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Vii
Summary

The stability analysis of time-delay systems forms the centre of this work.
Three tools are typically used to investigate the stability of such systems:
Razumikhin theory, Lyapunov-Krasovskii theory, and (for linear time-delay
systems) eigenval ue considerations. However, none of these basic concepts
represents applicable stability tests in terms of the system matrices. There-
fore, based on the three stability concepts mentioned some suitable algebraic
stability tests are developed in this work. The stability tests obtained can be
categorized into four groups, depending on how much information con-
cerning the delaysisrequired for these tests:

» Delay-independent stability criteria: The length of the delay need not be
known for the application of these stability tests. The delays may be state-
dependent and/or time variable. The only assumption needed is that the
delays are continuous and bounded.

« Sability criteria independent of constant delays: In the second group it is
assumed that the delays of the system are constant; no further information
on the delays is necessary.

« SJability criteriaindependent of a delay constant: Thistype of stability cri-
teria presumes that the delays are constant and that the ratios of size of the
delays are known.

» Delay-dependent stability criteria: This group includes exact algebraic
stability criteria depending on the delay and on the system constants and
stability criteriawhich yield an upper bound of the admissible delay.

The need for delay-independent (and related) stability testsis obvious, since
in practice the delays are difficult to estimate, especially those that are time
variable and state dependent. While algebraic stability tests independent of
delaysare suitableto apply, exact algebraic stability conditions depending on
the delay and the system constants are known only in some special cases. In
this context a method is presented to achieve some extensions. The method
permitstheinvestigation of the stability of systemswhich are general enough
to demonstrate the differences among the four types of stability tests. The
stability of general, linear time-delay systems, however, can be checked
exactly only by eigenvalue considerations. Unfortunately, the computation of
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the eigenvalues is a cumbersome task, since the corresponding transcen-
dental characteristic equation contains exponential terms which induce
extreme gradients. An improved version of a well-known method for the
computation of the eigenvaluesisillustrated.

In connection with stability considerations the robustness of nondelayed
systems against delaysis studied aswell. It turns out that the largest singular
value of the control system can be used to analyse the robustness of the
system against delays in the input. Furthermore, the H=-norm yields an esti-
mate of the robustness against delays in the state. In order to analyse the
robustness of time-delay systems against unstructured uncertainties, some
suitable criteria are derived based on the three stability concepts.

Algebraic stability tests are also useful in connection with control methods
for time-delay systems. A comparison between the assumptions and the
possibilities of the various known control methods for time-delay systems
shows that a combination of finite dimensional approximation techniques
and optimal control theory isthe most suitable approach for delayed systems.
Nevertheless, the stability of the resulting closed-loop system cannot be
guaranteed a priori. Hence, algebraic stability tests are necessary to check
this property. The model of the Williams-Otto processis used to demonstrate
that the three tools

« finite dimensional approximation

» optimal control

* agebraic stability criteria
in combination remarkably improve the behaviour of the control system.
Besides, the stability of the closed-loop system is guaranteed even if the
delay is not constant.



Zusammenfassung

Die Stabilitdtsanal ysevontotzeitbehafteten Systemen bildet den Schwerpunkt
der vorliegenden Arbeit. Um die Stabilitét von solchen Systemen abzukl&ren,
stehen drei Werkzeuge zur Verfigung: Razumikhin-Theorie, Ljapunow-
Krasovskii-Theorieund (fur lineare Systeme) Eigenwertbetrachtungen. Diese
grundlegenden Konzepte stellen aber bei Totzeitsystemen keine direkt
anwendbaren Kriterien zur Untersuchung der Stabilitdt dar. Deshalb sind in
dieser Arbeit mit Hilfe der allgemeinen Stabilitétskonzepte algebraische
Stabilitétskriterien entwickelt worden. Die so gewonnenen Stabilitétstests
lassen sichin vier Kategorien einteilen, abhéngig davon, wieviel Information
Uber die Grosse der Totzeit fur den Stabilitatstest benétigt wird:

» Totzeitunabhangige Sabilitatskriterien: Die Information Uber die Grisse
der Totzeiten wird nicht gebraucht. Die Totzeiten dirfen zeit- und zu-
standsabhangig sein. Es wird lediglich vorausgesetzt, dass die Totzeiten
durch stetige und beschrankte Funktionen beschrieben werden kdnnen.

» Sabilitatskriterien unabhangig von konstanten Totzeiten: Bel der zweiten
Gruppe von Stabilitatskriterien wird vorausgesetzt, dass die Totzeiten des
Systems konstant sind. Weitere Informationen Uber die Totzeiten sind
nicht erforderlich.

 Sabilitatskriterien unabhangig von einer Totzeitkonstante: Fur diesen Typ
von Kriterien wird vorausgesetzt, dass die Totzeiten konstant sind und
dass die Grossenverhdtnisse zwischen den verschiedenen Totzeiten be-
kannt sind.

« Totzeitabhangige Sabilitatskriterien: Zu dieser Gruppe gehoren Kriterien,
mit deren Hilfe man die Stabilitét exakt untersuchen kann, sowie Kriteri-
en, die eine obere Schranke fir die Grosse der zul&ssigen Totzeit liefern.

Totzeitunabhangige Stabilitatstests zu entwickelnist naheliegend, weil in der
Praxis die Grosse der Totzeit oft schwierig abzuschétzen ist, vor allem, wenn
diese zeit- und zustandsabhéangig ist. Die meisten algebraischen Stabilitats-
bedingungen, insbesondere die totzeitunabhangigen, sind selbst fir MIMO-
Systeme sehr gut anwendbar. Hingegen sind exakte algebraische Stabilitéts-
kriterien in Abhangigkeit der Totzeiten und Systemkonstanten nur fir sehr
spezielle Falle bekannt. Verallgemeinerungen gelingen durch eine neue
Methode, die in diesem Rahmen vorgestellt wird. Diese Methode erlaubt es,



Systeme zu betrachten, die immerhin so allgemein sind, dass Unterschiede
zwischen den vier verschiedenen Stabilitéatstypen deutlich gemacht werden
kénnen. Um allgemeine, lineare Totzeitsysteme exakt auf ihre Stabilitét hin
zu untersuchen, sind wir auf Eigenwertbetrachtungen angewiesen. Die
Berechnung der Eigenwerte ist aber insofern problematisch, als die numeri-
sche L6sung der entsprechenden transzendenten, charakteristischen Glei-
chung einen erheblichen Aufwand darstellt. Eine verbesserte Version der
gangigen Methode zur Berechnung der Eigenwerte von Totzeitsystemen
wird vorgestellt.

Im Zusammenhang mit der Stabilitét wird auch die Robustheit von linearen,
nicht totzeitbehafteten Systemen gegen Totzeiten betrachtet. Es zeigt sich,
dass man mit Hilfe des grossten Singularwertes des Regel systems auf einfa-
che Weise die Robustheit des Regel systems gegen Eingangstotzeiten analy-
sieren kann. Ferner liefert die H*-Norm des Regel systems eine Abschétzung
der Robustheit des Regel systems gegen Totzeiten im Zustand. Mittelsder all-
gemeinen Stabilitdtskonzepte lassen sich leicht anwendbare Kriterien zur
Untersuchung der Robustheit eines Totzeitsystems gegen nichtlineare, zeit-
variable, unstrukturierte Unsicherheiten entwickeln.

Algebraische Stabilitatskriterien sind auch in Verbindung mit Regelme-
thoden flr Totzeitsysteme nitzlich. Ein Vergleich der Mdglichkeiten und
Grenzen der verschiedenen, bekannten Zustandsregel methoden fir Totzeit-
systeme zeigt, dass endlich dimensionale Approximationstechnik in Verbin-
dung mit optimaler Regelung die geeignetste Regelmethode fir Totzeitsy-
steme darstellt. Die Stabilitét des resultierenden Regel systems kann jedoch
nicht apriori garantiert werden. Der Einsatz von algebrai schen Stabilitatskri-
terien ist hier sinnvoll, insbesondere, wenn die Modellierung der Totzeiten
Unsicherheiten beinhaltet. Am Beispiel des Williams-Otto-Prozesses wird
illustriert, dass mittels der drei Werkzeuge

* endlich dimensionale A pproximationstechnik
 optimale Regelung
» algebraische Stabilitatskriterien
auf einfache Weise das Verhalten des Regel systems verbessert werden kann.

Dabsei ist die Stabilitat des Gesamtsystems garantiert, selbst wenn in der Rea-
litdt die Totzeiten nicht konstant sind.
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Preliminaries

1 Introduction

In the early decades of this century, various theories of elasticity and of
evolution were extensively tested. In both of these areas the need for explicit
analytical reasoning became soon apparent. The mathematical description of
certain processes within these topics led to an investigation of systems with
delays.

One of thefirst descriptions of a system with retardation was given by Boltz-
man (1874), who studied retarded elasticity effects. His publication,
however, did not point out clearly the need of the past states for a realistic
modelling of retarded elasticity effects. In the early 1900’'s a controversy
arose over the necessity of specifying the earlier history of asystem in order
to predict its future evolution. This view stood in contradiction with the
Newtonian tradition which claimed that the knowledge of the present values
of all relevant variables should suffice for prediction. Picard (1907) took the
view that the past states areimportant for arealistic modelling. In histrain of
thought he analysed a system with essential hidden variables, not themselves
accessible to observation. He claimed that the prediction of that system
requires also the knowledge of the earlier values of the hidden variables. His
paradigm for that situation was a pendulum clock whose descending weight
Is encased. Aslong as we cannot observe the present position of the weight
and its rate of descent, a prediction of the future motion of the clock hand
requires the knowledge of when the clock was last wound.

Systematic work with mathematical models on medicine and biology began
with the epidemiological studies of Ross (1911). Ross was laying the
foundation for the mathematical theory of epidemicsin terms of differential



equations. His results were extended and improved in the 1920's. The need
for delays was emphasised both by Lotka (see Sharpe & Lotka, 1923), who
discussed the discrete delays due to the incubation times in the Ross malaria
epidemic model, and by Volterra (1927). Independently of each other, Lotka
in the United States and Volterrain Italy began to concentrate their mathe-
matical efforts on the problem of the variations and fluctuations in the
numbers of individuals and species. From the very beginning of their
ecological investigations, both Lotka and Volterra realized that, in order to
achieve some degree of realism, delayed effects had to be explicitly taken
into account.

Lotka's main previous interest had been in physical chemistry, with special
emphasis on the oscillations of chemical reactions. He had also dealt with
demographic problems and with evolutionary theory.

Volterra's previous interests were mostly in mechanics, including irreversi-
ble phenomena and elasticity. The latter had led him to devel op the theory of
functionals and integro-differential equations, for which he became well
known[142], [143]. He also attempted to introduce a concept of energy func-
tion to study the asymptotic behaviour of the system in the distant future.

Minorsky (1942), in his study of ship stabilization and automatic steering,
pointed out very clearly the importance of the delay considerations in the
feedback mechanism. The great interest in control theory during those and
later years has certainly contributed significantly to the rapid devel opment of
the theory of differential equations with dependence on the past state.

Whileit became clear along time ago that retarded systems could be handled
asinfinite dimensional problems, the paper of Myshkis (1949) gave the first
correct mathematical formulation of the initial value problem. Furthermore,
in his book published in 1955, Myshkis introduced a general class of equa-
tions with delayed arguments and laid the foundation for a general theory of
linear systems.

Subsequently, several books appeared which presented the then current
knowledge on the subject and which greatly influenced later developments.
In their monograph at the Rand Corporation, Bellman and Danskin (1953)



pointed out the diverse applications of equations containing past information
to other areas such as biology and economics. They also presented a well-
organized theory of linear equations with constant coefficients and the begin-
nings of stability theory. A more extensive development of these ideas is
contained in the book of Bellman and Cook (1963). Some important results
were supplied also by Krasovskii, who studied stability and optimal control
problems for time-delay systems [67]. Further important works have been
written by El'sgol’ts (1966) and Hale (1977). In recent years several books
have been published on thistopic [40], [66], [83], [85], [131].

The above historical introduction shows that delays must be taken into
account to describe or to control certain processes. Nowadays, one of the
main goals of the development of automatic manufacturing processes is to
reach a high production rate while maintaining a guaranteed quality level.
This high production rate requires a high-speed variation of control varia-
bles. It is therefore necessary to include the consideration of delay effects
within control methods. Delay effects occur not only in technology. They are
equally observable in biology, chemistry, medicine, and economics. The
most typical areasin which delays play an important role are transport, mix-
ing, burning, evolution, bureaucracy, and economic fluctuations.

1.1 Classification of functional differential equations

Assume that 1, = const € [0, =), and let x(t) be an n-dimensional variable
describing the behaviour of a process in the time interval t € [ty — Ty t1l-
Most generally a functional differential equation (FDE) is formulated as
follows. Let T, (t) and T,(t) be time-dependent sets of real numbers, defined
for al t € [ty, t;]. Let usassume that x is a continuous function in [t,, t;]. We
shall use the convention that x(t) for te [ty t;] denotes the right-hand
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derivatives of x. For each t € [t, t], X; is defined by x,(s) = x(t + s), where
se T,(t). Analogously, x; isdefined by x.(s) = x(t +s), where s e T,(t). We
say that x satisfies an FDE in [ty t;] if for amost every te [ty t;] the
following equality holds

(1) = f(t, X, X;, u(t) (1.2)

where the control u(t) is given for the whole time interval necessary. The
equation above contains three types of differential equations.

An FDE is retarded or, as we say, a retarded functional differential
equation (RFDE), if T4(t) < (=<0, O] and T,(t) = for t e [ty t4].
Thereforethe right-hand side of (1.1) does not depend on the derivative
of x

(1) = f(t, X, u(t)) . (1.2)

In other words, the rate of change of the state of an RFDE is determined
by the inputs u(t), as well as the present and past states of the system.
An RFDE is sometimes also designated as an hereditary differential
equation or, in control theory, as atime-delay system.

If the rate of change of the state depends on its own past values aswell,
the system can be governed by aneutral functional differential equation
(NFDE). That is, we have T (t) < (=<0, 0] and T,(t) < (=<, Q] for
t € [to, t1]. Thefollowing scalar linear system isan example of aneutral
system

X(t) = x(t—1) + x(t) + u(t)
whereas the equation
X(t) = x(t—1) + x(t—12) + u(t)

is of the retarded type (1.2), since the highest derivation is not delayed.



iii) An FDE is called an advanced functional differential equation
(AFDE), if T4(t) c [0, =) and T,(t) = G for t € [t, t;]. An equation of
the advanced type may represent a system in which the rate of change
of a quantity depends on its present and future values of the quantity
and of the input signal u(t).

Sincein applicationst usually representstime, the solution in the direction of
an increasing t is required. One should note that an RFDE converts into an
AFDE for t <0, and vice versa, and an NFDE convertsinto another differen-
tial equation of aneutral type. However, in thefollowing we deal mainly with
RFDE, because in reality this type of system is encountered frequently.

In most applications (and in the above classification) the delays are usually
bounded. Systems with infinite delay will not be considered here. Those
aspects are treated comprehensively in [48].

If the set T,(t) isfinite for every t € [ty, t;], aretarded FDE is called an FDE
with lumped or discrete delays. Other names for this type of equations are
retarded difference differential equations or simply difference differential
equations or differential difference equations. An example of a system with
alumped delay is

x(1) = F(x(), x(t—1(1)) .

If the set T,(t) is a continuum, the FDE contains distributed delays. The fol-
lowing system has a distributed lag

t
X(t) = [ g(x(9)t 9)ds .
t—h
Delayswhich are constant are called fixed point delays. Systemswhich have
only multiple constant time lags can be classified further. Delays which are
related by integers will be called commensurate delays. The linear commen-
surate time-delay system
K
X(t) = Agx(t) + > Ax(t—ih)

i=1



Functiona differential

equations (FDE)

Retarded functional Neutral functional Advanced functiona
differential equations differential equations differential equations
(RFDE) (NFDE) (AFDE)

differential equations differential equations
with lumped delays with distributed delays
differential equations
with fixed point de-
differential equations differential equations
with noncommensu- with commensurate
rate delays delays

Fig. 1.1 Classification of FDEs and RFDES

is frequently discussed in the literature. If the delays are not so related, the
system is caled a noncommensurate delay system. For example, the delays
of the system

(1) = X(1) + X (t — 1) + x(t—7)

are noncommensurate. A brief survey of the above mentioned expressionsis
giveninFig. 1.1.



1.2 Examples of systems with time-delays

The Williams-Otto process

The Williams-Otto process[153] has many characteristics of atypical chem-
ical process and is therefore frequently discussed in the literature, especially
in journals of chemical engineering. Here, common operations such as sepa-
ration (through decanting and distillation) and reaction are involved. The
system considered isamodel of arefining plant. The schematic of the flow-
sheet for the Williams-Otto processis shown in Fig. 1.2.

i

Fa
Fg Coolant
vy T
e Heat exchanger J—’m Distillation
Column
Reactor T
v
Coolant Fy - Fu>

Fig. 1.2 Flowsheet of the Williams-Otto process

Upon entering the chemical reactor two kinds of raw materials take part in
three chemical reactionswhich produce the desired product, along with some
by-products. The feed rates of the raw materials are denoted by F, and Fg. A
heat exchanger is required to cool the reactants to a temperature at which an
undesirable by-product (F,,;) will settle out of the reactant mixture. This
settling takes place in the decanter. Subsequently the material enters a distil-
lation column. The material contains the desired product, impurities, and a
certain percentage of the raw material with some by-products of the chemical
reaction. The valuable product (Fp) isremoved in the overhead of the distil-
lation column. At the bottom of the column the purge (F.») is led off,



whereas the raw material with the by-products is recycled to the chemical
reactor, whereit isreprocessed. Therecycleloop ensuresthat useful products
will not be discarded.

Therecycleloop represents asignificant transport lag. In practical situations,
itisnot at all unusual for material to take ten minutesto travel from the chem-
ical reactor through the cooler, the decanter, the distillation column, and the
recycling to the reactor.

The differential equations governing this chemical process are nonlinear.
However, for the determination of proper corrections of the feed rates F, and
Fg at the desired operating point, a corresponding linearized model is useful.
For arecycle time of 10 minutes, the linearized and time-scaled (one time
unit is 10 min) equations are [122]:

(1) = Agx(t) + A x(t — 1) + Bu(t) (1.3)

where

493 -101 O O | 192 0 0 O |
A, = |320 530 <128 0 | 5 _ |0 182 0 0 |y

640 0.347 —32.5 —1.04 0 0 187 O

0 0.833 11.0 —3.96] 0 0 0 0724
and

10l
=01 (1.5)

00

00

The dimensionless components X, X,, X3, and X, of the state vector x repre-
sentsthe deviationsin the weight compositions of the raw materials A and B,
of an intermediate product, and of the desired product, respectively, from
their nominal values. The control inputs u; and u, are defined to be equal to
OFA/6V g and 0Fz/6V g, respectively, where Vy is the volume of the chemical
reactor (Vg = 92.8ft° =~ 2.628m°), and 8F, and 8F are the deviations in the



feed rates (in pounds per hour; 1 pound = 0.453592 kg) of the raw materials
A and B, respectively, from their nominal values.

wind tunnel

At the NASA Langley Research Center in Hampton, VA, awind tunnel was
constructed to achieve Reynolds numbers of one order of magnitude higher
than those in existing tunnels. The desired test chamber temperatures are
maintained at cryogenic levels by injection of liquid nitrogen into the
airstream near the fan section of the tunnel. Fine control of the Mach number
in the test chamber is effected through changes in the inlet guide vane angle
setting in the fan section. Schematically, the tunnel can be depicted as in
Fig. 1.3.

r Fan N
s - il
> section N
gaseous liquid
I B
\\\\\ Test JJ y
N chamber /)
]

Fig. 1.3 Wind tunnel

Modelling this system based on the Navier-Stokes theory does not lead to
useful equationsfor the design of acontrol law. A simple model for the Mach
number control loop was proposed in [3]. In order to take into account the
flow times through sections of the tunnel, atransport lag was included in the
model. The proposed equations for this system are as follows

—a 0 0 0 ka 0 0
)= 0 0 0 [x)+|p o o/x(t-033)+| 0 |ut) (1.6)
0 - —2Ew 0 0O —°



10

where 1/a = 1.964 [sec], o = 6.0 [rad/sec], & = 0.8 [-], and k = —0.0117
[deg™]. The state vector x = [8M, 80, 501" consists of the variation in
Mach number 6M, the variation in guide vane angle 66, and the variation in
guide vane angle velocity 80. The control u(t) represents the guide vane
angle actuator input.

Gasoline Engine

A modern engine test bench was devel oped at the M easurement and Control
Laboratory of the Swiss Federal Institute of Technology (ETH) in Zurich.
This test bench is used for various purposes, e.g. the emulation of the load
dynamics of the drivetrain of the target vehicle for the engine under test, the
development of system identification methods for Sl engines, or the testing
of multivariable model-based controllers for SI engines to control the air-to-
fuel ratio and the speed.

In the work of Onder (1993), [112] an efficient method for the off-line iden-
tification of an engine model is presented. The general nonlinear, delayed
model contains continuous-time and discrete-time subsystems. It turns out
that delays have to be taken into account in order to describe this system in
an appropriate way. The dynamic model can be partitioned into the following
five subsystems:

* throttle actuator

e intake manifold

* torque generation and rotational inertia
* air-to-fuel ratio sensor

 wall-wetting dynamics.

In [112], the engine model is not given in the form of alinear delayed, state-
space model. However, from thelinear model describedin[112] on page 137,
together with the information about the delays presented on page 131, one
immediately obtains a state-space model with seven different delays in the
state and three delays in the control. Simulations show that for our purposes
an appropriate single-delay system is a sufficiently good approximation to
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describe the behaviour of the engine. (All delaysin the control are neglected,
whereasthe delaysin the states are rounded to the maximal delay.) Following
in this way the results of [112], the corresponding model for a six-cylinder
3.4-litre BMW engine with sequential injection working at idle speed,

— (o]
Olthrottle = 6

Pranifold = 0.45 bar

n =900 rpm
A=1

%(0) = Agx() + A x(t — 1) + Bou(t) + B,d(t)

wheret =2/9[sec] and

ﬁﬂair“ow =470 g/m|n
ignition = 18°

M|08d =38 Nm

T oo = 693°K

(1.7)

~3.00-10" © 0 0
2.62-10" -3.11 ~197-10° 0 O
Ao=1 o 205.10° —496-102 0 0
0 0 0 2 0
0 0 0 0 -860-107"
0 0 0 0 o0 |
0 0 0 0 0
A, =|161-10° 117-10° -668-10° 0  9.18-10°
—351-10" 4.83 276-103 0 -2.00
| 245-107 0 -133-10° 0 O ]
30 0 0 | o ]
0 0 0 0
B=|0 789-10° 166-10" By = |-12.4
0 -172 0 0
0 120-100 O ] U
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The variables x(t), u(t), and d(t) represent the deviation from their nominal
values (idle speed) with respect to the following physical meanings:

X, - Throttle position [degree]

X, : Intake manifold pressure [bar]

X3 . Engine speed [rpm]

X, . Lambdasignal [-]

Xs . State of the wall-wetting model [g/min]

u; :  Commanded throttle position [degree]

U, :  Thebasevaue of the metered fuel ismultiplied by u, [-]

u; . Difference between demanded spark angle to static calibra-
tion [degree]

d : External load torque [Nm].

Note that the load torque is considered as a disturbance. The corresponding
model for afour-cylinder 1.8-litre BMW engine have recently been analysed.
The model isof theform (1.7). Of course, the numerical values of the system
matrices are different. At idle speed,

Olghrottle = 10° ﬁﬂair“w =470 g/min
Pranifold = 0-48 bar Clignition = 18°

n =900 rpm M s = 20 NmM
A=1 Texhaus = 693°K

the corresponding matrices are as follows:

—-350-10° 0 0 0
1.68-10" -2.35 ~1.63-10° 0
Ao=1 0 1.23-10> —6.36- 10 0
0 0 0 2 0

0 0 0 0 -1.50-10"
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0 0 0 0 o0 |
0 0 0 0 0
A, =| 287-10" 1.83-10° -887-10° 0 259-10°
—222-10" 397 222-10° 0 -2.00
| 416-107 0 —347-10° 0 0 ]
35 0 0 | " o
0 O 0 0
Bo=1|0 207 10> 157.10%" By = |-16|-
0 -1.60 0 0
|0 3.0 0 ] Y

The delays of the models mainly represent retarded influences of some states
on the torgque generation and on the air-to-fuel ratio. The subsystem of the
lambda sensor additionally contains a transport delay. The non-negligible
influence of al these delays can be demonstrated with the models given
above. The values of time constantsfor the corresponding del ay-free systems
are between 1 and 0.03 [sec]. The time-delay t = 2/9[sec] is of the same
order of magnitude.

Thefirst four states can be measured. Some (or all) of these measured signals
can be used to control the air-to-fuel ratio and the speed. The design of
controllers which show a good disturbance rejection as well can be based on
linear models. These controllers have been tested with success.
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2 On the solution of time-delay systems

The initial value problem for RFDEs is briefly considered. Suppose that
Trex = CONSt JO, ). By R" the n-dimensional vector space over the reals
with the Euclidean norm || is denoted. C([ty — T to]; R") is the space of
continuous and bounded functions mapping theinterval [ty — T, to] iNto R
For any X OC([ty—Tra t1]; R, t; >t X, is defined as x, = x(t + 0),
0 O[T 0]. Theinitial value problem for the system

X(t) = (¢, X, u(t) (2.2)

with agiven control u(t) consists of determining a continuous solution x(t) of
(2.1) for t = ty such that x(tg) = xg and x(t) = ¢ (t) for ty— 1, <t <ty, where
¢ isacontinuous function called theinitial function (Fig. 2.1). It is often as-
sumed that ¢ (tg) = x(tp). For given initial values (Xq, ¢(t)) the solution of
equation (2.1) is often denoted as x(Xq, ¢, f) [43, p. 37]. If the function f in
(2.1) is continuous and satisfies alocal Lipschitz condition in ¢ and u, then
the local existence and uniqueness of the solution can be proved as well as
its continuous dependence on theinitial data [40], [43].

¢ (1), x(0)

Fig. 2.1

The variable u(t) indicates the input to the system or the control variable.
Usually, the state of a system at time t is defined as a collection of infor-
mation which, together with the knowledge of the input, is sufficient to
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determine the output of the system. Therefore, the state space of continuous
time-delay systemsis an infinite-dimensional vector space C([ty— T tal,
R"), whereas the phase space of such a system is the space of the n-dimen-
sional vector x(t) at each instant timet.

2.1 Method of steps

In Part 11l ssmulation programs are applied to study the behaviour of some
delayed control systems. One possibility to test these programs is by
comparing the numerical with the exact solutions. The so-called method of
steps (or method of successiveintegration) isaway to calculate explicit solu-
tions[33].

The desired solution is found on successive intervals by solving ordinary
differential equations without delays in each interval. To illustrate the
method we consider the following delayed differential equation together with
agiveninitial condition

x(@t) = f(t, x(t), x(t=1)) t>ty, (2.2
X(t)) = X t=t, (2.3
X(t) = ¢() th—T1<st<ty,. (24)

For t L[ty ty + T] the above differential equation can be represented as an or-
dinary differential equation

X (t) f(t, x(t), x(t—1)) tpst<ty+Tt

X(t) = X t=t,.

Assuming the existence of a solution x(t) = ¢4(t) on the entire segment
[to, to + T], we obtain analogously for the next timeinterval
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X(t) = £(t, X(1), d(t—1)) f TSt tg+ 21
X(to + 1) = ¢4(to + 1) t=t+T.

In this way, the method allows us to calculate step by step the solution on
some finite segment.

Example 2.1: For the system

%(t) = 6x(t—1) t=0
o(t) = t ~1<t<0

the solution on thetime interval [0, 2] is

X(t) =3(t-1)2-3 0<t<1
X(t) = 6(t-2)3-18t+ 21 1<t<2

Thetested integration programs of the software package MatrixX yieldsvery
good results. A program which directly uses the method of steps is called
Delsol [152].

For continuous ¢ and f [JC the solution x(t) of equation (2.2) has a contin-
uousderivativefor ty <t <ty + 1. Consequently the solution of equation (2.2)
istwice differentiable for ty + T < t <ty + 21, and so on. Therefore, the solu-
tion x(t) smoothsout ast grows.

It is obvious that the method of successive integration can be extended to
solve the initial value problem for systems with time-varying delays or for
neutral systems. Furthermore, the method is always involved in existence
and uniqueness proofs for FDEs [43]. However, the method is not suitable
for the generation of stability or controllability criteria. Even for the ssmple
system [33]

X(t) = a-x(t—1) t>t,
X(t) =c th—T<t<t,

the solution
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N-1<t<N

N —te= (i =Y
X(t) = c;la 0 T

is difficult to analyse concerning stability. In the next section, some other
ways for representing the solution of atime-delay system are considered.

2.2 Fundamental matrix

Theintegral form of differential equation (2.1)

X(t) = Xo+ [f(s X U(9))ds

IS sometimes quite useful to represent a solution of (2.1). We will use this
form in Section 2.3 to establish a Comparison Theorem. Since an explicit
solution for nonlinear time-delay systems can be given only in very specia
cases, we shall restrict our considerations in this section to the following
linear differential equation

K
X(t) = Agx(t) + > Aix(t—T;) + Bou(t) t>t, (2.5
i=1
X(t) = ¢(t) to—T<t<ty (2.6
where 0<T,<...<Ty, Ap A ORV" x(®) OR", B OR™™™, u(t) OR™ A
widespread representation of the solution of (2.5) is given by

t k
x(t) = € x,+ jeAO“‘s){ S AX(S—T) + Bou(s)}ds | 2.7)

tO i=1

Equation (2.7) isused in Section 3 to derive asimple agebraic stability con-
dition. The first term on the right-hand side of equation (2.7) describes the
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influence of x, = ¢ (tp) on the system. An alternative characterization of the
solution is obtained if the first term describes the influence of the entire ¢ on
the system:

to t
X(t) = j d(t, 9d(s)ds + j d(t, 9)Byu(s)ds. (2.8)
o= Ty t
The fundamental matrices ® and @, are determined by

K

D (L, ) = A®(t, 9+ T AD(E-T, ) t>1,
i=1
d(t,s)=10dt—9 t, sO[ty — Ty, to]
Dyt 5) = APyt ) + T AD(t—T;, 9 t>t,
i=1
P, (t, 1) =1
o, 1) =0 t<s

wherel OR"*"istheidentity matrix and disthe Dirac function. An iterative
method for the construction of ® and @, isgivenin[106, p. 93]. The example
below illustrates an application of (2.7) together with the method of steps.
Furthermore, the result obtained is used in Section 2.4.

A function is called absolutely continuous if it is continuous and maps
bounded setsin C into bounded setsin R”. We shall denote by L2([a bl; Rq)
the space of squareintegrable R*-valued functionson [a, b]. W ?([a, b]; RY
IS the space of absolutely continuous R-valued functions on [a b] with
square integrable derivatives.

Example 2.2: Show that (2.5) admits a solution x [ L2([tO —Trae To; R N
WL A([t,, t,]; R for every input u OL([ty, t,]; R") and every initial condi-
tion ¢ OL([to— Tyma tol; R7).

For t [to, tp + T, ], equation (2.7) can be rewritten as

t

k
x(t) = e 'x,+ jeAO“‘S){ s AG(S—T) + Bou(s)}ds .

0 i=1
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The right-hand side of the above equation implies that X OL® for
t O[to, to + T ]. Again considering equation (2.5) we conclude that also
x 0L which impliesthat x W™ 2. By analogy we may now proceed for the
next timeinterval t O[ty + 1y, to + 27,] and so on.

2.3 A Comparison Theorem

In order to establish a stability condition in Chapter 3, a Comparison Theo-
rem is derived. As mentioned in Section 2.2, the solution of

x(@) = f(t, x) t>t, (2.9

X(ty) = Xo t=t, (2.10)

x(t) = ¢(b) to—Thx St<ty  (2.11)
can be expressed as

t
X() = Xo+ [f(s x5)ds .
f
For severa reasons we will consider here the slightly more general integral

equation
t

X(t) = gyt) + jF(t, S, Xgds . (2.12)
to
The symbol 0 = C([to — Trmae to]; R") denotes the space of continuous func-
tions with domain [to — T,nax » to] and range R". Jis defined by J = [t,, t;]. For
any two elements x, y OR" wewritex < y iff x; <y, for eachi =1, ..., n. Fur-
thermore, we define the following expressions

max([x, y] =z=(zy, 2,, ..., Z,) (2.13)

where z; = max(x;, y;). For example z(t) = max[y(t), x(t)] implies that
X(t) < z(t) and consequently x(t + 0) < z(t + 0) for 0 U[— Ty O], t > to. The
last inequality between x and z is denoted by x; < z, = max]y, X]..
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Definition 2.1 (analogousto [76], Vol. 2, p. 36, Def. 6.9.2): Let r(gy, ¢, F)
be a solution of (2.12) defined on [t,, t;]. If any other solution x(g,, ¢, F) of
(2.12) defined on the same interval satisfies

X(90: 9, F) <1 (9o, ¢, F)

then r(gy, ¢, F) issaid to be a maximal solution of (2.12).

Definition 2.2 (analogous to [76], Vol. 1, p. 316, Def. 5.1.1): We shall say
that the integral operator F is monotone nondecreasing if, for any @,
® OC([ty— T, t1]; R") such that for any t; > t,

o(t) < o(t) to—Trex S t< 1ty
implies ty t,

[F(t, s, @)ds< [F(t, s, @s)ds .

) t

Theorem 2.1 (Comparison Theorem): Let F(t, s, x) OC([J x J x ﬁ']; Rn),
be monotone nondecreasing in x; for each (s, t) and

t
X(t) < golt) + [F(t, s, %5)ds tost<t, (2.14)
t
where gy OC([to, ti]; R"), X OC([ty— Tpax t1]; R"). Assume that r(t) is a
maximal solution of

m(t) = go(t) + [F(t, s, my)ds (2.15)

b

existing on [ty, ). Then

X(t) < r(t) on [ty t4]. (2.16)
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Proof: Define
K(t, s y) = F(t, s, max[y, x],) . (2.17)

Equation (2.13) impliesthat x5 < max[y, x], for any functiony. From the mo-
notonicity of F and (2.17), it therefore follows that

K(t, s y,) = F(t, s, x,) for any functiony,.  (2.18)

Let r' (t) be the maximal solution of
t

m(t) = go(t) + [K(t, s, m)ds

t0
existing on [ty, t;] such that
t
() = golt) + [K(t, s r)ds.
t
From (2.18) we conclude that

r(t) 2 golt) + [F(t, s, xds.

ty

Applying (2.14) we obtain

r(t) = x(t). (2.19)

To complete the proof we have to show that r'(t) is also a maximal solution
of (2.15). It results from (2.19) and (2.13)

max[r’(t), x()] = r'(t)
max[r(t), x®)]: = r ¢
and consequently, dueto (2.17),
K(t, s, 1) = F(t,sry).

Thusr (t) is also the maximal solution of (2.15). Hence (2.19) proves the de-
sired result (2.16). [
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Corollary 2.1: Let f(t, x) OC([J x ﬁ]; Rn) be monotone nondecreasing in

x; for each t and
t

X(t) < xo + [f(s, xs)ds
fo
where Xy OR", X OC([ty — Trae t1]; R'). Assume that r () is a maximal solu-
tion of
t
m(t) = X+ [f(s, my)ds (2.20)
f

existing on [ty, ). Then

x(t) <1 (1) on [to, ty] - (2.21)

2.4 A transformation for time-delay systems

The transformation presented here converts a multiple delay system into a
single delay system, leaving the trgjectory invariant. Using this transforma-
tion, the stability and controllability criteria derived for single delay systems
can at once be extended to multiple delay systems. The relation between the
transformed and the original systems concerning system properties is ana
lysed in Sections 3.3 and 4.1. In this section, both the construction of the
transformation and sufficient conditions for the transformed system to have
the same trgjectory asthe original system are studied. Thetime-delay system
under consideration is described by a linear differential difference equation
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and a static output equation:

K

X() = AgX(t) + ¥ AX(t—T;) + Bou(t) t>t, (222
() = Cx() t2t, (2.23)
x(t) = o) L-T <t<t, (2.24)

nxn nxm

where 0< 1,< ...<T,, Ay A ORV", x(t) OR", B,OR™™™, u(t) OR",
Co, OR”™", y(t) OR. We denote the natural numbers by N, the rational num-
bers by Q, and the positive real numbers by R". Under the assumption that
the system (2.22) is commensurate, the delays may be represented uniquely
in the factorization

Ci

a’

T, =
wherec;,d; TN andv [ R\ Q O {1}. Inorder to generate thetransformation
such that the number of state variables of the transformed system isminimal,
welook for the maximal value of the delay constant T whichisderived from
the equations

T, = 4T
T2 = 1T (2.25)
T, = |k'[*

wherel; DN andt” OR*. Thetuple{ly, ..., |\, T’} determined by the equations
(2.25) can be derived with the following Lemma.

Lemma 2.1: The delay constant T OR" ismaximal under consideration of
the property |, O N, iff relation (2.26) holds

« _ gecd{c}
T em{ay U

(2.26)
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Proof: First we haveto check whether T O R” satisfiesthe equations (2.26).

For any T, with ¢ = gcd{c} and d = lcm{d} we may write

C c,de
T = —v = —_—
d d.ed
I, = C'—d = |ON.

Any combination (¢, d") where

e>c d

<d
destroys the property of |; being an element of N. [

With the following transformation the multiple delay system (2.22) — (2.24)
is related to a single delay system with the same trajectory. Let us consider
the maximal delay constant T . Then the new state, control, and output

vectors, X(t) O R'x"™"

by
() = x(t-(-11)
X, (t)
x(t) =
X, (t)
Ut = ut-(-11)
Uy (1)

ut) = |
u, (t)

,u(t) OR*™, and y(t) O R*™, respectively, are given

(2.27)

(2.28)
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Ty = y(t=(-1)1),

y1(t)
yi) = | t>t, (2.29)

yi (1)

where j{1,2,..., l,}. Furthermore, we define @(t)DR"‘Eh and
() OR*™ tobe

(1) = ft-(-11)
f,(t)

f(t) = | - t>t, (2.30)
fi (t)

o) = (-G -1)T),

d4(t)
) = | t-T St<t, (2:3))

¢, (1)

where the function f remains to be defined. The transformed system is then
of the form

T x(t) = Agx(t) + Ax(t—1,) + Byu(t) + f(t) t>t, (2.32)

Y(t) = Cox(t) t>t, (2.33)

x(t) = d(t) to—-T,St<t, (2.34)
I, ChxI [h I Chxl, On

where the system matrices Ay, A;OR , BoOR , and

C, O R*™**™ have the following structures
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Ay . Aq Ay 1
Ao Aq A 1
Ay
Ay
A, .
A1
A,
Ay
Ay A1
B, = diag[B,, ..., By
C, = diag[C,, ..., Cy] .

(2.35)

(2.36)

(2.37)

(2.38)

Because of (2.26) and (2.27), A; (fori {1, 2, .. ., k—1}) buildsthel; upper
secondary block diagonal of A, and the I, —I; lower secondary block diago-
nal of A,. All other secondary block diagonals are zero. Furthermore, let us
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call the vector-valued function f(t) aninitial control. This approach enables
us to perform the transformation without restrictive assumptions on the orig-
inal system. In the following, the symbol A isdefined by A=T1,—T .

Theorem 2.2: The system (2.22) — (2.24) with multiple delays in state and
with a given vector-valued initial function ¢ O L2([tO ~T,to]; RY) n
C 1([tO —A, to]; R") can be represented by an equivalent single delay system
(2.32) - (2.34) with the same trajectory if f () is chosen as follows

f,(t) =0 ot

,fz(t) :JLf(t—T*) tOSt<tO+T*

0 t =1t + '[*
(2.39)

(1) ={f(t—('k—1)T*) ty<t<ty+A

| 0 t=2ty+A

where

f(t) = ¢ - Ao = 5 Ad(t-T) —Bou() (2.40)

i=1
fortg—A<t<t,.

Proof: We first deal with the vector-valued initial function ¢ (t). Equation
(2.31) requiresthe knowledge of ¢(t) ontheinterval [t, — T, — A, ty]. Because
of equation (2.24) theinitia function ¢(t) isgiven only on [ty — Ty, tg]. We ex-
tend ¢(t) to the interval [ty — T — A, tg] such that ¢ [ L2([t0—'[k —Ato]; RY
N Ci([to—A, tol; Rn). Once ¢ (t) ischosen on the prolonged interval, the func-
tion ¢ DLZ( [to — Tk, tol; R* n) isgiven by (2.31). For u(t) we proceed in an
analogous way: We choose u(t) arbitrarily on [ty—A,ty] such that
uOL%([ty=A, t,]; R™). The control u OL3( [ty t,]: R* ™) is then deter-
mined by equation (2.28). Assuming the two functions ¢ (t) and u(t) to be
fixed, theinitial control function f(t) isfully determined. For X, (t) witht > t,
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we have

K
T oxg(t) = x(t) = Agx(t) + S AX(t—T1;) + Bou(t) +f(t) , (241
i=1
K
f(t) ="x(t)—Agx(t)— > Aix(t—-1;)—-Bou(t) = 0 . (242
i=1

For t > t,, f(t) vanishes. For the computation of f(t) we have to find f(t) on
theinterval [t, — A, tg] using (2.40). Equations (2.30) and (2.42) yield (2.39).
From the equations (2.31), (2.28), and (2.39) it follows that ¢ [
L%([to=Tw t: R* ™), U OL%([t, t.1; R* ™), and f OL2([to, to + A]; R* ™).
Therefore, it is obvious that the system (2.32) — (2.34) admits a unique solu-

tion X OL%([to—Tp, to;: R* ") n Wh ([t t.]: R* ") [43]. O

Equation (2.39) shows that f(t) influences the transformed system only for
t O[t,, to + A]. Theinitial control f(t) corrects the influence of the arbitrary
extensions of ¢(t) and u(t).

Example 2.3: The original system is given by

X(@t) = Agx(t) + A x(t—1) + AXx(t—2) + Agx(t—3)

+ Bou(t) t>0
y(t) = Cox(t) t>0
o) =[1,-1" 0>t2-3
uit)=[2,-2] " t=0

where

-3 —7 -2 0 01 00
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The corresponding transformed system is described by

X(t)+ A, A,

Ao AL A)
Xx(t) = A, A,
Ag
B, |
+ BO
Bo
Co
y(t) = C, |x()
Co

As
X(t—3) +
Ai Az Ag

u(t) + f(t)

(2.43)

(2.44)

The extension of ¢(t) ischosentobe ¢(t) =[0, O] T foraltD [-5, —=3) and
u(t) =[0,0]" foral t O[-2, 0). d(t) and u(t) are calculated by (2.31) and
(2.28). Equation (2.40) then yields

[0, 0"
f(t)=[7,-1"
[7,-2]"

We then construct f(t) with (2.39)

[ACER e
[0, 0"
[7,-2]"

fa(t) = [7,-1"
[0, 0"

The solution — y(t) = [ya(t), ¥a(t), ys(D)] T

t=0
-1<t<0
—2<t<-1.

O<t<1
t>1

O<st<1
1<t<?2
t>2.

to (2.43), (2.44) computed

with the variable Kutta-Merson integration method is shown in Fig. 2.2.
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Fig. 2.2 Solution of the system (2.43) — (2.44)

Next, two cases are shown in which the introduction of aninitial control f (t)
can be neglected.

1) In the first case, we choose u(t) such that u [ L2([t0 —At]; RD). We as
sume A, to be regular and ¢ OL%([to— T to]; R) n C1([to—A, tg]: R). In
order to achieve our goal, we calculate ¢(t) on the extended interval
[to — Tk — A, tg —A] by backward continuation. Under the above assumptions,
the solution exists and is unique [43, Section 2.5]. We realize the backward
continuation with the help of the inverse of the method of steps as follows.

Corollary 2.2: If Aisregular, & OL°([to— T, to]; R") n CH([to=A, tg; R,
and the extension of ¢(t) is chosen to be

#) = ACTO(t+T) —Agh(t+1 +

T AR T -ButrT)]  (245)

for t,—A—jT st<t,—A—(j—1)T ,j0{2, ..., 1}, then f(t) vanishes.
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Proof: Consider f;(t) = f(t—(j—1)T) where ty<t<ty+(j—1)T .In
order to show that f(t—(j —1)T ) vanishes, f(t—(j—1)T ) isexpressed
in terms of (2.40) where for ¢ (t) relation (2.45) holds. [J

The relation (2.45) is recursive, except if 1,_; = 1, = 1. Therefore, the
solution is found on successive intervals. From the extended ¢ (t), ¢ (t)
followsimmediately by equation (2.31). In the scalar case of (2.22) —(2.24),
it isalways possible to omit theinitial control.

Example 2.4: For the system defined by

X() = —x(t) +x(t—2) —x(t—3) + 2x(t - 5) t=0
d(t) = —-05t+2 -5<t<0

the extension of ¢(t) is calculated by applying (2.45)

o(t) = —0.25t—0.25 _7<t<-5
o(t) = —0.125t—1.125 _8<t<-7
o(t) = —0.25t—0.375 —9<t<-8.

Thedifferential difference equation of the corresponding transformed system
is described by

-1 0 1-10 20000

_ 0-1 0 1-1 02000

x(t) =10 0-1 0 1[X()+|-1 0 2 0 o|X(t—5) t=0 (2.46)
00 0-10 1-1 020
00 0 0-1 0 1-10 2

X(t) = d(t) —5<t<0. (2.47)

The construction of ¢(t) [ R® and the solution of the corresponding trans-
formed systemisshownin Fig. 2.3.
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backward
continuation

Fig. 2.3 x(t) for all t L1[-5, 5] for the system (2.46) — (2.47)

1) In the second case, we choose ¢(t) on the extended interval
[to—T,— A, t,—1,] such that ¢ belongs to L°([ty—T,—A,tg; R") n
Cllto—A, to]; R").

Corollary 2.3: If m=n, B, is regular, & 0L ([ty—1, A to]; R n
C'([t,—A, t,]; R"), and the extension of u(t) is chosen to be

ut) = By () —Ad) — > Adt—1)] , (2.48)

i=1

to—A<t<t,,then f (t) vanishes.

Proof: The Corollary can ssimply be proved by replacing u(t) in (2.40) with
the help of (2.48). [
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Structural Properties

3 Qability

Roughly speaking, the stability of a system is its ability to resist any
unknown small influences. Since in reality disturbances are always encoun-
tered, stability is an important property of any control system, delayed or
nondelayed. The following Cauchy problem is considered:

x(t) =f(t, x) t>t, (3.2
X(t) = X, t=t, (3.2
x(6) =6 (1) - Tmax St<tp. (3.3)

We assume in this and all further chapters that f is bounded and completely
continuous (i.e., f is continuous and maps bounded sets in C into bounded
sets in R"), and that it is regular such that for any initial state ¢ OC there
exists a unique solution x(Xq, ¢). Furthermore, it is assumed that (Xq, §) is
bounded and the initial function ¢ is continuous.

Definition 3.1: A constant function ¢, is called an equilibrium state if
f(t, o) = Ofor all t=>t,.

Even in the linear case of (3.1) the system may have more than one equilib-
rium state in general. But the stability analysis of any equilibrium ¢ may be
reduced to the analysis of the zero equilibrium by the substitution z(t) =
X(t) — @, Y(6) = $(8) — .. For zwe obtain



34

20 = f(t,z,+ @) t>1t,
zZ(t) = O t=t,
Z(t) = l]J(t) o= Tmax S T <1

Therefore, it isno restriction if we assume in the future that f(t, 0) = 0.

Definition 3.2: The equilibrium state @, = 0 is stable in the Lyapunov sense,
if for any positive numberst, and € there exists a (g, ty) > 0 such that every
continuous solution of (3.1) which satisfies

max |X(t)| < 3 (¢, tp) to<t<ty+ T,
will also satisfy

max |x(t)| < € tp<t< oo,

Definition 3.3: The stable equilibrium state @, = 0 isasymptotically stableif
every continuous solution of (3.1) also satisfies limx(t) - O .
t -

In the definitions given above the number d depends on both ty and €. If a
0 > 0 can be found independent of t, the solution @, of (3.1) isdesignated as
uniformly stable or uniformly asymptotically stable, respectively.

Definition 3.3 can be simplified if equation (3.1) islinear in x and (X, ¢) [
M2=R"x L2([tO —Trae To; RD). M isaHilbert space with theinner product

(X, ), Vo WD) yy2 = (Xon Yoo+ (&, W) . . Hence the induced norm is
given by [39, p. 98]

t 1/2
X0, Ollo = | Ixd*+ [ 16(8)/°de
to— Tmax
The following conditions are equivalent and imply that the system is asymp-
totically stable if equation (3.1) islinear in x and (X,, $) [IM 2 [39, p. 99]

i) limx(t) - 0

t >
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i) [Ix(t)*dt <

0

i) X < Be™| (X, 0)],,, @, B= const [0, e).

In the next section, we will introduce three basic tools to analyse the stability
of retarded systems.

3.1 Stahility concepts

In this section, the method of Lyapunov functionals and the method of Razu-
mikhin are briefly introduced. Furthermore, we consider the characteristic
equation to determine the stability of the solution for linear time-delay sys-
tems.

) Lyapunov’s direct method: From the stability of ordinary differential
eguations, the efficiency of Lyapunov’s direct method (or second method) to
analyse stability problemsiswell known. (Lyapunov’sfirst method provided
that an explicit solution of the considered differential equation is known.)
Krasovskii [69] was the first who generalized this method to RFDE's. Since
to each solution of an RFDE there is an integral curve in the space R" x C
(see Sections 2.1 and 2.2), itisanatural generalisation to use Lyapunov func-
tionalsin this space instead of Lyapunov functions. These functionals are of -
ten called Lyapunov-Krasovskii functionals.

Suppose V(t, X): R x C - R is continuous function and x(t) is the solution
of (3.1). The function V(t, X;) 1S the upper right-hand derivative of V(t, Xx;)
along the solution of (3.1) (see, e.qg., [66, p. 100], [43, p. 105]). We denote by
w;(r) for r = 0 some continuous nondecreasing functions such that w;(0) =0
andw;i(r) >0forr>0.
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Theorem 3.1 [43, p. 105]: Let there exist a continuous functional V(t, x,):
R x C - R such that

wa([X]) < V(t, X) < wal(|x) (34)

and
V(t, X)) <-ws(|x]) . (3.5

Then thetrivial solution of (3.1) is uniformly asymptotically stable.

It isaninteresting fact that if thetrivial solution of (3.1) isasymptotically sta-
ble, then there exists a continuous functional V(t, x;) satisfying (3.4) and
(3.5) [69, Theorem 5.3].

I1) Razumikhin’s method: The idea of the Razumikhin-type theorem is to
treat the stability problem with functions rather than with functionals. In the
beginning of his research, Razumikhin (1958) considered the single delay
system x(t) = f(x(t), x(t —1)) and investigated the stability problem on the
basis of first approximations. He demonstrated that the zero solution of this
system is asymptotically stable if a positive-definite function V(t, X) has a
negative-definite derivative along the solution of (3.1) with the additional
condition V (t—1,x(t—1)) <V (t, x(t)). In the late seventies, Hale [43]
presented a stronger version of the Razumikhin-type theorem. We read on
page 126 in [43]: “ A few moments of reflection in the proper direction indi-
cate that it is unnecessary to require that V be nonpositive for al initial data
in order to have stability. Infact, if asolution of an RFDE beginsin aball and
isto leave this ball at some timet, then |x| = |x(t)[; that is |x(t + 0)| = |x(t)]|
for al © O[— 1,4 0]. Consequently, one needs only consider initial data
satisfying this latter property.”

Theorem 3.2 [43, p. 127]: Let there exist a continuous function V(t, X):
RxR" - R such that

w([X) S V(t, X) s Wa(|X)) (36)
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and
V(t, X) < —wy(]x]) . (3.7)

V(t+ 6 x(t+ ) sw,(V(t, x(1))) (3.8)

for 8 O[—Tax, 0] and wy(s) - o ass — oo, then thetrivial solution of (3.1)
is uniformly asymptotically stable.

I11) Characteristic equation: The following linear autonomous systemis a
special case of equation (3.1), but it isimportant in control theory:

k 0
X(t) = Agx(t) + > Aix(t—T1;) + jAm(G)x(t +0)do (3.9
i=1 _h
where0<T1;<...<T, <o, h[0, ), Ay, A, OR"". It isassumed that the
elements of the function matrix Ay (8) are continuous and bounded. The
so-called characteristic equation for the linear hereditary differential equa-
tion (3.9) isgiven by

k 0
det[A(s)] = det|sl—A,— T Aje - jAOl(e)esede . (3.10)

i=1 —h

The function det[A(s)] is sometimes called the characteristic quasi polynomi-
al. In the following, Re(s) designates the real part of s, and C is the set of
complex numbers.

Theorem 3.3[40, p. 54 and p. 132]: System (3.9) is uniformly asymptotically
stableiff

Re(s) < 0 (3.11)
for all sOC satisfying det[A(s)] = 0.

Note that for linear neutral systemsthe ‘natural’ corresponding extension of
Theorem 3.3 isnot truein genera. In[29] an exampleisgiven of alinear un-
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stable neutral differential difference equation whose spectrum liesin the left
half plane.

Calculating the exact value of the roots of the characteristic equation is
possible only in very special cases. An approximate computation of the
eigenvalues of the system (3.9), and some properties of the eigenvalues will
be discussed in Section 3.4.

3.2 Stability tests

The tools to investigate the stability of RFDEs introduced in the last section
are applied in the following to establish simple, algebraic stability condi-
tions. The search for easily applicable stability tests has become a popular
field of research over the last number of years. These stability criteria are
classified into two categories. The stability criteria which do not need any
information about the delay are called delay-independent criteria, while
those which exploit information about the delays involved are called
delay-dependent criteria. In [18], [49], [50], [57], [59], [60], [82], [145],
[155] (to mention a few), a further classification is stated: the so-called
stability criteria independent of delay, abbreviated to i.0.d. stability criteria.
(These criteriaare valid only for systemswith constant lags.) The expression
i.0.d. might appear to be equivalent to the term delay-independent, but it is
not. For example in [57] the exact i.0.d. stability condition for the
system X(t) = apXx(t) + ayx(t —h) + ayx(t —2h) is derived. However, this
conditionis not valid for the system x(t) = gyx(t) + a;x(t — h) + a,x(t — 3h).
Thei.o.d. criteriadiscussed in Subsection 3.2.3 below do not need any infor-
mation on the delay constant h. As soon as the system has further delays, the
I.0.d. stability criteria depend on the ratio of the delays. This of course
implies that the ratio of the delays has to be known exactly! (In the systems
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mentioned above the ratios of the delaysare 1:2 and 1:3, respectively.) More
accurate than the term “i.0.d.” would thus be the expression independent of
adelay constant. We will use only the latter terminology. From now on, we
say that a stability criterion is delay-independent or independent of delay if,
for a system with multiple constant delays, the ratio of the delays does not
have to be known for this criterion to be applicable. Furthermore, we distin-
guish whether it is assumed that the delays are constant or not. To sum up,
we distinguish between the following four types of stability tests:

» delay-independent or independent of delay stability criteria
(delays may be constant or variable)

» stahility criteriaindependent of constant delays
« dtability criteriaindependent of a delay constant
» delay-dependent stability criteria.

Of course, necessary and sufficient conditions for asymptotic stability
criteria will be delay-dependent. Consequently, there is a gap between
delay-independent criteria and exact ones. Several examples of this gap are
visualized in Subsection 3.3.1. Note that exact stability conditions in terms
of the system coefficients are known only for ‘simple’ systems, while
delay-independent stability conditions are derived for much more general
systems. Delay-independent stability criteria are very useful, sincein reality
it is difficult to estimate the delays, especially if those delays are
time-varying and/or state-dependent.

Before starting the following subsections, some notation is introduced:

A(A) Eigenvalue of the matrix A OR" ™"

Amax(A)  Eigenvalues with the largest real part of the matrix A
Ain(A)  Eigenvalues with the smallest real part of the matrix A
Re(-) Real part of (-)

Im(-) Imaginary part of (-)
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n
IX|. vector norm: IX|, = |Xi]
=1

|x|2:{ |xi|2}
i=1

x|, = miax X

n
|A]. matrix norm: IAl, = max ¥ |a;|
I =

1AL, = JAnax(ATA)

n
Al = max ¥ EN

i=1

H(A). matrix measure: U(A), = m?x[Re(ajj)+ REN
i=1
i #]

H(A), = 0.5 Apa(A +A)

H(A), = m?X[Re(aii)"' e
=1
P %]

3.2.1 Stability tests: Independent of delays

For the system X(t) = AgX(t) + Axx(t—1); Ao, A; OR"" with a constant
delay t, Mori et al. (1981) presented the well-known stability criterion
H(Ap). + |IA4]] <0 .Chereset al. (1989) [25] indicated that this stability con-
ditionfor .= 2isasovalidif the delay istime-dependent. Wang et al. (1991)
[145] showed that this type of criterion for . = 2 can also be formulated for
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systems with multiple constant delays. Indeed, the statement can be general-
ized for the following system
K
X(®) = Agx(D)+ ¥ Ax(t-Ti(t x(1) t=to
i=1 (3.12)
x({t) = o) to—Thax St 1,
where A,, A; OR"™". It is assumed that the delays are continuous and
bounded, satisfying the inequality 0 <T;(t, X(t)) < T,a - The first stability
condition is established using comparison techniques, while the other
stability criteria are derived with the help of the Razumikhin concept.

Theorem 3.4: System (3.12) is asymptotically stable independent of delays
(a.s.i.d) if the inequality
K
HAD-+ 3 [A]. <0 (3.13)
i=1
isvalidfor any.=1, 2, .

Proof: The solution of (3.12) can be represented as

t k
X(t) = eto'x, + jeAO(tS){ Y AX(S—Ti(s, x(s)))}ds t>t,

tO i=1

where X, = ¢ (0). Taking the norm on both sides of the equation yields

t k
x@)l. < [le* x| + [l { > Al [x(s=Ti(s, x(s)) ,}ds :

to i=1

Now we use the inequality [27]: [eArY. < et for t = t;and define v(t) =
IX(0)].; Vo = [X(to) |

t

H(AQ H(AQ)t-s)
0 Vo + J‘e 0 |:

k
vit)<e |A] v(s—Ti(s, x(s)))}ds R -

ty 1=

v(t) = |o(1)]. to— T < L <t
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Corresponding to the above inequality, the following integral equation is
considered

t

H(AQt H(Ap)(t—9)
0 J‘e 0

k
z(t) = e Vo + > Al z(s—Ti(s x(s)))}ds S -

t
z(t) = o). to—Thax St<T1p.
The variable z(t) isthe solution of the following scalar differential difference
eguation

K

20)= WAz + 3 A 2t - Ti(t (1)) t2t, (314)

z(t) = |9 (0)]. - TmxStsty. (315
Using the comparison theorem (see Section 2.3) we obtain
X@®I. = v(t) < z(t).

Obviously, asymptotic stability of system (3.14) implies that of system
(3.12). It isknown (cf. [43, p. 129]; or [2]) that the solution of the scalar dif-
ferential difference equation of the form

K

X(t) = apx(t) + p2 ax(t—T(t, x(1))

i=1

iIsasymptotically stable for al bounded continuous functions T; (t, x(t)) if the
inequality
g+ 3 [a] <0

i=1

holds. Applying thisresult to (3.14) and (3.15), Theorem 3.4 follows. [

Theorem 3.5: System (3.12) isa.s.i.d. if the inequality

b k
UPAY, + [0 [PAJ, <0 319

holds for some symmetric, positive-definite matrix P OR" ™",
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Proof: The Lyapunov-Razumikhin function is chosen to be of the quadratic
form

V (x) = x(t)' Px(t) (3.17)

where the symmetric matrix Pis positive-definite. Using the properties of the
numerical range of P (also called Rayleigh quotient), it is always possible to
find a suitable w,(|x(t) [) and w,(|x(t)]) to satisfy condition (3.4) of Theorem
3.2. An appropriate choice of w; and w, is as follows:

WX = Amin(PIX®) ' X(1) < V(X(1)

Wo(IX(®))) = Ama(P)X(®) ' X(t) 2 V(X().
Determining the derivative of (3.17) along the trgjectory of (3.12) yields

V =x() [AGP + PAJX (1) + 2x(t)TP§ Ax(t—Ti(t, x(®). (3.18)

Next, we have to satisfy inequality (3.8). The nondecreasing function w, is
chosen such that w,(V(x(t))) = V(x(t)). Based on condition (3.8) equation
(3.17) implies that

max( P)

X(t=Ti(t, x(1))] < A (P

o X! (3.19)

Thus, (3.18) together with (3.19) yields

max( P) &
Amin(P),

From the above inequality, it follows that V is negative along the trajectory
of (3.12) if condition (3.4) isvalid, and thus the proof is complete. [

V <x(t) [AJP+ PA ] x(t) + 2 Z IPA| X)) .

Corollary 3.1 [25]: The system (3.12) isa.s.i.d. if theinequality

k
AminP) y |Af, <0 (3.20)

AneP)” 151
isvalid for some symmetric, positive-definite matrix P OR" ™"

HU(PAy), [J
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Proof: Using the relation [P JA;|| = |PA;| we immediately obtain Corol-
lary 3.1 from Theorem 3.5. Corollary 3.1 wasfirst presented by Chereset al.
(1989) for a system with asingle time-varying delay. [

Note that Theorem 3.5 for P=1 produces the same stability condition as
Theorem3.4for.=2.

A remarkable stability criterion of the a.s.i.d. type was derived by Ameniya
(1989) using the M-matrix technique. The reason for not stating that partic-
ular result here is that it is valid only for a special class of single-delay
systems.

A conclusion of the above stability condition is that the asymptotic stability
of a time-delay system is guaranteed, if the eigenvalues of the composite
matrix Ay + Ag lie behind a certain boundary in theleft half plane. The ques-
tion now iswhether or not it is sufficient to require that the eigenvalues of A,
lie behind a certain boundary in the left half plane to guarantee asymptotic
stability of the system. Such a stability criterion would be highly applicable,
since a number of the controller design methods for linear nondelayed
systems could be extended to delay systems by means of a pool-placing
method.
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3.2.2 Stability tests: Independent of constant delays

The concept of Lyapunov functionalsisused to treat the stability problem for
time-delay systems. If the delays were state- and/or time-dependent the
Lyapunov’s principle would yield stability criteria which would require the
complete knowledge of T;(t, x(t)), as was demonstrated in [129]. However,
for the system with constant delays described below, Lyapunov’s principleis
useful.
K
X(t) = Agx(t) + ¥ Aix(t—T,) (3.21)

=1

whereby Ay, A DR "and0<1,<...<T <.

Theorem 3.6: System (3.21) is asymptotically stableif there exist symmetric,
positive-definite matrices Py, P, OR" ™" such that

K
AGPo+ PoAg+ 3 P+ PAAPT AP, <0 . (3.22)

i=1

Proof: Let V(X;) be a Lyapunov functional given by

k t
V(x,) = x(t)TPox(t) + 3 j X(s)" Px(s)ds . (3.23)

i=1 t-T
Then, according to Theorem 3.1 the sufficient stability conditions for (3.21)
are
a)  wy(x®) =V (x) = wy(]x])
b)  V(x)=—-ws(|x]) .

Approach (3.23) admitsto fulfill @) since the functionsw; and w, can be cho-
sen asfollows

WX = Amin(Po) IXOI*< V (%)
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K

V(%) < AmacPo) + 2 Ti Amax PYIIXD)1* = Wl %)) -
i=1
To show b) the proof proceeds as follows. Calculating the derivative of V

using (3.21) yields

vV o= x(t)T{AEPo+ PoAg+ ¥ Pi}x(t) + 3 X() PAXE-T) +
i=1 i=1
+ 3 X(t—T1) AL Px(D) — ¥ X(t—T) ' Px(t-T) .
i=1 i=1

The right-hand side of the above equation is expressed below as a quadratic
form. In order to ensure asymptotic stability of the system (3.21) this quad-
ratic form has to be negative-definite.

0> v(t) Mv(t) (3.24)

wherev(t)" = [x(®)", x(t—1,)", .. ., x(t—1)"] and

) k ]
AP+ PoAg+ 3 P PoA, PoA
i=1
- A1P, P, 0
T
I AP, 0 P

Inequality (3.24) isrewritten in thefollowing, using abasic theorem for sym-
metric partitioned matrices. Kreindler and Jameson (1972) showed that for
the matrices U4, U4,, and U,, with appropriate dimensions, the condition

U12 U22

isequivalent to
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U;y <0 and
A, T
Uy —UpUxpU,<0.

Applying this fact to condition (3.24), we obtain

K
AjP,+PAy+ 3 P <0 and (3.25)
i=1
K
AoPo+ PoAg+ 3 P+ PAPTA P <0 . (3.26)
i=1
Only the latter relation is relevant, since it includes condition (3.25). Thus,
there exists a positive constant c; such that

V (%) < = co(lx)
if condition (3.26) is satisfied. This completes the proof. [

Corollary 3.2 [105]: Assume that A, < 0. If the symmetric, positive-definite
matrices P, and Q associated with the Lyapunov equation

AjPy+ PoA, = —(k+ 1) [0 (3.27)

satisfy the inequality
K
—Q+ ¥ PLAQ AP, <0 (3.28)

i=1

then system (3.21) is asymptotically stable.

Proof: If al P, are replaced by Q in (3.22) and the term AgPO+ PoAg In
(3.22) isreplaced by — (k + 1)-Q using (3.27), inequality (3.28) follows.[]

Corollary 3.3: Assumethat p(Ay) < O, then the system (3.21) isasymptotical -
ly stable if the inequality

k
Amad Ao+ Ag— 4K 35 A(Ag+ Ag) ™A | <0 (3.29)

i=1

holds.
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Proof: With the appropriate choices for P, and P;:
Po = | and P = — Zik(Ag +A) (3.30)
Corollary 3.3 follows from Theorem 3.6. [J

A discussion on the sharpness of the stability criteria presented follows | ater
because first the influence of unstructured perturbations (Section 4.1) and
certain methods to reduce the conservatism of the criteria (see Section 3.2.4)
are introduced.

3.2.3 Stability tests: Independent of a delay constant

Given adelay differential system

K
X(t) = Agx(t) + > Ax(t—ih) (3.31)
i=1
with delays equal to integer multiples of a fixed delay constant h [1[0, ).
The characteristic equation of the system (3.31) is denoted in the following
by P(s, ™). From Theorem 3.3 it follows that the system is asymptotically
stable independent of the delay constant h, iff

P(s, e™#0,  Re9 20, Oh O[O, ) . (3.32)

In this situation, two branches of development can be distinguished.
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) Kamen (1980) claimed that the condition (3.32) is equivaent to the
two-variable criterion

P(s,2) 20, Re(s) =0, (3.33)

wherez=¢€ © w0[0, 2m,j = ./~1.Based on thiswork anumber of papers
were published. Jury and Mansour (1982) described a method to reduce the
two-variable criterion to that of checking the positivity of a one-dimensional
polynomial. They gave necessary and sufficient conditions of asymptotic
stability independent of the delay constant h for several scalar systems. Lui
and Mansour (1984) showed that under suitable conditions a system can be
aternately stable; i.e. stable-unstable-stable ... as the delay h increases.
Brierley et al. (1982) presented a stability criterion in terms of solutions of a
complex Lyapunov matrix equation. They claimed that the system (3.31) is
asymptoticaly stable independent of the delay constant h, iff for any
positive-definite Hermitian matrix Q(z) the solution of the complex
Lyapunov matrix equation

K
A@2)'K(2) +K(@)A@@)=-Q@) whereA(z) = y A;Z (3.34)
i=0

isalso apositive-definite Hermitian matrix K(z) for all w [0, 217. Hmamed
(1986) and Wang et al. (1991) [147] used this result of Brierley to derive a
sufficient stability test for large-scale systems. (The stability of large-scale
time-delay systems with uncertainties is discussed in Section 4.3.) Further-
more, Wang et al. (1991) [145] applied condition (3.34) to establish a suffi-
cient stability criterion for the system (3.31):

K

WA + (3 AZ) <O, 0 z|=1.

i=1
Animproved version of this condition was given by Hmamed (1991):

WA+ 3 AZ)<0 0zl=1. (3.35)

i=1

Using the properties of the matrix measure (see Appendix of [101]), itiseasy
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to show that condition (3.35) is less restrictive than those given by Wang et
al. (1991) [145] and Mori et al. (1981):

K K K
A+ T AZ) SUA) + (X AZ)SHA) + 3 A, -
=1 i=1 i=1
However, most of the authors mentioned above (and others) were not aware
of thefact that Kamen (1983) corrected hisown result: condition (3.32) isnot
equivalent to (3.33). The two-variable criterion (3.33) isequivalent to (3.32)
plus the additional condition

P0,2)#0, 0 z|=1.

The consequences are that the stability criteria (3.33), (3.34), and those
presented in [57], [82] are only sufficient rather than necessary and suffi-
cient. Therefore, Boese (1989) made another attempt to find exact stability
conditions independent of the delay constant h, in particular, for the
system x(t) = ayx(t) + a;x(t —h) + a,x(t — 2h). Astonishingly, he obtained
the same necessary and sufficient condition as Kamen (1980) and Jury and
Mansour (1982):

2

Ch]
a°<8_a2+a2 <0 (3.36)
or
a+|ay +a,<0 8 < 33 (3.37)

Kamen (1983) showed that the system x (t) = —x(t) —x(t — h) is asymptoti-
cally stable independent of the delay constant h. Unfortunately, this system
does not fulfill the conditions (3.36) and (3.37). Therefore, these conditions
are only sufficient rather than necessary and sufficient, and hence the
problem remains open.

I1) Assume that the system (3.31) with h = O isasymptotically stable, then it
is also asymptotically stable for sufficiently small values of h > 0 (cf. Sugi-
yama (1961)). Using this fact, Yoshizawa (1975), (cf. [40, p. 114]) showed



51

that the system (3.31) is asymptotically stable independent of the delay con-
stant h, iff the system

x(t) = {AO+ ¥ Ai}x(t) (3.39)

i=1
is asymptotically stable and the matrix

K
Ao+ 3 €A (3.39)
i=1

has no nonzero eigenvalues on theimaginary axisfor all w [0, 217. Severd
authors[119], [137], [138] proposed to simplify the calculation of the condi-
tion on the matrix (3.39) by a suitable auxiliary equation. Based on an at-
tempt of Rekasius (1980), Thowsen in [137] showed that the system (3.31)
Is asymptotically stable independent of the delay-constant h, iff the system
(3.38) isasymptotically stable and the matrix

K .
1_5 2i
Sl—Ag— ¥ (1+SD A, (3.40)

has no roots on the imaginary axisfor some T = 0. Furthermore, MacDonald
et al. (1985) used the ideas of Rekasius (1980) to show that the condition for
the matrix (3.40) can also be formulated as follows: the matrix

“ (1=sT\
sI—AO—z(lJrSDAi

i=1

has no roots on the imaginary axis for all real values of T. The substitution
methods of Thowsen and Macdonald are sometimes designated as pseudo-
delay techniques. It isimportant to note that these methods are not approxi-
mation methods. The substitution is not equivalent to Padé approximation
techniques. The motivation for such an approach isthat under such a change
of variablefrom hto T, the characteristic equations are reduced to finite poly-
nomial equations and hence possess only afinite number of solutions. More-
over, it isthen possible to make use of results for delay-free systems such as
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the Routh-Hurwitz criteria. Furthermore, the pseudo-delay technique can be
applied to also determine the range of h, where the system (3.31) is asymp-
totically stable. Thisisthe topic of Subsection 3.3.2.

Olbrot in [109] has shown that if a delay grows to infinity, then either the
delay differential system becomes unstable or, at least, some of its eigen-
values approach the imaginary axis. If the eigenvalues approach the imagi-
nary axis, the system may become extremely sensitive to changes of other
parameters, which means practical instability. Therefore, the case of h
growing to infinity is always excluded here.

The stability criterion given by Yoshizawa and the related methods described
in Subsection 3.2.3.11 are the most interesting ones of this subsection, since
they are easier to compute than the stability conditions mentioned in Subsec-
tion 3.2.3.1.

The stability criteriain this section presume that the delays are constant and
that if i > 1 the ratios of the delays are exactly known. Especially the last
assumption is often very restrictive from the practical point of view.

3.2.4 Stability tests: Delay-dependent

Exact stability conditions are delay-dependent. Unfortunately, exact alge-
braic stability conditions are known only for simple systems. Nevertheless,
there exists arich literature on this topic. Therefore, this subject istreated in
a separate section (see Section 3.3). Here, only sufficient delay-dependent
stability criteriaare enumerated (which arevalid for n-dimensional systems).
The time-delay system considered is described by the following differen-
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tial-difference equation

%(1) =AX(0) + Ax(t—T(0) (3.41)

where 0 < 1(t) < T, IS continuous. From Sugujama (1961) we know that if
the system x(t) = (Ay + Ay Xx(t) isasymptotically stable, then system (3.41)
isso aswell for sufficiently small values of 1,,,.. Su and Huang (1992) were
able to give an estimate of the values 1,,,, such that the system (3.41) is
asymptotically stable.

Theorem 3.7 [132]: Suppose Ay + A, is asymptotically stable. Then system
(3.41) is asymptotically stable, if there exists a symmetric positive-definite
matrix P such that the inequality

_H(P(AO + Al))z )\min(P)
Trax < A At A, N /A%ax(P) (3.42)

The stability criterion (3.42) isless conservative than the delay-independent
stability criterion (3.4) when the delay is small [132].

Mori et al. (1989) presented another delay-dependent stability criterion.
Their method has serious limitations since it requires to solve transcendental
characteristic equations over a certain range. An attempt to simplify the
calculation was made by Alastruey et al. (1992) using Taylor series approx-
imations. However, that method guarantees the stability only over a small
timeinterval. Furthermore, the calculation of the Euclidean norm of a matrix
is required which necessitates a certain computational effort. Therefore, this
method is not introduced here in detail.

holds.
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3.2.5 Stability tests: An application of the transformation

In this Section, it is shown that the transformation introduced in Section 2.4
isatool to extend certain stability criteriafor single-delay systems to multi-
ple-delay systems. The transformation converts the multiple-delay system

X() = Aox(t) + g AX(t-T;) (3.43)

i=1

into the single delay system
TX(t) = Agx(t) + Ax(t—T1,) +f(1) (3.44)

leaving the trajectory invariant. The matrices A, and A, are given by (2.35)
and (2.36).

Theorem 3.8: The eigenvalues of the original system (3.43) are a subset of
the eigenval ues of the transformed system (3.44).

Proof: Inthe sequel, thenotation I =sl —Ay—A,e 5 ; Zli = e” st = gfi S wijll
be used. The characteristic equation of the system (3.44) is

det[sl —A,—Ae ] =0 . (3.45)

Applying (2.35) and (2.36), the characteristic equation of the transformed
system (3.44) is expressed as det (L) = 0, where [J is defined by

r N _Ai(1,|i+1)

0 = _Ai(|k—|i_1,1)z—|k . bt (3.46)
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0oR* ™M isa partitioned matrix with n x n submatrices. From (3.45),
(2.35), and (2.35) it follows that the main diagonal of [ is built by I, while
the outer diagonals are built of zeros, or —A;, or —A,z*. The symbols in
parentheses indicate the place of the submatricesin L. In the following defi-
nition of the matrix T, these indices are displayed as subscripts to increase
readability

I, -1
I(l,l) DZ(1’2) . . DZ(1'|i+1) - DZ(l;_Jk)
2.2 0
T = : . (347
i O I(lk’lk)

| OR"™"isthe identity matrix and D is defined by D =—1. Theinverse T *
of the matrix T is obtained from (3.47) by setting D = 1. Using T for asimi-
larity transformation, the proof is established as follows:

. k _
si-Ac-YA€e o .. 0

i=1

det(T 10OT) = det - (3.48)
Vi V,

K _ST‘-
= det|sl-A,— 3 Ae | et(V,) . O

i=1 _

Corollary 3.4: If the transformed system (3.44) is asymptotically stable, then
the original system (3.43) is asymptotically stable as well.

Proof: Corollary 3.4 isaconsequence of Theorem 3.8. The proof can also be
performed independently of Theorem 3.8. Suppose the origina system is
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unstable and the corresponding transformed system is asymptotically stable.
Thenitisnot possible for the transformed system to have the same tragjectory
as the original system because the state of a stable system cannot increase.
But the transformation assures trgjectory invariance. From the contradiction
the Corollary follows. [

The converse of Corollary 3.4 isfalsein general. To seethis, we consider the
system X(t) =—x(t) — x(t—1) + x(t — 2). Thedominant eigenvalueisA, =
—0.3651168.... For the corresponding transformed system, we have A, =
0.2963534....

Stahility criteriafor single delay systems can immediately be extended with
the help of the transformation to systems with multiple delays. This applica-
tion of the transformation isillustrated by an example.

Example 3.1: Extend Theorem 3.7 for the following system with multiple
constant delays

X(t) = Ag+ 3 Ax(t—ih) . (3.49)

i=1

Corollary 3.4 and Theorem 3.7 imply that the system (3.49) isasymptotically
stableif Ao+ A1 < 0 and if there exists asymmetric, positive-definite matrix
P such that the inequality

Kh< —U(P(Ao + A1))2 . Amin(P)
[AL(Ao+ AD WA (P

holds, where Ao and A1 are given by (2.35) and (2.36).

Because the eigenvalues of the transformed and of the original system are not
generaly identical, it is expected that criteria extended with the help of the
transformation have a certain loss of sharpness. Therefore, the transforma-
tionisonly useful if thisextension isnot straightforward. This particul ar situ-
ation arisesif one has to extend the stability conditions given by [99], [100],
[101], [139], [132], and [1].
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3.2.6 Stability tests. Reduction of the conservatism of the
criteria

The stability criteria presented above can be remarkably improved by apply-
ing an appropriately chosen transformation matrix. Using transformed state
vector techniques, it is easy to show that, for example, stability condition
(3.4) of Theorem 3.4 can be rewritten as

W(TAT). + § IT*ATl.<0, (=12 ),
i=1
where T isaregular matrix. The determination of the matrix T which mini-
mizes the left-hand side of the inequality leads to nonlinear transcendental
conditions, in general. However, simple numerical methods are very effec-
tiveto find an appropriate matrix T (e.g., method of steepest descent, thresh-
old accepting, simulated annealing).

Example 3.2: The Williams-Otto process was introduced in Section 1.2. The
homogeneous part of this system hasthe form

493-101 0 O 192 0 0 0O

%(t) = -3.20 -530-128 O x(t) + 0 192 O 0 x(t—1) .
6.40 0.347 -32.5 -1.04 O O 187 O
0 0.833 11.0 -3.96] 0O O O 0.724

Without a similarity transformation, stability condition (3.4) fails for this
system:

(Ao, + A, = 0.657¢ 0 .

Using an appropriate diagonal matrix T = diag[— 0.37; 1.30; —0.52; 1.06],
the asymptotic stability of the system is confirmed:

(T AT+ |ITALT|2 = —061<0.
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Moreover, the calculation above shows that the system is asymptotically
stable even if the delay is not constant. The matrix T was computed with the
help of the steepest descent method.

For systems with constant delays there is another possibility to improve the
stability tests. The idea consists of omitting those elements of the matrices
Ao, A; which do not have any influence on the characteristic equation. This
procedure yields the matrices Apand A; which are then used for the stabil-
ity test instead of the matrices Ay, A;. Inthelight of Theorem 3.3 the validity
of this procedure is obvious.
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3.3 Exact stability criteria

Necessary and sufficient algebraic stability conditions are known only for
certain types of single-delay systems: for the scalar system x(t) = ayx(t) +
aX(t—h) (Subsection 3.3.1) and for the multivariable system x(t) =
A x(t—h), where A, is a constant matrix (see Subsection 3.3.3). For a
specific system with given time lags and with given values for al of the
system parameters, the roots of a transcendental equation can be computed
(see Section 3.4). This permits an analysis of the system’s stability. In the
T-decomposition method (Section 3.3.2), the values of the delay for which
the system is asymptotically stable is determined, while in the D-decompo-
sition method, the time lag is held constant and the stability region in the
parameter space is studied. In the subsection below, an improved D-decom-
position method is presented.

3.3.1 Modified D-decomposition

Sufficient stability and instability criteriatogether with the D-decomposition
method can be used to derive necessary and sufficient stability conditionsfor
time-delay systems with constant delays. In this section, the linear system
with multiple constant delays

K
X(t) = Agx(t) + ¥ Ax(t—T)) (3.50)
i=1
where0 <1, <...<T, <o isstudied. The characteristic equation of the sys-
tem (3.50) can be written in the form
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n
P(s,e=) = ¥ s"-la;(e™) (3.51)
i=0
where

aj(erST) — Y aj(|1,...,|k)e—s(T1|1+...+Tk|k)

ig+ ..+ <

with alv W OR, a9 =1, and the sum is extended over all different
sets of the positive integers for which i, + ... +1i, <. For numerical exam-
ples see [21] and [22]. Furthermore, let

Prax = max (T4 ... +Tdy) . (3.52)

ip+...+i <n

The method developed here is based on the D-decomposition method [33,
p. 49]. For afixed value of the delay parameter h, the zeros of the character-
istic equation (3.51) are continuous functions of its coefficients. In the usual
D-decomposition method, the coefficient space is partitioned into different
regions by means of hypersurfaces, the points of which are characterized by
the corresponding characteristic equation (3.51) having at least one zero on
the imaginary axis. (This procedure is called D-subdivision.) The pointsin
the interior of each region correspond to a characteristic equation with the
same number of zeros with positive real parts. The number of zeros with
positive real parts can only change when a zero passes across the imaginary
axis, i.e., when the point in the coefficient space passes across the boundary
of the region.

Here, the goal isfinding all of the regions in the coefficient space where the
characteristic equation has no zero with positive real part. These regions K
areregions of asymptotic stability. In order to check how the number of roots
with positive real parts changes when crossing the boundary, the differential
dv of the real part of the root (which crosses the imaginary axis) can be de-
termined. The number of roots with positive real parts decreases (increases)
if the sign of dv is negative (positive). For a given characteristic equation

P(s, af® 9, ...,al'v W, ) = 0 (3.53)
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we obtain [33, p. 55]

n

2

dv = —Re| =2

oP
aa]_(il,...,ik)
oP
ds

daj(il’ i)

(3.54)

However, equation (3.54) is not always well-suited for singling out asymp-
totically stable regions because, in general, there is an infinite number of
boundaries which are given in parametric form. In order to simplify the
search for the regions k, sufficient stability criteria and the following insta-
bility criterion are used.

Theorem 3.9 [22]: The system (3.50) with the characteristic equation (3.51)
isnot asymptotically stable if

0> y alvW (3.55)
i+ ... +isn
or if
0= > ar‘]'i'l'“"k) +
g+ ...+igsn=-1
. z algil, ..,,ik)(z-lil + .. Tkik) + (356)

l<ig+ ... +igsn

+ pmax_ > ar(1i1'“"ik) .

i+ ..+i,<n

The search for the regions in the coefficient space corresponding to asymp-
totic stability of the dynamic system is particularly ssimple if the boundaries
of the various regions do not intersect. In order to demonstrate the modified
D-decomposition method, it is applied to two dynamical systems for which
this particularly nice constellation arises.

) In the first case, the system X(t) = ayx(t) + ayx(t —h) is considered. Its
stability region in the coefficient space (a,, a;) has been established in [45]
and in [43, p. 108 and 337], based on an extended Routh-Hurwitz criterion.
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In [33, p. 56] the D-decomposition method was applied to study this stability
problem. However, with the help of equation (3.54) only two boundaries
were discussed there.

Theorem 3.10: The time-delay system
X(t) = agx(t) + a;x(t—h) (3.57)

Is asymptotically stable, iff the following three conditions hold for some
y [0, t/h)

apta <0 (3.58)
_ yLeos(yh)
> ol (3.60)

Proof: The characteristic equation of (3.57)
P(s, e =s—g,—a,e™ (3.61)
has a zero root if
O=a +a. (3.62)

Equation (3.62) defines the boundary curve c, depicted in Fig. 3.1. The other
boundaries with purely imaginary roots of the form s= iy result from (3.61)
in the following parametric form:

_ ycos(hy) a = —Y (3.63)

% = “Sn(hy) 1~ sn(hy)

The infinite number of boundary curves defined by (3.63) are classified as
follows



not asymptotically
stable region (3.67)

|

Fig. 3.1 Boundary curves ¢, C,, dy, dy, €, &; Sabil-
ity region K,; not asymptotically stable region (3.67)

c,: y [0, t/h,) or y O(-t/h, Q] (3.64)
d: yd@-mnsh, (g +1).m/h)  or  yO((2 +1)1/h,-2j.-1t/h) (3.65)
ey Y U((2m—-1).t/h, 2m-t/h) or y O(=2m-.t/h, —(2m —1)-1t/h) (3.66)

wherej, m[{1, 2, .. .}. Theboundary curvesc;, c,, d;, d,, &;, &, are depicted
in Fig. 3.1. The curve ¢, hasamaximum for y = 0 and for the vector of coef-
ficient (&, &) = (1/h, =1/h). This point lies also on ¢, and is denoted in

Fig. 3.1as
_ (1 1)
S—(ﬁ,—— :

The region k; enclosed by ¢; and ¢, and lying to the left of the
above-mentioned intersection points of ¢, and ¢, corresponds to asymptotic
stability of the time-delay system (3.57) because it contains the family of
systems X(t) = ayx(t) with a, <O.
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From (3.63) and (3.66) the following properties of all of the curves e, can be
derived: The curves e,, lie in the upper-half plane, a; >0, and extend to
a8y —» — and a; - +. They do not intersect the straight line c, for finite
values of a; and &. Furthermore, any two curves g, e,,, m# j, do not inter-
sect. The obvious analog statement holds for the curves d; in the lower-half
plane, < 0. Of course, any two curves d, and &, do not intersect.

Now, Theorem 3.9 is used. According to (3.55), the system (3.56) is not
asymptoticaly stableif

Sk

O<a,+a or <a . (3.67)
The instability region described by (3.67) is marked in Fig. 3.1. It follows
that the region K, isthe only stability region because the region described by
(3.67) intersects all of the other regions. [

I1) In the second case, the time-delay system
X(t) = agx (t) + ayx (t —h) + ax (t — 2h) (3.68)

is considered. Delay-independent stability conditions were investigated by
Jury and Mansour (1982), Liu and Mansour (1984), and Boese (1989).
Buslowicz (1983) used this system to demonstrate his instability criterion.
For some special cases of the system (3.68), the exact stability conditions
were analysed by MacDonald (1989), by Stépan (1989), and by Walton and
Marshall (1987). However, the exact delay-dependent algebraic stability
conditions of the system (3.68) are not known.

Theorem 3.11: The time-delay system (3.68) with |a,| < 11/(2h) isasymptot-
ically stable, iff the following three conditions hold for somey [0, T/h)

ptat+ta<0 (3.69)

_ ycos(yh)

= SEniyh) + a, (3.70)
a, >—Y— —2a,cos(yh) . (3.71)

sin(yh)
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Proof: The characteristic equation of (3.68) is
0=s—-g—aesh—ae2h, (3.72)
Theroot s= 0 implies the boundary surface c, defined by
ptayt+ta=0. (3.73)

For purely imaginary roots s = iy the boundary surfaces are obtained in the
following parametric form

a = %(%D)) +a, (3.74)
- _y
a = Sin(yh)—Zazcos(yh) : (3.75)

The infinite number of boundary surfaces described by (3.74) and (3.75) are
classified by (3.64), (3.65), and (3.66):

C,: y [0, t/h) or y O(=mt/h, 0] (3.64)
d: yd@-mn/h, (2 +1).m/h) or yUO(H2 +1)n/h -2.mt/h) (3.65)
ey Y U((2m—=1).1t/h, 2m-t/h) or y O(=2m.1t/h, /(2m —1)-1t/h)  (3.66)

From now on, only nonnegative values of y will be considered since they de-
fine the complete surfaces. The region in the three-dimensiona parameter
space whichisbounded by ¢, and ¢, and which containstheray (a,, 0, 0) with
ag < 0isnamedK,.

This region K, contains a stability region because its intersection with the
plane & = 0 is identical to the (two-dimensional) region K, of Case 1. The
whole region K, is a stability region, provided it is not intersected by any of
the surfaces d; or e,,. However, for sufficiently large values of &, such inter-
sections do occur.

We now derive the range for a, such that the surfaces d; and e, do not inter-
sect the region K, and hence do not intersect the surfaces ¢, and c,.
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Intersectionswith ¢;: A condition for any surface d; to intersect ¢, isobtained
by combining (3.73) — (3.75) and by factoring the resulting equation. This
leads to the intersection condition

(cos(yh) —1) - (y —2asin(yh)) =0 (3.76)

wherey [0(2)-1t/h, (2 + 1).1t/h). Thefirst factor vanishesfory = 2j 1. These
values of y correspond to intersections of d; with ¢, at infinity. The second
factor cannot vanish provided

(3.77)

Hence, if (3.77) is satisfied, none of the surfaces d; intersects c;. Similarly, if
the condition

—2.301...

a, >
2 h

(3.78)

is satisfied, none of the surfaces e,, intersects c;.

Intersections with ¢,: A condition for any surface d; to intersect ¢, isobtained
as follows. Let y, [0, t/h) and y; O(2)-1t/h, (2] + 1)-1t/h). The intersec-
tion condition a,(Yyo) = a,(Y4) and equation (3.74) yield

i Lostyih) _ Yo
sin(y;h) cos(yoh)  sin(yoh)

(3.79)

with cos(ygh) # 0. The intersection condition a(y,) = a,(y;) and the equa-
tions (3.79) and (3.75) yield

_ cos(y,;h) Y1
= [1 - cos(yoh)} E[sin(ylh) — 2azcos(yoh)} (3.80)

for cos(ygh) # 0 (since values for y, such that cos(yyh) = 0 do not produce
any intersections of d; and c,). The first factor vanishes for y = 2jmt. These
values of y correspond to intersections of d; and c;, at infinity. The second fac-
tor cannot vanish if
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E> | - (3.81)
(This estimate is conservative.) Hence, if (3.81) is satisfied, none of the sur-

faces d; intersects c,. Similarly, if the condition

It

5 > 12 (3.82)

is satisfied, none of the surfaces e,, intersects ¢,. (Again, thisis a conserva-
tive estimate.) Another (conservative) estimate shows that no pair of any of
the surfaces defined by (3.65) and/or (3.66) intersectsif (3.82) holds.

From (3.77), (3.78), (3.81), and (3.82) we obtain the sufficient condition
(3.82) for the whole region K, to be a stability region for the system (3.68).
Now, Theorem 3.9 comes into play. According to Theorem 3.9, the system
(3.68) is not asymptotically stable if

Sl

O<gytata, or <28, ta . (3.83)
In the coefficient space, equation (3.83) definesan instability region. Consid-
ering the above-mentioned properties of the surfaces d; and e, under the
restriction (3.82) for &,, equation (3.83) implies that the region Kk, isthe only
stability region. [J

The stability region K, in the parameter space for the system (3.68) x(t) =
aX (t) + ayx(t—h) + ax(t —2h) is depicted in Fig 3.2. Note that Theorem
3.11 isconservative with respect to the bound (3.82) assumed for &,. Further-
more, Theorem 3.11 includes the result of Case 1.

Remark 3.1: The gap between delay-independent criteria and exact onesis
sketched in Fig. 3.3. For the time-delay system

(1) = ax (1) + ax (t—1) — 1-x (t = 2) (3.84)
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Fig. 3.2 Sability region for the system (3.68):
X(t) = agx(t) + ax(t—1) + ax(t—2).
The solid linesindicate wherea, = O or a, = 0.

the exact conditions (3.69) — (3.71) are depicted. For the system (3.68) X (t) =
agX (t) + ayx(t —h) + ax (t — 2h), the stability conditions independent of the
delay constant h [16], [57], [82]:

2
q
L + < :
< 82, a, for a,<0 (3.85)
or
Qtlay +a<0 for ay,<3a (3.86)

are also shown in Fig. 3.3. Furthermore, for the related system

X(t) = apx () + ayx(t —14(t)) + ax(t —T(1)) (3.87)
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1 1
(F +2, % ~2a)

Fig. 3.3 Sability charts:
1) exact stability conditions (3.69) — (3.71) for the system
X(t) = ax(t) + ax(t—1) —1x(t-2)
2) stability conditions (3.85) — (3.86) independent of h for
X(t) = agX(t) + ax(t —h) — 1.-x(t — 2h)
3) delay-independent stability condition (3.88) for
X(t) = agx(t) + ax(t —Ty(t)) — 1x(t — (1))

where 1,(t) and T,(t) are bounded continuous functions, the delay-independ-
ent stability condition given by Theorem 3.4

ap+[ay| +]a] <0 (3.88)
isdisplayed in Fig. 3.3 aswell.

Remark 3.2: For calculating the intersection of ¢, and ¢, in Case 2, equation
(3.76) is used

(cos(yh) —1) - (y —2a,sin(yh)) =0 (3.76)

where y ([0, t/h). The first factor yields a solution for y = 0, and implies
the intersection in form of athe straight line defined by
1 1

S = (E + oy~ 28, a,) (3.89)
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(0.36..,-1.36..)

S=(2,-3)

Fig. 3.4 Exact stability region for the system
X(t) = agx(t) + ax(t—1) + 1.x(t—2)

(cf. Figs. 3.2, 3.3, and 3.4). The second factor of (3.76) yields a solution iff

zlﬁ <a,. (3.90)
If (3.90) holds, the intersection of ¢, and c, relevant for the stability region
K, isnolonger given by (3.89), but is defined by the solution of the transcen-
dental equation y = 2a,sin(yh), and by (3.74), and (3.75). The part of the
coefficient space which is bounded by ¢, and ¢, and for which the inequality
ay + & *+ & = 0 holds corresponds to instability of the system due to (3.83).

As an example, the stability region K, of the system

%(t) = agx(t) + ax(t—1) + 1-x(t—2) (3.92)

is displayed in Fig. 3.4. In contradistinction to the system of (3.84) (cf.
Fig. 3.3) Sof (3.89) does not giverise to the corner of the stability region of
the system of (3.91) because (3.90) holds.
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Fig. 3.5 Boundary curves e, ... e, for the
system X(t) = ax(t) + a;x(t —1) — 100 -x(t — 2)

100

-200 -1 ﬁ 100 200
| | aO

- -300

Fig. 3.6 Boundary curves d, ...d,, for the
system X(t) = apx(t) + a;x(t—1) — 100 -x(t — 2)
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Remark 3.3: For the sake of completeness, some clues are given about the
influences of the surfaces d; and &,, on the stability region for the case (not
covered by Theorem 3.11) in which (3.82) does not hold: As a, increases
(decreases, respectively), more and more of the surfaces d;, and €, intersect
the surfaces ¢, and/or c,. Therefore, an exact stability criterion for arbitrary
values of & would have to be formulated piecewise for intervals of values of
a. For very large values of a, the various d;'s and €,,'s are approximately
described by (3.85) and (3.86).

In order to illustrate this case in Figs. 3.5 and 3.6, respectively, the intersec-
tions of the surfaces d, and e, with the plane a, = —100 are plotted for the
time-delay system

(1) = agx (1) + agx (t— 1) — 100-x(t — 2) . (3.92)

3.3.2 T-decomposition

In the T-decomposition we are interested in the effects of the delay T on the
stability. The time-lag T is allowed to vary while other parameters are kept
fixed. The positive half of the T-axisisfirst divided into intervals by bound-
ary points at which purely imaginary roots of the characteristic equation
exist. The pointsin the interior of each interval correspond to characteristic
equations with the same number of zeros with positive real parts. This
impliesthat within each interval the stability character of the system does not
change. The number of zeros with positive real parts can only change when
a zero passes across the imaginary axis, i.e., when the point in the interval
passes across the boundary of the interval. In order to find the intervals in
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which the characteristic equation has no zero with positive real part, the
direction of motion of the imaginary rootsis calculated by differentiating the
characteristic equation with respect to 1. This procedureisrather practical for
singling out asymptotically stable intervals, since usually only afew bound-
ary points have to be considered.

A number of suggestions[46], [83], [137], [138] have been made to improve
the concept introduced above. In the remaining part of this section, an ana-
lytical method isintroduced which is based on the results of Thowsen (1981)
[137], [138] and Hertz et al. (1984) [46]. Thefollowing system is considered

X(t) = Agx() + ¥ Ax(t—ih) . (3.93)

=1

The characteristic equation of (3.93) is

K
det{sl ~Ag- ¥ Aie'hs} =0 . (3.94)

i=1

Theorem 3.12 [138]: The value s=] w (w =0) is an imaginary root of
(3.94) for someh=0iff s= | wisalso aroot of

K 1_sT\2 _
det{sl —Ao—i:zlAi(“ SD } - 0 (3.95)

for some nonnegative number T.

Corollary 3.5 [137]: Let 0< T < . Then e equals (1 - T9)%/ (1 + T9)? at
s=j wiffhand T arerelated by

4 m
= — + —
h warctan(ooT) 2nw (3.96)

wherem=0, +1, . ...
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Corollary 3.6 [138]: If s= ] wisanimaginary root of (3.94) for h = hy, then
s= ] wisalso animaginary root of (3.94) for h= hy + 2rm/ w.

Theorem 3.12 and Corollaries 3.5 and 3.6 imply the following procedure to
determine the intervals of delay values for which the system is asymptoti-
cally stable.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:
Step 6:

The standard Routh (-Hurwitz) stability test reveals those values of
T for which the polynomial (3.95) has imaginary roots. In the
following, these particular values of T are designated by T .

Determine for each T the corresponding imaginary roots of (3.95)
S = 4 w.

Calculate for each T with the corresponding w the associated value
of h by applying Corollary 3.6 under the restrictionthat h = 0 .

Check the direction of motion of the imaginary roots j w. The
direction of theroot loci isdetermined by the sign of thereal part of
(ds/ dh) for the values of s = j w and the corresponding value of
h. If Re(ds/dh) = 0 at one of these points, and the multiplicity of
the zero of Re(ds/dh) is odd, the root loci only touche the imaginary
axis but do not cross it [46]. For this value of h, the system is
unstable. However, the two adjacent intervals for which the above
value of h is acommon point are both either asymptotically stable
or unstable intervals. If the zero of Re(ds/ dh) is of even muilti-
plicity, the direction of the imaginary-axis crossing root is deter-
mined by the sign of the first derivative which is not zero.

Analyse the stability of the system (3.93) for h = 0.

Theintervals of delay valuesfor which the system isasymptotically
stable follow from the results of Steps 4 and 5.
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Example 3.3: Find all values of the delay constant h such that the system

X1 (t) = X(t)
Xo(t) = X1 (t) —Xo(t —h)
with the characteristic equation
P(s,e™) =5 +se™+1=0
isasymptotically stable. The auxiliary equation (3.95) becomes
T2+ 2T(A+ TS+ (1 +THL+2(1+T)s+1=0

and the first column of the associated Routh’s array (see, e.g., [34, p. 123])
Is computed to be

T2

2T(1+T)
T?-T+1
HNT-1)*(T+1)
T?-T+1

1.

All elements in this column are positive for all T (0, ) except for the
penultimate one whichiszerofor T=1=T. That T yields apair of imagi-
nary rootsats=+j .Since T = 1and w = 1, the direction of theroot loci has
tobecheckedats=j and h=1+ 2t/ m|

-d—s _ SZe—hS
dh  2s+1+ehs(1-sh)

Fors=j,h=(2|m|+ 1)twe have

Re(gl—s) = Re(j 2_71 =0 .

Therefore, we have to check the multiplicity of this zero

ds?

as” - —2(1-))
dh? '

(2+h)?

s=j,h=02m+1)n
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The multiplicity of the zero of Re(ds/dh) is 1 (odd), and hence the root locus
only touches the imaginary axis but does not cross it. Thus, the system is
asymptotically stable for al values of h except for

h = (2m|+1)m.

3.3.3 Stability of X(t) = Ax(t—1)

Consider the linear delay-differential system
X(t) = Ax(t—1). (3.97)

The stability problem of the system (3.97) has been studied by Barszcz and
Olbrot (1979), Mori and Noldus (1984), and Buslowicz (1987).

The criterion for exponential stability with decay ratey, y = 0, of the system
(3.97) given by Barszcz and Olbrot (1979) requires the solution of transcen-
dental equations and is therefore not simple to apply.

The condition for asymptotic stability of the system (3.97) presented by Mori
and Noldus (1984) is expressed in terms of the eigenvalue locations of the
matrix A, in the complex plane.

Theorem 3.13[99]: System (3.97) isasymptotically stableiff all eigenvalues
of A; liein the open region Q. Thisregion is bounded by the parametrically
defined curve

b, = —ysin(ry)
b, = ycos(r1y)

where—-1t/2 < ty< /2 and isshown in Fig. 3.7



7

by, Im(A (A1)

by, Re(Ai(A4))

Fig. 3.7 Sability region Q in the complex
plane for the system X(t) = Ax(t—1)

Based on the results of Mori and Noldus (1984), Buslowicz (1987) presented
an analytical necessary and sufficient criterion for asymptotic stability of the
system (3.97).

Theorem 3.14 [23]: System (3.97) is asymptotically stable iff
Re(Ai(A)) < 0

Re(Ai(Al)))
Im(Ai(A))
[Ai(A)|

and
ar ctan(

T<

for all i {1, ..., n} .
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3.4 Computation of the eigenvalues

The eigenvalues associated with the system

K
X(t) = Apx(t) + > Ax(t—i h) (3.98)
i=1

play an important role in many control problems such as stability (Theorem
3.3), controllability (Chapter 5), and feedback stabilization (Section 7.2).
These eigenvalues coincide with the zeros of the characteristic equation of

(3.98):

K .
P(s, ¥ = det[A(5)] = det|sl —A,— T Ae” ﬂ . (3.99)
i=1

In general, equation (3.99) is transcendental, therefore numerical methods
are applied to find a solution. Since this equation contains exponential func-
tions, the solution is very sensitive with respect to s. A method which over-
comes such problems was presented by Manitius et al. (1987) [92]. It is
composed of several algorithms. The following is a brief summary of these
algorithms. (They are explained in detail in the Subsections 3.4.2 through

3.4.6.)

» Thealgorithm of [20] enables usto compute the two-variable polyno-
mial P(s, e directly from the system matrices A, A; (cf. Subsec-
tion 3.4.2).

» The eigenvalues of large modulus (modulus = absolute value of an
imaginary number), which are distributed in some curvilinear strips,
are estimated from the coefficients of the characteristic equation [13,
Chapter 12] (cf. Subsection 3.4.3).

» The eigenvalues contained in some bounded region around the origin
are approximately computed by an algorithm suggested by [73] (cf.
Subsection 3.4.4).

» Theroots estimated by the two above mentioned algorithms are used
as initial guesses to start Newton’s method for improvement. In
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Subsection 3.4.5, a numerical procedure is proposed which is more
efficient than the one suggested in [92].

» An algorithm proposed by Carpentier and Dos Santos (1982) [24] is
used to verify that all eigenvalues of an analytic function in a given
region have been found (cf. Subsection 3.4.6). In Subsection 3.4.1,
upper bounds for the real and for the imaginary part of the eigen-
values are given. These bounds, together with the method of [24]
enable us to check whether all eigenvalues with a positive real part
have been found.

The method of [92] detailed in the following subsections is restricted to
linear systems with commensurate delays of the form (3.98). However, an
extension to systems with noncommensurate (and even neutral) delays is
possible, albeit more cumbersome in coding. Since in practice the delays are
always commensurate and noncommensurate time-delay systems can be
approximated by (3.98), the method in the present form is useful. Before
starting the introduction of the computation of the elgenvalues some proper-
ties of the eigenvalues are enumerated.

3.4.1 Properties of the eigenvalues

It isknown that the eigenval ues of the system (3.98) have thefollowing prop-
erties.

1) They are symmetric with respect to the real axis[40, p. 54].

i) They are of finite multiplicity [40, p. 54] (see aso Subsection 3.3.2
for properties of the root loci).

i)  Thereal partsof the eigenvalues are bounded above. For any constant
¢, the number of eigenvalues with real parts exceeding ¢ is finite
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[40, p. 54]. Thisimpliesthat the time-delay system (3.98) always has
afinite number of eigenvalues with non-negative real parts.

In general, the set of eigenvalues is infinite and countable [40, p. 54]. In
Subsection 3.4.3, an asymptotic description is given which reveals some
qualitative information about the roots’ location in the complex plane.

However, it isalso possible that atime-delay system possesses only n eigen-
values. This case arises if the characteristic equation contains no ‘delay
terms’ of the form e~sh

Example 3.4: The homogenous part of the wind tunnel model of Section 1.2
Isan equation of the form

-a 0 O 0 ka O
xX®)=] 0 0 0 |x®+|o o olx(t-0.33)
0 —w* —28w 0 0O

where 1/a = 1.964 [sec], w = 6.0 [rad/sec], & = 0.8 [], and k = —0.0117
[deg™]. This time-delay system has only three eigenvalues: A, = 0.5092,
)\2/3 = _48 i 36J .

The following Corollary yields bounds on the real and the imaginary part of
the eigenvalues of the system (3.98).

Corollary 3.7: Every eigenvalue A; of the system (3.98) satisfies the
following inequalities
K

Re(A) < |Ad. + X [Ail. (3.100)

i=1

M) < [Ad]. + 3 [A]. if ReA)=20 (3.101)

i=1

forany.= 1,2 and .
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Proof: Clearly, inequality (3.100) is satisfied for every A; with negative real
part. In the following it is assumed that Re(A;) = 0. For every eigenvalue of
the system (3.98) we may write

« —Aji-h
Aw = |Ag+ S Ae w
i=1
wherew is some nonzero element of R". Taking the norm on both sides of the
equation yields

K

i

v s{nAon.+ NIE qu | 3102)
i=1

Since

|e_)\ii.h| _ e—Re()\i)i-h

and Re(s) > 0, we obtain from (3.102)

K
Nl <A+ 3 AL - (3.103)
i=1
From (3.103) and inequality Re(A;) < | A;| condition (3.100) follows. Further-
more, inequality |[Im(A)| < |A| together with inequality (3.103) implies
(3.101). This completes the proof. [

Condition (3.100) can be improved by applying a transformation:

K
Re(A) <[ T7AT| + 5 [T7AT] .
i=1
An appropriate transformation matrix T can be found using numerical
methods, e.g., the method of steepest descent. Those elements of the
matrices Ay, A; which do not arise in the characteristic equation can be
omitted for the estimate.

The properties (i) — (iii) of the eigenvalues are also valid for linear hereditary
systems of the form
k 0

(1) = Agx() + ¥ AX(t—T) + [Ag(B)x(t+6)d8 .

i=1 —h
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The corresponding characteristic equation given by

k 0
det|sl —A,— v Aje ' | AOl(e)esede} =0 (3.104)

i=1 —-h

can be rewritten in aform similar to (3.99) if theintegral can be analytically
solved. Thisisillustrated by the following examples.

Example 3.5: According to (3.104), the scalar system

0
%(1) = apx (t) +ax (t— 0.5) + j k-x(t + 6)do
-1
has the characteristic function
0i(S) = s—ap—aye 55— kllse—_s =0  fors#0

agtayt+tk=0 fors=0.
Let
0x(S) = & [+ a€*>%-s—k(1-€9=0.

Thefunctions g,(s) and g,(s) have the same roots (except that g,(s) possesses
an additional root at the origin). However, the form of g,(s) issimilar to that
of (3.99).

Example 3.6: The system
0
%(t) = agx (t) +ax (t— 0.5) + jk [&n(t CX(t + 6)do
-1
Is associated with the characteristic equation

l+es _ .
s—ao—ale‘°-5s—ksz+n2—0 for s# + .
_ kK _ _ :
a8 =0, n—al—é =0 for s= £ 1]

which can be easily rewritten in the desired form (3.99).
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3.4.2 The coefficients of the characteristic equation

The algorithm due to [20] and [92] enables us to compute the characteristic
equation directly from the system matrices A, A;. The numbersk and n are
given by (3.98). Thematrix ®; ; JR" " "and the numbers 6, ; OR are defined

by
800 =1

0;; =0 for j<0 or j>ik, =1

i
®,; =01 forj<0 or j>(-1)ki=1
and by the recursive algorithm
Do = |

k
z Arq)i,j—r

r=0

9”— = - :II—-tr

K
Di,pj= AP +6

r=0

gl i=1..n-1, j=0,..ik.

The numbers 0; ; are the coefficients of the characteristic equation of the
system (3.98):

K 2K
P(S, e—sh) =d'+ 5y elyje_ShDSn_l +y ezyje—shE]Sn—z "
i=1 i=0 (3.105)
nk
+ z en’je—shq

i=0
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3.4.3 Approximation of the poles with large modulus

Although it probably is impossible to express the roots of the characteristic
eguation by elementary operations and functions, asymptotic descriptionsfor
rootswith large moduli are available. Following [33, p. 32], [13, Chapter 12],
[88], [92] we shall show a method for obtaining them.

Let HOR™ "9 genote the matrix of coefficients 6; ; in the polyno-
mial P(s, €, with 6, in the upper left corner of H, and with j increasing
in the horizontal direction, i in the vertical.

%, O .. 0 0 .. O 0 .0 |
61'0 ely 1 LR ellk O LI O O LR O

H = e2,0 e2,1 - ez,k e2,k+1 . e2,2k 0 - 0
_en,o en,1 - en,k en,k+1 - en, 2k en, 2k+1 - - en, kn|

The nonzero elements of the matrix H are associated with a diagram, the
so-called distribution diagram [13, p. 410]. Fig 3.8 shows the relationship of
the distribution diagram to the characteristic equation:

gﬂ—i
g 1 0 0 0 0 0 0
-1
s | % * . * 0 - 0 0 s 0
2, * .. * * .. * 0 .. 0
SO % * . * * . * * . *
—shi
\ \ \ \ \ \ \ \ ‘ e
g0 efs .. gkhs gkths .. gkhs g (kelhs . gkhs

Fig. 3.8 Coefficients 6; ; stored as a quasi-triangular ma-
trix. The symbol * denotesthe (possibly) nonzero elements.

From here on the distribution diagram is used in a normalized form, as
depicted in Fig. 3.9.
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n - e

n-1 4 0 0

n-2 10 0 O O g

0 -0 O . a O . a a . O
I I I I I I I I I
0 h .. kh (k+Dh .. 2kh (2k+Dh .. nkh

Fig. 3.9 The asterisk 0 denotes a (possible)
point in the normalized distribution diagram

LetL, Ls,...,Ly, ..., L; denote an upward convex polygona graph in the
normalized distribution diagram, with the straight line L, having a slope of
—m,, where m, > 0. Furthermore, the polygon possesses the properties that
no points lie above it, and the point (n, 0) is connected with the upper- and
right-most point. An example of a polygon isdisplayed in Fig. 3.10.

T
0 h=1 2 3 4 5 6 7 8

Fig. 3.10 An example of a normalized distribution diagram

For each L, the polynomial

®(2) = 36z (3.106)
I_V

is calculated. The sum is taken over those 6; ; which are located on the
segment L. A root z; of the polynomial (3.106) is denoted by z;. Thisroot z;
corresponds to the eigenvalues s in the complex plane as follows [92],
[13, p. 409]:
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Im

7

Fig. 3.11 RegionTl

Re(s) = m,{In|z;| - In|2r-m,;t+ m,arg(z)) —-m,1i/2|} +0(1) (3.107)
Im(s) = m{ 2rrt+ arg(z;) —1/2} +0(1) . (3.108)

wherer =1, 2, ...; arg(z) O[O, 2r]; and the symbol O(-) indicates the error
of magnitude. Equations (3.107) and (3.108) are an approximation of the
eigenvalues with positive imaginary part. They describe a so-called chain of
eigenvalues in the complex plane. If the polynomia (3.106) has several
roots, there exist several chains. These chains are collected in a strip. For
another m,, we obtain another polynomia of the form (3.106) and hence,
another strip with one or more chains. Furthermore, formula (3.107) and
(3.108) show that the eigenvalues of (3.98) are asymptotically located on the
curve [13, Theorem 12.8]

In(s)\ _ In|z
Re(s+ T) - L (3.109)
and are asymptotically separated from each other by the distance 2rt/h. The
curve (3.109) bounds the region in the complex plane where the eigenvalues
of a time-delay system are located in general [13, p. 100]. This region is
denoted by I' in Fig. 3.11.
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Example 3.7: The scalar system
X(t) = agx (t) + yx(t —h) + ax(t — 2h) (3.110)
with the corresponding characteristic equation
P(s,e™ =s—gy—ae—a,e"=0

yields the following matrix H

o { 1 0 o} |
—Qy & —&
This matrix implies the points (0O, 0), (0, 1), (h, 0), and (2h, 0) in the normal-
ized distribution diagram illustrated in Fig. 3.12.

1

&7
0

0 h 2h

Fig. 3.12 Normalized distribution diagram for the system (3.110)

The only polygon connecting the points (0, 1) and (2h, 0) under the restric-
tion of being convex is the straight line L, with the slope — m; =—1/(2h).
Therefore, the polynomial (3.106) is of the form

¢(2) =z2-a.
Its root is z; = &,. For thisroot, the equations (3.107) and (3.108) yield the
following estimate of the eigenvalues:

Re(s) = 1/ (2h){Injay| - In|rt/h-(r —0.25)[]} + 0(1)
Im(s) = 1/ (2h{ 2rm—1/2} + 0(1)

wherer=1, 2, ....

Example 3.8: We consider the system

() = — 4TPx(t) — TeX(t—h) . (3.111)
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Its characteristic equation is of the form
F+4m? + e = 0.
The coefficients of the above equation determine the matrix H:
1 00

H=10 00 -
A2 T2 0

The corresponding normalized distribution diagram is shown in Fig. 3.13.

0 h 2h

Fig. 3.13 Normalized distribution diagram for the system (3.111)

The only polygon connecting the points (O, 1) and (h, O) under therestriction
of being convex is the straight line L; with the slope —m;=-2/h.
According to (3.106) the straight line L, produces the polynomial

(2) =22+ 70

with the roots z,,, =% 1:j . This means that the eigenvalues with large
moduli are located in one strip with two chains. The equations (3.107) and
(3.108) yield the following estimates of the eigenvalues:

1%t chain: Re(s) = 1/h{In|h/ (4m) [} +0(2)
Im(s) = 4rr/h+ 0(1)

2™ chain: Re(s) = 2/h{In|m —In|2m (2 —1)/h[} + 0(1)
Im(s) = 2n/h{2r + 1} +0(2)

wherer=1, 2, ....
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3.4.4 Approximation of the poles near the origin

The method of Kuhn [73] finds the roots of a function f(s) in a given
rectangle Q inthe complex plane. Therectangular region Q is partitioned into
triangles such that a grid results asillustrated in Fig. 3.14.

Im(s)

0Q

0 .

Re(s)

Fig. 3.14 Rectangle Q in the complex plane partitioned into triangles

Each mesh-point is weighted by the function | (s):

1if —t/3<ag(f(s) < m/3 orif (g =0
l(s)=< 2 if m/3<ag(f(g) < T (3.112)
3if -t <ag(f(s) <—-€n/3 .

Let{l(s),1(s)), | (s3)} beatripleof distinct points. Thetriangle with vertices
S, S S3 is said to be ‘saturated’ [92] or ‘completely labelled’ [73], if
I(s) =1,1(s,) =2, andl (s;) = 3. Letthelength of edge of asaturated triangle
be smaller than €. For all points lying inside of such an e-small, saturated
triangle it can be shown that [f (s)| < 2¢/./3 [73]. By subdividing a saturated
triangle into smaller triangles and finding the saturated ones, a sequence of
shrinking triangles can be constructed, the centres of which converge to a
zero of the function f(s). Hence, the problem of finding the zeros of f(s) ina
given bounded region can be attacked by constructing a subdivision of the
region into triangles and finding the saturated ones.
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In Fig. 3.15, the values of |(s) with respect to the following characteristic
equation

S+ 412 + TPeSV4 = 0 (3.113)

associated with the system

x(t) = { 0 ﬂx(t)+ {0 O}X(t—]‘[/ll)
—4m2 0 -2 0

are shown. The plot reveals four eigenvalues. Furthermore, Fig. 3.15 illus-
trates how the algorithm can be computed efficiently. First, the boundary of
Qisconsidered. The pairs of points of dQ at which the value of | (s) changes
are stored. From these points the algorithm follows the boundary of two
zones into the inside of Q. In this way the algorithm proceeds along a
boundary until either a saturated triangle has been found, or the boundary of
Q isreached again. The search continues until all the boundaries have been
traversed. Inthe next stage, the algorithm proceedsto a subdivision of rectan-
gles, including saturated triangles, by decreasing the mesh size. This subdi-
visionis performed several times until the desired accuracy of approximation
isreached. The centres of the saturated rectangles (arectamgleis called satu-
rated if it contains a saturated triangle) then serve as starting points for a
refinement via Newton’s method (see next subsection). The roots of suffi-
ciently large modulus are more quickly computed by the “asymptotic
formulas’ (3.107) and (3.108) introduced in the previous section.
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Im(s)
0O O 0 0 0 O O
| O 0o 0O 0 0 0 O
X X X 0O 0 0 0 O 0 ©
N 0O 0 0 O O O O
o o o0 0 O 0o 0 0 0 O O
b oo o O 0 0O 0 O O O
b o o 0 0O 0 O O 0o 0 O
o o 0o 0O 0 0 0 O O O
B 0O 0 O O O O O
| O 0 0 0 0 0 O
0O 0O 0O 0O 0O O O
7 0O 0 0O 0 0o O O
0O 0O 0 0o 0O O O
Ix X X X O 0O O 0 0 O O
- X 0O 0 0 0 0 0 O
X X X X X 0O 0O O 0 0o O O
) O 0O 0 O O 0 O O
o o o 0o 0o o o 0O 0 0 O O 0 O
O 0 0 O O O O 0O 0 O 0O 0 O
© 0 O 0o O O O 0O 0 0 O O 0O O
O 0 0 0 O O 0O 0 0 O O O O
0O 0 0 O 0O O O
- O 0 0 0 0 0o O
O 0O 0 O 0O O O
] 0o 0 0 0 O o
| 0O 0O 0 O O 0 O
X X X 0O 0 0 O 0O O O
XX O 0 0 O O O O O
X X X O 0O 0o 0O 0o O O O
jj V- % O 0 0 0O O o O O
o o 0] O 0 0 0 0 0O 0 O O
o o o) O 0 O 0O 00 0 O 0o O O
o o o} o X X X X X X X X X
| X X X X X X X X X
X X X X X X X X X
B X X X X X X X X X
X X X X X X X X X X
| X X X X X X X X X X X
KX X X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X X X

[ I [ I [ I I [ [ [ I I

-10

N

\
-9 -8 -7 6 -5 -4 -3 -2 -1 0 1 3 4

Fig. 3.15 |(s) computed for characteristic function (3.113)
x-region: | (s) = 1; o-region: | (s) = 2; empty spaces. 1(s) = 3

Re(s)
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3.4.5 Refinement of the approximation

The approximation of the roots computed with the algorithms of Kuhn
(Subsection 3.4.4) and Bellman and Cook (Subsection 3.4.3) are used as an
initial guess to start Newton's method for improvement. This method is
defined by the well-known iteration formula

det[A(A)]

ANieg = )\i—d—m)]—.

(3.114)
The formula requires the evaluation of the characteristic equation and its
derivation det[AA)]' = :—)\det[A()\)]. In Subsection 3.4.2, a procedure was
illustrated to determine the coefficients of the characteristic equation. Mani-
tius et al. (1984) suggest to use this algorithm for obtaining det[A(A)]" .
However, thereisamore efficient way to evaluate (3.114). Since A; isagiven
numerical value, there is no problem to compute
« =A;hei
det[A(A))] = det] A, —Ag— > Ae

i=1
Theterm det[A(A;)]" isevauated in two steps. First, the matrices

K

AN) = A —A,— ¥ Ae (3.115)
i=1
and
OAN);;  OAMN), ,
oA,  OA\ Kk -
; ; =1+ yhiAe (3.116)
OAN), 1 OAN), . =1
Ton, T on,

are stored. Next, the following relation is used [14], [115, p. 18]:
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OAMN); _
—_a_)\i__ A()\i)l,Z .. A(}\i)l,l’l
det[A(A)]" = det| : B
aA()\i)n,l
5 A - A(Ai)n,n_
i AN, o
AA)1 1 DAYy nos —55
+ det :
aA(}\l)n n
AAYn 2 B =55

The right-hand side of the latter equation can be computed with the help of
the stored matrices (3.115) and (3.116).

Notethat A; isamultiple eigenvalue, if det[A(A;)]" = 0 .

3.4.6 Test on the number of eigenvalues

Theimproved eigenvalues are arranged in order of increasing modulusin one
list. The number of eigenvalues within agiven disc D of prescribed radius p
isthen counted. Then the Carpentier-Dos Santos algorithm [24] is applied to
verify that all eigenvalues have been found in the disc D. The algorithm
consists of the computation of the value of acirculation integral over thedisc
D. For the numerical evaluation of thisintegral the circle is subdivided into
M pieces asillustrated in Fig. 3.16.
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Fig. 3.16 Circlewith mesh-points, Disc D,
radius p, and angle 6; in the complex plane

The function A(8,) is defined by
A®B) = A(s= pe?)
Then, the number of eigenvalues C, within the given disc D is equal to [24]

COD% i=l|n he) /A6 -2wvm)] .

Numerical errors may occur if the roots are close to the boundary of the disc.
Therefore, Carpentier and Dos Santos (1982) proposed the following test on
the computed values of A(8)) / A6, _,):

If forali=1,.., M A(®) issuch that
() |org{ AO) 7/ A®,_)}|<3m/4
and
(i) 1/6.1<|A®)/A®,_,)|<6.1
the computed value of C, is accepted.
If either of the conditions (i) or (ii) is not satisfied, the index C, is recalcu-

lated with M replaced by 2M. A good starting value of M isM = 128. In our
experience this algorithm is very reliable.
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3.4.7 Summary and examples

The various algorithms illustrated in the previous subsections are used to
compute the eigenvalues directly from the system matrices Ay, A;. The
program realized with the help of the MatrixX software packages is struc-
tured as suggested by [92], with some modifications. The implementation of
Newton's method has been considerably simplified (cf. Subsection 3.4.5).
Furthermore, Corollary 3.7 is used to check whether all eigenvalues with
nonnegative real part have been found.

First, Corollary 3.7 isused to find an upper bound of thereal part of the roots
in the right-hand side of the complex plane. Let us denote this value by v.
Thisvalue is used to define in the complex plane a quadratic region with the
edges ¢ =v+Vv:, &=Vv—-Vv:j, g=-v-Vv:j, and = —-v+v:.
According to Corollary 3.7, adl eigenvalues with a nonnegative real part
always lieinside of this square, designated in the following by Q,. Theago-
rithm of Kuhn is used to search the eigenvalues in the region Q. This esti-
mate of the roots is improved by Newton's method. Next, the generalized
Faddev algorithm (cf. Subsection 3.4.2) is applied to determine the coeffi-
cients of the characteristic equation from the system matrices Ay, A;. The
knowledge of the coefficients permits the computation of the eigenvalues
with large moduli (cf. Subsection 3.4.3). Again, Newton’s method is used for
improving the numerical accuracy of the eigenvalues. Finally, the number of
eigenvalues within a circle enclosing the square Q; is counted and tested by
applying the procedure of [24]. If the test result is positive, we are sure that
all eigenvalues with nonnegative real part have been found.

As an example we consider in the following the system (3.111)
X(t) = —41X(t) — TeX(t = h)
and its characteristic equation (3.112)
F+4m? + e = 0.

Fig. 3.17 shows the first 22 eigenvalues for the constant delay h = 1t/8. It
was checked that all roots had been found in the displayed region. The first
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ten eigenvaluesarelisted in Table 3.1. The calculationsin example 3.6 revedl
that the roots with a sufficiently large modulus are arranged in one strip
consisting of two chains. In Fig. 3.17, these two chains are marked with the
symbols [0 and<>. Since the delay h=1/8 is small with respect to the
system coefficients, the chains have a certain distance to the dominant eigen-
value. (The delay can even be neglected for stability considerations if the
delay is sufficiently small [133]). However, if the value of the delay is of the
same magnitude as the system coefficient, the eigenvalues of the chains are
closer to the imaginary axis and the delay is of course relevant. (For an
increasing delay the poles converge to the imaginary axis [109]). This is
illustrated in Fig. 3.18 where the first 22 eigenvalues of the system (3.111)
are depicted for h = Ttare depicted. The numerical values of these poles are
recorded in Table 3.2.

In Fig 3.19 theroot loci of thefirst six eigenvaluesfor an increasing val ue of
h are sketched. From the observation that the elgenvalues enter and leave the
right-half plane, one may suppose that the system is alternately asymptoti-
cally stable (i.e., stable-unstable-stable—..., as the delay h increases).
Indeed, applying the t-decomposition method (cf. Subsection 3.3.2) we find
that the system (3.111) is asymptotically stable iff

i<h<£ or£<h<i

N IINC RN NG

As a further example, the eigenvalues of the model of the Williams-Otto
process (cf. Section 1.2) of the form

493-101 0 O | 192 0 0 O |
j=|-320-530-128 0 |y, |0 192 0 0 | g
6.40 0.347 —32.5 —1.04 0O 0 187 O
| 0 0833 11.0-39 0 0 0 0724

are computed. According to the method described in Subsection 3.4.3, the
eigenvalueswith alarge modulus are arranged in four chains collected in one
strip (cf. Fig. 3.20).
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Fig. 3.17 Thefirst 22 eigenvalues computed for the system

X(t) = —4m2x(t) —TX(t -1/ 8) .
The roots, which were found by applying Kuhn's and Newton’s method, are
marked with the symbol OU. The other roots were obtained by using the
“asymptotic formulas” (3.107) and (3.107) together with the Newton
method. The latter’s eigenvalues are located in one strip containing two
chains. The two chains are marked with the symbols O and <.

Im

Fig. 3.18 Thefirst 22 eigenvalues computed for the system
X(t) = —4m2x(t) — mex(t — ).

Re

Re
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Table 3.1 Thefirst ten eigenvalues computed for the system
X(t) = —4m2x(t) — 12X (t — 1/ 8).

k A |detA(A)|
1 0.5125866951081 + 5.8612301778918] 1.8-10713
2 | — 7.7709153749941 + 12.7898921461502;] 2.710712
3 | —11.7909090749649 + 30.0267151620273:j 9.3:1071?
4 | —13.9060327510865 + 46.4961588500000] 54101
5 | —15.3787712955928 + 62.7650027658605; 6.9-101
6 | —16.5145897893815 + 78.9434946965780 1.910~%
7 | —17.4407190325485 + 95.0721505091676] 7.9101
8 | —18.2231767015346 + 111.1699761040171:j 1.8-10710
9 | —18.9008394703398 + 127.2472318439467| 3.3:10710
10 | —19.4986017669266 + 143.3100003744767: 1.8-10710

Table 3.2 Thefirst ten eigenvalues computed for the system
X(t) = —4m2x(t) — mex(t — ).

k A |detA(A)|
1 0.29154380731165 + 6.39282352532310 1.310713
2 | — 0.11751250169763 + 5.02636843241820] 2410713
3 | — 0.28164636021213 + 7.94010300686203] 1.810713
4 0.35964609615850 + 3.02267366287452:] 2710718
5 0.43462577567080 + 1.00720873955413'] 4810713
6 0.57490130595404 + 9.93907538142810] 5110713
7 0.75019152920180 + 11.94497509110028] 9510713
8 0.87923926724846 + 13.94983015985700:] 1.6:1071?
9 0.98277788801663 + 15.95370323553014 2110712
10 1.06985187323271 + 17.95686956898248] 2710712
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Fig. 3.19 Root loci of the first six eigen-
values of the system (3.111) for h [1[0.3, 7]
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Fig. 3.20 Eigenvalues of the Williams-Otto process model
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4 Robustness

In many cases, a system is considered as robust if its stability is unaffected
by perturbations, as far as possible. These perturbations represent severa
types of modelling uncertainties. To begin with, we will treat delays as an
extra perturbing input of a delay-free system. Frequency-domain concepts
are mainly used to study this robustness problem. The frequency-domain
representation of the system

(1) = Agx(t) + z Ax(t—i Ch) + Bou(t) + z B,u(t—i Ch) (4.1)
y() = Cx(t) + zy Cx(t—i h) (4.2)

=1

where Ay, A, OR" " By, B; OR" "™ and C,, C; OR” ™", expressed in terms
of its system matrices, is

K k K

Yy . X ) _1 u .
G(s ™) =[Co+ ¥ Ce™"][sl —Ag— 3 Ae™"] [Bo+ ¥ Bie™"]. (4.3)

i=1 i=1 i=1

It is assumed that the plant G(s, ") is connected with the controller K(s) as
illustrated in Fig. 4.1.

v+

:p@
\

—K:>GT>

Fig. 4.1

In Section 4.1, the delaysin the input/output are considered as a perturbation.
Asan introduction, the Nyquist criterion is briefly discussed for single-input
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single-output (SISO) systems. The relation between the phase margin of a
delay-free system and its robustness against input/output delays is shown by
using the Bode diagram. These considerations are then applied to analyse
multi-input multi-output (MIMO) systems using singular values and the
small-gain theorem. In Section 4.2, state delays are treated as a perturbation.

In the last two subsections, robustness bounds for unstructured uncertainties
of time-delay systems are presented. With respect to modelling uncertainties
of the delays these bounds are considered in Section 4.3. Robustness bounds
for large-scale systems with time-dependent and state-dependent delays are
investigated in Section 4.4.

4.1 Robustness against input/output delays

This section deals with control systems having delays in the input and/or in
the output. First some graphical methods are discussed. The main graphical
scheme for stability of systemswith constant delaysisthe classical approach
of the Nyquist criterion. The application of this method is suitable for
checking the stability of SISO systems with input and/or output delays. The
Bode diagram isthen used to show the relation between the phase margin and
the robustness of a nondelayed system against input and/or output delays.
These considerations are extended for MIMO systems using standard tools
in the frequency domain such as singular values, the small-gain theorem, and
the complementary sensitivity function.

Let us start with the Nyquist criterion for SISO systems. The transfer func-
tion of the system shown in Fig. 4.1is
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Gs, €K _ Gose™)

T(s e = .
€7 1+G(s, €MK(S) 1+Gys e

(4.4)

It is assumed that
(i) all eigenvalues of the function Gy(s, ") have negative real part

(i)  1lim Gy(j w,ed @ =0.

Nyquist criterion, Theorem 4.1 [94, p. 55]: The transfer function T(s) is as-
ymptotically stable iff the frequency response of Gy(j w, e “" in the com-
plex plane does not encircle the point (— 1, 0+ ) for w /]0, ].

Theorem4.1lisalsovalidif the control system G, containsdelaysin the state.
However, condition (i) is particularly easy to check if the system only has
delaysin the control input or/and in the output, since the corresponding char-
acteristic equation has no delay terms. Another possibility to study the
stability of T(s,e™") is to consider the characteristic equation of the
closed-loop system. Since this characteristic equation contains delay terms,
the Nyquist criterion is easier to apply.

Example 4.1: An illustrative example of the form

—sh
b, + b,

—shy _
Gy(s,e”) = st a

(4.5)

isconsidered. The Nyquist graph is given by

ayh, + b;a,cos(wh) — b, wsin(wh)

Re(GO(J W, e—] wh)) = 2 2
+tw

IM(Gq(j 0, e ") = — why + wb, cos(wh) + a;b,sin(wh) ;

2. 2
8+ w

The Nyquist curves for the following numerically given open-loop systems
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1-05¢™

—shy _
GO(S’ e ) - S+ 1

(4.6)

—sh
Go(s €™ = ?? (4.7)

are depicted in Figs. 4.3 and 4.4. The plots illustrate that both closed-loop
systems are asymptotically stable. Assumption (i) is not fulfilled for (4.7),
since this G, possesses a pole s = 0 on the imaginary axis. Nevertheless, the
method yields a correct stability analysis (cf. Theorem 3.10). Indeed,
Theorem4.1lisalsovalidif Gyhasoneor two polesat s = 0[34, Subsections
4.4.3 and 4.4.5]. Finally, the example illustrates the typical spiralling of the
Nyquist contours near the origin for open-loop systems with delays.

In the frequency domain there is no possibility to judge whether the delay
term is associated with an input or an output retardation in the time-domain.
Therefore, it is no restriction if in the following we consider only input
delays.

Note that a SISO system may have delayed and non-delayed inputs simulta-
neously. Asan examplethe signal flow diagram of the system x(t) = ayx(t) +
bou(t) + byu(t — h) related to the transfer function (4.5) is shown in Fig. 4.2.

> bl e sh > > f X >
u /\
by o)

Fig. 4.2

If theinput is purely delayed, which means that we have a delay-free system
in cascade with adelay,

Gy(9)e™

T(s, &%) = 22
1+ Gy9)e™

(4.8)

the checking of the stability of T (s, ") can be remarkably simplified.
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IM(Gof(j w e “M)

Re(Gy(j w,e7 M)

Fig. 4.3 Nyquist curve for (4.6)

IM(Go(j w, e @)

0.3

N

@ Re(Gy(j w,e7 M)

y 03

-09 0.6 -03

/T

-0.3+

—0.6

Fig. 4.4 Nyquist curve for (4.7)
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This ssimplification is based on the following facts:
1Go(j w)ed @ = [Gy(j w)
arg|Gy(j w)ed @h = arg|Gy(j w)| —wh .

Using these facts several methods for testing the stability of (4.8) have been
suggested. They are summarized in [94, Sections 4.4 — 4.6]. Here, the anal-
ysis is treated by superimposing the polar plot on the Bode diagram as
suggested by [104]. We choose this concept since we extend it to the MIMO
case |ater.

Let w.; be a crossover frequency, which means that for this frequency
|Go(j W ;)| = 1. The phase margin of the nondelayed system is defined by

¢ =m n{ 1+ arg(Go(j W, 1))} = 10+ arg(Goli We, min))-

The system (4.8) is asymptoticaly stable if ¢ —w, nish>0 or, in other
words, the system (4.8) is asymptotically stable for al constant delays h
satisfying the following inequality

h<h., = wq’ - 4.9)

Thevalue h,,, is usually designated as delay margin.

Example 4.2: The Bode diagram for the system

16
& +1.6s+ 16

Gy(s) = (4.10)

isshown in Fig. 4.5. From condition (4.9) and the Bode diagram, we obtain
the delay margin hy, <0.1.

Nyquist criteriaare also available for unstable MIMO systems. These exten-
sions presume the solution of some transcendental equations and the compu-
tation of the eigenvalues of a delayed system (seg, e.qg., [75]). Furthermore,
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IGo(l )|

25 |

arg{ Go(j )}

Fig. 4.5 Bode diagram for the system (4.10)

the method is only a stability test and does not yield robustness bounds for a
nondelayed system. Therefore, we prefer to define the delay margin for
MIMO systems and to investigate the rel ation between this delay margin and
the complementary sensitivity function.

Definition 4.1: The MIMO delay margin h,,,, isthe largest constant retarda-
tion which can be tolerated independently in each input of a system such that
it remains asymptotically stable.

Since the input delays are considered as an uncertainty we may use the
MIMO phase shift concept for linear delay-free systems [28, p. 52]. In Fig.
4.6, scalar multiplicative uncertainty is applied independently at each actu-
ator or input of G. (This could also be done at the outputs of G)) This causes
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Fig. 4.6

the nominal gains in each channel, at the affected points in the loop, to be
multiplied by 1 + A,. When the scalar uncertainty blocks A, are gathered into
asingle diagonal uncertainty matrix A = diag(4,, ..., ), the transfer matrix
“seen” by A isthe complementary sensitivity function at the input

T(9) = K(9)G([I + K(9G(9)] . (4.12)

A lower guaranteed bound of the delay margin can be computed using
standard frequency-dependent singular values:

o(T( @) = ITG W, = Amad TG WO w)}

Theorem 4.2: Thelower bound h* of the MIMO delay margin h,,,, for system
(4.11) satisfies the inequality

hCo < 2 Carcsin (4.12)

ST )
20(T(j w))
Proof: The small-gain theorem [28, p. 47 and p. 53] says that the perturbed
system shown in Fig. 4.11 is asymptotically stable if 6(A) o(T) <1 for al
frequenciess =] w. Thisimplies the stability condition
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(D) < % = r(w). (4.13)
The function r(w) is introduced for convenience. As mentioned above, each
input of the plantismultiplied by 1 + A;. The values of thisfactor are studied
in the complex plane (cf. Fig. 4.7). The case in which the system is unper-
turbed, (A; = 0) isrepresented by the point (1, 0+] ). Thecirclewith theradius
r(w) and the centre (1, 0-j ) covers al values of 1+ A; for which the per-
turbed system is asymptotically stable according to (4.13). When the A, val-
ues are complex and satisfy the equality 1 + A; = e7 "? they correspond to
delays at the plant inputs. These values of 1 + A; lie on the unit circle.

Im(A; + 1)
1
L;)) d(w)
r(w)
2
0 1 Re(A; +1)
Fig. 4.7

Theangle¢, defined in Fig. 4.7 by the points (1, 0-j ), (0, 0-] ), and theinter-
section point of the unit circle and the stability circle with radiusr(w) and the
centre (1, 0] ) isgiven by

d(w) =2-arcsin(r(w)/ 2) . (4.14)

This leads to the following condition

heo < hCo < 2 [arcs n(@) (4.15)

which completes the proof. [
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d(w)
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217 31
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Fig. 4.8 Thefunctionsr (w), #(w), and s are computed for the system
(4.11), where K(s)G(s) = Gy(s) isgiven by (4.10); hereh* =h 5 =0.1

Clearly, thistest is conservative. The procedure of this robustness analysisis
summarized in the following.

Step 1.  Determine the function r(w) from (4.13) and (4.11).
Step 2:  Compute the function ¢(w) using (4.14).

Step 3:  Draw the function ¢(w) in the phase diagram (cf. Fig. 4.8). Further-
more, plot the straight line v which starts at the origin and is a
tangent of the function ¢(w) (and never intersects it). Inequality
(4.15) implies that the slope of sisthe delay margin h*.

The method confirms that a high bandwidth of the system (4.11) of the
open-loop system reduces the delay margin.
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4.2 Robustness against state delays

The robustness of a nondelayed system against state delays is considered.
Again the small-gain theorem is used. Note that a closed-loop system isalso
of theform (4.3). Its stability is determined only by its dynamics denoted by

G(S)¢, = {sl —Aj— ¥ Aies”} . (4.16)

i=1

The dynamics of the corresponding delay-free system are denoted by
G(9)pr = [SI-Ag " . (4.17)

The H,, norm of the delay-free system is denoted by y = [|G(] Wpelle =
maxo(G(j w)pe). Some properties of singular values collected in the Lem-
ma below are then used to establish Theorem 4.3.

Lemma 4.1 [115, p. 898]:

If Al exists, 0(A) = —— (4.18)
oA )

If Al exists, 0(A) = —— (4.19)
o(A™)

o(aA) = |aja(A) (4.20)

6(A) —G(E) < o(A +E) . (4.21)

Theorem 4.3: System G, is asymptotically stableif the following inequality
for the H,, norm yof the delay-free system Gy holds:

ye——— (4.22)

1+ 5 Al

Proof: Using therelationslisted in Lemma 4.1, we may write

o(G( W) = o[{j Wl —Ay— z A€’ “‘“D

i=1
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(G W) = 0] |] Wl —Ay— 3 A"
L i=1 _

1 _ * 4 win]
— = g||j Wl —A,— v Ae’ "
GG W) |} P T Rem 2 e

1 , ) - wih
560 D) >0([j wl—Ag)-0 —ElAieJ )

1 S 1
0(G( We) o([j wl =A™

K
- > Al -
i=1
From the small-gain theorem it follows that the inequalities

- ¥ [Ail>1 (4.23)

i=1

1 S 1
oG Wer) o([j wl =A™

must be satisfied for all frequencies w to guarantee the stability of the system
(4.16). From (4.23) we obtain

K
1 1
> - .

160 oo, >y~ 2 Akt

which implies stability condition (4.22). [

Condition (4.22) can be rewritten as

1-vy -
=¥ Al .
> 5 1Al

A similar condition has been derived by Kojiama et al. (1993) using the
Lyapunov method and the small-gain theore£n. But their result is proven for
a more restrictive assumption, namely: Y|A|,<1. Furthermore, those
authors defined y as the H,, norm of an optimally controlled time-delay
system, whilein our casey isthe H,, norm of a delay-free system.

i=1

Condition (4.22) can be remarkably improved, if all elements of the matrices
Ao, A; which are not involved in the corresponding characteristic equation
are omitted (cf. Subsection 3.2.6).
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4.3 Robustness bounds for unstructured uncertainties

The uncertain dynamical system

K
X(1) = AgX(t) + T AX(t—T;) + Ag(t, x(t)) (4.24)
i=1
Is considered. The function Ag(t, x(t)) is unknown and represents the
system’s nonlinear parametric perturbation with respect to the current state
X(t). It isassumed that Ay(t, X(t)) is cone bounded, i.e.,

[t x(D)], < B OOl - (4.25)

Here, a system is said to be robust if it is tolerant to changes within certain
specific bounds of perturbation. As described in Section 3, we distinguish
among several types of robust stability tests depending on the information of
the delay involved in the test:

 delay-dependent stability criteria (delays may be constant or variable)
« dtability criteriaindependent of constant delays
« dtability criteriaindependent of a delay constant.

The proofs of the criteria presented in the following are straightforward.

Since they are elaborated in Section 3 for single-delay systems, we will here
only note the stability conditions.

Delay-independent: It is assumed that the delays 1; of the system (4.24) are
continuous and bounded, satisfying the inequality « > T,(t, x(t)) > 0. Using
the reasoning of Theorem 3.4, we obtain the following sufficient stability
condition

A, + 3 |A,+B<0 (4.26)

i=1

while the stability test
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K
H(Ag+5 T AA]) +5+B<0 (427)
i=1
is a specia case of Theorem 4.4 established in the next subsection. An
improvement of the stability condition using atransformed state vector tech-
nique of the form z(t) = Tx(t) (cf. Subsection 3.2.6) is not likely, since the
term B in (4.26) and (4.27) becomes |[T 73| ||T]|-B.

I ndependent of constant delays: A convenient robustness test of this type
follows from Corollary 3.3. The system (4.24) with constant delays T1; is
asymptotically stableif the inequality

K

AP0+ Ab +2B1 —4K S A(Ag+Ag +2B1) "A) <0 (4.28)

i=1

holds.

I ndependent of a delay constant: None of the various stability conditions
listed in Subsection 3.2.3 have been analysed for perturbed systems of the
form (4.24). However, the stability condition of Hmamed (1991) is suitable
to be applied to this problem. The system (4.24) with constant delays of the
form t; =i-hisasymptotically stableif

K
Ao+ ¥ AZ) +B<0 [ z|=1 (4.29)
i=1
where z=¢€ © w 0[O0, 2mt]. Checking the validity of (4.29) for all values
|z| = 1 is generally a cumbersome task. However, for systems of low order
the condition is applicable.

Example 4.3: The simple uncertain time-delay system

() = {‘3 1}x(t)+ {0-5 O}«t—r)ma, x(t)) (4.30)
075 1

is considered to compare the various stability conditions. They yield the fol-
lowing bounds:
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(4.26): |8, < 1.71...
(4.27): 18], < 2.34...
(4.28): 18|, < 2.36...
(4.29): 18|, < 2.41...

Condition (4.29) islessrestrictive than the others for a constant delay but re-
quires the greatest calculation effort. Condition (4.27) isremarkable since it
iseasy to apply and isvalid also for systems with variable delays. However,
ageneral comparison of the criteriais not available.

4.4 Robustness bounds for large-scale time-delay systems

In recent years, a number of stability criteria for large-scale systems with
delays have been developed. Mori et al. (1981) derived a stability criterion
using the comparison method. With the aid of the complex Lyapunov theo-
rem, Suh and Bien (1982), Hmamed (1986), as well as Wang and Song
(1989) obtained sufficient conditions for stability of large-scale systems.
Furthermore, Lee et al. (1984) studied the stabilization problem of
time-delay systems via generalized algebraic Riccati equations. Moreover,
Wang et al. (1991) gave a stability criterion using the Lyapunov theorem.

We deal with the Razumikhin stability theorem for uncertain large-scale sys-
tems. The uncertainties may be linear, nonlinear, and/or time-varying. The
result is presented in a scalar inequality which contains the matrices of each
subsystem. While in the above-mentioned papers the stability conditions are
derived for constant delays only, the result presented here is valid for arbi-
trary bounded continuous delays depending on time and state variables.
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Consider an uncertain large-scale system with delays which is composed of
N interconnected subsystems S, i = 1, 2, ..., N. Each subsystem is described
by
N
S Xi(t) = AXi() + Ai(Xi(0), 1) + 3 ApX(t—T(X(), 1) (4.31)
i=1

where X; OR" represents the state of the subsystem S... It is assumed that all
of thedelaysT;;(X;(t), t) are bounded and continuous functions. For briefness
we shall write T;; instead of 1;;(X;(t), t). Furthermore, it is supposed that the
nonlinear parametric uncertainties are bounded by the following inequalities:

12X, < Bil| Xi(t)]|, where B; [0, ) . (4.32)

Theorem 4.4: System (4.31) is asymptotically stable independent of delay, if

N
H(A,; + % 3 A”.AE)2 +B3 + g <0 i=1,..,N. (433
i=1

Proof: Given the assumption above, the Razumikhin theorem (cf. Section
3.1) can be applied to establish stability condition (4.33). The Lyapunov-Ra
zumikhin function is chosen to be of the class of quadratic forms

V= s Vi= 3 XX (4.34)

i=1 i=1

Determining the derivative of (4.34) and using (4.31) and (4.32), we obtain

S Vi 3 X0 TAT +ATX0 + 2B X0+
R N (4.35)
+2 3 X0 A Xt -T)}
Using the fact that for any matrices U, and U, with appropriate dimensions
[146], [156]

U;U,+UjU, <U U, + U U,
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we obtain from (4.35)

¥ Vi ¥ (XOTAT A+ ¥ AATIXO + 28 X % +
i=1 i=1 i=1 (4.36)

N

DY xj(t—Tij)ij(t—Tij)} :
According to Razumikhin, the inequality

: Vi(Xi() =

N
V(X,(8)) {—T,, <0<t
i=1

and hence

| Xt X(t)

N
X(t—1;) "X (t—T;)
i=1

must be satisfied to ensure asymptotic stability. Thus, (4.36) yields

T Vi< T IXOTIAT A+ 3 AGATTX O + 2B |X 0] +
i=1 i=1 N j=1 (4_37)
+ 3 X070}

Inequality (4.37) can be rewritten as

yVi<x®)'| X(t) (4.38)

i=1

where

X" = X407, s Xn®)']

and
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N
M, = Al +A + 3 AJA[+I 2B +N) .
i=1
Here, I DR ' istheidentity matrix. Since V; hasto be negative along the
trgjectories of (4.31) condition (4.33) follows from inequality (4.38). The
proof is complete. [

Example 4.4: In order to illustrate the stability condition, we consider the
large-scale time-delay system with linear uncertainties given in Wang et al.
(1991):

X 4(t) =[{‘5 1} +A1)x1<t>+{1 1}x1(t—r11)+
2 —7 1 1

£]0102)y 4 1y, |0203[y 4 ¢ )
0.102 0.2 0.3

X,(t) = [{‘6 2} +A2)x2<t>+{1 1}x2(t—r22)+
1-6 1 1

+]0302)y ¢ 1y, |0402y 4 o
0.3 0.2 0.4 0.2

X4(t) = [{‘7 2} +A3)x3<t>+{1 1}x3(t—r31)+
1-5 1 1

#0403y ¢ 1y, |0205y 4 oy
0.4 0.3 0.2 05

Applying condition (4.33) we cal culate the robustness bounds for the above
system such that the inequalities

N
1 v N
A < —p(A; + 52 Aiinj)2—§

i=1

(4.39)
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hold. From (4.39) we find the following allowable bounds
1A, < 0.6336
|A,]|, < 0.6700
|8, < 0.2850 .
The bounds given by Wang et al. (1991) are
1Ay, < 0.3117
1A,||, < 0.5833
|84, < 0.3117 .

Note that the method of Wang et al. (1991) has been proven for constant de-
lays only.

Example 4.5: Applying Theorem 4.4, it can be shown that the large-scale
system discussed by Hmamed (1986) and Wang and Song (1989) is also
asymptotically stable independent of any continuous bounded time-varying
and state-dependent delay. In contrast to the methods of Hmamed (1986) and
Wang and Song (1989), no complex Lyapunov equation needs to be solved.
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5 Controllability

Controllability is a fundamental structural attribute of any control system,
dealing with the relationship between the input and the state of the system.
More specifically, system controllability addresses the following question:
Doesacontrol u alwaysexist which can transfer theinitial state of the system
to any desired state in afinite time?

The aim of this chapter isto give a survey of the various controllability and
related stabilizability concepts of linear systemswith time delays of theform

X(t) = Agx(t) + 3 Ax(t—T;) + Bu(t) t>t, (5.1

x(t) = d(t) th—T <t<t,  (5.2)

where Ay, A, OR"", B OR"*™. Unless noted otherwise, it is assumed in the

following that the delays are constant and commensurate, i.e., T; = i-h with
h > 0. In certain cases, controllability criteriafor systems with noncommen-
surate or time-dependent delays are noted. It would be very useful to have
controllability criteria independent of a delay constant or of time-varying
delays, since the values of the delays are difficult to estimate. Unfortunately,
such robust controllability criteria are known only in some special cases.

Theliterature on controllability of delay systemsisquiterich. In early works,
the research concentrated mainly on the reachability of the traectory
endpoint x(t;) for some final time t; (cf. Section 5.1). Next, some authors
tried to examine reachability of arbitrary final states x;, in some function
spaces (cf. Section 5.2). It soon appeared that this concept is much too strong
to be useful in control theory since it typically requires rank(B) = n. It turns
out that the concept of approximate controllability (cf. Section 5.3) is much
less restrictive. However, in many systems not all of the components of the
state are delayed. For such systems the requirement that all the components
of the state must be approximately controllable in afunction space might be
too strong as well. This provides some motivation for a controllability
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concept, called F-approximate controllability which is weaker than the
approximate controllability concept (cf. Section 5.4). The concepts of
approximate, F-approximate, and function-space controllability are strongly
related to spectral controllability (cf. Section 5.5). The latter mainly deals
with eigenvalues considerations.

5.1 R"-controllability

In time-optimal control theory, it is assumed that starting from some initial
state the target point can be reached in afinite time by using some admissible
control. We consider here the target to be a point in the Euclidean space R".

Definition 5.1 [26, p. 193]: The linear control process (5.1) is R"-control-
lable (also denoted as Euclidean controllable or relatively controllable) if for
every @ [JC([tg—Ty, tol s R") there exist a finite time t, and a square inte-
grable control u such that x(t;) = x;, R".

Definition 5.2: Thelinear control process (5.1) is R™null-controllable (also
denoted as Euclidean null-controllable or relatively null-controllable) if for
every ¢ [/C there exist a finite time t; and a square integrable control u
such that x(t;) = O.

R"-null-controllability is sometimes designated as controllability to the
origin. Since in the literature the latter expression is used for different types
of controllability, e.g., compare [85, p. 134] and [150], we have not
mentioned it in Definition 5.2. It may be somewhat surprising that
R"-controllability and R"-null-controllability are defined separately, since
R"-controllability implies R™-null-controllability. However, R™-null-control-
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lability is not sufficient for R"-controllability. Thisfact is outlined below.

It iswell known that the linear, nondelayed system

X(t) = Aox(t)

has the property that for every x; = x(t;) there exists avector x, such that the
trgectory emanating from x, at time t, reaches x, at timet;. A system with
this property is called pointwise complete. Weiss (1967) conjectured that the
system (5.1) with B = 0 is pointwise complete. Popov [117] and Zverkin
[159] showed independently that this conjecture is false. There exist linear
constant delay systems with the property that the trajectories associated with
admissibleinitial functionsall attain valuesin asubspace of R" at somet > t, .
Thisfeature is observed in Popov’s example:

X4(t) = 2%,(t) t>20=t, (5.3)

(1) = — Xa(t) + Xq(t — 1) t>0 (5.4)

Xa(t) = 2t — 1) t>0. (5.5)
Equation (5.4) yields

K, (1) = — Xa(t) + Xy(t—1) t>0

X, (1) = — 2%t — 1) + 2%,(t — 1) t>1

X,() = 0 t=1.  (56)

Let ¢, C,, and c; be integration constants. Equation (5.6) yields
Xo(t) =cit + ¢, (5.7)
fort=> 1. Using (5.7) together with (5.3) we obtain
X,(t) = ct? + 2¢,t + ¢5 (5.8)
and from (5.4) wefind

X5(t) = ¢4t? — 2¢ct + 2¢,t — 2¢, + 5. (5.9)
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Consequently,

X1(t)
Xo(t)
[1-2 1] [x:()] =0 (5.10)

for t>1. Viewed geometricaly all trgectories reach the plane P:
X1(t) — 2x,(t) — X5(t) =0 no later than t> 1 and remain on P for al future
time. Such asystem is called pointwise degenerated (as opposed to pointwise
complete).

Definition 5.3 [135]: The homogenous part of system (5.1) is pointwise de-
generate if there exist some non-zero 7 JR" and some time t,, t; > t, such
that 77-x(t,) = Ofor all initial conditions ¢ JC([ty—T, to], R"). (The com-
plementary property is called pointwise completeness.)

5.1.1 Pointwise completeness

Before discussing the connection between R"-controllability and pointwise
degeneracy some interesting published results on pointwise degeneracy are
briefly mentioned.

For single-delay systems, dimension 3 is the lowest dimension for which a
system can be pointwise degenerated [117]. For systems with two delays,
pointwise degeneracy may occur for n = 2 [159].

If asystem is pointwise degenerate at timet,, thenit isalso degenerate at any
t, wheret, > t,[117]. Furthermore, if n =2 and k = 2 (k = 3) degeneracy can
not occur beforet = 2 (t = 3), wherety = 0 [5]. A corresponding extension of
the latter statement is open as well as a general, easily verifiable condition
for pointwise completeness. However, for asingle-delay system of the form
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%(t) = Agx(t) + Ax(t—1) (5.12)

the necessary and sufficient conditions are known [157]. The following nota-
tion isintroduced to note the criterion. The matrices A; O R D0+ D g

EOR"™"*Yj=0,1,2, .. aedefined by

A, 0
A1 Ag

0 A; Ay

E =1[0,...,0,1]

nxn nxn

where Ao = Ag, Eg =1 OR"" . The matrices U; OR

z, OR* V™" and
. 1 J ]
F O R* V"™ o defined in arecursive form:

Z; = [Ug, ..., U]]

Theorem 5.1 [157]: System (5.12) is pointwise complete at timet; = j, ] =
1, 2, ... iff the matrix

MG) = [E_:Fi_1 -, E A T'F 1, EZ)] (5.12)

has rank n.

Condition (5.12) is laborious to apply. The criteria stated below are easy to
check but they are only sufficient.
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Corollary 5.1 [19]: System (5.11) is pointwise complete for all t; //ty, )
whenever AjA; = AjA,.

Corollary 5.2 [4]: If there exist two n-dimensional column vectors a and b
such that A, = ab’, then the system (5.11) is pointwise compl ete.

5.1.2 R"-controllability and R™-null-controllability

While R"-controllability is unaffected by whether the system is pointwise de-
generate, R"-null-controllability is not. Since the null vector in R" lies on the
terminal manifold on which all trgjectories of the (free) degenerated system
end up, the available controls need only effect a transfer to the origin from
any point on this manifold to guarantee R"-null-controllability. Conditions
for R"-controllability are therefore sufficient for R™-null-controllability but
not vice versa unless the system is pointwise complete. However, Gabasov
and Kirillova[36, p. 61] presented an algebraic necessary and sufficient con-
dition for R"-controllability. This criterion is valid for the system

K
X(t) = Agx(t) + > AX(t—T;) + Bu(t) (5.13)
i=1
where 0<T;<...<T <o are constant delays. First, the so-called deter-
mining equation is introduced

Vi(s) = AgVj_a(9 + 3 AV _a(s—Ty)
i=1

(5.14)
V(S = B s=0
0 0 s#0

wherej=0,1, 2,...,(n—1) and s [ty t;].
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Theorem 5.2 [36, p. 61], [40, p. 259]: System (5.13) is R"-controllable on
[to, t1] iff

rank[{V;(9)};,s] = n (5.15)
wheres [{t,, t;},j=0,1,..,n—=1.

Theorem 5.3 [85, p. 137]: System (5.13) is R"-null-controllable on [ty, t,] if

condition (5.15) is satisfied. Furthermore, this condition is also necessary if
the system is pointwise compl ete.

Example5.1: Thealgebraic rank condition (5.15) isillustrated for the system
X(t) = Ax(t) + Ax(t—h) + Bu(t) t>0=t, (5.16)

with n = 3. According to (5.14), V, is nonzero only for s=0:
Vo(s=0)=B
whileV; isanonzero matrix at s=0and s=h:

Vi(s=0) = AgVy(0) + AVo(=h)
V,(0) = A,B

Vi(s=h) =AgVy(h) + A;V(0)
Vi(h)=AB.

Similarly, we obtain for V.:
V,(0) =AgV41(0) + A;V4(=h)
V,(0) = AZB
V,(h) =AgVy(h) + AV4(0)
Vy(h) =[AAL + A1A(B

Vy(2h) = AgV,(2h) + A,V 4(h)
V,(2h) = A’B .

The nonzero values of V; can be arranged in a scheme as shown in Table 5.1.
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Table 5.1

2h

s=0 s=h S

Vo(9) B
Vi) |AB A.B
Vi) | AB | [AAL+AAB | AlB

Now, Theorem 5.2 saysthat the system (5.16) is R’-controllable for t, > Oiff
rank[ B, A,B, A2B] =3
and it is R°-controllable for t, > h iff
rank[ B, AoB, AZB, AB, [AA; + A;A(B] =3.
Furthermore, system (5.16) is R’-controllable for t, > 2hiff
rank[ B, AoB, A2B, AB, [AA; + A;A(B, AiB] =3.

If the latter condition isnot valid for asystem of theform (5.16) wheren = 3,
then this system is not R’-controllable for any t; > 0.

Example 5.2: The system
X() = AoX(t) + Ax(t— 11) + AX(t — 1) +Bu(t)

with n = 3 is considered. The matrices V(s), V(s), and V4(s) are shown in
Table 5.2. It turns out that we have to distinguish between three cases, viz.:
1, <0.51,, 1, =0.51,, and 1, > 0.571,.

This example illustrates that the criterion is easier to apply if the delays are
commensurate (t; = i-h). Thesimplification isdueto thefact that the variable
s has to be considered only for the values 0, h, 2h, .... The simplified proce-
dure for checking the R3-controllability of commensurate delay systemsis
summarized in the following corollary.
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a’v | al'vév+ovlvl|  dlv | alvév+°ovovl| alviv+ivovl| adv | (A
av a'v av| 6)A
al 6)°A
€1z =S 1+ N1=s lig=s ¢1=S li=s 0=S
¢igo<h
a’v | al'vév +ovlvl | alPvev +ov0v + Jv]l | alPviv+Tvovl|  adv | (S)°A
a°v a'v av| 6)A
al 6)P°A
Cig=N1py=s | ag=% + "1 =5 ci=N1z=5s l1=s 0=S
¢igo="1
alv | al'vév+ovlvl | alvév+evov]| dlv | alviv+'vovl| alv | (S)°A
av a'v av| 6)A
al 6)°A
€17 =S <1+ N1=s ¢1=s hig=s 1 =s 0=S
g o>N

¢'S9ldeL
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Corollary 5.3 The system

() = Ax(t) + ¥ AxX(t—i-h) + Bu(t) (5.17)

is R™-controllable for t; > (j; — 1)-h iff the following matrix Q has rank n:
Q=1[Q 1 - Qn 1 Q12 +\Qn 20 o Qn,jf] (5.18)

where
Q..1=B

K
Qr+1j= AR+ X AQ

i=1

(5.19)

r=1,..,n
=1 .. s UL, k(n=1)+ 1] ON

andQ, ;= 0Oforj<0O,orr<0Q,0rj>r+k-1

Proof: For the system (5.17) the matrix V,(s) is honzero for s=0, h, 2h, ....
Letbel =0,1,2,.... Wemay write V;(I-h) = Q; .1 |+ 1. Replacingi + 1 by r
and | + 1 by j, the recursive definition of Q; ; (5.19) follows from (5.14) and
the controllability matrix Q is obtained from (5.15). [

Corollary 5.3 is an extension of the controllability criterion of [85, p. 139]
formulated for single-delay systems. However, in our notation theindices are
defined differently such that the matrices Q; ; fit within the matrix scheme
introduced in Examples 5.1 and 5.2 (cf. Tables 5.1 and 5.2). The general
matrix schemeis shownin Table 5.3.

Table 5.3
s=0 s=h
V() Q11 0

V4(9) Q21 Q2,2
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Furthermore, with this concept of indices, the exact lower bound for t; and
its relation to the controllability matrix Q can be given. Theorem 5.2 shows
that the delays affect the value of t; but not the algebraic rank condition
(5.15). Consequently, a controllability criterion independent of any delay
does not require the knowledge of the value 1, for obtaining t;. Therefore,
R"-controllability on [0, t,] implies R"-controllability independent of
constant delays since the only restriction for t; ist; > 0. Applying Theorem
5.2 for R"-controllability on [0, T,] yields the following result.

Corollary 5.4: If the system
X(t) = Agx(t) + Bu(t)

is R"-controllable, then system (5.13) is R"-controllable independent of
constant delays.

Proof: Choosing j; = 1in (5.19) Corollary 5.3 follows. [

In contrast to stability, R -controllability can be checked by a linear
delay-free system. Another controllability criterion based on the considera-
tion of adelay-free system is given for the single-delay system

X(t) = Agx(t) + Ax(t —1(t)) + Bu(t) . (5.20)
It is assumed that the delay is continuous and bounded such that

0 <1(t) < Ty < 0.

Corollary 5.5 [81]: If the system
X(t) = (Ao + ApX(t) + Bu(t)

is R"-controllable, then system (5.20) is R"-controllable for t; > n- 7. .



130

5.2 Function-space controllability

Thetrue state of the system (5.1) is an element of some function space. Thus
the state at time t denoted by x, = x(t + 8), 6 O[—T1,, 0] is a segment of the
trgjectory (cf. Chapter 2). This supplies some motivation for examining the
question of controlling the difference-differential equation (5.1) from an
initial function to aterminal function. In this context the space of square inte-
grable R%valued functions on [a, b] denoted by L*([a, b], R% and the space
of absolutely continuous R"-values functions on [a, b] with squareintegrable
derivatives denoted by W"“([a b], RY) are useful. Indeed, if ¢ O
W ([to = T, 1], RY) and u OL*([ty, t,], R™) then x(t) is absolutely contin-
uous and by (5.1) it follows that x OL*([to, t], R"). Hence x O
W ([to, tg], R") so that x, 0 W" *([ty =T, t,], R") for al t O[to, t,]. There-
fore, L° as the class of admissible controllers and the Sobolev space W* 2 as
the state space are frequently used in the literature, e.g. in [9], [ 26, p. 197].

Definition 5.4 [26, p. 197]: System (5.1) is called controllable (also denoted
as W %controllable, complete controllable or controllable to all functions
in W 2) if for every a, ¢ JW"? there exist a finite time t, and a control
u [L% such that x,, = a;.

Definition 5.5: System(5.1) iscalled null-controllable (al so denoted as exact
null-controllable or controllable to zero function) if for every ¢ W* 2 there
exist a finite time't; and a control u /7.2 such that X, = 0.

Function-space controllability criteria are available for the system

X(t) = Agx(t) + 3 Ax(t—T1;) + Bu(t) (5.13)

where the delays 0<T1,<...<T <o are constant and A, A; OR"

BOR"™ ™ It is easy to see that if rank[B] = n the system (5.13) is control-
lable. Banks et al. 1975 [9] showed that this condition is also necessary:

Theorem 5.4: System(5.1) iscontrollablefor any t; > t, + 7 iffrank[B] = n.
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Thefull rank of B required by Theorem 5.4 isvery strong since we must have
asmany control variables as state variables. Thereare very few practical situ-
ations where this condition will hold. However, weaker conditions are
obtained if controllability to the zero function is required only.

Theorem 5.5 [9]: System (5.13) is null-controllable for any t; > ty + 7 iff

K K
BB'YT A = YA (5.21)
i=1 i=1
and )
rank[B, AyB, ..., A, 'B] =n (5.22)

where B' denotes the Moore-Penrose generalized (or pseudo) inverse of B.
(See [84, p. 32] for properties and [ 158, p. 156] for the computation of the
pseudo inverse.)

The conditions for null-controllability are still very restrictive as Theorem
5.5 shows. These restrictive conditions for the system matrices arise since t;
may be chosen from the interval [t, + T4, ©) or, in other words, there are
systems which are not null-controllable for somet; >ty + 14 but for t, where
t,>1t,. This fact is especialy important for a final time chosen from the
interval [t,, t, + nT}]. For afinal timet; = nt, + t;, Bankset al. (cf. Corollary
5.1in[9]) showed that function-space controllability remainsinvariant to the
final timet;. This meansthat if the system (5.13) is not controllable for any
final timet, intheinterval [ty, ty + nt,], thenitisalso not controllable for any
fina time t; > t, + nt,. (This is also true for R™-controllability as follows
from Corollary 5.3; see also Example 5.1.) The dependence of func-
tion-space controllability on t; isillustrated by the two examples below.

Example 5.3: It follows from Theorem 5.5 that the system

(1) = Ax(t— ;) + bu(t) (5.23)

with A, OR™" bOR"™* is not null-controllable for any t;>t,+1,.

However, Gabasov and Kirillova (1977) [36, p. 84] showed that (5.23) is
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null-controllable for some finite time t; if rank[B, AB, ..., Ag_lB] =n.
Equivalently, we could say that if (5.23) is R"-controllable, it is null-control-
lable for some finitetimet;.

Example 5.4: A further system where R"-controllability implies controlla-
bility to a zero function is the following one:

X(t) = Ax(t—T14q) + Bu(t)

nxn

where A; OR"™", B OR"™™, and rank[A4] = n. This system is null-control-
lable for afinitet; according to [36, p. 79], but it follows from Theorem 5.5
that this system is not null-controllable for every t; > t; + 1, .

These examples show that in some cases R"-controllability implies control-
lability to the zero function for some finite time t;. However, thisis not true
in general as proven by a counterexamplein [36, p. 84].

If t; > n.Ty then null-controllability is equivalent to spectral controllability
[111]. Spectral controllability will be discussed in Section 5.5. In order to list
all the important criteria for null-controllability the rank condition is stated
here, aswell. Recall that the matrix A(s) is defined in Section 3.1 asfollows:

AS)=sl—Ay— 3 A, (3.10)

i=1

The symbol A denotes the set of all eigenvalues of (5.13).

Theorem 5.6: System (5.13) is null-controllable for any t; > n.t1, iff

rank[A(s), B] = n OSIA.
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5.3 Approximate controllability

The previous subsection showed that function-space controllability isvery re-
strictive. However, inmany practical situationsit issufficient to reach the pre-
scribed final state x;, only approximately. A controllability concept which
prescribesthe final state only approximately is called approximate controlla-
bility. It issupposed that this type of reachability isless restrictive than func-
tion-space controllability. However to the author’s knowledge, this conjec-
ture has not been confirmed. The available exact algebraic rank condition for
both controllability conceptsarevalid for different final times. Moreover, ap-
proximately null-controllable is equivalent to exact null-controllable for
t; > n.1y [111]. The following controllability definitions and criteriarefer to
the system

K

X(t) = Ax() + > Ax(t—T;) + Bu(t) t>t, (5.29)
X(tg) = Xo t=t, (5.25)
X(t) = ¢(t) tr—Tst<ty, (5.26)

nxn nxm

where Ay, A, ORV", BOR"™ 1,<... <1 <00, ¢ OL%([ty—Ty, ty), R,
and u OL?([ty, t,], R™). The product space M?=R" xL%[-1,, 0], R") is the
space of pairs (X, X,) = z, x OR"x, OL4[-T,, 0), R") with the inner product

0
(Z,¥)2 = XTy + [ X(t+8)Tx(t + 8)d6.

Thisdefinesanorm [72, p. 129]

12l = Gz 2y = JIXE0+ X1

and a metric on M? given by

Iz=ylye = J{Z=Y. 2=z -
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Definition 5.6 [89]: System (5.24) is M*approximately controllable if for
any z,= (X(to), x,) M? and any a [JM? there exist a finite time t; and a
control u /7L? such that ||z — al| . <& for every £> 0 where (X(ty), X;,) = .

Definition 5.7 [89]: System (5.24) is approximately null-controllable if for
any z, [OM? there exist a finite time t, and a control u JL? such that
|1z{|,,. <€ for every £> 0.

The concept of the closure is usually applied to define M2-approximate
controllability [89], [111], and [40, p. 269]. We use the metric since it is
closer to the engineering way of thinking. An algebraic characterization of
this controllability concept was given by Manitius (1981):

Theorem 5.7 [89]: System (5.24) is approximately controllable for any
t, > n.tiff

rank[A(s), B] = n for all s[A (5.27)

and
rank[ A, B] = n. (5.28)

Theorem 5.8 [123]: System (5.24) is approximately null-controllable for any
t, > n.t iff

rank[A(s), B] = n for all SIA . (5.29)

Theorem 5.8 says that M *approximately null-controllability is equivalent to
spectral controllability. A device for the verification of condition (5.27) or
(5.29), respectively, isillustrated in Section 5.5 where spectral controllability
Is considered.
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5.4 F-approximate controllability

Full state space controllability asillustrated in the last two sections has been
studied by the approach of approximate controllability in M? and exact
controllability in W" 2, In each case, controllability in the full state space led
to very restrictive conditionsfor the system matrices. This suggests that from
the controllability point of view, the full state spaceis“too big” and that one
therefore should search for a“smaller space” in which controllability would
be characterized by less restrictive conditions, without losing the link with
stabilizability and spectral controllability. The ideais that in many systems
not all of the components of the state are delayed. For such systems the
requirement that all the components of the state be approximately/exactly
controllable might betoo strong. In 1976, Manitiusintroduced the concept of
F-approximate controllability which corresponds to controllability of a
delayed system in a subspace of M 2, (Since this subspace is characterized by
an operator denoted by F this reachability concept is called F-controllability.
We shall not consider this operator here; for details see [123].) To this
author’s knowledge, exact F-controllability isnot discussed in the literature,
except the dual problem: exact F-observability [107]. We shall not consider
this concept here since the corresponding criterion is hard to apply. Before
stating the available results on F-approximate controllability, some notation
has to be defined. In this section, system (5.17) is considered:

K

X(t) = Agx(t) + > Aix(t—i-h) + Bu(t) t>t, (5.17)
X(to) = Xg - t=t,
X(t) = (1) ty—TSt<ty

where A, OR"", BOR™™™, ¢ OL%([ty— Ty, to), R"), and u OLA([t, t,], R™).
Again the product space M? is used (cf. Section 5.3). The pairs z, = (X, Xi,)
and z = (x(t,), x,) are elements of M and characterize the initial and final
state, respectively.
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Definition 5.8 [90]: System (5.17) is F-approximately controllable if for any
Z, OM? and any a = (a,, o) OM? there exist a finite time t; and a control
u L2 such that

k
J [X(t) = aoll e+ 3 [AX, — A, <€

i=1

forevery €> 0.

Theorem 5.9 [123]: System (5.17) is F-approximately controllable for any
t, > n.1 Iff

rank[A(s), B] = n (5.30)
and
M-Sl A, . . AB - .
0 1 k A .. A
A, . .A 00
rank _ _ | =n+rank| (5.31)
: : .o A, 0
A 0 0 0 - -
for all s\ .

For systems with no delays, F-approximate controllability is equivalent to
the standard Euclidean controllability. Moreover, if det[A,] # 0 F-approxi-
mate controllability isequivalent to approximate controllability [90]. Finaly,
from the fact that F-approximate controllability is weaker than approximate
controllability and implies spectral controllability [90], Theorem 5.10
follows:

Theorem 5.10: System (5.17) is F-approximately null-controllable for any
t; > n.t if

rank[A(s), B] = n for all SIA . (5.32)
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5.5 Spectral controllability

A linear system is spectrally controllable if there exists a controller which
can move all of the eigenvalues of the system to any position in the complex
plane. Moreover, (spectral) stabilizability implies the existence of a control-
ler which can move all of the eigenvalues with positive real parts to the left
side of the complex plane. In general, a time-delay system has infinitely
many eigenvalues, but it possesses only afinite number of eigenvalues with
positive real part. This caused some Russian authors, e.g. [68], to investigate
the stabilizability of retarded system. Krasovskii considered the subspace of
the state space which is spanned by the eigenvectors of the unstable eigen-
values. Since this subspace is finite dimensional, the verification of the sta-
bilizability and the design of a stabilizing state-feedback controller is
calculable. This method, based on the decomposition of the state space,
belongs to the spectral decomposition theory (cf. [43] Section 7.1-7.4, [6],
[7],[140]). A further result obtained with the help of thistheory wasthe gen-
eralisation of the Popov-Belevitch-Hautus test for time-delay systems. This
result was derived independently by Bhat and Koivo (1976) [7] and, for a
more general system, by Pandolfi (1976) [114]. The definitions and theorems
in the following refer to the difference-differential equation of the form
K
X(t) = Agx(t) + > Ax(t—T;) + Bu(t) (5.13)
i=1

nxn nxm

where Ag, A;JR"",BOR ,and0< 1;<...<T <o,

Definition 5.9 [114]: System (5.13) is spectrally controllable if there exists a
controller of the form
0

ut) = Kx® + [Ky(@x(t+ 6d (5.33)

L
such that all eigenvalues of the closed-loop system
Kk 0
X(1) = [Ao+ Kx(®) + 3 AX(t—1)+ [Ky(Ox(t+ §do  (5.34)

can be assigned.
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Definition 5.10 [114]: System (5.13) is v-stabilizable (where visafinitereal
number) if there exists a controller of the form (5.33) such that all of the
eigenvalues of (5.34) with Re(A) = v can be assigned.

Theorem 5.11 [114]: System (5.13) is stabilizable iff
rank[A(s), B] = n for all sIA withRe(s)=0. (5.35)

Theorem 5.12 [114]: System (5.13) is spectrally controllable iff
rank[A(s), B] = n for all SIA . (5.36)

Condition (5.36) can be formulated as an extended Kaman rank condition,
which is amore common form of the criterion.

Theorem 5.13[130]: System (5.13) is spectrally controllable if

rank B, {AO+ 3 Aiesri}B A {AO+ D Aieﬂ Bl=n (5.37)

i=1 i=1

for all s\ .

Note that condition (5.37) isonly sufficient as has been shown by Spong and
Tarn (1981). A generalisation of Theorem 5.11 for systems with additional
delaysinthe control was given by Olbrot (1978). Condition (5.35) isstrongly
related to the existence of an optimal LQ-regulator for time-delay systems
(cf. Chapter 6).

The verification of condition (5.35) can be performed numerically by
computing the eigenvalues with positive real parts using the algorithm intro-
duced in Section 3.4. The agorithm of Carpentier-Dos Santos (cf. Subsection
3.4.6) and Corollary 3.6 enable us to check whether all of the eigenvaluesin
the right half of the complex plane have been found. At first glance, (5.36)
might require the computation of all the eigenvalues of (5.13).
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This can actually be avoided by a device of Manitius and Triggiani (1978):
adi[A(9)]'BZ0 = rank[A(s), B] =n

wheres [\ and adj means the matrix adjoint (cf. [84, p. 10]).

Example 5.5: The system

%(t) = {0 ‘1} X(t) + {1 2} X(t—1) + H u(t) (5.38)
2 2 1-3 1

is considered. For which values of the delay T isthe system (5.38) spectrally
controllable or stabilizable? We have

A(S) — S—est 1-2est
—2—-es  s-2+3e™

adj[A(9)] = {S‘“ e -1+ 26““} .
2+e" s—e*

Suppose

adj[A(9)] (B = {‘ 1+ Ze‘ﬂ =0 .
S—e™t
From the first row we have €' = 0.5. Substituting this into the second row
we have s— 0.5 = 0, hence s must be 0.5. Then the equality €' = 0.5 is sat-
isfied only for 1 =-2-In(0.5) = 1.386. For that particular delay and for
s= 0.5 the matrix

ooo}

[A(s=05),B| = {_2.5 .

has rank 1. Therefore, the system (5.38) is spectrally controllable as well as
stabilizable for all T > 0 except for T =—2-In(0.5).
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5.6 The dua problem: Observability

The concept of observability isconcerned with the following problem. Given
the system

K
X(t) = Agx(t) + > Ax(t—ih) Bu(t)
i=1

y(t) = Cx(t)
itsinput u, and output y over afinitetimeinterval, determinetheinitial func-
tion. Since it isassumed that u and B are known and the solution of differen-
tial equation above can be superposed by the zero-initial state response and
the zero-input response, the problem of system observability can be
addressed when the control u is identically zero. This means that given a
system and its zero-input response over afinite time interval, find theinitial
state. Thus, with no loss of generality we can assumethat u = 0 and study the
observahility of the system

K

() = Agx(t) + ¥ Ax(t—ih) t>t,  (5.39)
X(to) = Xo - t=t,
x(t) = ¢ (t) =T St<t
y(t) = Cx(t) t>t,.  (5.40)

The observability of system described by (5.39) and (5.40) isdual to the con-
trollability of the system

K
x(t) = Agx(t) + 3 Alx(t—ih) + Clu(t). (5.41)
i=1
This means that controllability of system (5.41) implies observability of
system (5.39), (5.40) (cf. [40, Sections 8.1 and 8.4]). Consequently, there are
several observability concepts.

Anobservability typeisdenoted as strong if the observation timeisrestricted
to the length of the maximum delay 1, = k-h of the system. Furthermore,
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if asystem isnot observable on [0, n-k-h] it is not observable on any larger
(or smaller) time interval. Below, the exact definitions together with the
corresponding available criteria are enumerated.

Definition 5.11: System (5.39), (5.40) is R™-observable if the initial point
X(ty) can be uniquely determined from the observation y(t) over a finite
interval of time [ty, t;] for any function ¢ ULZ([t0 —kh, tp), R").

Theorem 5.14: System (5.39), (5.40) is R"-observable for t; > (j;— 1)-h, iff
the following matrix Q has rank n:

Q=1[Qy1 s Qn1 Q12 \Qn 25 - Qn,jf] (5.42)

where
Qu1= c’ «
Q1= AgQr,j + Y AiTQr,j—i

i=1
r=1,..,n

=1 .. kUL k(n=1)+ 1] ON

andQ,;=0forj<0Q,orr<0,0rj>r+k-1

Definition 5.12: System (5.39), (5.40) is called observable (or function space
observable or W*2-observable) if every ¢ WL 2([t,—kh, t], R") can be
uniquely determined from the observation y(t) over a finite time interval

[to, tal-

Theorem 5.15: System (5.39), (5.40) is strongly observable (i.e., observable
for t; > ty+ kh) if rank[C] = n.

A function-space observability criterion for time-varying systems has been
suggested in [85, p. 145]. However, for a time-invariant system of the form
(5.39), (5.40) this criterion is equivalent to the R"-observability rank test of
Theorem 5.14. Therefore, these results are questionable.
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Definition 5.13: System (5.39), (5.40) is M?-approximately observable if
every initial state zy = (x(to), %) [JM? can be estimated by 2, = (X(ty), Xio)
from the observation y(t) over a finite time interval [ty t;] such that
120 — 2. <& for every > 0.

Theorem 5.16: System (5.39), (5.40) is approximately observable for any
t, > n-k-h, iff

rank AS)| = n (5.43)
C
for all sIA and
rank[A;, C'] =n (5.44)

where A is the set of eigenvalues of (5.39).

Definition 5.14: System (5.39), (5.40) is F-approximately observableif every
initial state z, = (X(to), %)) [IM? can be estimated by Z, = (X(to), X,,) from
the observation y(t) over afinite timeinterval [t,, t;] such that

k

Jnx(to) —X(t)en + 3 A%, AR 2 <€
i=1

for every €> 0.

Theorem 5.17: System (5.39), (5.40) is F-approximately observable for any
t, > n-k-h, iff

rank AS)| = n (5.45)
C_
for all s\ and
Ag-sl A . . A C' r ]
; ; AL LA
Al . .A 00
rank| _ | =n+rank| - ' : (5.46)
Ac 0
A 0 0 0 S
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Definition 5.15: System (5.39), (5.40) is spectrally observableif all itseigen-
values are observable. An eigenvalue A is observable when any corre-
sponding eigensol ution of the form x(t) = x(ty)e,, x(t) # 0 yields y(t) # 0 on
[0, ).

Definition 5.16: System (5.39), (5.40) is v-detectable (where visfiniteand a
real number), if all its eigenvalues with Re(A) > v are observable.

Theorem 5.18: System (5.39), (5.40) is spectrally observable iff

rank{ﬂ(s)} =n (5.47)
C

for all s\ . System(5.39), (5.40) is v-detectableiff (5.47) holdsfor all s [A\
with Re(s) = v.

Theorem 5.19: System (5.39), (5.40) is spectrally observable if
C

k .
C{AO + v A e"sm}

<
rank ! =n.

K n-1
C{Ao + 3 A e‘ﬂ

for all sTA .
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Control

6 Sate-feedback control methods: A classification

This chapter is devoted to a brief overview of state-feedback control
approaches for time-delay systems of the form

K
X(t) = Apx(t) + > Aix(t—T;) + Bu(t) . (6.1)
i=1
Various methods have been proposed to control this time-delay system.
These methods can be classified into six groups, which are briefly described
below:

I) The algebraic approach over aring of polynomials
[1)  The spectrum decomposition method

[11) The finite spectrum assignment technique

V) Optimal control

V) Suboptimal control

V1) Finite dimensional approximations

|) The algebraic approach over a ring of polynomials [42], [61]: Using the
delay operator d'x(t) := x(t —i-h), the retarded system (6.1) can be rewritten
as

() = A(d)x(t) + Bu(t) (6.2)

where A(d) = Ay + Adt + ... + A d¥. System (6.2) is called a system over
rings. It is of the form of an ordinary system, with the big difference that the
elements of the matrix A(d) are polynomials in d. The necessary and
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sufficient conditions in terms of the matrices A(d) and B for stabilizability,
controllability, and observability are known [42]. Perhaps one of the most
interesting results of that theory isthat a stabilizable delay system can always
be stabilized by a finite-dimensional compensator [61]. However, up until
now, this compensator has been determined approximately only [42], [61].
Furthermore, optimal control problems are not considered for systems over
rings of theform (6.2). A survey of the results concerning systems over rings
has been published in [42].

I1) The spectrum decomposition method [68], [114], [140], [43, Sections
7.1-7.4]: In this method, the subspace C, of the state space C of (6.1) is con-
sidered. This subspace C, is spanned by the eigenfunctions of the unstable
eigenvalues of (6.1). Since atime-delay system has only afinite number of
eigenvalues with positive rea part, the spectral projection of system (6.1)
into C, is described by a finite dimensional system of the form x,(t) =
A, (1) + Byu, (t) where A, and B, arereal matrices. The stabilizability of the
system (6.1) guarantees the existence of acontroller u,(t) = K,x, (t) such that
theterm A, + B, K, isstable. The matrix K, can befound, e.g., by solving an
algebraic Riccati equation of theform A, P, + P,A, — P,B,R, ‘B, P, + Q, =
OwhereQ, =0, R, >0, and K, =— R;'B, P, . In the state space of the origi-
nal system (6.1), the controller u, (t) = K, X, (t) isgiven by
0
u(t) = Kgx(t) + j K,(B)x(t + 6)do . (6.3)
-k Ch

The matricesKy and K(0) are determined by K, and the left and right eigen-
functions of the associated unstable eigenvalues (for details see [140]).

An advantage of this method is that all tools which are available for linear,
nondelayed systems can be applied for time-delay systemsaswell. However,
this requires the knowledge of the open-loop spectrum in the right-half com-
plex plane aswell asthe calculation of the corresponding left and right eigen-
functions. Especially the latter calculations can be a cumbersome task, since
they usually have to be performed analytically. Furthermore, the controller
always influences only afinite number of eigenvalues of (6.1).
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[11) The finite spectrum assignment technique [114], [ 148]: The goal is the
construction of a linear state feedback such that the corresponding closed-
loop system has a finite number of eigenvalues located at an arbitrarily pre-
assigned set of points in the complex plane. This method does not require a
preliminary knowledge of the plant’s spectrum. It requires only that n spec-
tral points be assigned, while the others are automatically eliminated. Iff the
system is spectrally controllable, it is finite spectrum assignable. However,
to this author’s knowledge, all spectrum assignment control laws are valid
for SISO systems only. Furthermore, the resulting controller usually cannot
be expressed in the form (6.3), since it requires additional terms. This
increases the implementation effort of this controller.

V) Optimal control: The study of optimal control for systems with delays
hasahistory of over thirty years. Inthe early days, the so-called L Q-regul ator
was the main research topic (see, e.g., [67] and [122]). The LQ-regulator is
the optimal regulator for the linear system (6.1) associated with the following
guadratic cost function

ty
Ju) = () Fx® + [{x(®) Qx(®) + u(t) Ru(t)} ot
to
where Q = 0 and R > 0. The regulator is of the form

u(t) = Ko®x® + [ Kyt, O)x(t +6)de. (6.4)

—k [h

Subsequently, the existence of the optimal controller, its characterization by
Riccati equations, and the existence of Riccati solutions for systems with
delaysin the state were studied, e.g., [30]. Generalizations of the delay struc-
tures in systems and costs were established in further research, e.g., [31],
[52]. Furthermore, for a cost criterion with infinite horizon

Ju) = [{x(t) Qx(t) + u(t) Ru(t)} ot (6.5)

to
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the stability of the optimally controlled system was established in [31].
Moreover, the resulting closed-1oop system was found to have the same de-
sirable sensitivity and robustness properties as finite-dimensional systems
do. It hasin fact been shown in [80] that the closed-loop system satisfies the
circle condition. The calculation of the L Q-regulator for the system (6.2) as-
sociated with the cost criterion (6.5) involves the problem of solving partial
differential equations, the so-called infinite-dimensional Riccati equation.
Various efficient algorithmsfor this problem have been derived. Two suitable
numerical methods are introduced in Chapter 8. In Chapter 7 the correspond-
ing optimal control problem is considered.

A similar development can be observed for related optimization problems
such as time-optimal control [26, Chapter 7], dynamic programming [85,
Section 6.5], and the Hamilton-Jacobi-Bellman equation [8]. However, these
developments are not subjects of this work.

V) Suboptimal control [85, Chapter 7]: The LQ-regulator problem is consid-
ered for a finite, preassigned time interval. Suboptimal control approaches
for time-delay systems avoid the computation of the infinite-dimensional
Riccati equation. The control laws obtained are of the form

u(t) = Kox(t) +9(t)
whereas the exact solution (LQ-regulator) is of the form (6.4)

ut) = Ko®x(®) + | Kylt, O)x(t+6)de .

—k Ch

Suboptimal control approachesinvolve solving nondelayed, linear optimiza-
tion problems repeatedly, such that their solutions move closer to the optimal
solution as the number of repetitions increases. One approach for deter-
mining suboptimal control for time-delay systemsis based on the concept of
optimal control sensitivity. In this technique, the control is expanded into a
MacL aurin seriesin some parameters. The coefficients of the truncated series
are computed from the optimization of some related nondelayed system.
Another method is to treat the delay terms in the state as extra perturbing
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inputs, such that the problem is converted into anondel ayed problem. Subop-
timal control methods are not considered here, since the corresponding
control laws are valid only for afinite time.

VI) Finite dimensional approximations:. The idea of this approach is to
approximate time-delay systems by finite-dimensional systems. The approx-
imation can be performed in the frequency and in the time domain. Therela-
tion between these two approaches has not been completely investigated.
The approximation methods in the time-domain can be classified into two
types:. the semi-discretization technique and the full discretization technique.
The first type consists of the replacement of the delay-differential equation
by alinear ordinary differential equation (discretization of the space variable
only). Inthe full discretization technique, atime-delay system is replaced by
a discrete time system by a simultaneous discretization of the space and the
time variables. In both methods, the dimension of the approximation system
grows with the desired precision. During the last two decades the semi-
discretization approach has mainly been considered and various efficient
algorithms have been derived. A finite-dimensional approximation of atime-
delay system alows to apply all control design tools to linear nondelayed
systems or to discrete-time systems, respectively. However, these techniques
lead to high-order systems. In Chapter 8, two approximation techniques of
time-delay systems using state-space representations are considered.

Each approach has its advantages and disadvantages. However, combina-
tions of the various approaches yield easily applicable controller design
methods. For instance, finite-dimensional approximations of a time-delay
system can be used to solve the infinite-dimensional Riccati equation for
obtaining an approximation of the LQ-regulator. Moreover, stability criteria
may be used to confirm the closed-loop stability. This procedure is outlined
in Chapter 8. The other approaches are not considered further, since their
applications are limited, as mentioned above.
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7 Optimal Control: The optimal regulator

Consider anonlinear retarded functional differential equation described by

x(t) = f(x(t), x(t=h), ..., x(t —k-h), u(t)) t>t, (7.2)
X(t) = Xo t=t, (7.2
X(t) = o(t) to—k-h<t<t, (7.3

wheref isbounded and continuous. It isassumed that ¢ and u are continuous
and bounded functions. Let the cost function be defined by

Ju) = F(x(ty), ty) + IL(t, X(t), u(t))dt (7.4)

ty

where F(-) isthefinal state penalty term and t; isagivenfinal time. Thefunc-
tion L(-) is supposed to reflect the cost of deviation from zero of the state
variables and the control. The optimal regulator of atime-delay system can
now be stated as follows. Find an optimal function u®(t), t O[t,, t;] which
satisfies equation (7.1) for some given initial state (7.2), (7.3) and minimizes
the performance index (7.4). The maximum principle is applied to perform
this optimization. The extension of the maximum principle to time-delay
systems has been developed by Kharatishvili (1967) (cf. aso [85, Chapter
6]). Asin the non-delayed case, a set of necessary conditions can be given.
L et the Hamiltonian function be as follows

H(t, X(1), X(t = h), ..., x(t —k-h), u(t), A@) = — L(t, X(t), u(t)) +
+ MNOTRE X(), X(t=h), .., x(t=k-h), u®))  (7.5)

where A(t) OR" remains to be defined. If u°(t) is the optimal regulator and
x°(t) the resulting optimal trajectory, then there exists a costate vector A°(t)
such that the following state equations holds:
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state equations:
X(t) =0O\H|, t>t, (7.6)
X(to) = Xo t=ty, (7.7)
X°(t) =¢(t) ty—k-h<st<t, (7.8
costate equations:
A = —OH| - § OxH(t +i Ch)| t,st<t—k-h (7.9)
1

K—1
A = -OH|,— 3 OHEt+i )|, t—k-h<t<t—(k-1)-h (7.10)

i=1

A = -0H|, t,—h<t<t, (7.11)
N(t) = OxeyF(X(ty), t)], t=t (7.12)

maximization of the Hamiltonian:

= —OH|, t=t,. (7.13)

A genera solution of the two-point boundary-value (TPBV) problem
(7.6) — (7.12) is not known. However, using the method of steps, an exact
solution can be derived for linear time-delay systems and for an appropriate
performance index. The method of steps reduces a delayed TPBV problem
to anondelayed TPBV problem (cf. also Section 2.1). It is obvious that this
procedure can be applied only for afinite horizon, i.e., t; <. The method is
illustrated by an example.

Example 7.1: The optimal regulator for the system
X(t) = x(t) + x(t — 1) + u(t) t=0 (7.19)
X(t)=c -1<t<0 (7.15)

minimizing the performance index
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2
_F 2. 1 2
J = EX(Z) + EJ.U(t) dt
0
is determined. The Hamiltonian function according to (7.5) is given by
H(x, A, u) =— %u(t)2 + A(t)[x(t) + x(t—1) + u(t)] .

Condition (7.13) yields

OH| _ o _ o o

b—uo_o_ u(t)+A(t) .

The above relation is used to eliminate u in the state equations (7.14) and in
the differential equations of the adjoint system (7.9) — (7.12):

XO(t) = xO(t) + x°(t — 1) + A°(t) 0<t<2 (7.16)
Xo(t) = ¢ ~1<t<0 (7.17)
AO(t) = — A°(t) = A°(t + 1) o<t<1 (7.18)
A°(t) = — A°(t) 1<t<?2 (7.19)
A°(2) = F-x°(2) t=2. (7.20)

The method of steps (or method of successive integration) is now applied to
evaluate A\°(t). In afirst step, the differential equation (7.19) is integrated
with respect to its boundary condition (7.20). We obtain

A°(t) = F-x°(2)e*t 1<t<2. (7.21)
In the next step, solution (7.21) is used to solve (7.18):
A°(t) = A°(0)e t —F-x°(2)et -t O<stsl. (7.22)

The constant of integration A°(0) ischosen such that A°(t) described by (7.21)
and (7.22) is continuous at time t = 1. This continuity condition yield

A°(0) = F-x°(2) -efe + 1] . (7.23)
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With the help of (7.22) and (7.23), A°(t) isreplaced in (7.16). The differential

equation obtained isintegrated with respect to its boundary condition (7.17).
We obtain the optimal state trajectory for the interval of timet (1[0, 1]:

XO(t) = — ¢ + { 2¢ + g X°(2)e[0.5 + €]} — et~ g X9(2{05+e—t}. (7.24)

Equation (7.24) represents the initial condition of (7.16) for t (0[1, 2]. The
solution of (7.16) for t [1[1, 2] istherefore

xo(t) = € #ﬁ 2c—4e 'c+ EXO(Z)[G_l -1-2e+ 2e2] +

¥ [ZCe-l ¥ gx°(2)[0.5 ¥ e]} 5 }+ c+

+e"tEEx°(2)[—e2+e3—e2Et] 1<t<2.

The value of x°(2) can be determined by the latter equation. This value,
together with the desired optimal regulator, is stated in the following equa-
tions:

u°(t) = F-x°(2)el e+ 1—1] 0<t<1
u°(t) = F-x°(2)e?! 1<t<?2
where
— 1+2e2)c
Xo(2) = ( |
_1_31:+Ee+ E82+E83+Ee4

4 2 4 2 2

For the special case ¢ = 1 and F = 3, this optimization problem was solved
numerically in [10].

The application of the method of steps is only useful for an optimization
involving linear, low-order control systems (n < 2) associated with a
guadratic performance index with short horizon. Otherwise, the effort of



153

calculation becomes intolerable. Numerical methods are applied to solve
more general optimization problems. Many of these methods use the Riccati
eguations for time-delay systems. These equations are discussed below. The
considered system is of the form

K

X(t) =Ax(t) + > Ax(t—i[h) + Bu(t) t>t, (7.25
X(to) = Xo - t=t, (7.26)
X(t) =o¢(t) to—kh<st<ty, (7.27)

where Ao, A, OR" " and B OR" ™. The cost criterion which is to be mini-

mized is of aquadratic form

Ju) = [{x(®) Qx(t) +u® Ru(t)} dt (7.28)

where Q OR" ™" is a positive-semidefinite matrix and R OR™ "is a posi-
tive-definite matrix. It is assumed that the system (7.25) is stabilizable, i.e.,

K
rank{sl —Ag— 3 Ae '™ B} =n
i=1
for al s being eigenvalues with nonnegative real parts of the system (7.25)
(cf. Section 5.5, Theorem 5.11). Now, we can state the solution to the infi-
nite-time optimal control problem: if the system (7.25) is stabilizable, then

the optimal regulator (L Q-regulator) minimizing (7.28) is given by
0
u(t) = —R"lBT{ Pox(t) + [ Py(B)x(t + 6) de} (7.29)
—kh
provided the matrices Py OR" ", Py(8) OL2([—kh, 0], R"*"), and P(6, &) O
L2([— kh, O] x [-kh, 0], R"*") satisfy the following conditions [39], [40,
p. 343], [52, p. 659]:
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AgP, + PyA,—P,BR'B'P,+ P,(0) + P;(0) +Q = 0 (7.30)
oP, (0 _
- % +[Ag—PBRB']Py(6) + Py0,6) = 0 (7.31)

OP,(,6) , OP,(E,6)
00 0¢

+Pj(§)BR'B'P,6) = 0 (7.32)

where—kh <8 <0and—kh < & < 0. The matrix functions Py(8) and P,(6, &)
obey the following boundary conditions:

P,(—kh)" = AP, (7.33)
P,(—kh, 8) = AP,(8) . (7.34)

The matrix functions may be discontinuous in the form of “jumps’. These
jumps are determined by [39, p. 104], [52, p. 659]:

Py((-ih)") =Py((ih)7)" = AR,
P,((—ih)", 8) —=P,((=ih)",8)' = ATP,®) i=1 .. k-1.
Moreover, the matrices P, and Py(, £) are symmetric
P, = Py
Py(€,8) = Py6,8)" .

Given the conditions (7.30) — (7.34), the minimal value of (7.28) in terms of
theinitial functionis[62, p. 1087], [52, p. 660]

Ju0) = XoPoXo+2Xo [Pi(6)9(0)dB+ [ [ $(B)'PaAE, B)$(B)0EDD .
—kh —kh —kh

The asymptotic stability of the resulting closed-loop system (7.25), (7.29)
has been established (cf., e.g., [31]).
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Robustness properties of (7.25), (7.29) have been studied aswell. Particular-
ly the closed-loop system (7.25), (7.29) possesses simultaneously in each
feedback control channel [80]

(i) [0.5,00] gainmargin
(i) +60° phase margin

if R>0isdiagonal and Q > 0. Note that the optimal regulator (7.29) consists
of two parts. The first part of the regulator is similar to the regulator for the
linear, nondelayed system. Theintegral part of (7.29) accountsfor the delays
of the system. An exact solution of the Riccati equations (7.30) — (7.34) isnot
known, even for very simple time-delay systems. However, this problem can
be solved numerically. Two procedures areillustrated in the next chapter.

The Riccati method is also known for a quadratic performance index with
finite horizon of theform (7.4). In that case the resulting optimal control law
istime-dependent, whereascriterion (7.28) yields astate-feedback controller.
Since the latter regulator is easier to implement, we consider here only
criteriawith infinite horizon.
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8 Finite dimensional approximations

A finite dimensional approximation of atime-delay system can be performed
in the frequency domain [32], [61], [94] or in the time domain. The approx-
imation techniquesin the time domain can be classified further: semi-discre-
tization methods (discretization of the state only) and full-discretization
methods (simultaneous discretization of the state and the time variables
[30]). These methods can be used to solve the infinite-dimensional Riccati
equation (7.30) — (7.34) for obtaining an approximation of the L Q-regulator
(7.29). But none of these procedures can guarantee apriori the stability of the
resulting closed-loop system, especially if the delays of the plant were esti-
mated wrong. In case the controller is obtained with a semi-discretization
method, the stability can easily be checked with the help of the algebraic sta-
bility tests presented in Subsection 3.2.6. Therefore, only semi-discretization
methods are considered here. Thereisarich literature on thistopic, e.g., [10],
[39], [56], [62], [77]. In the following, two suitable methods are illustrated:
the averaging methods and the L egendre-Tau method. The averaging method
excels by its feasibility, whereas the Legendre-Tau method has one of the
highest convergence rates of the known approximation techniques.

8.1 The averaging approximation method

The averaging approximation method (frequently abbreviated as AVE-
method) was invented by several Soviet authors in the early sixties and has
been described in several publications (see, e.g., [70], [120]; further refer-
ences and a detailed review can be found in the paper of Banks and Burns
[10]). Krasovskii [70] and later Ross [122] used this method to compute the
L Q-regulator for time-delay sytems. Next, the convergence and convergence
rates of this approximation scheme (for aslightly different approximation of
the initial state) were established in [39], [77], [93]. The approximation
method is illustrated here in a popular and somewhat heuristic approach,
since a detailed derivation would exceed the scope of this work.
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1) Approximation of the system: The following system is considered:

(1) = Ax(®) + ¥ Ax(t—i Ch) + Bu(t) t2t,  (8.1)

i=1

x(t) = o(t) tp—k-h<t<t,. (82

Let N be a positive integer. The approximation starts by a division of the
delay constant hinto N equal subintervals with length h/N. Let

Xo(t) = X(t)
X3 (t) = x(t—h/N)

X5(t) = x(t—2h/N)
- (8.3)

Xn(t) = x(t—h)
() = x(t—kh)

where x'(t) OR"and x™(®) = XY@, ..., xM @0 OR™™N* D, The deriv-
ative of xiN(t) can be approximated by

iy XU==DR) < B -xion

In asimilar fashion we obtain

xh(y DX X2V = Brd - o)
iy DXEEDERD ZXAR) - Ny ) - xo

h/N h

L B XKD = By —xind)]

Xi () 0%
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Hence, a finite-dimensional approximation of (8.1) can be formulated as
follows:

x"(t) = ANXN@) + B u(t)

(8.4)
where AN gRMN* DN+ D gng gN QRN XM ore given by

A, O . . 0 A,. . A

= :

N, N 0

AN=|0 fl-Fl BN = |-|. (85

0 Ny N .

- . . . . . . h h_

The symbol | OR"*" denotes the identity matrix. From approach (8.3) it
followsthat the initial condition of (8.4) is given by

X'(t) = d(t—ih/N). (8.6)

For N=1 and k =1 the AVE-method is equivalent to a truncated Taylor

series approach. This fact can be shown by an appropriate Taylor series
expansion of x(t):

x0 =x(t—h) + XD oyt +X(t_r—!h)(r)[t—(t—h)]r

A first-order approximation yields

%[x(t) _x(t—h)] =xt—h) =xN@) .

Therefore, system (8.1) with k=1 is approximated in the Taylor series
approach by
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xp(t) = AMXN(t) + B u(t)

Nyw _ L1 N N (8.7)
X1(t) = F[Xo(t) =Xy (1)]

which is just (8.4) for N =1. For the sake of completeness it should be
mentioned here that the Taylor series can also be used to approximate the
delay term x(t —ih) [33, p. 22]:

X(t—ih) = x(t) —iAx(t) + ... + (—1)f8—:]‘));x‘”(t)

which leads to the following approximation of (8.1) and (8.2) [44]:

R(ty) = {I +y ihAi} { T A() + Bu(t)} 68

i=1 i=0
R(tn) = o(tn) .

However, this approximation should be applied only if the delay is small
[44]. But in this case it is more reasonable to approximate system (8.1) and
itsinitial condition (8.2) by

R(to) = {Ao +3 Ai}xa) + Bu(t)

i=1
K(ta) = &(tn)
since this approach preserves stability properties if the delay is sufficiently
small [133]. Note that the approximation schemes (8.7) and (8.8) do not offer
an approximation parameter N. So let us return to the topic of this section:
the AVE-method. What is the frequency domain representation of (8.4) in

terms of the original system matrices? For simplicity a single-delay system
isconsidered first:

X(t) = AgX(t) + A;x(t—h) + Bu(t) . (8.9
The transfer function G(s) of (8.9) isgiven by
G() =[sl —A,—AeS 'B.
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U(t) + f X(t)

Fig. 8.1

An associated signal-flow diagram which involves the term e in one link
iIsshown in Fig. 8.1. According to (8.4) the AV E-approximation of (8.9) is:

Xo(Y) = AgXo(t) + Axn(t) + Bu(t) (8.10)

X0 = S0 - XL )

X'(® = DXL 0 -] (68.11)

: N
Xn(t) = FDxn-a(®) = a1
From (8.11) it follows that
N,y h,-1 N
Xj(s) ={1+ SN} Xi_1(S) - (8.12)
Relation (8.12) together with the Laplace transformation of (8.10) yields
xN(8) = [sl = Ag— A {1+ sg} N1y (8.13)

Equation (8.13) represents the AV E-approximation of (8.9). Theterm e is
replaced by N successive links (see Fig. 8.2) with the rational fraction
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u:>B:i@ f

\ 4

1+sh/N

l
|

1
1+sh/N
Fig. 8.2
transfer function {1 + SE } L. Since
—sh . h
e = lims1+s—
N - 00{ N

(cf. [10]) this approximation converges.

z

Gibsen (1983) conjectured that the approximating system (8.3) — (8.5) is ex-

ponentially stablefor sufficiently large N if the

underlying time-delay system

isasymptotically stable. This stability preservation property of the averaging

scheme was later proved by Salamon (1985).
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I1) Optimal regulator on the infinite interval: Let us consider the optimal
regulator for the system

X(t) =Ax() + > Ax(t—iCh) +Bu(t) t>t, (8.14)

i=1

x() = () tp—kh<t<t, (8.15)

minimizing the performance index

Ju) = [{x(®" Qx(t) + u(t) Ru(®} dt (8.16)
to
where Q OR" " and ROR™ ™ are symmetrical positive semi-definite and
positive-definite matrices, respectively. Under the assumption that

K

rank|sl —A,— v Ae™"™, B} =n
i=1

and

K
sl—-A,— 3y Ae'™
rank i1 =n

172
Q

for all s being eigenvalues with nonnegative real parts of the system (8.14),
there exists an optimal regulator of the form

u(t) = —R_lBT{Pox(t) + [ PO)X(t+ e)de} (8.17)

—kh

provided the matrices P, Py(0), and P,(0, ), satisfy the conditions
(7.30) — (7.34). This optimization problem is treated here with the AVE-
method. As stated above, in this method, system (8.14) is approximated by

x(t) = ANXM@®) + B u(t) (8.18)

where AN and BN are given by (8.5). From (8.3) it follows that the finite-
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dimensional averaging approximation of (8.16) is

Ju" = j{xN(t)TQNxN(t)+u(t)TRu(t)} dt (8.19)
to
where Q¥ DR+ >N+ 44 given by
Q0. .0
00. .0
Q=1 ... (8.20)
00. .0

The solution of the optimization problem described by (8.18) and (8.19) is
u@t) = — R*BYTINN(t) where the matrix NN QR DXMN* D oicfies
the algebraic Riccati equation

AN N+ AN VBRI BM NN+ QY = 0 . (8.21)

The matrix MN can be partitioned into (N + 1)? submatrices. They are
denoted by M;; OR"*"where0<r< Nk and 0<j < Nk:

Moo Mox - - Mo
N N N

N I_Il,O I_Il,l . 'I_Il,Nk

n“ = S . (8.22)
Mo - - - Mok

The relation I'IL\,']- = (I'IJ-“,'r)T follows from the symmetry of M". If one dis-
cretizes (7.31) and (7.32) and compares the algebraic relation thus obtained
with (8.21) in terms of the submatrices I'Ir“,'j , the two sets of equations are
found to be in direct correspondence (for details see [122]). Let PB' and
PT(G) be an approximation of Py and P;(8). Then we have
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Py = My, (8.23)
PL(-jh/N) = N g, 1 (8.24)

for 0 <j < Nk — 1. Furthermore, boundary condition (7.33) yields

PY(—kh)' = A g, . (8.25)

The submatrices of MN, which areinvolved in (8.23) — (8.25), are located in
the first row (first column, respectively,) of submatricesin MN. (Thisrow is
shaded in (8.22).) The other submatrices of MN are an approximation of
P,(&, B). The corresponding relations are not stated here (cf. [122]), since the
optimal control law (8.17) requires only P, and P;(8). The equations
(8.23) — (8.25) determine amost completely an approximation of P, and
P;(0). One question remains, however: How are the discontinuities of P;(6)
represented in this approximation scheme? Recall that P;(8) may have dis-
continuities in the form of “jumps”:

P((-ih)") =P((-ih))' = AP, i=1,.,k. (8.26)
It turns out that (8.24) describes the upper value of P;(0) at the jJumps:
PL((=ih)") = N g =i i=1,..k.

The lower value of P;(0) at a discontinuity denoted by P?(G) IS given by
(8.26):

=T T
PL(=Ih))" = (Mo =in) ~AiMoo - (8.27)
For those values of 8 where P;(0) is continuous we have
Py(6) = Py(6) = P(8") .

The notation isillustrated in Fig. 8.3 for ascalar P;(0).
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P1(6)

PL(-h") ?

PN —h = PN —h_ = PN _h+
Pl(-2h") = P}(=2h) = P}'(-2h) 1( 2) 1 ( 2) 1( 2)

 PY(0) =...

-2h -h 0

Fig. 8.3 Approximation of P;(6) by computa-
tion of somediscretevaluesof P?(G) and splines.

Evenif P, and P,;(0) are exactly known, the LQ-regulator of theform (8.17)

0

u(t) = —R_lBT{Pox(t) + jPl(G)x(t+9)d9}

—kh

iIsimpossible to implement, since the integral term requires the storage of in-
finitely many values of x(t) and the integration has to be performed at each
time. Thus, the integral is approximated by a trapezoidal integration, which
can be expressed by a sum. Hence, the approximation of the LQ-regulator is
given by

ui PR = 1) )xt = 2 - 1)) + P2 )x - )
uN(t) = _R1BT Pg'x(t)+ D "~ N N 5N "~ N N

=1 .

(8.28)
The method is summarized in the following:
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Step 1. Choosetheinteger N = 1.

Step 2:  ComposethematricesAN OR
using (8.4).

Step 3: Define the matrix Q OR" " and ROR™ ™ which determine the
performance index (8.15).

Step 4:  Compose the matrix QN (8.20).

Step 5:  Solve the algebraic Riccati equation (8.21). The solution yields the
matrix MN.

Step 6:  The submatrices of MN according to (8.23) —(8.25) and (8.27) de-
fine the approximation (8.28) of the desired L Q-regulator for time-
delay systems.

Nn(kN + 1) x n(kN + 1) n(kN + 1) xm

andBN O R

Usually, the procedure is executed several timesfor increasing values of N to
verify the convergence of the solution (cf. the example 8.1 below).

The procedureinvolvesthe problem of the computation of ahigh-dimension-
a algebraic Riccati equation. The most widely available method for solution
of the Riccati equation isthe Laub-Schur algorithm [78]. This method is suit-
able for our purpose. More recently, a hybrid method has been suggested by
Banksand Ito (1991). It possesses several computational advantages over the
standard eigenvector based (Potter, L aub-Schur) techniques.

Example 8.1: The optima regulator for the following scalar time-delay
system

() = X(t) + 2x(t— 1) + X(t—2) + u(t) (8.29)

minimizing the cost function

Ju) = [{x®°+ut)?} dt (8.30)
0

isconsidered. For N = 2 we obtain from (8.5):



167

1020 1 1
220 0 0 0
A"=1lp02 200 B" = |o
00 2-20 0
000 2 -2 0|

Furthermore, equation (8.21) yields

10000
00000
N _

Q" =100000 -
00000
00000

From (8.30) it follows that R=1. Hence, we are ready to compute the
solution of the Riccati equation (8.21):

353 1.10 2.09 0.48 0.92
1.10 0.41 0.72 0.18 0.31
N = 1209 0.72 1.31 0.31 0.57| -
0.48 0.18 0.31 0.08 0.13
0.92 0.31 0.57 0.13 0.25|

According to (8.23) — (8.25) and (8.27) the above solution yields an approx-
imation of Py and P;(8). The corresponding values are stored in Table 8.1. In
order to illustrate the convergence of this procedure, the approximation of P,
and Py(0) for N =1, 4, 8, 20, and 50 has been computed as well. Only the
values which are necessary for acomparison (with the solution for N = 4) are
listed in Table 8.1. A further comparison of the solutionsfor N =1, 2, 4, 8,
20, and S0 isillustrated graphically in Fig. 8.4.

As Table 8.1 shows, the approximation method describes P;(0) only at some
discrete values of 0. In Fig. 8.4 the discrete approximation is connected via
linear splines, which corresponds to the technically realizable form of the
L Q-regulator (8.28).
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PY(6)
N
o
B N
2 - N =20 ; é N
7 N =50
I I I I I I 9
-20 -16 -1.2 -0.8 —-04 0.0

Fig. 8.4 P'f(é) computed for N =1, 2, 4, 8, 20, 50 subject to (8.29) and (8.30)

Table 8.1 Pg and PT(@ computed for example 8.1

N=1| N=2 | N=4 | N=8 IN=20|N=50

= 383 | 353 | 337 | 328 | 323 | 321
PY(0) 301 | 221 | 180 | 160 | 149 | 145
PY(-0.25) | - - 254 | 229 | 213 | 2.05
PY(-050) | - 418 | 362 | 333 | 313 | 310
PY(-0.75) | - - 521 | 489 | 470 | 462

PY(-1.00) | 894 | 803 | 753 | 7.27 | 712 | 7.07
P)(-1.00)"| 1.28 | 096 | 079 | 071 | 0.66 | 065

PY(~1.25) _ _ 113 | 1.02 | 095 | 0.91
PY(-1.50) _ 1.83 | 161 | 1.48 | 140 | 1.36
PY(-1.75) _ _ 232 | 220 | 212 | 2.08

P)(-2.00) | 3.83 3.53 337 | 3.28 323 | 321

o PA~AN PR
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uN() X(t)

> b|—>0 >
S|
Jr
% %
+ Y S
e oy e |
—2S |4
r_lb 2 e
A
D N
e Po
N
| PO |<
1/4 < 2 N ~0.5s
LY D e < Py (-0.5)< e
Py (-1« e® |«
PP [
P N 1.5
V4« G 2 |« P (-1.5) [« g 155«
PL(-2) e [«

Fig. 8.5 Sgnal-flow diagram of the
approximated (N = 2) LQ-regulator

A signal-flow diagram of the approximated regulator is sketched in Fig. 8.5.
This scheme can easily be extended for multidimensional systems. An alter-
native scheme of theimplementation of the L Q-regulator isshown in the next
section.

Using Theorem 3.4 (cf. Section 3.2), it can easily be shown that for the
approximation degree N = 1 the resulting closed-loop system is asymptoti-
cally stable. For briefness, checking the stability of the closed-loop systemis
demonstrated only in context with the L egendre-Tau approximation method
(cf. next section).
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8.2 The Legendre-Tau method

While the AVE-method excels by its ssimplicity and its feasibility, the
Legendre-Tau method developed in [53] —[56] is well known for its fast
convergence rate [53]. The Legendre-Tau method has one of the highest
convergence rates of the known approximation schemes. The eigenval ues of
the time-delay system with positive real part or near the imaginary axis are
approximated with high precision [54]. Furthermore, if the origina time-
delay system is asymptotically stable and if the approximation degree N is
sufficiently large, the approximating system is asymptotically stable as well
[54]. However, the theory of this approximation scheme and its application
for designing an optimal state-feedback controller iscomplete only for single
delay systems. An extension for systems with two delays is considered in
[55]. But that work is not a consequent extension of the original Legendre-
Tau method (cf. [55, p. 1384] for details). Nevertheless, it reveals that the
effort of notation would be enormous if the Legendre-Tau technique were to
be applied for multiple delay systems. However, for single delay systemsthe
Legendre-Tau method is suitable. In the second part of this section, this
method is applied to compute an approximation of the LQ-regulator. Since
the stability of the resulting closed-loop system cannot be confirmed a priori
with this procedure or any semi-dicretization method, algebraic stability tests
(presented in Section 3.2) are applied to check the stability. In the LQ-regu-
lator approach, it is assumed that the delays are exactly known. However, in
reality it isdifficult to estimate the value of adelay. Furthermore, in practice
the delays are frequently not constant and vary within a certain range. Again,
algebraic stability tests can be used to investigate the robustness of a system
(controlled by an approximated LQ-regulator) against uncertain delays. An
illustrative example is given at the end of this section.

In the Legendre-Tau method the state x; of a linear time-delay system is
approximated by Legendre polynomials. The approximation degree N is
equivalent to the degree of the Legendre polynomials involved. In order to
briefly illustrate the basic ideas of the Legendre-Tau approximation tech-
nique some well-known properties of the Legendre polynomials are
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reviewed (cf. [55]). The Legendre polynomial p;(t) of degreei is defined by

1
pit) = Z_ETD(—;IT[(t_l)] —-1<t<1.

It is important to note that p;(t) is defined only for t OO[—1, 1]. For instance
the first six Legendre polynomials are:

Po(t) = 1
pi(t) =t

) = 3(3°-1)

i) = 3(5t°-3D)

pa() = %(35t4—30t2+3)
Ps(t) = %(63t5—70t3+15t)

Po(l) = 3£(231t°— 315t + 105¢°-5) .
The Legendre expansion of the function f O([— 1, 1]; RY) is

ft) = ¥ o tpi(o) (8.31)

i=0

where the Legendre coefficients a; are given by

a = 2' t1n j £(t) Cpy(t)dt . (8.32)

Moreover, foral i =0, 1, ...

pi(zl) = (x1) . (8.33)



172
Example 8.2: The function f(t) = sin(t) is approximated for the time interval
[0, M using a truncated Legendre series. Applying the transformation
o= = 1 the function f can be considered in the appropriate interval:

f(o) = sin[g(0+1)] ~1<o0<1.

From (8.32) we obtain

q. = 2
" n
a, =0
_ 10 12
= D2

Thus, f can be approximated by
f(0) Dagpg(0) + a,p,(0) + a,p,(0) —1l<ox<1

which can be rewritten as

2 10(, 1216 m 1
f(t) Dﬁ-'- F{l—;}[{;{t—é} —§:| O<st<Tr.

The l;-error of the approximation is smaller than 0.06.

|) Approximation of the system: A system with asingle and constant delay is
considered:

X(t) = AgX(t) + Ax(t —h) + Bu(t) t>t, (8.34)
X(t) = ¢(t) to—h<t<t, (8.35)

nxn nxm

where Ay, A; R, B OR ", and h>0. In the Legendre-Tau method
the state x; = x(t + 8), —h < 0 <0 is described by a truncated Legendre se-
ries. Since we intend to approximate x; for any t > 0 the coefficients (8.32)
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of the corresponding Legendre polynomial are time-varying. Let xtN be an
approximation of x,. Then we have

80[-h0] (836)

Xt
i=0

where p; denotes the it Legendre polynomial and a;(t) OR" its coefficient
vector. The fraction (26 + h)/h maps every 6 [[-h, Q] into [- 1, 1]. From
(8.36) it follows that

x\(t) = za(t)p(@—'—") = > aMp@ = Yo . (837

i= g=0 =0 i=0

The coefficients a;(t) are determined by the following two relations:

ox\(t+0) _ ax\(t+9)

at ~ 08 (8:38)
M) = AXN(t) + AxN(t—h) + Bu(t) . (8.39)
Since
LG b o) pEE
()‘X%@ - EDE_O@M) | z G(t)EIO(29+h)
i +i = odd

(cf. [54, p. 741]) condition (8.38) yields
ao(t) 0 o(t)

Oy — 1(1) a N(t)

where | OR"*"is the identity matrix and SN OR™ *"™* s defined by
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0O 1 0 1 0 1 1 0

0 0 3 0 3 0O 0 3

0O 0 0 5 0 5 5 0
s =

0O 0 0 0O 0O 0 . .2N-3 0

0 0 0 0 0 O .. 0 2N-1

Condition (8.39) is used to determine aN(t). This approach is called the Tau-
method or spectral method (cf. [41, pp. 11ff] for ageneral description of the
spectral methods and their applications).

ai(t) = Ag Y ai(t) Chi(1) + A,

N o;(t) Cpi(=1) + Bu()

() = = 3 o) + A Y ait) +A; Y ai(t)(=1)' + Bu(t)
i=0 i=0 i=0
N—-1 _. N
a® = - x TE y a0y
i=0 j=i+1
i+i = odd
+AY i) AL Y ai(t)(-1) + Bu(t) .
i=0 i=0

Now, we have n differential equations for every a;(t). Defining the vector
(X(t) DRn(N +1)

a(t)
a(t) =

a(t)

these differential equations can be collected in a state-space representation:

a) = Aa() +BNu(t) . (8.40)

NN+ 1) x n(N + 1) n(N+ 1) xm

The matrices AN OOR and BN OR are given by
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-
2 N .
AV=| > bl B" = LS
D D
1 N _B_
i + 1)

where D; = — +AO+(—1)iAl . The initial condition for the
system (8.40) is defined by

ay(0)
a@) = | (8.42)

an(0)

where
0

a.(0) = Zir’]’lqu)(e) Epi(?ﬁ’ﬁ’i‘)de 0<isN-1
h

N-1

an(©) = 6(0) - ¥ o(0)

i=0
Actually, we are interested in approximating x(t) by xN(t). According to
(8.37), the relation between xN(t) and a(t) is:

N

ﬂm=zmm.

Thisrelation can be connected with (8.40) using a state transformation:

o) |
S = Q) =| - |aft) = aN_ll(t) .
L X(t) |

Hence, system (8.40) and itsinitial state (8.42) can be rewritten as
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Et) = QANQ () + BNu(t) (8.43)
- ay0) |

£(0) = aN_'l(O) . (8.44)
| $7(0)

Theeigenvalues of (8.43) arerelated with diagonal (or all-pass) Padé approx-
imations [32]. In [54 p. 198] it was demonstrated that A is an eigenvalue of
AN iff \ satisfies det[ AN(A)] = 0O where

" (N (2N i

5 () o

. |
AN = M —Ag—A, [Padée™) = Al —A,—A, (=0

NS

1) Approximation of the LQ-regulator: The optimal regulator for the system

%() = Agx(t) + Ax(t — h) + Bu(t) t>t, (8.45)

x(t) = (1) tp—h<t<t, (8.46)

subject to the performance index

Ju) = [{x(®) Qx(t) + u® Ru(t)} dt (8.47)

to

whereQ=0,Q OR" "andR > 0, R OR™" ™isconsidered. It is assumed that

rank [sl —A,—A,e™ B] = n (8.48)
and
sl—A,—Ae™
rank =n (8.49)
Ql/2
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for all s being eigenvalues of the system (8.45) with nonnegative real parts.
Given these assumptions, there exits an optimal regulator of the form

u(t) = —R_lBT{Pox(t) + [ Pl(e)x(t+6)d9} . (8.50)

-h

In order to tackle this optimization problem with the L egendre-Tau method,
we approximate the performance index (8.47) asfollows

Ju) = I{XN(t)TQxN(t)+u(t)TRu(t)} dt . (8.51)

ty

Equivalently, we may write

Ju) = [{E®'QE® +u(® Ru(®} dt (8.52)

to

where Q¥ OR"™* "N+ D i defined by

Q¥ =00 (8.53)
0Q
and £(t) DR"™* ¥ is determined by (8.43) and (8.44). It is well known that

the solution of the optimization problem (8.43), (8.52) is
uV(t) = -R*(BY) NNE() (8.54)
where N OR™™* 9> "N * D i ofies the following Riccati equation:
0= (@A™ "+ nY@ANe™ -n"B"R*BN NV + Q" . (855)

Rewriting (8.54) as
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I_IT]- ﬂ’i‘o El(t)

N = -RY(BY)' | - (8.56)
R A 0y
M M| g

it becomes obvious that My, R" " is the desired approximation of Py
My = P . (8.57)

NN also yields an approximation of Py(B), denoted by PT(G) . The proof of the
following procedure appeared in [56]. Defining the matrix A

. h h
A = diggh, .., 570 5 D O (8.58)

the following similarity transformation can be performed

=N n"A" . (8.59)

The matrix I contains the L egendre coefficients of the Legendre polyno-
mials defining P} (6). The elements of the matrices P)(6) are therefore
determined by atruncated L egendre series

POy = % Meno s oy (D) (8.60)

I=O

where 1<i<n and 1<j<n. The optimal regulator (8.50) can now be
approximated by

u(t) = —R_lBT{Pg'x(t) + [ Pi‘(e)x(t+e)de} . (8.61)

—h

Since the integral term of (8.61) is not technically realizable, it is approxi-
mated by atrapezoidal integration such that the controller is of the form
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N " . h
u = 3 Kxt-iz).
i=0 N

h

Strictly speaking, the matrix function PT(G) Is computed for 8 = 0, N h
and hence the LQ-regulator is approximated by
v PG - D)X(E- 1 - 1) + PL-gi)x(t - Ti)
u'(t) = —-R7BT| Phx(t) + &

. 2N

=1 -

h
(8.62)

In order to increase the readability of the description of the method, the pro-
cedure is summarized in the following:

Step 1:
Step 2:

Step 3:

Step 4:
Step 5:

Step 6:

Step 7:
Step 8:

Let N > 1 be an integer.
Compose the matrices AN OR
according to (8.41).

Define the matrix Q OR""" and R OR™ ™ which determine the
performance index (8.51).

Compose the matrix QN (8.53).

Solve the algebraic Riccati equation (8.55). The solution yields the
matrix M\,

According to (8.56) and (8.57) the submatrix Mg, of M\ is equiva-
lent to P}) .

Compute P5(6) for 6 =0, E , ..., husing (8.60).

Implement the approximation of the regulator (8.62).

n(N+ 1) x n(N + 1) n(N+ 1) xm

and BNO R

Example 8.3: The Williams-Otto processis considered. It consists of achem-
ical reactor, a cooler, a decanter, and a distillation column (cf. Section 2.1).
Thisrefining plant can be described by a single delay system

where

%() = Agx(t) + A x(t— 1) + Bu(t) (8.63)
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493 -101 0 O
_320 -530 -12.8 0

A, =
640 0.347 —32.5 —1.04
0 0833 11.0-39
1920 0 0O | 10
A, = |0 1920 0 g |01
0O 0 1870 00
0 0 0 0724 00

The dimensionless state variables represent the deviations in the weight
composition of two raw materials, of an intermediate product, and of the
desired product, respectively, from their nominal values. The spectrum of the
system is shown in Fig. 3.20. It reveals that this system is asymptotically
stable. In Subsection 3.2.6, it was shown that system (8.63) is asymptotically
stable even if the delay is not constant (but bounded and continuous).
However, the system shows a sluggish time response for an initial distur-
bance. Fig. 8.6 shows a typical time response of this system. The initia
disturbance was chosen as follows

()
X,(t)
X,(t)
Xa(t)

0t0O-1,0]. (8.64)

o O O Bk

Since the natural response of the system is unacceptable, an LQ-regulator is
applied to diminish deviations of the state variable. An appropriate regul ator
is obtained for the following choice of the matrices Q and R:

100 0]

o=[01000 rR= |10 (8.65)
0010 01
0 0 0100
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Fig. 8.6 Uncontrolled time response of sy-
stem (8.63) for theinitial disturbance (8.64)

Recall that system (8.63) is spectrally controllable iff
rank[sl —Ay— A" B]=n=4 OsOC.
The matrix [s| — Ay —A,e™", B] for this exampleis of the form

x x 0010

001
c,L* * * 00
0c* * 00

*
*
*

(8.66)

The asterisks* denote functions of s. The symbolsc,, ¢, represent constants.
Since the rank of the matrix (8.66) is aways equal 4, system (8.63) is spec-
trally controllable. Obvioudly, the assumptions (8.48) and (8.49) which guar-
antee the existence of the LQ-regulator are satisfied. For convenience the
approximation parameter N ischosen to be N = 1. (The approximation of the

LQ-regulator for N = 3 will be briefly given at the end of this example.)
Hence, we obtain from (8.41):
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0 0 0o 0 2 0 0 0
0 0 o 0 0 2 0 0
0 0 0O 0 0 0 2 0
AN- |0 0 0O 0 0 O 0 2

-3.01-101 O 0O -88-101 O 0
-3.20 -3.38 -1280 0 -3.20-9.22 -1280 O
6.40 0.35 -30.63 -1.04 6.40 0.35 -36.37 -1.04
0 083 11.00-320 O 0.83 11.00 —-6.68

(BN)T: 10000000
0100000 O

The matrix QN is given by (8.53) and (8.65). Next, the solution of the Riccati
eguation (8.55) is computed. From the resulting MN we obtain by (8.57)

1.01 —0.23 0.64 1.44
N _ |-023 094 000 0.86
0.64 0.00 095 284|
144 086 284 10.81]

Furthermore, with the help of (8.58), (8.59), and (8.60), the matrix M\ yields
an approximation of P,(6) for 8 =0and 6 =-1:

| 106 -0.38 078 0.75)
Q) = Pl = |-017 086 013 043
040 —001 059 0.77
| 080 069 166 2.49

Since N ischosen to be equal 1, P;(8) is approximated by constant functions
and hence PT(O) = PT(—l) . The resulting closed-loop system is given by

x(t) = Aox(t) + Ax(t—1) (8.67)

where
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Ao = Ay— BR‘lBT{Pg' + %PQ‘(O)}

A=A, - %BR_lBTPT(—l) .
The stability of system (8.67) cannot be guaranteed a priori by the Legendre-
Tau method or any semi-discretization method like the AVE-method.
However, the algebraic stability tests presented in Section 3.2 can be applied
to confirm the stability of the closed-loop system. In particular, the stability

condition of Theorem 3.4
u(Ao)2 + A4l =—051<0 (8.68)

issatisfied. Thus, the stability could be successfully analysed without having
to compute the eigenvalues of the closed-loop system. Similarly, we may
establish the stability of the closed-loop system in case the delay of the plant
(8.63) was estimated wrong or if the delay is not constant. The corresponding
differential equation of the closed-loop system is of the form

X(t) = Aox(t) + Aix(t—T(t, x(t)) + Axx(t — 1)
where

Ao = A,- BR'lBT{Pg' + %P’I'(O)}

>

A

1

[EEY

A, BR'B'P}(-1) .

NI

The stability condition of Theorem 3.4 can be satisfied as follows

H(T_leT)z + ”T_lAlT”z + ”T_lAzT”z = —-0.89<0

where the matrix T =diag(1, 1, 0.65, 1). The diagonal matrix T is used to
reduce the conservatism of the criterion (cf. Subsection 3.2.6). In this
example the excellent stability property of the resulting closed-loop system
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PY(0)y 1
2.4

N ) N > 8
1.8 -

N - N=1
1.2 | /

N N=2 N=4
0.6 4 A/ /

| ~—__ N=3
OO I I I I I e

-10 -0.8 -0.6 -04 -0.2 0.0

Fig. 8.7 PT((S)L1 shown for the system (8.29) subject to
the performanceindex (8.30) for N= 1, 2,3,4,and N > 8.

could also be established if the AVE-method (cf. Section 8.1) were applied
to compute Py, P(0), and P} (-1).

N was chosen to be equal one in order to illustrate the method in a smple
way. But what is areasonable choice for N? The question can be answered in
apractical way by studying the convergence. In Fig. 8.7 the approximations
of thefirst element of P;(0) denoted by P'I'(e) 11 aeshownforN =1, 2, 3, 4,
and for N > 8. There is no visible difference among the several plots of
PT(G) 11 With N > 8 (dashed plotted in Fig. 8.7). (The convergence behav-
iour of Pi'(e)L1 IS representative for other entries of P'I'(G) .) The corre-
sponding program, realized with the help of the MatrixX software package,
is able to compute solutions up to N =12. Fig. 8.7 revealsthat N =3 isa
reasonable choice. For this choice of N we obtain the following approxima-
tions of Pyand Py(0):
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125 -028 0.76 1.65
N _ |-0.28 1.09 -0.02 0.97
0.76 -0.02 1.07 3.10
| 165 097 3.10 11.49

0.69 0.05 0.00 -0.14
PT(O) —-0.28 0.58 -0.09 0.09
047 -0.01 0.46 0.46
| 0.79 047 114 155

' 031 -0.15 019 0.21]
P13 = |007 0.08-008 015

0.00 —0.05 —0.07 —0.06
010 0.20 -0.11 —0.07|

| 0.90 -043 0.80 0.80]
P2/ _010 049 0.16 0.40

024 001 040 055
| 050 059 1.19 185

246 -0.78 1.81 1.65
PY_1) = |037 181 015 087
118 -0.13 1.86 231
| 258 164 504 7.31

The resulting closed-loop system is of the form
X() = Aox(t) + Aix(t—1/3) + Axx(t—2/3) + Asx(t — 1) (8.69)
where

Ao = Ay— BR‘lsT{PS + %PQ‘(O)}
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X(t)

0.10 -
0.08
0.06 —
0.04 -
0.02 -

OOO I I I I I I I I t
oozl 1 3 4 5 6 7 8 9 10

—0.04
—0.06 -

Fig. 8.8 Controlled Wiliams-Otto process described by (8.69) (N = 3)

Ay = —%BR‘lsTPT(—l/S)

~ _ 1. -1,THN

A, = —3BR'B'Pi(-2/3)

~ 1 -15TN

As = A,-ZBRB'PI(-1) .

The asymptotic stability of (8.69) can be shown using again Theorem 3.4:

3
WTAT)2+ v IT'AT|. =-081<0 (8.70)
i=1
where the diagonal matrix T = diag(1, 1, 0.65, 1). Similarly, the stability of
the closed-loop system can be established even in case the delay of the plant
was estimated wrong or if it is state-dependent and time-varying.

An implementation scheme of the LQ-regulator is shown in Fig. 8.9. The
simulation of the closed-loop system (8.69) associated with theinitial condi-
tion (8.64) is shown in Fig. 8.8. This simulation illustrates the considerable
improvement of the performance, while the stability and the robustness
against amodelling error of the delay is guaranteed.
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MO g1 L J 7 X(t)
Jr
D Ao |«
-4 0
— Al e_s <
Ps <
p’I‘(_l) < o 13s < o 13s < o 1/3s|<
N
2 | Pl(-1/3) |«
N
P1(0) |«

Fig. 8.9 Approximation of the LQ-regulator (N = 3)
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Conclusions

The main part of this work deals with stability criteria for time-delay
systems. Asin the nondelayed case the stability of linear time-delay systems
is determined by its eigenvalues. These eigenval ues coincide with the zeros
of acharacteristic equation, which in general istranscendental. An improved
version of a well-known method for the computation of the eigenvalues of
time-delay systemsisillustrated.

Another way to check the stability of retarded systems is by means of alge-
braic stability criteria. Severa easily applicable algebraic stability tests are
developed in this work. Further applications of these stability tests are as
follows.

» Some of the algebraic stability criteria are valid even if the delays are
unknown and variable. The development of these criteria is quite useful
sincein practiceit isvery difficult to estimate the value of the delays espe-
cidly if they are time-varying and state-dependent. In this context also,
robustness criteria are developed (robustness against input, output, and
state delays and robustness bounds for unstructured uncertainties).

» The ssimple stability tests in combination with an instability criterion can
be used to derive exact, delay-dependent, algebraic stability tests. The new
method is demonstrated by extending a known exact stability condition.
The author is convinced that further generalisations can be achieved due
to this procedure.

» Algebraic stability tests are useful in connection with control methods for
time-delay systems as well. It is demonstrated that the three tools finite
dimensional approximation, optimal control, and algebraic stability
criteria in combination remarkably improve the behaviour of the control
system. The stability of the closed-loop system is guaranteed even if the
delay is not constant.

Further research should reveal whether these stability criteria can be used to
develop powerful control methods using LMI techniques.
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Notation

FDE Functional differential equations

RFDE  Retarded functional differential equations

NFDE  Neutra functional differential equations

AFDE  Advanced functional differential equations

gcd Greatest common divisor

lcm L owest common multiple

R" n-dimensional Euclidean space

R* Set of all positive real numbers

Q Set of all rational numbers

N Set of al natural numbers; N ={1, 2, 3, ...}

N N ON

C Set of the complex numbers

S stC

j j =1

L Space of square integrable functions

w2 Space of continuous functions with square integrable derivatives
C Space of continuous functions

ct Space of continuous functions with continuous derivatives
M? R" x L

X(t) Phase space at time t, x(t) OR"

Xi State vector of an RFDE, x; :=Xx(t+0), -1, <0<0
to Initial time

Xo Xo = X(to)

¢ (1) Initial function, ¢(t) OR" (cf. Chapter 2)

Control signal, u(t) OR™
Output signal, y(t) ORP
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H(A).
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Maximal time-retardation of an RFDE: 1,5, > 1(t, X(t))

Delay constant of a noPcommensurate time-delay system of the
form: x(t) = Agx(t) + ¥ Ax(t—1;) +Bu(t) where0<T1; <...<Ty
Delay constant ofka co'rﬁr%ensurateti me-delay system of the form:
X(t) = Agx(t) + 3 Ax(t—ih) + Bu(t)

Eigenvalue of the rlnatrix AOR ™"

Eigenvalue with the largest real part of the matrix A

Eigenvalue with the smallest real part of the matrix A

Real part of (-)

Imaginary part of ()

Absolutevalue of x OR™ |x| = /xTx

n
Vector norm: x|, = 3 |x|
i=1

b e
2
x|, = { |Xi| }
i=1

|X|oo = mlax |Xi|

n
Matrix norms:  |Al;, = max ¥ |a1'j|
b=

IAL, = Anax(ATA)

AL, = max ¥ |a
]
Matrix measure: p(A), = mijiX[Re(aljj)Jr > |aij|]
i=1

i #]

H(A), = 0.5\, (A" +A)

M(A).. = max [Re(a) + 3 |a|]
j=1
i #i



191

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Alastruey, C. F, De la Sen, M., and Etxebarria, V., “A method to
obtain sufficient conditions for the stability of aclass of inter-
nally delayed systems under a Taylor series representation,”
Proceedings of the 11" American Control Conference, 1992,
Vol. 3, pp. 1935-1939.

Amemiya, T., “Delay-independent stability of higher-order systems,”
International Journal of Control, 1989, Vol.50, No.1,
pp. 139-149.

Armstrong, E. S, and Tripp J. S., “An application of multivariable
design techniques to the control of the National Transonic
Facility,” NASA Technical Paper 1887, NASA Langley
Research Center, Hampton, VA, August, 1981.

Asner, B. A., and Halanay, A., “Non-controllability of time-invariant
systems using one-dimensional linear delay feedback,” Revue
Roumaine des Sciences Techniques, Série Electrotechnique et
Energétique, 1973, VVol. 18, pp. 283-293.

Asner, B. A, and Halanay, A., “Pointwise degenerate second-order
delay-differential systems,” Analele Universitatii Buceresti,
Matematica-Mecanica, 1973, Vol. 22, No. 2, pp. 45-60.

Bhat, K. P. M., and Koivo, H. N., “An observer theory for time-delay
systems,” |EEE Transactions on Automatic Control, 1976,
Vol. 21, No. 4, pp. 266-2609.

Bhat, K. P. M., and Koivo, H. N., “Modal characterizations of
controllability and observability in time-delay systems,” |IEEE
Transactions on Automatic Control, 1976, Vol. 21, No. 4,
pp. 292-293.

Bakke, V. L., “Optimal fields for problems with delays,” Journal of
Optimization Theory and Applications, 1981, Vol. 33, No. 1,
pp. 69-84.



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

192

Banks, H. T., Jacobs, M. Q., and Langenhop, C. E., “Characterization

of controlled states in W12 of linear hereditary systems,”
S AM Journal on Control and Optimization, 1975, Vol. 13,
No. 3, pp. 611-649.

Banks, H. T., and Burns, J. A., “Hereditary control problems. Numer-
ical methods based on averaging approximations,” S AM
Journal on Control and Optimization, 1978, Vol. 16, No. 2,
pp. 169-208.

Banks, H. T., and Ito, K., “A numerical algorithm for optimal feed-
back gainsin high dimensional linear quadratic regulator prob-
lems,” SSAM Journal on Control and Optimization, 1991, Vol.
29, No. 3, pp. 499-515.

Barszcz, M., and Olbrot, A. W., “Stability criterion for alinear differ-
ential difference system,” |IEEE Transactions on Automatic
Control, 1979, Vol. 24, No. 2, pp. 368-369.

Bellman, R., and Cooke, K. L., Differential Difference Equations,
New York: Academic Press, 1963.

Berg, H. J., Berechnung der Pole e nes totzeitbehafteten Systems und
LQ-Regulatorentwurf fir schone Sabilitat, Diploma Thesis,
Measurement and Control Laboratory, Swiss Federal Institute
of Technology, ETH, Zirich, 1991.

Bhat, K. P. M., and Koivo, H. N., “Modal characterization of control-
lability and observability in time-delay systems,” |EEE Trans-
actions on Automatic Control, 1976, Vol. 21, No. 4, pp.
292-293.

Boese, F. G, “Stability conditions for the general linear differ-
ence-differential equation with constant coefficients and one
constant delay,” Journal of Mathematical Analysis and Appli-
cations, 1989, Vol. 140, No. 1, pp. 136-176.

Boltzmann, L., “Zur Theorie der elastischen Nachwirkungen,” Wis-
senschaftliche Abhandlung von Ludwig Boltzmann, |. Band
(1865-1874), Leipzig: Verlag Johann Ambrosius Barth, 1909,
pp. 616-644.



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

193

Brierley, S. D., Chiasson, J. N., Lee, E. B., and Zak, S. H., “ On stabil-
ity independent of delay for linear systems,” |[EEE Transac-
tions on Automatic Control, 1982, Vol. 27, No. 1, pp. 252-254.

Brooks, R. M., and Schmitt, K., “Pointwise completeness of diffen-
rence-differential equations,” The Rocky Mountain Journal of
Mathematics, 1973, Vol. 3, No. 1, pp. 11-14.

Buslowicz, M., “Inversion of polynomial matrices,” International
Journal of Control, 1980, Vol. 33, No. 5, pp. 977-984.

Buslowicz, M., “Sufficient conditions for instability of delay differ-
ential systems,” International Journal of Control, 1983, Vol.
37, No. 6, pp. 1311-1321.

Buslowicz, M., “The new sufficient conditions for instability of delay
differential systems,” Foundation of Control Engineering,
1985, Val. 10, No. 1, pp. 11-23.

Buslowicz, M., “ Comments on ‘ Stability test and stability conditions
for delay differential systems',” International Journal of Con-
trol, 1987, Vol. 45, No. 2, pp. 745.

Carpentier, M. P, and Dos Santos, A. F, “Solution of equations
involving analytic functions,” Journal of Computational
Physics, 1982, Vol. 45, No. 2, pp. 210-220.

Cheres, E., Palmor, Z. J., and Gutman, S., “Quantitative measures of
robustness for systemsincluding delayed perturbations,” |IEEE
Transactions on Automatic Control, 1989, Vol. 34, No. 11, pp.
1203-1204.

Chukwu, E. N., Sability and Time-Optimal Control of Hereditary
Systems, Mathematics in Science and Engineering, Vol. 188,
New York: Academic Press, 1992.

Coppel, W. A., Sability and Asymptotic Behavior of Differential
Equations, Boston: D. C. Heath, 1965.

Dailey, R. L., Lecture Notes for the Workshop on H* and p Methods
for Robust Control, Brighton, England, IEEE Conference on
Decision and Control, 1991.



[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

194

Datko, R., “An example of an unstable neutral differential equation,”
International Journal of Control, 1983, Vol. 38, No. 1,
pp. 263-267.

Delfour, M. C., “Thelinear quadratic optimal control problem for he-
reditary differential systems. Theory and numerical solution,”
Applied Mathematics and Optimization, 1977, Vol. 3, No. 3,
pp. 101-162.

Delfour, M. C., “Linear optimal control of systems with state and
control variable delays,” Automatica, 1984, Vol. 20, No. 1,
pp. 69-77.

Ehle, B. L., “ A-stable methods and Padé approximationsto the expo-
nential,” SAM Journal on Mathematical Analysis, 1973, Vol.
4, No. 4, pp. 671-680.

El'sgol’ts, L. E., Introduction to the Theory of Differential Equations
with Deviating Arguments, San Francisco: Holden-Day, 1966.

Follinger, O., Regelungstechnik, Heidelberg: Huthig Verlag, 1985.

Freudenberg, J. S., and Looze, D. P, “Right half plane polesand zeros
and design tradoffs in feedback systems’ |IEEE Transactions
on Automatic Control, 1985, Vol. 30, No. 6, pp. 555-565.

Gabasov, R., and Kirillova, F., The Qualitative Theory of Optimal
Processes, Control and Systems Theory, Vol. 3, New York:
Marcel Dekker, 1976.

Geering, H. P, “Entwurf robuster Regler mit Hilfe von Singularwer-
ten; Anwendung auf Automobilmotoren,” GMA-Bericht, Ro-
buste Regelung, 1986, Nr. 11, pp. 125-145.

Gibson, J. S., “The Riccati integral equations for optimal control
problems on Hilbert spaces,” SAM Journal on Control and
Optimization, 1979, Vol. 17, No. 4, pp. 537-565.

Gibson, J. S, “Linear-quadratic optimal control of hereditary differ-
entia systems. Infinite dimensional Riccati equations and
numerical approximations,” SAM Journal on Control and
Optimization, 1983, Vol. 21, No. 1, pp. 95-139.



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

195

Gorecki, H., Fuksa, S., Grabowski, P, and Korytowski, A., Analysis
and Synthesis of Time Delay Systems, New York: John Wiley
& Sons, 1989.

Gottlieb, D., and Orszag S. A., Numerical Analysis of Spectral Meth-
ods: Theory and Applications, CBMS Regional Conference
Series in Applied Mathematics 26, Society for Industrial and
Applied Mathematics, PA, 1977.

Habets, L. C. G J. M., “ Stabilization of time-delay systems. An over-
view of the agebraic approach,” EUT Report 92-WSK-02,
Eindhoven University of Technology, 1992.

Hale, J. K., Theory of Functional Differential Equations, New York:
Springer Verlag, 1977.

Hammarstrom, L. G, and Gros, K. S., “Adaptation of optimal control
theory to systems with time-delay,” International Journal of
Control, 1980, Val. 32, No. 2, pp. 329-357.

Hayes, N. D., “Roots of the transcendental equation associated with
a certain difference differential equation,” Journal of the Lon-
don Mathematical Society, 1950, Vol. 25, Part. |11, No. 99, pp.
226-232.

Hertz, R., Jury, E. I., and Zeheb, E., “Simplified analytical stability
test for systems with commensurate time-delays,” 1EE Pro-
ceedings, Pt. D, 1984, Vol. 131, No. 1, pp. 52-56.

Hewer, G. A., “A note on controllability of linear systems with time
delay,” |IEEE Transactions on Automatic Control, 1972, Vol.
17, No. 5, pp. 733-734.

Hino, Y., Murakami, S., and Naito, T., Functional Differential Equa-
tions with Infinite Delay, L ecture Notes in Mathematics 1473,
New York: Springer Verlag, 1991.

Hmamed, A., “Note on the stability of large-scale systems with
delays,” International Journal of Systems Science, 1986, Vol.
17, No. 7, pp. 1083-1087.



[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

196

Hmamed, A., “Further results on the robust stability of uncertain
time-delay systems,” International Journal of Systems Sci-
ence, 1991, Vol. 22, No. 3, pp. 605-614.

Horn, R. A., and Johnson, C. R., Topics in Matrix Analysis, Cam-
bridge: University Press, 1991.

Ichikawa, A., “Quadratic control of evolution equations with delays
in control,” SAM Journal on Control and Optimization, 1982,
Vol. 20, No. 5, pp. 645-668.

Ito, K., “The application of Legendre-Tau approximation to parame-
ter identification for delay and partial differential equations,”
Proceedings of the 22" IEEE Conference on Decision and
Control, 1983, pp. 33-37.

Ito, K., “Legendre-Tau approximation for functional differential
eguations part Il1: Eigenvalue approximations and uniform
stability,” Lecture Notes in Control and Information Sciences,
Distributed Parameter Systems, Proceedings of the 2" Inter-
national Conference Vorau, Austria, 1984, Vol. 75, pp.
191-212.

Ito, K., and Tegals, R., “Legendre-Tau approximation for functional
differential equations,” SSAM Journal on Control and Optimi-
zation, 1986, Vol. 24, No. 4, pp. 737-759.

Ito, K., and Tegals, R., “Legendre-Tau approximation for functional
differential equations part I1: The linear quadratic optimal con-
trol problem,” SAM Journal on Control and Optimization,
1987, Val. 25, No. 6, pp. 1379-1407.

Jury, E. 1., and Mansour, M., “ Stability conditionsfor a class of delay
differential systems,” International Journal of Control, 1982,
Vol. 35, No. 4, pp. 689-699.

Kamen, E. W., “On the relationship between zero criteria for
two-variable polynomials and asymptotic stability of delay
differential equations,” IEEE Transactions on Automatic
Control, 1980, Val. 25, No. 5, pp. 983-984.



[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

197

Kamen, E. W.,, “Linear systems with commensurate time-delays. Sta-
bility and stabilization independent of delay,” IEEE Transac-
tions on Automatic Control, 1982, Vol. 27, No. 2, pp. 367-375.

Kamen, E. W., “Correction to ‘Linear systems with commensurate
time-delays: Stability and stabilization independent of delay’,”
| EEE Transactions on Automatic Control, 1983, Vol. 28, No. 2,
pp. 248-249.

Kamen, E. W., Khargonekar, P. P., and Tannenbaum, A. * Stabilization
of time-delay systems using finite-dimensional compensa-
tors,” |EEE Transactions on Automatic Control, 1985, Vol. 30,
No. 1, pp. 75-78.

Kappel, F., and Salamon, D., “ Spline approximation for retarded sys-
tems and the Riccati equation,” SSAM Journal on Control and
Optimization, 1987, Val. 25, No. 4, pp. 1082-1117.

Kappel, F., and Salamon, D., “On the stability properties of spline ap-
proximations for retarded systems,” SAM Journal on Control
and Optimization, 1989, Vol. 27, No. 2, pp. 407-431.

Kharatishvili, G L., AMaximum Principle in External Problemswith
Delays, Mathematica Theory of Control, New York: Academ-
ic Press, 1967.

Kojima, A., Uchida, K., and Shimemura, E., “Robust stabilization of
uncertain time-delay systems via combined internal-external
approach,” IEEE Transactions on Automatic Control, 1993,
Vol. 38, No. 2, pp. 373-378.

Kolmanovskii, V., and Myshkis, A., Applied Theory of Functional
Differential Equations; Mathematics and Its Applications,
\ol. 85, Dordrecht: Kluwer Academic Publishers, 1992.

Krasovskii, N. N., “On the analytic construction of an optimal control
in a system with time lags,” Journal of Applied Mathematics
and Mechanics. Trandation of Prikladnaja Matematika,
Mechanika, 1962, Vol. 26, No. 1, pp. 50-67.



[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

198

Krasovskii, N. N., and Osipov, Y. S., “Stabilization of a controlled
system with time delay,” Engineering Cybernetics, 1963,
No. 6, pp. 1-11.

Krasovskii, N. N., Sability on Motion: Applications of Lyapunov's
Second Method to Differential Systems and Equations with
Delay, Stanford, CA: Stanford University Press, 1963.

Krasovskii, N. N., “The approximation of a problem of analytic de-
sign of control in a system with time-lag,” Journal of Applied
Mathematics and Mechanics, 1964, Vol. 28, pp. 876-885.

Kreindler, E., and Jameson, A., “Conditions for nonnegativeness of
partitioned matrices,” |IEEE Transactions on Automatic Con-
trol, 1972, Vol. 17, No. 2, pp. 147-148.

Kreyszig, E., Introductory Functional Analysis with Applications,
New York: John Wiley & Sons, 1978.

Kuhn, H. W., “A new proof of the fundamental theorem of algebra,”
Mathematical Programming Sudy, 1974, Vol. 1, pp. 148-158.

Kulenovic, M. R. S, Ladas, G, and Sficas, Y. G, “Oscillations of sec-
ond order linear delay differential equations,” Applicable Anal-
ysis, 1988, Vol. 27, No. 1, pp. 109-123.

Kwon, W. H., and Leg, S. J., “LQG/LTR methods for linear systems
with delay in state,” |EEE Transactions on Automatic Control,
1988, Vol. 33, No. 7, pp. 681-687.

Lakshmikantam, V., and Leela, S., Differential and Integral Inequal-
ities, Vol. 1/2, New York: Academic Press, 19609.

Lasiecka, |., and Manitius, A., “Differentiability and convergence
rates of approximating semigroups for retarded functional dif-
ferential equations,” SAM Journal on Numerical Analysis,
1988, Vol. 25, No. 4, pp. 883-907.

Laub, A. J., “A Schur method for solving algebraic Riccati equations’
| EEE Transactions on Automatic Control, 1979, Vol. 24, No. 6,
pp. 681-687.



[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

199

Lee, E. B., Zak, S. H., and Brierley, S. D., “ Stabilization of general-
ized linear systems via the algebraic Riccati equation,” Inter-
national Journal of Control, 1984, Vol. 39, No. 5, pp.
1025-1041.

Lee, W. H., and Levy, B., “Robustness properties of linear quadratic
hereditary differential systems,” Proceedings of the 21% Con-
ference on Decision and Control, 1982, pp. 1267-1272.

Levsen, L. D., and Nazaroff, G. J., “A note on the controllability of
linear time-variable delay systems,” IEEE Transactions on
Automatic Control, 1973, Val. 18, No. 4, pp. 188-189.

Liu, X.-Y., and Mansour, M., “ Stability test and stability conditions
for delay differential systems,” International Journal of Con-
trol, 1984, Vol. 39, No. 6, pp. 1229-1242.

MacDonald, N., Biological Delay Systems: Linear Sability Theory;,
Cambridge, UK: Cambridge University Press, 1989.

Magnus, J. R., and Neudecker, H., Matrix Differential Calculus with
Applications in Satistics and Econometrics, New York: John
Wiley & Sons, 1991.

Malek-Zaverei, M., and Jamshidi, M., Time-Delay Systems. Analysis,
Optimization and Applications, Amsterdam, North-Holland,
1987.

Manitius, A., “Controllability, observability and stabilizability of
retarded systems,” Proceedings of the 15" Conference on
Decision and Control, IEEE Publications, 1976, pp. 752-758.

Manitius, A., and Triggiani, R., “Function space controllability of
linear retarded systems. A derivation from abstract operator
conditions,” S AM Journal on Control and Optimization, 1978,
Vol. 16, No. 4, pp. 599-645.

Manitius, A., and Roy, R., “Calcul du spectre du générateur infinitési-
mal associé aux équations différentielles linéaires a retard,”
CRMA-1002, Centre de recherche de mathématiques appli-
quées, Université de Montréal, Québec, Canada, 1980.



[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

200

Manitius, A., “Necessary and sufficient conditions of approximate
controllability for genera linear retarded systems,” S AM
Journal on Control and Optimization, 1981, Vol. 19, No. 4, pp.
516-532.

Manitius, A., “F-Controllability and observability of linear retarded
systems,” Applied Mathematics and Optimization, 1982,
Vol. 9, pp. 73-95.

Manitius, A., and Tran, H., “ Computation of closed-loop eigenvalues
associated with the optimal regulator problem for functional
differential equations,” |EEE Transactions on Automatic Con-
trol, 1985, Val. 30, No. 12, pp. 1245-1248.

Manitius, A., Tran, H., Payre, G, and Roy, R., “Computation of ei-
genvalues associated with functional differential equations,”
S AM Journal on Sientific and Satistical Computing, 1987,
Vol. 8, No. 3, pp. 222-247.

Manitius, A., and Tran, H. T., “Numerical approximations for hered-
itary systems with input and output delays. Convergence re-
sults and convergence rates,” SAM Journal on Control and
Optimization, 1994, Vol. 32, No. 5, pp. 1332-1363.

Marshall, J. E., Control of Time-Delay Systems, |IEE Control Engi-
neering Series, 10, Stevenage, England: Peregrinus, 1979.

Minorsky, N., “Self-excited oscillations in dynamical systems pos-
sessing retarded actions,” Journal of Applied Mechanics, 1942,
Vol. 9, No. 1, pp. 65-71.

Minorsky, N., “Experiments with activated tanks,” Transactions of
the American Society of Mechanical Engineers, 1947, Vol. 69,
No. 10, pp. 735-747.

Minorsky, N., Nonlinear Oscillations, Princeton, NJ: Van Nostrand
Company, 1962.

Mori, T., Fukuma, N., and Kuwahara, M., “Simple stability criteria
for single and composite linear systems with delay,” Interna-
tional Journal of Control, 1981, Vol. 34, No. 6, pp. 1175-1184.



[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

201

Mori, T., and Noldus, E., “ Stability criteriafor linear differential dif-
ference systems,” International Journal of Systems Science,
1984, Vol. 15, No. 1, pp. 87-94.

Mori, T., “Criteria for asymptotic stability of linear time-delay sys-
tems,” |EEE Transactions on Automatic Control, 1985, Vol.
30, No. 2, pp. 158-161.

Mori, T., and Kokame, K., “Stability of x(t) = Ayx(t) —Ax(t—T1),”
| EEE Transactions on Automatic Control, 1989, Vol. 34, No. 4,
pp. 460-462.

Myshkis, A. D., “General theory of differential equations with de-
lays,” Trandations/American Mathematical Society, 1951,
Vol. 55, pp. 1-62; Russian: Uspechi matematiceskich, Nauk,
1949, Vol. 4, No. 33, pp. 99-141.

Myshkis, A. D., Lineare Differentialgleichungen mit nacheilendem
Argumentum, Deutscher Verlag der Wissenschaft Berlin, 1955.

Nagy, F. L. N., and Al-Tikriti, M. N., “ Stability criterion of linear con-
trol systems with delays,” Measurement and Control, 1970,
Vol. 3, pp. 86-87.

Nazaroff, G J., “ Stability and stabilization of linear differential delay
systems,” |EEE Transactions on Automatic Control, 1973, Vol.
18, No. 6, pp. 317-318.

Oguztoreli, M. N., Time-Lag Control Systems, Mathematics in Sci-
ence and Engineering, Vol. 24, New York: Academic Press,
1966.

Olbrot, A. W., “ A counterexample to * Observability of linear systems
with time-variable delays',” |EEE Transactions on Automatic
Control, 1977, Vol. 21, No. 4, pp. 281-283.

Olbrot, A. W., “ Stabilizability, detectability, and spectrum assignment
for linear autonomous systems with general delays,” IEEE
Transactions on Automatic Control, 1978, Vol. 23, No. 5, pp.
887-890.



[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

202

Olbrot, A. W., “A sufficiently large time-delay in feedback oop must
destroy exponential stability of any decay rate,” IEEE Transac-
tions on Automatic Control, 1984, Val. 29, No. 4, pp. 367-368.

Olbrot, A. W., and Pandolfi, L., “Null controllability of a class of
functional differential systems,” International Journal of Con-
trol, 1988, Val. 47, No. 1, pp. 193-208.

Olbrot, A. W., “Approximate controllability and stability of time-
delay systems. Functional analytic and algebraic results,”
Proceedings of the 12" American Control Conference, San
Francisco, CA, 1993, Vol. 1, pp. 504-508.

Onder, C. H., Modellbasierte Optimierung der Seuerung und Rege-
lung eines Automotors, Ph. D. Dissertation, ETH Zurich, No.
10323, 1993.

Onder, C. H., and Geering, H. P, “Model-based multivariable speed
and air-to-fuel ratio control of an Sl engine,” SAE technical
paper series, reprinted from: Electronic Engine Control, 1993,
No. 930859, pp. 69-80.

Pandolfi, L., “On the feedback stabilization of functiona differential
equations,” Bollettino della Unione Matematica Italiana,
1975, Series 4, Vol. 11, No. 3, Supplement, pp. 626-635.

Pearson, C. E., Handbook of Applied Mathematics; Selected Results
and Methods, New York: Van Nostrand Reinhold Company,
1983.

Picard, E., “La mécanique classique et ses approximations succes-
sives,” Rivista di Scienza, 1907, Vol. 1, pp. 4-15.

Popov, V. M., “Pointwise degeneracy of linear, time-invariant, de-
lay-differential equations,” Journal of Differential Equations,
1972, Vol. 11, pp. 541-561.

Razumikhin, B. S, “Onthe stability of systemswith adelay,” Journal
of Applied Mathematics and Mechanics; Translation of the
Sowjet Journal Prikladnaja Matematika Mechanika, 1958,
Vol. 22, pp. 215-227.



[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

203

Rekasius, Z. V., “A stahility test for systems with delays,” Proceed-
ings of the Joint Automatic Control Conference, San Francisco,
CA, 1980, Paper TP9-A.

Repin, [u. M., “On the approximation replacement of systems with
lag by ordinary differential equations,” Journal of Applied
Mathematics and Mechanics, 1965, Vol. 29, pp. 254-264.

Ross, R., The Prevention of Malaria, 2" ed. London: John Murray,
1911.

Ross, W. D., “Controller design for time lag systems via a quadratic
criterion,” |[EEE Transactions on Automatic Control, 1971,
Vol. 16, No. 6, pp. 664-672.

Salamon, D., “On controllability and observability of time-delay
systems,” |EEE Transactions on Automatic Control, 1984,
Vol. 29, No. 5, pp. 432-439.

Salamon, D., “Structure and stability of finite dimensional approxi-
mations for functional differential equations,” SSAM Journal
on Control and Optimization, 1985, Vol. 23, pp. 928-951.

Schoen, G. M., and Geering, H. P, “ Stability condition for adelay dif-
ferential system,” International Journal of Control, 1993, Vol.
58, No. 1, pp. 247-252.

Schoen, G. M., and Geering, H. P, “On stability of time-delay sys-
tems,” Proceedings of the 31% Annual Allerton Conference on
Communication, Control, and Computing, 1993, pp.
1058-1061.

Schoen, G. M., and Geering, H. P, “A note on robustness bounds for
large-scale time-delay systems,” International Journal of Sys-
tem Science, accepted for publication.

Sharpe, F. R., and Lotka, A. J., “Contribution to the analysis of ma-
laria epidemiology IV: Incubation lag,” Supplement to the
American Journal of Hygiene, 1923, Val. 3, pp. 96-112.



[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

204

Sinha, A. S. C., “Stability of solutions of differential equations with
retarded arguments,” |EEE Transactions on Automatic Con-
trol, 1972, Vol. 17, No. 4, pp. 241-242.

Spong, M. W,, and Tarn, T. J., “On the spectral controllability of de-
lay-differential equations,” IEEE Transactions on Automatic
Control, 1981, Vol. 26, No. 2, pp. 527-528.

Stépan, G, Retarded Dynamical Systems. Sability and Characteristic
Functions, Pitman Research Notesin Mathematics Series, Har-
low: Longman Scientific & Technical, 1989.

Su, T. -J,, and Huang, C. -G, “Robust stability of delay dependence
for linear uncertain systems,” | EEE Transactions on Automatic
Control, 1992, Val. 37, No. 10, pp. 1656-1659.

Sugiyama, S., “ Continuity properties on the retardation in the theory
of difference-differential equations,” Proceedings of the Japan
Academy, 1961, Vol. 32, pp. 179-182.

Suh, 1. H., and Bien, Z., “ A note on the stability of large-scale systems
with delays,” |1EEE Transactions on Automatic Control, 1982,
Vol. 27, No. 1, pp. 256-258.

Thowsen, A., “On pointwise degeneracy, controllability and minimal
time control of linear dynamical systemswith delays,” Interna-
tional Journal of Control, 1977, Vol. 25, No. 3, pp. 345-360.

Thowsen, A., “Characterization of state controllable time-delay
systems with piecewise constant inputs. Part |. Derivation of
general conditions,” International Journal of Control, 1980,
Vol. 31, No. 1, pp. 31-42.

Thowsen, A., “The Routh-Hurwitz method for stability determination
of linear differential-difference system,” International Journal
of Control, 19814, Vol. 33, No. 5, pp. 991-995.

Thowsen, A., “An analytic stability test for aclass of time-delay sys-
tems,” |EEE Transactions on Automatic Control, 1981b, Vol.
26, No. 3, pp. 735-736.



[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

205

Thowsen, A., “Further comments on: Stability of time-delay sys
tems,” |EEE Transactions on Automatic Control, 1983, Vol.
28, No. 9, p. 935.

Uchida, K., Shimemura, E., Kubo, T., and Abe, N., “ The linear-quad-
ratic optimal control approach to feedback control design for
systems with delay,” Automatica, 1988, Vol. 24, No. 6,
pp. 773-780.

Volterra, V., “Variazioni et fluttuazioni del numero d’ individui in spe-
cieanimali conviventi,” R. Cornitato Talassografico Memoria,
1927, Vol. 131, pp. 1-142.

Volterra, V., “Sur la théorie mathématique des phémomenes hérédi-
taires,” Journal de Mathématiques Pures et Appliquées, 1928,
Vol. 7, pp. 249-298.

Volterra, V., Théorie Mathématique de la Lutte pour la Vie, Paris:
Gauthier-Villars, 1931.

Walton, K., and Marshall, J. E., “Direct method for TDS stability
anaysis,” |IEE Proceedings, Pt. D, 1987, Vol. 134, No. 2,
pp. 101-107.

Wang, S.-S., Lee, C.-H., and Hung, T.-H., “New stability analysis of
systems with multiple time delays,” Proceedings of the 10™
American Control Conference, 1991, Vol. 2, pp. 1703-1704.

Wang, W.-J,, and Song, C.-C., “A new stability criterion for
large-scale systems with delays,” Control-Theory Advanced
Technology, 1989, Val. 5, No. 3, pp. 315-322.

Wang W.-J,, Song, C.-C., and Kao, C.-C., “Robustness bounds for
large-scale time-delay systems with structured and unstruc-

tured uncertainties,” International Journal of Systems Science,
1991, Vol. 22, No. 1, pp. 209-216.

Watanabe, K., Nobuyama, E., Kitamori, T., and Ito, M., “A new algo-
rithm for finite spectrum assignment of single input systems
with time delay” |EEE Transactions on Automatic Control,
1992, Val. 37, No. 9, pp. 1377-1383.



[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

206

Weiss, L., “On the controllability of delay-differential systems,”
S AM Journal on Control, 1967, Vol. 5, No. 4, pp. 575-587.

Weiss, L., “Analgebraic criterion for controllability of linear systems
with time delay,” IEEE Transactions on Automatic Control,
1970, Vol. 15, No. 8, pp. 443-444.

Wilkinson, H., The Algebraic Eigenvalue Problem, Oxford: Oxford
University Press, 1965.

Wille, D. R., and Baker, C. T. H., “Desol —a numerical code for the
solution of systems of delay-differential equations,” University
of Manchester, UK, Numerical Analysis Report, No. 186, 1990.

Williams, T. J., and Otto, R. E., “A generalized chemical processing
model for the investigation of computer control,” Transactions
of the American Institute of Electrical Engineers, 1960,
Vol. 79, No. 11, pp. 458-473.

Wu, H., and Mizukami, K., “Quantitative measures of robustness for
uncertain time-delays dynamical systems,” Proceedings of the
32" Conference on Decision and Control, San Antonio, TX,
1993, pp. 2004-2005.

Yoshizawa, T., Sability Theory and the Existence of Periodic Solu-
tions and Almost Periodic Solutions, New York: Springer Ver-
lag, 1975.

Zhou, K., and Khargonekar, P. P, “Robust stabilization of linear sys-
tems with norm-bounded time-varying uncertainty,” Systems
& Control Letters, 1988, Vol. 10, No. 1, pp. 17-20.

Zmood, R. B., “On the pointwise completeness of differential-differ-
ence equations,” Journal of Differential Equations, 1972,
Vol. 12, pp. 474-486.

Zurmihl, R., and Falk, S., Matrizen und ihre Anwendungen 1, Berlin:
Springer Verlag, 1992.

Zverkin, A. M., “On the pointwise completeness of systems with
delay,” Conference of the University of Friendship of Peoples,
Moscow, 1971, pp. 24-27 Also: Differencial’ nye Uravnenija,
1973, Vol. 9, pp. 430-336.





