– kh, 0], Rn × n

) satisfy the following conditions [39], [40,

p. 343], [52, p. 659]:

Aix t i h⋅–( )
i 1=

k

∑

J u( ) x t( )TQx t( ) u t( )TRu t( )+{ } td
t0

∞

∫=

rank sI A0– Aie
ihs–

i 1=

k

∑– B, n=

u t( ) R 1– BT P0x t( ) P1 θ( )x t θ+( ) θd
kh–

0

∫+
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(7.30)

– (7.31)

(7.32)

where – kh ≤ θ ≤ 0 and – kh ≤ ξ ≤ 0. The matrix functions P1(θ) and P2(θ, ξ)

obey the following boundary conditions:

(7.33)

 . (7.34)

The matrix functions may be discontinuous in the form of “jumps”. These

jumps are determined by [39, p. 104], [52, p. 659]:

i = 1, ..., k – 1 .

Moreover, the matrices P0 and P2(θ, ξ) are symmetric

 .

Given the conditions (7.30) – (7.34), the minimal value of (7.28) in terms of

the initial function is [62, p. 1087], [52, p. 660]

 .

The asymptotic stability of the resulting closed-loop system (7.25), (7.29)

has been established (cf., e.g., [31]). 

A0
TP0 P0A0 P0BR 1– BTP0 P1 0( ) P1
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Robustness properties of (7.25), (7.29) have been studied as well. Particular-

ly the closed-loop system (7.25), (7.29) possesses simultaneously in each

feedback control channel [80]

(i) [0.5, ∞] gain margin

(ii) ± 60° phase margin 

if R > 0 is diagonal and Q > 0. Note that the optimal regulator (7.29) consists

of two parts. The first part of the regulator is similar to the regulator for the

linear, nondelayed system. The integral part of (7.29) accounts for the delays

of the system. An exact solution of the Riccati equations (7.30) – (7.34) is not

known, even for very simple time-delay systems. However, this problem can

be solved numerically. Two procedures are illustrated in the next chapter.

The Riccati method is also known for a quadratic performance index with

finite horizon of the form (7.4). In that case the resulting optimal control law

is time-dependent, whereas criterion (7.28) yields a state-feedback controller.

Since the latter regulator is easier to implement, we consider here only

criteria with infinite horizon.
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8 Finite dimensional approximations

A finite dimensional approximation of a time-delay system can be performed
in the frequency domain [32], [61], [94] or in the time domain. The approx-
imation techniques in the time domain can be classified further: semi-discre-
tization methods (discretization of the state only) and full-discretization
methods (simultaneous discretization of the state and the time variables
[30]). These methods can be used to solve the infinite-dimensional Riccati
equation (7.30) – (7.34) for obtaining an approximation of the LQ-regulator
(7.29). But none of these procedures can guarantee a priori the stability of the
resulting closed-loop system, especially if the delays of the plant were esti-
mated wrong. In case the controller is obtained with a semi-discretization
method, the stability can easily be checked with the help of the algebraic sta-
bility tests presented in Subsection 3.2.6. Therefore, only semi-discretization
methods are considered here. There is a rich literature on this topic, e.g., [10],
[39], [56], [62], [77]. In the following, two suitable methods are illustrated:
the averaging methods and the Legendre-Tau method. The averaging method
excels by its feasibility, whereas the Legendre-Tau method has one of the
highest convergence rates of the known approximation techniques. 

8.1 The averaging approximation method

The averaging approximation method (frequently abbreviated as AVE-
method) was invented by several Soviet authors in the early sixties and has
been described in several publications (see, e.g., [70], [120]; further refer-
ences and a detailed review can be found in the paper of Banks and Burns
[10]). Krasovskii [70] and later Ross [122] used this method to compute the
LQ-regulator for time-delay sytems. Next, the convergence and convergence
rates of this approximation scheme (for a slightly different approximation of
the initial state) were established in [39], [77], [93]. The approximation
method is illustrated here in a popular and somewhat heuristic approach,
since a detailed derivation would exceed the scope of this work.
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I) Approximation of the system: The following system is considered:

x
.
(t) = A0x(t) + t ≥ t0 (8.1)

x(t) = ϕ(t) t0 – k.h ≤ t ≤ t0 . (8.2)

Let N be a positive integer. The approximation starts by a division of the

delay constant h into N equal subintervals with length . Let

(8.3)

where ∈ Rn and ∈ Rn(kN + 1). The deriv-

ative of can be approximated by

.

In a similar fashion we obtain

:

:

 .
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Hence, a finite-dimensional approximation of (8.1) can be formulated as

follows:

(8.4)

where AN ∈ Rn(kN + 1) × n(kN + 1)
 and BN  ∈ Rn(kN + 1) × m

 are given by

 . (8.5)

The symbol I ∈ Rn × n
 denotes the identity matrix. From approach (8.3) it

follows that the initial condition of (8.4) is given by

. (8.6)

For N = 1 and k = 1 the AVE-method is equivalent to a truncated Taylor

series approach. This fact can be shown by an appropriate Taylor series

expansion of x(t):

 .

A first-order approximation yields 

 .

Therefore, system (8.1) with k = 1 is approximated in the Taylor series

approach by
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(8.7)

which is just (8.4) for N = 1. For the sake of completeness it should be

mentioned here that the Taylor series can also be used to approximate the

delay term x(t – ih) [33, p. 22]:

which leads to the following approximation of (8.1) and (8.2) [44]:

(8.8)

However, this approximation should be applied only if the delay is small

[44]. But in this case it is more reasonable to approximate system (8.1) and

its initial condition (8.2) by 

since this approach preserves stability properties if the delay is sufficiently

small [133]. Note that the approximation schemes (8.7) and (8.8) do not offer

an approximation parameter N. So let us return to the topic of this section:

the AVE-method. What is the frequency domain representation of (8.4) in

terms of the original system matrices? For simplicity a single-delay system

is considered first:

 . (8.9)

The transfer function G(s) of (8.9) is given by

G(s) = [sI – A0 –A1e
–sh]

–1
B .

x0
N t( ) ANxN t( ) BNu t( )+=

x1
N t( )

1
h
--- x0

N t( ) x1
N t( )–[ ]=

x t ih–( ) x t( ) ihx t( ) … 1–( )r ih( )r

ih( )!
-----------x r( ) t( )+ +–≈

x̃ t0( ) I ihAi

i 1=

k

∑+

1–

Aix̃ t( ) Bu t( )+
i 0=

k

∑
 
 
 

=

x̃ t0( ) ϕ t0( )  .=

x̂ t0( ) A0 Ai

i 1=

k

∑+
 
 
 

x t( ) Bu t( )+=

x̂ t0( ) ϕ t0( )=

x t( ) A0x t( ) A1x t h–( ) Bu t( )+ +=
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An associated signal-flow diagram which involves the term e–hs in one link

is shown in Fig. 8.1. According to (8.4) the AVE-approximation of (8.9) is:

(8.10)

(8.11)

From (8.11) it follows that 

= {1 + s }
–1

. (8.12)

Relation (8.12) together with the Laplace transformation of (8.10) yields

= [sI – A0 – A1{1 + s }–N]
–1

Bu(s) . (8.13)

Equation (8.13) represents the AVE-approximation of (8.9). The term e–sh is

replaced by N successive links (see Fig. 8.2) with the rational fraction

A0

Fig. 8.1

u(t)

e–sh

x(t)

A1

B

x0
N t( ) A0x0

N t( ) A1xN
N t( ) B+ u t( )+=

x1
N t( )

N
h
---- x0

N t( ) x1
N t( )–[ ]=

:

xi
N t( )

N
h
---- xi 1–

N t( ) xi
N t( )–[ ]=

:

xN
N t( )

N
h
---- xN 1–

N t( ) xN
N t( )–[ ] .=

xi
N s( )

h
N
---- xi 1–

N s( )

x0
N s( )

h
N
----
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transfer function {1 + s }–1. Since 

–N
 

(cf. [10]) this approximation converges. 

Gibsen (1983) conjectured that the approximating system (8.3) – (8.5) is ex-

ponentially stable for sufficiently large N if the underlying time-delay system

is asymptotically stable. This stability preservation property of the averaging

scheme was later proved by Salamon (1985).

h
N
----

1
1 sh N⁄+
-----------------------

A0

Fig. 8.2

x

A1

1
1 sh N⁄+
-----------------------

1
1 sh N⁄+
-----------------------

:

u
B

e sh– 1 s
h
N
----+

 
 
 

N ∞→
lim=
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II) Optimal regulator on the infinite interval: Let us consider the optimal

regulator for the system

.
x(t) = A0x(t) + + Bu(t) t ≥ t0 (8.14)

x(t) = ϕ(t) t0 – kh ≤ t ≤ t0 (8.15)

minimizing the performance index

(8.16)

where Q ∈ Rn × n
 and R ∈ Rm × m

 are symmetrical positive semi-definite and

positive-definite matrices, respectively. Under the assumption that

and

for all s being eigenvalues with nonnegative real parts of the system (8.14),

there exists an optimal regulator of the form

(8.17)

provided the matrices P0, P1(θ), and P2(θ, ξ), satisfy the conditions

(7.30) – (7.34). This optimization problem is treated here with the AVE-

method. As stated above, in this method, system (8.14) is approximated by

(8.18)

where AN and BN are given by (8.5). From (8.3) it follows that the finite-

Aix t i h⋅–( )
i 1=

k

∑

J u( ) x t( )TQx t( ) u t( )TRu t( )+{ } td
t0

∞

∫=

rank sI A0– Aie
ihs–

i 1=

k

∑– B, n=

rank
sI A0– Aie

ihs–

i 1=

k

∑–

Q1 2⁄

n=

u t( ) R 1– BT P0x t( ) P1 θ( )x t θ+( ) θd
kh–

0

∫+
 
 
 

–=

xN t( ) ANxN t( ) BNu t( )+=
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dimensional averaging approximation of (8.16) is

(8.19)

where QN ∈ Rn(kN + 1) × n(kN + 1)
 is given by

 . (8.20)

The solution of the optimization problem described by (8.18) and (8.19) is

u(t) = – R–1(BN)TΠNxN(t) where the matrix ΠN ∈ Rn(kN + 1) × n(kN + 1) 
satisfies

the algebraic Riccati equation

 . (8.21)

The matrix ΠN can be partitioned into (N + 1)2 submatrices. They are

denoted by ∈ Rn × n
 where 0 ≤ r ≤ Nk and 0 ≤ j ≤ Nk:

. (8.22)

The relation  follows from the symmetry of ΠN. If one dis-

cretizes (7.31) and (7.32) and compares the algebraic relation thus obtained

with (8.21) in terms of the submatrices , the two sets of equations are

found to be in direct correspondence (for details see [122]). Let  and

 be an approximation of P0 and P1(θ). Then we have

J u( )N xN t( )
T
QNxN t( ) u t( )TRu t( )+{ } td

t0

∞

∫=

QN

Q 0  .  . 0

0 0 . . 0

. . . . .

. . . . .

0 0 . . 0

=

AN( )
T
ΠN ΠNAN ΠNBNR 1– BN( )

T
ΠN– QN+ + 0=

Π r j,
N

ΠN

Π0 0,
N Π0 1,

N  .  . Π0 Nk,
N

Π1 0,
N Π1 1,

N  .  . Π1 Nk,
N

  .   .  .  .   .

  .   .  .  .   .

ΠNk 0,
N   .  .  . ΠNk Nk,

N

=

Π r j,
N Π j r,

N( )T
=

Π r j,
N

P0
N

P1
N θ( )
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(8.23)

(8.24)

for 0 ≤ j ≤ Nk – 1. Furthermore, boundary condition (7.33) yields

 . (8.25)

The submatrices of ΠN, which are involved in (8.23) – (8.25), are located in

the first row (first column, respectively,) of submatrices in ΠN. (This row is

shaded in (8.22).) The other submatrices of ΠN are an approximation of

P2(ξ, θ). The corresponding relations are not stated here (cf. [122]), since the

optimal control law (8.17) requires only P0 and P1(θ). The equations

(8.23) – (8.25) determine almost completely an approximation of P0 and

P1(θ). One question remains, however: How are the discontinuities of P1(θ)

represented in this approximation scheme? Recall that P1(θ) may have dis-

continuities in the form of “jumps”:

i = 1, ..., k . (8.26)

It turns out that (8.24) describes the upper value of P1(θ) at the jumps:

i = 1, ..., k .

The lower value of P1(θ) at a discontinuity denoted by  is given by

(8.26):

 . (8.27)

For those values of θ where P1(θ) is continuous we have

= =  .

The notation is illustrated in Fig. 8.3 for a scalar P1(θ).

P0
N Π0 0,

N=

P1
N jh N⁄–( ) N Π⋅ 0 j 1+,

N=

P1
N kh–( )

T
Ak

T Π⋅ 0 0,
N

=

P1 i– h( )+ ( )
T

P1 i– h( )– ( )
T

– Ai
TP0=

P1
N ih–( )+ ( ) N Π0 j, iN=

N⋅=

P1
N θ–( )

P1
N ih–( )– ( )

T Π0 j, iN=
N( )T

Ai
TΠ0 0,

N–=

P1
N θ( ) P1

N θ–( ) P1
N θ+( )
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Even if P0 and P1(θ) are exactly known, the LQ-regulator of the form (8.17)  

is impossible to implement, since the integral term requires the storage of in-

finitely many values of x(t) and the integration has to be performed at each

time. Thus, the integral is approximated by a trapezoidal integration, which

can be expressed by a sum. Hence, the approximation of the LQ-regulator is

given by

 .

(8.28)

The method is summarized in the following:

= ...P1
N 0( )

= =P1
N 2h– +( ) P1

N 2h– –( ) P1
N 2h–( )

= ...P1
N 3h

2
------–( )

P1
N h– –( )

P1
N h– +( )

= =P1
N h

2
---–( ) P1

N h
2
---

–
–( ) P1

N h
2
---

+
–( )

Fig. 8.3 Approximation of P1(θ) by computa-

tion of some discrete values of  and splines.P1
N θ( )

P1
N θ( )

θ

0– h– 2h

u t( ) R 1– BT P0x t( ) P1 θ( )x t θ+( ) θd
kh–

0

∫+
 
 
 

–=

uN t( ) R 1– BT P0
Nx t( )

P1
N h

N
---- j 1–( )–

–
( )x t

h
N
---- j 1–( )–( ) P1

N h
N
----j–

+
( )x t

h
N
----j–( )+

2N
h

-------
--------------------------------------------------------------------------------------------------------------------------

j 1=

Nk

∑+

 
 
 
 
 

–=
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Step 1: Choose the integer N ≥ 1.
Step 2: Compose the matrices AN ∈ Rn(kN + 1) × n(kN + 1) 

and BN ∈  Rn(kN + 1) × m

using (8.4).

Step 3: Define the matrix Q ∈ Rn × n 
and R ∈ Rm × m 

which determine the

performance index (8.15).

Step 4: Compose the matrix QN (8.20).

Step 5: Solve the algebraic Riccati equation (8.21). The solution yields the

matrix ΠN.

Step 6: The submatrices of ΠN according to (8.23) – (8.25) and (8.27) de-

fine the approximation (8.28) of the desired LQ-regulator for time-

delay systems.

Usually, the procedure is executed several times for increasing values of N to

verify the convergence of the solution (cf. the example 8.1 below).

The procedure involves the problem of the computation of a high-dimension-

al algebraic Riccati equation. The most widely available method for solution

of the Riccati equation is the Laub-Schur algorithm [78]. This method is suit-

able for our purpose. More recently, a hybrid method has been suggested by

Banks and Ito (1991). It possesses several computational advantages over the

standard eigenvector based (Potter, Laub-Schur) techniques.

Example 8.1: The optimal regulator for the following scalar time-delay

system

.
x(t) = x(t) + 2x(t – 1) + x(t – 2) + u(t) (8.29)

minimizing the cost function

(8.30)

is considered. For N = 2 we obtain from (8.5):

J u( ) x t( )2 u t( )2+{ } td
0

∞

∫=



167

 .

Furthermore, equation (8.21) yields

 .

From (8.30) it follows that R = 1. Hence, we are ready to compute the

solution of the Riccati equation (8.21):

 .

According to (8.23) – (8.25) and (8.27) the above solution yields an approx-

imation of P0 and P1(θ). The corresponding values are stored in Table 8.1. In

order to illustrate the convergence of this procedure, the approximation of P0

and P1(θ) for N = 1, 4, 8, 20, and 50 has been computed as well. Only the

values which are necessary for a comparison (with the solution for N = 4) are

listed in Table 8.1. A further comparison of the solutions for N = 1, 2, 4, 8,

20, and 50 is illustrated graphically in Fig. 8.4. 

As Table 8.1 shows, the approximation method describes P1(θ) only at some

discrete values of θ. In Fig. 8.4 the discrete approximation is connected via

linear splines, which corresponds to the technically realizable form of the

LQ-regulator (8.28).

AN

1 0 2 0 1

2 2– 0 0 0

0 2 2– 0 0

0 0 2 2– 0

0 0 0 2 2–

= BN

1

0

0

0

0

=

QN

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

=

ΠN

3.53 1.10 2.09 0.48 0.92

1.10 0.41 0.72 0.18 0.31

2.09 0.72 1.31 0.31 0.57

0.48 0.18 0.31 0.08 0.13

0.92 0.31 0.57 0.13 0.25

=



168

Table 8.1  and  computed for example 8.1

N = 1 N = 2 N = 4 N = 8 N = 20 N = 50

3.83 3.53 3.37 3.28 3.23 3.21

3.01 2.21 1.80 1.60 1.49 1.45

– –  2.54 2.29 2.13 2.05

– 4.18 3.62 3.33 3.13 3.10

– – 5.21 4.89 4.70 4.62

8.94 8.03 7.53 7.27 7.12 7.07

1.28 0.96 0.79 0.71 0.66 0.65

– – 1.13 1.02 0.95 0.91

– 1.83 1.61 1.48 1.40 1.36

– – 2.32 2.20 2.12 2.08

3.83 3.53  3.37 3.28  3.23 3.21

Fig. 8.4  computed for N = 1, 2, 4, 8, 20, 50 subject to (8.29) and (8.30)P1
N θ( )

– 2.0 – 1.6 – 1.2 – 0.8 – 0.4 0.0

θ0

2

4

6

8

P1
N θ( )

N = 20

N = 50

N = 8
N = 4
N = 2
N = 1

P0
N P1

N θ( )

P0
N

P1
N 0( )

P1
N 0.25–( )

P1
N 0.50–( )

P1
N 0.75–( )

P1
N 1.00–( )

–

P1
N 1.00–( )

+

P1
N 1.25–( )

P1
N 1.50–( )

P1
N 1.75–( )

P1
N 2.00–( )
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A signal-flow diagram of the approximated regulator is sketched in Fig. 8.5.

This scheme can easily be extended for multidimensional systems. An alter-

native scheme of the implementation of the LQ-regulator is shown in the next

section.  

Using Theorem 3.4 (cf. Section 3.2), it can easily be shown that for the

approximation degree N = 1 the resulting closed-loop system is asymptoti-

cally stable. For briefness, checking the stability of the closed-loop system is

demonstrated only in context with the Legendre-Tau approximation method

(cf. next section).

P0
N

a2

a0

uN(t) x(t)

a1

b

(–1)(+)P1
N e–s

(–0.5)P1
N

(0)P1
N

e–0.5s

(–1)(–)P1
N e–s

(–1.5)P1
N

e–1.5s

(–2)P1
N

e–2s

2

2

e–2s

e–s

1/4

1/4

r–1b

Fig. 8.5 Signal-flow diagram of the 
approximated (N = 2) LQ-regulator 
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8.2 The Legendre-Tau method

While the AVE-method excels by its simplicity and its feasibility, the

Legendre-Tau method developed in [53] – [56] is well known for its fast

convergence rate [53]. The Legendre-Tau method has one of the highest

convergence rates of the known approximation schemes. The eigenvalues of

the time-delay system with positive real part or near the imaginary axis are

approximated with high precision [54]. Furthermore, if the original time-

delay system is asymptotically stable and if the approximation degree N is

sufficiently large, the approximating system is asymptotically stable as well

[54]. However, the theory of this approximation scheme and its application

for designing an optimal state-feedback controller is complete only for single

delay systems. An extension for systems with two delays is considered in

[55]. But that work is not a consequent extension of the original Legendre-

Tau method (cf. [55, p. 1384] for details). Nevertheless, it reveals that the

effort of notation would be enormous if the Legendre-Tau technique were to

be applied for multiple delay systems. However, for single delay systems the

Legendre-Tau method is suitable. In the second part of this section, this

method is applied to compute an approximation of the LQ-regulator. Since

the stability of the resulting closed-loop system cannot be confirmed a priori

with this procedure or any semi-dicretization method, algebraic stability tests

(presented in Section 3.2) are applied to check the stability. In the LQ-regu-

lator approach, it is assumed that the delays are exactly known. However, in

reality it is difficult to estimate the value of a delay. Furthermore, in practice

the delays are frequently not constant and vary within a certain range. Again,

algebraic stability tests can be used to investigate the robustness of a system

(controlled by an approximated LQ-regulator) against uncertain delays. An

illustrative example is given at the end of this section.

In the Legendre-Tau method the state xt of a linear time-delay system is

approximated by Legendre polynomials. The approximation degree N is

equivalent to the degree of the Legendre polynomials involved. In order to

briefly illustrate the basic ideas of the Legendre-Tau approximation tech-

nique some well-known properties of the Legendre polynomials are
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reviewed (cf. [55]). The Legendre polynomial pi(t) of degree i is defined by

– 1 ≤ t ≤ 1 .

It is important to note that pi(t) is defined only for t ∈ [– 1, 1]. For instance

the first six Legendre polynomials are:

 .

The Legendre expansion of the function f ∈ ([– 1, 1]; R1) is

(8.31)

where the Legendre coefficients α i are given by 

 . (8.32)

Moreover, for all i = 0, 1, ...

 . (8.33)

pi t( )
1

2i i!⋅
------------

di

dti
------ t2 1–( )

i 
[ ]⋅=

p0 t( ) 1=

p1 t( ) t=

p2 t( )
1
2
--- 3t2 1–( )=

p3 t( )
1
2
--- 5t3 3t–( )=

p4 t( )
1
8
--- 35t4 30t2– 3+( )=

p5 t( )
1
8
--- 63t5 70t3– 15t+( )=

p6 t( )
1
16
------ 231t6 315t4– 105t2 5–+( )=

f t( ) α i pi t( )⋅
i 0=

∞

∑=

α i
2i 1+

2
-------------- f t( ) pi t( ) td⋅

1–

1

∫⋅=

pi 1±( ) 1±( )i=



172

Example 8.2: The function f(t) = sin(t) is approximated for the time interval

[0, π] using a truncated Legendre series. Applying the transformation

 the function f can be considered in the appropriate interval:

– 1 ≤ σ ≤ 1 .

From (8.32) we obtain

 .

Thus, f can be approximated by

– 1 ≤ σ ≤ 1

which can be rewritten as

 0 ≤ t ≤ π .

The l1-error of the approximation is smaller than 0.06.

I) Approximation of the system: A system with a single and constant delay is

considered:

.
x(t) = A0x(t) + A1x(t – h) + Bu(t) t ≥ t0 (8.34)

x(t) = ϕ(t) t0 – h ≤ t ≤ t0 (8.35)

where A0, A1 ∈ Rn × n
, B ∈ Rn × m

, and h > 0. In the Legendre-Tau method

the state xt = x(t + θ), – h ≤ θ ≤ 0 is described by a truncated Legendre se-

ries. Since we intend to approximate xt for any t ≥ 0 the coefficients (8.32)

σ 2t
π
----- 1–=

f σ( ) sin[
π
2
--- σ 1+( ) ]=

α0
2
π
---=

α1 0=

α2
10
π
------ 1

12

π2
------–

 
 
 

=

f σ( ) α0p0 σ( ) α1p1 σ( ) α2p2 σ( )+ +≅

f t( )
2
π
---

10
π
------ 1

12

π2
------–

 
 
  6

π2
----- t

π
2
---–

 
 
 

2
1
2
---–⋅+≅
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of the corresponding Legendre polynomial are time-varying. Let  be an

approximation of xt. Then we have

θ ∈ [– h, 0] (8.36)

where pi denotes the ith Legendre polynomial and α i(t) ∈ Rn 
its coefficient

vector. The fraction (2θ + h) ⁄ h maps every θ ∈ [– h, 0] into [– 1, 1]. From

(8.36) it follows that

 . (8.37)

The coefficients α i(t) are determined by the following two relations:

(8.38)

 . (8.39)

Since 

(cf. [54, p. 741]) condition (8.38) yields

where I ∈ Rn × n
 is the identity matrix and SN ∈ RnN × n(N + 1)

 is defined by

xt
N

xt
N xN t θ+( ) α i t( ) p⋅ i

2θ h+
h

---------------( )
i 0=

N

∑= =

xN t( ) α i t( )pi
2θ h+

h
---------------( )

i 0=

N

∑
θ 0=

α i t( )pi 1( )
i 0=

N

∑ α i t( )
i 0=

N

∑= = =

xN t θ+( )∂
t∂

------------------------
xN t θ+( )∂

θ∂
------------------------=

xN t( ) A0xN t( ) A1xN t h–( ) Bu t( )+ +=

x t θ+( )N∂
t∂

------------------------ α i t( ) pi
2θ h+

h
---------------( )⋅

i 0=

N

∑=

x t θ+( )N∂
θ∂

------------------------
2
h
--- 2i 1+( ) α j t( )

j i 1+=

j i+ odd=

N

∑ pi
2θ h+

h
---------------( )⋅

i 0=

N 1–

∑⋅=

α0 t( )

:

αN 1– t( )

2
h
---SN In

α0 t( )

:

αN t( )

⋅⊗=



174

 .

Condition (8.39) is used to determine αN(t). This approach is called the Tau-

method or spectral method (cf. [41, pp. 11ff] for a general description of the

spectral methods and their applications).

 .

Now, we have n differential equations for every α i(t). Defining the vector

α(t) ∈ Rn(N +1)
 

these differential equations can be collected in a state-space representation:

 . (8.40)

The matrices AN ∈ Rn(N + 1) × n(N + 1)
 and BN ∈ Rn(N + 1) × m

 are given by

SN

0 1 0 1 0 1 . . 1 0

0 0 3 0 3 0 . . 0 3

0 0 0 5 0 5 . . 5 0

. . . . . . . . . .

. . . . . . . . . .

0 0 0 0 0 0 . . 2N 3– 0

0 0 0 0 0 0 . . 0 2N 1–

=

α i t( )
i 0=

N

∑ A0 α i t( ) pi 1( )⋅
i 0=

N

∑ A1 α i t( ) pi 1–( )⋅
i 0=

N

∑ Bu t( )+ +=

αN t( ) α i t( )
i 0=

N 1–

∑– A0 α i t( )
i 0=

N

∑ A1 α i t( ) 1–( )i

i 0=

N

∑ Bu t( )+ + +=

αN t( )
4i 2+

h
-------------- α j t( )

j i 1+=

j i+ odd=

N

∑
i 0=

N 1–

∑

 
 
 
 
 

+–=

A0 α i t( )
i 0=

N

∑ A1 α i t( ) 1–( )i

i 0=

N

∑ Bu t( )+ + +

α t( )
α0 t( )

:

αN t( )

=

α t( ) ANα t( ) BNu t( )+=
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  (8.41)

where . The initial condition for the

system (8.40) is defined by

(8.42)

where

0 ≤ i ≤ N – 1

 .

Actually, we are interested in approximating x(t) by xN(t). According to

(8.37), the relation between xN(t) and α(t) is:

 .

This relation can be connected with (8.40) using a state transformation:

 .

Hence, system (8.40) and its initial state (8.42) can be rewritten as

AN
2
h
---SN I⊗

D1 … DN

= BN

0

:

0

B

=

Di
i i 1+( )

2
-----------------– A0 1–( )iA1+ +=

α 0( )
α0 0( )

:

αN 0( )

=

α i 0( )
2i 1+

h
-------------- ϕ θ( ) pi

2θ h+
h

---------------( )⋅ θd
h–

0

∫⋅=

αN 0( ) ϕ 0( ) α i 0( )
i 0=

N 1–

∑–=

xN t( ) α i t( )
i 0=

N

∑=

ξ t( ) Ω α t( )⋅
I 0

I … I

α t( )

α0 t( )

:

αN 1– t( )

xN t( )

= = =...
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(8.43)

 . (8.44)

The eigenvalues of (8.43) are related with diagonal (or all-pass) Padé approx-

imations [32]. In [54 p. 198] it was demonstrated that λ is an eigenvalue of

AN iff λ satisfies det[∆N(λ)] = 0 where

 .

II) Approximation of the LQ-regulator: The optimal regulator for the system

.
x(t) = A0x(t) + A1x(t – h) + Bu(t) t ≥ t0 (8.45)

x(t) = ϕ(t) t0 – h ≤ t ≤ t0 (8.46)

subject to the performance index

(8.47)

where Q ≥ 0, Q ∈ Rn × n 
and R > 0, R ∈ Rm × m

 is considered. It is assumed that 

rank (8.48)

and

rank (8.49)

ξ t( ) ΩANΩ 1– ξ t( ) BNu t( )+=

ξ 0( )

α0 0( )

:

αN 1– 0( )

ϕN 0( )

=

∆N λ( ) λ I A0– A1 Padé e λ h–( )⋅– λ I A0– A1

N

i 
  2N

i 
 ⁄ λh–( )i⋅

i 0=

N

∑

N

i 
  2N

i 
 ⁄ λh( )i⋅

i 0=

N

∑

--------------------------------------------------------⋅–= =

J u( ) x t( )TQx t( ) u t( )TRu t( )+{ } td
t0

∞

∫=

sI A0– A1e sh– B,–[ ] n=

sI A0– A1e sh––

Q1 2⁄
n=
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for all s being eigenvalues of the system (8.45) with nonnegative real parts.

Given these assumptions, there exits an optimal regulator of the form

 . (8.50)

In order to tackle this optimization problem with the Legendre-Tau method,

we approximate the performance index (8.47) as follows

 . (8.51)

Equivalently, we may write

(8.52)

where QN ∈ Rn(N + 1) × n(N + 1)
 is defined by 

(8.53)

and ξ(t) ∈ Rn(N + 1)
 is determined by (8.43) and (8.44). It is well known that

the solution of the optimization problem (8.43), (8.52) is 

(8.54)

where ΠN ∈ Rn(N + 1) × n(N + 1) 
satisfies the following Riccati equation:

. (8.55)

Rewriting (8.54) as

u t( ) R 1– BT P0x t( ) P1 θ( )x t θ+( ) θd
h–

0

∫+
 
 
 

–=

J u( ) xN t( )
T
QxN t( ) u t( )TRu t( )+{ } td

t0

∞

∫=

J u( ) ξ t( )TQNξ t( ) u t( )TRu t( )+{ } td
t0

∞

∫=

QN 0 0

0 Q
=

uN t( ) R 1– BN( )TΠNξ t( )–=

0 ΩANΩ 1–( )
T
ΠN ΠN ΩANΩ 1–( ) ΠNBNR 1– BN( )TΠN– QN+ +=
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(8.56)

it becomes obvious that ∈ Rn × n
 is the desired approximation of P0:

 . (8.57)

ΠN also yields an approximation of P1(θ), denoted by . The proof of the

following procedure appeared in [56]. Defining the matrix Λ

(8.58)

the following similarity transformation can be performed

ΓN
= (ΛN

)
–1ΠNΛN

 . (8.59)

The matrix ΓN
 contains the Legendre coefficients of the Legendre polyno-

mials defining . The elements of the matrices  are therefore

determined by a truncated Legendre series

 (8.60)

where 1 ≤ i ≤ n and 1 ≤ j ≤ n. The optimal regulator (8.50) can now be

approximated by

 . (8.61)

Since the integral term of (8.61) is not technically realizable, it is approxi-

mated by a trapezoidal integration such that the controller is of the form

uN t( ) R 1– BN( )T
Π11

N Π10
N

Π01
N Π00

N

ξ1 t( )

:

ξN 1– t( )

xN t( )

–=

Π00
N

Π00
N P0

N=

P1
N θ( )

Λ diag h … h
2i 1+
-------------- … h

2N 1–
---------------- 1, , , , ,( ) I⊗=

P1
N θ( ) P1

N θ( )

P1
N θ( )i j, Γ i n l j,⋅+

N pl 
2θ h+

h
---------------( )⋅

l 0=

n 1–

∑=

uN t( ) R 1– BT P0
Nx t( ) P1

N θ( )x t θ+( ) θd
h–

0

∫+
 
 
 

–=
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 .

Strictly speaking, the matrix function  is computed for θ = 0, , ..., h

and hence the LQ-regulator is approximated by

 .

(8.62)

In order to increase the readability of the description of the method, the pro-

cedure is summarized in the following:

Step 1: Let N ≥ 1 be an integer.
Step 2: Compose the matrices AN ∈ Rn(N + 1) × n(N + 1) 

and BN ∈  Rn(N + 1) × m

according to (8.41).

Step 3: Define the matrix Q ∈ Rn × n 
and R ∈ Rm × m 

which determine the

performance index (8.51).

Step 4: Compose the matrix QN (8.53).

Step 5: Solve the algebraic Riccati equation (8.55). The solution yields the

matrix ΠN.

Step 6: According to (8.56) and (8.57) the submatrix  of ΠN is equiva-

lent to .

Step 7: Compute  for θ = 0, , ..., h using (8.60).

Step 8: Implement the approximation of the regulator (8.62).

Example 8.3: The Williams-Otto process is considered. It consists of a chem-

ical reactor, a cooler, a decanter, and a distillation column (cf. Section 2.1).

This refining plant can be described by a single delay system

.
x(t) = (8.63)

where 

uN t( ) Kix t i
h
N
----–( )

i 0=

N

∑=

P1
N θ( )

h
N
----

uN t( ) R 1– BT P0
Nx t( )

P1
N h

N
---- j 1–( )–( )x t

h
N
---- j 1–( )–( ) P1

N h
N
----j–( )x t

h
N
----j–( )+

2N
h

-------
-------------------------------------------------------------------------------------------------------------------

j 1=

N

∑+–=

Π00
N

P0
N

P0
N θ( )

h
N
----

A0x t( ) A1x t 1–( ) Bu t( )+ +
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 .

The dimensionless state variables represent the deviations in the weight

composition of two raw materials, of an intermediate product, and of the

desired product, respectively, from their nominal values. The spectrum of the

system is shown in Fig. 3.20. It reveals that this system is asymptotically

stable. In Subsection 3.2.6, it was shown that system (8.63) is asymptotically

stable even if the delay is not constant (but bounded and continuous).

However, the system shows a sluggish time response for an initial distur-

bance. Fig. 8.6 shows a typical time response of this system. The initial

disturbance was chosen as follows

 ∀ t ∈ [– 1, 0]. (8.64)

Since the natural response of the system is unacceptable, an LQ-regulator is

applied to diminish deviations of the state variable. An appropriate regulator

is obtained for the following choice of the matrices Q and R:

  . (8.65)

A0

4.93– 1.01– 0 0

3.20– 5.30– 12.8– 0

6.40 0.347 32.5– 1.04–

0 0.833 11.0 3.96–

=

A1

1.92 0    0    0       

0    1.92 0    0       

0    0    1.87 0       

0    0    0    0.724

= B

1 0

0 1

0 0

0 0

=

x1 t( )

x2 t( )

x2 t( )

x2 t( )

1

0

0

0

≡

Q

1 0 0 0

0 10 0 0

0 0 1 0

0 0 0 100

= R 1 0

0 1
=
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Recall that system (8.63) is spectrally controllable iff

rank[sI – A0 – A1e
–sh, B] = n = 4  ∀ s ∈   .

The matrix [sI – A0 – A1e
–sh, B] for this example is of the form

 . (8.66)

The asterisks * denote functions of s. The symbols c1, c2 represent constants.

Since the rank of the matrix (8.66) is always equal 4, system (8.63) is spec-

trally controllable. Obviously, the assumptions (8.48) and (8.49) which guar-

antee the existence of the LQ-regulator are satisfied. For convenience the

approximation parameter N is chosen to be N = 1. (The approximation of the

LQ-regulator for N = 3 will be briefly given at the end of this example.)

Hence, we obtain from (8.41):

Fig. 8.6 Uncontrolled time response of sy-
stem (8.63) for the initial disturbance (8.64)

10
t

x(t)

8642
0.00

0.02

0.04

0.06

0.08

– 0.02

– 0.04

– 0.06

0.10

1 3 5 7 9

C

* * 0 0 1 0

* * * 0 0 1

c1 * * * 0 0

0 c2 * * 0 0
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 .

The matrix QN is given by (8.53) and (8.65). Next, the solution of the Riccati

equation (8.55) is computed. From the resulting ΠN we obtain by (8.57)

 .

Furthermore, with the help of (8.58), (8.59), and (8.60), the matrix ΠN yields

an approximation of  for θ = 0 and θ = –1:

 .

Since N is chosen to be equal 1, P1(θ) is approximated by constant functions

and hence . The resulting closed-loop system is given by

(8.67)

where

AN

0   0  0 0  2  0  0 0   

0   0  0 0  0  2  0 0   

0   0  0 0  0  0  2 0   

0   0  0 0  0  0  0 2   

3.01– 1.01– 0 0  8.85– 1.01– 0 0   

3.20– 3.38– 12.80– 0  3.20– 9.22– 12.80– 0   

 6.40  0.35 30.63– 1.04–   6.40  0.35 36.37– 1.04–

0   0.83   11.00 3.20– 0  0.83   11.00 6.68–

=

BN( )
T 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0  0
=

P0
N

  1.01 0.23–   0.64   1.44

0.23–   0.94   0.00   0.86

  0.64   0.00   0.95   2.84

  1.44   0.86   2.84 10.81

=

P1 θ( )

P1
N 0( ) P1

N 1–( )

  1.06 0.38–   0.78   0.75

0.17–   0.66   0.13   0.43

  0.40 0.01–   0.59   0.77

  0.80   0.69   1.66   2.49

= =

P1
N

0( ) P1
N

1–( )=

x t( ) Ã0x t( ) Ã1x t 1–( )+=
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 .

The stability of system (8.67) cannot be guaranteed a priori by the Legendre-

Tau method or any semi-discretization method like the AVE-method.

However, the algebraic stability tests presented in Section 3.2 can be applied

to confirm the stability of the closed-loop system. In particular, the stability

condition of Theorem 3.4

= – 0.51 < 0 (8.68)

is satisfied. Thus, the stability could be successfully analysed without having

to compute the eigenvalues of the closed-loop system. Similarly, we may

establish the stability of the closed-loop system in case the delay of the plant

(8.63) was estimated wrong or if the delay is not constant. The corresponding

differential equation of the closed-loop system is of the form

where

 .

The stability condition of Theorem 3.4 can be satisfied as follows

where the matrix T = diag(1, 1, 0.65, 1). The diagonal matrix T is used to

reduce the conservatism of the criterion (cf. Subsection 3.2.6). In this

example the excellent stability property of the resulting closed-loop system

Ã0 A0 BR 1– BT P0
N 1

2
---P1

N 0( )+
 
 
 

–=

Ã1 A1
1
2
---BR 1– BTP1

N 1–( )–=

µ Ã0( )2 Ã1 2+

x t( ) Â0x t( ) Â1x t τ t x t( ),( )–( ) Â2x t 1–( )+ +=

Â0 A0 BR 1– BT P0
N 1

2
---P1

N 0( )+
 
 
 

–=

Â1 A1=

Â2
1
2
---BR 1– BTP1

N 1–( )–=

µ T 1– Â0T( )2 T 1– Â1T 2 T 1– Â2T 2+ +  0.89– 0<=
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could also be established if the AVE-method (cf. Section 8.1) were applied

to compute , , and . 

N was chosen to be equal one in order to illustrate the method in a simple

way. But what is a reasonable choice for N? The question can be answered in

a practical way by studying the convergence. In Fig. 8.7 the approximations

of the first element of P1(θ) denoted by  are shown for N = 1, 2, 3, 4,

and for N > 8. There is no visible difference among the several plots of

 with N > 8 (dashed plotted in Fig. 8.7). (The convergence behav-

iour of  is representative for other entries of .) The corre-

sponding program, realized with the help of the MatrixX software package,

is able to compute solutions up to N = 12. Fig. 8.7 reveals that N = 3 is a

reasonable choice. For this choice of N we obtain the following approxima-

tions of P0 and P1(θ):

P0
N P1

N 0( ) P1
N 1–( )

P1
N θ( )1 1,

P1
N θ( )1 1,

P1
N θ( )1 1, P1

N θ( )

Fig. 8.7  shown for the system (8.29) subject to

the performance index (8.30) for N = 1, 2, 3, 4, and N > 8.

P1
N θ( )1 1,

– 1.0 – 0.8 – 0.6 – 0.4 – 0.2 0.0

θ

P1
N θ( )1 1,

N > 8

N = 4

N = 1

N = 3

2.4

1.8

1.2

0.6

0.0

N = 2
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=

=

=

=

=

The resulting closed-loop system is of the form

(8.69)

where

P0
N

  1.25 0.28–   0.76   1.65

0.28–   1.09 0.02–   0.97

  0.76 0.02–   1.07   3.10

  1.65   0.97   3.10 11.49

P1
N 0( )

  0.69   0.05   0.00 0.14–

0.28–   0.58 0.09–   0.09

  0.47 0.01–   0.46   0.46

  0.79   0.47   1.14   1.55

P1
N 1 3⁄–( )

  0.31 0.15–   0.19   0.21

0.07–   0.08 0.08–   0.15

  0.00 0.05– 0.07– 0.06–

0.10–   0.20 0.11– 0.07–

P1
N 2 3⁄–( )

  0.90 0.43–   0.80   0.80

0.10–   0.49   0.16   0.40

  0.24   0.01   0.40   0.55

  0.50   0.59   1.19   1.85

P1
N 1–( )

  2.46 0.78–   1.81   1.65

0.37–   1.81   0.15   0.87

  1.18 0.13–   1.86   2.31

  2.58   1.64   5.04   7.31

x t( ) Ã0x t( ) Ã1x t 1 3⁄–( ) Ã2x t 2 3⁄–( ) Ã3x t 1–( )+ + +=

Ã0 A0 BR 1– BT P0
N 1

6
---P1

N 0( )+
 
 
 

–=
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 .

The asymptotic stability of (8.69) can be shown using again Theorem 3.4:

= – 0.81 < 0 (8.70)

where the diagonal matrix T = diag(1, 1, 0.65, 1). Similarly, the stability of

the closed-loop system can be established even in case the delay of the plant

was estimated wrong or if it is state-dependent and time-varying.

An implementation scheme of the LQ-regulator is shown in Fig. 8.9. The

simulation of the closed-loop system (8.69) associated with the initial condi-

tion (8.64) is shown in Fig. 8.8. This simulation illustrates the considerable

improvement of the performance, while the stability and the robustness

against a modelling error of the delay is guaranteed.

Ã1
1
3
---BR 1– BTP1

N 1 3⁄–( )–=

Ã2
1
3
---BR 1– BTP1

N 2 3⁄–( )–=

Ã3 A1
1
6
---BR 1– BTP1

N 1–( )–=

µ T 1– Â0T( )2 T 1– ÂiT 2

i 1=

3

∑+

Fig. 8.8 Controlled Williams-Otto process described by (8.69) (N = 3)
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A0

uN(t) x(t)

A1

B

e–s

R–1BT

Fig. 8.9 Approximation of the LQ-regulator (N = 3)
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P1
N 0( )

P1
N 1 3⁄–( )

P1
N 1–( )

P0
N

e–1/3s e–1/3s
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Conclusions 

The main part of this work deals with stability criteria for time-delay

systems. As in the nondelayed case the stability of linear time-delay systems

is determined by its eigenvalues. These eigenvalues coincide with the zeros

of a characteristic equation, which in general is transcendental. An improved

version of a well-known method for the computation of the eigenvalues of

time-delay systems is illustrated. 

Another way to check the stability of retarded systems is by means of alge-

braic stability criteria. Several easily applicable algebraic stability tests are

developed in this work. Further applications of these stability tests are as

follows.

• Some of the algebraic stability criteria are valid even if the delays are
unknown and variable. The development of these criteria is quite useful
since in practice it is very difficult to estimate the value of the delays espe-
cially if they are time-varying and state-dependent. In this context also,
robustness criteria are developed (robustness against input, output, and
state delays and robustness bounds for unstructured uncertainties).

• The simple stability tests in combination with an instability criterion can
be used to derive exact, delay-dependent, algebraic stability tests. The new
method is demonstrated by extending a known exact stability condition.
The author is convinced that further generalisations can be achieved due
to this procedure.

• Algebraic stability tests are useful in connection with control methods for
time-delay systems as well. It is demonstrated that the three tools finite
dimensional approximation, optimal control, and algebraic stability
criteria in combination remarkably improve the behaviour of the control
system. The stability of the closed-loop system is guaranteed even if the
delay is not constant.

Further research should reveal whether these stability criteria can be used to

develop powerful control methods using LMI techniques. 
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Notation 

FDE Functional differential equations

RFDE Retarded functional differential equations

NFDE Neutral functional differential equations

AFDE Advanced functional differential equations

gcd Greatest common divisor

lcm Lowest common multiple

Rn
n-dimensional Euclidean space

R+ Set of all positive real numbers

Q Set of all rational numbers

N Set of all natural numbers; N = {1, 2, 3, . . .}

N N ∈ N

Set of the complex numbers

s s ∈
j j =

L
2

Space of square integrable functions

W 1,2 Space of continuous functions with square integrable derivatives

C Space of continuous functions

C1 Space of continuous functions with continuous derivatives

M2 Rn × L2

x(t) Phase space at time t, x(t) ∈ Rn 

xt State vector of an RFDE, xt := x(t + θ), –τmax ≤ θ ≤ 0 

t0 Initial time

x0 x0 = x(t0) 

ϕ(t) Initial function, ϕ(t) ∈ Rn (cf. Chapter 2)

u(t) Control signal, u(t) ∈ Rm 

y(t) Output signal, y(t) ∈ Rp 

C

C

1–
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τmax Maximal time-retardation of an RFDE: τmax > τ(t, x(t))
τi Delay constant of a noncommensurate time-delay system of the

form:  where 0 < τ1 < ... < τk

h Delay constant of a commensurate time-delay system of the form:

λi(A) Eigenvalue of the matrix A ∈ R
n × n

 

λmax(A) Eigenvalue with the largest real part of the matrix A

λmin(A) Eigenvalue with the smallest real part of the matrix A

Re( .) Real part of ( .)

Im( .) Imaginary part of (.)

Absolute value of x ∈ Rn: 

Vector norm:  

 

 

Matrix norms:  

Matrix measure:

x t( ) A0x t( ) Aix t τ i–( )
i 1=

k
∑ Bu t( )+ +=

x t( ) A0x t( ) Aix t ih–( )
i 1=

k
∑ Bu t( )+ +=

x x xTx=

x . x 1 xi

i 1=

n

∑=

x 2 xi
2

i 1=

n

∑

1 2⁄

=

x ∞ max
i

xi=

A . A 1 max
j

aij

i 1=

n

∑=

A 2 λmax ATA( )=

A ∞ max
i

aij

j 1=

n

∑=

µ A( ). µ A( )1 max
j

[Re ajj( ) aij ]
i 1=
i j≠

n

∑+=

µ A( )2 0.5 λ⋅ max AT A+( )=

µ A( )∞ max
i

[Re aii( ) aij ]
j 1=
j i≠

n

∑+=
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