Doctoral Thesis

Mechanistic investigations in ochratoxin A induced nephrotoxicity and their relevance for the sex specific renal tumor induction in rats

Author(s):
Rásonyi, Thomas

Publication Date:
1995

Permanent Link:
https://doi.org/10.3929/ethz-a-001677041

Rights / License:
In Copyright - Non-Commercial Use Permitted
Mechanistic investigations in ochratoxin A induced nephrotoxicity and their relevance for the sex specific renal tumor induction in rats

A dissertation submitted to the
Swiss Federal Institute of Technology Zürich
for the degree of
Doctor of Natural Sciences

presented by
Thomas Rasonyi
Dipl. Natw. ETH
born July 21, 1964
citizen of Zürich

Accepted on the recommendation of
Prof. Dr. Ch. Schlatter, examiner
Prof. Dr. D. Dietrich, co-examiner
Dr. J. Schlatter, co-examiner

1995
Summary

Ochratoxin A (OTA) is a mycotoxin, which is produced by a number of Aspergillus and Penicillium genera primarily in countries with temperate or continental climates. The toxin has been found in a variety of foods and feeds of plant origin and in animal tissue. As a consequence OTA could be detected in most human blood samples analysed so far. OTA has been shown to be nephrotoxic to all mammalian species tested. In a two year mouse and rat bioassay it was demonstrated that OTA is a potent renal carcinogen, showing also pronounced sex and species differences. No tumors were found in female mice up to the high dose of 40 ppm OTA in feed (approx. 4.8 mg/kg bw), while at the same dose a high number of tumors were found in male mice. With a 20-fold lower dose (210 µg/kg bw) than used in the mouse study, the incidence of renal cell adenomas and carcinomas was very high in male rats (80%) while female rats were found to be much less sensitive (16%). To date, the mechanism(s) leading to the pronounced sex differences regarding kidney tumor induction are still unknown making risk extrapolation from rats to humans very difficult.

It was the aim of the present study to gain insight into the mechanisms of OTA tumor induction improving the database for extrapolating cancer risk from rodent models to humans.

The object of the first part of this project was to investigate the role of the male rat specific urinary protein alpha2u-globulin in OTA carcinogenesis. For a number of chemical compounds (for example d-Limonene) this globulin which is lacking in humans was shown to be causally related to the induction of renal tumors in male rats but not in female rats or either sex of mice.

In order to address these questions male and female rats were treated by oral gavage with OTA (1 mg/kg/day) or d-Limonene (1650 mg/kg/day) as positive control for seven consecutive days. The results suggest that OTA induced kidney lesions are in all characteristic points different from the known A2µ-nephropathy induced by d-Limonene. Based on these experiments the male rat specific protein A2µ-globulin does not seem to be involved in the mechanism(s) leading to the high tumor incidence observed in OTA exposed male rats.
The aim of the second and third part of this research was to localize and characterize the site of injury within the kidney in male and female rats after administration of low tumorigenic doses (70, 210 and 1000 μg OTA/kg per day) for 4 weeks and to assess the role of cell proliferation in OTA carcinogenicity. The results suggest that OTA is a nephrotoxin that is selective for the straight segment (pars recta) of the proximal tubule. The lowest dose did not cause any histopathologic changes in the kidney, whereas the higher doses (210 μg/kg bw or 1000 μg/kg bw) induced renal lesions specific to the outer stripe of the outer medulla in both sexes. The lesions consisted of degenerating, necrotic as well as apoptotic cells. Male rats appeared to be slightly more susceptible to OTA induced renal damage than females rats. OTA treatment with 210 and 1000 μg OTA/kg revealed a large increase in cell proliferation in the affected outer stripe of the outer medulla, compared to the corresponding controls. This was not observed in other regions of the kidney or in kidneys of animals of the lowest dose group. This suggests that the cell proliferative response observed is a direct consequence of cell loss induced by OTA and subsequent regeneration of the proximal tubules. These data also indicate that OTA does not have a mitogenic effect on proximal tubules cells.

The only modest sex differences in nephrotoxicity observed and the lack of sex difference in regenerative cell proliferation nevertheless do not explain why male rats have an approximately 10-fold higher carcinoma incidence than female rats given the same dose (210 μg OTA/kg) in the 2 year bioassay. Furthermore, no increase in cell proliferation was found in either sex treated with 70 μg OTA/kg, whereas the renal carcinoma incidence in male and female rats exposed to 70 μg OTA/kg for two years were 31% and 2%, respectively. This suggests that other sex-specific mechanisms, distinct from fixation of spontaneous mutations via regenerative cell proliferation must be involved in the induction, promotion and progression of renal tumors in male rats exposed to OTA.

In order to be able to assess the health risk from this mycotoxin to humans, it is of main interest to clarify whether a genotoxic or epigenetic mechanism is involved in OTA tumor formation. The aim of the subsequent study was therefore to investigate whether or not covalent binding of ochratoxin A to rat kidney and liver DNA could be involved in the mechanism(s) leading to the high tumor incidence.
observed in OTA exposed male rats. For this purpose, a single dose (210 μg/kg body weight), containing (3H)-radiolabeled (550 μCi/kg body weight) and unlabeled OTA was orally administered to female or male rats. Kidney and liver DNA was isolated after 24 hr and analyzed for DNA associated radioactivity. In every sample, the DNA associated radioactivity was below the limit of detection. The limit of detection for kidney and liver DNA was 1.3 molecules OTA/10^{10} nucleotides or 5.6 molecules OTA/10^{11} nucleotides, respectively. In order to allow for a quantitative comparison also with other known carcinogens and noncarcinogens the data were converted to a covalent binding index, CBI = (μmol of substance bound/mol of DNA nucleotides)/(mmol of substance applied/kg body weight). The maximum possible CBI for OTA obtained in the experiment presented here was calculated to be < 0.25 for kidney and < 0.1 for liver. Under the assumption that the same relationship between CBI and carcinogenicity exists in liver and kidney, one would expect a CBI of OTA in male rat kidney DNA of > 1000 if the tumors found in the long-term study in rats were due to a DNA alkylating property (genotoxic action) of OTA.

The present negative data strongly indicate that covalent interaction with DNA is highly unlikely to be the mode of tumorigenic action of OTA in rats.

To date, risk extrapolation is usually based on oral OTA intake. Large species differences in OTA pharmacokinetics are known and thus large differences in the target organ dose may occur between rats and humans. The last research aim was to determine the serum and kidney-tissue concentrations in rats orally exposed to the specific OTA doses that lead to the reported high tumor incidence. In order to achieve comparability to the two-year bioassay conditions, the rats were dosed for 4 weeks, thus obtaining steady-state serum levels. A clear dose response was observed in OTA serum and kidney levels in both male and female rats. Significant sex differences with regard to serum OTA levels were only found in the group exposed to the lowest dose. No differences in OTA kidney concentrations were found between male and female rats. After linear extrapolation of the serum levels detected in this study, it was found that the mean contamination of human sera of the European population is up to 1100 times lower than the lowest serum concentration that caused morphological changes in rats following acute or subchronic exposure and 5300 times lower than the serum concentration that
corresponds to an increase in renal tumor incidence in rats. However it was demonstrated, that in people living in areas of the Balkan countries where endemic nephropathy occurs their serum contained OTA concentrations up to a 100-fold higher than serum from people living outside these areas. This is only about 11 times and 53 times lower than the lowest serum concentration shown to be nephrotoxic and associated with renal tumors in rats, respectively. Therefore, as long as the mechanism(s) of OTA nephrotoxicity and carcinogenicity in rats are unknown, OTA contamination of feed and food-stuff should be kept to a minimum in order to minimise possible human health risk. Above all, in areas where very high OTA levels are found in food and human serum, the chronic OTA exposition should be reduced in order to have a respectable safety-factor to toxic effects in rats.
Zusammenfassung

Das Ziel dieser vorliegenden Studie war es, mögliche Anhaltspunkte für den Mechanismus der Krebsentstehung zu erhalten, um die Grundlagen für eine Risikoextrapolation ausgehend vom Nagermodell für den Menschen zu verbessern.

In der ersten Studie wurde untersucht, ob das Protein A2μ-Globulin eine Rolle in der Kanzerogenese von OTA spielt. Dieses Protein kommt nur in der männlichen Ratte, nicht jedoch im Menschen vor. Eine Vielzahl von Substanzen (z.B. D-Limonen) lösen im Zusammenhang mit A2μ-Globulin bei männlichen Ratten Nierenkrebs aus, aber nicht in weiblichen Ratten oder in Mäusen.

In dem Versuch wurden männlichen und weiblichen Ratten während 7 Tagen OTA (1 mg/kg/Tag) oder d-Limonen, das als Positivkontrolle diente, verabreicht. Die Resultate haben gezeigt, dass sich die durch OTA ausgelösten Nierenschäden in allen charakteristischen Punkten von der bekannten durch d-Limonen induzierten A2μ-Nephropathie unterscheiden. Demzufolge ist das
Zusammenfassung

männlich rattenspezifische Protein A2μ-Globulin nicht an den Mechanismen beteiligt, die bei der OTA exponierten männlichen Ratte zur hohen Tumorinzidenz führen.

Die nur schwachen Geschlechtsunterschiede im Bezug auf die beobachteten Nierenschäden und das Fehlen von Geschlechtsunterschieden bei der regenerativen Zellteilungsrate erklären nicht, warum die männlichen Ratten im Zweijahresversuch bei der gleichen Dosis 10 mal häufiger Nierenkrebs entwickelt haben als die weiblichen Tiere. Es konnte ebenfalls keine Erhöhung der Zellteilungsrate in den mit 70 μg/kg behandelten Tieren gefunden werden, obwohl die männlichen Ratten nach zweijähriger Exposition von 70 μg OTA/kg eine Nierentumorinzidenz von 31% aufwiesen, während jene bei den Weibchen nur 2 % betrug. Demzufolge müssen noch andere geschlechtsspezifische Mechanismen, die sich von der Fixierung spontaner Mutationen durch regenerative Zellteilung unterscheiden, in der Induktion, Promotion und Progression von Nierentumoren in männlichen Ratten mitbeteiligt sein.
Um das menschliche Risiko dieses Schimmelpilzgiftes abschätzen zu können, ist es von hauptsächlichem Interesse abzuklären, ob genotoxische oder epigenetische Mechanismen zur Tumorentstehung führen. In der folgenden Studie wurde darum untersucht, ob eine kovalente Bindung von OTA an Nieren- und Leber-DNA zur hohen Tumorinzidenz bei männlichen Ratten beitragen könnte.

Männlichen und weiblichen Ratten wurde oral eine einmalige Dosis verabreicht, die 3H-markiertes und unmarkiertes OTA enthielt. Nach 24 Stunden wurde aus Nieren und Leber DNA isoliert und eine mögliche DNA-assoziierte Radioaktivität untersucht. In sämtlichen Proben war die Radioaktivität unterhalb der Nachweissgrenze. Die Nachweissgrenze für die Nieren DNA betrug 1.3 Moleküle OTA/1010 Nukleotide und bei der Leber 5.6 Moleküle OTA/1011 Nukleotide. Um diese Werte quantitativ mit bekannten genotoxischen Karzinogenen vergleichen zu können, wurde die Nachweissgrenze der Radioaktivität auf der DNA als "Covalent Binding Index", CBI = $(\mu$mol gebundene Substanz/mol DNS Nukleotid)/(mmol verabreichte Substanz/kg Körpergewicht) berechnet. Der in diesem Experiment maximal mögliche CBI für die Niere ist < 0.25 und für die Leber < 0.1. Mit der Annahme, dass in der Niere und der Leber die gleiche Beziehung zwischen CBI und Kanzerogenität besteht, würde man in der männlichen Nieren-DNA einen CBI von > 1000 erwarten, wenn die in der Langzeitstudie gefundenen Tumore mit DNA alkylierenden Eigenschaften von OTA zusammenhängen würden. Es ist somit höchst unwahrscheinlich, dass die Kanzerogenität von OTA auf einer kovalenten Interaktion mit der DNA beruht.

Bis heute stützt sich die Risikoe extrapolation auf die orale Aufnahme von OTA ab. Es sind aber grosse Speziesunterschiede in der Pharmakokinetik von OTA bekannt, und darum könnten zwischen Menschen und Ratten grosse Unterschiede in der Dosis des Zielorganges bestehen. Das Ziel des letzten Teils dieser Arbeit war es darum, die Serum- und Organ-Konzentrationen in Ratten zu bestimmen, denen die Dosen verabreicht wurden, die zur geschilderten hohen Tumorinzidenz geführt haben. Um vergleichbare Bedingungen wie bei der Zweijahresstudie und demzufolge Gleichgewichtsbedingungen im OTA Serumgehalt zu erhalten, wurden die Ratten während 4 Wochen behandelt. Bei den weiblichen und männlichen Ratten war im Serum und in den Nieren eine eindeutige Korrelation zwischen verabreichter Dosis und der gefundenen Menge OTA vorhanden. Signifikante Geschlechtsunterschiede in den OTA
Zusammenfassung

Serumwerten wurde nur bei den Tieren der tiefsten Dosisgruppe festgestellt. Bei den OTA-Nierenwerten traten keine Unterschiede zwischen den Weibchen und Männchen auf. Nach linearer Extrapolation der in diesem Versuch gemessenen Serumwerte zeigte es sich, dass die durchschnittliche OTA-Serumbelastung von Europäern um den Faktor 1100 unter der Konzentration liegt, die bei der Ratte zu morphologischen Veränderungen in der Niere führt. Der Durchschnittswert ist 5300 mal tiefer als die Serumkonzentration, die eine erhöhte Tumorinzidenz in Ratten ausgelöst hat. Im Balkangebiet, in dem die endemische Balkannephropathie auftritt, wurde aber in menschlichen Serumproben bis zu 100 mal mehr OTA gefunden als in Serumproben von Menschen die ausserhalb dieser Gebiete leben. Diese hohen Serumkonzentrationen liegen nur um einen Faktor 11 unter der Serumkonzentration, die bei Ratten zu Nierenschäden geführt hat, und einen Faktor 53 unter der Serumkonzentration, die mit Nierentumoren in Verbindung gebracht wurde. Solange die Mechanismen nicht bekannt sind, die bei der Ratte zu Nierenschäden und Tumoren führen, sollte die Kontamination von Lebens- und Futtermitteln durch OTA so gering wie möglich gehalten werden, um ein mögliches Gesundheitsrisiko zu minimieren. Vor allem bei stark mit OTA belasteten Bevölkerungsgruppen sollten Bemühungen unternommen werden, um einen Sicherheitsabstand zu den bei Ratten beobachteten Effekten zu schaffen.