Doctoral Thesis

Fast, accurate and robust estimation of mobile robot position and orientation

Author(s):
Vestli, Sjur Jonas

Publication Date:
1995

Permanent Link:
https://doi.org/10.3929/ethz-a-001545321

Rights / License:
In Copyright - Non-Commercial Use Permitted
Fast, accurate and robust estimation of mobile robot position and orientation

A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of Doctor of Technical Sciences

accepted on the recommendation of Prof. Dr. G. Schweitzer, examiner Prof. Dr. E. von Puttkamer, co-examiner

1995
Acknowledgements

This thesis is based on research performed at the Institute of Robotics of the ETH Zürich between 1991 and 1995.

I would like to thank my supervisor, Professor Dr. G. Schweitzer, for making this whole thing possible and for providing guidance during the course of this work. I would also like to thank Professor Dr. E. von Puttkamer for his valuable comments and for accepting to be my co-examiner. Many thanks are also due to all those of you who helped me throughout the realisation of this work. I also wish to express my gratitude towards the Royal Norwegian Council for Scientific and Industrial Research (NF / NTNF) for their financial support during the first three years.

Zürich, December 1995

Sjur Jonas Vestli
Table of contents

Table of contents ... i
Abstract .. v
Kurzfassung ... vii
1 Introduction .. 1
 1.1 Synopsis .. 1
 1.2 Motivation .. 2
 1.2.1 General motivation ... 2
 1.2.2 Need for mobile robot localisation 3
 1.3 Summary of existing position update methods 4
 1.4 Objectives ... 7
 1.5 Approaches ... 7
2 State of the art .. 9
 2.1 Problem statement ... 9
 2.2 Methods of mobile robot localisation 10
 2.2.1 Occupancy grid-based representations and
 localisation .. 11
 2.2.2 Sonar based localisation in
 object based maps ... 13
 2.2.3 Matching and clustering 16
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.4 Optical rangefinder localisation in object based maps</td>
<td>18</td>
</tr>
<tr>
<td>2.2.5 Crosscorrelation of sensor scans</td>
<td>21</td>
</tr>
<tr>
<td>2.2.6 Topological representations and localisation</td>
<td>22</td>
</tr>
<tr>
<td>2.2.7 Special systems</td>
<td>23</td>
</tr>
<tr>
<td>2.3 Discussion</td>
<td>24</td>
</tr>
<tr>
<td>3 Mobile robot positioning</td>
<td>27</td>
</tr>
<tr>
<td>3.1 Guide to this chapter</td>
<td>27</td>
</tr>
<tr>
<td>3.2 General requirements</td>
<td>27</td>
</tr>
<tr>
<td>3.2.1 Test for position update systems</td>
<td>29</td>
</tr>
<tr>
<td>3.3 Matching sensed to modelled geometric features</td>
<td>31</td>
</tr>
<tr>
<td>3.3.1 World modelling</td>
<td>31</td>
</tr>
<tr>
<td>3.3.2 Range sensing</td>
<td>32</td>
</tr>
<tr>
<td>Ultrasonics</td>
<td>33</td>
</tr>
<tr>
<td>Optical coaxial systems</td>
<td>35</td>
</tr>
<tr>
<td>Optical triangulation systems</td>
<td>36</td>
</tr>
<tr>
<td>Solution to our problems</td>
<td>37</td>
</tr>
<tr>
<td>3.4 Preprocessing</td>
<td>39</td>
</tr>
<tr>
<td>3.5 Compression / simplified formulation</td>
<td>44</td>
</tr>
<tr>
<td>3.5.1 Position from a wall</td>
<td>44</td>
</tr>
<tr>
<td>3.5.2 Extraction of straight lines</td>
<td>48</td>
</tr>
<tr>
<td>3.5.3 Cluster analysis</td>
<td>52</td>
</tr>
<tr>
<td>3.5.4 Position from a corner</td>
<td>62</td>
</tr>
<tr>
<td>3.5.5 Extracting corners</td>
<td>64</td>
</tr>
<tr>
<td>3.5.6 Position from a cylinder</td>
<td>67</td>
</tr>
<tr>
<td>3.5.7 Summary of structure extraction methods</td>
<td>72</td>
</tr>
<tr>
<td>3.5.8 Combination of different geometric information</td>
<td>74</td>
</tr>
<tr>
<td>3.6 Scanning while moving</td>
<td>77</td>
</tr>
<tr>
<td>4 Experiments</td>
<td>81</td>
</tr>
</tbody>
</table>
Abstract

This work is an investigation into methods of mobile robot localisation. New robust and real time capable methods are introduced and analysed before being tested on a mobile robot platform. The algorithms introduced use noisy range data and a world model to achieve localisation. Significant effort is put into achieving acceptable performance in the presence of sensor noise, and a number of filtering techniques for range data are described. A mobile robot platform, designed for demanding indoor use, is used for performance testing of the methods. Several thorough demonstrations of these methods in typical operating environment of the mobile robot (i.e office type buildings) are described. Suggestions for further improvement on these methods and the related techniques are provided.
vi
1 Introduction

1.1 Synopsis

The objective of this thesis is to realise new, fast, accurate and robust methods for mobile robot localisation. After an investigation into existing methods and the development of new and improved methods a demonstration of the viability of these new techniques will be performed on a mobile robot test bed.

Chapter 1 will outline why mobile robots and localisation of mobile robots are an issue and why this work was seen as necessary. Chapter 2 will provide a review of the state of the art with respect to localisation methods of mobile robots. In Chapter 3 new algorithms that can alleviate some of the existing problems will be presented, in particular how it is possible to achieve real-time performance, accuracy and robustness with one method. The performance of these new methods are described in Chapter 4. Chapter 5 presents the mobile robot experimental platform and sensor system, and explains how the position update methods are integrated with the rest of the control software. Chapter 6 rounds off this thesis with conclusions, summary and recommendations for further work.
1.2 Motivation

1.2.1 General motivation

There is a trend to enhance the capabilities of robotic devices which is supported by the ready availability of computer power and sensor systems. The main perceived benefits are increased efficiency of the production line, lower labour costs, etc. all of which give the owners more return from the money invested. In some cases an additional benefit comes from the fact that previously impractical applications can be addressed. Taking the particular example of mobile robots or autonomous guided vehicles\(^1\) several examples can be observed where the above mentioned benefits have been achieved, in particular:

- The Helpmate from Transitions Research Corporation used for service tasks in several U.S. hospitals,
- The K2A from Cybermotion for security inspection used at the Los Angeles museum of art.

There are also reasons for using robot systems not based solely on financial arguments, for instance:

- Recovery operations after chemical, nuclear or fire accidents,
- Handling hazardous substances,
- Mine clearance.

The above are typified by the fact that the tasks are dangerous to humans. Indeed robots are already in use for a number of such tasks, for instance in handling radioactive samples (plenary talk IEEE Conference on Robotics and Automation 1993) and in the Chernobyl debris clearance operations.

\(^1\) Both mobile robots and autonomous guided vehicles (AGVs) are machines that move freely around, as opposed to robot manipulators. The difference between an AGV and a mobile robot lies in that whereas an AGV need some sort of installation to navigate, e.g. an inductive wire in the floor to follow, a mobile robot is independent of such installations.
Unfortunately it has been impossible or difficult to use robots for all such applications. There are several reasons for these shortcomings. The problem is that the current generation of “autonomous robots” are not sufficiently autonomous and must be teleoperated. Unfortunately, in most cases only a limited amount of transmitted video information is available, therefore teleoperation turns out to be a very strenuous task [Jashmidi 93]. An overview of the current state of the art of robotics in hazardous environments can be found in [Jashmidi 93] and [Fogle 93], [Fogle 93] details the usage of mobile robotic devices in particular.

It is thus natural to try to increase the level of autonomy, capability and thus the required “intelligence” of robot systems. This thesis is a contribution to this endeavour in that the methods described here enable a mobile robot to frequently calculate its absolute position within a building. Furthermore, the absolute position is known with a high degree of accuracy for extended periods of operation in the presence of sensor noise and obstacles.

This then enables more autonomous navigation than currently possible through alleviating some of the burdens normally placed on an operator. It is viable to use mobile robots for a wider range of applications where extensive human assistance as provided during teleoperation is either difficult or unwanted.

In addition to the disaster scenarios above this also opens up the possibility of using mobile robots for such tasks as mail distribution in office buildings. These tasks could previously not be automated with a robot system, since the necessity of teleoperation of the system provided no gain.

1.2.2 Need for mobile robot localisation

Of course calculating the mobile robots position is not a new problem. In fact the problem is not limited to mobile robots. Imagine that you have to row across a lake from your boat house to a colleague on the other side in thick fog. You know your start point (your boat house) and how long and in what direction you have to row to reach
your colleague. But if you try you will probably fail, because you don’t know exactly how many metres you row per stroke, and maybe your compass had a small offset in it. The same problem is experienced on the open sea, where there is no absolute reference point to aid the calculation of position. Historically the stars in the sky and the height of the sun (at noon) were used to gain such an absolute reference. Nowadays we can rely upon satellite (GPS) and radio navigation beacon aids to locate to an accuracy of a few metres anywhere on the earths surface. Most mobile robots though still operate using methods very similar to those of the rower above. They measure their wheel revolutions and incrementally try to estimate their position, and unfortunately for (most) mobile robots GPS systems do not work indoors, and re-creating such referencing systems with beacons is usually infeasible.

Humans, however, have few problems in navigation in buildings because we use our excellent visual capacity to stop in front of the office which we intended to reach, or in the case of blindness (or darkness) we use tactile sensing to detect enough features to localise. Similar information is normally available to a mobile robot, either in the form of a range sensor system or as gray level images. Trying to localise using such information has been addressed a number of times in the literature and many methods have been proposed. This work will investigate the merits of these various approaches and it will also propose new methods. The viability of these new methods will be demonstrated, in particular it will focus on:

- Real time capability
- Requirements on the robot platform and sensors
- Reliability of the methods
- Accuracy of the methods

1.3 Summary of existing position update methods

In chapter 2 a thorough literature review will be undertaken, however, it might be useful to provide some “advance information”
here. In table 1 below a summary of the reviewed position update methods is presented.

One of the main drawbacks of all these methods is the unacceptable processing times demanded. The last column of table 1 details the maximum CPU time required in order to calculate the position of the robot, ignoring the time required to record the sensor data on which the calculation is based. There is only one which approaches real time performance, however this was achieved by sacrificing accuracy. The methods which use a point to structure matching (range-reading to world-model matching) are all extremely CPU intensive. This becomes clear when the methods are analysed (see chapter 2) because large over-determined systems of equations have to be solved. In addition, it is necessary to invest significant effort into the matching process, and the time needed increases linearly with both the size of the world model and the number of range readings. Among those authors who use ultrasonic range data for positioning a tendency to use structure to structure matching is found. This is motivated by the particular characteristics of ultrasound sensor systems. In polar scans ultrasound sensors tend to generate Regions of Constant Depth (RCD) where walls, corners, etc. are present. Thus an RCD is evidence for the presence of a structure in the environment\(^1\). After an RCD extraction process a structure to structure matching is performed. Generally structure to structure matching produces systems of lower complexity than the point to structure matching. The cost is that more preprocessing is necessary. Generally even simpler and more robust methods are needed to achieve the required real-time and accuracy performance.

\(^1\) This characteristic also means that any ultrasonic range reading which is not a member of a Region of Constant Depth is virtually useless.
<table>
<thead>
<tr>
<th>Principal author</th>
<th>Sensor system</th>
<th>Method</th>
<th>Accuracy</th>
<th>typical CPU time required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox</td>
<td>Optical scanner</td>
<td>Point to structure matching</td>
<td>1 cm / unknown</td>
<td>8 seconds</td>
</tr>
<tr>
<td>Ruß</td>
<td>Radar scanner</td>
<td>Point to structure matching</td>
<td>3 cm / unknown</td>
<td>Unknown (suspected large)</td>
</tr>
<tr>
<td>Weiß</td>
<td>Optical scanner</td>
<td>Convolution of scans</td>
<td>5 cm / 0.5 °</td>
<td>0.2 seconds</td>
</tr>
<tr>
<td>Leonard</td>
<td>Ultrasound</td>
<td>RCDs + Kalman filter</td>
<td>5 cm / 2.5 °</td>
<td>1 second</td>
</tr>
<tr>
<td>MacKenzie</td>
<td>Ultrasound</td>
<td>Point to structure matching</td>
<td>1 cm / 3 °</td>
<td>10 seconds</td>
</tr>
<tr>
<td>Holenstein</td>
<td>Ultrasound</td>
<td>Directed sensing</td>
<td>2-3 cm / 2 °</td>
<td>5 seconds for initial estimate, 0.2 - 0.5 seconds for updates</td>
</tr>
<tr>
<td>Schiele</td>
<td>Ultrasound</td>
<td>Various</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Table 1. Summary of reviewed position update methods
1.4 Objectives

Inspecting table 1 it becomes clear that improvements are necessary for operation of mobile robots without the introduction of artificial landmarks (introduction of such removes the whole problem, at the cost of modifying the environment). Essentially the only method that approaches real time capability is that of Weiss from the Universität Kaiserslautern (0.2 seconds), however, this particular work, provides the least accuracy.

The goal is therefore to produce a 2-dimensional 3-degree-of-freedom position update system that is:

- fast (<1 second for a position update)
- accurate to (at least) 1 cm and 0.5 °
- tolerant towards unmodelled obstacles.

1.5 Approaches

Chapter 3 will, in detail, present new methods for calculating the position of a mobile robot based on range data from the environment. However, for the benefit of the reader, a short overview of the methods employed for mobile robot positioning will be presented here.

In order to enable completion of a position update cycle within the prescribed 1 second, a structure to structure matching scheme is proposed. It will be assumed that structures, such as walls, corners and cylinders, are present in the robots environment and that the location of these structures are available in the robots world model, i.e. the location of the structures are given in the world co-ordinate system. Furthermore, algorithms will be developed that can extract the positions of the same structures (walls, corners and cylinders) in the robots sensor data, i.e. the positions of the structures are found in the robot co-ordinate system. With the knowledge of the position of a structure in the world co-ordinate system and in the robot co-ordinate system, it is possible to set up and solve an equation for the robots position in the world co-ordinate system. The equation for the robots
position is over determined if several structures are considered simultaneously. However the complexity of the equation for the robots position will remain moderate since the number of structures visible at any one time is limited. Due to the relatively low complexity of the equation for the mobile robots position is it possible to meet the real-time requirement.

The range data will initially be preprocessed in order to remove any erroneous data, and in order to gain a relatively uniform distribution of range information from the robots immediate environment. After the preprocessing the data will be processed so that the location of the walls, corners and cylinders will manifest themselves as clusters, and so that the co-ordinates of the clusters provide the position of the corresponding structures in the robot co-ordinate system.

In chapter 4 the methods will be thoroughly tested, and it will be demonstrated that the methods developed in this thesis are accurate and robust.
2 State of the art

2.1 Problem statement

This chapter provides a definition of the problem at hand and a thorough review of current methods.

For a number of mobile robot applications it is necessary for the robot to have knowledge of its own relative position in the 3 degree-of-freedom work space. For instance if the work space of the robot is an office building with corridors, halls and offices and the task of the robot is to carry a payload from one office (start) to another office (goal) the robot will need to know:

- When it has reached the goal (requirement A)
- How to reach the goal starting at the start position (requirement B)

If we assume that the information of the building and the goal is given in the form of maps containing the layout of the building (other methods are possible, see section 2.2.6) and the goal is specified as a point (or small area) in this layout, then the "most natural" way for the robot to fulfil requirement A (above) is to continuously check if its current position in the building is close (in the Euclidian sense) to the given goal. The methods required in order to have an accurate estimate of the current position continuously available turn out to be a major
issue and are the themes of this chapter. The second requirement listed above (requirement B) is not addressed in this thesis.

Unless specific measures are taken a mobile robot does not automatically have any knowledge of position. A commonly used method for calculating the position is to measure the rotation of the wheels and from this deduce the position through the usage of the robot's kinematic equations, a method known as odometry or dead reckoning\(^1\). This method is always incremental, an initial estimate is used and the relative motion over a short time interval is added. An example of the equations behind this incremental method is presented in section 5.2. Due to this incremental nature it is inevitable that even small systematic errors such as inaccurate knowledge of the wheel radii will over time add together and take on unacceptable proportions. An example of the magnitude of the errors introduced over a relatively short trajectory is presented in section 4.6. Any method relying solely on the mobile robot's internal sensors will have the same problems, therefore a method which uses absolute information from the environment such as the location of artificial beacons or naturally occurring landmarks is necessary.

2.2 Methods of mobile robot localisation.

Ever since the early days of mobile robotics this issue has been addressed. Moravec [Moravec 80] describes a method for the Stanford cart using multiple camera images from which the 3D position of a number of features are extracted. These features are matched to the features recorded at the previous location. From the correlation between the features detected in the two situations the new robot location (relative to the old robot location) is calculated. Even after considering the technical progress particularly in terms of available

\(^1\) Dead reckoning is defined by the OED [Simpson 89] as: "The estimation of a ship's position from the distance run by the log and the course steered by the compass, with corrections for current leeway, etc., but without astronomical observation".
computer power the performance of the Stanford cart was not exactly impressive (up to 5 hours for a total robot movement of 20 m).

Since then a number of authors have addressed the problem of localisation and a number of different methods have established themselves. The various alternatives will be discussed below.

2.2.1 Occupancy grid-based representations and localisation

The occupancy-grid is a very popular form for the representation of the environment. Early supporters of this method were Moravec and Elfes [Elfes 87] and [Moravec 85]. The representation has since been used by a number of other researchers [Schiele 94], [Courtney 94].

In the simplest of these schemes the environment is mapped onto a regular grid. Each of the grid cells contains information indicating occupancy, i.e. whether the particular cell is empty or not. Typically values between 0 and 1 are used to indicate the status of the cells. As an example 0 might indicate a 100% certainty that the cell is empty, a 1 might indicate 100% certainty that the cell is occupied, and in between values indicate some uncertainty about the state of the cell. In figure 1

![Figure 1: Left a typical environment where two corridors intersect, right the occupancy grid representation thereof.](image-url)
a graphical view of an example environment and its corresponding occupancy grid representation is provided. One of the main benefits from occupancy grids is the property that statistical sensor range data can be integrated effectively into a cartesian representation.

In [Elfes 87] a brief overview of the different localisation methods within occupancy grids that the authors have tested are outlined. An obvious approach to this is to correlate the local (constructed by sensor data) map to the reference (a priori) map. This approach is obviously expensive in terms of CPU time required and the author also reports that significant portions of an hour on a mainframe computer may be required. This is obviously impractical.

Noting that only the occupied cells contain information the authors proceed to extract and label (according to their position) the occupied cells from both maps and via trial-transformation matrices to attempt a correlation in a 1 dimensional space. This produces significant, but still insufficient, speed-ups (processing time down to a few minutes).

The authors then resort to maintaining hierarchical occupancy grids with many different resolutions. A localisation is initiated in the least accurate map and subsequently refined in the maps of higher and higher resolution. This, together with rejection of high frequency "occupancy", produces tolerable performance. The authors report an x, y accuracy of 15 cm and an orientation accuracy of 3° requiring approximately 1 sec VAX processing time.

In a more recent paper Schiele and Crowley discuss several techniques for mobile robot positioning with occupancy grids [Schiele 94]. The authors consider the problem as a matching between two separate occupancy grids, the local occupancy grid (an occupancy grid image of the local environment constructed from recent sensor data) and the global occupancy grid provided from a CAD system or built by the robot in some way or other. Assuming that an odometric position estimate is available a correction (or "innovation") is calculated from the matching process and the updated position is...
calculated using a Kalman filter framework. The correction and innovation can be calculated in 4 ways, namely:

1. Correlation of the grids (as used by Moravec and Elfes see above).
2. Extraction of line segments in both grids using a modified Hough transform (MHT) algorithm, subsequent matching of line segments and calculation of an innovation from each and every line segment.
3. Extraction of line segments in the local grid (with MHT as above), generation of a mask using these extracted line segments and a subsequent correlation of the mask and the global grid. The best correlation yields the innovation.
4. The same as number 3 but the roles of local and global grid reversed.

The authors report the best results from method 2 (extracting and matching line segments in both grids), however, no exact performance data is provided. We, however, expect the required CPU time to be relatively large as the computation of the Hough transformation tends to be a very costly operation. The accuracy / repeatability of these methods would definitely be a function of the grid size and Hough transform resolution (finer grid / higher resolution = higher accuracy), on the other hand, decreasing the grid size or increasing the HT resolution would also require more computational power.

2.2.2 Sonar based localisation in object based maps

One of the most thorough investigations into the usage of sonars for localisation, in a metric sense, was provided by Leonard and Durrant-Whyte [Leonard 92]. Instead of considering the pure sonar range readings the authors utilise regions of constant depth (RCDs) of the sensor scans, since RCDs are more easily matched to modelled geometric structures. Furthermore an extended Kalman filter algorithm is used for the fusing of the data with the odometric estimate, this has the further advantage of being able to consider the uncertainties inherent in the system (odomtery, sensor readings, etc.).
Due to its nature it is more or less impossible for a sonar to have a narrow beam and hence well defined angular resolution. Kuc and Siegel discussed these properties in [Kuc 87]. This means that for instance corners and walls result in a set of range readings that have a constant range over a certain range of angles (for a scanning sensor). Scanning one environment from (slightly) different positions will result in that a RCD from a wall moves along the wall, and that a RCD from a corner will stay stationary and rotate. In other words: extracting the RCDs from successive scans and using the development as a mobile robot moves allows us to identify the source for the RCD(s) and the location of this source.

Given the old mobile robot position, the last movement, a map of the building and utilising the above mentioned RCDs and an extended Kalman filter framework the process for mobile robot positioning is as follows:

1. Calculate new (odometric) position and error covariance.
2. Get RCDs from the sensor scan at the new position.
3. With the predicted position (point 1 above) and the map predict RCDs and variances.
4. Match the predicted (point 3) and observed (point 2) RCDs.
5. Use data from 1 and 4 (and through 4 also information from 3) update the position, and the variances.

A problem in the procedure sketched above remains the matching procedure. For the sake of simplicity the authors ignore any RCDs that report matching problems (no match, several matches, etc.).

The implementation of these algorithms requires approximately 1 second of processor time. It is not reported whether this applies to the experimental platforms embedded controller (a Motorola 68020 system) or the host computer (Sun3 / Sun4 systems), although we do not expect the differences to be major. Studying the results presented in [Leonard 92], a rotational accuracy/repeatability of approximately ±2.5° and a translational accuracy/repeatability ±50 mm is achieved. Furthermore it is noted that occasionally the algorithms diverge (for
instance if an un-modelled object consistently returns RCDs), and that it is very difficult to tune the filter parameters. This was also verified by studies at the IfR, ETH [von Flüe 94]. Nevertheless, this must certainly be described as one of the more successful approaches to localisation with sonars, and maybe one should not expect any higher level of accuracy and reliability when this sensor modality is the only one utilised.

In contrast to the usage of RCDs as described above are the investigations by MacKenzie and Dudek [MacKenzie94a]. Using ultrasonic range data the authors compare clusters of range readings directly to the modelled environment using a method akin to that of Cox (see section 2.2.4 and [Cox 90]). After the association stage (determining the relationships between clustered sensor data and modelled lines) a correction (transformation) of the position is calculated and applied to the current (odometric) estimate. The correction is a weighted sum of contributions from each match between clusters (sensor data) and modelled lines. The contribution from each line & cluster is the projection onto the normal of the modelled line. This procedure must always be applied a number of times\(^1\) before the updated position stabilises. Significant is that since the algorithm does not rely upon RCDs localisation can be achieved using one scan from a single position.

This method demonstrates high tolerance against large initial errors in the (odometric) position estimate. In specific cases the initial error could be up to 3 m and still the estimate would converge to the true position within an accuracy of a few cms and degrees. However, with a small offset in the initial position a divergent behaviour of the method can be observed. Considering this problem in optimization terms one can say that the procedure is vulnerable to being trapped in local minima.

\(^1\) This is a function of the initial (odometric) position estimate, if this is good then 10 iterations may suffice, if it is far off more iterations are needed (approx. 40), these are typical values only [MacKenzie 94b].
The authors recognise this as a problem, and introduce an independent measure for the quality of the final estimate, the classification factor E_{cf}. E_{cf} is defined as follows:

$$E_{cf} = \frac{1}{n} \sum_{i=1}^{n} \left(1 - \frac{d_i^m}{d_i^m + c^m} \right)$$

(EQ. 1)

where d_i is the distance between a sensor reading, i, and the line to which it was associated, c is a "neighbourhood" size (outlier measurements outside the neighbourhood are rejected) and m is a constant indicating the level to which outlier measurements are ignored. E_{cf} approaches unity at the true position and is significantly smaller where local minima are observed, and hence the problem of local minima can be addressed.

The accuracy (repeatability) of these algorithms are in the order of 1 cm for x and y and 3° for the orientation, however, it turns out to be computationally expensive. The authors report 10 seconds and upward on high performance RISC workstations (Silicon Graphics Indigo/Indy @ 100 MHz) [MacKenzie 94b].

2.2.3 Matching and clustering

From the research group of E. Badreddin at the ETH an interesting contribution to position update with ultrasound sensors has been provided [Holenstein 92]. In his thesis Holenstein chooses to split the problem into three separate sub-problems, namely those of:

- initially (from a stationary position) to determine the position of the robot without a-priori knowledge
- continuously update the position when moving
- moving onto a docking station high accuracy positioning.

The latter method introduces artificial landmarks into the environment and is as such not of interest to us.
For the first two sub-problems the author utilises a world model that contains walls and corners. Furthermore the inherent property of ultrasound sensors (generation of regions of constant depth) is exploited.

The problem of localising the robot when stationary and with only the world model as a-priori information is the main theme of Holenstein's thesis. Using the reference model (containing the world co-ordinates of corners and lines) and extracted locations of corners and lines in the sensor data (more on this extraction process later) the author considers all possible matches between modelled and sensed objects. For each and every one of these matches a robot location is calculated. For all “correct” matches we have more or less the same robot position and the robot position can be found by cluster analysis in the space of all the possible positions.

The extraction of objects in the sensor data uses much the same method as discussed by Leonard. However as the robot is stationary during the process it is more difficult to separate corners from walls. An attempt to classify the separate RCDs is made using some heuristics, but the author acknowledges the unreliability of this approach.

This method provides a rough estimate which is subsequently improved through matching all the objects simultaneously (using the rough position) and solving for the improved position with a least squares method. The formulation of this improvement is such that corners and walls are treated differently and subsequently combined.

Typically the accuracy of the final estimate is 2-3 cm and 2°. Typically this process takes about 5 seconds. It is also possible for the method to fail and heuristics have to be introduced to improve robustness.

For the purpose of updating the position when the robot is moving Holenstein calculates the theoretically visible corners and walls using the world model and the odometric position. The theoretically visible
objects are used to predict particular sensor values in particular directions (such as perpendicular to expected walls) and predicted values are compared with actual sensor values. If the values are within specific tolerances then the information is combined with the odometry in a Kalman filter to calculate the position. It is worth noting that the author must treat the x and y co-ordinates separate from the θ co-ordinate, and that the θ co-ordinate cannot be updated based on the environment. Unfortunately the θ co-ordinate is important for estimating the expected location of the modelled objects in the sensor frame, therefore a fibre-optical gyro is used and fused with odometric position estimate. Typical accuracies achieved are of the order of 5 cm. One update needs approximately 0.2 - 0.5 seconds CPU time [Badreddin 95].

2.2.4 Optical rangefinder localisation in object based maps

A central contribution to the field of mobile robot localisation was provided by Ingemar Cox [Cox 90]. In this work a scanning optical range finder which measures the phase difference of transmitted and reflected light is used together with a world model composed of straight lines.

The sensor readings (polar r,θ or cartesian x,y) provided from the sensor have a noise level of approximately 2.5 cm (1") at a range of 1.5 m (5"). This sensor system is used also by a number of other researchers and a thorough treatment of the sensor can be found in [Adams 92]. For each separate sensor reading the nearest modelled line is found by searching the data-base containing the line model of the current environment, and the distances between the lines and the points are calculated. Then a transformation matrix is calculated that minimises the sum of the squared distances. This procedure is repeated iteratively until the solution converges. The last step is necessary since it is possible that a number of the sensor readings are associated to the “wrong” line in the first step. However, the position estimate improves with each iteration so that mis-matches are eliminated. At the end the result is “fused” with the odometric position estimate.
This algorithm produces acceptable results with an accuracy of 0.7° in orientation and 3 mm in x and y (0.1”). However the computational load is rather high with updates of the position every 8 seconds (assuming 180 measurement points and 24 line segments considered). The real time system being employed is a Motorola 68020 VME system with 1 processor and a real-time operating system [Cox 90], so the 8 seconds also include processor time allocated to motor control and other parallel processes.

Cox claims that the algorithm is robust with respect to spurious data from un-modelled obstacles or people. This assumes that the instantaneous position error is small (i.e. frequent updates can be made), since then data from un-modelled obstacles can be rejected prior to the matching algorithm. However, Cox recognises that this assumption may not hold in general. It is also worth noting that the robot system on which the algorithms are being used have an extra set of encoder wheels (with no-load) specifically for the purpose of providing a good odometric position estimate.

Furthermore it would be difficult and computationally expensive to extend this scheme to 3D – this is also recognised by Cox.

Another group at the Technische Universität München have also been working on methods very similar to those of Cox [RuB 93]. This group utilises a high frequency (94 GHz) radar sensor for range sensing. The closest modelled line to the (x,y) range data from this sensor is found and the vector from the point to the line ([d_x, d_y]^T) in the world co-ordinate system is calculated using the available odometric estimate of the robot position e_x and e_y. The sought correction vector ([Δp_x, Δp_y, Δp_ψ]^T) for a single point is then (if we assume a small correction in the angle) given as below in equation 2.

 \[
\begin{bmatrix}
-1 & 0 & -e_y \\
0 & -1 & e_x \\
\end{bmatrix}
\begin{bmatrix}
Δp_x \\
Δp_y \\
Δp_ψ \\
\end{bmatrix}
=
\begin{bmatrix}
d_x \\
d_y \\
\end{bmatrix}
\]
(EQ. 2)
Combining all the points is equivalent to extending this system of linear equations as in equation 3 (the second subscript refers to the measurement point number). This system of equations is then solved by a least squares method (for instance singular value decomposition). It is noted that this system of simultaneous equations can be quite large, for n=360 measurements we need to invert (in the least squares sense) a 720 by 3 matrix.

There are no performance data given with respect to the necessary computational requirements, however they are expected to be substantial\(^1\). An accuracy of 30 mm in x and y is achieved, but no figures are provided regarding orientation accuracy.

In addition to this range finder based system for calculating the mobile robot position a video based position update system is used in [RüB 93]. Due to the need for high performance processing hardware or special landmarks to simplify the vision task, we do not view vision as an appropriate sensor system for robust and fast position update, at least not yet at this time. A more detailed discussion of vision based systems is deferred to section 3.3.2.

\[^1\text{A small Matlab program verifies that singular value decomposition on a 720*3 matrix requires some 10000 times more floating point operations than a 7*2 matrix (which is a typical value for the method of mobile robot localisation introduced in this thesis).}\]
2.2.5 Crosscorrelation of sensor scans

Another group that has been active in this field for a long time is that of the University of Kaiserslautern. In a recent paper [Weiβ 94] a method for calculating the mobile robot position based on the crosscorrelation of range finder scans (and abstractions thereof) was presented.

Although the goal of this work is to provide an estimate of the position, there is no world-model as such being used (as opposed to the line model used by Cox). Instead the relative movement between two scans, S_1 and S_2, is calculated using crosscorrelation. Consider the case where the relative movement between the two scans, S_1 and S_2, consists of pure rotation. If both scans contain n separate range readings, $s(i..n)$, then the crosscorrelation function, $k(j)$, may be written as in equation 4.

$$k(j) = \sum_{i=1}^{n} s_1(i) \cdot s_2(i+j) \quad (EQ.4)$$

The crosscorrelation function, $k(j)$, will have a maximum value at some j, this j corresponds to the rotation between the two scans. In words we could say that S_2 is rotated until the best possible “similarity” with S_1 is found. A similar procedure is followed for the translational movement between the scans, the interested reader is referred to [Weiβ 94].

Since the crosscorrelation calculates the “similarity” it means that the two scans must be “similar” otherwise the algorithms will fail. Two scans would not be “similar” if there are many moving obstacles in the environment, or if the movement between the scans is large. The authors also recognise this, however further investigations are needed on the stability of the method, i.e. to what extent may the environment change between two scans. The method of Weiβ is in its nature incremental, however, since the method itself has no systematic errors, this positioning method will not cause a build up of large errors in the position.
In order to speed up the performance of their algorithms the authors resort to discretizing their data into a scaled integer format. This allows a very efficient implementation of the convolution, but at the expense of reduced accuracy.

The algorithm was tested on a mobile robot system of similar capability as that of Cox, but with a 68040 processor card. The computational load was 0.2 seconds, however, the angular accuracy achieved was “only” 0.5° and the translational accuracy 5 cm.

With respect to the robustness there are a few comments to be made. It is possible for the correlation to fail, in particular if the data in the histograms are “ill conditioned” (i.e. no major axis can be found, or no “walls” are present), and it may be that obstacles produce maxima in the convolution that do not represent the sought solution. The authors recognise this and wish to investigate these problems further.

2.2.6 Topological representations and localisation

In contrast to all of the above described methods of localisation are the methods based on so called “topological maps”. A topological map does not focus on representing the environment as exact geometric relationships between objects, rather it maintains a form of qualitative model. The qualitative model would typically contain a list of “locales”, i.e. places which are “easy” for the robot through its sensor system to identify. Typical examples would be “doorway”, “corridor-junction”, “corridor-crossing”, etc. These locales would be connected in a graph via “roads”. In order to navigate, the robot would be provided a list such as: go down corridor until second corridor crossing, turn right, go down corridor until first doorway, stop.

Such models have been exploited by a number of researchers, typical examples can be found in [Kuipers 87] and [Mataric 90]. Kuipers in [Kuipers 87] was one of the first to formulate such an approach and undoubtedly such systems perform satisfactorily. It is however very difficult to compare these qualitative methods to the previously described quantitative ones. The available geometric
information of a building should be used to its full extent in order to achieve reliable robot navigation. Also, the arguments of Kuipers regarding CAD model, accuracy and robot interaction (see [Kuipers 87] page 391) are only partly true. It is not at all difficult for our application to describe the world by geometric primitives (CAD systems). Our methods and those of other researchers demonstrate that the robot can be accurately positioned. The problem of interacting with the robot can be overcome with modern user interface techniques.

2.2.7 Special systems

For the sake of completeness this last section of the literature review will cover systems that require modifications to the environment or rather "special" buildings. Methods from the Automated Guided Vehicle (AGV) industry, such as inductive wires or chemical trails will not be discussed.

In the thesis from Hyyppää [Hyyppää 93] an analysis of triangulation based localisation with a laser scanner was presented. Based on this work commercial systems are now available [NDC 93]. This system achieves an accuracy of ±2-3 mm in the whole workspace and relies upon measuring the angles to reflective beacons. The beacons are all identical; however using a computer internal map with the location of the beacons and the odometric position of the vehicle an association of "sensed-beacon" to "modelled-beacon" is performed. After this association step the constraints on the position can be calculated via triangulation methods. Normally many beacons will be installed (and seen) therefore a least squares fitting method or a Kalman filter is used for the final calculation of the position.

In the commercial form with the necessary software and the robot controller (this is the only option) the system is relatively expensive with total costs around US$ 100.000,-1 [Jutander 94].

1. 1994 prices.
Another similar system is available from Intelligent Solutions Inc. [Maddox 94a]. This system uses a laser anglemeter however but with encoded targets thus simplifying the association step. With the database of the location of the retro-reflectors stored on the control computer (integrated with the sensor) a new position to an accuracy of ±0.03° and ±10 mm can be calculated every 0.1 s [Maddox 94a] and [Maddox 94b]. This system also compares favourably in price to the NDC system at US$ 6.600,-1 [Maddox 94b].

A method for localisation in building sites with a range sensor was proposed in [Kajitani 91]. This system assumes that pillars are placed in the robot’s workspace at regular intervals. Furthermore the pillars are assumed to be square with sides of 0.6 - 1.0 m. It is assumed that there are no obstructions or other objects than the pillars. In this case the directions and distances to the pillar edges are found at discontinuities in the range readings, a sudden decrease in the range as the beam hits the pillar and a sudden increase in the range when leaving the pillar. Such a system with a triangulation based laser range finder can achieve an accuracy of ±5 mm [Kajitani 91].

2.3 Discussion

The methods discussed in section 2.2.7 all introduce artificial beacons into or restrictions on the environment, and are as such not of interest. In section 2.2.6 so called “topological” methods are discussed, although interesting we believe that a cartesian method is preferable. Therefore the “relevant” methods are those found in section 2.2.1 to section 2.2.5.

One of the main drawbacks of the cartesian methods discussed is the unacceptable processing times demanded. Only one of them approaches real time performance; however this was achieved at the expense of accuracy. The methods which use a point to structure

1. 1994 prices.
(range-reading to world-model entry) are all extremely CPU intensive. This is because large over-determined systems must be solved for each step and points and structures must be matched. The RCD to structure matching is essentially a structure to structure matching (an RCD is a typical signature from a wall or a corner from scanned ultrasound sensors) and consequently simpler and more efficient formulations are achieved.

A method which attempts to alleviate these problems will be presented in the next part of this thesis.
3 Mobile robot positioning

3.1 Guide to this chapter.

Based on the literature review of the previous chapter the requirements of a mobile robot positioning system are identified. This also leads to defining a test strategy for position methods enabling a quantitative evaluation of the new methods presented herein and comparison against other methods. Different modelling and sensing options are presented before the new algorithms are introduced. The preprocessing and feature extraction algorithms for a wide range of features are analysed. Subsequently a method for integrating positional information from a number of different environmental features such as walls, corners, cylinders, etc. is introduced. These algorithms provide the desired real-time performance, accuracy and robustness.

3.2 General requirements

Having discussed the currently available methods in the previous chapter the following requirements must be placed on a new mobile robot localisation system.

- Real time performance
- High accuracy
- Robustness
Real time performance is probably the most stringent of these requirements. Some of the current methods need of the order of 10 seconds to complete their calculations. In this time a mobile robot system may traverse a trajectory of nearly 10 m. Some people might argue that a velocity of 1 m/s is high for a mobile robot, but at least a robot should reach such a normal walking velocity. As it will be seen in later experiments it is quite possible to build up an error of about 1 m in the course of a 10 m trajectory, and 1 m error is in many buildings clearly not acceptable. Therefore we would like to impose a maximum time limit for the calculations for a position update of 1 second.

Requirements with respect to accuracy are more difficult to formulate. Typical industrial manipulators have a repeatability of ±0.1 mm in a workspace of 1 m. Because of the larger work spaces of mobile robots compared to manipulator arms and the lack of internal sensors able to determine the position of the mobile robot it is probably totally unrealistic for a mobile robot to achieve such a high repeatability.

Therefore a repeatability of ±10 mm may be deemed as satisfactory under the condition that the real time requirement is kept. Furthermore a repeatability of ±10 mm is of the same order of magnitude as produced by beacon based localisation systems (see section 2.2.7) which are currently the only reliable and fast alternatives available for mobile robot localisation.

The methods should also be robust, i. e. it should be possible to wilfully "disturb" the robot without any significant decrease in the accuracy (repeatability) of the estimated position. It is very difficult to propose a good test for this as it is easy to devise a "disturbance" that will cause some algorithms to "fail". For instance a pin-board placed parallel to a wall will cause methods such as those of Cox to converge to a "false" result. Similar arguments apply to the other methods (see the reported divergence by the methods of Leonard). Nevertheless it is important to demonstrate robustness. Therefore a test is proposed
below, although no claim to universal applicability is made for this test. In summary the requirements of Table 2 below should be met.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real time performance</td>
<td>< 1 second</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 10 mm</td>
</tr>
<tr>
<td>Robustness</td>
<td>pass test of section 3.2.1</td>
</tr>
</tbody>
</table>

Table 2. Requirements of position update systems.

3.2.1 Test for position update systems

Having studied the literature we observe a lack of “standards” against which one can measure the various methods, in particular with respect to accuracy and robustness.

One reason for the lack of such uniform testing is no doubt the difficulty in defining a reference for position and orientation. The only methods available that could provide such information are based on installing landmarks and triangulating to them. The installation of the landmarks must (of course) be accurate if the reference system is to be accurate and this may require extensive surveying work. In other words such systems tend to be expensive and cumbersome.

Therefore the two tests described below for accuracy and robustness are introduced. It is not claimed that these tests are appropriate in all cases, however, they are probably sufficient for most research systems.

To test the accuracy the following approach is proposed:

- Put the robot system in a location where the position update system will be able to calculate the robot’s position, i.e. a position with an optimal landmark visibility.
- Initialise the robot’s position estimate to a value close (±0.1 m, ± 5°) to the true value.
- With the robot stationary, perform repeated cycles of sensor data record and re-localise.
For such a test some differences of the successive position estimates can be expected, and the standard deviation of the successive estimates can be used as a performance measure of the system. With the robot stationary, as is the case for this test, it is of course possible to average successive estimates in order to continuously improve the estimate of the position, however, the purpose of this test is to determine the noise inherent in the system and therefore such an averaging is not appropriate.

It is also necessary to test the robustness of the position update system, i.e. to what extent is the position update system tolerant to disturbances. The literature indicates that presence of un-modelled structures are the most frequent cause of position update malfunction or performance degradation.

It is therefore desirable to measure the performance of any position update algorithm as a function of the “amount” of un-modelled structures present in the environment.

In view of this the following procedure is proposed in order to test the robustness of the position update system:

- Put the robot system in an ideal position and initialise the position estimate to the true value.
- Introduce un-modelled structures into the environment and record the performance of the position update system.
- Repeat the last step for various amounts of un-modelled structures, e.g. with 10%, 20%, ..., 100% of the sensor data coming from un-modelled structures.

It is expected that the standard deviation from successive position estimates grows as more and more un-modelled structures are introduced or, indeed, that the position update methods fail above a certain amount of un-modelled structures. The size of the standard deviation as a function of the amount of un-modelled structures or the level at which the position update method fails can be used as a measure for the robustness of the position update system.
3.3 Matching sensed to modelled geometric features

What is necessary in order to achieve position update whilst simultaneously abiding by the previously listed requirements? The following steps are proposed, in order to provide real-time capability, accuracy and robustness:

- Provide a world reference model containing as much information as possible on recognisable geometric features (e.g. walls, corners, doors, etc.).
- A good range sensor system should be used. However, the cost of this range sensor system must not be excessive in relation to the cost of the robot system as a whole.
- Try to preprocess the data so that obviously erroneous / non-informative range measurements are excluded from the position update process.
- Extract significant geometric structures from the range data so that a smaller set of over-determined systems of equations have to be solved (smaller compared to, say, the methods described in [Ruß 93]).
- Relate the (compressed) range data to the modelled world and attempt to deduce the position, preferably in one step.
- Throughout the process attempt to find a clear and simple formulation, thus enabling efficient computation.

3.3.1 World modelling

Assume that a data base with information on the mobile robot’s work space is available. Typically this data base would contain the floor plan of the building in which the robot operates. Associated with the floor plan is a reference co-ordinate system in which the cartesian information on all the other objects in the floor plan is given. Further entries in this data base would be where the mobile robot is allowed to navigate (the robot’s road map), and specific information associated with this road map. A graphical view of a section of such a data base is presented in figure 2.
Figure 2: A graphical view of the data base containing the floor plan and road map of the mobile robot's work space represented in the world co-ordinate system.

3.3.2 Range sensing

A number of different range finding systems can be utilised for the tasks of mobile robot positioning. It is therefore useful to consider the relative benefits of the various possible range-finder systems. In addition to being used for position estimation, range sensors are also used for the purpose of obstacle detection and avoidance. This theme, however, is outside the scope of this thesis.

Fundamentally, it is possible to separate range finder systems into two groups: active and passive.

The latter group is almost exclusively reserved for vision systems. Using one or more cameras one attempts to identify the same feature in different picture frames (separated spatially and/or in time). Using the
geometric and/or time relationships between the frames it is possible to deduce the location of the identified features in the world co-ordinate system. Thus, it is not surprising that vision systems frequently are used within the field of mobile robot positioning. As already mentioned, a vision systems was used by Moravec [Moravec 80], however, the real-time performance was nowhere near acceptable. The real time performance has of course improved since 1980, for example in [Ruß 93] the processing time is down to approximately one second using a multi-processor computer system and support from an active sensor system. Further vision based mobile robot positioning systems introduce artificial landmarks into the environment in order to simplify the feature identification step, examples of this can be found in [Holenstein 92] and [Fukuda 93]. In our opinion, therefore, such methods are currently computationally too expensive and impose too many restrictions on the environment, however, recent and future developments in the area of processor technology might enable the use of vision based system.

Active sensor are discussed below. Ultrasound systems will be covered first, and then optical systems will be treated.

Ultrasonics

Ultrasonic time-of-flight (TOF) sensor systems are one of the most popular range-finder systems and have been used by a number of researchers ([Leonard 92], [von Flie 94], [Mataric 90], [Holenstein 92] and [Vestli 91]). The usage is motivated by the very competitive cost. A sensor system commonly used in the research community is the sensor system found in Polaroid cameras [Polaroid a] and [Polaroid b], and typical prices for one such unit will be less than CHF 100,-

1. 1994 prices.

The basic principle is to measure the shortest time it takes for a packet of ultrasonic pressure waves to travel from the sender via a
target in the environment, and back to the receiver. Assuming that the velocity of this wave packet is constant and known the distance can be calculated. A mm level measurement resolution does not present any practical problems and is common in industrial ultrasonic sensor systems [SNT].

There are however a number of problems associated with these sensor systems:

- the sensor transmits the pressure wave in a conical fashion and the sensor returns the range to the nearest object within the cone, not necessarily the range to the object in the measurement direction, see also figure 3

![Diagram](image)

Figure 3: The wave packet is reflected back to the sensor from object 2 before it is reflected back by object 1, the sensor returns as the range for this measurement the shortest of the two ranges.

- most objects in the environment will reflect the pressure wave like a mirror, i.e. specularly

The latter is the cause of the so called specular reflection problem which is visualised in figure 4. Depending on the angle between the wave front and the object the wave may not always be reflected directly back to the sensor. In the case of figure 4 the object is in such
Figure 4: A wave packet is transmitted from the sensor and is specularly reflected by an object in the environment. Due to the angle of incidence no energy is reflected back to the sensor from the object and an invalid range reading is returned.

cases not seen at all. In more complex environments the wave can be reflected back to the sensor via further objects in the environment, in such a case the round-trip time is recorded by the sensor system and a range is returned which does not correspond to any particular object in the environment.

Further problems are caused by the propagation time. If, say, a 360° scan with one sensor is split into 360 separate samples, each 1° apart, and the average target distance is 2 m, then a full scan will require 4.4 seconds. In areas where the average distance is 4 m the full scan would increase to 8.8 seconds etc. This can only be alleviated by employing several sensors (2 sensors 180° apart, or 4 sensors 90° apart), however, increasing the number of sensors increases the system costs and introduces cross-talk problems.

Optical coaxial systems

Optical coaxial systems are a class of sensor systems receiving more and more attention. This class can in itself be sub-divided into
phase measuring devices, time-of-flight devices and phase control devices.

The common component is that a modulated light beam\(^1\) is emitted into the environment and that the reflection generated from an obstacle is received and compared with the transmitted beam.

There are a number of systems available that use a phase measuring technique. The “AT&T sensor” [Miller 87] which is now available as a commercial product [ESP] is well known in the robotics community having been used by a number of researchers ([Cox 90], [Weiβ 94] and [Adams 92]). This system delivers range information of impressive quality, however, there is scope for improvement on this design, as demonstrated by [Brownlow 93].

Recently time-of-flight devices at a reasonable price (DM 6.900 in 1994) have been appearing in the automation market. The sensor from Sick [Sick] unfortunately only delivers a scan area of 180° and is hampered by a less than optimal protocol, however it clearly indicates the direction of development.

The company Acuity-Research [Acuity] has also recently brought out an optical sensor system. This system is based on a phase control principle. The phase difference between the transmitted and reflected light is kept at a constant value through changing the modulation frequency in a feedback loop. This enables a highly accurate and compact system. It is also very competitive in price (US$ 2500 in 1994).

Optical triangulation systems

A method commonly found in industrial optical range sensors is triangulation, see also figure 5. This is also a method that has been used for mobile robotics [Hinkel 89], [Knieriemen 91]. This type of system

1. Can be generated from a laser or from a focused light source such as a Light Emitting Diode (LED).
delivers range data of the highest quality, unfortunately the size of the sensor tends to be rather large if a large (0.5 - 5 m) measurement range is required. A further disadvantage compared to coaxial systems is that in some particular environments the sensor has blind zones, for example when the return path is blocked, see figure 6. This does not happen in coaxial systems as the forward and return paths are always identical. Due to fairly simple measurement principles the systems are cost effective and comparable in price to industrial ultrasound systems.

![Diagram of Triangulation Rangefinder](image)

Figure 5: Triangulation rangefinder. Using the principle of similar triangles, the systems parameters f and a, and the distance along the position sensitive device b the distance to the target d can be found.

Solution to our problems

For our work the sensor from Acuity-Research [Acuity], using a laser, was selected. Laser based systems tend to have better angular resolution than normal light source based systems. The only critical factor is that of eye safety. Although a laser based system is potentially more dangerous than a focused LED system at the same power density due to the theoretically better focusing, it is virtually impossible with a class IIIa or IIIb laser sensor to generate any eye damage, as this requires gazing directly into the beam whilst focusing at infinity for extended periods of time [Römi 94]. Therefore we have no qualms
about selecting this laser based system, especially as the beam is deflected with a rotating mirror. The integration of this sensor system with the associated scanning mechanism and interface electronics into the mobile robot platform will be described in section 5.3. Therefore, a sensor system is available that provides the robot with range information to objects in the environment visible to the robot. This range information takes the form of a set containing n data tuples $[\theta, r]$ where r is the range to a visible object in the direction θ. The set is evenly distributed over 2π and cuts a 2-D plane through the environment. When the sensor system is located at the trajectory junction of figure 2 it would represent the environment with the set of sensor data of figure 7. Calculating the transformation from the world co-ordinate system to the sensor (and hence robot) co-ordinate system in such a case is then eased if the correspondence between the two representations of the environment can be calculated, or if enough features of the two environments (modelled and sensed) can be matched to each other.

Later on in this thesis it will be demonstrated how the robot's cartesian position can be found by matching one or more geometric structures in the sensor data to the corresponding geometric structures in the data base. Such geometric structures would be corners, walls, open doors, etc.
3.4 Preprocessing

Assume that the range finder system delivers a 360° horizontal slice of the instantaneous environment. This “slice” is composed of a number (n) range readings r_i and the associated angle θ_i. In this sense the point $(r, \theta)_i$ is said to be a neighbour of $i-1$ and $i+1$. The points may also be represented in the cartesian (xy) space through the transformation of equation 5. The sense of a neighbourhood is conserved in the transformation into the cartesian space.

$$\begin{bmatrix} x \\ y \end{bmatrix}_i = \begin{bmatrix} \cos \theta_i \\ \sin \theta_i \end{bmatrix} r_i$$

(EQ. 5)

For all the further steps in the preprocessing, and subsequent extraction of geometric features the modulo n nature of the data applies\(^1\).
Inspecting typical range-data from such sensor systems it becomes evident that some data is "false" or at least not-so-useful for the purpose of robot position. Consider the data below in figure 8. For instance, those range readings marked with A provide virtually no information on the current situation. The exact cause of this data has not been investigated for this sensor, although the suspected culprit is a split-beam (see [Adams 92] for a treatment of this phenomenon, for a slightly different sensor system). Further unwanted effects are observed at B, which are due to the supports of the motor/mirror assembly of the sensor design obstructing the view (see chapter on the

Figure 8: Real sensor data from a typical office environment.

1. Note that point n is said to be a neighbour of point n-1 and point 1, and point 1 a neighbour of point n and point 2, i.e. a modulo n behaviour (the index is within the range 1..n).
experimental hardware), and at C which is the range returned by the electronics when no signal is returned (both ends of the corridor are outside of the sensors maximum measurement range).

The following simple steps can be undertaken to reject these "uninteresting" range readings.

- Impose a maximum range and a minimum range on the sensor data, and reject from the set of range readings all values lying outside these two values.
- Reject points that are further away from the previous and next points (previous and next in terms of the scan angle) than some pre-set limit.

When the above described filters are applied to the range data of figure 8 the remaining data are as shown in figure 9 below. This example utilised filter parameters (maximum range, minimum range and maximum distance) as used for the experimental verification.

The constant sampling density with respect to angular resolution has as a consequence the effect of a variable sampling density per unit length. For surfaces close to the robot there are more measurements per unit length, than for surfaces at a distance. Focusing on two smaller segments, sector 1 and sector 2, of the scan in figure 9 an interesting effect is observed, see also figure 10. Although the range data in sector 1 represent an object which is closer to the sensor that those of sector 2 and have in absolute terms less noise it is "more difficult"\(^1\) to fit one straight line to represent these data points. A further effect is that the "sensor signature" of a corner is not invariant to its position and orientation. As will be seen later it is important to extract geometric structures such as straight lines from the data, therefore it is of benefit if the quality of the data in sector 1 is improved.

\(^1\) Of course most mathematical line fitting algorithms will not have more difficulties with the data of sector 1 than with those of sector 2. However, when comparing a line fitted to the first three data points in each sector to the line fitted to the next three data points it becomes clear that problems can be expected when geometric structures (such as a wall) is to be extracted.
Figure 9: Range data after first pre-filtering steps. The data in Sector 1 and Sector 2 contain approximately the same number of range readings. The sensor is located at [0,0].

Figure 10: Enlarged cut-outs of Sectors 1 and 2 (notice the difference in x and y scale). The closer segment (Sector 1) has the less well defined angle due to the noise in range.
There is, however, a simple remedy that can be used to ensure a more uniform sampling density per unit length.

- Remove points from the data set so that a minimum distance is kept between neighbouring points.

After this pre-filtering with typical values as used in the experiments the final result is as seen in figure 11. Here the points are more evenly distributed. A completely even distribution was not achieved since the measurement points from remote targets in the unfiltered data set can be far apart, see also figure 8. An improvement could be achieved through increasing the initial sampling density with respect to angular resolution or through increasing the minimum distance required between neighbouring points. It is unfortunately infeasible for the available experimental hardware to increase the sampling density with respect to angular resolution. Furthermore, the

Figure 11: The original data set after all stages of the pre-filtering.
minimum distance between neighbouring points also cannot be increased arbitrarily as the number of measurement points available after the filtering is reduced as a function of this factor. Obviously there is a trade off between density and the resulting number of measurements, and it would be desirable to find the optimal value for the minimal distance between neighbouring points. This has recently been studied [D'Apuzzo 95], however, more work is necessary before a recommendation can be given on the selection of optimal parameters for range-data pre-processing.

3.5 Compression / simplified formulation

Having pre-filtered the data it is desired to apply methods so as to achieve a compact formulation for the robot's position. In particular we have to address the question: what method can be used to gain position information from structures such as walls corners and cylinders?

Initially we will consider walls, later on we will consider more complex features such as corners and cylinders. At the end we will provide a formulation allowing us to combine these.

3.5.1 Position from a wall

Using walls for mobile robot localisation has been used by other researchers, see for example [Leonard 92] and [Holenstein 92], however, for the sake of completeness we will review how the robots position can be calculated from one or more walls before the issue of extracting walls from range data is introduced.

A (straight) wall can be represented by the equation for a straight line. There are two commonly found representations of a straight line, namely those found in equation 6 and equation 7.

\[y = ax + b \] \hspace{1cm} \text{(EQ. 6)}

For a visualisation of the two representations see also figure 12.
\[r = x \cos \alpha + y \sin \alpha \]

\text{(EQ. 7)}

Figure 12: Graphical visualisation of the two line-representations of line B.

In this work the representation of equation 7 will be used noticing that this representation has no problems with lines (walls) parallel to the y-axis of a co-ordinate system (with the representation of equation 6 \(a \) would tend towards \(\infty \) which is clearly undesirable).

Consider the case where the (visible) environment contains one wall (straight line). This line is also modelled by the data base, and is found in the sensor data (more on this last aspect later). See also figure 13. The wall is represented by the data tuples \(\{W\}[r,\alpha] \) and \(\{R\}[r,\alpha] \) in the world \(\{W\} \) and robot \(\{R\} \) reference frames, respectively. The location of the robot frame \(\{R\} \) in the world frame is somewhere along the dashed line B. Let us denote this location with \(x \) and \(y \) (expressed in the world co-ordinate system). The line B is parallel to the wall. This means that the robots xy-location in the world frame \(\{W\} \) abides equation 8,

\[\delta r = \{W\} r - \{R\} r = x \cos \{W\} \alpha + y \sin \{W\} \alpha \]

\text{(EQ. 8)}

Furthermore, the orientation of \(\{R\} \) in \(\{W\} \) is according to equation 9.

\[\{W\} \theta = \{W\} \alpha - \{R\} \alpha \]

\text{(EQ. 9)}

It is possible to write equation 8 in matrix form as in equation 10, and
we see that we can extract position information (x,y) from a straight wall (although the two co-ordinates are not independent of each other). The last position information (orientation) can be extracted directly from equation 9.

Now, consider the case when there are more than one straight wall present in the environment. All the walls give rise to equations for the mobile robots position similar to equation 9 and equation 10, and all these equations should be satisfied simultaneously. For the general case, with n straight walls, this can be formulated as in equation 11 for
the x and y co-ordinates.

\[
\begin{bmatrix}
\begin{bmatrix}
\{W\} r_1 - \{R\} r_1 \\
\{W\} r_2 - \{R\} r_2 \\
\vdots \\
\{W\} r_n - \{R\} r_n
\end{bmatrix}
\end{bmatrix}
= \begin{bmatrix}
\cos \{W\} \alpha_1 \sin \{W\} \alpha_1 \\
\cos \{W\} \alpha_2 \sin \{W\} \alpha_2 \\
\vdots \\
\cos \{W\} \alpha_n \sin \{W\} \alpha_n
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\]
(EQ. 11)

The subscripts of r and \(\alpha\) indicate to which particular wall a particular \(r\) and \(\alpha\) refers to. Equation 11 is, in general, an over-determined system and must be solved in a least squares sense. In this work the method of Singular Value Decomposition (SVD) has been used, see also [Press 86]. The orientation co-ordinate, \(\theta\), can be found by averaging the contribution from all the walls. In some cases it is advantageous to include the old odometric estimate when solving for x and y. An example of an environment where the odometrically estimated position should be included is a corridor environment where the environment only provides positional information in one direction, perpendicular to the corridor walls. This can be catered for in equation 11 by adding one row for the odometrically estimated x co-ordinate and one row for the odometrically estimated y co-ordinate. An example of such a situation with two walls and the odometrically estimated co-ordinates, \(x_0\) and \(y_0\), can be found in equation 12.

\[
\begin{bmatrix}
\begin{bmatrix}
\{W\} r_1 - \{R\} r_1 \\
\{W\} r_2 - \{R\} r_2
\end{bmatrix}
\\
x_o \\
y_o
\end{bmatrix}
= \begin{bmatrix}
\cos \{W\} \alpha_1 \sin \{W\} \alpha_1 \\
\cos \{W\} \alpha_2 \sin \{W\} \alpha_2 \\
1 \\
0
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\]
(EQ. 12)
3.5.2 Extraction of straight lines

What now has to be done is to find the straight lines in the sensor data. In [Knieriemen 91] a simple method that extracts wall data from a laser scan is presented. The method discretizes the sensor space (in x and y separately) and counts the number of measurements falling in a "slot" (histograms). The slots with many measurements are said to contain a wall. Further, in the work by Knieriemen lines are calculated by connecting neighbouring points and relating their x and y co-ordinates. This method of calculating the lines is even for low noise sensor systems as discussed in the referenced work unreliable. In an attempt to improve the performance of the line extraction a method is proposed that uses point i and i+n, n is large (10 - 20), instead of i and i+1. Having evaluated this method with a commercial sensor system the conclusion was reached that this is an unsatisfactory method for the following reasons:

- The sensor data must initially be rotated to be aligned with either the x or y axis, otherwise the data will be “smeared” out in the histograms.
- The above only applies in environments where the majority of the objects are either parallel or perpendicular to each other.
- The noise level of commercial systems prohibits an accurate calculation of a wall.

A better method is to fit a straight line to the data points that minimises the sum of the squared distances from the points to the line, see also figure 14. As it is unlikely that all the separate measurements (points) in a whole range-finder scan will fall on the same straight structure only a subset of the scan is considered for the least squares fitting. This subset of o measurement points is “slided” along the complete set of n measurement points in the scan, in increments of one, until all the points have been processed. In other words, initially the points p1..p0, next p2..p1+0 until finally next pn..pn+0 are processed (remembering the modulo n behaviour).
Each point in this subset has a cartesian distance S_i to a line. The line satisfying the least squares criterion must satisfy equation 13 and equation 14, i.e. the derivative of the sum of the errors must be zero for both (r, α) parameters of the line.

$$\frac{\partial}{\partial \alpha} \sum_{k=i}^{i+o} (S_k)^2 = 0$$

(EQ. 13)

$$\frac{\partial}{\partial r} \sum_{k=i}^{i+o} (S_k)^2 = 0$$

(EQ. 14)

In a work by Kanayama [Kanayama 89] an elegant solution to this problem is presented, further details of this solution is also presented in [Solomon 91]. However, since an important enhancement to these methods are introduced here the derivation is revised and enhanced. The residuals, S_k, are given in equation 15.

Substituting equation 15 into equation 14 and expanding gives us
\[S_k = r - x_k \cos \alpha - y_k \sin \alpha \] \quad (\text{EQ. 15})

Equation 16.

\[
2 \left(r \sum_{k=i}^{i+o} \left(\sum_{k=i}^{i+o} x_k \right) \cos \alpha - \left(\sum_{k=i}^{i+o} y_k \right) \sin \alpha \right) = 0
\] \quad (\text{EQ. 16})

Re-arranging equation 16 gives us equation 17.

\[
\sum_{k=i}^{i+o} x_k \cos \alpha + \sum_{k=i}^{i+o} y_k \sin \alpha = r \sum_{k=i}^{i+o} 1 = ro
\] \quad (\text{EQ. 17})

Since \(o \) is the number of separate measurement points under consideration we can rewrite equation 17 as in equation 18,

\[
r = \bar{x} \cos \alpha + \bar{y} \sin \alpha
\] \quad (\text{EQ. 18})

where \(\bar{x} \) is the average of all \(x_i \) and \(\bar{y} \) is the average of all \(y_i \).

Similarly, equation 18 can be used to substitute for \(r \) in equation 15 which is again substituted into equation 13, which is
expanded giving equation 19.

\[
\frac{\partial}{\partial \alpha} \sum_{k=i}^{i+n} \left((\tilde{x} - x_k) \cos \alpha + (\tilde{y} - y_k) \sin \alpha \right)^2 \quad \text{(EQ. 19)}
\]

\[
= 2 \sum_{k=i}^{i+n} \left[((\tilde{x} - x_k) \cos \alpha + (\tilde{y} - y_k) \sin \alpha) \right.
\]

\[
\left. ((\tilde{x} - x_k) (-\sin \alpha) + (\tilde{y} - y_k) \cos \alpha) \right]
\]

\[
= 2 \sum_{k=i}^{i+n} \left[\cos \alpha \sin \alpha \left((\tilde{y} - y_k)^2 - (\tilde{x} - x_k)^2 \right) \right] +
\]

\[
\left[\left(\cos^2 \alpha - \sin^2 \alpha \right) (\tilde{y} - y_k) (\tilde{x} - x_k) \right]
\]

\[
= \sin (2\alpha) \sum_{k=i}^{i+n} \left((\tilde{y} - y_k)^2 - (\tilde{x} - x_k)^2 \right) +
\]

\[
2 \cos (2\alpha) \sum_{k=i}^{i+n} \left((\tilde{y} - y_k) (\tilde{x} - x_k) \right) = 0
\]

Since the two summed terms of equation 19 are functions of the measurement points only, the equation can be solved for \(\alpha \) through the application of Arcus-Tangens, \(\alpha \) can then be substituted back into equation 18 to solve for \(r \). Using Arcus-Tangens, however, has the disadvantage that there are two possible solutions for \(\alpha \), namely the result from Arcus-Tangens and the same plus \(\pi/2 \). This problem can be avoided if atan2 is used, see also equation 20.

\[
\alpha = \frac{\text{atan}2\left(2 \sum_{k=i}^{i+n} (\tilde{y} - y_k) (\tilde{x} - x_k), \sum_{k=i}^{i+n} (\tilde{y} - y_k)^2 - (\tilde{x} - x_k)^2 \right)}{2}
\quad \text{(EQ. 20)}
\]
Although atan2 repeats itself every π, this is of no concern as two solutions (r, α) and $(-r, \alpha+\pi)$ are identical (and equation 18 returns as a result $-r$ when $\alpha+\pi$ is substituted).

In summary, the least squares solution for a line can be found by applying equation 20 and equation 18 to the measurement points. This is an improvement compared to the original formulation of Kanayama as ambiguities with respect to α are removed.

3.5.3 Cluster analysis

In the last section a method of fitting a straight line represented by r and α to range data was presented. This process is applied to a sub-set which "slides" along the whole scan. This process can be viewed as a transformation of the range data to equally many points in an $r\alpha$-space, the parameter space of the results from the line fitting. In this $r\alpha$-space "clusters" of line fitting solutions will form, these clusters indicate that many sub-sets of measurement points were lying on a structure which was straight (or they were lying on co-linear straight structures). In general a cluster is a collection of observations (in this case $r\alpha$ values) that lie "close" together and represent some underlying common feature (in our case a straight line), i.e. all these observations belong to the same "class". The clusters are in other words evidence for the presence of correspondingly many walls in the environment. The clusters contain the co-ordinates of the walls in the robot co-ordinate system $\{R\}$, and hence contain all the information we need to complete equation 10. It should be noted that the correlations between the modelled walls and the walls found in the sensor data may need to be determined separately, which will be discussed below.

A number of clustering methods are available to analyse the observations so that they can be assigned to the various classes. An introduction to clustering can be found in [Dubes 93]. For our purpose of classifying the measurements as belonging to a wall or not we have investigated only a few methods, which will be presented below.
Within the field of neural networks there are a number of systems suitable for clustering. Before progressing onto one particularly suited neural network model for clustering a short description of neural networks in general will be provided.

A neural network consists of a number of processing elements, neurons, connected to each other with weights. Each neuron generates an output, typically a number, through applying some simple function to the weighted sum of all its inputs. The output of the neuron is distributed to the other neurons. Some neurons take their input from the environment, these neurons are called input neurons. Other neurons provide an output which can be used by the environment, these neurons are called output neurons. Associated with the neural network is a training method. The purpose of the training method is to modify the weights of the neural network so that the neural network exhibits some desired behaviour. Associated with the training method is normally a number of parameters, such as the "learning rate".

Kohonen introduced a neural network model [Kohonen 93], see also [Ritter 91], which can be used for clustering. Upon completion of the training phase the weights of the Kohonen network represent centres of clusters in the training data. Furthermore, the output value of the neurons in the output layer indicate to which cluster does a particular input value belong. For our investigations we have utilised a simplified Kohonen neural network model, with two layers (the input and the output layers) and full set of weights between the layers. The input layer always has two neurons (corresponding to the 2 dimensions of the data space \(r \) and \(\alpha \)) the output layer has as many neurons as there are expected clusters, see also figure 15.

The training algorithm for this network is as follows (see also [Bernasconi 92]):

1. In order to initialise the network set \(t \) to zero and randomize all the weights \(W_{ij}(t) \).
2. Apply a randomly selected observation \(X_j(t) \) to the \(j \) input neurons, in our case \(r_k \) and \(\alpha_k \) to neurons 1 and 2 respectively.
3 Calculate the "distances", d_i, between $X_j(t)$ and each and every output neuron, according to equation 21.

$$d_i = \sum_{j=1}^{2} [X_j(t) - W_{ij}(t)]^2, \ (i = 1...n) \quad \text{(EQ. 21)}$$

4 Determine the closest neuron (the winner neuron) i^*.

Figure 15: Schematic view of the Kohonen neural network employed for clustering of the $r\alpha$-values into n clusters
Update the weights according to equation 22,

\[W_{ij}(t + 1) = W_{ij}(t) + \eta(t) \cdot \Lambda_{ii^*}(t) [X_j(t) - W_{ij}(t)] \]

(EQ. 22)

where the functions \(\eta(t) \) and \(\Lambda_{ii^*}(t) \) represent the "learning rate" and the "neighbourhood function" respectively.

Repeat from 2 ("sufficient" number of times).

The "learning rate", \(\eta(t) \), and the "neighbourhood function", \(\Lambda_{ii^*}(t) \), are both functions of time. The neighbourhood function takes a form as visualised in figure 16. The value of \(\eta(t) \) always lies in the interval \([0, 1]\) and decreases with time, the value of \(\Lambda_{ii^*}(t) \) is 1 for \(i=i^* \) and less than 1 otherwise, additionally the "reach" of \(\Lambda_{ii^*}(t) \) is decreased over time so that eventually only \(i=i^* \) is affected.

The effect of the learning is that the weights \((W_{ij})\) are "moved towards" the input example \(X_j(t) \). As examples from one wall all tend to be close together, the weights are over time moved towards these clusters. At the end of the training period \(W_{ij} \) tells us the \(r \) and \(\alpha \) of the clusters.

![Graph showing typical neighbourhood function for the Kohonen network training rule.](image)
The number of output neurons determine the number of clusters being sought by the Kohonen network, and the number of expected clusters is directly available from the world model. Problems only arise when there are different number of clusters present (e.g. because a wall is obstructed or due to an un-modelled obstacle with a large flat surface). The Kohonen network may then converge to a false result, or two sets of weights represent the same cluster. This has to be handled in a post-processing step to the Kohonen network. An additional problem is that after learning we do not know which weight pair represents which modelled feature. However, we can ensure that the correspondence between weights and expected clusters is fixed if we initialise the weights with expected values (on how to calculate the expected values for r and α, see later this section).

The above method (using expected r's and α's) was implemented and tested for mobile robot localisation off-line on the Sun workstation network of the IfR, see [Andersson 94] and [Vestli 94]. Subsequently it was tested on the real-time embedded controller of the mobile robot system. However, processing times of up to 20 seconds were necessary to achieve convergence. Although it would most certainly be possible to speed this up through careful tuning of the learning algorithm parameters ($\eta(t)$, $\lambda_{ij}(t)$) and the number of iterations we believe that this method is currently not suitable for our purposes due to its non real-time characteristics.

A faster method for clustering must therefore be found. Exploiting the (inaccurate) odometric position estimate is a help to this end. The mobile robot control system has at its disposition a data base with a model of the (expected) current environment, all expressed in the world co-ordinate system $\{W\}$. Assuming that an odometric position estimate is available (also expressed in $\{W\}$) we can then calculate where the clusters in the $r\alpha$ space can be expected.

The parameters r and α are essentially the co-ordinates of a line / wall (in any co-ordinate system) and the odometric position of the robot is given as (x, y, θ) see also figure 17. Applying some geometry
we find that the expected location $\{R\}(r, \alpha)$ (in the robot co-ordinate system $\{R\}$), and hence cluster, of a (world) line $\{W\}(r, \alpha)$ is as in equation 23 and equation 24,

$$\{R\}_r = \{W\}_r - \begin{bmatrix} \cos(-\{W\}_a) & -\sin(-\{W\}_a) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \quad (EQ. 23)$$

$$\{R\}_\alpha = \{W\}_\alpha - \theta \quad (EQ. 24)$$

where $[x, y]^T$ and θ represent the odometrically estimated position and orientation of $\{R\}$ in $\{W\}$. Due to the inaccuracies of the odometry the wall will not appear in the r\(\alpha\) space exactly at these co-ordinates (if they were this whole procedure would have no point in any case), however, if small movements can be assumed between position
updates (which can be done if the real time requirement is met) then at least the wall should lie within some tolerance \(\sigma_r, \sigma_\alpha \). The measured and calculated \(p_i=(r, \alpha)_i \) can then be assigned to a cluster \(C_j \) according to the formula of equation 25.

\[
p_i \in C_j \quad \left\{ \begin{array}{l}
r_j - \sigma_r \leq r_i \leq r_j + \sigma_r \\
\wedge \\
\alpha_j - \sigma_\alpha \leq \alpha_i \leq \alpha_j + \sigma_\alpha
\end{array} \right.
\]

(EQ. 25)

This rule is then applied to all the measured and calculated \(\{R\} (r, \alpha)_i \) for all the expected lines \((r, \alpha)_j \) (\(j=1 \ldots \text{NumberOfVisibleLines} \)) as found in equation 23 and equation 24, and for each point the corresponding class (line) is recorded. The possibility of multiple classes is ignored, a point is assigned to the class against which it is checked (successfully) last. All the points receiving no classification are ignored for the rest of the calculations.

After the classification of all \(\{R\} (r, \alpha) \)'s the values for equation 9 and equation 10 can be calculated as the arithmetic averages of those values that have been assigned to one cluster.

Additionally this method allows:

- Automatically relating the measurement to the modelled line, in contrast to say the Kohonen method where the correspondence between the clusters found and expected had to be determined in a post processing step after the clustering itself.
- Increasing robustness in that only "large" clusters are used for subsequent calculation. The cut-off being determined by how many points are present in the cluster.

Consider the example scan and environment of figure 18. The odometrically estimated position for this scan was \(x = 1.2, y = 1.2 \) and \(\theta = 0.101 \), the two modelled lines have parameters \(r_1=0.1, \alpha_1=0.0, r_2=0.1, \alpha_2=1.571 \), a constant set of tolerances \(\sigma_\alpha = \sigma_r = 0.2 \) are in
Figure 18: Example of raw sensor data (points) together with the modelled environment (continuous lines). The raw data is displayed in the odometric co-ordinate system, the lines in the world co-ordinate system.

effect. After preprocessing and least squares line fitting we have the ρα-space of figure 19. Similarly in figure 19 the expected clusters with ±tolerances are displayed.
Figure 19: $r\alpha$-space of the sensor data in figure 18 (dots) displayed together with the rectangles within which the clusters are expected. Additional clusters are also present, these are due to unmodelled features in the environment, e.g., the washbasin located approximately at $x=4.1$, $y=1.0$.
After the clustering procedure we can set up the following two equations for the position \((x,y)\) and orientation (for \(\theta\) see also equation 27 and equation 26).

\[
\theta = \frac{0.1010 - 0.0047 - 0.02399}{3}
\]

(EQ. 26)

\[
\begin{bmatrix}
1.0606 \\
1.0568 \\
1.2000 \\
1.2000
\end{bmatrix}
=
\begin{bmatrix}
1.0000 & 0 \\
-0.0002 & 1.0000 \\
1.0000 & 0 \\
0 & 1.0000
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\]

(EQ. 27)

Solving equation 27 and equation 26 gives us a position of \(x=1.13\), \(y=1.12\), \(\theta=0.0240\).

In summary this method works by:

- Removing data that is uninteresting for the purpose of position update.
- Fitting lines to neighbouring points generating a representation of the range data in which geometric structures can easily be identified.
- Using expectancies, finding clusters in this new space corresponding to the modelled features.
- Constructing and solving a small over-determined system of equations for the position.

Later on, in the experimental section it will be demonstrated that this method is: accurate, fast and robust.

This method of cluster extraction is based on calculating the expected locations of the clusters in order to assign the data to their respective clusters. The calculation of the expected locations is based on world model data and the robots odometric position in the world coordinate system. Therefore, this method will only be able to use, for the purpose of calculating the robots position, those structures which have
been modelled. Any un-modelled structure, such as an obstacle, will generate a cluster, this cluster, however, will not be used in the subsequent calculations.

Later on it will be seen that in some cases the clusters will not be as distinct as desired, particularly in the case of a cylinder. This can be alleviated by introducing a measure of quality to all the points under considerations, and only to consider those points which have a minimum quality in the clustering procedure. The exact quality measure will vary depending on the particular structure "behind" the cluster, and the quality measures will therefore be defined in the appropriate sections.

3.5.4 Position from a corner

A corner is in many ways similar to a co-ordinate system, and co-ordinate transformations could be used to calculate a mobile robot position if the transformations between the corner co-ordinate system and the robot system as well as the transformation between the world co-ordinate systems and the corner co-ordinate system were known. In this work this will not be exploited for the following reasons:

- The corner is a junction between two walls and the robots orientation can be extracted directly from walls (see previous section), using the corner orientation would amount to using redundant data.
- If the orientation of the robot co-ordinate system with respect to the world co-ordinate system is known then the position can be calculated by simple geometry. Furthermore, it is safe to assume that the robots orientation is known since in the presence of a corner at least two walls are present which yield the orientation.

Referring to figure 20 the mobile robot position in the world co-ordinate system, \({^w}_x \) and \({^w}_y \), is given as in equation 28 and
equation 29.

\[
\begin{align*}
\{w\}_x &= \{w\}_{x_c} - (\{r\}_{x_c}\cos\theta - \{r\}_{y_c}\sin\theta) \\
\{w\}_y &= \{w\}_{y_c} - (\{r\}_{x_c}\sin\theta + \{r\}_{y_c}\cos\theta)
\end{align*}
\] (EQ. 28)

\[
\begin{align*}
\{w\}_x &= \{w\}_{x_c} - (\{r\}_{x_c}\cos\theta - \{r\}_{y_c}\sin\theta) \\
\{w\}_y &= \{w\}_{y_c} - (\{r\}_{x_c}\sin\theta + \{r\}_{y_c}\cos\theta)
\end{align*}
\] (EQ. 29)

Figure 20: Example of a corner in the sensor and the world coordinate systems.

Here \(\{w\}_{x_c}\) is the x co-ordinate of the corner in the world co-ordinate system, \(\{w\}_{y_c}\) is the y co-ordinate of the corner in the world co-ordinate system, \(\{r\}_{x_c}\) is the x co-ordinate of the corner in the robot co-ordinate system, \(\{r\}_{y_c}\) is the y co-ordinate of the corner in the robot co-ordinate system, and \(\theta\) is the orientation of the robot co-ordinate system with respect to the world co-ordinate system.

Using equation 28 and equation 29 it is possible to extract the position of the robot co-ordinate system directly. Hence, it is easy to integrate the positional information from corners with that from walls
through adding rows to the equation for position (see equation 27). For each corner it is necessary to add two rows, one corresponding to \(\{W\} y \) and one corresponding to \(\{W\} x \). An example of such an equation for the robots position is given in equation 30,

\[
\begin{bmatrix}
\{W\} r_1 - \{R\} r_1 \\
\{W\} r_2 - \{R\} r_2 \\
\{W\} x \\
\{W\} y \\
\end{bmatrix}
= \begin{bmatrix}
\cos \{w\} \alpha_1 & \sin \{w\} \alpha_1 \\
\cos \{w\} \alpha_2 & \sin \{w\} \alpha_2 \\
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix}
\] (EQ. 30)

where the first two rows are contribution from walls and the last two rows a contribution from a corner. Hence, the task is reduced to the same as for the straight line, to find corners in the sensor data.

3.5.5 Extracting corners

A number of methods are available for corner extraction in range data. A discussion of several of the different methods, e.g. template matching and matched filtering, can be found in [Vestli 95]. In this work, however, it is of advantage to exploit the pre-processing carried out for the detection of walls (see section 3.5.2) for the purpose of corner detection. Exploiting the data produced by the processing mentioned in section 3.5.2 has the advantage that the edge detection can be implemented without the need for large amounts of additional processing power.

In figure 21 a range-finder scan together with the lines fitted to points \(p \) and \(q \) are displayed. The lines were found using equation 18 and equation 20, i.e. the lines are represented with \(r \), the perpendicular distance to the line from the origin of the co-ordinate system, and \(\alpha \), the angle between the x axis of the co-ordinate system and the perpendicular line. If the points \(p \) and \(q \) are on different sides of the corner then the crossing point of the lines fitted to \(p \) and \(q \) respectively
can be used to gain information on the location of the corner. The crossing point of the two lines, and hence the probable location of the corner is given in equation 31,

$$\begin{bmatrix} r_p \\ r_q \end{bmatrix} = \begin{bmatrix} \cos \alpha_p & \sin \alpha_p \\ \cos \alpha_q & \sin \alpha_q \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \quad \text{(EQ. 31)}$$

where x and y are the sought variables. Corners can then be found by applying the following procedure:

1. Let s_i be the i^{th} measurement point in the scan.
2. Initialise $i = 1$.
3. Apply equation 31 to $p = s_i$ and $q = s_{i+j}$, where $j = 1..k$, and k is a constant (for our experiments we have used $k=5$).
Increment i and if $i \leq n$ then repeat from 3, n is the number of range readings in the scan.

By the above described method a cluster of solutions will form at the location of the corner. This cluster can then be extracted with the same methods as described for the straight line case and the mobile robots position can be found by applying equation 28 and equation 29. An example of a range-finder scan can be found in figure 22.

![Range data](image)

Figure 22: Range data with two potential corners, one at (1.5, 2.2) and one at (-2.2, 0.5).

and the corresponding clusters indicating the location of the corners is visualised in figure 23.

In order to minimise the burden on the processor it is advisable to include checks before applying equation 31 in step 3 above. If α_p and α_q have nearly the same value then they are probably lying on the same straight wall and we may continue directly with the next q without solving equation 31. For our experiments we have insisted on a
Clusters from corners

Figure 23: The result of the corner extraction process (clustering) when applied to the range data of figure 22, two clusters corresponding to the two potential corners were found.

difference in α's of the order of $\pi/2 \pm \pi/8$. In addition to minimising the processor load no difficulties with ill conditioned equations will be experienced if such a check is integrated.

3.5.6 Position from a cylinder

Further natural landmarks that frequently are found in buildings are pillars with cylindrical and rectangular shapes. The information on any rectangular such structures can be extracted with the line fitting and corner extraction described above, hence this section will focus on extracting position information from cylinders only.
Assume that one cylinder is visible to the robot’s sensor. Furthermore, assume that the world cartesian information on this cylinder \((W)_{xcy}, (W)_{ycy}, (W)r_{cy}\), where \((W)_{xcy}\) and \((W)_{ycy}\) is the centre of the cylinder and \((W)r_{cy}\) is the radius, is given. Finally, if the same information on the cylinder can be extracted from the robot’s sensor data in the robot’s co-ordinate system \((R)_{xcy}, (R)_{ycy}, (R)r_{cy}\) then we may constrain the robot’s world position \((W)x_r, (W)y_r\) as in equation 32 below, see also figure 24.

![Figure 24: A cylindrical pillar in the robot \{R\} and world \{W\} co-ordinate systems. If the information on this cylinder is known in the world system \((W)_{xcy}, (W)_{ycy}, (W)r_{cy}\) and can be found in the sensor data \((R)_{xcy}, (R)_{ycy}, (R)r_{cy}\) then the position of the robot \((W)x_r, (W)y_r\) is restricted to lying on the dashed circle.](image)
The left hand side of equation 32 corresponds to the square of the radius of the circle on which \{R\} is lying (dashed circle in figure 24), \(x_{cy}^R\) and \(y_{cy}^R\) is to be extracted from the sensor data. The right hand side of equation 32 corresponds to the common formula for a circle centred on \(x_{cy}^W\) and \(y_{cy}^W\) (world model information) with \(x_r^W\) and \(y_r^W\) being the sought information (robot position). As this means that the robot position can be anywhere on a circle we cannot extract the orientational information of the robot \((W_\theta)^R\) from a circle directly.

However, if the orientation, \(\theta\), of the robot co-ordinate system \{R\} relative to the world co-ordinate system \{W\} is known then it is possible to use equation 33 and equation 34 to determine the positional contribution from the corner.

\[
\begin{align*}
\{W\}x &= \{W\}x_{cy} - (\{R\}x_{cy} \cos \theta - \{R\}y_{cy} \sin \theta) \\
\{W\}y &= \{W\}y_{cy} - (\{R\}x_{cy} \sin \theta + \{R\}y_{cy} \cos \theta)
\end{align*}
\]

This is analogous to the case of a corner, see also equation 28, equation 29 and figure 20.

The problem is again the same as for lines and corners: to extract circles with their associated cartesian information from the noisy sensor data. Consider the case of a number of sensor data points \(p_1 \ldots p_n\), in the robot co-ordinate system \(p_i = \{R\}x_i, \{R\}y_i\), lying on a circle centred at \(x_c^R, y_c^R\) with radius \(r_c^R\). Considering only one of these \(n\) measurements, namely \(p_i\), it is possible to formulate
equation 35.

\[
0 = \left(\{R\} x_i - \{R\} x_c \right)^2 + \left(\{R\} y_i - \{R\} y_c \right)^2 - (r_c)^2 \quad \text{(EQ. 35)}
\]

Expanding equation 35 and rearranging the terms gives equation 36,

\[
- \left(x_i^2 + y_i^2 \right) = -2x_i x_c - 2y_i y_c + \left(x_c^2 + y_c^2 - r_c^2 \right) \quad \text{(EQ. 36)}
\]

for the sake of brevity the leading \{R\} superscripts have been dropped. Equation 36 may be re-written in matrix form as in equation 37.

\[
\begin{bmatrix}
- \left(x_i^2 + y_i^2 \right)
\end{bmatrix}
= \begin{bmatrix}
-2x_i & -2y_i & 1
\end{bmatrix}
\begin{bmatrix}
x_c \\
y_c \\
x_c^2 + y_c^2 - r_c^2
\end{bmatrix} \quad \text{(EQ. 37)}
\]

In equation 37 only one measurement (measurement i) has been considered. In the case where several measurements are used equation 37 may be expanded to give equation 38, an overdetermined system of linear equations with three unknowns \(x_c, y_c\) and \(q_c=x_c^2+y_c^2-r_c^2\).

\[
\begin{bmatrix}
- \left(x_1^2 + y_1^2 \right) \\
- \left(x_2^2 + y_2^2 \right) \\
\vdots \\
- \left(x_n^2 + y_n^2 \right)
\end{bmatrix}
= \begin{bmatrix}
-2x_1 & -2y_1 & 1 \\
-2x_2 & -2y_2 & 1 \\
\vdots & \vdots & \vdots \\
-2x_n & -2y_n & 1
\end{bmatrix}
\begin{bmatrix}
x_c \\
y_c \\
q_c
\end{bmatrix} \quad \text{(EQ. 38)}
\]

Equation 38 may then be solved for \(x_c, y_c\) and \(q_c\) using linear algebra.

Applying the formula of equation 38 to successive “windows” into the sensor data (\(p_i \ldots p_{i+n}, p_{i+1} \ldots p_{i+1+n}, p_{i+2} \ldots \)) a cylinder manifests itself as a cluster of similar solution in the solution space for \(x_c, y_c\) and \(r_c\) in a manner similar to the straight line case presented earlier.
Initial experiments on sensor data indicated that some problems could be expected on the clustering as linear structures sometimes give results that appear close to each other. Therefore a measure of the quality of the fit was introduced, which allows the rejection of "solutions" which do not achieve a minimum quality, and which do not arise from a circular structure.

For the calculation of the quality of the fit the inverse to the sum of the residuals squared from the solution of equation 38 was utilised. The residuals \(r_1 \ldots r_n \) are given in equation 39 and the quality of the fit is calculated according to equation 40.

\[
\begin{bmatrix}
 r_1 \\
 r_2 \\
 \vdots \\
 r_n
\end{bmatrix} = \begin{bmatrix}
 -2x_1 & -2y_1 & 1 \\
 -2x_2 & -2y_2 & 1 \\
 \vdots & \vdots & \vdots \\
 -2x_n & -2y_n & 1
\end{bmatrix} \begin{bmatrix}
 x_C \\
 y_C \\
 q_C
\end{bmatrix} - \begin{bmatrix}
 -(x_1^2 + y_1^2) \\
 -(x_2^2 + y_2^2) \\
 \vdots \\
 -(x_n^2 + y_n^2)
\end{bmatrix}
\] (EQ. 39)

\[
Q_i = \left(\sum_{i=1}^{n} r_i^2 \right)^{-1}
\] (EQ. 40)

As an example on this method consider the graphics of figure 25. Applying successive least squares fitting to this set of range data the solutions of figure 26 are produced. In order to separate good from bad fits a line is plotted with a height which is proportional to the quality of the fit. One significant cluster can be seen and the average \(x \) and \(y \) of this cluster is the information sought. The clustering can be carried out by methods similar to those explained for straight lines and will thus not be discussed further.
3.5.7 Summary of structure extraction methods

In section 3.5.1 to section 3.5.6 a detailed analysis on extraction of positional information from a number of different geometric features were described. Before progressing onto the issue of combining all this information a quick summary may be appropriate.

In order to achieve a final compact formulation of the problem of determining the position of the mobile robot a strategy which matches structures in the sensor data to structures in the world model was selected.

In order to improve the quality of the subsequent extraction of geometric structures the sensor data is filtered. The filters discussed reject first of all data that are out of range, then any other data which appear "alone" in the sensor data set and thus have no information on...
Clustering from circle fit

Figure 26: A scatter plot of the solutions to the least squares circle fitting described above. For each solution \((x, y) \) a bar proportional to the quality of the fit is plotted. At \((2.0, 0.0) \) a cluster of high quality solutions can be observed, this corresponds to the semi-circle in the range data of figure 25.

the structure of the environment, finally the data set is "thinned" which gives a uniform quality of the information, independent on the range, to any structure.

After filtering a number of methods for extracting geometric information were presented. Straight lines (walls) are found through a least squares fitting of straight lines to subsequent sub-sets of the sensor data and extraction of clusters in the solution space of the straight lines fitting. A similar method is used for cylindrical objects, however, a different least squares fitting approach had to be utilised. Additionally, it was necessary to introduce a measure for the quality of the fit when extracting circles. In the case of corner extraction the
results from the least squares fitting for the walls were further exploited. The point where pairs of the straight lines fitted in wall extraction process cross is a potential location of a corner. In the same manner as in the case of a wall and of a cylinder clusters form where a corner is present.

3.5.8 Combination of different geometric information

In the previous sections it has been demonstrated how positional information can be extracted from geometric structures such as walls, corners and cylinders through a process of pre-processing and cluster extraction. In the case of walls and corners it has also been shown how the positional information from the different sources can be combined. Although it has been shown that cylinders can be found in the same manner as walls and corners the combination of positional information from a cylinder with that from a wall or a corner is not quite so easy.

The robot's position can be found from walls and corners by solving a linear system of equations, see equation 30. In the case of a circle the equation yielding the position is, in general, quadratic. Only when it can be assumed that the orientation of the robot co-ordinate system is known with respect to the world co-ordinate system does a cylinder yield positional information which can directly be combined with positional information from walls and corners through linear algebra.

In the general case, when positional information from a circle is available and the orientation of the robot co-ordinate system with respect to the world co-ordinate system is not know, an iterative solution is called for. Re-writing the constraint equations for lines, points (odometry and corners) and cylinders we may formulate the following equations for the residuals squared equation 41 to equation 43.

\[s_p = \left(x_r - x_p \right)^2 + \left(y_r - y_p \right)^2 \]

(EQ. 41)
\[S_l = \left(\{w\} x_r \cos \alpha_l + \{w\} y_r \sin \alpha_l - r_l \right)^2 \]

(EQ. 42)

\[S_{cy} = \left(\left(\{w\} x_r - x_{cy} \right)^2 + \left(\{w\} y_r - y_{cy} \right)^2 - r^2 \right)^2 \]

(EQ. 43)

\(S_p \) represents the squared distance from a point, \(S_l \) the squared distance to a line and \(S_{cy} \) the squared distance to a circle. These equations may be seen as functions of the "true" robot position \({W}x_r\) and \({W}y_r\) and all the remaining parameters are constants extracted from the sensor data or provided by the world model.

A least squares solution attempts to find the minimum of the total error, see also equation 44.

\[S_{tot} = S_{odometry} + \sum_l S_l + \sum_{cy} S_{cy} + \sum_{co} S_{co} \]

(EQ. 44)

The summed terms indicate that each line, cylinder and corner have their own contribution and the odometry is one separate contribution. At the least squares solution the partial derivatives of \(S_{tot} \) with respect to \({W}x_r\) and \({W}y_r\) must be zero and in the vicinity of the solution we may consider \(S_{tot} \) to be of second degree (i.e. parabolic).

This means that the partial derivatives of \(S_{tot} \) with respect to \({W}x_r\) and \({W}y_r\) change sign at the solution and that this sign change is the only sign change in the close proximity. Thus we may use the method of bisection (see also [Press 86]) to find the root of the partial derivatives of \(S_{tot} \) which also yields the least squares solution to equation 44.

The bisection method works by initially defining two limits, upper and lower, which span the solution of the function, i.e. the function returns different signs when evaluated at upper and lower. The function is then evaluated at the mid-point of upper and lower and the sign of
the mid-point is examined. The mid-point is then used to replace the limit with the identical sign and the procedure repeats with the calculation of a new mid-point. This iterative process is continued until the desired accuracy is achieved. In our case that means that the procedure is as follows in x (y being equivalent):

1. Define \((W)x_{r-upper} \) and \((W)x_{r-lower} \) and evaluate the partial derivative of \(S_{tot} \) at both values.
2. If the difference \((W)x_{r-upper} \) and \((W)x_{r-lower} \) is smaller than a preset minimum then exit from this iterative procedure otherwise continue with 3.
3. Let \((W)x_{r-mid} = \frac{(W)x_{r-upper} + (W)x_{r-lower}}{2} \).
4. Evaluate the partial derivative of \(S_{tot} \) at \((W)x_{r-mid} \).
5. If \(\text{sign}(\frac{\partial}{\partial x} S_{tot}(W)x_{r-mid})) = \text{sign}(\frac{\partial}{\partial x} S_{tot}(W)x_{r-lower})) \) then \((W)x_{r-upper} = (W)x_{r-mid} \)
 else \((W)x_{r-lower} = (W)x_{r-mid} \).
6. repeat from 2.

With this method it is then possible to integrate all the positional information gained with the previous feature extraction algorithms, consider also the example below.

In figure 27 an environment which contains one modelled and sensed wall and one modelled and sensed cylinder is visualised. The odometric position estimate (indicated with a + in the drawing) is \([0.9, 0.9]\). The cylinder is located at \([2.0, 1.0]\) (in \(\{W\} \)) and has been found at a radius of 1.0 (in \(\{R\} \)). The distance of the line on which the robot is located (according to the wall and the sensor data from the wall) is 1.0.

The iterative algorithm above was used to find the least squares solution to this problem with the following initial values: \((W)x_{r-upper} = 0.9 + 0.2 \), \((W)x_{r-lower} = 0.9 - 0.2 \), \((W)y_{r-upper} = 0.9 + 0.2 \), \((W)y_{r-lower} = 0.9 - 0.2 \). The iterative solutions are plotted in figure 28 (for the x co-ordinate) and figure 28 (for the y co-ordinate). After 10 iterations the difference between the upper and lower limits are
Figure 27: Example environment containing one modelled and sensed wall, one modelled and sensed cylinder. The cross indicates the odometric position estimate. The two structures introduce two constraint equations for the mobile robot position (in addition to the odometry). These equations are visualised with the dashed lines.

negligible 0.78 [mm] (in both co-ordinates) and the solution is [0.9809, 0.9871].

3.6 Scanning while moving

The position update algorithms of this chapter have assumed that all the separate measurements of the range finder scan have been recorded in the same co-ordinate system, i.e. with the sensor stationary. In reality it may be desirable to have the robot moving whilst recording data, hence the above assumption may not hold.
Convergence of x estimate

Figure 28: Trajectory of the iterative solution in the x co-
ordinate. The upper limit is marked with +, the lower
limit with o and the middle value with x.

To enable scanning while moving the following procedure can be
used. Simultaneously to measuring the first range of the scan the
robot's odometric position, p1, is recorded. Further, simultaneously to
measuring the last range of the scan the robot's odometric position, pn,
is also recorded (there are n separate range measurements in the scan).
Furthermore, we will assume that the robot has made a linear
movement in all degrees of freedom between p1 and pn. It is then
possible to transform all the measurement points into one co-ordinate
system, for instance the co-ordinate system of the first range
measurement by using the subsequent equation 45.

The transformations of equation 45 are to be understood in the
following way: the i^{th} measurement, $(i)x_i$ and $(i)y_i$ expressed in the co-
Convergence of y estimate

Figure 29: Trajectory of the iterative solution in the y co-ordinate. The upper limit is marked with +, the lower limit with o and the middle value with x.

\[
\begin{bmatrix}
{\{i\}} x_i \\
{\{i\}} y_i \\
1
\end{bmatrix} =
\begin{bmatrix}
\cos\left(\frac{i-1}{n-1}\delta\theta\right) & -\sin\left(\frac{i-1}{n-1}\delta\theta\right) & \frac{i-1}{n-1}\delta x \\
\sin\left(\frac{i-1}{n-1}\delta\theta\right) & \cos\left(\frac{i-1}{n-1}\delta\theta\right) & \frac{i-1}{n-1}\delta y \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
{\{i\}} x_i \\
{\{i\}} y_i \\
1
\end{bmatrix}
\] (EQ. 45)

ordinate system \{i\}, is transformed into co-ordinate system \{1\}. The values \(\delta x\), \(\delta y\) and \(\delta q\) are the differences between the x, y and \(\theta\) values of \(p_i\) and \(p_n\), respectively.

The magnitude of the robot's movement between the first and the last measurement in a scan is a function of the robot's velocity and the time delay between the first and the last measurement in the scan. If the maximum velocity is limited and the time delay is small the magnitude
of δx, δy and δq also remains relatively small. Within the context of mobile robotics where a maximum velocity of 1 m/s is normal and where laser range finders can be expected to perform a scan in 50 ms we expect corrections to a measurement point of less than 5 cm. With faster sensor systems the magnitude of movement will drop even further. Since 5 cm is of the same order of magnitude as the inaccuracies in some laser range-finders it might be that the error introduced by the moving robot is insignificant compared to the other error sources. Furthermore, it is likely that laser range finders will get faster, as these sensor systems are still in their infancy, and that the maximum velocity of mobile robots will remain at around 1 m/s, as the danger of injury to people increases with the speed. Therefore, even with the current state of the technology, it is not to be expected that scanning-while-moving will present any major problem.

The transformation of the measurement data presented in equation 45 relies on that the error of the odometry is small for small robot movements. Wilful disturbance of the system, for example by moving the robot by hand or by oiling the floor so that wheel spin is caused, is not catered for. The exact nature of all the possible "exceptions" will not be known until more experience with the robot operating in a real environment is available. When this additional experience is available the "exceptions" will have to be analysed and resolved on a case by case basis.
4 Experiments

4.1 Guide to this chapter

The beginning of this chapter contains a number of “static” tests that verify the real-time, accuracy and robustness performance of the methods for position update introduced in this thesis.

Extended runs of the mobile robot in the mobile robot laboratories of the Institute of Robotics (IfR), Swiss Federal Institute of Technology Zürich (ETH) are presented.

The data is provided in graphical and tabulated form as appropriate.

4.2 Test for real time performance

As previously stated we believe that it is of fundamental importance that a position update cycle can be executed in real-time. The requirement for real-time for mobile robots was defined to be less than one second. The methods presented in this thesis must now be measured against this requirement.

The first test for real-time performance was carried out in the laboratories in the Technopark Zürich. All the algorithms were implemented in Oberon [Reiser 92] and executed on the mobile robot
embedded computer, a Motorola 68020 card running at 12 MHz [Motorola 87], under the real time operating system / development environment X Oberon [Diez 93].

For the purpose of timing the measurements the hardware timer of the mobile robots embedded computer was used. This timer provides a resolution of one millisecond.

For the first test the robot was placed so that the sensor data contains many readings (~50% of the total number of readings) from the modelled environment. The odometry and the world map was initialised to a value "near" to the "true" value. A number of position update cycles were then performed and their execution time recorded. Only one parameter was changed during this experiment, namely the number of raw sensor data.

The results of these tests are shown in figure 30 to figure 32. As expected, we observe an almost linear dependence on the raw sensor data. This is expected since the majority of the processing steps are linearly dependent on this parameter. Furthermore, we observe that even for large data sets (300 raw data per 2π) a total processing time of approximately 0.5 s only is necessary. It should be remembered that in parallel to the position update algorithms there are a number of high priority tasks running, such as the steering-angle controller, the propulsion-velocity controller, the odometry and the laser-scanner mirror-velocity controller. These all interrupt the position update algorithm. The time needed to acquire the data is currently 1 second, but this is not included in the figures. The data acquisition overhead can easily be reduced, for instance by using the industrial sensors which have just been introduced, see [Sick] and [Leuze]. In particular the sensor from Leuze Electronic is capable of transferring 720 separate measurements to the main computer in 200 ms [Argast 95]. Through pipelining of the process, i.e. by starting data processing before completion of data transmission, the time delay generated by the data acquisition could be further reduced. However, the time needed for the data processing algorithms themselves is more than 200
ms, and therefore any effort in improving the position update methods presented in this thesis should focus on the data processing and not on the data transmission.

The above tests for real time performance only use straight lines and the odometric position estimate for localisation. Hence, the different processing steps correspond to the functions described in the previous chapter as listed in table 3.

The next significant factor that influences the processing time (after the number of raw data points) is the number of modelled structures. The time required to complete step 9 will increase with

Figure 30: Total cpu time as a function of "raw" laser scanner data. The errorbars indicate the standard deviation observed.
increasing number of structures. However, it is seen that this time is only some 25% of the total time and that it is combined with other book-keeping functions. Additionally, we do not expect to have very large numbers of modelled structures, as the set of relevant structures is limited by the rough position (odometry) and the maximum range of the sensor.

It is expected that significantly faster processing times can be achieved with a later generation of processor cards (e.g. 68040), and in a multi processor environment the overhead load of the controllers can be reduced through distribution over available processors. Thus with only minor modifications one can expect to be able to achieve processing times in the order of 200 ms even for large problems.
Figure 32: Percentage of the CPU time falling on each individual sub-routine of the position update algorithm.

4.3 Test for repeatability

In section 3.2 the requirements with respect to the repeatability of the localisation algorithm were discussed, and a repeatability of ±10 mm was identified as adequate for the purpose of mobile robot positioning. In this section the methods presented in this thesis are tested for their repeatability.

The robot was placed in a “dead end” corridor and provided with an initial position estimate, a number of parameters of the algorithms and a data base containing the coordinates of the 3 visible walls. The details of the initialisation values are provided in table 4 to table 6 below.
<table>
<thead>
<tr>
<th>Processing step number</th>
<th>Localisation "sub-routine"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>Acquisition of data (retrieval from another module)*</td>
</tr>
<tr>
<td>2</td>
<td>Range limitation</td>
</tr>
<tr>
<td>3</td>
<td>Conversion from polar to Cartesian representation (equation 5)</td>
</tr>
<tr>
<td>4</td>
<td>Rejection of unsupported measurements</td>
</tr>
<tr>
<td>5</td>
<td>Thinning of data set</td>
</tr>
<tr>
<td>6*</td>
<td>Book-keeping function*</td>
</tr>
<tr>
<td>7</td>
<td>Calculation of the two sums of equation 20</td>
</tr>
<tr>
<td>8</td>
<td>Calculation of r and (equation 20 and equation 18)</td>
</tr>
<tr>
<td>9(*)</td>
<td>Bookkeeping functions* plus matching of clusters and solving system of equations (equation 25, equation 26 and equation 27)</td>
</tr>
</tbody>
</table>

Table 3. Correspondence between graphics and method described earlier. The processing steps marked with * do not participate in the update process but are included for technical reasons.

<table>
<thead>
<tr>
<th>Coordinate</th>
<th>Initial value</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1.02 [m]</td>
</tr>
<tr>
<td>y</td>
<td>0.89 [m]</td>
</tr>
<tr>
<td>θ</td>
<td>0.001 [rad]</td>
</tr>
</tbody>
</table>

Table 4. Initial odometry values

After initialisation repeated cycles of the position update algorithm were performed, each time with new range data. The x-, y-
Identifier	r	α \\
Wall 1 | 0.1 [m] | 1.571 [rad]
Wall 2 | 0.1 [m] | 0.0 [rad]
Wall 3 | 2.21 [m] | 1.571 [rad]

Table 5. Content of the data base for accuracy tests

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of range data evenly distributed over 2π before any filtering.</td>
<td>300</td>
</tr>
<tr>
<td>Number of elements in line fitting.</td>
<td>7</td>
</tr>
<tr>
<td>Maximum range</td>
<td>4.0 [m]</td>
</tr>
<tr>
<td>Minimum range</td>
<td>0.5 [m]</td>
</tr>
<tr>
<td>Maximum distance to neighbour point</td>
<td>0.3 [m]</td>
</tr>
<tr>
<td>Minimum distance to neighbour point</td>
<td>0.06 [m]</td>
</tr>
<tr>
<td>Minimum number of points in cluster, i.e. a cluster containing less points is removed from subsequent steps.</td>
<td>1</td>
</tr>
<tr>
<td>Size of cluster (α)</td>
<td>± 0.2 [rad]</td>
</tr>
<tr>
<td>Size of cluster (r)</td>
<td>± 0.2 [m]</td>
</tr>
</tbody>
</table>

Table 6. Parameters of the position update algorithms

and θ-values of the robot position were recorded. In figure 33 to figure 35 the recorded values are visualised. Due to a rather large error in the initial odometric value only the last 25 measurements are visualised. Inspecting these figures it becomes clear that the accuracy is high, a condensed tabulated result is found below in table 7.
Sensor supported x position estimate

Figure 33: Time history of the x position estimate when testing for accuracy. In this context a measurement refers to the whole process from data acquisition through to solving for the robot position.

Table 7. Accuracy / repeatability of the sensor supported robot position estimate.

<table>
<thead>
<tr>
<th>Coordinate</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>3 [mm]</td>
</tr>
<tr>
<td>y</td>
<td>4 [mm]</td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.3°</td>
</tr>
</tbody>
</table>

4.4 Test for robustness

As mentioned in section 3.2.1 it is important to test the performance of the position update algorithms under less than optimal
Sensor supported y position estimate

std. dev. 0.003726 m

Figure 34: Time history of the y position estimate when testing for accuracy.

conditions. Below an attempt at demonstrating the tolerance of the method is presented.

The mobile robot was placed in a position where two walls could be seen, see figure 36. The walls were perpendicular to each other. The data base was updated with the coordinates of the two walls and the initial odometric estimate was initialised to an accuracy of a few centimetres and degrees.

After initialisation a number of position update cycles were performed. Each update includes the following processes: acquisition of range data, filtering, matching, least squares solution of over determined system of equations. The new estimated robot position was recorded and used to over-write the old estimate. After a number of such cycles a disturbance was introduced that partially blocked the view of one of the walls, see figure 37. With this disturbance another
set of position update cycles were performed. Subsequently, more and more disturbances were introduced, until the algorithm “failed”, see figure 38 to figure 40. The various program constants for this experiment are listed in table 8.

For each situation 10 measurements were taken. Below in table 9 an overview of the algorithms “robustness” is given. The methods employed must be said to be robust. Despite introducing even major disturbances, partially blocking the sensor’s view of the structures, the variance of subsequent position estimates has the same order of magnitude as in the ideal case. Nevertheless, a few effects are worth considering in more detail. In particular it is interesting to note that for an occlusion of 100% the standard deviation in the y direction is 0. What happens is that the algorithm fails to find the wall (i.e. cluster in the \(\alpha \)-space). Therefore no entry is made which provides a correction in the y-direction. The y estimate therefore remains stable at its last

\textit{Figure 35: Time history of the orientation estimate when testing for accuracy.}
value. This is expected in this situation since the walls are parallel to the world x & y axis. In an environment where this is not the case, or where more walls are present this effect is not observed.
4.5 Positioning from corners

In the previous sections only those part of the position update methods which use straight walls were tested. In this section the positioning using corners will be tested.
Figure 38: 60% of Wall 2 is obstructed by an obstacle

However, before progressing, it is important to notice that the laser range finder utilised in the previous section [Acuity] was replaced with an industrial sensor [Sick] prior to the experiments of this section. Furthermore, it is important to notice that the industrial sensor has a range resolution of 5 cm. This means that the “Sick sensor” compares unfavourably to the “Acuity sensor” and hence that the results
Figure 39: 80% of Wall 2 is obstructed by an obstacle

presented in this section will be somewhat inferior to those presented in the previous section. Apart from the replacement of the sensor system the experimental setup was not changed.

The positioning from corners presented in this thesis utilises the results from the positioning from walls, such as the r and α values generated from the least squares fitting and the orientation of the robot
co-ordinate system with respect to the world co-ordinate system. Therefore only those results which relate directly to the “additional” processing needed to find the robots position from a corner is presented.

For the purpose of testing the positioning using corners the same procedure as in the previous section was followed. The robot was placed so that a corner was visible and the position estimate initialised
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of "raw" range data</td>
<td>300</td>
</tr>
<tr>
<td>Number of elements in line fitting</td>
<td>7</td>
</tr>
<tr>
<td>Maximum range</td>
<td>4.0 [m]</td>
</tr>
<tr>
<td>Minimum range</td>
<td>0.5 [m]</td>
</tr>
<tr>
<td>Maximum distance to neighbour point</td>
<td>0.3 [m]</td>
</tr>
<tr>
<td>Minimum distance to neighbour point</td>
<td>0.06 [m]</td>
</tr>
<tr>
<td>Minimum number of points in cluster</td>
<td>1</td>
</tr>
<tr>
<td>Size of cluster (α)</td>
<td>±0.2 [rad]</td>
</tr>
<tr>
<td>Size of cluster (r)</td>
<td>±0.2 [m]</td>
</tr>
</tbody>
</table>

Table 8. Position update and prefiltering parameters for robustness test

<table>
<thead>
<tr>
<th>%-age obstruction</th>
<th>Figure</th>
<th>Std. dev. x-coordinate</th>
<th>Std. dev. y-coordinate</th>
<th>Std. dev. θ-coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>figure 36</td>
<td>4.7 mm</td>
<td>6.0 mm</td>
<td>0.50 °</td>
</tr>
<tr>
<td>30%</td>
<td>figure 37</td>
<td>3.9 mm</td>
<td>7.6 mm</td>
<td>0.49 °</td>
</tr>
<tr>
<td>60%</td>
<td>figure 38</td>
<td>3.4 mm</td>
<td>7.8 mm</td>
<td>0.81 °</td>
</tr>
<tr>
<td>80%</td>
<td>figure 39</td>
<td>4.1 mm</td>
<td>5.2 mm</td>
<td>0.43 °</td>
</tr>
<tr>
<td>100%</td>
<td>figure 40</td>
<td>3.4 mm</td>
<td>0.0 mm</td>
<td>0.56 °</td>
</tr>
</tbody>
</table>

Table 9. Performance of the algorithm

close to the true value. Subsequently a number of position update cycles were performed and the calculated position as well as the required CPU time for these calculations were recorded.

The necessary CPU time used for the positioning as a function of update-cycle number is visualised in figure 41. Thus, positioning from a corner imposes a time penalty of 100 ms or less. In figure 42 the time history of the x co-ordinate recorded during the testing is visualised. The standard deviation is 15 mm which is somewhat more that what was recorded when considering walls only. This is due to the unfavourable performance of the "Sick-sensor".
Finally, it is necessary to verify that the algorithms also work when the mobile robot is moving. This is notoriously difficult to verify since it needs an absolute reference. Of course such an absolute measurement system could be made available (see section 2.2.7), however, these systems are expensive, require significant installation work and integration efforts into the experimental setup. And in a last instance, such a system is not available at the IfR, ETHZ.

Rather than comparing the position estimate to an absolute reference we compare it to the purely odometric estimate, and also through ensuring that the last position of the trajectory is the same as
the start position, i.e. that the robot is expected to move on a closed trajectory. We expect that the purely odometric position estimate will have a measurable error at the last position (i.e. the last position estimate will not correspond to the start value). In contrast to this we expect that the position estimate gained by using the algorithms described in this thesis will be close to the true value (i.e. the last position estimate will correspond to the start value).

The tests were executed in a stop, look, update, move fashion. The movement commands were provided by an operator, as was the command to update the position. The maintenance of the world reference model (i.e. which walls were theoretically visible) was also taken care of by the operator. A sketch of the test trajectory is shown in figure 43. Initially the robot was located at A, it was then driven along a more or less straight trajectory to B where an approximate 90°
clockwise negative angle turn was undertaken. From B the robot was driving in the negative y direction until C, the robot was then reversed from C until D. At D the robot was turned clockwise on the spot approximately 180°. Subsequently the robot was reversed back to E where a 90° turn was again undertaken, and finally the robot was reversed to near its starting position (and also orientation) A.

![Trajectory for "dynamic" testing](image)

Figure 43: Test trajectory for the position update algorithms

When executing the above described trajectory the robot maintained two independent position estimates, one based purely on odometry and one provided by the algorithms presented in this thesis. The two separate position estimates are plotted in figure 44. It is obvious that even for this simple movement it would be fatal to rely only upon the odometry. The odometry is nearly 1 m off at the end of the trajectory.
4.7 Scanning while moving

In chapter 3 a method for transforming measurement data recorded with a moving robot so as to appear as being recorded with a stationary robot was presented. This method has been tested on the robot equipped with the “Sick-sensor”.

The sick sensor completes a 180° scan in 0.05 seconds, this means that the movement of the robot from the first to the last measurement is small. In our tests we have been using velocities of up to a maximum of 1 m/s, which we think is a reasonable maximum velocity, and therefore the robot moves a maximum of 5 cm between the first and the
last measurement. This movement is the same order of magnitude as the measurement accuracy of the “Sick-sensor”, hence it is not possible to detect any difference between an “uncorrected-scan” and a “corrected-scan”. The same argument applies to the rotation of the robot, even at rotational velocities of up to 90 °/s no difference between the “uncorrected-scan” and the “corrected-scan” can be observed. This is in line with the discussions in chapter 3 where the problems of scanning while moving was seen to be insignificant at a high scanning rate.

4.8 Discussion

The position update methods explained and tested in this thesis are functional. In fact all the requirements set out at the beginning in table 2 have been fulfilled. The methods tested in this section exploit information from the walls, the corners and the odometry. With respect to cylinders only a slight increase in processing power consumption, at the same order of magnitude as the extra processing power required by positioning using corners, is expected. However, it has not been possible to test this part of the position update algorithms since no cylindrical structures are available in our laboratories.
5 The robot

5.1 Guide to this chapter

In this chapter the electrical and mechanical hardware which was used to verify the position update algorithms is briefly presented. The integration of a commercial laser range finder sensor with the necessary interfacing is described before the capabilities and structure of the robots control system and control computer is discussed. Under this last point we will describe how we integrated the position update algorithms with the rest of the robot control software.

5.2 The mobile platform

A three wheeled mobile robot has been constructed at the Institute of Robotics, Swiss Federal Institute of Technology for the purpose of serving as a test bed for mobile robotics.

This work was initiated in 1990 with the constructive efforts of Michel [Michel 91]. In addition to the requirement that the robot should fit within the MODRO (MODular RObot) concept [Nielsen 92] some measure of "rough terrain" capability was desired (steps of up to 6 cm should be traversable). Thus a three wheeled mechanism with large wheels ($r=0.185$ m) was selected. Additionally, the wheels have air filled tyres. A three wheel construction ensures that all three wheels
always have ground contact and the size and type of wheels makes it possible to traverse the "terrain". Additionally, to reduce the effects of any such uneven features all three wheels have independent suspension. The wheel modules developed by Michel are assembled onto a frame and all the necessary electronics and computing facilities integrated. An overall picture of this mobile robot is shown in figure 45. The critical data for this mobile robot platform is listed in table 10.

Figure 45: A photo showing the mobile robot experimental platform from a "rear and right-hand" perspective.
<table>
<thead>
<tr>
<th>Identifier</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>0.69 [m]</td>
</tr>
<tr>
<td>Length</td>
<td>1.10 [m]</td>
</tr>
<tr>
<td>Height</td>
<td>0.49 [m]</td>
</tr>
<tr>
<td>VME bus size</td>
<td>5 slot (24/16)</td>
</tr>
<tr>
<td>Battery capacity</td>
<td>1368 VAh</td>
</tr>
<tr>
<td>Steering angle limitations</td>
<td>None</td>
</tr>
<tr>
<td>Minimal turning radius</td>
<td>0</td>
</tr>
<tr>
<td>Area swept at min. turning radius</td>
<td>2.43 [m²]</td>
</tr>
</tbody>
</table>

Table 10. Key data mobile robot experimental platform.

The mobile robot has a mechanical configuration as sketched in figure 46. Equation 46 represents the kinematic differential equations.

\[
\begin{bmatrix}
\{R\} \dot{x}(t) \\
\{R\} \dot{y}(t) \\
\{R\} \dot{\theta}(t)
\end{bmatrix} = \omega(t) \begin{bmatrix}
\cos(\lambda(t)) \\
0 \\
\sin(\lambda(t))
\end{bmatrix}
\]

\text{(EQ. 46)}

\(\omega\) = the instantaneous front wheel angular velocity

\(r\) = the front wheel radius

\(\lambda\) = the steering angle

\(l\) = the axis distance

\[\begin{bmatrix}
\{R\} \dot{x}(t) \\
\{R\} \dot{y}(t) \\
\{R\} \dot{\theta}(t)
\end{bmatrix} = \text{instantaneous robot velocities in the robot coordinate system}\]

We observe that in the y-direction of the robot the velocity is always zero (under the assumption that the friction is high enough to avoid slippage). These velocities can be mapped into velocities of the world coordinate system by means of equation 47,
Figure 46: Kinematics of the mobile robot experimental platform.

\[
\begin{bmatrix}
{\{W\}} \dot{x}(t) \\
{\{W\}} \dot{y}(t) \\
{\{W\}} \dot{\theta}(t)
\end{bmatrix}
= \begin{bmatrix}
\cos({\{W\}} \theta) & 0 \\
\sin({\{W\}} \theta) & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
{\{R\}} \dot{x}(t) \\
{\{R\}} \dot{y}(t) \\
{\{R\}} \dot{\theta}(t)
\end{bmatrix}
\]

\text{(EQ. 47)}

where \({\{W\}} \theta \) is the instantaneous rotation angle of the robots coordinate system \(\{R\} \) with respect to the world coordinate system \(\{W\} \). The control system sample rate is \(\Delta t = 10 \text{ ms} \), which means that every 10 ms new values for the robot velocities and robot co-ordinates
can be calculated. This allows us to express the change in robot position as in equation 48.

\[
\begin{bmatrix}
\{w\} \Delta x(t) \\
\{w\} \Delta y(t) \\
\{w\} \Delta \theta(t)
\end{bmatrix} = \Delta t \begin{bmatrix}
\{w\} \dot{x}(t) \\
\{w\} \dot{y}(t) \\
\{w\} \dot{\theta}(t)
\end{bmatrix}
\] (EQ. 48)

Equation 46 to 48 enable the implementation of a dead reckoning (see footnote 1. on page 10) position estimation system, through numerical integration (summing) of the left hand side of equation 48. A consequence of the implementation of such a dead reckoning position estimation system is that \({w}\theta\) in the transformation matrix of equation 47 is a function of time.

Any systematic error in the steering angle, \(\lambda\), the wheel radius, \(r\), or the axis distance, \(l\), will cause an accumulation of errors in the estimated position. Therefore position update algorithms based on environmental sensor data is necessary.

5.3 Scanning laser range finder.

As discussed in section 3.3.2 it is necessary to make high quality range data available to the robot, and in particular the software components that ensure high accuracy of the instantaneous position estimate. Therefore such a sensor system was integrated onto the mobile robot platform. The sensor itself was purchased from the company Acuity Research [Acuity]. The sensor consists physically of a cylinder with a diameter of 76.2 mm and a length of 139.7 mm. Through one end of this cylinder an intensity modulated laser beam is transmitted and the returning from a target reflected light admitted and focused. This sensor delivers a 4 - 50 MHz square wave output representing the ranges 12 - 0 m. Additional analogue outputs indicate
the temperature of the sensor, the ambient lighting conditions and the intensity of the reflected light.

If the transmitted laser beam and the reflected light is deflected with a rotating mirror a scan of the environment is achieved. A simple mechanism that enables such a scan was realised and the resulting sensor system is depicted in figure 47.

![Diagram of a sensor system with a scanning mechanism.](image)

Figure 47: The AccuRange integrated with a scanning mechanism. The mirror (white oval surface) is suspended at an oblique angle above the sensor and rotated by a motor. The motor mirror assembly is mounted onto the sensor assembly with three supports.

The output from the sensor system is a 4 - 50 MHz square wave. To time such a high frequency square wave directly with a computer and a counter presents significant problems if a high sample rate is
desired. As the rest of the outputs of the laser scanner are available as analogue signals a high precision frequency to voltage converter was constructed. The principle of the electronics is sketched in figure 48.

![Block diagram of electronics](image)

Figure 48: The frequency to voltage converter electronics (block diagram) that was integrated with the sensor and the mobile robot platform.

Through the addition of these electronic components and due to sensor internal operation a non-linear relationship between the output voltage from the electronics and the measured range exists. It is necessary to compensate this non-linear relationship. A calibration procedure must therefore be followed. The sensor system and a well defined target (Kodak grey card) is mounted onto a relatively stable aluminium profile. The mirror is adjusted so that the laser beam is transmitted along the aluminium beam to the centre of the target. The accurate distance between the centre of the mirror and the target along the transmitted laser beam is measured using a tape measure. Subsequently a number (100 or more) range readings are performed with this setup and the analogue to digital (AD) converter values recorded. Plotting the relationship between the actual range and the mean of the AD converted values (ADvalue) yields the relationship of figure 49.

In order to convert the ADvalue to the true distance, \(l \), in metres a polynomial function was fitted according to the least squares principle.
The function performing the conversion from $AD\text{value}$ to true distance is found in equation 49.

$$l = \frac{12760}{AD\text{value}} - 1.785 \quad \text{(EQ. 49)}$$

5.4 Robot controller

The mobile robot platform is equipped with an embedded controller. This controller is based on a 5 slot VME bus [VITA]. The VME bus contains 2 peripheral interface cards from Mikro Elektronik Nürnberg [MEN], the remaining three slots are available for embedded
computers. Currently there is only one 68020 processor board being used.

The robot's embedded controller is programmed in the high level language Oberon with the aid of the development environment XOberon [Diez 93]. XOberon makes resources such as target specific compilers, incremental linkers and loaders, embedded file systems and target debugging facilities available.

Obviously calculation of a mobile robots position is not the only requirement. Other researchers have summed up the necessary tasks of mobile robotics to be the ability (for the robot) to answer the following questions: "where am I", "where am I going" and "how should I get here". The first question has been answered in this thesis. The latter two have been addressed in other works carried out at the Institute of Robotics [Tschichold-Gürman 95] and [Durand 94].

In order to put the process of mobile robot positioning into perspective it is interesting to consider the whole control structure of the mobile robot used for the experiments in this thesis. A graphical view of the overall structure can be seen in figure 50.
Figure 50: Sketch of the software structure for the mobile robot experimental platform. The crosshatched ellipse corresponds to the position update system.
6 Conclusions

6.1 Guide to this chapter

For the convenience of the reader we will revise the motivation for and the requirements of range-sensor based position update algorithms for mobile robots. A summary of the achievements discussed in this work will then be provided before a view of what may come is presented.

6.2 Mobile robot positioning, problems and requirements

A mobile robot may deduce its position and orientation through numerical integration of its kinematic differential equations (see section 5.2), a method of positioning also known as odometry or dead-reckoning. There are a number of error sources in these equations, such as: noise in the sensors providing the instantaneous kinematic values, unknown offsets due to imprecise mechanics and uncertainties due to complex contact relationships between the wheels and the surface. These errors are integrated which means that any systematic error, however small, will over time grow and take on unacceptable values. An example of such behaviour is demonstrated in one of the experiments (see figure 44) where at the end of a trajectory length of a
few metres the distance between the instantaneous "correct" position and the position estimated through the odometry is nearly 1 m.

It is thus necessary to frequently update the mobile robots position using some sort of absolute positioning system. The process of achieving accurate knowledge of the mobile robots position is the theme of this thesis. In particular we have focused on achieving absolute positioning through using optical range finder data, filtering of this data, extraction of geometric structures in the range data and matching these to a model of the environment.

6.3 Discussion of thesis

After a general introduction to mobile robotics and navigation in chapter 1 a thorough literature review was undertaken in chapter 2. The most common way found in the literature of calculating the robot position (other than odometry of course) is to exploit geometric knowledge about the environment. The geometric information exists in two forms a) as a model (known somehow) and b) in sensor data extracted from the environment. Matching these two representations yields the robot position. This process of estimating the mobile robot position from correlation of environmental sensor data and a world model has been a theme ever since the early days of mobile robotics.

The investigations of Cox (at AT&T) and Weiss (at the University of Kaiserslautern) has been seen as highly relevant to this work as both consider range data from optical coaxial systems. Cox matches each separate range reading to entries in the world model and based on this calculates the robots position. Matching each separate range reading to an entry in a world model is a rather processing intensive task since a number of iterations is needed before convergence, and at each iteration step a new matching process must be undertaken. Weiss on the other hand uses convolution techniques and matches one scan to the previous. For the sake of efficiency the convolution is performed on integers, hence accuracy is lost.
Another bulk of work has been undertaken on ultrasonic range data. MacKenzie uses much the same method as Cox (point to structure matching), but there are also other approaches such as Leonard with structure to structure and Crowley with occupancy grids. Generally ultrasound systems seem to be inferior to optical systems. We also see that structure to structure matching performs slightly better than other methods. A particularly thorough work is the one by Leonard where successive scans are processed for regions of constant depth (RCDs) and the behaviour of the RCDs are used to deduce information on the structure of the environment.

Despite all these efforts a number of unsolved issues still remain, namely: achieving (simultaneously) millimetre level accuracy, real time performance and tolerance towards large inconsistencies between the model and the sensor data (e.g. as generated by an un-modelled obstacle). Summarised this means that the requirements listed in table 11 should be met.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real time performance</td>
<td>< 1 second</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 10 mm</td>
</tr>
<tr>
<td>Robustness</td>
<td>pass test of section 3.2.1</td>
</tr>
</tbody>
</table>

Table 11. Requirements of position update algorithms.

Chapter 3 then detailed how to achieve these requirements. Initially, prefiltering is applied to the data. Using simple heuristic filters we are able to transform the initially noisy range data into a more appropriate form.

After the prefiltering it is desired that geometric structures are extracted from the sensor data. Three types of structures, namely walls, corners and cylinders, have been specifically addressed. For all these examples we have processed the range data so that the identification of any such structures is simplified. In particular for walls and cylinders we have employed an explicit least squares fitting of a model (geometry of a wall and of a cylinder, respectively) to the data, this
avoids costly iterative procedures with unknown bounds. In brief this process goes as follows:

- Set index \(i = 1 \) (first measurement)
- Choose measurements \(i \) to \(i + n \) and fit the circle \((x, y)\) or the line \((r, \alpha)\) to this data in a least squares sense. Save the results from the fit for later analysis (clustering)
- Add 1 to \(i \) and repeat until all measurement points have been processed.
- In the space of fit parameters \((x, y)\) or \((r, \alpha)\) identify clusters of solutions. A cluster appears where such structures (walls and cylinders) are present.

Corners on the other hand were found by extracting clusters of crossing points generated by solving a number of simultaneous linear equations for pairs of the lines extracted when finding walls. In this way clusters are generated for the \(x \) and \(y \) position of the corner analogous to the straight line and cylindrical case.

After the extraction of the parameters for the lines, cylinders and the corners these are matched to a model. The process of matching is achieved through using the odometry values as expectation and assigning measurements/clusters to model values according to the nearest expectation (from model and odometry).

After this matching it is relatively easy to construct an over-determined set of equations that can be solved for the "true" robot position. When only walls and corners are considered the solution can be found using linear algebra methods. A cylinder, however, makes the problem non linear, and therefore, is solved with an iterative method which finds the solution where the partial derivatives of the sum of the residuals squared is zero. This iterative solution is therefore efficient, and using the bisection method the relationship between accuracy and number of iterations is known and independent of the problem.

In chapter 4 all these methods were put to test, and in particular it was of interest whether these methods comply with the requirements defined (see table 11). It was not possible to test the cylindrical case for
the lack of an appropriate environment and in the case of corner extraction the noise level was observed to be higher than what was required. The high noise level was attributed to the particular sensor system used when extracting corners. The rest of the tests, however, showed that the algorithms performed as desired, the noise level when using walls was of the order of 3 mm, the CPU time required was less than 1 second, and the method proved robust to disturbances. At the end in chapter 5 a presentation of the robot platform and the sensor system used for the testing in chapter 4 was presented.

6.4 Contributions

6.4.1 Prefiltering

In this thesis it has been demonstrated that the quality of the sensor data used for updating the mobile robot position can be improved by simple heuristic filtering in the spatial domain.

In particular it was possible to gain a uniform distribution of the sensor data independent of the geometry of the environment. Uniform distribution is advantageous as it makes any geometric feature position and orientation invariant with respect to distance from the sensor and orientation relative to the sensor (within some limits, such as visibility).

Furthermore spurious sensor data can be rejected. This improves the quality of any subsequent feature extraction and removes the possibility that a "freak" measurement will create subsequent matching problems.

6.4.2 Abstraction level

A method of structure (such as wall, cylinder or corner) matching has been employed, i.e. the association is between extracted structures in the sensor data and modelled structures in the world model. Structure to structure matching ensures a very compact simultaneous
equation formulation for the mobile robot position. Such compact equations enables a computationally efficient position update process.

6.4.3 Transformation of sensor data

One sensor measurement alone provides no information on geometric structure. In order to find structures in a set of sensor data we have resorted to transformations.

In the case of walls and cylinders the transformation consists of fitting a model (a straight line and a cylinder respectively) to sub-sets of the sensor data. The sub sets are so selected that the fit is over-determined, furthermore, an overdetermined fit ensures some additional noise reduction. The sub sets are generated by sliding a window over the original data set (after prefiltering). The output of the transformations are the fitted parameters, \(x \) and \(y \) for the circle and \(r \) and \(\alpha \) for the line. A positive feature of both these transformations are that they can be explicitly formulated and hence require limited processing power. Because of the explicit formulation of the problem real-time performance was achieved.

In the case of the corner the transformation is implemented by solving a number of simultaneous linear equations for pairs of the lines extracted when finding walls. The equations generated from pairs of lines are easy to solve, hence requiring little additional CPU time. Furthermore clusters are generated for the \(x \) and \(y \) position of the corner analogous to the clusters generated in straight line and cylinder extraction process.

6.4.4 Extraction of features

Extraction of features by finding clusters in these new representations is efficient. In order to optimize the extraction of structures the inaccurate odometry was exploited. Especially the clustering could in this way be implemented in real-time (sub-second).
6.4.5 Equation for position

The extracted significant geometric structures from the sensor data are matched to the model. Matching structures in the sensor data to structures in the model produces a compact formulation for the "correct" position since the number of matched features is relatively low. Consequently it is easy to solve for the position. Matching structures in the sensor data to structures in the model also removes any need for iteration concerning the sensor data. In the case of non-linear constraint equation the solution may have to progress in an iterative way. However, since no new matching must be calculated at each step, the iterative solution in the case of non-linear constraint equation is not computationally expensive.

6.4.6 Performance and performance measure

The execution of these position update algorithms has been demonstrated on a Motorola 68020 processor system running at 12 MHz. Although this is a processor card of inferior performance to what can be bought today\(^1\) the performance is respectable at 0.5 seconds, considering that the accuracy of the method is very high. Furthermore the methods demonstrate a certain robustness in that obstacles blocking the view do not cause the algorithms to fail until taken to extremes.

Further a method for measuring the performance of the algorithm has been introduced. Until now the only reference for position update methods as discussed in this thesis has been artificial landmark based systems. Such systems are expensive and therefore we propose to test the system against itself. The level of noise on successive position estimates from the same position is an indication of the performance of the complete position update mechanism (sensor + algorithms). The measurement of the system performance has also been extended to the

\(^1\) Motorola, the supplier of the processor system used by our robot system, has since come with 2 new generations of the same CPU series and also a new RISC processor.
robustness of the system where un-modelled obstacles are introduced in an attempt to disturb the position update process. If the process rejects such disturbances it can be said to be robust.

6.4.7 Summary

In table 12 a summary of the performance of the position update

<table>
<thead>
<tr>
<th>Process step</th>
<th>Repeatability</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preprocessing</td>
<td>Not applicable</td>
<td>220 ms</td>
</tr>
<tr>
<td>Wall extraction</td>
<td>(\approx 4) mm, 0.3 deg</td>
<td>165 ms</td>
</tr>
<tr>
<td>Corner extraction</td>
<td>(\approx 50) mm</td>
<td>100 ms</td>
</tr>
<tr>
<td>Calculating the position</td>
<td>Same as for wall and corner extraction</td>
<td>165 ms</td>
</tr>
</tbody>
</table>

Table 12. Summary of position update algorithms performance

algorithms presented in this thesis is provided. Since the cylinder extraction has not been tested in a real environment no performance data relating to positioning using cylinders are provided.

6.5 Outlook

Although one may be satisfied with the performance of these methods there is plenty of scope for improvement. Hoping that some of the suggestions below will be of inspiration some explanation is provided.

6.5.1 Reducing processing time.

Although the methods discussed in this thesis execute in approximately 0.5 seconds for a raw data set of 300 measurements we believe that it is both possible and desirable to try to reduce this time. A reduction in the processing time would make the methods applicable to faster mobile robot vehicles and/or would make the method more independent of the odometric estimate.
An obvious way of reducing the processing time is to apply faster conventional processing hardware. In this category we count the latest generation of CISC processors or the new RISC processors. Should this not be sufficient then one has to consider ways of parallelizing the problem. A few suggestions are provided below.

Currently the sensor data is processed sequentially and as one batch, i.e. all raw data are copied from a buffer (filled by the laser scanner independently of the position update algorithm) then the following steps are applied to the data set in sequence: 1) check range, 2) convert to cartesian representation 3) check for maximum distance to neighbour, 4) check for density, 5) transform data (least squares fitting or similar), 6) find clusters, 7) construct and solve equation for position.

It should, however, be possible to pipeline this process. New data points arrive at regular intervals. Each new data point can be checked for range by one processor and, if within limits, passed onto another processor immediately. When this second processor converts the measurement to cartesian the first processor may already start checking the next data point. Schematically this process is visualised in figure 51. As a suggestion it would be possible to let process 1 through to 4 (indicated by Px in figure 51) run in parallel on different processors. Each one can perform its sub-task as soon as a data point arrived on the input data flow (flows 1 to 4). In P5 a small number of data points are buffered, for instance 4 which would be enough for a least squares fit for a line. As soon the points of P5 have been buffered they are all, as one flow, transferred to the fitting process. The arrival of a new point on flow 5 causes P5 to remove the oldest point from the buffer and to add the newly arrived one. This new set of data is as previously passed on to P6. On the arrival of a new data set on flow 6 a least squares fitting is performed and the data sent out. The buffer in P7 collects the results and passes them on to the clustering when appropriate. One could imagine parallel execution of several P6s, P7s and P8s, one for each feature being sought. At the end the results are collected and a solution for the position is found.
6.5.2 Increasing accuracy

Although the current noise level is in the mm and sub degree range it may be possible to reduce this even further. The most obvious action is to use a better sensor system than the “Acuity sensor” or the “Sick sensor”. The recent sensor system from Leuze Electronic should be superior to the two other sensor systems, however, due to time constraint it has not been possible to test the methods presented in this thesis with the “Leuze sensor”.
Currently all the measurements which fall within a cluster are treated as equally good. However, some least square fits are probably better than others. The quality of the fit should be calculated (for instance 1 divided by the sum of the residuals) and this quality measure should be used in calculating a weighted arithmetic middle for the clusters.

This process should also be extended to the least squares solution of the constraint equation. Each source of constraint (wall, cylinder, ..) should be associated a quality measure similar to the above and this quality measure should be used when solving the equation.

Before the structure extraction takes place the data is subject to some prefiltering. Currently the prefiltering uses filter parameters that have been manually estimated. An interesting extension would be some automatic parameter estimation process that selects the parameters so as to minimise the subsequent noise in the position estimate. At the time of writing such investigations are taking place at the IfR, ETH, using genetic algorithms and neural networks. However, it is too early to speculate on the potential of these methods.

6.5.3 Extension of the method

Currently only walls, cylinders and corners are considered. Although this maybe sufficient for a large class of buildings it maybe of use to be able to handle different objects (ellipses, spheres). For any object where a model can be defined the mechanism described in this thesis would apply, i.e. fit model to successive windows into the data and extract clusters in the parameter space. However, with increasing complexity of the model the fitting process also becomes more complex.

The same applies to an extension into three dimensions. The complexity would again increase, furthermore we may have to arrange the range sensor data in a different way as the sense of neighbourhood now is 2 dimensional. It might therefore be that structured light
systems or indeed CCD camera based systems are more appropriate in the 3D world.

6.5.4 Odometry calibration

In the experiments we saw that the odometry was very unreliable. We suspect that this unreliability is caused by errors in the vehicle kinematics parameters l axis distance, r wheel radius, and λ steering angle offset. It would be useful if these parameters could be estimated based on the position update methods. If the robot performs a reasonably complex trajectory and simultaneously records all internal sensor values (encoder values) as well as position update values it should be possible to correct l, r and λ. An iterative process similar to the process used in section 3.5.8 is envisaged in order to select the “true” parameter set for l, r and λ, i.e. the parameter set which minimises the error between the “true” position and the odometric position. Furthermore, in order to calculate the odometric position for a given set of l, r and λ the whole trajectory must be re-executed. This re-execution can be done without moving the robot by using the recorded encoder values.

6.5.5 Speculative clustering & map-building

In the parameter space of the least square fitting or template matching the structure of the environment can be found. Currently only those structures are found which are expected. Since the clustering/ optimum extraction process relies on the world model to achieve the necessary performance only those structures which are modelled can be found. If a method could be found that in real-time could cluster the data without relying on any a priori world model it would be possible to reverse the process and a world model could be constructed. For this it is necessary to start an investigation into clustering algorithms.

6.5.6 Fusion with ultrasonic data

A difficulty in this work was to efficiently extract corners. It has been noted in other works that ultrasound sensors at corners deliver a
range of constant depth (RCD, see Leonard). The RCDs can easily be extracted. However, as walls and cylinders also generate RCDs it is not immediately known which type of geometric structure causes a particular RCD. It would be interesting to see if the knowledge from the laser scanner system on the location of walls and cylinders could be used to label the RCDs from an ultrasonic scan. If so, then the remaining un-labelled RCDs are caused by corners. This information can then be made available to the position update system.

6.6 Summary

New methods for position update have been developed and tested. These methods use the structure abstraction level both for the sensor representation and in the world model, furthermore these methods match structures in the sensor data to structures in the world model. Using structure to structure matching yields a very compact formulation of the robot position. The calculation of the robot position is done with tools from linear algebra or, in the case when cylinders are present, with an iterative algorithm. The transformation from the raw sensor data representation to the structure abstraction level is implemented with an initial prefiltering which rejects erroneous data or data with low information content. In a second stage least squares fitting and clustering is performed for walls and cylinders. Similarly for corners, a cluster extraction method on an abstraction of the sensor data was utilised.

These methods are extendible, as long as a model can be fitted. The fitting plus clustering technique can be used to extract geometric information. This geometric information can be included in the constraint equation for the robot position which is then solved either explicitly or iteratively in a limited number of steps. The same applies to template matching and matched filtering.

With respect to the design requirements our methods have met all the goals set.
References

[ESP] N. N., "ORS-1 optical ranging system", Sales information from: ESP Technologies, Inc., 21 Le Parc Drive, Lawrenceville, NJ 08648, USA.

[Polaroid b] N. N., “Polaroid ultrasonic ranging system handbook application notes/technical papers”, Polaroid corporation, Ultrasonic components group, 119 Windsor street, Cambridge, Massachusetts 02139, USA.

[VITA] N. N., “The VMEbus specification”, VMEbus international trade association (VITA), P. O. Box 192, 5300 AD Zaltbommel, Netherlands.

Curriculum Vitae

Born 30 June 1964, I grew up in Kirkenær, Norway and graduated from Åsnes videregående skole with an exam in general and natural science in 1983. After one year of military service I entered the University of Salford, England, from which I graduated in 1987 with a B.Sc. Upper Second Class in Electronic Computer systems. Thereafter I worked for one year for Simrad Marine, Bergen, Norway, and Norwegian defence technology, Guided missile division, Kongsberg, Norway. Upon completion of my contract at Simrad Marine I went back to the University of Salford where I completed a M.Sc. by research, with the theme: Obstacle avoidance using artificial neural networks for a mobile robot. In parallel with my M.Sc. studies in Salford I worked at Advanced Robotics Research Ltd. on the development of control software for robot manipulators. Since 1991 I have been at the Institute of Robotics under the supervision of Professor Dr. G. Schweitzer.